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Abstract

This paper relates to system-level design of signal processing systems, which are often heterogeneous
in implementation technologies and design styles. The heterogeneous approach, by combining small,
specialized models of computation, achieves generality and also lends itself to automatic synthesis and
formal verification. Key to the heterogeneous approach is to define interaction semantics that resolve
the ambiguities when different models of computation are brought together. For this purpose, we intro-
duce atagged signal modeas a formal framework within which the models of computation can be
precisely described and unambiguously differentiated, and their interactions can be understood. In this
paper, we will focus on the interaction between dataflow models, which have partially ordered events,
and discrete-event models, with their notion of time that usually defines a total order of events. A vari-
ety of interaction semantics, mainly in handling the different notions of time in the two models, are
explored to illustrate the subtleties involved. An implementation based on the Ptolemy system from
U.C. Berkeley is described and critiqued.

1. Introduction

This paper relates to system-level design of signal processing systems. Such systems are often
embedded, and their implementation mixes hardware and software. This inevitably complicates the
design process by forcing a heterogeneous approach. Even within the software or hardware portions
themselves there is often heterogeneity. In software, control-oriented processes might be mixed under
the supervision of a multitasking real-time kernel running in a microcontroller. In addition, hard-real-
time tasks may run cooperatively on one or more programmable DSPs. The design styles used for
these two software subsystems are likely to be quite different from one another, and testing the interac-
tion between them is unlikely to be trivial.

The hardware side of the design will frequently contain one or more ASICs, perhaps designed
using logic or behavioral synthesis tools. On the other hand, a significant part of the hardware design
most likely consists of interconnections of commodity components, such as processors and memories.
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Again, this time on the hardware side, we find heterogeneity. The design styles used to specify and
simulate the ASICs and the interconnected commodity components are likely to be quite different, and

may not be supported by the same design and simulation tools. A typical system, therefore, not only

mixes hardware design with software design, but also mixes design styles within each of these catego-
ries.

Two opposing approaches for such system-level design are possible. One is the unified approach,
which seeks a consistent semantics for specification of the complete system. The semantics must be
rich enough to support heterogeneous design. The other is a heterogeneous approach, which seeks to
systematically combine disjoint semantics. Although the intellectual appeal of the unified approach is
compelling, we have adopted the heterogeneous approach. We believe that the diversity in design
styles commonly used today precludes a unified solution in the foreseeable future.

1.1 MODELS OF COMPUTATION

Key to the heterogeneous approach is the notion of models of computativoded of computation

(MoC) is the semantics of the interaction between modules or components. MoCs are used in com-
puter programming as well as in the design of electronic systems. They can be viewed as the organiz-
ing principles of a design specification or model. They relate strongly thetign stylebut may or

may not relate strongly to theplementation technolog€lasses of MoCs include:

Imperative.In an imperative model of computation, modules are executed sequentially to accomplish a
task.

Finite state machine (FSMn an FSM MoC, a specification enumerates the set of states that a system
can be in together with the rules for transitioning from one state to another.

Dataflow.In a dataflow MoC, modules react to the availability of data at their inputs by performing
some computation and producing data on their outputs. Communication between modules is via
streams which are sequences of datkens Each token is an arbitrary data structure that is treated
monolithically by the MoC.

Discrete eventn the discrete-event MoC, modules react to events that occur at a given time instant
and produce other events either at the same time instant or at some future time instant. Execution is
chronological.

Synchronous languagds. synchronous languages, moduesiultaneouslyreact to a set of input
events andnstantaneouslyproduce output events. If cyclic dependencies are allowed, then execution
involves finding dixed point or a consistent value for all events at a given time instant.

It is important to recognize the distinction between a MoC and the way that the MoC might be imple-
mented. For example, while the first two of the above MoCs are fundamentally sequential and the last
three are fundamentally concurrent, it is possible to use the first two on parallel machines and the last
three on sequential machines.

It is also important to recognize the distinction between a model of computatioteagdage A
syntaxis an important part of a language and not of a MoC. A language may add little more than a syn-
tax to a MoC, but more commonly it will implement more than one MoC. For example, VHDL can be
used in an imperative or discrete-event style. Hierarchical FSMs, like Statecharts [16] and at least 22
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variants [40], combine FSMs with a concurrent MoC, typically that of synchronous languages. Lan-
guages that are fundamentally based on one MoC may also be used to implement another. For exam-
ple, C, which is fundamentally imperative, may be used to implement a dataflow MoC [8].

A MoC is often most easily defined in terms of a language. The language may be very incomplete
and/or very abstract. For example, it may specify only the interaction between computational modules,
and not the computation performed by the modules. Instead, it provides an interfaostttaaguage
that specifies the computation, and is callezbardination languageOr the language may specify
only the causality constraints of the interactions without detailing the interactions themselves nor pro-
viding an interface to a host language. In this case, the language is used as a tool to prove properties of
systems, as done, for example, in process calculi.

1.2 TIME

Some concurrent MoCs have a built-in notion of time. Time provides such a natural conceptual
model of concurrency that we might define concurrency in terms of time (using the phrase “at the same
time”). A broader definition, however, would be more consistent with the etymology of the word “con-
current,” which comes from the Laticoncurrere con- (together) pluscurrere (to run). Dataflow
MoCs are concurrent with no notion of time.

In the discrete-event (DE) MoC, time is an integral part of the model. Events in this MoC will typ-
ically carry atime stampwhich is an indicator of the time at which the event occurs within the model.
A DE simulator will typically maintain a global event queue that sorts events by time stamp. Note that
a DE simulator has an internal notion of simulated time that need not correspond to real time. A key to
designing successful simulators is to not rely on real time to maintain a correct model of simulated
time.

In synchronous languages, the notion of time is more abstract. The word “instantaneously” used
above is not to be taken literally. Time progresses in discrete jumps, tigtedather than continu-
ously as in nature. “Instantaneously” means “at the same tick.”

Simulation of hardware designs is typically accomplished using a discrete-event simulator, such as
that embodied in VHDL or Verilog simulators. #ignalis a sequence of events. A time stamp tags
each event, giving the set of events an order. The tag may be an integer, a floating-point number, or a
data structure representing both the advance of time and possibly the sequemiangsépswithin
a time instant. In all cases, the job of the simulator is to sort events so that those with the earliest time
stamps are processed first, and so that the events seen by any particular component have monotonically
increasing time stamps. Time stamps, therefore, define an ordering of events.

Discrete-event modeling can be expensive. The sorting of time stamps can be computationally
costly. Moreover, ironically, although discrete-event is ideally suited to modeling distributed systems,
it is very challenging to build a parallel discrete-event simulator. The global ordering of events requires
much tighter coordination between parts of the simulation than would be ideal for parallel execution.

In an alternative model, events occur synchronously, according to a clock. Events that occur at dif-
ferent clock ticks are globally ordered (one unambiguously precedes the other). Simultaneous events
(those at the same clock tick) may be totally ordered, partially ordered, or unordered, depending on the
MoC. Unlike the discrete-event model, however, all signals have events at all clock ticks. This results
in considerably simpler simulators, because sorting is not required. Simulators that exploit this simpli-
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fication are calleaycle-basedr cycle-drivensimulators. Processing all events at a given clock tick
constitutes a cycle. Within a cycle, the order in which events are processed may be determined by data
precedences, which therefore definierosteps These precedences are not allowed to be cyclic, and
typically impose a partial order. Cycle-based models are excellent for clocked synchronous circuits.
They have also been applied successfully at the system level in certain signal processing applications.

A cycle-based model is inefficient for modeling systems where events do not occur at the same
rate in all signals. While conceptually such systems can be modeled (using for example special tokens
to indicate the absence of an event), the cost of processing such tokens is considerable. Fortunately, the
cycle-based model is easily generalized to multirate systems. In this casa)-#vement in one sig-
nal aligns with the events in another.

A multirate cycle-based model is somewhat limited. It is an excellent model for synchronous sig-
nal processing systems where sample rates are related by known rational multiples, but in situations
where the alignment of events in different signals is irregular, it can be inefficient.

A more general model is embodied in the so-cadlgtthronous languagg¢2]. Examples of such
languages include Esterel [6], Signal [3], and Lustre [15]. In synchronous languages, every signal is
conceptually (or explicitly) accompanied byclack signal The clock signal has meaning relative to
other clock signals. It defines the global ordering of events. Thus, when comparing two signals, the
associated clock signals indicate which events are simultaneous and which precede or follow others. A
clock calculus allows a compiler to reason about these ordering relationships and to detect inconsisten-
cies in the definition.

Various looser models of computation specify only a partial ordering between events. This means
that while events within any given signal are ordered, events in different signals may or may not have
an ordering relationship. This type of specification has the advantage that it @weisisecifyinga
design. If an ordering relationship is not important in a design, why specify it? Specifying it may
severely constrain the implementation options. Thus, for example, while discrete-event simulators are
difficult to parallelize, dataflow models, which are usually partially ordered [29], are comparatively
easy to parallelize.

1.3 EXPRESSIVE POWER

Theoreticians strive for simple but expressive models of computation. “Simple” in this case means that
the MoC can be defined by a language with only a few primitives. For example, Turing machines,
which define an imperative MoC, are defined by the Turing-Post language, which has only seven
instructions [33][38]. Church’s lambda calculus is based on only a few formal rules for transforming
strings [11]. “Expressive” in this case means that the MoC can specify many different systems. Both
Turing machines and the lambda calculus can describe a set of functions that are called the “effectively
computable functions.” This set is so large that many people regard any computation that is not in the
set to be not computable.

Practitioners view such efforts much the way they view Turing machines: they make interesting
abstractions, but they do not tell us much about how to build systems. To a practitioner, the utility of a
MoC stems from a more pragmatic view of expressiveness: how easy is it to construct a given system
description? How expensive is the compiled implementation? How sure can we be that the design is
correct? It is largely irrelevant that it is theoretically possible to construct such a description. More-
over, since the practitioner works more directly with a language than with a MoC, the syntax and prac-
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tical expressiveness of the language become central.

This tension between theorists and practitioners is healthy, and the best solutions emerge from
compromise. But a major risk in this compromise is “creeping featurism.” In an effort to win the
broadest support, features and options are added to a language until all semblance of simplicity has
been lost. This is frequently how languages come to contain more than one MoC. The down side of
such large languages with multiple MoCs is that formal analysis may become very difficult. This com-
promises our ability to generate efficient implementations or simulations. It also makes it more diffi-
cult to be sure that a design is correct; it precludes such formal verification techniques as reachability
analysis, safety analysis, and liveness analysis.

Usually, features are added to a language for good reason. Their advocates can cite numerous
applications, and win their acceptance through compelling arguments about the utility of the features.
The key is that both excessive simplicity and excessive complexity can interfere with utility.

1.4 HETEROGENEITY

A reasonable way to balance the pressures of breadth and simplicity is to support heterogeneity.
Failure to do so has doomed some otherwise laudable efforts. For example, Common Lisp did not at
first define a “foreign function interface,” presumably because everything could be done in Lisp. Prac-
titioners, who built Common Lisp systems, realized that this was not a practical approach, and built
their own, mutually incompatible foreign function interfaces. As a result, Lisp systems were only
interchangeable if applications used no foreign functions. And few significant applications qualified.
Standardization failed.

Small, specialized languages and tools are useful. For example, viewed as languages, spreadsheets
are extremely useful. But they are certainly not general, in that there are many applications for which
they are inappropriate. Such tools are therefore most useful if they can be combined with other special-
ized tools. Each tool is developed independently, making the development effort manageably small.
But by embedding the tool in an environment with appropriate interfaces between tools (a file system,
cutting and pasting, and a multitasking operating system, to name some examples), the utility of the
tool is greatly magnified.

Looser integration of diverse capabilities has numerous advantages:

1. Existing, familiar tools do not need to be discarded in favor of a new, all-encompassing tool. This
is particularly valuable when expertise with complex tools has built up over time.

2. Capabilities can come in “bite sized” modules, making them easier to learn, and rendering them
more acceptable to a cautious clientele.

Tools from different vendors can be mixed, drawing from the strengths of each.

4., Competition among vendors is enhanced because fewer customers are “locked in.” This results in
better tools at lower prices.

5. Innovative tools with specialized capabilities have a market. They do not need to be all-encom-
passing to be salable. So innovation is encouraged.

There are also significant disadvantages:

1. User interfaces are likely to be different with different tools, making them more difficult to learn.
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2. Integration may not be complete. For example, once a design is migrated from one tool to another,
without tight integration, it may be difficult to back annotate the original design.

We believe that with system-level design problems, the advantages outweigh the disadvantages, and
that the disadvantages will at least partially disappear later as the technology solidifies.

Our experience suggests that several models of computation are required for the design of com-
plete systems. In particular, in order to successfully apply formal methods, and in order to obtain good
results from high-level synthesis, the smallest (most restrictive) models of computation are best. Thus,
to achieve generality, one has to embrace heterogeneity.

1.5 MODELING AND SPECIFICATION

There is a subtle relationship between the specification of a system and the modeling of a system. An
executable specification, for example, is also a model of an implementation. The difference is in
emphasis. Aspecificationdescribes the functionality of a system, and may also describe one or more
implementations. Anodelof a system describes an implementation, and may also describe the func-
tionality. In a specification, it is important to avoid overspecifying the design, to leave implementation
options open. In a model, often the key criteria are precision, simplicity, and efficient simulation. A
model should be the most abstract model that represents the details being tested.

Figure 1 shows the role that specification and modeling might take in system design. Specification
is closer to the problem level, at a higher level of abstraction, and uses one or more models of compu-
tation. A specification undergoes a synthesis process (which may be partly manual) that generates a
model of an implementation. That model itself may harbor multiple models of computation, mainly to
model components at varying levels of abstraction, or to separately model hardware and software com-
ponents.
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Visual dataflow programming languages, for example, are commonly used in the signal processing
community for specification. Hierarchical finite-state machine languages are used for specifying con-
trol-oriented systems. Symbolic processing languages are used to specify functionality in scientific
computing. Imperative languages are used for everything (whether or not they are appropriate). Dis-
crete-event MoCs are used to specify concurrent communicating systems.

Discrete-event MoCs, such as those used in VHDL, Verilog, and other simulation environments,
are also used for modeling implementations. They describe physical components with states that
evolve over time and with interactions that occur at discrete points in time. Imperative MoCs provide a
natural way to model software implementations. They are also used for modeling hardware compo-
nents at higher levels of abstraction. For example, an instruction set architecture model for a hardware
processor might be implemented in the imperative language C rather than using a discrete-event lan-
guage to model its detailed implementation.

Often, it makes sense to combine modeling and specific&iesign elaborationfor example, is
the process of replacing portions of an executable specification with ever more detailed models of the
implementation. Often, for efficient simulation, it makes sense to maintain multiple levels of abstrac-
tion in a system simulation. This requires a simulation environment where diverse models of computa-
tion can interact.

1.6 FROM SPECIFICATION TO MODELING

In figure 1, the synthesis paths are somewhat constrained by the choice of MoC used for specification.
It is well known, for example, that a discrete-event MoC is difficult to implement efficiently on a
sequential machine. This is the main reason that VHDL simulations surprise the designer by taking so
long. A model that heavily uses entities communicating through signals will burden the discrete-event
scheduler and bog down the simulation. Thus, a specification built on discrete-event semantics is a
poor match for implementation in software.

By contrast, VHDL that is written as strictly sequential code, using imperative semantics, runs rel-
atively quickly, but may not translate well into hardware. Imperative C, of course, runs very quickly,
and is well suited to specifying components that will be implemented in software. However, it is
poorly suited to specifying hardware.

Dataflow and finite-state machine MoCs have been shown to be reasonably retargettable. Hierar-
chical FMS such as Statecharts [16][17][40], for example, can be used effectively to design hardware
or software. Similarly, a number of commercial and research tools use dataflow to specify signal pro-
cessing systems that can be implemented either way [32][35][41]. It has also been shown that a single
dataflow specification can be partitioned for combined hardware and software implementation
[21][22].

2. Multi-paradigm design

In this paper, we will focus on the interaction between dataflow models, with their partially ordered
events, and discrete-event models, with their notion of time defining a (mostly) total order of events. A
variety of interaction semantics are explored, and an implementation based on the Ptolemy system
from U. C. Berkeley is described. We begin with some background on each. This will be followed by a
formal framework that unambiguously defines the essential features of each MoC and their interaction.
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FIGURE 2. In a process network, where processes communicate through unidi-
rectional FIFO channels, writes are non-blocking, and reads are blocking.

2.1 DATAFLOW PROCESS NETWORKS

In dataflow, a program is specified by a directed graph where the nodes represent computations

(actorg and the arcs represesiteamsof datatokens The graphs are often represented visually and

are typically hierarchical, in that an actor in a graph may represent another directed graph. The nodes

in the graph can be either language primitives or subprograms specified in another language, such as C
or FORTRAN. In the latter case, we are already mixing two of the models of computation from figure

1, where dataflow serves as the coordination language for subprograms written in an imperative host

language.

Some examples of graphical dataflow programming environments intended for signal processing
(including image processing) are Khoros, from the University of New Mexico [34] (now distributed by
Khoral Research, Inc.), Ptolemy, from the University of California at Berkeley [8], the Signal Process-
ing Worksystem (SPW), from the Alta Group at Cadence (formerly Comdisco Systems), COSSAP,
from Synopsys (formerly Cadis), and the DSP Station from Mentor Graphics (formerly EDC).

These software environments all claim variants of dataflow semantics, but a word of caution is in
order. The term “dataflow” is often used loosely for semantics that deviate significantly from those out-
lined by Dennis in 1975 [13]. Most, however, can be described formally as special cdatsfloiv
process network9], which are in turn are a special cas&alfin process network20].

In Kahn process networks, a number of concurrent processes communicate through unidirectional
FIFO channels, where writes to the channel are non-blocking, and reads are blocking (see figure 2).
This means that writes to the channel always succeed immediately, while reads block until there is suf-
ficient data in the channel to satisfy them. In particular, a process cannot test an input channel for the
availability of data and then branch conditionally. Testing for available data constitutes a read, and will
block the entire process until data is available. This restriction helps to assure that the program is
determinate meaning that its outputs are entirely determined by its inputs and the behavior specified
by the programmer.

In dataflow process networks, each process consists of refisatgsibf a dataflonactor (see fig-

ure 3). An actor defines a (often functional) quantum of computation. By dividing processes into actor
firings, the multitasking overhead of context switching incurred in direct implementations of Kahn
process networks is avoided. In fact, in many of the signal processing environments, a major objective
is to statically (at compile time) schedule the actor firings (see figure 4). The firings are organized into
a list (for one processor) or set of lists (for multiple processors). In figure 4, a dataflow graph is shown
mapped into a single processor schedule. Thus, the lower part of the figure represents a list of firings
that can be repeated indefinitely. A basic requirement of such a schedule is that one cycle through the
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FIGURE 3. A dataflow process consists of repeated firings of an actor.

FIGURE 4. Static scheduling of a dataflow process network.

schedule should return the graph to its origstate (defined as the number of tokens on each arc).
This is not always possible, but when it is, considerable simplification results.

Many possibilities have been explored for precise semantics of dataflow coordination languages,
including for example the computation graphs of Karp and Miller [24], the synchronous dataflow
graphs of Lee and Messerschmitt [28], the cyclo-static dataflow model of Lauweteihd26][5],
the Processing Graph Method (PGM) of Kaplam,al. [23], Granular Lucid [19], and others
[1][9][12][36]. Many of these limit expressiveness in exchange for considerable advantages such as
compile-time predictability.

Synchronous dataflow (SDF) and cyclo-static dataflow both have the particularly useful property
that a finite static schedule can always be found that will return the graph to its original state. This
allows for extremely efficient implementations. For more general dataflow models, it is undecidable
whether such a schedule exists [7].

A key property of dataflow processes is that the computation consists of atomic firings. Within a
firing, anything can happen. In many existing environments, what happens can only be specified in a
host language with imperative semantics, such as C and C++. In the Ptolemy system [8], it can consist
of a quantum of computation specified with any of several models of computation. We will return to
this notion of a “quantum of computation.”

2.2 DISCRETE EVENT

As described above, the discrete-event model of computation has events with time stamps. The role of
the simulator is to keep a list of events sorted by time stamp and to process the events in chronological
order. There are, however, some subtleties that are dealt with differently in different systems. The main
difficulties concern howimultaneous eventthose with the same time stamp) are dealt with, and how
zero-delayfeedback loops are managed.
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Consider the graph shown in figure 5. Suppose it specifies a program in a discrete-event coordina-
tion language. Suppose further that B is a zero-delay component. This means that its output has the
same time stamp as the most recent input. Thus, if A produces one event on each of its two outputs
with the same time stam then there is an ambiguity about whether B or C should be invoked next.
This situation is illustrated in figure 6(a). B and C have events at their inputs with identical time
stamps, so either could be invoked next. But the behavior of C could be different in the two circum-
stances.

Suppose B is invoked first, resulting in the configuration shown in figure 6(b). Now, depending on
the simulator, C might be invoked once, observing both input events in one invocation. Or it might be
invoked twice, processing the events one at a time. In the latter case, there is no clear way to determine
which event should be processed first.

Some discrete-event simulators leave this situation ambiguous. Such simulatuoade&rmi-
nate In most applications, this is not desirable. A partial solution provided in some simulators is the
infinitesimal delaylf B has an infinitesimal delay, then its output events will have time stamps that are
ordered after those of the inputs even if they represent the same simulated time. Then, firing A fol-
lowed by B will result in the situation shown in figure 6(c), where the effect of the infinitesimal delay
is indicated by theT+". The next firing of C will observe only the first event, the one with time stamp
T. This is the next one in the event queue. After this firing of C, the event with time Btammains
to be processed, as shown in figure 6(d).

Infinitesimal delays are not an entirely satisfactory solution. Suppose the designer wishes for C to
see both events at once, as in figure 6(b). There is no way to ensure that B will be invoked before C.
For this reason, the discrete event domain in Ptolemy uses a different solution [8]. Graphs specifying
discrete event programs are topologically sorted, and a priority is assigned to each arc. The topological
sort is based on an annotation of the nodes in the graph indicating whether the node can have zero
delay from any particular input to any particular output. When such zero delay is possible, the topolog-
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ical sort views this as a precedence constraint. Ignoring the feedback arc in figure 5, this would resolve
all ambiguities. The topological sort would indicate that B should always be invoked before C when
they have events at their inputs with identical time stamps. This sort of precedence analysis is identical
to that done in synchronous languages (Esterel, Lustre, and Signal) to ensure that simultaneous events
are processed in a deterministic way.

Of course, the feedback loop in figure 5 creates a problem. The same problem occurs in synchro-
nous languages, where such loops are called causality loops. No precedence analysis can resolve the
ambiguity. In synchronous languages, the compiler may simply fail to compile such a program. In the
discrete-event domain in Ptolemy, we permit the user to annotate the arcs the graph to break the prece-
dences. Thus, the programmer could annotate the leftward pointing arc in figure 5, again resolving the
ambiguities. If the user fails to provide such annotation, a warning is issued, and the precise behavior is
arbitrary (nondeterminate).

A slight subtlety arises in discrete-event simulators with sources of events. Consider the example
shown in figure 7(a). An initial event on the self loop with time stdmpuses A to fire at simulated
time T. At that time, it can produce an event to B and another event on the self loop with a larger time
stamp. By continuing to produce events on the self loop, it continually acts as a source of events for B.
In the Ptolemy DE domain, we support the syntactic sugar shown in figure 7(b), where the self loop is
hidden from view. Conceptually, any source of events is allowed to put its own future firings on the
event queue.

3. Time and Partial Orders

A major impediment to further progress in heterogeneous modeling and specification is the confu-
sion that arises from different usage of common terms. Terms like “synchronous”, “discrete event”,
and “dataflow” are used in different communities to mean significantly different things. No doubt,

many readers have interpreted the descriptions above in ways quite different from what we intended.
Recognition of this problem has led to efforts to “unify” the work of different communities by
defining a “grand unifying language” that embraces the semantic models of a set of competitors. A
common language, it is suggested, provides a means by which people and tools can communicate
more effectively. While we agree that such languages provide these benefits, we argue that they do so
at great expense. In order to be sufficiently rich to encompass the varied semantic models of the com-
peting approaches, they become unwieldy, too complex for formal analysis and high quality synthesis.
We argue that small, simple, specialized models of computation are valuable. Efforts to subsume
them into large, unwieldy, “general” models are misguided. The objectives of human communication
can be achieved more simply by developing a human language that is sufficiently precise and formal to
unambiguously differentiate approaches. Moreover, if the objectives of the resulting formalism are suf-

T

(a) (b)

FIGURE 7. Sources of events in DE with and without explicit feedback loops.
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ficiently constrained, it can provide a framework within which the semantics of the interaction between
models of computation can be understood. Generality can be achieved through heterogeneity, where
more than one model of computation is used.

The objective of communication between tools is harder to achieve. Fundamentally, a translation
from a language used by one tool to that used by another is primarily a translation of syntax. Transla-
tion of semantics is much harder. Thus, to get interoperability between tools by translation, we force
each tool to implement each semantic model of interest. This, needless to say, severely complicates
tool development, and serves as a barrier to innovation.

To address these issues, we develop a human language that will enable description and differentia-
tion of models of computation. To be sufficiently precise, this language is a mathematical one. We will
define precisely a set of terms like “process”, “discrete-event systems”, and “synchronous” that are
unambiguous, but will often conflict with common usage in some communities. We have made every
attempt to maintain the spirit of that usage with which we are familiar, but have discovered that terms
are used in contradictory ways in different communities (sometimes even within a community). Main-
taining consistency with all prior usage is impossible without going to the unacceptable extreme of
abandoning the use of these terms altogether. Our definitions in this paper conflict even with our own
prior usage in certain cases. We apologize to anyone who is offended by our abuse of some term for
which they have a different meaning that they are comfortable with. But there is no way to accomplish
our objectives without this abuse.

3.1 THE TAGGED SIGNAL MODEL

Given a set ofaluesV and a set dfags T, we define an everg to be a membenot T . L.e.,
an event has a tag and a value. We defisigreaal s to be a partial function fronT t& . By “partial
function” we mean that the signal may be defined only for a subset of . A signal can be viewed
therefore as a collectiors of events, i.e. a subsetVof T , whelso.n1 i (vl, t)ds and
e, = (v, t)Os, thenv; = v, . We call the set of all sign&@s . Itis often useful to form a collection
s of n signals. The set of all such signals will be den@ed

A processP with n inputs andm outputs is a subset gixg" . In other words, a process
defines aelation between input signals and output signals. Signals provide communication between
processes. Note that with this definition, non-determinacy is supported. A particular set of input sig-
nals may have several possible sets of output signals that satisfy the rel#tioctidhal process,For
simply afunction is a single valued mapping from some subs@'of Sto . That (syi6,) OF
and (s;,s;) OF , thens, = s5

A tagged systens a set of signals and processes defining relations between these signals. A
tagged system is said to fieedif each process and each signal exists throughout the existence of the
system. Otherwise, it is said to imeitable Thus, in a mutable tagged system, processes or signals may
come and go. Our term “tagged system” here does not refer to an implementation. It refers to a model
or a specification. This usage of “system” is common in system theory, but uncommon in other disci-
plines.

Frequently, a natural interpretation for the tags is that they mark time in a physical system.
Neglecting relativistic effects, time is the same everywhere, so tagging events with the time at which
they occur puts them in a certain order (if two events are genuinely simultaneous, then their order is
arbitrary). Forspecifyingsystems, however, the global ordering of events in a timed system may be
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overly restrictive. A specification should not be constrained by one particular physical implementation,
and therefore need not be based on the semantics of the physical world. Thus, for specification, often
the tagsshould notmark time.

In amodelof a physical system, by contrast, tagging the events with the time at which they occur
may seem natural. They must occur at a particular time, and if we accept that time is uniform, then our
model should reflect the ensuing ordering of events. However, when modeling a large concurrent sys-
tem, the model should probably reflect the inherent difficulty in maintaining a consistent view of time
in a distributed system [14][25][30]. If an implementation cannot maintain a consistent view of time,
then it may be inappropriate for its model to do so (it depends on what questions the model is expected
to answer).

Fortunately, there are a rich set of untimed models of computation. In these models, the tags are
more abstract objects, often bearing only a partial ordering relationship among themselves. We now
give one way to classify these models of computation.

3.1.1 Types of Systems

A partially ordered tagged system (POTiS) tagged system whefle is a countable, partially
ordered setPartially orderedmeans that there exists an irreflexive, antisymmetric, transitive relation
between members of the set [37]. We denote this relation using the symbol “<”. Of course, we can
define a reflexive version of this relation, denote't Wheretl <t, if t; =t, ort; <t, .

The ordering of the tags provides an ordering of events as well. Given two eyentév,, t,)
ande, = (v, 1,) ,e;<e, ift;<t,.

A timed systens a tagged system whefe s totally ordered. That is, for any distinct t,and  in
T, eithert; <t, ort,<t; . Adiscrete-event systeisia timed system wheie is a countable. The use
of the term “timed” here stems from the observation that in the standard model of the physical world,
time is viewed as globally ordering events. Any two events are either simultaneous (have the same
tag), or one unambiguously precedes the other. Some timed MoCs include a distance metric between
tags, where for examplg —t;  has some meaning. These MoCs are said felavéime

In some communities, a discrete-event MoC also required/that  be countable [10]. For our pur-
poses, the distinction is technically moot, since all representations of values in a computer simulation
are drawn from a countable set.

Two events areynchronoudf they have the same tag. Two signals are synchronous if all events in
one signal are synchronous with an event in the other signal and vice versa. A system is synchronous if
every signal in the system is synchronous with every other signal in the sysfisorete-time system
is a synchronous discrete-event system.

By this definition, the “synchronous languages” [2] (such as Lustre, Esterel, and Signal) are not
synchronous. They are discrete-event systems. Neither is the so-called Synchronous Dataflow (SDF)
model of computation [28].

Let T, denote the tags in signgl . IiKahn process networK;; is totally ordered for all signals
s, but T may be only partially ordered. In fact, in one possible POTS model for Kahn process net-
works, T, n T, = O foralli #] . Kahn process networks also impose partial ordering constraints on
the tags of their input and output signals. For example, consider a simple process that produces one
output event for each input event. Denote the input signad {el' it , vdlqre €, if the index
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i <].Letthe output bs, = {e2’ i} . Then the process imposes the additional ordering constraint that
€ <e2’i.foralli :

Lamport [25] considers a similar model for distributed systems where events occur inside pro-
cesses, instead of in sighals modeling communication between processes. The set of events inside a
process is totally ordered, thus giving the process a sequential nature. Partial ordering constraints exist
between events in different processes, thus modeling communication. This perspective is only slightly
different from ours, where partial ordering constraints between events are imposed by the processes,
rather than the communication between them.

3.2 TAGGED FIRING

In many MoCs, a process will be specified as a sequence of atomic actions that we will call firings.
These firings can be tagged in much the way that events aré Let denote the set of all possible
actions. In this case, a process can be described as a set of Aringsp;;i = 0} , Where each firing
p; consists of an action and a tag,= (a;,t;))  séguential process one where the firing tags are
totally ordered. These tags will typically also have an ordering relationship with the input and output
events.

A dataflow processs a Kahn process that entirely consists of discrete firingkatéflow process
network is a network of such processes [29].

For example, consider a dataflow process { p;;i = 0} with one input signal and one output
signal thatconsumesne input event androducesone output event on each firing . Denote the
input signals, = {e; ;} , where, ;<e; J- if the indeix<j . Let the outputsge= {e, ;} , which

will be similarly ordered. Then the inputs and outputs are related to the firiegs asp; <e, ;

The firings in a discrete-event system can now also be described in terms of tags. For any process
P with input signals containing everg= (v ) , there exists a finng P withttag . Moreover,
output events produced by that firing cannot have tag lesd than . If the events are totally ordered, so
are the firings. A sequential execution of a discrete-event system simply follows this ordering when
carrying out the firings. l.e., it uses the ordering of firing tags to determine the ordering of firing times
(in real time).

4. Mixing discrete events and dataflow

In this section, we will use the Ptolemy system, developed at the University of California at Berkeley,
as a case study to illustrate some of the issues in mixing discrete events and dataflow. Ptolemy is a
research project and software environment focused on design methodology for signal processing and
communications systems. Its scope ranges from designing and simulating algorithms to synthesizing
hardware and embedded software, parallelizing algorithms, and rapidly prototyping real-time systems.
Research ideas developed in the project are implemented and tested in the Ptolemy software environ-
ment. The Ptolemy software environment is a system-level design framework that allows mixing mod-
els of computation and implementation languages

4.1 DOMAINS AND WORMHOLES

In Ptolemy, adomaindefines the semantics of a coordination language. Each domairs¢teedaler
that implements the semantics. But domains are modular objects that can be mixed and matched at
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will. Object-oriented principles are used to hide information about the semantics of one domain from
another. Thus, multiple MoCs can be combined in one system specification and/or model. A key con-
straint is that processes in the MoCs have discrete firiRislemy permits the construction of a pro-

cess in one domain for which each firing invokes sqomantum of computatioim another domain. A
second key constraint, therefore, is that each MoC have a well-defined quantum of computation. By
this we mean that if we tell the domain to “execute one quantum of computation,” the domain will per-
form a determinate and finite operation.

Note that in Ptolemy, MoCs are mixaderarchically, as shown in figure 8. This means that two
MoCs do not interact as peers. Instead, a foreign MoC may appear inside a process. In Ptolemy, such a
process is calledwormhole[8]. It encapsulates a subsystem specified using one MoC within a system
specified using another. The wormhole must obey the semantics of the outer MoC at its boundaries,
and the semantics of the inner MoC internally. Information hiding insulates the outer MoC from the
inner one.

Contrast this hierarchical heterogeneity to alternative approaches. Two MoCs may be used to
describe orthogonal and complementary aspects of the same system, as for example in the control/
dataflow graphs commonly used in VLSI CAD. Another example is the provision of alternative
“views” of the same system that reflect different properties, as for example structural, functional, and
behavioral descriptions of circuits [17]. A third possibility is to allow an intermixing of protocols for
communication between computational modules [18][39]. These styles of heterogeneity are not hierar-
chical, and may be used in combination with hierarchical heterogeneity.

4.2 CHOOSING MODELS OF COMPUTATION

The discrete event (DE) domain in Ptolemy is used for time-oriented simulations of systems such
as queueing networks, communication networks, and high-level hardware architectures (processors,
disks, caches, etc.).

There are several dataflow domains in Ptolemy, ordered here by increasing generality:

Synchronous dataflow (SDH)his domain supports fixed dataflow process networks where each firing
in a process consumes and produces a fixed, constant number of tokens on each input and output [28].

A 4
A 4

o > > L
|

FIGURE 8. Mixing MoCs using hierarchy: shown here is a subsystem of
domain Y embedded in domain X as a hierarchical node.

1. Some Ptolemy domains, such as the process networks (PN) domain, are not based on discrete firings,
but instead use threading or multitasking. But these domains cannot, at our current stage of under-
standing, be intermixed as freely with other domains.
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Boolean dataflow (BDF)This domain supports a more general model where a Boolean valued input
or output from a process may determine how many tokens are consumed or produced on an input or
output [7].

Dynamic dataflow (DDF)This domain is a further generalization of BDF where mutable graphs are
supported and the only constraint on firings is that thesebaential functionf29]. A complete dis-
cussion of sequential functions is beyond the scope of this paper.

The dataflow domains in Ptolemy are commonly used for specifying signal processing or other compu-
tation-intensive applications. It is easy to envision situations where dataflow and DE would be natu-
rally combined. For example, a signal processing subsystem might be embedded within a
communication network simulation (dataflow within DE). Similarly, a model of a hardware compo-
nent might be embedded within a specification of a signal processing system during a design refine-
ment (DE within dataflow). Or a functional model of a DSP ASIC might be embedded within a
behavioral model of a software architecture.

A MoC captures some properties of a system, and omits those that are irrelevant to the problem
domain. Different MoCs capture different sets of properties. A discrete-event MoC models the timing
of interactions between concurrent modules, while a dataflow MoC models the exchange of data and
the associated transformation of that data.

4.3 INTERFACING DIFFERENT MODELS OF COMPUTATION

Ptolemy domains are designed to interact with one another in a polymorphic way. A module in one
domain can internally implement another. These domains interface to a common infrastructure, a set of
conventions in the Ptolemy kernel, rather than explicitly interfacing to one another. This permits us to
have N domains withN interfaces, rather than tie interfaces that would be required if each
domain had to explicitly interface to each other domain. This one, “universal” interface is called the
event horizorin Ptolemy. This interface has to be sufficiently rich to be capable of transporting key
semantic properties from one MoC to another.

We can draw an analogy to the conversion between the numeric types (short, int, long, float, dou-
ble, and Complex, for example). To preserve numeric accuracy, a “universal” numeric type must be the
type with the highegprecision which for the given set is Complex. Choosing any other type as the
universal type would result in loss of information when a higher-precision type is converted to the uni-
versal type. The same principle must be applied in the design of the event horizon.

Consider for example the notion of time. Since time defines a total order, a timed model is more
“precise” than an untimed model, which defines only a partial order. An untimed model can be con-
verted to a timed model with no loss of correctness, but not vice versa. The event horizon, therefore,
must support a notion of time.

Differences between MoCs can lead to ambiguities when two MoCs are brought together. These
must be resolved by dnteraction semanticdor the purpose of discussion, suppose that a MoC can
be represented as a list of its semantic properties. Consider an interface between MoCs X and Y, as
shown in figure 9, with information or control flowing from X to Y. At the interface, the following con-
version from one set of semantic properties to the other must occur:

» The common properties are translated.
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» Properties in X that are not present in Y are ignored.
* Properties present in Y that are not present in X are created with reasonable default values.

In the latter case, there are usually several possible policies for choosing the default values. The event
horizon provides a policy for certain properties. The domain must provide the rest.

The Ptolemy event horizon captures certain essential semantic properties relating to concurrency
and communications. Events that cross the event horizon are totally ordered and carry time stamps rep-
resented as a floating point number. Every domain also provides a wormhole, which can contain a sub-
system specified in a foreign domain. When the wormhole fires, it will request of the inner domain a
guantum of computation. The inner domain may refuse to act (for example if there is not enough data
at its inputs), or may perform some computation. In either case, it's behavior is expected to be determi-
nate, implying that the quantum of computation must be well-defined.

To preserve the total ordering of events that cross the event horizon, each domain must also sup-
port a rudimentary notion of time. In particular, when asked to perform a quantum of computation, the
inner domain will be given stop timethe current time in the outer domain. It is expected to avoid pro-
gressing beyond that time internally. For untimed domains, such as dataflow domains, the stop time
may be ignored.

4.4 INTERACTION SEMANTICS IN PTOLEMY

4.4.1 Dataflow inside discrete-event

Consider the case of a dataflow model inside a DE model, as shown in figure 10. In Ptolemy, the
dataflow subsystem appears to the DE simulator as a zero-delay block. Suppose, for example, that an
event with time stamp is available at the input to the dataflow subsystem. Then when the DE sched-
uler reaches this simulated time, it fires the dataflow subsystem, turing control over to the dataflow
scheduler. If the dataflow subsystem produces output data, that output data will have tinfe stamp

The motivation for assuming zero execution time of the dataflow subsystem is that, since the data-

Ignored

Translated

Created

FIGURE 9. Conversion from the semantic properties of MoC X to the semantic
properties of MoC Y at the interface
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flow MoC has no notion of time, it seems not only awkward but also infeasible to assign any execution
delay to the inner dataflow subsystem. We can simulate any desired time delay of the inner dataflow
subsystem by attachingelay block in the outer DE domain to the inputs or outputs of the wormhole
that encapsulates the dataflow subsystem.

The question remains, what is a quantum of computation? How much work should the dataflow
scheduler do before returning control to the DE scheduler? One possibility would be to fire a single
dataflow actor, say B in figure 10, to respond to the event. But this will produce no output, and it is
unclear when the dataflow scheduler should be invoked again to continue responding to the input
event. Moreover, if a cluster of actors were to be replaced by a functionally equivalent monolithic
actor, the behavior of the dataflow graph would change in a fundamental way. It would take several
invocations to produce the same result.

A more reasonable alternative is to fire enough dataflow actors to return the dataflow graph to its
original state. Thus, if all arcs start with zero tokens, and a token arrives at the input, the scheduler
should fire the actors a minimal number of times to return all arcs to zero tokens. This set of firings is
called acomplete cycl§27]; it forms aquantum of computatiormnd is found by solving thealance
equationdor the graph.

Consider the simplest form of dataflow, knowrhasnogeneous synchronous dataflasuere all
actors produce and consume exactly one token on each input or output port. For a homogeneous SDF
graph, a complete cycle always consists of exactly one firing of each actor. Suppose that the dataflow
graph in figure 10 is homogeneous SDF. Then when the dataflow subsystem is invoked by the DE
scheduler in response to an event with time st@ngetors B and C will each fire once, in that order.
Actor C will produce an output event, which when passed to the DE domain will be assigned the time
stampT. The DE scheduler continues processing by firing actor D to respond to this event.

Consider the slightly more elaborate example shown in figure 11. Suppose the inner system is
homogeneous SDF, so a quantum of computation could consist of firing actors (A, B, C) in that order
(this is a complete cycle). Suppose that D produces an event with timeBjamp  , and that this is the
oldest event in the event queue. The wormhole is fired in response to this event, but there is still not
enough data available for the firing sequence (A, B, C) to proceed as a quantum. Thus, the inner
domain declines to act and returns control to the DE domain. Only when an event is produced by E
will the inner system be able to proceed to execute its complete cycle. At that point, it will use the
value produced by D, but will assume the time stamp produced by E.

discrete event

dataflow

OROR02.0

zero time delay

FIGURE 10. A dataflow subsystem as a module within a DE simulation.
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Because the outer MoC, discrete-event, has a total ordering on events, and the inner MoC is
invoked in discrete quanta of computation, the events in the inner MoC are more ordered than they
would be otherwise. Consider the example shown in figure 12(a). This homogeneous SDF subsystem
consists of three actors A, B, and C. The firing schedule (A B C) forms a finite complete cycle, and
hence a quantum of computation. If considered by itself as a dataflow graph, the firings have the partial
ordering constraints shown in figure 12(b). However, if this subsystem is nested within a DE system,
then it must be executed as a totally ordered sequence of complete cycles. This imposes additional
ordering constraints on the firings, resulting in the partial order shown in figure 12(c).

In the more general form of SDF, actors can produce or consume more than one token when they

fire (but they always produce and consume the same number on each firing). SDF graphs that do not
have a finite complete cycle are considered defective [28], and are therefore ruled out.

If the SDF subsystem in figure 10 is a multirate system, the effects of the combined DE/SDF sys-
tem are somewhat more subtle. First, a single event at the input of the subsystem may not be sufficient
to cycle through one iteration of the SDF schedule. Suppose for example that actor B requires two

DE

SDF

A 4

FIGURE 11. lllustration of a multi-input dataflow subsystem.

A /11—>A2—>A3—>A4—>...

» C > CL—»C2—»C3—>Ch—> ...

» B - BT].—VBZ—>B3—>B4—>...
(a) A homogeneous SDF subsystem. (b) Partial ordering of firings imposed by

the dataflow MoC.

An arc from a group

of firings (enclosed in

a bubble) to another

is a shorthand for saying
that every firing in the
“source” group precedes
every firing in the
“destination” group.

(c) Partial ordering of firings after imposing a total ordering on complete cycles.

FIGURE 12. Effect on partial orders of the quantum of computation.
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input tokens to fire. In this case, the SDF domain will simply return control to the DE domain, having
refused to execute its quantum of computation. Only when enough input events have accumulated will
the complete cycle be executed. Secondly, when output events are produced, more than one token may
be produced per quantum of computation. In Ptolemy, all such output tokens are assigned the same
time stamp by default. However, the user can change this behavior and specify that the time stamps
should be uniformly spread through a given time interval. This latter behavior is often useful for mod-
eling multirate signal processing systems, where the DE domain models the environment.

The notion of a complete cycle gets more difficult with more general dataflow models [27]. Unfor-
tunately, for dataflow graphs supported by the BDF and DDF domains in Ptolemy, the existence of a
complete cycle is undecidable [7]. The only solution we have identified is to define a quantum of com-
putation of computation to be a complete cycle when it exists and can be found. Otherwise, it will be
implementation dependent (and hence nondeterminate). Fortunately, most signal processing algo-
rithms have dataflow graphs for which a complete cycle exists, can be found and is finite.

We need to consider one more special case. Suppose you want a dataflow subsystem to serve as a
source of events in a discrete-event domain. Recall that source actors in the DE domain have to sched-
ule themselves. One solution is to create a dataflow subsystem that takes a dummy input that triggers a
quantum of computation.

4.4.2 Discrete event within dataflow

Consider the reverse scenario, where a DE subsystem is included within an dataflow system. The
policy followed in Ptolemy is that a global notion @mfrrent timeis maintained for use in the event
horizon. For domains (such as the dataflow domains) that have no notion of time, this global time is
maintained transparently. A dataflow system can be configured so that each complete cycle advances
the global time by some fixed amount called shkedule periodThis corresponds naturally to the
representation of a sample rate in a signal processing system. Thus, again, we require that the dataflow
graph have a finite complete cycle that is well-defined and determinate.

The inner DE subsystem must behave externally like a dataflow actor, but it also has some addi-
tional restrictions. SDF actors in general can produce or consume any fixed constant numbers of
tokens on each port. In Ptolemy, the DE subsystem is constrained to behavolikegeneouSDF
actor, which consumes a single token on each input and produces a single token on each output. Only
when the DE-in-dataflow wormhole has an event on every input port is it fired.

When the outer dataflow system chooses to fire the inner DE subsystem, the input events to the DE
subsystem are assigned the global time as their time stamps. The inner DE scheduler is told to then
process all input events up to and including events with that global current time as their time stamp.
This is certainly not the only possibility, but it is unambiguous and seems to work well in practice.

Suppose that the outer domain is SDF. Recall that the SDF MoC requires that every firing consume
and produce a fixed constant number of tokens. Therefore, a key requirement in this case is that when
the DE subsystem is fired, it must produce an output event on each output port, since these will be
expected by the SDF subsystem. A very simple example is shown in figure 13. The DE subsystem in
the figure routes input events through a time delayS#reerblock). The events at the output of the
time delay, however, will be events in the future (in simulated time) SEnegplerblock, therefore, is
introduced to produce an output event at the current simulation time. This output event is produced
before the DE scheduler returns control to the output SDF scheduler, and the SDF system gets the
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O
Sampler

FIGURE 13. A DE subsystem designed for inclusion within an SDF system.

Server

events it expects.

The behavior shown in figure 13 may not be the desired behavioGarhplerblock, given an
event on its control input (the bottom input), copies the most recent event from its data input (the left
input) to the output. If there has been no input data event, then a zero-valued event is produced. There
are many alternative ways to ensure that an output event is produced. For this reason, the mechanism
for ensuring that this output event is produced is not built into the Ptolemy event horizon. The pro-
grammer must understand the semantics of the interacting domains, and act accordingly.

Finally, consider a DE subsystem within a multirate SDF system. The SDF system may provide
multiple tokens to the DE subsystem in each cycle of its schedule. By default, these tokens have time
stamps that are uniformly spread over the user-specified schedule period. If this is not the desired
behavior, the designer can always add one more level of hierarchy, where an outermost DE domain
provides the time stamps to the inner SDF domain, which then passes these time stamps to the inner-
most DE domain. Uniformly spreading the tokens is a convenient policy, but it seems somewhat ad-
hoc, so it may change in future versions of Ptolemy.

4.5 ALTERNATIVE INTERACTION SEMANTICS

The choices made in Ptolemy are by no means unique. The DE and dataflow domains could have been
designed to use a different interaction semantics. For example, a reasonable way to embed a foreign
subsystem within DE would be to provide a clock input to the wormhole that explicitly triggers a firing

of the subsystem. Thus, if the inside system is dataflow, it would perform its quantum of computation
when an event on the clock input is the oldest event in the event queue. Moreover, instead of checking
to see whether there is enough data on the inputs to satisfy the dataflow actors inside, it could generate
the data that is needed using the most recently seen values on each of the inputs. This alternative inter-
action semantics makes sense for certain kinds of systems. For example, the DE system might be mod-
eling a digital circuit.

This alternative behavior can be implemented using the interaction semantics that we have imple-
mented in Ptolemy. It would simply require a Sampler like that in figure 13 at each input to the worm-
hole. This set of Samplers would be driven by the clock.

In deciding which interaction semantics to implement, we were guided by a desire to minimize the
amount of implicit activity. Thus, for example, generation of data tokens should be explicit in the
design, not implicit in the interface between domains. This is a design choice, and alternative
approaches are certainly arguable.
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5. A Typical Mixed DE/Dataflow Simulation

In this section we outline a typical mixed DE/dataflow simulation, one studying packet video and
audio. There are some terminals at the periphery of the network. The terminals perform signal com-
pression and decompression, a good match for the dataflow MoC. Compressed signals are then pack-
etized and sent into the network. The network loses some packets and delays the rest. This behavior is
a good match for DE. At the destination, the packets must be converted back to compressed signals,
with the lost packets and network delays handled properly. Then the compressed signals are decom-
pressed and played back, again a good match for dataflow.

Note that although we suggest the use of DE for modeling the packet loss and delay in the net-
work, some simple packet loss and delay mechanisms can be adequately modeled by SDF, resulting in
a simpler, more efficient simulation. For more elaborate simulations, the combination of DE dataflow
will be more convenient.

Consider a packet speech application (see figure 14). The top level may be the DE domain, which
models the networking as well as providing the “clock” signals driving the conversion at the terminals.
The terminals are internally modeled using SDF. In the network, some modules may internally contain
SDF subsystems, which would usually model numeric computation that is activated in an event-driven
fashion. For example, we may need to compute the checksum whenever a packet arrives (an event).
The Ptolemy event horizon is adequate.

6. Conclusions

To support heterogeneity in implementation technologies and design styles in system-level design, we
hierarchically nest distinct models of computation. Each MoC is selected to capture certain properties
of a system specification or model, such as timing, functionality, concurrency, or communication.
When one MoC is embedded within another, an interaction semantics is needed. There are usually sev-
eral reasonable alternative interaction semantics; the most appropriate depends on the characteristics
of the systems being described. As a principle in the Ptolemy system, we try to implement the “mini-
mal” semantics, allowing users to implement alternative semantics by adding detail. This has worked
well in practice, and results in a reasonably modular heterogeneous environment.

Clock DE: event-driven
v Clock 1
Packet
Speech Packet : Play
» Compress —» » Network|—»| disassembly —» Decompress|—»
souree assembly and buffer back
A
: SDF: cycle-driven
Silence Note: in the network, there
detection may be some SDF subsystems

that model computation that is Terminal
activated in an event-driven manner.

SDF: cycle-driven

Terminal

FIGURE 14. A packet speech simulation that combines discrete-event
and dataflow models of computation.
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In this paper we have discussed the interaction semantics of dataflow and discrete-event MoCs.
Ongoing efforts in the Ptolemy project are studying the interactions between these MoCs and both syn-
chronous languages and FSMs.

7. Acknowledgments

We would like to thank the Ptolemy team for building a magnificent laboratory for experimenting with
the concepts discussed in this paper. The Ptolemy project is supported by the Advanced Research
Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-93-C-1317), the
Semiconductor Research Corporation (SRC) (project 96-DC-324-016), the National Science Founda-
tion (MIP-9201605), the State of California MICRO program, and the following companies: Bell
Northern Research, Cadence, Dolby, Hitachi, LG Electronics, Mentor Graphics, Mitsubishi, Motorola,
NEC, Philips, and Rockwell.

8. References
[1] W. B. Ackerman, “Data Flow Language§bmputer\ol. 15, No. 2, February 1982.

[2] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Systems,”
Proceedings of the IEEB/OI. 79, No. 9, pp. 1270-1282, 1991.

[3] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Lan-
guage,’|IEEE Tr. on Automatic ContrplVol. 35, No. 5, pp. 525-546, May 1990.

[4] J. Bier, P. Lapsley, E. A. Lee, and F. Weller, “DSP Design Tools and Methodolotgehriical
Report Berkeley Design Technology, 39355 California St., Suite 206, Fremont, CA 94538, 1995.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static Scheduling of Multi-rate and
Cyclo-Static DSP Applications’Proc. 1994 Workshop on VLSI Signal ProcessIiBE Press,
1994.

[6] F. Boussinot, R. De Simone, “The ESTEREL LanguaBegceedings of the IEEB/I. 79, No.
9, September 1991.

[7] J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow
Model, Tech. Report UCB/ERL 93/69, Ph. D. Dissertation, Dept. of EECS, University of Califor-
nia, Berkeley, CA 94720, 1993.

[8] J. T.Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systern,” Journal of Computer Simulatipspecial issue on
“Simulation Software Development,” vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.berke-
ley.edu/papers/JEurSim.ps.Z).

[9] N. Carriero and D. Gelernter, “Linda in Contexfomm. of the ACMVol. 32, No. 4, pp. 444-
458, April 1989.

[10] C. Cassandra®iscrete Event Systems, Modeling and Performance Analgsia, Homewood
IL, 1993.

[11] A. Church,The Calculi of Lambda-ConversioRrinceton University Press, Princeton, NJ, 1941.

W.-T. CHANG, S. HA, and E. A. LEE 23 of 25



HETEROGENOUS SIMULATION

[12] F. Commoner and A. W. Holt, “Marked Directed Graphlsiirnal of Computer and System Sci-
ences\ol. 5, pp. 511-523, 1971.

[13] J.B. Dennis, “First Version Data Flow Procedure Language”, Technical Memo MAC TM61, May,
1975, MIT Laboratory for Computer Science.

[14] C. Ellingson and R. J. Kulpinski, “Dissemination of System-TirnflelZE Trans. on Communica-
tions Vol. Com-23, No. 5, pp. 605-624, May, 1973.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Data Flow Programming
Language LUSTRE Proceedings of the IEEB/OI. 79, No. 9, 1991, pp. 1305-1319.

[16] D. Harel, “Statecharts: A Visual Formalism for Complex Syste8&,”Comput. Programvpl 8,
pp. 231-274, 1987.

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and M.
Trakhtenbrot, “STATEMATE: A Working Environment for the Development of Complex Reac-
tive Systems,IEEE Trans. on Software Engineeringpl. 16, No. 4, April 1990.

[18] H. Hsieh, L. Lavagno, and A. Sangiovanni-Vincentelli, “Embedded System Codesign: Synthesis
and Verification,” presented at NATO-ASI Workshop on Hardware/Software Codesign, Lake
Como, June, 1995.

[19] R. Jagannathan, “Parallel Execution of GLU Programs,” presengedl dnternational Workshop
on Dataflow Computind;lamilton Island, Queensland, Australia, May 1992.

[20] G. Kahn, “The Semantics of a Simple Language for Parallel Programriirgg,” of the IFIP
Congress 74North-Holland Publishing Co., 1974.

[21] A, Kalavade, Asawaree Kalavade, System Level Codesign of Mixed Hardware-Software Systems,
Tech. Report UCB/ERL 95/88, Ph.D. Dissertation, Dept. of EECS, University of California, Ber-
keley, CA 94720, September, 1995.

[22] A. Kalavade and E. A. Lee, “A Hardware/Software Codesign Methodology for DSP Applica-
tions,” IEEE Design and TesVol. 10, No. 3, pp. 16-28, September 1993.

[23] D. J. Kaplangt al, “Processing Graph Method Specification Version 1.0,” Unpublished Memo-
randum, The Naval Research Laboratory, Washington D.C., December 11, 1987.

[24] R. M. Karp and R. E. Miller, “Properties of a Model for Parallel Computations: Determinacy, Ter-
mination, Queueing,SIAM Journal Vol. 14, pp. 1390-1411, November, 1966.

[25] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed Systeomimunica-
tions of the ACMVol. 21, No. 7, July, 1978.

[26] R. Lauwereins, P. Wauters, M. Adé, and J. A. Peperstraete, “Geometric Parallelism and Cyclo-
Static Dataflow in GRAPE-II"Proc. 5th Int. Workshop on Rapid System Prototyp@rgnoble,
France, June, 1994.

[27] E. A. Lee, “Consistency in Dataflow Graph$EEE Transactions on Parallel and Distributed
Systems”\Vol. 2, No. 2, April 1991.

[28] E. A. Lee and D. G. Messerschmitt, “Synchronous Data FI&EE ProceedingsSeptember,
1987.

24 of 25 W.-T. CHANG, S. HA, and E. A. LEE



HETEROGENOUS SIMULATION

[29] E. A. Lee and T. M. Parks, “Dataflow Process NetworRsjceedings of the IEEBVay 1995.
(http://ptolemy.eecs.berkeley.edu/papers/processNets)

[30] D. G. Messerschmitt, “Synchronization in Digital System Desi¢/s2E Journal on Selected
Areas in Communication¥ol. 8, No. 8, pp. 1404-1419, October 1990.

[31] A. V. Oppenheim and R. W. Schaf@®iscrete-Time Signal Processingnglewood Cliffs, NJ,
1989.

[32] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using PtdleangAl
on VLSI Signal Processinyol. 9, No. 1, pp. 7-21, Jan., 1995. (http://ptolemy.eecs.berkeley.edu/
papers/jvsp_codegen).

[33] E. L. Post, “Formal Reductions of the General Combinatorial Decision Probdem,J. Math.
\Vol. 65, pp. 197-215, 1943.

[34] J. Rasure and C. S. Williams, “An Integrated Visual Language and Software Development Envi-
ronment”,Journal of Visual Languages and Computikgl 2, pp 217-246, 1991.

[35] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-
tems,” inProc. of the Int. Conf. on Application Specific Array Procesd&iSE Computer Soci-
ety Press, August 1992.

[36] P. A. Suhler, J. Biswas, K. M. Korner, and J. C. Browne, “TDFL: A Task-Level Dataflow Lan-
guage”,J. on Parallel and Distributed Systen3¢2), June 1990.

[37] W. T. Trotter,Combinatorics and Partially Ordered Sgflohns Hopkins University Press, Balti-
more, Maryland, 1992.

[38] A. M. Turing, “Computability and -Definabilityd. Symbolic Logicyol. 2, pp. 153-163, 1937.

[39] D. Verkest, K. Van Rompaey, |. Bolsens, and H. De Man, “POPE — A Design Environment for
Heterogeneous Hardware/Software Systems,” to appeargn Automation for Embedded Sys-
tems 1996.

[40] M. von der Beeck, “A Comparison of Statecharts Variants,” in Proc. of Formal Techniques in Real
Time and Fault Tolerant Systems, LNCS 863, pp. 128-148, Sprinter-Verlag, Berlin, 1994.

[41] P. Zepter and T. Groétker, “Abstract Multirate Dynamic Data-Flow Graph Specification for High
Throughput Communication Link ASICIEEE VLSI DSP Workshofhe Netherlands, 1993.

W.-T. CHANG, S. HA, and E. A. LEE 25 of 25



	1. Introduction
	1.1 Models of computation
	Imperative
	Finite state machine (FSM)
	Dataflow
	Discrete event
	Synchronous languages

	1.2 time
	1.3 expressive power
	1.4 Heterogeneity
	1.5 modeling and specification
	1.6 from specification to modeling

	2. Multi-paradigm design
	2.1 dataflow process networks
	2.2 discrete event

	3. Time and Partial Orders
	3.1 The tagged signal model
	3.1.1 Types of Systems

	3.2 tagged firing

	4. Mixing discrete events and dataflow
	4.1 domains and wormholes
	4.2 choosing models of computation
	Synchronous dataflow (SDF).
	Boolean dataflow (BDF)
	Dynamic dataflow (DDF)

	4.3 interfacing different models of computation
	4.4 Interaction semantics in ptolemy
	4.4.1 Dataflow inside discrete-event
	4.4.2 Discrete event within dataflow

	4.5 Alternative interaction semantics

	5. A Typical Mixed DE/Dataflow Simulation
	6. Conclusions
	7. Acknowledgments
	8. References

