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Abstract - We evaluate MUSIC, LMS, and the Goertzel al-
gorithms for dual-tone multiple-frequency estimation. We
rate their computational requirements, estimation errors, and
their compliance with the CCITT Q.23 and Q.24 standards
through MATLAB simulations and real-time implementa-
tions on the ADSP-2101 and Motorola 56001 processors.

I. INTRODUCTION

Estimating the frequencies of multiple signals in noise is
an important problem in signal processing. We can esti-
mate these frequencies, using subspace techniques such
as Multiple Signal Classification (MUSIC) [1], adaptive
techniques such as Least Mean-Square (LMS) estimation
[2], or fastimplementations of discrete Fourier transform
(DFT) such as the Goertzel algorithm [3]. The choice of
the technique is based on a trade-off between the obser-
vation time and the available computational resources.

We apply MUSIC, LMS-based normalized Direct
adaptive Frequency Estimation Technique (DFET) [4]
(NDFET) [5], and the Goertzel algorithm to the detec-
tion of dual-tone multiple frequencies (DTMF). We eval-
uate their performance and compliance with standards
through MATLAB simulations and real-time embedded
digital signal processor implementations. We coded the
ADSP-2101 implementations manually, but we used the
Ptolemy 0.6 rapid prototyping environment [6] to gener-
ate the Motorola 56001 implementations. A key benefit
of using a tool like Ptolemy is that the DTMF decoders
can be reused in other designs and retargeted to VHDL,
C, and other implementations.

Il. DUAL-TONE MULTIPLE FREQUENCIES

DTMF signaling has many applications such as tele-
phonedialing, dataentry, creditchecking, and voice mail
system control. A DTMF signal consists of two super-
imposed sinusoidal waveforms with frequencies chosen
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from a set of eight standardized frequencies. These fre-
guencies should be generated and detected according to
the CCITT Recommendation Q.23 [7] and Q.24 [8]:

1. Signal frequencies
a. Low group:
b. High group:

697, 770, 852, 941 Hz
12009, 1336, 1477, 1633 Hz

2. Frequency tolerance
a. Operation:
b. Non-operation:

< 1.5%
> 3.50%

3. Signal reception timing

a. Signal duration/operation: 40 ms min.
b. Signal duration/non-operation: 23 ms max.
c. Pause duration: 40 ms min.
d. Signal interruption: 10 ms max.

Ill. GOERTZEL ALGORITHM

The Goertzel algorithm is more efficient than the Fast
Fourier Transform in computing an N-point DFT if less
than 2 log, N DFT coefficients are required [9]. In DTMF
detection, we only need 8 of, for example, 205 DFT coeffi-
cients to detect the first harmonics of the 8 possible tones,
and then apply decision logic to choose the strongest
touch tone. Since DTMF signals do not have second har-
monics, we could compute another 8 DFT coefficients to
compute the second harmonics to detect the presence of
speech [3].

The Goertzel algorithm computes the kth DFT coeffi-
cient of the input signal «[n] using a second-order filter

sg[n] = z[n] +2 COS(Z;—k) sgn—1]—sgn—2] (1)

yk[n] = si[n] — Wy s[n — 1] 2
where si[—2] = sg[—1] = 0. The kth DFT coefficient
is produced after the filter has processed N samples:
X[k] = yg[n]ln=n. The key in an implementation is to
run sg[n] for N samples and then evaluate y;[N]. The
computation for s;[n] takes one add (z[n] — si[n — 2])
and one multiply-accumulate per sample. In DTMF de-
tection, we are only concerned with the power of the kth
coefficient, yx [N]y;[NV]:

Sk [N]Sk[N]—Z COS(%)&?;c [N]Sk[N—l]—l—sk[N—l]Sk[N—l]



The value of N must be shorter than the samplesin half
of aDTMF signaling interval (N < 400), be large enough
for good frequency resolution (V > 516), and meet the
relative error specification 2(a). We used a conventional
value of N =205 [3, 10] because it is roughly half of 400
samples. Decision logic can be added to give a valid
DTMEF signal if the same two DTMF tones are detected
in a row to add robustness against noise.

Table 1: Chosen & values to minimize the error in &.

Tone | floating Absolute | Relative
inHz | pointk | k error error
697 17.861 | 18 0.139 0.0078
770 19.731 | 20 0.269 0.0136
852 21.833 | 22 0.167 0.0077
941 24113 | 24 0.113 0.0047
1209 | 30.981 | 31 0.019 0.0006
1336 | 34.235 | 34 0.235 0.0069
1477 | 37.848 | 38 0.152 0.0040
1633 | 41.846 | 42 0.154 0.0037

IV. NDFE ALGORITHM

The Direct adaptive Frequency Estimation Technique [4]
is based on the Least Mean Squares (LMS) algorithm
[2]. We introduce an adaptive step size to normalize the
result and called the algorithm NDFET [5].

Using trigonometric identities, we can rewrite a sinu-
soidal signal of frequency w as

sin(w - n) = 2cos(w) sin(w - (n — 1)) — sin(w - (n — 2))
Letting sin(w - n) = x[n] and « = cos(w) yields
z[n] =2az[n—1] — z[n — 2] + ¢[n] (3)

where ¢[n] is the estimation error or additive noise.
When z[r] consists of multiple sinusoids, e[n] includes
the sum of the additional sinusoidal terms. We apply
LMS with step size ¢ to minimize e[n] and estimate a:

aln] = afn — 1] + 2 p[n] z[n — 1 e[n — 1] 4)
From equations (3) and (4), the LMS filter output is
e[n] = @[n] — 2a[n] x[n — 1] + z[n — 2] (5)

For afixed step size of u[n] = 0.04, the NDFET algorithm
in equation (5) converged within 20 samples (2.5 ms) for
each of the eight single tones used in DTMF signals.

This algorithm can be expanded for signals including
more than one sinusoid [4, 5]:

ai[n] = a1fn — 1]+ 2 p[nle[n — an—1] (6)

da[n] = do[n — 1+ 2pn]en—12[n—1] (7)

2 [n] = z[n] — 2ai[n] 2[n— 1+ 2[n—2] (8)

2 [n]=2[n]—2a[n]zn—1+z[n—2=cn] (9

We use a periodic adaptive step size u[n] = po/(1 +
(n mod N)) where N is the period and o = 0.04.

V. MUSIC ALGORITHM

MUSIC detects frequencies in a signal by performing an
eigen decomposition on the covariance matrix of a data
vector y of M samples obtained from the samples of the
received signal. The key to MUSIC is its data model

vy=As+v (10)

where v is a vector of M noise samples, s is a vector of
N signal amplitudes (N = 2 for DTMF tones), and A is
the M x N Vandermonde matrix of samples of the signal
frequencies. If we assume a zero-mean signal and white
noise, then the covariance of y has the form
Ry = BE{yy"} = ARsA" + %L (11)
Here, Rg = F{ss}isthe N x N signal autocorrelation
matrix, I is the M x M identity matrix, and ¢° is the
noise variance. From the eigen decomposition of Ry,
we use the eigenvectors associated with the N maximum
eigenvalues to define the signal subspace (the column
space of A), and use the other eigenvectors to define the
noise subspace, ¢/,. From the orthogonality of the signal
and noise subspaces, finding the peaks in the estimator

function
1

= RO
for various w values yields the strongest frequencies [1],
where a(w) refers to the columns of A.

MUSIC assumes that the number of samples M and
the number of frequencies NV are known. The efficiency
of MUSIC is the ratio of the theoretical smallest variance,
given by the Cramer-Rao Lower Bound (CRLB) [11], to
the variance of the MUSIC estimator:

(12)

eff = varcrrp@,)/Varuuvsrc(,) (13)

The efficiency does not depend on the total number of
samples, m, (Figure 1) but does depend on M (Figure
2). As M increases, efficiency and computation time
increase. We pick M = 8, because larger values do not
significantly improve the efficiency.

VI. MATLAB SIMULATIONS

MATLAB simulations indicate that the Goertzel algo-
rithm does not meet standard 2(b), and that the NDFE al-
gorithm is very fast compared to the other two but gives
large estimation errors. MUSIC meets the standards on
the estimation error because it is a high-resolution tech-
nique [5]. Executiontimesin MATLABare: Goertzel 11.8
s, NDFET 2.1 s, and MUSIC 3.2s. MATLAB, however, is
optimized for floating-point matrix-vector calculations,
and it is not necessarily a good indicator of execution
times on fixed-point DSP processors.



VIl. ADSP-2101 IMPLEMENTATION

When implementing the DTMF decoder algorithms on
the fixed-point ADSP-2101 (16.67 MHZz) processor, we
sampled touch tones generated by a telephone at 8 KHz
and 8 bits. For each algorithm, we compute the esti-
mation errors for each touch tone digit and manually
compared it against standards given in Section Il. The
required programming memory (PM) in words, data
memory (DM) in words, and execution time (ET) in
us/sample follow. A word is 2 bytes for DM and 3
bytes for PM, and samples arrive every 125 ps.

o Goertzel DTMF detector hand-coded in assembly:
PM =167, DM =51, ET = 33.2 us/sample

o NDFET DTMF detector hand-coded in assembly:
PM =162, DM = 13, ET = 9.1 us/sample

¢ MUSIC DTMF detector cross-compiled from C:
PM = 2071, DM = 1824, ET = 1302 ps/sample

A. The Goertzel Algorithm

Table 2 shows the error percentage in detecting DTMF
tones for the Goertzel algorithm on the ADSP-2101. Un-
fortunately, its resolution was not high enough. For ex-
ample, for N = 205with 8 KHz sampling rate, resolution
in frequency domain is 8000/205 = 39 Hz. This resolu-
tion causes an error in meeting standard 2(b). The DTMF
receiver must eliminate the tones outside the specified
ranges. To be more specific, considera770 Hz tone. Stan-
dard 2(b) enforces the elimination of frequencies outside
743.05 — 796.95 Hz for 770 Hz. However, 39 Hz reso-
lution enforces the detection of signals in 760.98 — 800.0
Hz to yield 780.48 Hz, which is impossible with 39 Hz
resolution in frequency domain.

Table 2: Goertzel algorithm tests on the ADSP-2101

1209 1336 1477
697 | 702,1209 | 702,1326 | 702, 1482
(e%) | 0.72,0.00 | 0.72,0.74 | 0.72,0.34
770 | 780,1209 | 780, 1326 | 780, 1482
(e%) | 1.30,0.00 | 1.30,0.74 | 1.30,0.34
852 | 858, 1209 | 858, 1326 | 858, 1482
(e%) | 0.70,0.00 | 0.70,0.74 | 0.70,0.34
941 | 936, 1209 | 936, 1326 | 936, 1482
(e%) | 0.53,0.00 | 0.53,0.74 | 0.53,0.34

B. Normalized Direct Frequency Estimation Technique

Table 3 shows the detected tones with NDFET imple-
mented on the ADSP-2101. For the implementation, we
used an adaptive step size over each p[n] = po/n interval
of 300 samples, n = 1, ..., N, with po = 0.04. As shown
on Table 3, estimation errors are very high since this al-
gorithm is not robust in the presence of noise. Although
NDFET is much faster than the Goertzel algorithm, it
does not meet the standard 2(a).

Table 3: NDFE tests on the ADSP-2101

1209 1336 1477
697 | 894,1178 917, 1200 925, 1241
(e%) | 28.29,2.57 | 31.57,10.15 | 32.78,16
770 | 927,1171 944, 1224 962, 1269
(e%) | 20.44,3.15 | 22.6,8.38 | 24.98, 14.08
852 | 953, 1182 981, 1238 999, 1282
(e%) | 11.88,2.25 | 15.17,7.31 | 17.25,13.18
941 | 980,1198 | 1017,1256 | 1043, 1304
(e%) | 4.18,0.90 8.11, 6.02 10.85, 11.7

C. MUSIC Algorithm

We implemented MUSIC in C and then cross-compiled
it to assembly. We run 20 iterations of the QR algorithm
[12] to compute the eigenvalue decomposition of the
covariance matrix Ry. Ry is estimated by
1 m
2w =) % y[nly" [n] + ¥ [n]y"" [n]
n=M+1

(14)

where B denotes the backward vector operation, with
M = 8 and m = 200. The implementation meets the fre-
guency resolution standards, and we expect to develop
a MUSIC algorithm by hand that can keep up with the
incoming samples.

VIIl. MOTOROLA 56001 IMPLEMENTATION

We add decision logic to detect valid DTMF signals
and generate DTMF decoders for the Motorola 56001
processor (24-bit, 40 MHz) using the Ptolemy software
environment [6]. Ptolemy is a freely distributable,
extensible, graphical block diagram environment that
interfaces with compilers, assemblers, hardware syn-
thesis tools, and other external programs. Goertzel
and NDFET decoders are included in Ptolemy 0.6,
due for release on April 15, 1996, via the ftp site
pt ol eny. eecs. ber kel ey. edu. A MUSIC decoder has
not yet been implemented.

The DTMF decoders have the following structure:

ke
high index y
input Decoder| loW index | pecision
signal Bank present Logic )
valid

The decoder bank, after some observation time, outputs
the index of the low and high frequency componentsand
whether a DTMF signal might be present. Decision logic
decodes the touch tone key and decides whether or not
the detection is valid. Like the ADSP implementation,
processing is performed on blocks of 205 samples for
Goertzel and 300 for the NDFET.



We match the intensive signal processing computa-
tions and the accompanying decision logic to the Syn-
chronous Dataflow (SDF) model of computation [13] in
Ptolemy. A valid SDF subsystem always has a static im-
plementation, i.e., one that does notrequire any run-time
scheduling. This holds true whether we ultimately gen-
erate an implementation for a DSP processor, for mul-
tiple processors, as C code, or as a VLSI chip. Using
knowledge of the target implementation, we can com-
pute whether or not the system meets the real-time con-
straints. We specified the DTMF decoders as SDF block
diagrams and verified them through simulation, and
converted them to a Motorola 56001 implementation.
Extra memory and instructions are generated to handle
the 170 for each block.

On the 56001, a word is 3 bytes. Samples arrive every
125 us. Input data buffers take up 205 and 300 words,
respectively, and are not included in data memory usage.

¢ Goertzel DTMF decoder (detector + logic):
PM =805, DM = 218, ET = 19.4 us/sample

o NDFET DTMF decoder (detector + logic):
PM =329, DM = 273, ET = 20.9 us/sample

IX. SUMMARY

We implemented three real-time DTMF detection
schemes, and analyzed their performance. We chose
an observation time (block size) to optimize the per-
formance subject to real-time constraints. The MUSIC
DTMF decoder complies with CCITT Q.24 standards,
but is the mostexpensive to implement on an embedded
DSP processor. Although easier to implement, neither
the Goertzel nor the NDFET DTMF decoders can satisfy
the standards, due to poor frequency resolution and high
SNR requirements (50 dB), respectively. The hand-coded
implementations are faster and require less memory, but
the Ptolemy designs can be reused and retargeted to a
variety of implementations.
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Figure 1. Effect of total number of samples m on the efficiency
ratio eff for M = 8.
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Figure 2. Change of efficiency ratio eff relative to the number
of samples M with m = 200.
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