
REAL-TIME DSP FOR SOPHOMORES

Kenneth H. Chiang
Edward A. Lee

Brian L. Evans
David G. Messerschmitt

William T. Huang
H. John Reekie

Ferenc Kovac
Shankar S. Sastry �

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770

E-mail: eecs20@hera.eecs.berkeley.edu
WWW: http://www-inst.eecs.berkeley.edu/˜ee20

ABSTRACT

We are developing a sophomore course to serve as a first
course in electrical engineering. The course focuses on dis-
crete-time systems. Its goal is to give students an intuitive
understanding of concepts such as sinusoids, frequency do-
main, sampling, aliasing, and quantization. In the labora-
tory, students build simulations and real-time systems to test
these ideas. By using a combination of high-level and DSP
assembly languages, the students experiment with a variety
of views into the representation, design, and implementa-
tion of systems. The students are exposed to a digital style
of implementation based on programming both desktop and
embedded processors.

1. INTRODUCTION

We are developing a new class, “Introduction to Real-Time
Digital Systems,” that combines signal processing and com-
puter architectures in a laboratory setting to excite sopho-
mores about communications, signal processing, and con-
trols. The students experiment with sampled speech, music,
and image signals to gain experience in analyzing, enhanc-
ing, and performing real-time processing on them. They
learn about Fourier analysis at an intuitive level as the key
technique to unlock the composition of a signal, but also
experience its usefulness in practice. The students explore
many different views of signals and systems as they build
signal processing algorithms using high-level and assembly
languages. They also gain practical experience developing
algorithms in MATLAB [1] and embedded applications on
Texas Instruments TMS320C50 boards [2, 3]. In demonstra-
tions, students are also exposed to the visual block diagram
programming environments SIMULINK [4] and Ptolemy [5].

The students for the course are sophomores majoring in
Electrical Engineering and Computer Sciences (EECS). At
Berkeley, the fields of electrical engineering, computer sci-
ence, and computer engineering are taught in a single EECS
Department. We have integrated these fields in the EECS
courses so that they look seamless to the students. Thus,
students are able to combine these fields in different ways,
which is particularly appropriate in the context of modern

�The authors would like to thank Texas Instruments for supplying
five C50 DSP Kits and five 486 PCs; Intel for donating five Pentium
PCs and ProShare packages; and AT&T for awarding a grant to de-
velop the course. The authors would also like to thank the faculty of
the EECS department for allocating resources to develop the course.

technology. This new sophomore course offers students an
exposure to a combination of communications and signal
processing with computer science and engineering. The
course comes at a time when the students are deciding on
their areas of specialization from among electronics, systems,
and computer science and engineering.

Regardless of their final area of specialization, all EECS
students can benefit from the course. They gain an appre-
ciation for real-time discrete systems and a digital style of
implementation. Their understanding of discrete-time sys-
tems complements the analog and digital circuit design and
desktop software programming they are learning in their
other lower-division classes. Because we introduce systems
by way of applications, interesting concepts, and digital com-
puting, we hope to motivate students to study communica-
tions, signal processing, and controls. For those students
who choose the systems area as their specialization, their
practical understanding of concepts such as the frequency
domain, sampling, aliasing, and quantization will give them
better motivation to study the theory in later systems classes,
because they have a greater appreciation of the application
of the theory beforehand.

The initial offering of this real-time DSP course is during
the Spring 1996 semester. This two-credit course runs for six-
teen weeks, as shown in Tables 1 and 2 on the next page. The
course consists of one hour of lecture, one hour of discussion,
and four hours of laboratory work each week. Throughout
the course, concepts and applications are interwoven. Each
lecture demonstrates applications to illustrate concepts be-
ing presented. In each laboratory, students further their un-
derstanding by developing signal processing systems. The
students spend 3-5 weeks on each of the following applica-
tion areas: computer music and digital audio, speech, dig-
ital communications, and image processing. Within each
application area, students build simulations and real-time
systems. In developing the laboratories for this course, we
found several books on MATLAB [6, 7, 8] and the family of
Texas Instruments fixed-point DSP processors [3, 9, 10] to be
very helpful.

2. LOGISTICS

In the initial offering of the course, we limit enrollment to
24 students who will work on the laboratories in pairs. We
are requiring that the students purchase a book on MATLAB
[6]. We distribute laboratory materials on a weekly basis in
printed and World Wide Web formats. Next, we give the



Week Lecture
1 embedded systems & applications intro
2 sine waves: frequency, mag., phase, perception
3 sampling & aliasing, speech/music examples
4 linear and non-linear systems, LTI systems
5 filtering concepts: lowpass and highpass
6 filtering implementation: difference equations
7 digital representation: sampling/quantization
8 embedded digital system architecture
9 embedded digital system architecture

10 speech processing: pitch shifting
11 speech recognition
12 modulation: AM/FM
13 BFSK and matched filtering
14 image representation and processing
15 image decompositions, SVD-as-plaids demo
16 image enhancement

Table 1. Semester Lecture Schedule By Week.

course pre-requisites, equipment, personnel, and grading.

2.1. Pre-requisites
We require that the students take an introductory class on
programming paradigms [11] (which uses Lisp) as well as
a C or C++ programming class. This programming back-
ground makes it easier for the students to pick up the MAT-
LAB language syntax and programming with arrays. The
background in C helps them in learning the DSP assem-
bly language. Optional but useful courses for the students
to have taken include a class on machine structures and a
class on differential equations. The machine structures back-
ground helps them understand DSP architectures, and the
differential equations exposure helps them grasp difference
equations. Students that have taken any of the junior signals
and systems classes are excluded from taking this course.

2.2. Equipment
We provide the students with the equipment to sample and
process speech, music, and image signals for the laboratory
experiments. The students have access to four Intel Pentium
PCs with built-in sound cards. The PCs are equipped with
Intel’s ProShare teleconferencing package which includes a
video camera, video capture, and a microphone/earphone
set. Through ProShare, the PCs are networked locally and
to the Internet. Each PC also has a MIDI velocity keyboard.
Full versions of MATLAB and SIMULINK are installed. For
the embedded signal processing laboratories, each PC has
a TMS320C50 DSP Kit and Evaluation Module from Texas
Instruments Inc. Other available software includes Web
browsers and a C++ compiler. Each station has a copy of
several books and reference manuals [1, 2, 4].

2.3. Personnel
For the development and initial offering of the course, there
are three professors, two teaching assistants, and three staff
running the course. The professors are Edward Lee (signal
processing, embedded systems, design methodology, and
communications), David Messerschmitt (communications,
signal processing, and VLSI architectures), and Shankar Sas-

Week Tool Discussion/Laboratory
1 none none
2 MATLAB matrices, MATLAB, tones
3 MATLAB sampling tones, playback, aliasing
4 MATLAB multiple tones, musical notes
5 MATLAB vibrato, echo, tremelo effects
6 C50 C50 board/architecture intro
7 MATLAB speech quantization
8 C50 tones: table lookup & diff. equ.
9 C50 multiple notes/tones in real-time
10 MATLAB LPC coding
11 MATLAB recognition of spoken digits
12 C50 DTMF codec
13 C50 BFSK modem
14 MATLAB image filtering: median, texture
15 C50 processing of subblocks
16 none none

Table 2. Semester Laboratory Schedule By Week.

try (controls and robotics). The teaching assistants are Ken
Chiang and William Huang, who developed the laboratory
exercises with general direction from the professors and staff.
The staff are Brian Evans (MATLAB and Web course mate-
rials), Ferenc Kovac (equipment and scheduling), and John
Reekie (TI DSP programming and board expertise).

2.4. Grading
We chose a grading system to reflect the laboratory emphasis
of the class. Grades are based on an equal weighting of

� short quizzes,

� written laboratory reports, and

� oral laboratory reports.

The quizzes are given during the discussion section and last
15 minutes each. In both styles of laboratory reports, the
students give short, qualitative explanations of their obser-
vations. The written reports are less than a page long, and
the oral reports are 10 minutes or less in length.

3. COMPUTER MUSIC AND DIGITAL AUDIO

From this course, we hope that students gain an intuitive feel
for basic discrete-time signal processing concepts, as well as
an appreciation of the applications in which those concepts
have been used. To this end, we are not placing the empha-
sis on the mathematical foundations of the course material,
but instead on the reinforcement of qualitative concepts by
hands-on laboratory work. When we introduce mathemat-
ical concepts, we appeal to the student’s observation and
intuition of physical phenomena.

After giving examples of sampled data in their daily lives,
we introduce sampled signals by way of computer music [7].
We begin by discussing sinusoidal models for pure tones.
By playing tones, the students hear the effect of changing
magnitude, frequency, and phase on individual tones and
on a sum of tones. In the next lecture, we present sampling
and aliasing. We play properly sampled and aliased versions
of the same speech and music signals to demonstrate how the
harmful effects of aliasing are heard. In the corresponding



laboratory, the students play a variety of tones to determine
the frequency range of their own hearing, and undersample
tones to hear aliasing.

For the next lecture, we introduce the concept of lin-
ear and non-linear systems, and the special case of linear
time-invariant systems. We then play tones that have been
processed by linear time-invariant, linear time-varying, and
non-linear systems. The students can hear that the linear
time-invariant system alters the amplitude but not the fre-
quency of the tone. Since the ear is relatively insensitive
to phase, the students are not able to distinguish the phase
change in the single tone induced by the linear time-invariant
system. For the linear time-varying system, we amplitude
modulate the tone so the students hear the two resulting fre-
quencies. We frequency modulate the tone to produce a rich
set of tones for the example of a non-linear system. In the
laboratory, the students experiment with representations of
computer music. They play sequential tones to synthesize
a bar of their favorite song, play multiple tones simultane-
ously, and modulate one tone with another. Time permitting,
they can experiment with FM synthesis of musical tones.

Next, we introduce filtering from a qualitative point-of-
view. We characterize filtering by passing certain qualities
and rejecting others. We demonstrate the concept of lowpass
and highpass filters by using tones and sampled waveforms.
In the laboratory, the students code simple filters in MATLAB
to produce a variety of simple digital audio effects, including
vibrato, echo, reverberation, tremelo, and chorusing.

4. SPEECH

We began the course by focusing the application on computer
music. In the context of computer music, the students exper-
imented with sampling, aliasing, and filtering. We switch
the application to speech processing to explore more about
filtering, as well as signal quantization, coding, and interpre-
tation.

In week #6, we introduce difference equations as a general
framework to implement filters. We demonstrate that the
complex exponential is a solution to difference equations. We
cover the damped, oscillating, and underdamped cases by
showing how the complex exponential behaves. At this point
and throughout the course, we avoid using the z-transform.
In the laboratory, the students get an introduction to the C50
boards and run several canned filtering demonstrations on
them.

Next, we detail digital representation of signals on a com-
puter by means of sampling and quantization. In the lecture,
we play a speech signal quantized at various levels. To the
surprise of the students, they find that speech quantized at
one bit is actually intelligible. The students through hearing
perceive the tradeoff between more bits and improved per-
ceptual quality. In the laboratory, they discover the limit of
perceptual improvement as they increase the number of bits.
They also perform simple filtering operations on speech.

Now that we have introduced quantization, we spend the
next two weeks talking about embedded digital system ar-
chitectures, focusing on the C50 fixed-point DSP. In the first
laboratory, the students generate tones by using table lookup
and by using a difference equation on the C50 boards. We
provide the routines to handle the input and output for them

so they can concentrate on the algorithm. In the second lab-
oratory, the students generate sequential tones and multiple
tones in real-time on the C50. These two laboratories are
in preparation for a dual-tone multiple frequency generator
they build two labs from now.

The next two topics concern advanced speech processing
topics of pitch shifting and speech recognition. In the first
lecture, we discuss simple models of how speech is pro-
duced, and relate the models to difference equations. We
discuss pitch and various ways to measure it. Then, we give
an example of pitch-shifting by playing a Laurie Anderson
CD. In the laboratory, the students run speech through a lin-
ear predictive coder (LPC). They are given the infrastructure
to compute LPC coefficients. The students figure out how
to window the speech and synthesize the same speech from
the LPC model. Creative students use a variety of excitation
models. In the second lecture, we introduce speech recogni-
tion, and in the laboratory, students implement pieces of a
simple speech recognition system.

5. DIGITAL COMMUNICATIONS

Now that the students have seen representations of music
and speech on the computer, we move into the issue of how
to communicate this information. We present two lectures.
The first is on AM/FM modulation, and borrows on the
students experience tuning a radio station and selecting a
television channel. We do not perform any noise analysis,
but simply demonstrate how to communicate information
carried by a modulating waveform. In the laboratory, the
students leverage their previous laboratories on real-time
tone generation to build a system that generates touch tones,
i.e., a dual-tone modulated-frequency (DTMF) system [3, 9].
We also have them recognize the presence of a ’1’ digit in real
time.

The second lecture is on binary frequency shift keying
(BFSK) and its use in digital modems. We introduce the issue
of matched filtering for this binary case. In the laboratory, the
students reuse the DTMF codec from the previous laboratory
to build a simple BFSK modem.

6. IMAGE PROCESSING

The students have now seen a variety of theory and appli-
cations of one-dimensional signal processing. We conclude
the course by having the students learn how to extend their
knowledge into two dimensions by way of image processing.
We begin with representations of images on the computer (as
rasters and matrices) and how to process them. We show that
the filtering concepts generalize to images. In the laboratory,
they use MATLAB to extract the edges and texture in the
image and to remove salt-and-pepper noise. They have to
figure out which of a lowpass, highpass, and median filter to
use to accomplish these tasks.

Next, we discuss image decompositions. We demonstrate
predictive coding and singular-value decomposition. The
visualization of singular-value decomposition in two di-
mensions is a combination of plaids (i.e., weighted sums
of products of column and row vectors). As the number of
plaids (terms) increases, the decomposed image approaches
the original, as shown in Figure 1. In the laboratory, the
students explore predictive coding to implement one of the



JPEG schemes in real-time by processing one 8 x 8 subblock
at a time. We conclude the course with a lecture on image
enhancement.

7. CONCLUSION

Until a decade ago, many if not most of the entering elec-
trical engineering students had background with some form
of analog circuitry, e.g., building radios or working on cars.
Today, however, the student entering electrical engineering
and computer science is far more likely to be from a com-
puter background and more accustomed to a digital world.
Based on this observation, the Georgia Institute of Technol-
ogy [12] introduces electrical engineering to their computer
engineering students by means of a sophomore discrete-time
systems class.

We are implementing our own sophomore discrete-time
systems course that mixes signal processing and communi-
cations with computer science and engineering. Our goal is
to give the students an intuitive and practical understanding
of crucial concepts in discrete-time systems such as the fre-
quency domain, sampling, aliasing, and quantization. The
students test concepts in the familiar world of digital com-
puters by programming desktop processors for simulation
and embedded processors for real-time implementations.

REFERENCES

[1] The MathWorks Inc., The Student Edition of MATLAB
Version 4 User’s Guide. Englewood Cliffs, NJ: Prentice-
Hall, 1995.

[2] TMS320C5x User’s Guide. Texas Instruments, Inc., 1993.
[3] M. A. Chishtie, ed., Telecommunications Applications with

the TMS320C5x DSPs. Texas Instruments, Inc., 1995.
[4] The MathWorks Inc., The Student Edition of SIMULINK

User’s Guide. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[5] E. A. Lee, “Signal processing experiments using

Ptolemy — instructor’s manual.” (contact the author
at eal@eecs.berkeley.edu), May 1994.

[6] D. Hanselman and B. Littlefield, Mastering MATLAB.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1996.

[7] V. Stonick and K. Bradley,Labs for Signals and Systems Us-
ing MATLAB. Boston, MA: PWS Publishing Inc., 1995.

[8] C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W.
Parks, R. W. Schafer, and H. Schüssler, Computer-Aided
Exercises for Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1994.

[9] K.-S. Lin, ed., Digital Signal Processing Applications with
the TMS320 Family, vol. 1. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[10] D. L. Jones and T. W. Parks, A Digital Signal Processing
Laboratory Using the TMS32010. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1988.

[11] H. Abelson and G. Sussman, Structure and Interpretation
of Computer Programs. Cambridge, MA: MIT Press, 1985.

[12] V. K. Madisetti, J. H. McClellan, and T. P. Barnwell,
“DSP design education at Georgia Tech,” in Proc. IEEE
Int. Conf. Acoust., Speech, and Signal Processing, vol. 5,
(Detroit, MI), pp. 2869–2872, May 1995.

(a) Original image

(b) One principal component

(c) Twenty principal components

Figure 1. Illustrating the tradeoff of compression rate vs.
quality in a data-dependent lossy compression algorithm
that sums up a finite number of plaid patterns generated
by the principal singular-value components of the image
treated as a matrix.


