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Abstract
We give a denotational framework (a “meta model”)

within which certain properties of models of computation
can be understood and compared. It describes concurrent
processes as sets of possible behaviors. Compositions of
processes are given as intersections of their behaviors.
The interaction between processes is through signals,
which are collections of events. Each event is a value-tag
pair, where the tags can come from a partially ordered or
totally ordered set. Timed models are where the set of tags
is totally ordered. Synchronous events share the same tag,
and synchronous signals contain events with the same set
of tags. Synchronous systems contain synchronous signals.
Strict causality (in timed systems) and continuity (in
untimed systems) ensure determinacy under certain tech-
nical conditions. The framework is used to compare cer-
tain essential features of various models of computation,
including Kahn process networks, dataflow, sequential
processes, concurrent sequential processes with rendez-
vous, Petri nets, and discrete-event systems.

1. Introduction

Design automation depends on the high-level model-
ing and specification of systems. Such modeling and spec-
ification often uses innovative and sometimes domain-
specific languages. A rich and interesting variety of lan-
guages with different semantic properties have been devel-
oped. These languages are often more abstract than the
established conventional languages into which they are
frequently compiled. 

An impediment to further progress in such abstract
modeling and specification of systems is the confusion
that arises from different usage of common terms. Terms
like “synchronous”, “discrete event”, “dataflow”, and
“process” are used in different communities to mean sig-
nificantly different things. These terms attempt to describe
the model of computation underlying a language, but by
being imprecise and overused, they often do more to cause
confusion than to illuminate. This paper describes one
approach to this problem, giving a formalism that will

enable description and differentiation of models of compu-
tation. To be sufficiently precise, this language is a mathe-
matical one, although the mathematics is not much more
sophisticated than basic set theory. It is denotational rather
than operational, meaning that it declares relationships
rather than describing procedures [18]. It is also incom-
plete, in that it focuses on certain properties of models of
computation, namely their concurrency and communica-
tion, and ignores other aspects.

In many denotational semantics, the denotation of a
program fragment is a partial function or a relation on the
state. This approach does not model concurrency well
[19], where the notion of a single global state may not be
well-defined. In our approach, the denotation of a program
fragment (called a process) is a partial function or a rela-
tion on signals.

We define precisely a number of terms. These defini-
tions sometimes conflict with common usage in some
communities, and even with our own prior usage in certain
cases. We have made every attempt to maintain the spirit
of that usage with which we are familiar, but have discov-
ered that terms are used in contradictory ways (sometimes
even within a community). Maintaining consistency with
all prior usage is impossible without going to the unac-
ceptable extreme of abandoning the use of these terms
altogether.

2. The tagged signal model

2.1 Signals

Given a set of values  and a set of tags , we define
an event  to be a member of . I.e., an event has a
tag and a value. We define a signal  to be a set of events.
A signal can be viewed as a subset of , or as a mem-
ber of the powerset . A functional signal or proper
signal is a (possibly partial) function from  to . By
“partial function” we mean a function that may be defined
only for a subset of . By “function” we mean that if

 and , then .
Unless otherwise stated, we assume all signals are func-
tional. We call the set of all signals , where of course
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. It is often useful to form a collection or tuple
 of  signals. The set of all such tuples will be denoted

.
The empty signal (one with no events) will be denoted

by , and the tuple of empty signals by , where the
number  of empty signals in the tuple will be understood
from the context. These are signals like any other, so

 and . For any signal , , and for
any tuple , , where by the notation  we
mean the pointwise union of the sets in the tuple.

In some models of computation, the set  of values
includes a special value ⊥ (called “bottom”), which indi-
cates the absence of a value. Notice that while it might
seem intuitive that  for any , this would
violate  (suppose that  already contains an
event at ). Thus, it is important to view ⊥ as an ordinary
member of  like any other member.

2.2 Tags

Frequently, a natural interpretation for the tags is that
they mark time in a physical system. Neglecting relativis-
tic effects, time is the same everywhere, so tagging events
with the time at which they occur puts them in a certain
order (if two events are genuinely simultaneous, then they
have the same tag). For specifying systems, however, the
global ordering of events in a timed system may be overly
restrictive. A specification should not be constrained by
one particular physical implementation, and therefore
need not be based on the semantics of the physical world.
Thus, for specification, often the tags should not mark
time. 

In a model of a physical system, by contrast, tagging
the events with the time at which they occur may seem
natural. They must occur at a particular time, and if we
accept that time is uniform, then our model should reflect
the ensuing ordering of events. However, when modeling a
large concurrent system, the model should probably reflect
the inherent difficulty in maintaining a consistent view of
time in a distributed system [5][10]. If an implementation
cannot maintain a consistent view of time, then it may be
inappropriate for its model to do so (it depends on what
questions the model is expected to answer). 

Fortunately, there are a rich set of untimed models of
computation. In these models, the tags are more abstract
objects, often bearing only a partial ordering relationship
among themselves.

2.3 Processes

In the most general form, a process  is a subset of
 for some . A particular  is said to satisfy the

process if . An  that satisfies a process is called a
behavior of the process. Thus a process is a set of possible

behaviors or a relation between signals. 
Intuitively,  should be the number of signals associ-

ated with the process, affecting it, being affected by it, or
both. However, it is often convenient to make  much
larger, perhaps large enough to include all signals in a sys-
tem. Consider for example the two processes in figure 1.
There, we can define the processes as subsets of . 

A connection  is a particularly simple process
where two of the signals in the -tuple are constrained to
be identical. For example, in figure 1,  where

 if . (1)

There is nothing special about connections as processes,
but they are sufficiently useful that we highlight them.

Figure 1 shows a system. A system  with  signals
and  processes (some of which may be connections) is
given by

, (2)

where P is the collection of processes , .
For example, in figure 1, the overall system may be given
as . That is, any  that satisfies
the overall system must satisfy each of , , , and

. 
Of course, a system is itself a process, making the two

terms interchangeable. We will generally use the word
“process” to describe a part of a larger system, and “sys-
tem” to describe an aggregation of all processes and con-
nections under consideration.

As suggested by the gray outline in figure 1, it makes
little sense to expose all the signals of a system as signals
associated with the system. In figure 1, for example, since
signals  and  are identical to  and  respectively,
it would make more sense to “hide” two of these signals. 

Given a process , the projection along  onto
, , is defined by 
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Figure 1. An interconnection of processes.
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 if there exists

 such that . (3)

Thus, in figure 1, we can define the composite process
. This projection operator removes

one element at a time. It is sometimes useful to use a pro-
jection operator that leaves only one element. The projec-
tion  is defined by 

 if there exist 

such that . (4)

Many systems have the notion of inputs, which are
events or signals that are defined outside the model. For-
mally, an input to a process is an externally imposed con-

straint  such that  is the total set of
acceptable behaviors. The set of all possible inputs

 is a further characterization of a process. For

example,  means that the

first signal is specified externally and can take on any
value in the set of signals. But inputs could also be events
within signals, in general.

A system or process is determinate if for any input
constraint  it has exactly one behavior or exactly no
behaviors; i.e.  or  for each

. Otherwise, it is nondeterminate. Thus, whether a
process is determinate or not depends on our characteriza-
tion  of the inputs. 

Fortunately, most interesting cases distinguish input
and output signals, making the characterization  con-
ceptually simple. In such cases, it is natural to partition the
signals associated with a process into input signals and
output signals. Intuitively, the process does not determine
the values of the inputs, and does determine the values of
the outputs. If , then  is a partition of

. A process  with  inputs and  outputs is a subset
of . In other words, a process defines a relation
between input signals and output signals. An  tuple

 is said to satisfy  if . It can be written
, where  is an -tuple of input sig-

nals for process  and  is an -tuple of output
signals for process . If the input signals are given by

, then the set  describes the
inputs, and  is the set of behaviors consistent with
the input .

So far, however, this partition does not capture the
notion of a process “determining” the values of the out-
puts. A process F is functional with respect to a partition if
it is a single-valued mapping from  or some subset of

 to . That is, if  and , then
. In this case, we can write , where

:  is a (possibly partial) function. Such a pro-

cess is obviously determinate for an appropriate input
characterization . Given the input signals, the output sig-
nals are determined (or there is unambiguously no behav-
ior). Formally, given a partition  and a process 
that is functional with respect to this partition, the process
is determinate for input characterization

. We will mostly use the
symbol  to denote functional processes.

Consider possible partitions for the example in figure
1. Suppose that  and  are outputs of  and  and

 are inputs. This is suggested by the arrowheads in fig-
ure 2. If  is functional with respect to the partition

, then we will denote the
process and its function as  rather than . Notice that
the irrelevant signals fall in the input partition, since they
cannot logically be functions of other signals, as far as 
is concerned.

Note that a given process may be functional with
respect to more than one partition. A connection, for
example, is a process relating two signals, say  and ,
and it is functional with respect to either  or

.
A system  is said to be closed if , a

set with only one element, . Since the set of
behaviors is , there are no input constraints. It
is open if it is not closed.

Given a process  and a partition ,  is
total with respect to this partition if for every 
there is an  such that . Otherwise it is
partial. The signal tuple  is said to be accepted by pro-
cess . Many (if not most) useful processes are determi-
nate and total. We henceforth assume that all functional
processes are total.
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Figure 2. A partitioning of the signals in figure
1 into inputs and outputs.
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3. Partially and totally ordered tags

A partially ordered tagged system is a system where
the set  of tags is a partially ordered set. Partially
ordered means that there exists an irreflexive, antisymmet-
ric, transitive relation between members of the set [4]. We
denote this relation using the template “<”. Of course, we
can define a related relation, denoted “≤”, where  if

 or .
The ordering of the tags induces an ordering of events

as well. Given two events  and
,  if and only if .

We are not alone in using partial orders to model con-
current systems. Pratt motivates doing so, and then gener-
alizes the notion of formal string languages to allow partial
ordering rather than just total ordering [16]. Mazurkiewicz
uses partial orders in developing an algebra of concurrent
“objects” associated with “events” [14]. Partial orders
have also been used to analyze Petri nets [17]. Lamport
observes that a coordinated notion of time cannot be
exactly maintained in distributed systems, and shows that
a partial ordering is sufficient [10].

4. Timed concurrent systems

A timed system is a tagged system where  is totally
ordered. That is, for any distinct  and  in , either

 or . The use of the term “timed” here stems
from the observation that in the standard model of the
physical world, time is viewed as globally ordering events.
Any two events are either simultaneous (have the same
tag), or one unambiguously precedes the other. 

4.1 Metric time

Some timed models of computation include opera-
tions on tags. At a minimum,  is an Abelian group, in
addition to being totally ordered. A consequence is that

 is itself a tag for any  and  in . In a slightly
more elaborate model of computation,  has a metric.
Such systems are said to have metric time. In a typical
example of metric time,  is the set of real numbers and

, the absolute value of the difference.

4.2 Continuous time

Let  denote the set of tags in a signal . A
continuous-time system is a metric timed system  where

 is a continuum (a closed connected set) and 
for each signal  in any tuple  that satisfies the system.

4.3 Discrete-event systems

Many simulators, including most digital circuit simu-
lators, are based on a discrete-event model (see for exam-
ple [6]). Given a system , and a tuple of signals 

that satisfies the system, let  denote the set of tags
appearing in any signal in the tuple . Clearly 
and the ordering relationship for members of  induces an
ordering relationship for members of . A discrete-
event system  is a timed system where for all ,

 is order-isomorphic to a subset of the integers1.
“Order-isomorphic” means simply that there exists an
order-preserving bijection between the events in  and
a subset of the integers (or the entire set of integers).

In the control systems community, a discrete-event
model also requires that the set of values  be countable,
or even finite [3][7]. This helps to keep the state space
finite, which can be a big help in formal analysis. How-
ever, in the simulation community, it is irrelevant whether

 is countable [6]. In simulation, the distinction is moot,
since all representations of values in a computer simula-
tion are drawn from a finite set. We adopt the broader use
of the term, and will refer to a system as a discrete-event
system whether  is countable, finite, or neither.

4.4 Synchronous systems

Two events are synchronous if they have the same tag.
Two signals are synchronous if all events in one signal are
synchronous with an event in the other signal and vice
versa. A system is synchronous if every signal in the sys-
tem is synchronous with every other signal in the system.
A discrete-time system is a synchronous discrete-event
system.

By this definition, the so-called Synchronous Data-
flow (SDF) model of computation [11] is not synchronous
(we will say more about dataflow models below). The
“synchronous languages” [1] (such as Lustre, Esterel, and
Argos) are synchronous if we consider , where 
(bottom) denotes the absence of an event. Indeed, a key
property of synchronous languages is that the absence of
an event at a particular “tick” (tag) is well-defined.
Another key property is that event tags are totally ordered.
Any two events either have the same tag or one unambigu-
ously precedes the other. The language Signal [2] is called
a synchronous language, but in general, it is not even
timed. It supports nondeterminate operations which
require a partially ordered tag model. Cycle-based logic
simulators are discrete-time systems.

4.5 Causality

We begin with a timed notion of causality, momen-
tarily restricting our attention to timed systems. Borrowing
notation from Yates [20], a signal  is defined to be
the subset of events in  with tags less than or equal to tag

. This is called a cut of . This generalizes to tuples  of
signals or sets  of tuples of signals, where  and 

1.  This elegant definition is due to Wan-Teh Chang.
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are tuples and sets of tuples of cut signals, respectively. A
functional process  is causal if

 for all . (5)

Yates [20] considers timed systems with metric time
where  is a tag1; a functional process  is -causal
if , the tuple of empty signals, and for all

,

. (6)

Intuitively, -causal means that the process incurs a time
delay of . Yates proves that every network of -causal
functional processes is determinate.

5. Untimed concurrent systems

When tags are partially ordered rather than totally
ordered, we say that the system is untimed. Untimed sys-
tems cannot have the same notion of causality as timed
systems. The equivalent intuition is provided by the mono-
tonicity condition. A slightly stronger condition, continu-
ity, is easily shown to be sufficient to ensure determinacy.
These two conditions depend on a partial ordering of sig-
nals called the prefix order.

5.1 The prefix order for signals

In many of the models of computation that we will
consider, the tags in each signal are totally ordered by “< ”
even if the complete set  of tags is only partially ordered.
In this case, a natural partial ordering for signals emerges;
it is called the prefix order. For the prefix order, we write

   if every event in  is also in , and each event
in  that is not in  has a tag greater than all tags in .
More formally, if both  and  are totally
ordered,

   ⇔ 

and for all  and , , (7)

where  denotes the set of events in  that are not
also in . Clearly, in our model, the empty signal  is a
prefix of every other signal, so it too is called bottom.

In partially ordered models for signals, it is often use-
ful for mathematical reasons to ensure that the partial
order is a complete partial order (CPO). To explain this
fully, we need some more definitions. An increasing chain
in  is a set , where  is a totally ordered
subset of  and for any  and  in ,

   ⇔ . (8)

An upper bound of a subset  is an element 
where every element in  is a prefix of . A least upper

1.  The zero element must exist in  for  to be an Abelian 
group.

bound (lub)   is an upper bound that is a prefix of
every other upper bound. A complete partial order (CPO)
is a partial order where every increasing chain has a lub.
From a practical perspective, this often implies that our set

 of signals must include signals with an infinite number
of events.

These definitions are easy to generalize to . For
 and ,    if each corresponding ele-

ment is a prefix, i.e.    for each . With
this definition, if  is a CPO, so is . We will assume
henceforth that  is a CPO for all .

We can now introduce the untimed equivalent of cau-
sality.

5.2 Monotonicity and continuity

We now generalize to untimed systems, connecting to
well-known results originally due to Kahn [9]. Our contri-
bution here is only to present these results using our nota-
tion. A process  is monotonic if it is functional, and 

   ⇒   . (9)
A process :  is said to be continuous if it is

functional and for every increasing chain , 
has a least upper bound  , and

(  ) =  . (10)
The notation  denotes a set obtained by applying the
function  to each element of . The term “continuous”
is consistent with the usual mathematical definition of
continuity. For intuition, it may help some readers to
connect the definition to that of continuous functions of
real variables. This is easy if  is interpreted as a limit of
the increasing chain. 

Fact. A continuous process is monotonic [9].

Consider a composition  of continuous processes
. Assume  for some . In general,

the composition may not be determinate. Consider a trivial
case, where  and :  is the identity func-
tion. This function is certainly continuous. Suppose we
construct a closed system  by composing  with a sin-
gle connection, as shown in figure 3. Then any signal

 satisfies . Since there are no inputs to this process
and it has many behaviors, it is not determinate.

There is an alternative interpretation of the composi-
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tion  that is functional, and in fact is also continuous.
Under this interpretation, any composition of continuous
processes is determinate. Moreover, this interpretation is
consistent with execution policies typically used for such
systems (their operational semantics), and hence is an
entirely reasonable denotational semantics for the compo-
sition. This interpretation is called the least-fixed-point
semantics.

Consider again a composition  of functional and
continuous processes . It is possible (see
[13]) to describe this composition using a continuous
function : , where  is the total number of
output signals for the  functions, and  is the number of
remaining signals (which are therefore inputs). We then
take the semantics of the composition, given  inputs  to
be the least fixed point  of the equation

. (11)
A classic CPO fixed point theorem [4] tells us that this
least fixed point exists, and gives us a constructive
procedure for finding it.

Under this least-fixed-point semantics, the value of 
in figure 3 is , the empty signal. Under this semantics,
this is the only signal that satisfies the composite process,
so the composite process is determinate. Intuitively, this
solution agrees with a reasonable execution of the process,
in which we would not produce any output from 
because there are no inputs. This reasonable operational
semantics therefore agrees with the denotational seman-
tics. For a complete treatment of this agreement, see Win-
skel [19].

Notice that the existence of multiple fixed points
implies that for a given input constraint , the set

 of signal tuples that satisfy the system has size
greater than one, implying nondeterminism. We are get-
ting around this nondeterminism by defining the single
unique signal tuple that satisfies the system to be

, the smallest member (in a prefix order
sense) of the set , as long as there is at least one
behavior in . This minimum exists and is equal to
the least fixed point, as long as the composing processes
are continuous (every member of  is a fixed point,
and there is a unique least fixed point). 

For the example in figure 3,  (any signal seems
to satisfy the process, for  defined as in equation (2)),
and  (there are no inputs, so the inputs impose no
constraints). Thus . The least fixed-point
semantics dictates that we take the behavior to be

, the empty signal.

6. Models of computation

A variety of models have been proposed for concur-
rent systems where actions, communications, or both are

partially ordered rather than totally ordered.

6.1 Kahn process networks

Let  denote the tags in signal . In a Kahn pro-
cess network,  is totally ordered for each signal ,
but the set of all tags  may be partially ordered. In partic-
ular, for any two distinct signals  and , it could be
that . Processes in Kahn process net-
works are also constrained to be continuous, and least-
fixed-point semantics are used so that compositions of pro-
cesses are determinate.

For example, consider a simple process that produces
one output event for each input event. Denote the input
signal , where  if the index .
Let the output be . Then the process imposes
the ordering constraint that  for all .

6.2 Sequential processes

A sequential process can be modeled by associating a
single signal with the process, as suggested in figure 4(a),
where the events  in the signal  are totally ordered.
The sequential actions in the process (such as state
changes) are represented by events on the signal.

6.3 Sequential processes with rendezvous

The CSP model of Hoare [8] and the CCS model of
Milner [15] involve sequential processes that communi-
cate via rendezvous. Similar models are realized in the
languages Occam and Lotos. This idea is depicted in fig-
ure 4(b). In this case  is totally ordered for each

. Moreover, representing each rendezvous
point there will be events , , and  in signals ,

, and  respectively, such that

, (12)

where  is the tag of the event .
Note that although the literature often refers to CSP

and CCS as synchronous models of computation, under
our definition they are not synchronous. They are not even
timed. The events in  and  that are not associated
with rendezvous points have only a partial ordering rela-
tionship with each other. This partial ordering becomes
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particularly important when there are more than two pro-
cesses. Moreover, if a process can reach a state where it
will rendezvous with one of several other processes, the
composition is nondeterminate because of this partial
order.

6.4 Dataflow

The dataflow model of computation is a special case
of Kahn process networks [12]. A dataflow process is a
Kahn process that is also sequential, where the events on
the self-loop signal denote the firings of the dataflow actor.
The firing rules of a dataflow actor are partial ordering
constraints between these events and events on the inputs.
A dataflow process network, is a network of such pro-
cesses.

For example, consider a dataflow process  with one
input signal and one output signal that consumes one input
event and produces one output event on each firing, as
shown in figure 5. Denote the input signal by ,
where  if the index . The firings are
denoted by the signal , and the output by

, which will be similarly ordered. Then the
inputs and outputs are related to the firings as

. A network of such processes will estab-
lish a partial ordering relationship between the firings of
the actors. More interesting examples of dataflow actors
can also be modeled [13].

6.5 Discrete-event simulators

In a typical discrete-event simulator, sequential pro-
cesses are interconnected with signals that contain events
that explicitly include time stamps. These are the only
types of systems we have discussed where the tags are
explicit in the implementation. Each sequential process
consists of a sequence of firings, as in dataflow, but unlike
dataflow, events are globally ordered, so the firings are
globally ordered. Indeed, the operational semantics of a
discrete-event system is to execute the firings sequentially
in time as follows. Find the event on the event queue with
the smallest tag. Find the process for which the signal that
contains this event is an input. Fire the process, and
remove the event from the event queue. When events are
produced in a firing, place them in the event queue sorted

by tag. This operational semantics is completely consistent
with our denotational semantics.

In some discrete-event simulators, such as VHDL
simulators, tags contain both a time value and a “delta
time.” Delta time has the interpretation of zero time in the
simulation. But it is used to avoid the ambiguity of having
events with exactly the same tag, which could result in
nondeterminism. In the denotational and operational
semantics, the time value and delta time together deter-
mine the ordering of tags.

6.6 Petri nets

Petri nets can also be modeled in the framework. Petri
nets are similar to dataflow, but the events within signals
need not be ordered. We associate a signal with each place
and each transition in a Petri net. Consider the trivial net in
figure 6(a). Viewing the signals  and  as sets of
events, there exists a one-to-one function  such
that  for all . This simply says that every
firing (an event in ) has a unique corresponding token
(an event in ) with a smaller tag. In figure 6(b), we sim-
ply require that there exist two one-to-one functions

 and  such that  and
 for all . In figure 6(c), which represents a

nondeterministic choice, we again need two one-to-one
functions  and  such that 
for all  and  for all , but we impose
the additional constraint that ,
where the notation  refers to the image of the func-
tion  when applied to members of the set . In figure
6(d), we note that if the initial marking of the place is
denoted by the set  of events, then it is sufficient to define

. Composing these simple primitives then
becomes a simple matter of composing the relevant func-
tions. In figure 6(e),  such that  for all

,  (the initial marking is empty), therefore

P

s1
P

s2

s3

Figure 5. A simple dataflow process that
consumes and produces a single token on each
firing.
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Figure 6. Some simple Petri nets.
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.

7. Heterogeneous systems

It is assumed above that when defining a system, the
sets  and  include all possible tags and values. In some
applications, it may be more convenient to partition these
sets and to consider the partitions separately. For instance,

 might be naturally divided into subsets , , ...
according to a standard notion of data types. Similarly, 
might be divided, for example to separately model parts of
a heterogeneous system that includes continuous-time,
discrete-event, and dataflow subsystems. This suggests a
type system that focuses on signals rather than values. Of
course, processes themselves can then also be divided by
types, yielding a process-level type system that captures
the semantic model of the signals that satisfy the process.

8. Conclusions

We have given the beginnings of a framework within
which certain properties of models of computation can be
understood and compared. Any model of computation will
have important properties that are not captured by this
framework. The intent is not to be able to completely
define a given model of computation, but rather to be able
to compare its notions of concurrency, communication,
and time with those of others. The framework is also not
intended to be itself a model of computation, but rather as
a “meta model,” so it should not be interpreted as some
“grand unified model” that when implemented will obviate
the need for other models. It is too general for any useful
implementation and too incomplete to provide for compu-
tation. It is meant simply as an analytical tool.
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