
The Almagest 5-1

Ptolemy Last updated: 10/17/97

Chapter 5. Using Tcl/Tk

Authors: Edward A. Lee

Other Contributors: Brian L. Evans
Wei-Jen Huang
Alan Kamas
Kennard White

5.1 Introduction
Tcl is an interpreted “tool command language” designed by John Ousterhout while at

UC Berkeley.Tk is an associated X window toolkit. Both have been integrated into Ptolemy.
Parts of the graphical user interface and all of the textual interpreterptcl are designed using
them. Several of the stars in the standard star library also use Tcl/Tk. This chapter explains
how to use the most basic of these stars,TclScript , as well how to design such stars from
scratch. It is possible to define very sophisticated, totally customized user interfaces using this
mechanism.

In this chapter, we assume the reader is familiar with the Tcl language. Documentation
is provided along with the Ptolemy distribution in the$PTOLEMY/tcltk/itcl/man direc-
tory in Unix man page format. HTML format documentation is available from the other.src tar
file in $PTOLEMY/src/tcltk . Up-to-date documentation and software releases are available
by on the SunScript web page athttp://www.sunscript.com . There is also a newsgroup
called comp.lang.tcl . This news group accumulates a list of frequently asked questions
about Tcl which is availablehttp://www.teraform.com/%7Elvirden/tcl-faq/ .

The principal use of Tcl/Tk in Ptolemy is to customize the user interface. Stars can be
created that interact with the user in specialized ways, by creating customized displays or by
soliciting graphical inputs.

5.2 Writing Tcl/Tk scripts for the TclScript star
Several of the domains in Ptolemy have a star calledTclScript . This star provides

the quickest and easiest path to a customized user interface. The icon can take any number of
forms, including the following:

All of these icons refer to the same star, but each has been customized for a particular number
of input and output ports. You should select the one you need on the basis of the number of

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

5-2 Using Tcl/Tk

U. C. Berkeley Department of EECS

input and output ports required. The left-most icon has an unspecified number of inputs and
outputs (as indicated by the double arrows at its input and output ports).

TheTclScript star has one parameter (settable state):

tcl_file A string giving the full path name of a file containing a Tcl script

The Tcl script file specifies initialization commands, for example to open new windows on the
screen, and may optionally define a procedure to be invoked by the star every time it runs. We
begin with two examples that illustrate most of the key techniques needed to use this star:

Example 1: Consider the following simple schematic in the SDF domain:

TheTkShowValues star is in the standard SDF star library. It displays whatever input
values are supplied in a subpanel of the control panel for the system. Suppose we spec-
ify the following Tcl script for theTclScript star:

set s $ptkControlPanel.middle.button_$starID
if {! [winfo exists $s]} {

button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}
bind $s <ButtonPress-1> "setOutputs_$starID 1.0"
bind $s <ButtonRelease-1> "setOutputs_$starID 0.0"
setOutputs_$starID 0.0

}
unset s

This script creates a pushbutton in the control panel. When the button is depressed,
the star outputs the value 1.0. When the button is released, the star outputs value 0.0.
The resulting control panel is shown below:

While the system is running, depressing the button labeled “PUSH ME” will cause the
value displayed at the bottom to change from 0.0 to 1.0. Releasing the button will
change the value back to 0.0. The lines in the Tcl script are explained below:

TclScript
TclTcl Tk

ShowValues

WW
WW
WW
WW
WWYYYYYYYYYY

YY
YY
YY
YY
YY

123
kkkkkkkkkk

The Almagest 5-3

Ptolemy Last updated: 10/17/97

set s $ptkControlPanel.middle.button_$starID

This defines a Tcl variable “s” whose value is the name of the window to be used for
the button. The first part of the name,$ptkControlPanel , is a global variable giv-
ing the name of the control panel window itself. This global variable has been set by
pigi and can be used by any Tcl script. The second part,.middle , specifies that the
button should appear in the subwindow named.middle of the control panel. The
control panel, by default, has empty subwindows named.high , .middle , and.low .
The last part,.button_$starID , gives a unique name to the button itself. The Tcl
variablestarID has been set by theTclScript star to a name that is guaranteed to
be unique for each instance of the star. Using a unique name for the button permits
multiple instances of the star in a schematic to create separate buttons in the control
window without conflict.

if {! [winfo exists $s]} {
...

}

This conditionally checks to see whether or not the button already exists. If, for exam-
ple, the system is being run a second time, then there is no need to create the button a
second time. In fact, an attempt to do so will generate an error message. If the button
does not already exist, then it is created by the following lines:

button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}

The first of these defines the button, and the second packs it into the control panel (see
the Tk documentation). The following Tcl statement binds a particular command to a
mouse action, thus defining the response when the button is pushed:

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

When button number 1 of the mouse is pressed, the Tcl interpreter invokes a proce-
dure namedsetOutputs_$starID with a single argument,1.0 (passed as a string).
This procedure has been defined by theTclScript star. It sets the value(s) of the out-
puts of the star. In this case, there is only one output, so there is only one argument.
The next statement defines the action when the button is released:

bind $s <ButtonRelease-1> "setOutputs_$starID 0.0"

The next statement initializes the output of the star to value 0.0:

setOutputs_$starID 0.0

The last command unsets the variable s, since it is no longer needed:

5-4 Using Tcl/Tk

U. C. Berkeley Department of EECS

unset s

As illustrated in the previous example, a number of procedures and global variables will have
been defined for use by the Tcl script by the time it is sourced. These enable the script to mod-
ify the control panel, define unique window names, and set initial output values for the star.
Much of the complexity in the above example is due to the need to use unique names for each
star instance that sources this script. In the above example, the Tcl procedure for setting the
output values has a name unique to this star. Moreover, the name of the button in the control
panel has to be unique to handle the case when more than oneTclScript star sources the
same Tcl script. These unique names are constructed using a unique string defined by the star
prior to sourcing the script. That string is made available to the Tcl script in the form of a glo-
bal Tcl variablestarID . The procedure used by the Tcl script to set output values is called
setOutputs_$starID . This procedure takes as many arguments as there are output ports.
The argument list should contain a floating-point value for each output of the star.

In the above example, Tcl code is executed when the Tcl script is sourced. This occurs
during the setup phase of the execution of the star. After the setup phase, no Tcl code will be
executed unless the user pushes the “PUSH ME” button. The command

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

defines a Tcl command to be executed asynchronously. Notice that the command is enclosed
in quotation marks, not braces. Tcl aficionados will recognize that this is necessary to ensure
that thestarID variable is evaluated when the command binding occurs (when the script is
sourced), rather than when the command is executed. There is no guarantee that the variable
will be set when the command is executed.

In the above example, no Tcl code is executed when the star fires. The following
example shows how to define Tcl code to be executed each time the star fires, and also how to
read the inputs of the star from Tcl.

Example 2: Consider the following schematic in the SDF domain:

Suppose we specify the following Tcl script for theTclScript star:

proc goTcl_$starID {starID} {
set inputVals [grabInputs_$starID]
set xin [lindex $inputVals 0]
set yin [lindex $inputVals 1]
setOutputs_$starID [expr $xin+$yin]

}

XgraphTclScript
TclTcl

Ramp

Rect

The Almagest 5-5

Ptolemy Last updated: 10/17/97

Unlike the previous example, this script does not define any code that runs when the
script is sourced, during the setup phase of execution of the star. Instead, it simply
defines a procedure with a name unique to the instance of the star. This procedure
reads two input values, adds them, and writes the result to the output. Although this
would be a very costly way to accomplish addition in Ptolemy, this example nonethe-
less illustrates an important point. If a Tcl script sourced by aTclScript star defines
a procedure calledgoTcl_$starID , then that procedure will be invoked every time
the star fires. The single argument passed to the procedure when it is called is the
starID. In this example, the procedure uses grabInputs_$starID , defined by
the TclScript star, to read the inputs. The current input values are returned by this
procedure as a list, so the Tcl commandlindex is used to index into the list. The final
line adds the two inputs and sends the result to the output.

As shown in the previous example, if the Tcl script defines the optional Tcl procedure
goTcl_$starID , then that procedure will be invoked every time the star fires. It takes one
argument (thestarID) and returns nothing. This procedure, therefore, allows forsynchro-
nous communication between the Ptolemy simulation and the Tcl code (it is synchronized to
the firing of the star). If nogoTcl_$starID procedure is defined, then communication is
asynchronous (Tcl commands are invoked at arbitrary times, as specified when the script is
read). For asynchronous operation, typically X events are bound to Tcl/Tk commands that
read or write data to the star.

The inputs to the star can be of any type. Theprint() method of the particle is used
to construct a string passed to Tcl. Although it is not illustrated in the above examples, asyn-
chronous reads of the star inputs are also allowed.

Below is a summary of the Tcl procedures used when executing aTclScript star:

grabInputs_$starID
A procedure that returns the current values of the inputs of the
star corresponding to the givenstarID . This procedure is
defined by theTclScript star if and only if the instance of the
star has at least one input port.

setOutputs_$starID
A procedure that takes one argument for each output of the
TclScript star. The value becomes the new output value for
the star. This procedure is defined by theTclScript star if and
only if the instance of the star has at least one output port.

goTcl_$starID If this procedure is defined in the Tcl script associated with an
instance of theTclScript star, then it will be invoked every
time the star fires.

wrapupTcl_$starID
If this procedure is defined in the Tcl script associated with an
instance of theTclScript star, then it will be invoked every

5-6 Using Tcl/Tk

U. C. Berkeley Department of EECS

time thewrapup method of the star is invoked. In other words,
it will be invoked when a simulation stops.

destructorTcl_$starID
If this procedure is defined in the Tcl script associated with an
instance of theTclScript star, then it will be invoked when
the destructor for the star is invoked. This can be used to
destroy windows or to unset variables that will no longer be
needed.

In addition to thestarID global variable, theTclScript star makes other information
available to the Tcl script. The mechanism used is to define an array with a name equal to the
value of thestarID variable. Tcl arrays are indexed by strings. Thus, not only isstarID a
global variable, but so is$starID . The value of the former is a unique string, while the value
of the latter is an array. One of the entries in this array gives the number of inputs that are con-
nected to the star. The value of the expression[set ${starID}(numInputs)] is an inte-
ger giving the number of inputs. The Tcl command “set ”, when given only one argument,
returns the value of the variable whose name is given by that argument. The array entries are
summarized below:

$starID This evaluates to a string that is different for every instance of
the TclScript star. ThestarID global variable is set by the
TclScript star.

[set ${starID}(numInputs)]
This evaluates to the number of inputs that are connected to the
star.

[set ${starID}(numOutputs)]
This evaluates to the number of outputs that are connected to
the star.

[set ${starID}(tcl_file)]
This evaluates to the name of the file containing the Tcl script
associated with the star.

[set ${starID}(fullName)]
This evaluates to the full name of the star (which is of the form
universe.galaxy.galaxy.star).

5.3 Tcl utilities that are available to the programmer
A number of Tcl global variables and procedures that will be useful to the Tcl programmer
have been incorporated into Ptolemy. Any of these can be used in any Tcl script associated
with an instance of theTclScript star. For example, in example 1 on page 5-2, the global
variableptkControlPanel specifies the control panel that is used to run the system. Below
is a list of the useful global variables that have been set by the graphical interface (pigi)
when the Tcl script is sourced or when thegoTcl_$starID procedure is invoked:

$ptkControlPanel A string giving the name of the control panel window associ-
ated with a given run. This variable is set by pigi.

The Almagest 5-7

Ptolemy Last updated: 10/17/97

$ptkControlPanel.high
The uppermost panel in the control panel that is intended for
user-defined entries.

$ptkControlPanel.middle
The middle panel in the control panel that is intended for user-
defined entries.

$ptkControlPanel.low
The lowest panel in the control panel that is intended for user-
defined entries.

In addition to these global variables, a number of procedures have been supplied.
Using these procedures can ensure a consistent look-and-feel across a variety of Ptolemy
applications. The complete set of procedures can be found in$PTOLEMY/lib/tcl . We list a
few of the more useful ones here. Note also that the entire set of commands defined in the Tcl-
based textual interpreter for Ptolemy,ptcl , are also available. So for example, the command
curuniverse will return the name of the current universe. See theptcl chapter in the
User’s Manual.

ptkExpandEnvVar
Procedure to expand a string that begins with an environment
variable reference. For example,

ptkExpandEnvVar $PTOLEMY/src
will return something like

/usr/users/ptolemy/src
Arguments:
path the string to expand

ptkImportantMessage
Procedure to pop up a message window and grab the focus. The
process is suspended until the message is dismissed.
Arguments:
win window name to use for the message
text text to display in the pop-up win-
dow

ptkMakeButton Procedure to make a pushbutton in a window. A callback proce-
dure must be defined by the programmer. It will be called
whenever the user pushes the button, and takes no arguments.
Arguments:
win name of window to contain the button
name name to use for the button itself
desc description to be put into the display
callback name of callback procedure to

register changes

ptkMakeEntry Procedure to make a text entry box in a window. A callback
procedure must be defined by the programmer. It will be called
whenever the user changes the value in the entry box and types

5-8 Using Tcl/Tk

U. C. Berkeley Department of EECS

<Return>. Its single argument will be the new value of the
entry.
Arguments:
win name of window to contain

the entry box
name name to use for the entry box itself
desc description to be put into the display
default the initial value of the entry
callback name of callback procedure to reg-
ister changes

ptkMakeMeter Procedure to make a bar-type meter in a window.
Arguments:
win name of window to contain the
entry box
name name to use for the entry box itself
desc description to be put into the display
low the value of the low end of the scale
high the value of the high end of

the scale

ptkSetMeter Procedure to set the value of a bar-type meter created with
ptkMakeMeter .
Arguments:
win name of window to contain the

entry box
name name to use for the entry box itself
value the new value to display in

the meter

ptkMakeScale Procedure to make a sliding scale. All scales in the control
panel range from 0 to 100. A callback procedure must be
defined by the programmer. It will be called whenever the user
moves the control on the scale. Its single argument will be the
new position of the control, between 0 and 100.
Arguments:
win name of window to contain the scale
name name to use for the scale itself
desc description to be put into the display
position initial integer position between

0 and 100
callback name of callback procedure to

register changes
Note:
A widget is created with name$win.$name.value that
should be used by the programmer to display the current value
of the slider. Thus, the callback procedure should contain a
command like:

The Almagest 5-9

Ptolemy Last updated: 10/17/97

$win.$name.value configure -text $new_value
to display the new value after the slider has been moved. This is
not performed automatically because the fixed range from 0 to
100 may be correct from the user’s perspective. So, for exam-
ple, if you divide the scale value by 100 before displaying it,
then to the user, it will appear as if the scale ranges from 0.0 to
1.0. It is also possible to control the position of the slider from
Tcl (overriding the user actions) using a command like
$win.$name.scale set $position
whereposition is an integer-valued variable in the range of 0
to 100.

Example 3: The following Tcl script can be used with theTclScript star in the sys-
tem configuration given in example 1 on page 5-2:

ptkMakeMeter $ptkControlPanel.high meter_$starID \
"meter tracking scale" 0 100

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \

meter_$starID \$new_value
 $ptkControlPanel.high.scale_$starID.value \

configure -text \$new_value"
ptkMakeScale $ptkControlPanel.high scale_$starID \

"my scale" 50 scale_update_$starID
ptkMakeButton $ptkControlPanel.middle button_$starID \

"my button" button_update
proc button_update {} {ptkImportantMessage .msg "Hello"}
ptkMakeEntry $ptkControlPanel.low entry_$starID \

"my entry" 10 entry_update_$starID
proc entry_update_$starID {new_value} \

"setOutputs_$starID \$new_value"

It will create the rather ugly control panel shown below:

The commands are explained individually below.

ptkMakeMeter $ptkControlPanel.high meter_$starID \

5-10 Using Tcl/Tk

U. C. Berkeley Department of EECS

"meter tracking scale" 0 100

This creates a meter display with the label “meter tracking scale” in the upper part of
the control panel with range from 0 to 100.

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \

meter_$starID \$new_value
 $ptkControlPanel.high.scale_$starID.value \

configure -text \$new_value"

This defines the callback function to be used for the slider (scale) shown below the
meter. The callback function sets the meter and updates the numeric display to the left
of the slider. Notice that the body of the procedure is enclosed in quotation marks
rather than the usual braces. This ensures that the variablesptkControlPanel and
starID will be evaluated at the time the procedure is defined, rather than at the time it
is invoked. To make sure thatnew_value is not evaluated until the procedure is
invoked, we use a preceding backslash, as in\$new_value . We could have alterna-
tively passed theptkControlPanel andstarID values as arguments.

ptkMakeScale $ptkControlPanel.high scale_$starID \
my_scale 50 scale_update_$starID

This makes the slider itself, and sets its initial value to 50, half of full scale.

ptkMakeButton $ptkControlPanel.middle button_$starID \
"my button" button_update

This makes a button labeled “my button”.

proc button_update {} {ptkImportantMessage .msg "Hello"}

This defines the callback function connected with the button. This callback function
opens a new window with the message “Hello”, and grabs the focus. The user must
dismiss the new window before continuing.

ptkMakeEntry $ptkControlPanel.low entry_$starID \
"my entry" 10 entry_update_$starID

This makes the entry box with initial value “10”.

proc entry_update_$starID {new_value} \
"setOutputs_$starID \$new_value"

This defines the callback function associated with the entry box. Again notice that the
procedure body is enclosed quotation marks.

The Almagest 5-11

Ptolemy Last updated: 10/17/97

5.4 Creating new stars derived from the TclScript star
A large number of useful stars can be derived from theTclScript star. The

TkShowValues star used in example 1 on page 5-2 is such a star. That star takes inputs of any
type and displays their value in a window that is optionally located in the control panel. It has
three parameters (settable states):

label A string-valued parameter giving a label to identify the display.

put_in_control_panelA Boolean-valued parameter that specifies whether the display
should be put in the control panel or in its own window.

wait_between_outputsA Boolean-valued parameter that specifies whether the execu-
tion of the system should pause each time a new value is dis-
played. If it does, then a mouse click in the display restarts the
system.

Conspicuously absent is thetcl_file parameter of theTclScript star from which this is
derived. The file is hard-wired into the definition of the star by the following C++ statement
included in the setup method:

tcl_file =
"$PTOLEMY/src/domains/sdf/tcltk/stars/tkShowValues.tcl";

The parameter is then hidden from the user of the star by the following statement included in
the constructor:

tcl_file.clearAttributes(A_SETTABLE);

Thus, the user sees only the parameters that are defined in the derived star. This is a key part
of customizing the star.

A second issue is that of communicating the new parameter values to the Tcl script.
For example, the Tcl script will need to know the value of thelabel parameter in order to cre-
ate the label for the display. TheTclScript star automatically makes all the parameters of
any derived star available as array entries in the global array whose name is given by the glo-
bal variablestarID. To read the value of thelabel parameter in the Tcl script, use the
expression[set ${starID}(label)] . The confusing syntax is required to ensure that Tcl
uses thevalue of starID as thename of the array. The string “label” is just the index into the
array. Theset command in Tcl, when given only one argument, returns the value of the vari-
able whose name is given by the argument.

Some programmers may prefer an alternative way to refer to parameters that is slightly
more readable. The Tcl statement

upvar #0 $starID params

allows subsequent statement to refer to parameters simply as$param(param_name) . The
upvar command with argument#0 declares the local variableparams equivalent to the glo-
bal variable whose name is given by the value ofstarID.

Many more examples can be found in$PTOLEMY/src/domains/sdf/tcltk/
stars .

5-12 Using Tcl/Tk

U. C. Berkeley Department of EECS

5.5 Selecting colors
Since X window installations do not necessarily use consistent color names, a particu-

lar color database has been installed in Ptolemy. The available colors can be found in the file
$PTOLEMY/lib/tcl/ptkColor.tcl . To access this color database, use the Tcl function

ptkColor name

which returns a color defined in terms of RGB components. This color can be used anyplace
that Tk expects a color. If the given name is not in the color database, the color returned is
black.

5.6 Writing Tcl stars for the DE domain
In the discrete-event (DE) domain, stars are fired in chronological order according to

the time stamps of the new data that has arrived at their input ports. The Tcl interface class
TclStarIfc , which was originally written with the SDF domain in mind, works well for
some types of DE stars. Specifically, any star with an input in the DE domain can use this
class effectively. Consequently, a basic Tcl/Tk star,TclScript , has been written for the DE
domain.

The TclScript star can have any number of input or output portholes. As of this
writing, it will not work if it is instantiated with no inputs. The problem is that with no inputs,
there will be no events to trigger a firing of the star. This will be corrected in the future.

