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tolemy is a research project and software en
cused on the design and modeling of reactiv

iding high-level support for signal processing
on, and real-time control. The key underlying
e project is the use of multiple models of co
ierarchical heterogeneous design and mode
ent. This talk gives an overview of some of 

omputation of interest, with a focus on their c
ier ability to model and specify real-time sys
bility to mix control logic with signal processi
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Types of Computational Systems
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ransformational
 transform a body of input data into a body o

teractive
 interact with the environment at their own sp

eactive
 react continuously at the speed of the envir

This project focuses on design o
•  real-time

•  embedded

•  concurrent

•  network-aware

•  adaptive

•  heterogeneous
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Interactive, High-Level Simulation and Specification
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Properties of Such Specifications
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 Modular
•  Large designs are composed of smaller designs

•  Modules encapsulate specialized expertise

 Hierarchical
•  Composite designs themselves become modules

•  Modules may be very complicated

 Concurrent
•  Modules logically operate simultaneously

•  Implementations may be sequential or parallel or distrib

 Abstract
•  The interaction of modules occurs within a “model of co

•  Many interesting and useful MoCs have emerged

 Domain Specific
•  Expertise encapsulated in MoCs and libraries of module



 © 1997, p.  7 of  30e

Heterogeneous Implementation Architectures
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control panel

ASIC microcontroller

real-time
operating
system

system interco

DSP
assembly

code

programmable
DSP

host port

memory interface

Heterogeneity is a major source
of complexity in such systems.

microwave,

network

microfluidic,
FPGA

MEMS
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Two Approaches to the Design of Such Systems

 
ents

ons from this

 

e implementations

roach

e

ULs.
t

•

•

T

UNIVERSITY OF CALIFORNIA AT BERKELEY

ktronix. fm

 The grand-unified approach
•  Find a common representation language for all compon

•  Develop techniques to synthesize diverse implementati

 The heterogeneous approach
•  Find domain-specificmodels of computation (MoC)

•  Hierarchically mix and match MoCs to define a system

•  Retargetable synthesis techniques from MoCs to divers

he Ptolemy project is pursuing the latter app
•  Domain specific MoCs match the applications better

•  Choice of MoC can profoundly affect system architectur

•  Choice of MoC can limit implementation options

•  Synthesis from specialized MoCs is easier than from G
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Heterogeneous System-Level Specification & Modeling
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problem level (heterogeneous models of computa

implementation level (heterogeneous implementation tec

mapping, s
modeling
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Some Problem-Level Models of Computation
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Gears

 Differential equations

 Difference equations

 Discrete-events

 Petri nets

 Dataflow

 Process networks

 Actors

 Threads

 Synchronous/reactive languages

 Communicating sequential processes

 Hierarchical communicating finite state mac
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Example — Analog Circuit Modeling
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A

C

B

Strengths:
•  Accurate model for many physical systems

•  Declarative

•  Determinate

Weaknesses:
•  Tightly bound to an implementation

•  Expensive to simulate

•  Difficult to implement in software

componen

voltage or current 

wavefo
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Example — Process Networks
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A

C

B

Strengths:
•  Good match for signal processing

•  Loose synchronization (distributable)

•  Determinate

•  Maps easily to threads

•  Dataflow special cases map well to hardware and emb

Weakness:
•  Control-intensive systems are hard to specify

process

stream of tokens

channe

Note: Dataflow is
a special case.
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Our Contributions to Dataflow Modeling
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— the most mature parts of Ptolem

 Compile-time scheduling ofsynchronous dat
with optimized partitioning and memory utili

 Specification of theBoolean dataflow (BDF) 
Turing complete.

 Proof that the existence of a finite complete
bounded memory implementation for BDF is

Heuristics for constructing finite complete cy
bounded memory schedules most of the tim

Multidimensional generalization to dataflow 

Process network model generalization to data

Visual programming formulation and use ofh
functions.
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Example — Synchronous/Reactive Models
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A

C

B

Strengths:
•  Good match for control-intensive systems

•  Tightly synchronized

•  Determinate

•  Maps well to hardware and software

Weaknesses:
•  Computation-intensive systems are overspecified

•  Modularity is compromised

module

signal

x

y

z

event

A discrete model o
progresses as a se
“ticks.” At a tick, th
defined by a fixed 

x

y

z

f A

f B

f C,

=
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Example — Discrete-Event Models
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A

C

B

Strengths:
•  Natural description of digital hardware

•  Global synchronization

•  Can be made determinate (often is not, however)

Weaknesses:
•  Expensive to implement in software

•  May over-specify and/or over-model systems (global ti

entities

signal

[z1, z2, ...]

events

Events occur at 
on a time line th
continuum. The 
events in chrono

[x1, x2, ...]

[y1, y2, ...]
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Rendezvous Models
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A

C

B

Strengths:
•  Models resource sharing well.

•  Partial-order synchronization.

•  Supports naturally nondeterminate interactions.

Weaknesses:
•  Oversynchronizes some systems.

entities

signal

[z1, z2, ...]

events

Events represen
a sender and a r
munication is un
instantaneous. E
include CSP and

[x1, x2, ...]

[y1, y2, ...]
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Sequential Example — Finite State Machines
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A

C

B

Strengths:
•  Natural description of sequential control

•  Behavior is decidable

•  Can be made determinate (often is not, however)

•  Good match to hardware or software implementation

Weaknesses:
•  Awkward to specify numeric computation

•  Size of the state space can get large

states

transitions

z/r

guard/action

Guards determin
sition may be m
state to another,
events that are v
puts assert othe

x/p

y/q
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Essential Differences — Models of Time
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syn

continuous time

discrete time

ultirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered

partially-ordered discrete events

Salvador Dali, The Persisten

discrete events
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Key Issues in these Models of Computation
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 Maintaining determinacy.

 Supporting nondeterminacy.

 Bounding the queueing on channels.

 Scheduling processes.

 Synthesis: mapping to hardware/software im

 Providing scalable visual syntaxes.

 Resolving circular dependencies.

 Modeling causality.

 Achieving fast simulations.

 Supporting modularity.

 Composing multiple models of computation
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Choosing Models of Computation
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Validation methods

 By construction
•  property is inherent.

 By verification
•  property is provable syntactically.

 By simulation
•  check behavior for all inputs.

 By testing
•  observation of a prototype.

 By intuition
•  property is true, I think.

 By assertion
•  property is true. That’s an order.

It is generally better to be higher in th

Meret Oppenheim,
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Usefulness of Modeling Frameworks
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he following objectives are at odds with one 

 Expressiveness

 Generality

s.

 Verifiability

 Compilability/Synthesizability

The Conclusion?

Heterogeneous modeling.
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A Mixed Design Flow
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FSMs

cosimulation

cosimulation

execution
model

system-level modeling

ynthesis

etail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler

imperative dataflow
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Mixing Control and Signal Processing — *Charts

antics
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Choice of domain here determines concurrent sem

H

FSM

FSM
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Example: DE, Dataflow, and FSMs
t
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Metamodeling
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metamodeling framework

metamodel

semantic framework

model
component

metamode

semantic frame

component
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Constraint-Based Metamodeling Frameworks
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hese sets might be deterministic or random,
pproximate.

set of possible
behaviors of

system A

set of possible
behaviors of

system A
composed with

system B

set of
beha

sys
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Uses for Metamodeling
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 Heterogeneous mixtures of semantic frame
•  heterogeneous systems

•  multiple views of the same system

 Design analysis
•  check aspects of correctness

•  discover opportunities for optimization

 Design refinement
•  the set of all possible design refinements gives the con

 Run-time modeling
•  reflection

•  model discovery and adaptation

•  model-driven control
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Milestones in the Ptolemy Project
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 1990 — started with seed support from DAR
program. Focus on embedded DSP softwar
communication networks.

 1993 — joined DARPA RASSP program. Fo
throughput embedded real-time signal proce

 1995 — The Alta Group at Cadence annou
using Ptolemy dataflow and mixed dataflow
technology (SPW).

 1997 — joined DARPA Composite CAD pro
distributed adaptive reactive systems with m
implementation technologies and modeling 

 1997 — Hewlett-Packard (EEsof) announce
an integration of Ptolemy dataflow technolo
RF and microwave design and modeling too
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Ptolemy Software as a Tool and as a Laboratory
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Ptolemy software is
•  Extensible

•  Publicly available

•  An open architecture

•  Object-oriented

Allows for experi
•  Models of com

•  Heterogeneou

•  Domain-speci

•  Design metho

•  Software synt

•  Hardware syn

•  Cosimulation

•  Cosynthesis

•  Visual syntaxe
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