
Chapter 2. Writing Stars for
Simulation

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

Other Contributors: Most of the Ptolemy team

2.1 Introduction
Ptolemy provides rich libraries of stars for the more mature domains. Since the stars

were designed to be as generic as possible, many complicated functions can be realized by a
galaxy. Nonetheless, no star library can possibly be complete; you may need to design your
own stars. The Ptolemy preprocessor language makes this easier than it could be. This chapter
is devoted to the use of the preprocessor language.

Newly designed stars can be dynamically linked into Ptolemy, avoiding frequent
recompilation of the system. If the new stars are generic and useful, however, it might be bet-
ter to add them to the list of compiled-in stars and rebuild the system. See “Creating Custom
Versions of pigiRpc” on page 1-6.

2.2 Adding stars dynamically to Ptolemy
To get a quick sense of what it means to create a new star, you can use one of the exist-

ing stars as a template. Create a new directory in which you have write permission. Copy the
source code for an existing Ptolemy star. For example,

cd my_directory
cp $PTOLEMY/src/domains/sdf/stars/SDFSin.pl SDFMyStar.pl
chmod +w SDFMyStar.pl

The “.pl ” extensions on the file names stand for “Ptolemy language” or “preproces-
sor language.” The file name must be of the formDomainStarname .pl for dynamic linking
and thelook-inside command to work. The last command just ensures that you can modify
the file. Edit the file to change the name of the star fromSin to MyStar . This is necessary so
that the name does not conflict with the existingSin star in the SDF domain.

You can now dynamically link your new star. Startpigi , the graphical editor. If you
startpigi in your new directory, you will get a blankinit.pal facet. Place your mouse cur-
sor in this facet, and issue the “make-star” command (the shortcut is “* ”). A dialog box like

2-2 Writing Stars for Simulation

U. C. Berkeley Department of EECS

the following will appear:

Enter the name of the star,MyStar , its domain,SDF, the location of the directory that
defines it, such as~user_name/my_directory , and the name of palette in which you
would like its icon to appear,user.pal . The star will be compiled and dynamically
linked with the Ptolemy executable. An icon for it will appear in the facetuser.pal . Try
using this in a simple system.

Three details about dynamic linking may prove useful:

 • If the name of the star source directory has a/src/ component,pigi will replace
this with /obj.$PTARCH/ depending on the type of machine you are running, to
get the name of the directory in which to store the object file. This is especially
useful if you are jointly doing development with others who use a different type of
machine. If there is no/src/ component in the name, then the object file is placed
in the same directory with the source file.

 • If there is a file namedMakefile or makefile in the object file directory,pigi
will run themake program, using themakefile to create the object file (or make
sure it is up to date). If there is nomakefile , pigi will run a make-like proce-
dure on its own, running the preprocessor as needed to produce the C++ source
files, then running the C++ compiler to create the object file. By default, the C++
compiler will be told to look for include files in the kernel directory and the
domain-specific kernel and star directories; if this is not adequate, then you need to
write a makefile. Once compilation (if any) is complete, the dynamic linker is used
to load the star into the system. Compilation errors, if any, will appear in a popup
window.

 • Whenever the definition of a star is changed so that the new definition has differ-
ent I/O ports, the icon must be updated as well. You can do this by callingmake-
star again to replace the old icon with a new one.

If the linking fails, one of the following situations may apply:

 • Whoever installed Ptolemy did not install the compiler.

 • The compiler is not configured correctly. If you are using a prebuilt compiler
obtained from the Ptolemy ftp site, you may need to set some environment vari-
ables if your Ptolemy installation is not at/users/ptolemy . See Appendix A of
the PtolemyUser’s Manual for more information.

 • A spuriousmakefile exists in your directory. If amakefile exists in your direc-
tory, Ptolemy will attempt to use it to compile your star. Remove it, and try again.

The Almagest 2-3

Ptolemy Last updated: 10/17/97

 • The version of the compiler used to build Ptolemy is not the same as the version used
to compile your star. This should not occur if you are using the compiler distributed
with Ptolemy, but can occur if the compiler has been updated since Ptolemy was last
built, or if you are not using the compiler distributed with Ptolemy.

 • You have a/src/ component in the directory name, but the corresponding
/obj.$PTARCH/ directory does not exist or cannot be written. A common error is to
put the Ptolemy sources in/usr/local/src/ptolemy , which confuses Ptolemy
since a star might be in/usr/local/src/ptolemy/src/domains/sdf/stars ,
which has two/src/ directories in the path.

You may find it helpful to refer to the Appendix A, Installation and Troubleshooting in the
User’s Manual.

The star you just created performs exactly the same function as an existing star in the
Ptolemy library, and hence is not very interesting. Try modifying the star. For example, you
could add 1.0 to the sine before producing the output. Find the definition of thego method,
which should look like this:

go {
output%0 << sin (double(input%0));

}

The one line of code is ordinary C++ code, although the “<<” and “%” operators have been
overloaded. This line means that the current value (%0) of the output named “output ” should
be assigned the value returned by thesin function applied to the current value of the input
named “input ”. The cast todouble indicates that we are not really interested in theParti-
cle object supplied by the input, but rather its value, interpreted as a double-precision float-
ing point number. Try changing this code to

go {
output%0 << sin (double(input%0)) + 1.0;

}

To recompile and reload the star, place your mouse cursor on any instance of the icon for the
star, and type “L” (or invoke the “Extend:load-star” command through the menus).

Sometimes, you will wish to dynamically link stars that are derived from other stars
that you have dynamically linked. To do this, the base class stars must bepermanently linked.
This can be done with the “Extend:load-star-perm” command (“K”). To do this, place the
mouse over an icon representing the parent star, and type “K”. Once the parent star is perma-
nently linked, it cannot be replaced or redefined: you must restartpigi .

The go and all other entries in the.pl file defining the star are explained in the fol-
lowing sections.

2.3 The Ptolemy preprocessor language (ptlang)
The Ptolemy preprocessor,ptlang , was created to make it easier to write and docu-

ment star class definitions to run under Ptolemy. Instead of writing all the class definitions and
initialization code required for a Ptolemy star, the user can concentrate on writing the action
code for a star and let the preprocessor generate the standard initialization code for portholes,
states, etc. The preprocessor generates standard C++ code, divided into two files (a header file

2-4 Writing Stars for Simulation

U. C. Berkeley Department of EECS

with a .h extension and an implementation file with a.cc extension). It also generates stan-
dardized documentation, in a file with a.html extension, to be included in the manual. In
releases before Ptolemy 0.7, Ptolemy used.t files, which conained troff source

2.3.1 Invoking the preprocessor

The definition of a star namedYYY in domainXXX should appear in file with the name
XXXYYY.pl . The class that implements this star will be namedXXXYYY. Then, running the
command

ptlang XXXYYY.pl

will produce the filesXXXYYY.cc , XXXYYY.h, andXXXYYY.html . Implementation of the
preprocessor

The preprocessor is written inyacc and C. It does not attempt to parse the parts of the
language that consist of C++ code (for example,go methods); for these, it simply counts curly
braces to find the ends of the items in question. It outputs#line directives so the C++ com-
piler will print error messages, if any, with respect to the original source file.

2.3.2 An example

To make things clearer, let us start with an example, a rectangular pulse star in the file
SDFRect.pl :

defstar {
name { Rect }
domain { SDF }
desc {

Generates a rectangular pulse of height "height" (default 1.0).
with width "width" (default 8).

}
version {%W% %G%}
author { J. T. Buck }
copyright {1993 The Regents of the University of California}
location { SDF main library }
state {

name { height }
type { float }
default { 1.0 }
desc { Height of the rectangular pulse. }

}
state {

name { width }
type { int }
default { 8 }
desc { Width of the rectangular pulse. }

}
state {

name { count }
type { int }
default { 0 }
desc { Internal counting state. }
attributes { A_NONSETTABLE|A_NONCONSTANT }

The Almagest 2-5

Ptolemy Last updated: 10/17/97

}
output { // the output port

name { output }
type { float }
desc { The output pulse. }

}
go { // the run-time function

double t = 0.0;
if (count < width) t = height;
count = int(count) + 1;
output%0 << t;

}
}

Running the preprocessor on the above file produces the three filesSDFRect.h ,
SDFRect.cc andSDFRect.html ; the names are determinednot by the input filename but
by concatenating the domain and name fields. These files define a class namedSDFRect .

At the time of this writing, only one type of declaration may appear at the top level of
a Ptolemy language file, adefstar , used to define a star. Sometime in the future, adefgal-
axy section may also be supported. Thedefstar section is itself composed of subitems that
define various attributes of the star. All subitems are of the form

keyword { body }

where thebody may itself be composed of sub-subitems, or may be C++ code (in which case
the Ptolemy language preprocessor checks it only for balanced curly braces). Note that the
keywords arenot reserved words; they may also be used as identifiers in the body.

2.3.3 Items that appear in a defstar

The following items can appear in adefstar directive. The items are given in the
order in which they typically appear in a star definition (although they can appear in any
order). An alphabetical listing and summary of directives is given in table 2-1.

name

This is a required item, and has the syntax

name { identifier }

It (together with the domain) provides the name of the class to be defined and the
names of the output files. Case is important in the identifier.

domain

This is a required item; it specifies the domain, such as SDF. The syntax is:

domain { identifier }

whereidentifier specifies the domain (again, case is important).

2-6 Writing Stars for Simulation

U. C. Berkeley Department of EECS

keyword summary required page
acknowl-
edge

the names of other contributors to the star no 2-8

author the name(s) of the author(s) no 2-8

begin C++ code to execute at start time,after the schedulersetup
method is called

no 2-13

ccinclude specify other files to include in the .cc file no 2-15

code C++ code to include in the .cc file outside the class definition no 2-15

codeblock define a code segment for a code-generation star no 13-2

conscalls define constructor calls for members of the star class no 2-13

construc-
tor

C++ code to include in the constructor for the star no 2-12

copyright copyright information to include in the generated code no 2-8

derived alternative form ofderivedFrom no 2-7

derived-
from

the base class, which must also be a star no 2-7

desc alternative form ofdescriptor no 2-7

descriptor a short summary of the functionality of the star no 2-7

destructor C++ code to include in the destructor for the star no 2-13

domain the domain, and the prefix of the name of the class yes 2-5

explana-
tion

full documentation (See also htmldoc). no 2-9

exectime specify the execution time for a code generation star no 13-2

go C++ code to execute when the star fires no 2-14

header C++ code to include in the .h file, before the class definition no 2-15

hinclude specify other files to include in the .h file no 2-15

htmldoc full documentation, optionally using HTML directives

inmulti define a set of inputs no 2-11

inout define a (bidirectional) input and output no 2-11

inoutmulti define a set of (bidirectional) inputs and outputs no 2-11

input define an input to the star no 2-11

location an indication of where a user might find the star no 2-8

method define a member function for the star class no 2-15

name the name of the star, and the root of the name of the class yes 2-5

outmulti define a set of outputs no 2-11

output define an output from the star no 2-11

private define private data members of the star class no 2-14

protected defined protected data members of the star class no 2-14

public define public data members of the star class no 2-14

setup C++ code to execute at start time,before compile-time scheduling no 2-13

state define a state or parameter no 2-9

version version number and date no 2-7

wrapup C++ code to invoke at the end of a run (if no error occurred) no 2-14TABLE 2-1: A summary of the items used to define a star. Additional items are allowed in code
generation stars, as explained in later chapters. A minimal set of the most useful items
are shaded.

The Almagest 2-7

Ptolemy Last updated: 10/17/97

derivedfrom

This optional item indicates that the star is derived from another class. Syntax:

derivedfrom { identifier }

whereidentifier specifies the base class. The.h file for the base class is automat-
ically included in the output.h file, assuming it can be located (you may need to cre-
ate a makefile).

For example, theLMS star in theSDF domain is derived from theFIR star. The full
name of the base class isSDFFIR, but thederivedfrom statement allows you to say
either

derivedfrom { FIR }

or
derivedfrom { SDFFIR }

Thederivedfrom statement may also be writtenderivedFrom or derived .

descriptor

This item defines a short description of the class. This description is displayed by the
profile pigi command. It has the syntax

descriptor { text }

wheretext is simply a section of text that will become the short descriptor of the star.
You may also writedesc instead ofdescriptor . A principal use of the short
descriptor is to get on-screen help, so the descriptor should not include any troff for-
matting commands. Unlike thehtmldoc (described below), it does not pass through
troff. The following are legal descriptors:

desc { A one line descriptor. }

or
desc {
A multi-line descriptor. The same line breaks and spacing
will be used when the descriptor is displayed on the screen.
}

By convention, in these descriptors, references to the names of states, inputs, and out-
puts should be enclosed in quotation marks. Also, each descriptor should begin with a
capital letter, and end with a period. If the descriptor seems to get long, augment it
with thehtmldoc directive, explained below. However, it should be long enough so
that it is sufficient to explain the function of the star.

version

This item contains two entries as shown below

2-8 Writing Stars for Simulation

U. C. Berkeley Department of EECS

version { number MO/DA/YR }

where thenumber is a version number, and theMO/DA/YR is the version date. If you
are using SCCS for version control then the following syntax will work well:

version { %W% %G% }

When the file is checked in by SCCS, the string%W% will be replaced with a string of
the form:@(#) filename num , where num is the version number, and%G% will be
replaced with a properly formatted date.

author

This optional entry identifies the author or authors of the star. The syntax is

author { author1, author2 and author3 }

Any set of characters between the braces will be interpreted as a list of author names.

acknowledge

This optional entry attaches an acknowledgment section to the documentation. The
syntax is

acknowledge { arbitrary single line of text }

copyright

This optional entry attaches a copyright notice to the.h , .cc , and.t files. The syntax
is

copyright { copyright information }

For example, we used to use the following (our lawyers have recently caused us to
increase the verbosity):

copyright {1994 The Regents of the University of California}

The copyright may span multiple lines, just like a descriptor. In house, we use the
SCCS%Q% keyword to update the date when a file is changed. A typical copyright line
might look like:

copyright {1990-%Q% The Regents of the University of
California}

location

This item describes the location of a star definition. The following descriptions are
used, for example:

The Almagest 2-9

Ptolemy Last updated: 10/17/97

location { SDF dsp library }

or
location { directory }

wheredirectory is the location of the star. This item is for documentation only.

explanation

This item is used to give longer explanations of the function of the stars. In releases
previous to Ptolemy 0.7, this item included troff formatting directives. In Ptolemy 0.7
and later, this item has been superceded by thehtmldoc item.

htmldoc

This item is used to give longer explanations that include HTML format directives.
The Tycho system includes an HTML viewer that can be used to display star docu-
mentation. The HTML output ofptlang can be viewed by any HTML viewer, but
certain features, such as the<tcl></tcl> directive are only operational when
viewed with Tycho. For complete documentation for the Tycho HTML viewer, see the
HTML viewer Help menu.

state

This item is used to define a state or parameter. Recall that by definition, a parameter
is the initial value of a state. Here is an example of a state definition:

state {
name { gain }
type { int }
default { 10 }
desc { Output gain. }
attributes { A_CONSTANT|A_SETTABLE }

}

There are five types of subitems that may appear in a state statement, in any order. The
name field is the name of the state; thetype field is its type, which may be one of
int , float , string , complex , fix , intarray , floatarray , complexarray ,
precision , or stringarray . Case is ignored for the type argument.

Thedefault item specifies the default initial value of the state; its argument is either
a string (enclosed in quotation marks) or a numeric value. The above entry could
equivalently have been written:

default { "1.0" }

Furthermore, if a particularly long default is required, as for example when initializing
an array, the string can be broken into a sequence of strings. The following example
shows the default for aComplexArray :

2-10 Writing Stars for Simulation

U. C. Berkeley Department of EECS

default {
"(-.040609,0.0) (-.001628,0.0) (.17853,0.0) (.37665,0.0)"
"(.37665,0.0) (.17853,0.0) (-.001628,0.0) (-.040609,0.0)"
}

For complex states, the syntax for the default value is

(real, imag)

wherereal andimag evaluate to integers or floats.

Theprecision state is used to give the precision of fixed-point values. These values
may be other states or may be internal to the star. The default can be specified in either
of two ways:

 • Method 1: As a string like “3.2”, or more generally “m.n”, wherem is the number of
integer bits (to the left of the binary point) andn is the number of fractional bits (to the
right of the binary point). Thus length ism+n.

 • Method 2: A string like “24/32” which means 24 fraction bits from a total length of
32. This format is often more convenient because the word length often remains con-
stant while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at
least one.

The desc (or descriptor) item, which is optional but highly recommended,
attaches a descriptor to the state. The same formatting options are available as with the
star descriptor.

Finally, theattributes keyword specifies state attributes. At present, two attributes
are defined for all states:A_CONSTANT andA_SETTABLE (along with their comple-
ments A_NONCONSTANT and A_NONSETTABLE). If a state has theA_CONSTANT
attribute, then its value is not modified by the run-time code in the star (it is up to you
as the star writer to ensure that this condition is satisfied). States with the
A_NONCONSTANT attribute may change when the star is run. If a state has the
A_SETTABLE attribute, then user interfaces (such aspigi) will prompt the user for
values when directives such asedit-parameters are given. States without this attribute
are not presented to the user; such states always start with their default values as the
initial value. If no attributes are specified, the default isA_CONSTANT|A_SETTABLE.
Thus, in the above example, theattributes directive is unnecessary. The notation
“A_CONSTANT|A_SETTABLE” indicates a logical “or” of two flags. Confusingly, this
means that they both apply (A_CONSTANTandA_SETTABLE).

Code generation stars use a great number of attributes, many specific to the language
model for which code is being generated. Read chapter 13, “Code Generation”, and
the documentation for the appropriate code generation domain to learn more about
these.

Mechanisms for accessing and updating states in C++ methods associated with a star
are explained below, in sections 2.4.3 on page 2-21 and 2.4.4 on page 2-23.

The Almagest 2-11

Ptolemy Last updated: 10/17/97

An alternative form for thestate directive isdefstate . The subitems of thestate
directive are summarized in table 2-2, together with subitems of other directives.

input, output, inout, inmulti, outmulti, inoutmulti

These keywords are used to define a porthole, which may be an input, output, inout
(bidirectional) porthole or an input, output, or inout multiporthole. Bidirectional ports
are not supported in most domains (The Thor domain is an exception). Likestate , it
contains subitems. Here is an example:

input {
name { signalIn }
type { complex }
numtokens { 2 }
desc {A complex input that consumes 2 input particles.}

}

Here,name specifies the porthole name. This is a required item.type specifies the
particle type. The scalar types areint , float , fix , complex , message , or any-
type . Again, case does not matter for the type value. The matrix types are
int_matrix_env , float_matrix_env , complex_matrix_env , and

item sub-item summary required page
inmulti,
inout,
inoutmulti,
input

name name of the port or group of ports yes 11

type data type of input (& output) particles no

descriptor summary of the function of the input no

numtokens number of tokens consumed by the port (use-
ful only for dataflow domains)

no

method,
virtual method,
inline method,
pure method,
pure virtual method,
inline virtual method

name the name of the method yes 15

access private, protected, or public no

arglist the arguments to the method no

type the return type of the method no

code C++ code defining the method if not pure

outmulti,
output

name name of the port or group of ports yes 11

type data type of output particles no

descriptor summary of the function of the output no

numtokens number of tokens produced by the port (use-
ful only for dataflow domains)

no

state name the name of the state variable yes 9

type data type of the state variable yes

default the default initial value, always a string yes

descriptor summary of the function of the state no

attributes hints to the simulator or code generator no

TABLE 2-2: Some items used in defining a star have subitems. These are described here.

2-12 Writing Stars for Simulation

U. C. Berkeley Department of EECS

fix_matrix_env . Thetype item may be omitted; the default type isanytype . For
more information on all of these, please see chapter 4, “Data Types”.

The numtokens keyword (it may also be writtennum or numTokens) specifies the
number of tokens consumed or produced on each firing of the star. This only makes
sense for certain domains (SDF, DDF, and BDF); in such domains, if the item is omit-
ted, a value of one is used. For stars where this number depends on the value of a state,
it is preferable to leave out thenumtokens specification and to have thesetup
method set the number of tokens (in the SDF domain and most code generation
domains, this is accomplished with thesetSDFParams method). This item is used
primarily in the SDF and code generation domains, and is discussed further in the doc-
umentation of those domains.

There is an alternative syntax for the type field of a porthole; this syntax is used in
connection withANYTYPE to specify a link between the types of two portholes. The
syntax is

type { = name }

wherename is the name of another porthole. This indicates that this porthole inherits
its type from the specified porthole. For example, here is a portion of the definition of
the SDFFork star:

input {
name{input}
type{ANYTYPE}

}
outmulti {

name{output}
type{= input}
desc{ Type is inherited from the input. }

}

constructor

This item allows the user to specify extra C++ code to be executed in the constructor
for the class. This code will be executedafter any automatically generated code in the
constructor that initializes portholes, states, etc. The syntax is:

constructor { body }

wherebody is a piece of C++ code. It can be of any length. Note that the constructor is
invoked only when the class is first instantiated; actions that must be performed before
every simulation run should appear in thesetup or begin methods, not the construc-
tor.

The Almagest 2-13

Ptolemy Last updated: 10/17/97

conscalls

You may want to have data members in your star that have constructors that require
arguments. These members would be added by using thepublic , private , or pro-
tected keywords. If you have such members, theconscalls keyword provides a
mechanism for passing arguments to the constructors of those members. Simply list
the names of the members followed by the list of constructor arguments for each, sep-
arated by commas if there is more than one. The syntax is:

conscalls { member1(arglist), member2(arglist) }

Note thatmember1, andmember2 should have been previously defined in apublic ,
private , or protected section (see page 2-14).

destructor

This item inserts code into the destructor for the class. The syntax is:

destructor { body }

You generally need a destructor only if you allocate memory in the constructor,
begin method, orsetup method; termination functions that happen with every run
should appear in thewrapup function1. The optional keywordinline may appear
beforedestructor ; if so, the destructor function definition appears inline, in the
header file. Since the destructor for all stars is virtual, this is only a win when the star
is used as a base for derivation.

setup

This item defines thesetup method, which is called every time the simulation is
started,before any compile-time scheduling is performed. The syntax is:

setup { body }

The optional keywordinline may appear before thesetup keyword. It is common
for this method to set parameters of input and output portholes, and to initialize states.
The code syntax for doing this is explained starting on page 2-16. In some domains,
with some targets, thesetup method may be called more than once during initiation.
You must keep this in mind if you use it to allocate or initialize memory.

begin

This item defines thebegin method, which is called every time the simulation is
started, butafter the schedulersetup method is called (i.e., after any compile-time
scheduling is performed). The syntax is:

1. Note, however, that wrapup is not called if an error occurs. See page 2-14.

2-14 Writing Stars for Simulation

U. C. Berkeley Department of EECS

begin { body }

This method can be used to allocate and initialize memory. It is especially useful when
data structures are shared across multiple instances of a star. It is always called exactly
once when a simulation is started.

go

This item defines the action taken by the star when it is fired. The syntax is:

go { body }

The optional keywordinline may appear before thego keyword. The go method
will typically read input particles and write outputs, and will be invoked many times
during the course of a simulation. The code syntax for the body is explained starting
on page 2-16.

wrapup

This item defines thewrapup method, which is called at the completion of a simula-
tion. The syntax is:

wrapup { body }

The optional keywordinline may appear before thewrapup keyword. The wrapup
method might typically display or store final state values. The code syntax for doing
this is explained starting on page 2-16. Note that thewrapup method is not invoked if
an error occurs during execution. Thus, thewrapup method cannot be used reliably to
free allocated memory. Instead, you should free memory from the previous run in the
setup or begin method, prior to allocating new memory, and in the destructor.

public, protected, private

These three keywords allow the user to declare extra members for the class with the
desired protection. The syntax is:

protkey { body }

whereprotkey is public , protected , or private . Example, from theXMgraph
star:

protected {
XGraph graph;
double index;

}

This defines an instance of the classXGraph , defined in the Ptolemy kernel, and a

The Almagest 2-15

Ptolemy Last updated: 10/17/97

double-precision number. If any of the added members require arguments for their
constructors, use theconscalls item to specify them.

ccinclude, hinclude

These directives cause the.cc file, or the.h file, to #include extra files. A certain
number of files are automatically included, when the preprocessor can determine that
they are needed, so they do not need to be explicitly specified. The syntax is:

ccinclude { inclist }
hinclude { inclist }

whereinclist is a comma-separated list of include files. Each filename must be sur-
rounded either by quotation marks or by “<” and “>” (for system include files like
<math.h>).

code

This keyword allows the user to specify a section of arbitrary C++ code. This code is
inserted into the.cc file after the include files but before everything else; it can be
used to define static non-class functions, declare external variables, or anything else.
The outermost pair of curly braces is stripped. The syntax is:

code { body }

header

This keyword allows the user to specify an arbitrary set of definitions that will appear
in the header file. Everything between the curly braces is inserted into the.h file after
the include files but before everything else. This can be used, for example, to define
classes used by your star. The outermost pair of curly braces is stripped.

method

Themethod item provides a fully general way to specify an additional method for the
class of star that is being defined. Here is an example:

virtual method {
name { exec }
access { protected }
arglist { "(const char* extraOpts)" }
type { void }
code {

// code for the exec method goes here
}

}

An optional function type specification may appear before themethod keyword,
which must be one of the following:

2-16 Writing Stars for Simulation

U. C. Berkeley Department of EECS

virtual
inline
pure
pure virtual
inline virtual

Thevirtual keyword makes a virtual member function. If thepure virtual key-
word is given, a pure virtual member function is declared (there must be nocode item
in this case). The function typepure is a synonym forpure virtual . The inline
function type declares the function to be inline.

Here are themethod subitems:

name: The name of the method. This is a required item.

access : The level of access for the method, one ofpublic , protected , or
private . If the item is omitted,protected is assumed.

arglist : The argument list, including the outermost parentheses, for the method
as a quoted string. If this is omitted, the method has no arguments.

type : The return type of the method. If the return type is not a single identi-
fier, you must put quotes around it. If this is omitted, the return type is
void (no value is returned).

code : The code that implements the method. This is a required item, unless
thepure keyword appears, in which case this itemcannot appear.

exectime

This item defines the optionalmyExecTime() function, which is used in code generation to
specify how many time units are required to execute the star’s code. The syntax is:

exectime { body }

The optional keywordinline may appear before theexectime keyword. Thebody
defines the body of a function that returns an integer value.

codeblock

Codeblocks are parametrized blocks of code for use in code generation stars. Their use and
format is discussed in detail in the code generation chapters. The syntax is:

codeblock {
code
...

}

2.4 Writing C++ code for stars
This section assumes a knowledge of the C++ language; no attempt will be made to

The Almagest 2-17

Ptolemy Last updated: 10/17/97

teach the language. We recommend “C++ Primer, Second Edition”, by Stanley Lippman
(from Addison-Wesley) for those new to the language. Chapter 3, “Infrastructure for Star
Writers”, is also highly recommended reading for those who will be writing stars, since it
explains some of the more generic and useful classes defined in the Ptolemy kernel. Many of
these are useful in stars.

C++ code segments are an important part of any star definition. They can appear in the
setup , begin , go, wrapup , constructor , destructor , exectime , header , code , and
method directives in the Ptolemy preprocessor. These directives all include a body of arbi-
trary C++ code, enclosed by curly braces, “{ ” and “} ”. In all but thecode andheader direc-
tives, the C++ code between braces defines the body of a method of the star class. Methods
can access any member of the class, including portholes (for input and output), states, and
members defined with thepublic , protected , andprivate directives.

2.4.1 The structure of a Ptolemy star

In general, the task of a Ptolemy star is to receive input particles and/or produce output
particles; in addition, there may be side effects (reading or writing files, displaying graphs, or
even updating shared data structures). As for all C++ objects, the constructor is called when
the star is created, and the destructor is called when it is destroyed. In addition, thesetup and
begin methods, if any, are called every time a new simulation run is started, thego method
(which always exists except for stars likeBlackHole andNull that do nothing) is called
each time a star is executed, and thewrapup method is called after the simulation run com-
pletes without errors.

2.4.2 Reading inputs and writing outputs

The precise mechanism for references to input and output portholes depends some-
what on the domain. This is because stars in the domainXXX use objects of classInXXXPort
andOutXXXPort (derived fromPortHole) for input and output, respectively. The examples
we use here are for the SDF domain. See the appropriate domain chapter for variations that
apply to other domains.

PortHoles and Particles

In the SDF domain, normal inputs and outputs become members of typeInSDFPort
andOutSDFPort after the preprocessor is finished. These are derived from base classPort-
Hole . For example, given the following directive in thedefstar of an SDF star,

input {
name {in}
type {float}

}

a member namedin , of typeInSDFPort , will become part of the star.

We are not usually interested in directly accessing these porthole classes, but rather
wish to read or write data through the portholes. All data passing through a porthole is derived
from base classParticle . Each particle contains data of the type specified in thetype sub-
directive of theinput or output directive.

2-18 Writing Stars for Simulation

U. C. Berkeley Department of EECS

The operator “%” operating on a porthole returns a reference to a particle. Consider the
following example:

go {
Particle& currentSample = in%0;
Particle& pastSample = in%1;
...

}

The right-hand argument to the “%” operator specifies the delay of the access. A zero always
means the most recent particle. A one means the particle arriving just before the most recent
particle. The same rules apply to outputs. Given an output namedout , the same particles that
are read fromin can be written toout in the same order as follows:

go {
...
out%1 = pastSample;
out%0 = currentSample;

}

This works becauseout%n returns areference to a particle, and hence can accept an assign-
ment. The assignment operator for the classParticle is overloaded to make a copy of the
data field of the particle.

Operating directly on classParticle , as in the above examples, is useful for writing
stars that acceptanytype of input. The operations need not concern themselves with the type
of data contained by the particle. But it is far more common to operate numerically on the data
carried by a particle. This can be done using a cast to a compatible type. For example, since
in above is of typefloat , its data can be accessed as follows:

go {
Particle& currentSample = in%0;
double value = double(currentSample);
...

}

or more concisely,

go {
double value = double(in%0);
...

}

The expressiondouble(in%0) can be used anywhere that a double can be used. In many
contexts, where there is no ambiguity, the conversion operator can be omitted:

double value = in%0;

The Almagest 2-19

Ptolemy Last updated: 10/17/97

However, since conversion operators are defined to convert particles to several types, it is
often necessary to indicate precisely which type conversion is desired.

To write data to an output porthole, note that the right-hand side of the assignment
operator should be of typeParticle , as shown in the above example. An operator<< is
defined for particle classes to make this more convenient. Consider the following example:

go {
float t;
t = some value to be sent to the output
out%0 << t;

}

Note the distinction between the<< operator and the assignment operator; the latter operator
copies Particles, the former operator loads data into particles. The type of the right-side oper-
and of<< may beint , float , double , Fix , Complex or Envelope ; the appropriate type
conversion will be performed. For more information on theEnvelope andMessage types,
please see the chapter “Data Types” on page 4-1.

SDF PortHole parameters

In the above example, wherein%1 was referenced, some special action is required to
tell Ptolemy that past input particles are to be saved. Special action is also required to tell the
SDF scheduler how many particles will be consumed at each input and produced at each out-
put when a star fires. This information can be provided through a call tosetSDFParams in
thesetup method. This has the syntax

setup {
name.setSDFParams(multiplicity , past)

}

wherename is the name of the input or output porthole,multiplicity is the number of par-
ticles consumed or produced, andpast is the maximum value thatoffset can take in any
expression of the formname%offset . For example, if thego method referencesname%0 and
name%1, thenpast would have to be at least one. It is zero by default.

Multiple PortHoles

Sometimes a star should be defined withn input portholes orn output portholes, where
n is variable. This is supported by the classMultiPortHole and its derived classes. An
object of this class has a sequential list ofPortHole s. For SDF, we have the specialized
derived classMultiInSDFPort (which containsInSDFPorts) and MultiOutSDFPort
(which containsOutSDFPorts).

Defining a multiple porthole is easy, as illustrated next:
defstar {

...
inmulti {

name { input_name }

2-20 Writing Stars for Simulation

U. C. Berkeley Department of EECS

type { input_type }
}
outmulti {

name { output_name }
type { output_type }

}
...

}

To successively access individual portholes in aMultiPortHole , theMPHIter itera-
tor class should be used. Iterators are explained in more detail in “Iterators” on page 3-10.
Consider the following code segment from the definition of the SDFFork star:

input {
name{input}
type{ANYTYPE}

}
outmulti {

name{output}
type{= input}

}
go {

MPHIter nextp(output);
PortHole* p;
while ((p = nextp++) != 0)

(*p)%0 = input%0;
}

A single input porthole supplies a particle that gets copied to any number of output portholes.
Thetype of the outputMultiPortHole is inherited from the type of the input. The first line
of thego method creates anMPHIter iterator callednextp , initialized to point to portholes in
output . The “++” operator on the iterator returns a pointer to the next porthole in the list,
until there are no more portholes, at which time it returnsNULL. So thewhile construct steps
through all output portholes, copying the input particle data to each one.

Consider another example, taken from the SDFAdd star:

inmulti {
name {input}
type {float}

}
output {

name {output}
type {float}

}
go {

MPHIter nexti(input);
PortHole *p;
double sum = 0.0;

The Almagest 2-21

Ptolemy Last updated: 10/17/97

while ((p = nexti++) != 0)
sum += double((*p)%0);

output%0 << sum;
}

Again, anMPHIter iterator namednexti is created and used to access the inputs.

Upon occasion, thenumberPorts method of classMultiPortHole , which returns
the number of ports, is useful. This is called simply asportname .numberPorts() , and it
returns anint .

Type conversion

The type conversion operators and “<<” operators are defined as virtual methods in the
base classParticle . There are never really objects of classParticle in the system;
instead, there are objects of classIntParticle , FloatParticle , ComplexParticle ,
andFixParticle , which hold data of typeint , double (not float!),Complex , andFix ,
respectively (there are alsoMessageParticle and a variety of matrix particles, described
later). The conversion and loading operators are designed to “do the right thing” when an
attempt is made to convert between mismatched types.

Clearly we can convert anint to adouble or Complex , or adouble to aComplex ,
with no loss of information. Attempts to convert in the opposite direction work as follows:
conversion of aComplex to adouble produces the magnitude of the complex number. Con-
version of adouble to anint produces the greatest integer that is less than or equal to the
double value. There are also operators to convert to or fromfloat andFix .

Each particle also has a virtualprint method, so a star that writes particles to a file
can acceptanytype .

2.4.3 States

A state is defined by thestate directive. The star can use a state to store data values,
remembering them from one invocation to another. They differ from ordinary members of the
star, which are defined using thepublic , protected , andprivate directives, in that they
have a name, and can be accessed from outside the star in systematic ways. For instance, the
graphical interfacepigi permits the user to set any state with theA_SETTABLE attribute to
some value prior to a run, using theedit-params command. The interpreter provides similar
functionality through thesetstate command. The state attributes are set in thestate direc-
tive. A state may be modified by the star code during a run. The attributeA_NONCONSTANT is
used as a pragma to mark a state as one that gets modified during a run. There is currently no
mechanism for checking the correctness of these attributes.

All states are derived from the base classState , defined in the Ptolemy kernel. The
derived state classes currently defined in the kernel areFloatState , IntState , Complex-
State , StringState , FloatArrayState , IntArrayState , ComplexArrayState , and
StringArrayState .

A state can be used in a star method just like the corresponding predefined data types.
As an example, suppose the star definition contains the following directive:

state {

2-22 Writing Stars for Simulation

U. C. Berkeley Department of EECS

name { myState }
type { float }
default { 1.0 }
descriptor { Gain parameter. }

}

This will define a member of classFloatState with default value 1.0. No attributes are
defined, soA_CONSTANT andA_SETTABLE, the default attributes, are assumed. To use the
value of a state, it should be cast to typedouble , either explicitly by the programmer or
implicitly by the context. For example, the value of this state can be accessed in thego
method as follows:

go {
output%0 << double(myState) * double(input%0);

}

The references to input and output are explained above. The reference tomyState has an
explicit cast todouble ; this cast is defined inFloatState class. Similarly, a cast toint is
available for IntState , to Complex from ComplexState , and to const char* for
Stringstate). In principle, it is possible to rely on the compiler to automatically invoke this
cast. However:

Warning : some compilers (notably some versions of g++) may not choose the expected cast.
In particular, g++ has been known to cast everything toFix if the explicit cast is omitted in
expressions similar to that above. The arithmetic is then performed using fixed-point point
computations. This will be dramatically slower than double or integer arithmetic, and may
yield unexpected results. It is best to explicitly cast states to the desired form. An exception is
with simple assignment statements, like

double stateValue = myName;

Even g++ gets this right. Explicit casting should be used whenever a state is used in an expres-
sion. For example, from the setup method of theSDFChop star, in whichuse_past_inputs
is an integer state,

if (int(use_past_inputs))
input.setSDFParams(int(nread),int(nread)+int(offset)-1);

else
input.setSDFParams(int(nread),int(nread)-1);

Note that the typeComplex is not a fundamental part of C++. We have implemented a
subset of theComplex class as defined by several library vendors; we use our own version for
maximum portability. Using theComplexState class will automatically ensure the inclusion
of the appropriate header files. A member of theComplex class can be initialized and oper-
ated upon any number of ways. For details, see “The Complex data type” on page 4-1.

A state may be updated by ordinary assignment in C++, as in the following lines

The Almagest 2-23

Ptolemy Last updated: 10/17/97

double t = expression ;
myState = t;

This works because theFloatState class definition has overloaded the assignment operator
(“=”) to set its value from adouble . Similarly, anIntState can be set from anint and a
StringState can be set from achar* or const char* .

2.4.4 Array States

TheArrayState classes (FloatArrayState , IntArrayState andComplexAr-
rayState) are used to store arrays of data. For example,

state {
name { taps }
type { FloatArray }
default { "0.0 0.0 0.0 0.0" }
descriptor { An array of length four. }

}

defines an array of typedouble with dimension four, with each element initialized to zero.
Quotes must surround the initial values. Alternatively, you can specify a file name with a pre-
fix <. If you have a file namedfoo that contains the default values for an array state, you can
write,

default { "< foo" }

If you expect others to be able to use your star, however, you should specify the default file-
name using a full path. For instance,

default { "< ~/user_name/directory/foo" }

For default files installed in the Ptolemy directory tree, this should read:

default { "< $PTOLEMY/directory/foo" }

The format of the file is also a sequence of data separated by spaces (or newlines, tabs, or
commas). File input can be combined with direct data input as in

default { "< foo 2.0" }
default { "0.5 < foo < bar" }

A “repeat” notation is also supported forArrayState objects: the two value strings

default { "1.0 [5]" }
default { "1.0 1.0 1.0 1.0 1.0" }

are equivalent. Any integer expression may appear inside the brackets[] . The number of ele-
ments in anArrayState can be determined by calling itssize method. The size is not spec-
ified explicitly, but is calculated by scanning the default value.

As an example of how to access the elements of anArrayState , supposefState is
a FloatState andaState is aFloatArrayState . The accesses, like those in the follow-

2-24 Writing Stars for Simulation

U. C. Berkeley Department of EECS

ing lines, are routine:

fState = aState[1] + 0.5;
aState[1] = (double)fState * 10.0;
aState[0] = (double)fState * aState[2];

For a more complete example of the use ofFloatArrayState , consider theFIR star defined
below. Note that this is a simplified version of the SDFFIR star that does not permit interpo-
lation or decimation.

defstar {
name {FIR}
domain {SDF}
desc {

A Finite Impulse Response (FIR) filter.
}
input {

name {signalIn}
type {float}

}
output {

name {signalOut}
type {float}

}
state {

name {taps}
type {floatarray}
default { "-.04 -.001 .17 .37 .37 .17 -.0018 -.04" }
desc { Filter tap values. }

}
setup {

// tell the PortHole the maximum delay we will use
signalIn.setSDFParams(1, taps.size() - 1);

}
go {

double out = 0.0;
for (int i = 0; i < taps.size(); i++)

out += taps[i] * double(signalIn%i);
signalOut%0 << out;

}
}

Notice thesetup method; this is necessary to allocate a buffer in the inputPortHole large
enough to hold the particles that are accessed in thego method. Notice the use of thesize
method of theFloatArrayState .

We now illustrate anptcl interpreter session using the aboveFIR star. Assume there
is a galaxy calledsingen that generates a sine wave. you can use it with theFIR star, as in:

star foop singen
star fir FIR
star printer Printer

The Almagest 2-25

Ptolemy Last updated: 10/17/97

connect foop output fir signalIn
connect fir signalOut printer input
print fir
Star: mainGalaxy.fir

...
States in the star fir:
mainGalaxy.fir.taps type: FloatArray
initial value: -.040609 -.001628 .17853 .37665 .37665 .17853
-.001628 -.040609
current value:
0 -0.040609
1 -0.001628
2 .17853
3 .37665
4 .37665
5 .17853
6 -0.001628
7 -0.040609

Then you can redefine taps by reading them from a file “foo ”, which contains the data:

1.1
-2.2
3.3
-4.4

The resulting interpreter commands are:

setstate fir taps "<foo 5.5"
print fir
Star: mainGalaxy.fir

...
States in the star fir:
mainGalaxy.fir.taps type: FloatArray
initial value: <foo 5.5
current value:
0 1.1
1 -2.2
2 3.3
3 -4.4
4 5.5
PTOLEMY:

This illustrates thatboth the contents and the size of aFloatArrayState are changed by a
setstate command. Also, notice that file values may be combined with string values; when

< filename

occurs in aninitial value, it is processed exactly as if the whole file were substituted at that

2-26 Writing Stars for Simulation

U. C. Berkeley Department of EECS

point.

2.5 Modifying PortHoles and States in Derived Classes
When one star is derived from another, it inherits all the states of the base class star.

Sometimes we want to modify some aspect of the behavior of a base class state in the derived
class. This is done by placing calls to member functions of the state in the constructor of the
derived star. Useful functions includesetInitValue to change the default value, and
setAttibututes andclearAttributes to modify attributes.

When creating new stars derived from stars already in the system, you will often also
wish to customize them by adding new ports or states. In addition, you may wish to remove
ports or states. Although, strictly speaking, you cannot do this, you can achieve the desired
effect by simply hiding them from the user.

The following code will hide a particular state namedstatename from the user:

constructor {
statename.clearAttributes(A_SETTABLE);

}

This means that when the user invokes “edit-params” inpigi , statename will not appear as
one of the parameters of the star. Of course, the state can still be set and used within the code
defining the star.

The same effect can be achieved with outputs or inputs. For instance, given an output
namedoutput , you can use the following code:

constructor {
output.setAttributes(P_HIDDEN);

}

This means that when you create an icon for this star, no terminal will appear for this port.
This is most useful whenoutput is a multiporthole, because this means simply that there will
be zero instances of the individual portholes.

This technique can also be used to hide individual portholes, however, the porthole
will still be present, so it must be used with caution. Most domains do not allow disconnected
portholes, and will flag an error. You can explicitly connect the port within the body of the
star (see the kernel manual).

2.6 Programming examples
The following star has no inputs, just an output. The source star generates a linearly increasing
or decreasing sequence of float particles on its output. The statevalue is initialized to define
the value of the firstoutput . Each time the stargo method fires, thevalue state is updated
to store the nextoutput value. Hence, the attributes of thevalue state are set so that the
state can be overwritten by the star’s methods. By default, the star will generate the output
sequence 0.0, 1.0, 2.0, etc.

defstar {
name { Ramp }
domain { SDF }
desc {

The Almagest 2-27

Ptolemy Last updated: 10/17/97

Generates a ramp signal, starting at "value" (default 0)
with step size "step" (default 1).

}
output {

name { output }
type { float }

}
state {

name { step }
type { float }
default { 1.0 }
desc { Increment from one sample to the next. }

}
state {

name { value }
type { float }
default { 0.0 }
desc { Initial (or latest) value output by Ramp. }
attributes { A_SETTABLE|A_NONCONSTANT }

}
go {

double t = double(value);
output%0 << t;
t += step;
value = t;

}
}

The next example is theGain star, which multiplies its input by a constant and outputs
the result:

defstar {
name { Gain }
domain { SDF }
desc { Amplifier: output is input times "gain" (default 1.0). }
input {

name { input }
type { float }

}
output {

name { output }
type { float }

}
state {

name { gain }
type { float }
default { "1.0" }
desc { Gain of the star. }

}
go {

output%0 << double(gain) * double(input%0);
}

}

2-28 Writing Stars for Simulation

U. C. Berkeley Department of EECS

The following example of thePrinter star illustrates multiple inputs,ANYTYPE inputs, and
the use of theprint method of theParticle class.

defstar {
name { Printer }
domain { SDF }
inmulti {

name { input }
type { ANYTYPE }

}
state {

name { fileName }
type { string }
default { "<cout>" }
desc { Filename for output. }

}
hinclude { "pt_fstream.h" }
protected {

pt_ofstream *p_out;
}
constructor { p_out = 0;}
destructor { LOG_DEL; delete p_out;}
setup {

delete p_out;
p_out = new pt_ofstream(fileName);

}
go {

pt_ofstream& output = *p_out;
MPHIter nexti(input);
PortHole* p;
while ((p = nexti++) != 0)

output << ((*p)%0).print() << "\t";
output << "\n";

}
}

This star ispolymorphic since it can operate on any type of input. Note that the default value
of the output filename is<cout> , which causes the output to go to the standard output. This
and other aspects of thept_ofstream output stream class are explained below in “Extended
input and output stream classes” on page 3-2. The iteratornexti used to scan the input is
explained in “Iterators” on page 3-10.

2.7 Preventing Memory Leaks in C++ Code
Memory leaks occur when new memory is allocated dynamically and never deallo-

cated. In C programs, new memory is allocated by themalloc or calloc functions, and
deallocated by thefree function. In C++, new memory is usually allocated by thenew oper-
ator and deallocated by thedelete or thedelete [] operator. The problem with memory
leaks is that they accumulate over time and, if left unchecked, may cripple or even crash a pro-
gram. We have taken extensive steps to eliminate memory leaks in the Ptolemy software envi-
ronment by following the guidelines below and by tracking memory leaks with Purify (a

The Almagest 2-29

Ptolemy Last updated: 10/17/97

commercial tool from Pure Software Inc.).

One of the most common mistakes leading to memory leaks is applying the wrong
delete operator. Thedelete operator should be used to free a single allocated class or data
value, whereas thedelete [] operator should be used to free an array of data values. In C
programming, thefree function does not make this distinction.

Another common mistake is overwriting a variable containing dynamic memory with-
out freeing any existing memory first. For example, assume thatthestring is a data mem-
ber of a class, and in one of the methods (other than the constructor), there is the following
statement:

thestring = new char[buflen];

This code should be

delete [] thestring;
thestring = new char[buflen];

Using delete is not necessary in a class’s constructor because the data member
would not have been allocated previously.

In writing Ptolemy stars, thedelete operator should be applied to variables contain-
ing dynamic memory in both the star’s setup and destructor methods. In the star’s constructor
method, the variables containing dynamic memory should be initialized to zero. By freeing
memory in both the setup and destructor methods, one covers all possible cases of memory
leaks during simulation. Deallocating memory in the setup method handles the case in which
the user restarts a simulation, whereas deallocating memory in the destructor covers the case
in which the user exits a simulation. This includes the cases that arise when error messages are
generated. For an example implementation, see the implementation of theSDFPrinter star
given in Section 2.6.

Another common mistake is not paying attention to the kinds of strings returned by
functions. The functionsavestring returns a new string dynamically allocated and should
be deleted when no longer used. TheexpandPathName , tempFileName , andmakeLower
functions return new strings, as does theTarget::writeFileName method. Therefore, the
strings returned by these routines should be deleted when they are no longer needed, and code
such as

savestring(expandPathName(s))

is redundant and should be simplified to

expandPathName(s)

to avoid a memory leak due to not keeping track of the dynamic memory returned by
the functionsavestring .

Occasionally, dynamic memory is being used when instead local memory could have
been used. For example, if a variable is only used as a local variable inside a method or func-
tion and the value of the local variable is not returned or passed to outside the method or func-
tion, then it would be better to simply use local memory. For example,

char* localstring = new char[len + 1];
if (person == absent) return;
strcpy(localstring, otherstring);
delete [] localstring;

2-30 Writing Stars for Simulation

U. C. Berkeley Department of EECS

return;

could easily return without deallocatinglocalstring . The code should be rewritten
to use either theStringList or InfString class, e.g.,

InfString localstring;
if (person == absent) return;
localstring = otherstring;
return;

Both StringList and InfString can manage the construction of strings of arbi-
trary size. When a function or method exits, the destructors of theStringList and Inf-
String variables will automatically be called which will deallocate their memory. Casts have
been defined that will convertStringList to aconst char* string andInfString to a
const char* or a char* string, so that instances of theStringList and InfString
classes can be passed as is into routines that take character array (string) arguments. A good
example of using theStringList class is in the functioncompile in the file$PTOLEMY/
src/pigilib/pigiLoader.cc . A simpler example from the same file is thenoPermis-
sion function which builds up an error message into a single string:

StringList sl = msg;
sl << file << ": " << sys_errlist[errno];
ErrAdd(sl);

TheerrAdd function takes aconst char* argument, sosl will converted automatically to
a const char* string by the C++ compiler.

Instead of using the new and delete operators, it is tempting to use constructs like

char localstring[buflen + 1];

in which buflen is a variable, because the compiler will automatically handle the
deallocation of the memory. Unfortunately, this syntax is a Gnu extension and not portable to
other C++ compilers. Instead, theStringList andInfString classes should be used, as
the previous example involvinglocalstring illustrates.

Sometimes the return value from a routine that returns dynamic memory is not stored,
and therefore, the pointer to the dynamic memory gets lost. This occurs, for example, in
nested function calls. Code such as

puts(savestring(s));

should be written as

const char* newstring = savestring(s);
puts(newstring);
delete [] newstring;

Several places in Ptolemy, especially in the schedulers and targets, rely on thehash-
string function, which returns dynamic memory. This dynamic memory, however, should
not be deallocated because it may be reused by other calls tohashstring . It is the responsi-
bility of the hashstring function to deallocate any memory it has allocated.

