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Abstract

This paper relates to system-level design of signal processing systems, which are often hetero
in implementation technologies and design styles. The heterogeneous approach, by combinin
specialized models of computation, achieves generality and also lends itself to automatic synthe
formal verification. Key to the heterogeneous approach is to define interaction semantics that 
the ambiguities when different models of computation are brought together. For this purpose, w
duce atagged signal model as a formal framework within which the models of computation can
precisely described and unambiguously differentiated, and their interactions can be understood
paper, we will focus on the interaction between dataflow models, which have partially ordered e
and discrete-event models, with their notion of time that usually defines a total order of events. 
ety of interaction semantics, mainly in handling the different notions of time in the two model
explored to illustrate the subtleties involved. An implementation based on the Ptolemy system
U.C. Berkeley is described and critiqued.

1.  Introduction

This paper relates to system-level design of signal processing systems. Such systems a
embedded, and their implementation mixes hardware and software. This inevitably complica
design process by forcing a heterogeneous approach. Even within the software or hardware 
themselves there is often heterogeneity. In software, control-oriented processes might be mixe
the supervision of a multitasking real-time kernel running in a microcontroller. In addition, hard
time tasks may run cooperatively on one or more programmable DSPs. The design styles u
these two software subsystems are likely to be quite different from one another, and testing the 
tion between them is unlikely to be trivial.

The hardware side of the design will frequently contain one or more ASICs, perhaps de
using logic or behavioral synthesis tools. On the other hand, a significant part of the hardware
most likely consists of interconnections of commodity components, such as processors and me
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Again, this time on the hardware side, we find heterogeneity. The design styles used to spec
simulate the ASICs and the interconnected commodity components are likely to be quite differe
may not be supported by the same design and simulation tools. A typical system, therefore, n
mixes hardware design with software design, but also mixes design styles within each of these
ries.

Two opposing approaches for such system-level design are possible. One is the unified ap
which seeks a consistent semantics for specification of the complete system. The semantics 
rich enough to support heterogeneous design. The other is a heterogeneous approach, which
systematically combine disjoint semantics. Although the intellectual appeal of the unified appro
compelling, we have adopted the heterogeneous approach. We believe that the diversity in
styles commonly used today precludes a unified solution in the foreseeable future.

1.1  MODELS OF COMPUTATION

Key to the heterogeneous approach is the notion of models of computation. Amodel of computation
(MoC) is the semantics of the interaction between modules or components. MoCs are used 
puter programming as well as in the design of electronic systems. They can be viewed as the 
ing principles of a design specification or model. They relate strongly to thedesign style, but may or
may not relate strongly to theimplementation technology. Classes of MoCs include:

Imperative.In an imperative model of computation, modules are executed sequentially to accom
task.

Finite state machine (FSM).In an FSM MoC, a specification enumerates the set of states that a s
can be in together with the rules for transitioning from one state to another.

Dataflow.In a dataflow MoC, modules react to the availability of data at their inputs by perform
some computation and producing data on their outputs. Communication between modules
streams, which are sequences of datatokens. Each token is an arbitrary data structure that is trea
monolithically by the MoC.

Discrete event.In the discrete-event MoC, modules react to events that occur at a given time i
and produce other events either at the same time instant or at some future time instant. Exec
chronological.

Synchronous languages.In synchronous languages, modulessimultaneously react to a set of input
events andinstantaneously produce output events. If cyclic dependencies are allowed, then exec
involves finding afixed point, or a consistent value for all events at a given time instant.

It is important to recognize the distinction between a MoC and the way that the MoC might be 
mented. For example, while the first two of the above MoCs are fundamentally sequential and 
three are fundamentally concurrent, it is possible to use the first two on parallel machines and 
three on sequential machines.

It is also important to recognize the distinction between a model of computation and alanguage. A
syntax is an important part of a language and not of a MoC. A language may add little more than
tax to a MoC, but more commonly it will implement more than one MoC. For example, VHDL ca
used in an imperative or discrete-event style. Hierarchical FSMs, like Statecharts [16] and at l
2 of 25 W.-T. CHANG, S. HA, and E. A. LEE
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variants [40], combine FSMs with a concurrent MoC, typically that of synchronous languages
guages that are fundamentally based on one MoC may also be used to implement another. Fo
ple, C, which is fundamentally imperative, may be used to implement a dataflow MoC [8].

A MoC is often most easily defined in terms of a language. The language may be very inco
and/or very abstract. For example, it may specify only the interaction between computational m
and not the computation performed by the modules. Instead, it provides an interface to ahost language
that specifies the computation, and is called acoordination language. Or the language may specify
only the causality constraints of the interactions without detailing the interactions themselves n
viding an interface to a host language. In this case, the language is used as a tool to prove prop
systems, as done, for example, in process calculi.

1.2  TIME

Some concurrent MoCs have a built-in notion of time. Time provides such a natural conc
model of concurrency that we might define concurrency in terms of time (using the phrase “at th
time”). A broader definition, however, would be more consistent with the etymology of the word 
current,” which comes from the Latinconcurrere, con- (together) pluscurrere (to run). Dataflow
MoCs are concurrent with no notion of time.

In the discrete-event (DE) MoC, time is an integral part of the model. Events in this MoC wil
ically carry atime stamp, which is an indicator of the time at which the event occurs within the mo
A DE simulator will typically maintain a global event queue that sorts events by time stamp. Not
a DE simulator has an internal notion of simulated time that need not correspond to real time. A
designing successful simulators is to not rely on real time to maintain a correct model of sim
time.

In synchronous languages, the notion of time is more abstract. The word “instantaneously
above is not to be taken literally. Time progresses in discrete jumps, calledticks, rather than continu-
ously as in nature. “Instantaneously” means “at the same tick.”

Simulation of hardware designs is typically accomplished using a discrete-event simulator, s
that embodied in VHDL or Verilog simulators. Asignal is a sequence of events. A time stamp ta
each event, giving the set of events an order. The tag may be an integer, a floating-point numb
data structure representing both the advance of time and possibly the sequencing ofmicrosteps within
a time instant. In all cases, the job of the simulator is to sort events so that those with the earlie
stamps are processed first, and so that the events seen by any particular component have mon
increasing time stamps. Time stamps, therefore, define an ordering of events.

Discrete-event modeling can be expensive. The sorting of time stamps can be computa
costly. Moreover, ironically, although discrete-event is ideally suited to modeling distributed sys
it is very challenging to build a parallel discrete-event simulator. The global ordering of events re
much tighter coordination between parts of the simulation than would be ideal for parallel execu

In an alternative model, events occur synchronously, according to a clock. Events that occu
ferent clock ticks are globally ordered (one unambiguously precedes the other). Simultaneous
(those at the same clock tick) may be totally ordered, partially ordered, or unordered, depending
MoC. Unlike the discrete-event model, however, all signals have events at all clock ticks. This 
in considerably simpler simulators, because sorting is not required. Simulators that exploit this 
W.-T. CHANG, S. HA, and E. A. LEE 3 of 25
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fication are calledcycle-basedor cycle-drivensimulators. Processing all events at a given clock t
constitutes a cycle. Within a cycle, the order in which events are processed may be determined
precedences, which therefore definemicrosteps. These precedences are not allowed to be cyclic, 
typically impose a partial order. Cycle-based models are excellent for clocked synchronous c
They have also been applied successfully at the system level in certain signal processing applic

A cycle-based model is inefficient for modeling systems where events do not occur at the
rate in all signals. While conceptually such systems can be modeled (using for example specia
to indicate the absence of an event), the cost of processing such tokens is considerable. Fortun
cycle-based model is easily generalized to multirate systems. In this case, everyn-th event in one sig-
nal aligns with the events in another.

A multirate cycle-based model is somewhat limited. It is an excellent model for synchronou
nal processing systems where sample rates are related by known rational multiples, but in si
where the alignment of events in different signals is irregular, it can be inefficient.

A more general model is embodied in the so-calledsynchronous languages [2]. Examples of such
languages include Esterel [6], Signal [3], and Lustre [15]. In synchronous languages, every si
conceptually (or explicitly) accompanied by aclock signal. The clock signal has meaning relative 
other clock signals. It defines the global ordering of events. Thus, when comparing two signa
associated clock signals indicate which events are simultaneous and which precede or follow o
clock calculus allows a compiler to reason about these ordering relationships and to detect inco
cies in the definition.

Various looser models of computation specify only a partial ordering between events. This 
that while events within any given signal are ordered, events in different signals may or may no
an ordering relationship. This type of specification has the advantage that it avoidsoverspecifying a
design. If an ordering relationship is not important in a design, why specify it? Specifying it
severely constrain the implementation options. Thus, for example, while discrete-event simulat
difficult to parallelize, dataflow models, which are usually partially ordered [29], are compara
easy to parallelize.

1.3  EXPRESSIVE POWER

Theoreticians strive for simple but expressive models of computation. “Simple” in this case mea
the MoC can be defined by a language with only a few primitives. For example, Turing mac
which define an imperative MoC, are defined by the Turing-Post language, which has only
instructions [33][38]. Church’s lambda calculus is based on only a few formal rules for transfo
strings [11]. “Expressive” in this case means that the MoC can specify many different systems
Turing machines and the lambda calculus can describe a set of functions that are called the “eff
computable functions.” This set is so large that many people regard any computation that is no
set to be not computable.

Practitioners view such efforts much the way they view Turing machines: they make inter
abstractions, but they do not tell us much about how to build systems. To a practitioner, the util
MoC stems from a more pragmatic view of expressiveness: how easy is it to construct a given 
description? How expensive is the compiled implementation? How sure can we be that the de
correct? It is largely irrelevant that it is theoretically possible to construct such a description. 
over, since the practitioner works more directly with a language than with a MoC, the syntax an
4 of 25 W.-T. CHANG, S. HA, and E. A. LEE
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tical expressiveness of the language become central.

This tension between theorists and practitioners is healthy, and the best solutions emerg
compromise. But a major risk in this compromise is “creeping featurism.” In an effort to win
broadest support, features and options are added to a language until all semblance of simpli
been lost. This is frequently how languages come to contain more than one MoC. The down 
such large languages with multiple MoCs is that formal analysis may become very difficult. This
promises our ability to generate efficient implementations or simulations. It also makes it more
cult to be sure that a design is correct; it precludes such formal verification techniques as reac
analysis, safety analysis, and liveness analysis.

Usually, features are added to a language for good reason. Their advocates can cite nu
applications, and win their acceptance through compelling arguments about the utility of the fe
The key is that both excessive simplicity and excessive complexity can interfere with utility.

1.4  HETEROGENEITY

A reasonable way to balance the pressures of breadth and simplicity is to support heterog
Failure to do so has doomed some otherwise laudable efforts. For example, Common Lisp did
first define a “foreign function interface,” presumably because everything could be done in Lisp.
titioners, who built Common Lisp systems, realized that this was not a practical approach, an
their own, mutually incompatible foreign function interfaces. As a result, Lisp systems were
interchangeable if applications used no foreign functions. And few significant applications qua
Standardization failed.

Small, specialized languages and tools are useful. For example, viewed as languages, spre
are extremely useful. But they are certainly not general, in that there are many applications for
they are inappropriate. Such tools are therefore most useful if they can be combined with other 
ized tools. Each tool is developed independently, making the development effort manageably
But by embedding the tool in an environment with appropriate interfaces between tools (a file s
cutting and pasting, and a multitasking operating system, to name some examples), the utility
tool is greatly magnified.

Looser integration of diverse capabilities has numerous advantages:

1. Existing, familiar tools do not need to be discarded in favor of a new, all-encompassing tool
is particularly valuable when expertise with complex tools has built up over time.

2. Capabilities can come in “bite sized” modules, making them easier to learn, and rendering t
more acceptable to a cautious clientele.

3. Tools from different vendors can be mixed, drawing from the strengths of each.

4. Competition among vendors is enhanced because fewer customers are “locked in.” This res
better tools at lower prices.

5. Innovative tools with specialized capabilities have a market. They do not need to be all-enco
passing to be salable. So innovation is encouraged.

There are also significant disadvantages:

1. User interfaces are likely to be different with different tools, making them more difficult to lea
W.-T. CHANG, S. HA, and E. A. LEE 5 of 25



HETEROGENOUS SIMULATION

nother,

es, and

of com-
n good
. Thus,

tem. An
 is in
more
 func-
tation
on. A

cation
compu-
erates a
nly to
re com-
2. Integration may not be complete. For example, once a design is migrated from one tool to a
without tight integration, it may be difficult to back annotate the original design.

We believe that with system-level design problems, the advantages outweigh the disadvantag
that the disadvantages will at least partially disappear later as the technology solidifies.

Our experience suggests that several models of computation are required for the design 
plete systems. In particular, in order to successfully apply formal methods, and in order to obtai
results from high-level synthesis, the smallest (most restrictive) models of computation are best
to achieve generality, one has to embrace heterogeneity.

1.5  MODELING AND SPECIFICATION

There is a subtle relationship between the specification of a system and the modeling of a sys
executable specification, for example, is also a model of an implementation. The difference
emphasis. Aspecification describes the functionality of a system, and may also describe one or 
implementations. Amodel of a system describes an implementation, and may also describe the
tionality. In a specification, it is important to avoid overspecifying the design, to leave implemen
options open. In a model, often the key criteria are precision, simplicity, and efficient simulati
model should be the most abstract model that represents the details being tested.

Figure 1 shows the role that specification and modeling might take in system design. Specifi
is closer to the problem level, at a higher level of abstraction, and uses one or more models of 
tation. A specification undergoes a synthesis process (which may be partly manual) that gen
model of an implementation. That model itself may harbor multiple models of computation, mai
model components at varying levels of abstraction, or to separately model hardware and softwa
ponents.

FIGURE 1.  Models of computation and cosimulation.
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Visual dataflow programming languages, for example, are commonly used in the signal proc
community for specification. Hierarchical finite-state machine languages are used for specifyin
trol-oriented systems. Symbolic processing languages are used to specify functionality in sc
computing. Imperative languages are used for everything (whether or not they are appropriate
crete-event MoCs are used to specify concurrent communicating systems.

Discrete-event MoCs, such as those used in VHDL, Verilog, and other simulation environm
are also used for modeling implementations. They describe physical components with stat
evolve over time and with interactions that occur at discrete points in time. Imperative MoCs pro
natural way to model software implementations. They are also used for modeling hardware c
nents at higher levels of abstraction. For example, an instruction set architecture model for a ha
processor might be implemented in the imperative language C rather than using a discrete-ev
guage to model its detailed implementation.

Often, it makes sense to combine modeling and specification.Design elaboration, for example, is
the process of replacing portions of an executable specification with ever more detailed model
implementation. Often, for efficient simulation, it makes sense to maintain multiple levels of ab
tion in a system simulation. This requires a simulation environment where diverse models of co
tion can interact.

1.6  FROM SPECIFICATION TO MODELING

In figure 1, the synthesis paths are somewhat constrained by the choice of MoC used for speci
It is well known, for example, that a discrete-event MoC is difficult to implement efficiently o
sequential machine. This is the main reason that VHDL simulations surprise the designer by ta
long. A model that heavily uses entities communicating through signals will burden the discrete
scheduler and bog down the simulation. Thus, a specification built on discrete-event semant
poor match for implementation in software.

By contrast, VHDL that is written as strictly sequential code, using imperative semantics, run
atively quickly, but may not translate well into hardware. Imperative C, of course, runs very qu
and is well suited to specifying components that will be implemented in software. However
poorly suited to specifying hardware.

Dataflow and finite-state machine MoCs have been shown to be reasonably retargettable.
chical FMS such as Statecharts [16][17][40], for example, can be used effectively to design ha
or software. Similarly, a number of commercial and research tools use dataflow to specify sign
cessing systems that can be implemented either way [32][35][41]. It has also been shown that 
dataflow specification can be partitioned for combined hardware and software implemen
[21][22].

2.  Multi-paradigm design

In this paper, we will focus on the interaction between dataflow models, with their partially or
events, and discrete-event models, with their notion of time defining a (mostly) total order of eve
variety of interaction semantics are explored, and an implementation based on the Ptolemy 
from U. C. Berkeley is described. We begin with some background on each. This will be followe
formal framework that unambiguously defines the essential features of each MoC and their inte
W.-T. CHANG, S. HA, and E. A. LEE 7 of 25
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2.1  DATAFLOW PROCESS NETWORKS

In dataflow, a program is specified by a directed graph where the nodes represent comp
(actors) and the arcs representstreams of datatokens. The graphs are often represented visually a
are typically hierarchical, in that an actor in a graph may represent another directed graph. Th
in the graph can be either language primitives or subprograms specified in another language, s
or FORTRAN. In the latter case, we are already mixing two of the models of computation from 
1, where dataflow serves as the coordination language for subprograms written in an imperati
language.

Some examples of graphical dataflow programming environments intended for signal proc
(including image processing) are Khoros, from the University of New Mexico [34] (now distribute
Khoral Research, Inc.), Ptolemy, from the University of California at Berkeley [8], the Signal Pro
ing Worksystem (SPW), from the Alta Group at Cadence (formerly Comdisco Systems), CO
from Synopsys (formerly Cadis), and the DSP Station from Mentor Graphics (formerly EDC).

These software environments all claim variants of dataflow semantics, but a word of cautio
order. The term “dataflow” is often used loosely for semantics that deviate significantly from thos
lined by Dennis in 1975 [13]. Most, however, can be described formally as special cases ofdataflow
process networks [29], which are in turn are a special case ofKahn process networks[20].

In Kahn process networks, a number of concurrent processes communicate through unidire
FIFO channels, where writes to the channel are non-blocking, and reads are blocking (see fig
This means that writes to the channel always succeed immediately, while reads block until there
ficient data in the channel to satisfy them. In particular, a process cannot test an input channe
availability of data and then branch conditionally. Testing for available data constitutes a read, a
block the entire process until data is available. This restriction helps to assure that the prog
determinate, meaning that its outputs are entirely determined by its inputs and the behavior sp
by the programmer.

In dataflow process networks, each process consists of repeatedfirings of a dataflowactor (see fig-
ure 3). An actor defines a (often functional) quantum of computation. By dividing processes into
firings, the multitasking overhead of context switching incurred in direct implementations of 
process networks is avoided. In fact, in many of the signal processing environments, a major ob
is to statically (at compile time) schedule the actor firings (see figure 4). The firings are organiz
a list (for one processor) or set of lists (for multiple processors). In figure 4, a dataflow graph is 
mapped into a single processor schedule. Thus, the lower part of the figure represents a list o
that can be repeated indefinitely. A basic requirement of such a schedule is that one cycle thro

process

channel stream

FIGURE 2.  In a process network, where processes communicate through unidi-
rectional FIFO channels, writes are non-blocking, and reads are blocking.

tokens
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schedule should return the graph to its originalstate (defined as the number of tokens on each a
This is not always possible, but when it is, considerable simplification results.

Many possibilities have been explored for precise semantics of dataflow coordination lang
including for example the computation graphs of Karp and Miller [24], the synchronous dat
graphs of Lee and Messerschmitt [28], the cyclo-static dataflow model of Lauwereins,et al. [26][5],
the Processing Graph Method (PGM) of Kaplan,et al. [23], Granular Lucid [19], and others
[1][9][12][36]. Many of these limit expressiveness in exchange for considerable advantages s
compile-time predictability.

Synchronous dataflow (SDF) and cyclo-static dataflow both have the particularly useful pro
that a finite static schedule can always be found that will return the graph to its original state
allows for extremely efficient implementations. For more general dataflow models, it is undec
whether such a schedule exists [7].

A key property of dataflow processes is that the computation consists of atomic firings. Wi
firing, anything can happen. In many existing environments, what happens can only be specifi
host language with imperative semantics, such as C and C++. In the Ptolemy system [8], it can
of a quantum of computation specified with any of several models of computation. We will retu
this notion of a “quantum of computation.”

2.2  DISCRETE EVENT

As described above, the discrete-event model of computation has events with time stamps. The
the simulator is to keep a list of events sorted by time stamp and to process the events in chron
order. There are, however, some subtleties that are dealt with differently in different systems. Th
difficulties concern howsimultaneous events (those with the same time stamp) are dealt with, and h
zero-delay feedback loops are managed.

FIGURE 3.  A dataflow process consists of repeated firings of an actor.

enabled fired enabled fired

FIGURE 4.  Static scheduling of a dataflow process network.
W.-T. CHANG, S. HA, and E. A. LEE 9 of 25
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Consider the graph shown in figure 5. Suppose it specifies a program in a discrete-event co
tion language. Suppose further that B is a zero-delay component. This means that its output 
same time stamp as the most recent input. Thus, if A produces one event on each of its two
with the same time stampT, then there is an ambiguity about whether B or C should be invoked n
This situation is illustrated in figure 6(a). B and C have events at their inputs with identical
stamps, so either could be invoked next. But the behavior of C could be different in the two c
stances.

Suppose B is invoked first, resulting in the configuration shown in figure 6(b). Now, dependi
the simulator, C might be invoked once, observing both input events in one invocation. Or it mi
invoked twice, processing the events one at a time. In the latter case, there is no clear way to de
which event should be processed first.

Some discrete-event simulators leave this situation ambiguous. Such simulators arenondetermi-
nate. In most applications, this is not desirable. A partial solution provided in some simulators 
infinitesimal delay. If B has an infinitesimal delay, then its output events will have time stamps tha
ordered after those of the inputs even if they represent the same simulated time. Then, firing
lowed by B will result in the situation shown in figure 6(c), where the effect of the infinitesimal d
is indicated by the “T+”. The next firing of C will observe only the first event, the one with time sta
T. This is the next one in the event queue. After this firing of C, the event with time stampT+ remains
to be processed, as shown in figure 6(d).

Infinitesimal delays are not an entirely satisfactory solution. Suppose the designer wishes f
see both events at once, as in figure 6(b). There is no way to ensure that B will be invoked be
For this reason, the discrete event domain in Ptolemy uses a different solution [8]. Graphs spe
discrete event programs are topologically sorted, and a priority is assigned to each arc. The top
sort is based on an annotation of the nodes in the graph indicating whether the node can ha
delay from any particular input to any particular output. When such zero delay is possible, the to

FIGURE 5.  A discrete-event example.

A B C

FIGURE 6.  Simultaneous events in discrete-event systems.

A B C

A B C

T

T

T

T

(a)

(b)

A B C

T

T+

(c)

A B C
T+

(d)
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ical sort views this as a precedence constraint. Ignoring the feedback arc in figure 5, this would 
all ambiguities. The topological sort would indicate that B should always be invoked before C 
they have events at their inputs with identical time stamps. This sort of precedence analysis is i
to that done in synchronous languages (Esterel, Lustre, and Signal) to ensure that simultaneou
are processed in a deterministic way.

Of course, the feedback loop in figure 5 creates a problem. The same problem occurs in s
nous languages, where such loops are called causality loops. No precedence analysis can re
ambiguity. In synchronous languages, the compiler may simply fail to compile such a program.
discrete-event domain in Ptolemy, we permit the user to annotate the arcs the graph to break th
dences. Thus, the programmer could annotate the leftward pointing arc in figure 5, again resolv
ambiguities. If the user fails to provide such annotation, a warning is issued, and the precise beh
arbitrary (nondeterminate).

A slight subtlety arises in discrete-event simulators with sources of events. Consider the ex
shown in figure 7(a). An initial event on the self loop with time stampT causes A to fire at simulated
time T. At that time, it can produce an event to B and another event on the self loop with a large
stamp. By continuing to produce events on the self loop, it continually acts as a source of event
In the Ptolemy DE domain, we support the syntactic sugar shown in figure 7(b), where the self 
hidden from view. Conceptually, any source of events is allowed to put its own future firings o
event queue.

3.  Time and Partial Orders

A major impediment to further progress in heterogeneous modeling and specification is the 
sion that arises from different usage of common terms. Terms like “synchronous”, “discrete e
and “dataflow” are used in different communities to mean significantly different things. No d
many readers have interpreted the descriptions above in ways quite different from what we inte

Recognition of this problem has led to efforts to “unify” the work of different communities
defining a “grand unifying language” that embraces the semantic models of a set of competi
common language, it is suggested, provides a means by which people and tools can comm
more effectively. While we agree that such languages provide these benefits, we argue that the
at great expense. In order to be sufficiently rich to encompass the varied semantic models of th
peting approaches, they become unwieldy, too complex for formal analysis and high quality syn

We argue that small, simple, specialized models of computation are valuable. Efforts to su
them into large, unwieldy, “general” models are misguided. The objectives of human communi
can be achieved more simply by developing a human language that is sufficiently precise and fo
unambiguously differentiate approaches. Moreover, if the objectives of the resulting formalism a

A B

T

A B

(a) (b)

FIGURE 7.  Sources of events in DE with and without explicit feedback loops.
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models of computation can be understood. Generality can be achieved through heterogeneity
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The objective of communication between tools is harder to achieve. Fundamentally, a tran
from a language used by one tool to that used by another is primarily a translation of syntax. T
tion of semantics is much harder. Thus, to get interoperability between tools by translation, we
each tool to implement each semantic model of interest. This, needless to say, severely com
tool development, and serves as a barrier to innovation.

To address these issues, we develop a human language that will enable description and dif
tion of models of computation. To be sufficiently precise, this language is a mathematical one. W
define precisely a set of terms like “process”, “discrete-event systems”, and “synchronous” th
unambiguous, but will often conflict with common usage in some communities. We have made
attempt to maintain the spirit of that usage with which we are familiar, but have discovered that
are used in contradictory ways in different communities (sometimes even within a community). 
taining consistency with all prior usage is impossible without going to the unacceptable extre
abandoning the use of these terms altogether. Our definitions in this paper conflict even with o
prior usage in certain cases. We apologize to anyone who is offended by our abuse of some 
which they have a different meaning that they are comfortable with. But there is no way to acco
our objectives without this abuse.

3.1  THE TAGGED SIGNAL MODEL

Given a set ofvalues  and a set oftags , we define an event  to be a member of . I.
an event has a tag and a value. We define asignal  to be a partial function from  to . By “partia
function” we mean that the signal may be defined only for a subset of . A signal  can be v
therefore as a collection  of events, i.e. a subset of , where if  

, then . We call the set of all signals . It is often useful to form a collec
 of  signals. The set of all such signals will be denoted .

A process  with  inputs and  outputs is a subset of . In other words, a pro
defines arelation between input signals and output signals. Signals provide communication be
processes. Note that with this definition, non-determinacy is supported. A particular set of inp
nals may have several possible sets of output signals that satisfy the relation. Afunctional process F, or
simply afunction, is a single valued mapping from some subset of  to . That is, if
and , then .

A tagged system is a set of signals and processes defining relations between these sign
tagged system is said to befixed if each process and each signal exists throughout the existence 
system. Otherwise, it is said to bemutable. Thus, in a mutable tagged system, processes or signals
come and go. Our term “tagged system” here does not refer to an implementation. It refers to a
or a specification. This usage of “system” is common in system theory, but uncommon in other
plines.

Frequently, a natural interpretation for the tags is that they mark time in a physical sy
Neglecting relativistic effects, time is the same everywhere, so tagging events with the time at
they occur puts them in a certain order (if two events are genuinely simultaneous, then their o
arbitrary). Forspecifying systems, however, the global ordering of events in a timed system ma
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overly restrictive. A specification should not be constrained by one particular physical implemen
and therefore need not be based on the semantics of the physical world. Thus, for specificatio
the tagsshould not mark time.

In amodel of a physical system, by contrast, tagging the events with the time at which they 
may seem natural. They must occur at a particular time, and if we accept that time is uniform, th
model should reflect the ensuing ordering of events. However, when modeling a large concurre
tem, the model should probably reflect the inherent difficulty in maintaining a consistent view o
in a distributed system [14][25][30]. If an implementation cannot maintain a consistent view of 
then it may be inappropriate for its model to do so (it depends on what questions the model is e
to answer).

Fortunately, there are a rich set of untimed models of computation. In these models, the t
more abstract objects, often bearing only a partial ordering relationship among themselves. W
give one way to classify these models of computation.

3.1.1  Types of Systems

A partially ordered tagged system (POTS)is a tagged system where  is a countable, partia
ordered set.Partially ordered means that there exists an irreflexive, antisymmetric, transitive rela
between members of the set [37]. We denote this relation using the symbol “<”. Of course, w
define a reflexive version of this relation, denoted “≤”, where  if  or .

The ordering of the tags provides an ordering of events as well. Given two events
and ,  if .

A timed system is a tagged system where  is totally ordered. That is, for any distinct  and
, either  or . Adiscrete-event system is a timed system where  is a countable. The u

of the term “timed” here stems from the observation that in the standard model of the physical 
time is viewed as globally ordering events. Any two events are either simultaneous (have the
tag), or one unambiguously precedes the other. Some timed MoCs include a distance metric b
tags, where for example  has some meaning. These MoCs are said to havemetric time.

In some communities, a discrete-event MoC also requires that  be countable [10]. For ou
poses, the distinction is technically moot, since all representations of values in a computer sim
are drawn from a countable set.

Two events aresynchronous if they have the same tag. Two signals are synchronous if all even
one signal are synchronous with an event in the other signal and vice versa. A system is synchr
every signal in the system is synchronous with every other signal in the system. Adiscrete-time system
is a synchronous discrete-event system.

By this definition, the “synchronous languages” [2] (such as Lustre, Esterel, and Signal) a
synchronous. They are discrete-event systems. Neither is the so-called Synchronous Dataflow
model of computation [28].

Let  denote the tags in signal . In aKahn process network,  is totally ordered for all signals
, but  may be only partially ordered. In fact, in one possible POTS model for Kahn proces

works,  for all . Kahn process networks also impose partial ordering constrain
the tags of their input and output signals. For example, consider a simple process that produ
output event for each input event. Denote the input signal , where  if the i

T
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. Let the output be . Then the process imposes the additional ordering constrai
. for all .

Lamport [25] considers a similar model for distributed systems where events occur insid
cesses, instead of in signals modeling communication between processes. The set of events
process is totally ordered, thus giving the process a sequential nature. Partial ordering constrai
between events in different processes, thus modeling communication. This perspective is only 
different from ours, where partial ordering constraints between events are imposed by the pro
rather than the communication between them.

3.2  TAGGED FIRING

In many MoCs, a process will be specified as a sequence of atomic actions that we will call 
These firings can be tagged in much the way that events are. Let  denote the set of all p
actions. In this case, a process can be described as a set of firings, , where eac

 consists of an action and a tag, . Asequential process is one where the firing tags ar
totally ordered. These tags will typically also have an ordering relationship with the input and o
events.

A dataflow process is a Kahn process that entirely consists of discrete firings. Adataflow process
network, is a network of such processes [29].

For example, consider a dataflow process  with one input signal and one o
signal thatconsumes one input event andproduces one output event on each firing . Denote t
input signal , where  if the index . Let the output be , whi
will be similarly ordered. Then the inputs and outputs are related to the firings as

The firings in a discrete-event system can now also be described in terms of tags. For any 
 with input signal  containing event , there exists a firing  with tag . Moreo

output events produced by that firing cannot have tag less than . If the events are totally orde
are the firings. A sequential execution of a discrete-event system simply follows this ordering
carrying out the firings. I.e., it uses the ordering of firing tags to determine the ordering of firing
(in real time).

4.  Mixing discrete events and dataflow

In this section, we will use the Ptolemy system, developed at the University of California at Ber
as a case study to illustrate some of the issues in mixing discrete events and dataflow. Ptole
research project and software environment focused on design methodology for signal process
communications systems. Its scope ranges from designing and simulating algorithms to synth
hardware and embedded software, parallelizing algorithms, and rapidly prototyping real-time sy
Research ideas developed in the project are implemented and tested in the Ptolemy software 
ment. The Ptolemy software environment is a system-level design framework that allows mixing
els of computation and implementation languages

4.1  DOMAINS AND WORMHOLES

In Ptolemy, adomain defines the semantics of a coordination language. Each domain has ascheduler
that implements the semantics. But domains are modular objects that can be mixed and ma
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will. Object-oriented principles are used to hide information about the semantics of one domain
another. Thus, multiple MoCs can be combined in one system specification and/or model. A ke
straint is that processes in the MoCs have discrete firings1. Ptolemy permits the construction of a pro
cess in one domain for which each firing invokes somequantum of computation in another domain. A
second key constraint, therefore, is that each MoC have a well-defined quantum of computat
this we mean that if we tell the domain to “execute one quantum of computation,” the domain w
form a determinate and finite operation.

Note that in Ptolemy, MoCs are mixedhierarchically, as shown in figure 8. This means that tw
MoCs do not interact as peers. Instead, a foreign MoC may appear inside a process. In Ptolem
process is called awormhole [8]. It encapsulates a subsystem specified using one MoC within a sy
specified using another. The wormhole must obey the semantics of the outer MoC at its boun
and the semantics of the inner MoC internally. Information hiding insulates the outer MoC fro
inner one.

Contrast this hierarchical heterogeneity to alternative approaches. Two MoCs may be u
describe orthogonal and complementary aspects of the same system, as for example in the
dataflow graphs commonly used in VLSI CAD. Another example is the provision of altern
“views” of the same system that reflect different properties, as for example structural, functiona
behavioral descriptions of circuits [17]. A third possibility is to allow an intermixing of protocols
communication between computational modules [18][39]. These styles of heterogeneity are not
chical, and may be used in combination with hierarchical heterogeneity.

4.2  CHOOSING MODELS OF COMPUTATION

The discrete event (DE) domain in Ptolemy is used for time-oriented simulations of system
as queueing networks, communication networks, and high-level hardware architectures (proc
disks, caches, etc.).

There are several dataflow domains in Ptolemy, ordered here by increasing generality:

Synchronous dataflow (SDF).This domain supports fixed dataflow process networks where each fi
in a process consumes and produces a fixed, constant number of tokens on each input and out

1. Some Ptolemy domains, such as the process networks (PN) domain, are not based on discrete firi
but instead use threading or multitasking. But these domains cannot, at our current stage of under
standing, be intermixed as freely with other domains.

X

Y

FIGURE 8.  Mixing MoCs using hierarchy: shown here is a subsystem of
domain Y embedded in domain X as a hierarchical node.
W.-T. CHANG, S. HA, and E. A. LEE 15 of 25
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Boolean dataflow (BDF).This domain supports a more general model where a Boolean valued 
or output from a process may determine how many tokens are consumed or produced on an 
output [7].

Dynamic dataflow (DDF).This domain is a further generalization of BDF where mutable graphs
supported and the only constraint on firings is that they besequential functions [29]. A complete dis-
cussion of sequential functions is beyond the scope of this paper.

The dataflow domains in Ptolemy are commonly used for specifying signal processing or other c
tation-intensive applications. It is easy to envision situations where dataflow and DE would be
rally combined. For example, a signal processing subsystem might be embedded wi
communication network simulation (dataflow within DE). Similarly, a model of a hardware com
nent might be embedded within a specification of a signal processing system during a design
ment (DE within dataflow). Or a functional model of a DSP ASIC might be embedded with
behavioral model of a software architecture.

A MoC captures some properties of a system, and omits those that are irrelevant to the p
domain. Different MoCs capture different sets of properties. A discrete-event MoC models the 
of interactions between concurrent modules, while a dataflow MoC models the exchange of d
the associated transformation of that data.

4.3  INTERFACING DIFFERENT MODELS OF COMPUTATION

Ptolemy domains are designed to interact with one another in a polymorphic way. A module 
domain can internally implement another. These domains interface to a common infrastructure, 
conventions in the Ptolemy kernel, rather than explicitly interfacing to one another. This permits
have  domains with  interfaces, rather than the  interfaces that would be required if
domain had to explicitly interface to each other domain. This one, “universal” interface is calle
event horizon in Ptolemy. This interface has to be sufficiently rich to be capable of transporting
semantic properties from one MoC to another.

We can draw an analogy to the conversion between the numeric types (short, int, long, floa
ble, and Complex, for example). To preserve numeric accuracy, a “universal” numeric type must
type with the highestprecision, which for the given set is Complex. Choosing any other type as
universal type would result in loss of information when a higher-precision type is converted to th
versal type. The same principle must be applied in the design of the event horizon.

Consider for example the notion of time. Since time defines a total order, a timed model is
“precise” than an untimed model, which defines only a partial order. An untimed model can b
verted to a timed model with no loss of correctness, but not vice versa. The event horizon, the
must support a notion of time.

Differences between MoCs can lead to ambiguities when two MoCs are brought together.
must be resolved by aninteraction semantics. For the purpose of discussion, suppose that a MoC 
be represented as a list of its semantic properties. Consider an interface between MoCs X a
shown in figure 9, with information or control flowing from X to Y. At the interface, the following c
version from one set of semantic properties to the other must occur:

• The common properties are translated.

N N N
2
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• Properties in X that are not present in Y are ignored.

• Properties present in Y that are not present in X are created with reasonable default values

In the latter case, there are usually several possible policies for choosing the default values. Th
horizon provides a policy for certain properties. The domain must provide the rest.

The Ptolemy event horizon captures certain essential semantic properties relating to conc
and communications. Events that cross the event horizon are totally ordered and carry time stam
resented as a floating point number. Every domain also provides a wormhole, which can contain
system specified in a foreign domain. When the wormhole fires, it will request of the inner dom
quantum of computation. The inner domain may refuse to act (for example if there is not enoug
at its inputs), or may perform some computation. In either case, it’s behavior is expected to be d
nate, implying that the quantum of computation must be well-defined.

To preserve the total ordering of events that cross the event horizon, each domain must a
port a rudimentary notion of time. In particular, when asked to perform a quantum of computatio
inner domain will be given astop time, the current time in the outer domain. It is expected to avoid p
gressing beyond that time internally. For untimed domains, such as dataflow domains, the sto
may be ignored.

4.4  INTERACTION SEMANTICS IN PTOLEMY

4.4.1  Dataflow inside discrete-event

Consider the case of a dataflow model inside a DE model, as shown in figure 10. In Ptolem
dataflow subsystem appears to the DE simulator as a zero-delay block. Suppose, for example
event with time stampT is available at the input to the dataflow subsystem. Then when the DE s
uler reaches this simulated time, it fires the dataflow subsystem, turing control over to the da
scheduler. If the dataflow subsystem produces output data, that output data will have time stamT.

The motivation for assuming zero execution time of the dataflow subsystem is that, since th

X Y

Created

Translated

Ignored

FIGURE 9.  Conversion from the semantic properties of MoC X to the semantic
properties of MoC Y at the interface
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flow MoC has no notion of time, it seems not only awkward but also infeasible to assign any exe
delay to the inner dataflow subsystem. We can simulate any desired time delay of the inner d
subsystem by attaching aDelay block in the outer DE domain to the inputs or outputs of the wormh
that encapsulates the dataflow subsystem.

The question remains, what is a quantum of computation? How much work should the da
scheduler do before returning control to the DE scheduler? One possibility would be to fire a
dataflow actor, say B in figure 10, to respond to the event. But this will produce no output, an
unclear when the dataflow scheduler should be invoked again to continue responding to th
event. Moreover, if a cluster of actors were to be replaced by a functionally equivalent mon
actor, the behavior of the dataflow graph would change in a fundamental way. It would take s
invocations to produce the same result.

A more reasonable alternative is to fire enough dataflow actors to return the dataflow grap
original state. Thus, if all arcs start with zero tokens, and a token arrives at the input, the sch
should fire the actors a minimal number of times to return all arcs to zero tokens. This set of fir
called acomplete cycle [27]; it forms aquantum of computation, and is found by solving thebalance
equations for the graph.

Consider the simplest form of dataflow, known ashomogeneous synchronous dataflow, where all
actors produce and consume exactly one token on each input or output port. For a homogeneo
graph, a complete cycle always consists of exactly one firing of each actor. Suppose that the d
graph in figure 10 is homogeneous SDF. Then when the dataflow subsystem is invoked by 
scheduler in response to an event with time stampT, actors B and C will each fire once, in that orde
Actor C will produce an output event, which when passed to the DE domain will be assigned th
stampT. The DE scheduler continues processing by firing actor D to respond to this event.

Consider the slightly more elaborate example shown in figure 11. Suppose the inner sys
homogeneous SDF, so a quantum of computation could consist of firing actors (A, B, C) in tha
(this is a complete cycle). Suppose that D produces an event with time stamp , and that thi
oldest event in the event queue. The wormhole is fired in response to this event, but there is 
enough data available for the firing sequence (A, B, C) to proceed as a quantum. Thus, th
domain declines to act and returns control to the DE domain. Only when an event is produce
will the inner system be able to proceed to execute its complete cycle. At that point, it will us
value produced by D, but will assume the time stamp produced by E.

FIGURE 10.  A dataflow subsystem as a module within a DE simulation.

discrete event

dataflow

zero time delay

A B C D

T1
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Because the outer MoC, discrete-event, has a total ordering on events, and the inner 
invoked in discrete quanta of computation, the events in the inner MoC are more ordered tha
would be otherwise. Consider the example shown in figure 12(a). This homogeneous SDF sub
consists of three actors A, B, and C. The firing schedule (A B C) forms a finite complete cycl
hence a quantum of computation. If considered by itself as a dataflow graph, the firings have the
ordering constraints shown in figure 12(b). However, if this subsystem is nested within a DE s
then it must be executed as a totally ordered sequence of complete cycles. This imposes ad
ordering constraints on the firings, resulting in the partial order shown in figure 12(c).

In the more general form of SDF, actors can produce or consume more than one token wh
fire (but they always produce and consume the same number on each firing). SDF graphs tha
have a finite complete cycle are considered defective [28], and are therefore ruled out.

If the SDF subsystem in figure 10 is a multirate system, the effects of the combined DE/SD
tem are somewhat more subtle. First, a single event at the input of the subsystem may not be s
to cycle through one iteration of the SDF schedule. Suppose for example that actor B requir

A

B

C

D

E

F

SDF
DE

FIGURE 11.  Illustration of a multi-input dataflow subsystem.

A

B

C

A1 A2 A3 A4

C1 C2 C3 C4

B1 B2 B3 B4

A1 A2 A3 A4

C1 C2 C3 C4

B1 B2 B3 B4

. . .

. . .

. . .

. . .

(a) A homogeneous SDF subsystem. (b) Partial ordering of firings imposed by
the dataflow MoC.

(c) Partial ordering of firings after imposing a total ordering on complete cycles.

FIGURE 12.  Effect on partial orders of the quantum of computation.

An arc from a group
of firings (enclosed in
a bubble) to another
is a shorthand for saying
that every firing in the
“source” group precedes
every firing in the
“destination” group.
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input tokens to fire. In this case, the SDF domain will simply return control to the DE domain, h
refused to execute its quantum of computation. Only when enough input events have accumula
the complete cycle be executed. Secondly, when output events are produced, more than one to
be produced per quantum of computation. In Ptolemy, all such output tokens are assigned th
time stamp by default. However, the user can change this behavior and specify that the time
should be uniformly spread through a given time interval. This latter behavior is often useful for
eling multirate signal processing systems, where the DE domain models the environment.

The notion of a complete cycle gets more difficult with more general dataflow models [27]. U
tunately, for dataflow graphs supported by the BDF and DDF domains in Ptolemy, the existen
complete cycle is undecidable [7]. The only solution we have identified is to define a quantum o
putation of computation to be a complete cycle when it exists and can be found. Otherwise, it 
implementation dependent (and hence nondeterminate). Fortunately, most signal processin
rithms have dataflow graphs for which a complete cycle exists, can be found and is finite.

We need to consider one more special case. Suppose you want a dataflow subsystem to s
source of events in a discrete-event domain. Recall that source actors in the DE domain have t
ule themselves. One solution is to create a dataflow subsystem that takes a dummy input that t
quantum of computation.

4.4.2  Discrete event within dataflow

Consider the reverse scenario, where a DE subsystem is included within an dataflow syste
policy followed in Ptolemy is that a global notion ofcurrent time is maintained for use in the even
horizon. For domains (such as the dataflow domains) that have no notion of time, this global 
maintained transparently. A dataflow system can be configured so that each complete cycle a
the global time by some fixed amount called theschedule period. This corresponds naturally to th
representation of a sample rate in a signal processing system. Thus, again, we require that the
graph have a finite complete cycle that is well-defined and determinate.

The inner DE subsystem must behave externally like a dataflow actor, but it also has som
tional restrictions. SDF actors in general can produce or consume any fixed constant num
tokens on each port. In Ptolemy, the DE subsystem is constrained to behave like ahomogeneous SDF
actor, which consumes a single token on each input and produces a single token on each outp
when the DE-in-dataflow wormhole has an event on every input port is it fired.

When the outer dataflow system chooses to fire the inner DE subsystem, the input events to
subsystem are assigned the global time as their time stamps. The inner DE scheduler is told
process all input events up to and including events with that global current time as their time 
This is certainly not the only possibility, but it is unambiguous and seems to work well in practic

Suppose that the outer domain is SDF. Recall that the SDF MoC requires that every firing co
and produce a fixed constant number of tokens. Therefore, a key requirement in this case is th
the DE subsystem is fired, it must produce an output event on each output port, since these
expected by the SDF subsystem. A very simple example is shown in figure 13. The DE subsy
the figure routes input events through a time delay (theServer block). The events at the output of th
time delay, however, will be events in the future (in simulated time). TheSampler block, therefore, is
introduced to produce an output event at the current simulation time. This output event is pro
before the DE scheduler returns control to the output SDF scheduler, and the SDF system 
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The behavior shown in figure 13 may not be the desired behavior. TheSampler block, given an
event on its control input (the bottom input), copies the most recent event from its data input (t
input) to the output. If there has been no input data event, then a zero-valued event is produce
are many alternative ways to ensure that an output event is produced. For this reason, the me
for ensuring that this output event is produced is not built into the Ptolemy event horizon. Th
grammer must understand the semantics of the interacting domains, and act accordingly.

Finally, consider a DE subsystem within a multirate SDF system. The SDF system may p
multiple tokens to the DE subsystem in each cycle of its schedule. By default, these tokens ha
stamps that are uniformly spread over the user-specified schedule period. If this is not the 
behavior, the designer can always add one more level of hierarchy, where an outermost DE 
provides the time stamps to the inner SDF domain, which then passes these time stamps to th
most DE domain. Uniformly spreading the tokens is a convenient policy, but it seems somewh
hoc, so it may change in future versions of Ptolemy.

4.5  ALTERNATIVE INTERACTION SEMANTICS

The choices made in Ptolemy are by no means unique. The DE and dataflow domains could ha
designed to use a different interaction semantics. For example, a reasonable way to embed a
subsystem within DE would be to provide a clock input to the wormhole that explicitly triggers a 
of the subsystem. Thus, if the inside system is dataflow, it would perform its quantum of compu
when an event on the clock input is the oldest event in the event queue. Moreover, instead of c
to see whether there is enough data on the inputs to satisfy the dataflow actors inside, it could g
the data that is needed using the most recently seen values on each of the inputs. This alternat
action semantics makes sense for certain kinds of systems. For example, the DE system might 
eling a digital circuit.

This alternative behavior can be implemented using the interaction semantics that we have
mented in Ptolemy. It would simply require a Sampler like that in figure 13 at each input to the w
hole. This set of Samplers would be driven by the clock.

In deciding which interaction semantics to implement, we were guided by a desire to minimi
amount of implicit activity. Thus, for example, generation of data tokens should be explicit i
design, not implicit in the interface between domains. This is a design choice, and alter
approaches are certainly arguable.

FIGURE 13.  A DE subsystem designed for inclusion within an SDF system.
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5.  A Typical Mixed DE/Dataflow Simulation

In this section we outline a typical mixed DE/dataflow simulation, one studying packet video
audio. There are some terminals at the periphery of the network. The terminals perform signa
pression and decompression, a good match for the dataflow MoC. Compressed signals are th
etized and sent into the network. The network loses some packets and delays the rest. This be
a good match for DE. At the destination, the packets must be converted back to compressed
with the lost packets and network delays handled properly. Then the compressed signals are
pressed and played back, again a good match for dataflow.

Note that although we suggest the use of DE for modeling the packet loss and delay in t
work, some simple packet loss and delay mechanisms can be adequately modeled by SDF, res
a simpler, more efficient simulation. For more elaborate simulations, the combination of DE da
will be more convenient.

Consider a packet speech application (see figure 14). The top level may be the DE domain
models the networking as well as providing the “clock” signals driving the conversion at the term
The terminals are internally modeled using SDF. In the network, some modules may internally c
SDF subsystems, which would usually model numeric computation that is activated in an event
fashion. For example, we may need to compute the checksum whenever a packet arrives (an
The Ptolemy event horizon is adequate.

6. Conclusions

To support heterogeneity in implementation technologies and design styles in system-level des
hierarchically nest distinct models of computation. Each MoC is selected to capture certain pro
of a system specification or model, such as timing, functionality, concurrency, or communic
When one MoC is embedded within another, an interaction semantics is needed. There are usu
eral reasonable alternative interaction semantics; the most appropriate depends on the chara
of the systems being described. As a principle in the Ptolemy system, we try to implement the
mal” semantics, allowing users to implement alternative semantics by adding detail. This has w
well in practice, and results in a reasonably modular heterogeneous environment.

Speech
source Compress

Silence
detection

Packet
assembly Network

Packet
disassembly
and buffer

Decompress
Play
back

SDF: cycle-driven

Clock DE: event-driven

SDF: cycle-driven

Clock

FIGURE 14.  A packet speech simulation that combines discrete-event
and dataflow models of computation.

Note: in the network, there
may be some SDF subsystems
that model computation that is Terminal

Terminal

activated in an event-driven manner.
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1.
In this paper we have discussed the interaction semantics of dataflow and discrete-event
Ongoing efforts in the Ptolemy project are studying the interactions between these MoCs and bo
chronous languages and FSMs.
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