
Chapter 12. DE Domain

Authors: Joseph T. Buck
Soonhoi Ha
Paul Haskell
Edward A. Lee
Thomas M. Parks

Other Contributors: Anindo Banerjea
Philip Bitar
Rolando Diesta
Brian L. Evans
Richard Han
Christopher Hylands
Ed Knightly
Tom Lane
Gregory S. Walter

12.1 Introduction
The discrete event (DE) domain in Ptolemy provides a general environment for time-

oriented simulations of systems such as queueing networks, communication networks, and
high-level models of computer architectures. In this domain, eachParticle represents an
event that corresponds to a change of the system state. The DE schedulers process events in
chronological order. Since the time interval between events is generally not fixed, each parti-
cle has an associatedtime stamp. Time stamps are generated by the block producing the parti-
cle based on the time stamps of the input particles and the latency of the block.

12.2 The DE target and its schedulers
The DE domain, at this time, has only one target. This target has three parameters:

timeScale (FLOAT) Default =1.0
A scaling factor relating local simulated time to the time of
other domains that might be communicating with DE.

syncMode (INT) Default =YES
An experimental optimization explained below, again aimed at
mixed-domain systems.

calendar queue scheduler?
(INT) Default =YES
A Boolean indicating whether or not to use the faster “calendar
queue” scheduler, explained below.

The DE schedulers in Ptolemy determine the order of execution of the blocks. There are two

12-2 DE Domain

U. C. Berkeley Department of EECS

schedulers that have been implemented which are distributed with the domain. They expect
particular behavior (operational semantics) on the part of the stars. In this section, we describe
the semantics.

12.2.1 Events and chronology

A DE star models part of a system response to a change in the system state. The
change of state, which is called anevent, is signaled by a particle in the DE domain. Each par-
ticle is assigned a time stamp indicating when (in simulated time) it is to be processed. Since
events are irregularly spaced in time and system responses are generally very dynamic, all
scheduling actions are performed at run-time. At run-time, the DE scheduler processes the
events in chronological order until simulated time reaches a global “stop time.”

Each scheduler maintains aglobal event queue where particles currently in the system
are sorted in accordance with their time stamps; the earliest event in simulated time being at
the head of the queue. The difference between the two schedulers is primarily in the manage-
ment of this event queue. Anindo Banerjea and Ed Knightly wrote the default DE Scheduler,
which is based on the “calendar queue” mechanism developed by Randy Brown [Bro88].
(This was based on code written by Hui Zhang.) This mechanism handles large event queues
much more efficiently than the alternative, a more direct DE scheduler, which uses a single
sorted list with linear searching. The alternative scheduler can be selected by changing a
parameter in the default DE target.

Each scheduler fetches the event at the head of the event queue and sends it to the
input ports of its destination block. A DE star is executed (fired) whenever there is a new
event on any of its input portholes. Before executing the star, the scheduler searches the event
queue to find out whether there are any simultaneous events at the other input portholes of the
same star, and fetches those events. Thus, for each firing, a star can consume all simultaneous
events for its input portholes. After a block is executed it may generate some output events on
its output ports. These events are put into the global event queue. Then the scheduler fetches
another event and repeats its action until the given stopping condition is met.

It is worth noting that the particle movement is not throughGeodesic s, as in most
other domains, but through the global queue in the DE domain. Since the geodesic is a FIFO
queue, we cannot implement the incoming events which do not arrive in chronological order if
we put the particles into geodesics. Instead, the particles are managed globally in the event
queue.

12.2.2 Event generators

Some DE stars are event generators that do not consume any events, and hence cannot
be triggered by input events. They are first triggered by system-generated particles that are
placed in the event queue before the system is started. Subsequent firings are requested by the
star itself, which gives the time at which it wishes to be refired. All such stars are derived from
the base classRepeatStar .

RepeatStar is also used by stars that do have input portholes, but also need to sched-
ule themselves to execute at particular future times whether or not any outside event will
arrive then. An example isPSServer .

In a RepeatStar , a special hidden pair of input and output ports is created and con-

The Almagest 12-3

Ptolemy Last updated: 12/1/97

nected together. This allows the star to schedule itself to execute at any desired future time(s),
by emitting events with appropriate time stamps on the feedback loop port. The hidden ports
are in every way identical to normal ports, except that they are not visible in the graphical user
interface. The programmer of a derived star sometimes needs to be aware that these ports are
present. For example, the star must not be declared to be a delay star (meaning that no input
port can trigger a zero-delay output event) unless the condition also holds for the feedback
port (meaning that refire events don’t trigger immediate outputs either). See the Programmer’s
Manual for more information on usingRepeatStar .

12.2.3 Simultaneous events

A special effort has been made to handle simultaneous events in a rational way. As
noted above, all available simultaneous events at all input ports are made available to a star
when it is fired. In addition, if two distinct stars can be fired because they both have events at
their inputs with identical time stamps, some choice must be made as to which one to fire. A
common strategy is to choose one arbitrarily. This scheme has the simplest implementation,
but can lead to unexpected and counter-intuitive results from a simulation.

The choice of which to fire is made in Ptolemy by statically assigning priorities to the
stars according to a topological sort. Thus, if one of two enabled stars could produce events
with zero delay that would affect the other, as shown in figure 12-1, then that star will be fired
first. The topological sort is actually even more sophisticated than we have indicated. It fol-
lows triggering relationships between input and output portholes selectively, according to
assertions made in the star definition. Thus, the priorities are actually assigned to individual
portholes, rather than to entire stars. See the Programmer’s Manual for further details.

There is a pitfall in managing time stamps. Two time stamps are not considered equal
unless they are exactly equal, to the limit of double-precision floating-point arithmetic. If two
time stamps were computed by two separate paths, they are likely to differ in the least signifi-
cant bits, unless all values in the computation can be represented exactly in a binary represen-
tation. If simultaneity is critical in a given application, then exact integral values should be
used for time stamps. This will work reliably as long as the integers are small enough to be
represented exactly as double-precision values. Note that the DE domain does not enforce
integer timestamps --- it is up to the stars being used to generate only integer-valued event
timestamps, perhaps by rounding off their calculated output event times.

FIGURE 12-1: When DE stars are enabled by simultaneous events, the choice of which to fire is
determined by priorities based on a topological sort. Thus if B and C both have events
with identical time stamps, B will take priority over C. The delay on the path from C to
A serves to break the topological sort.

A

B

C

12-4 DE Domain

U. C. Berkeley Department of EECS

12.2.4 Delay-free loops

Many stars in the DE domain produce events with the same time stamps as their input
events. These zero-delay stars can create some subtleties in a simulation. Anevent-path con-
sists of the physical arcs between output portholes and input portholes plus zero-delay paths
inside the stars, through which an input event instantaneously triggers an output event. If an
event-path forms a loop, we call it adelay-free loop. While a delay-free loop in the SDF
domain results in a deadlock of the system, a delay-free loop in the DE domain potentially
causes unbounded computation. Therefore, it is advisable to detect the delay-free loop at com-
pile-time. If a delay-free loop is detected, an error is signaled.

Detecting delay-free loops reliably is difficult. Some stars, such asServer and
Delay , take a parameter that specifies the amount of delay. If this is set to zero, it will fool the
scheduler. It is the user’s responsibility to avoid this pathological case. This is a special case of
a more general problem, in which stars conditionally produce zero-delay events. Without
requiring the scheduler to know a great deal about such stars, we cannot reliably detect zero-
delay loops. What appears to be a delay-free path can be safe under conditions understood by
the programmer. In such situations, the programmer can avoid the error message placing a
delay element on some arc of the loop. The delay element is the small green diamond found at
the top of every star palette in Pigi.It does not actually produce any time delay in simulated
time. Instead, it declares to the scheduler that the arc with the delay element should be treated
as if it had a delay, even though it does not. A delay element on a directed loop thus suppresses
the detection of a delay-free loop.

Another way to think about a delay marker in the DE domain is that it tells the sched-
uler that it’s OK for a particle crossing that arc to be processed in the “next” simulated instant,
even if the particle is emitted with timestamp equal to current time. Particles with identical
timestamps are normally processed in an order that gives dataflow-like behavior within a sim-
ulated instant. This is ensured by assigning suitable firing priorities to the stars. A delay
marker causes its arc to be ignored while determining the dataflow-based priority of star fir-
ing; so a particle crossing that arc triggers a new round of dataflow-like evaluation.

12.2.5 Wormholes

“Time” in the DE domain means simulated time. The DE domain may be used in com-
bination with other domains in Ptolemy, even if the other domains do not have a notion of sim-
ulated time. A given simulation, therefore, may involve several schedulers, some of which use
a notion of simulated time, and some of which do not. There may also be more than one DE
scheduler active in one simulation. The notion of time in the separate schedulers needs to be
coordinated. This coordination is specific to the inner and outer domains of the wormhole.
Important cases are described below.

SDF within DE

A common combination of domains pairs the SDF domain with the DE domain. There
are two possible scenarios. If the SDF domain is inside the DE domain, as shown in figure 12-
2, then the SDF subsystem appears to the DE system as a zero-delay block. Suppose, for
example, that an event with time stamp is available at the input to the SDF subsystem. Then
when the DE scheduler reaches this time, it fires the SDF subsystem. The SDF subsystem runs
the SDF scheduler through one iteration, consuming the input event. In response, it will typi-

T

The Almagest 12-5

Ptolemy Last updated: 12/1/97

cally produce one output event, and this output event will be given the time stamp .

If the SDF subsystem in figure 12-2 is a multirate system, the effects are somewhat
more subtle. First, a single event at the input may not be sufficient to cycle through one itera-
tion of the SDF schedule. In this case, the SDF subsystem will simply return, having produced
no output events. Only when enough input events have accumulated at the input will any out-
put events be produced. Second, when output events are produced, more than one event may
be produced. In the current implementation, all of the output events that are produced have the
same time stamp. This may change in future implementations.

More care has to be taken when one wants an SDF subsystem to serve as a source star
in a discrete-event domain. Recall that source stars in the DE domain have to schedule them-
selves. One solution is to create an SDF “source” subsystem that takes an input, and then con-
nect a DE source to the input of the SDF wormhole. We are considering modifying the
wormhole interface to support mixing sources from different domains automatically.

DE within SDF

The reverse scenario is where a DE subsystem is included within an SDF system. The
key requirement, in this case, is that when the DE subsystem is fired, it must produce output
events, since these will be expected by the SDF subsystem. A very simple example is shown
in figure 12-3. The DE subsystem in the figure routes input events through a time delay. The
events at the output of the time delay, however, will be events in the future. TheSampler star,

FIGURE 12-2: When an SDF domain appears within a DE domain, events at the input to the SDF
subsystem result in zero-delay events at the output of the SDF subsystem. Thus, the
time stamps at the output are identical to the time stamps at the inputs.

DE
SDF

zero time delay

T

FIGURE 12-3: A typical DE subsystem intended for inclusion within an SDF system. When a DE sub-
system appears within an SDF subsystem, the DE subsystem must ensure that the
appropriate number of output events are produced in response to input events. This is
typically accomplished with a “Sampler” star, as shown.

�����
�����
�����
�����
�����

������
������
������
������
������
������

Sampler
Server
���
���
���
���

����
����
����
����

12-6 DE Domain

U. C. Berkeley Department of EECS

therefore, is introduced to produce an output event at the current simulation time. This output
event, therefore, is produced before the DE scheduler returns control to the output SDF sched-
uler.

The behavior shown in figure 12-3 may not be the desired behavior. TheSampler
star, given an event on its control input (the bottom input), copies the most recent event from
its data input (the left input) to the output. If there has been no input data event, then a zero-
valued event is produced. There are many alternative ways to ensure that an output event is
produced. For this reason, the mechanism for ensuring that this output event is produced is not
built in. The user must understand the semantics of the interacting domains, and act accord-
ingly.

Timed domains within timed domains

The DE domain is a timed domain. Suppose it contains another timed domain in a DE
wormhole. In this case, the inner domain may need to be activated at a given point in simu-
lated time even if there are no new events on its input portholes. Suppose, for instance, that the
inner domain contains a clock that internally generates events at regular intervals. Then these
events need to be processed at the appropriate time regardless of whether the inner system has
any new external stimulus.

The mechanism for handling this situation is simple. When the internal domain is ini-
tialized or fired, it can, before returning, place itself on the event queue of the outer domain,
much the same way that an event generator star would. This ensures that the inner event will
be processed at the appropriate time in the overall chronology. Thus, when a timed domain sits
within a timed domain wormhole, before returning control to the scheduler of the outer
domain, it requests rescheduling at the time corresponding to the oldest time stamp on its
event queue, if there is such an event.

When an internal timed domain is invoked by another time domain, it is told to run
until a given “stop time,” usually the time of the events at the inputs to the internal domain that
triggered the invocation. This “stop time” is the current time of the outer scheduler. Since the
inner scheduler is requested to not exceed that time, it can only produce events with time
stamp equal to that time. Thus, a timed domain wormhole, when fired, will always either pro-
duce no output events, or produce output events with time stamp equal to the simulated time at
which it was fired.

To get a time delay through such a wormhole, two firings are required. Suppose the
first firing is triggered by an input event at time , then the inside system generates an internal
event at a future time . Before returning control to the outer scheduler, the inner sched-
uler requests that it be reinvoked at time . When the “current time” of the outer scheduler
reaches , it reinvokes the inner scheduler, which then produces an output event at time

.

With this conservative style of timed interaction, we say that the DE domain operates
in the synchronized mode. Synchronized mode operation suffers significant overhead at run
time, since the wormhole is called at every time increment in the inner timed domain. Some-
times, however, this approach is too conservative.

In some applications, when an input event arrives, we can safely execute the wormhole
into the future until either (a) we reach the time of the next event on the event queue of the
outer domain, or (b) there are no more events to process in the inner domain. In other words,

T
T τ+

T τ+
T τ+

T τ+

The Almagest 12-7

Ptolemy Last updated: 12/1/97

in certain situations, we can safely ignore the request from the output domain that we execute
only up until the time of the input event. As an experimental facility to improve run-time effi-
ciency, an option avoids synchronized operation. Then, we say that the DE domain operates in
theoptimized mode. We specify this mode by setting the target parametersyncMode to FALSE
(zero). This should only be done by knowledgeable users who understand the DE model of
computation very well. The default value of thesyncMode parameter isTRUE (one), which
means synchronized operation.

12.2.6 DE Performance Issues

DE Performance can be an issue with large, long-running universes. Below we discuss
a few potential solutions.

The calendar queue scheduler is not always the one to use. It works well as long as the
“density” of events in simulated time is fairly uniform. But if events are very irregularly
spaced, you may get better performance with the simpler scheduler, because it makes no
assumptions about timestamp values. For example, Tom Lane reported that the CQ scheduler
did not behave well in a simulation that had a few events at time zero and then the bulk of the
events between times 800000000 and 810000000 --- most of the events ended up in a single
CQ “bucket”, so that performance was worse than the simple scheduler.

Tom Lane also pointed out that both the CQ and simple schedulers ultimately depend
on simple linear lists of events. If your application usually has large numbers of events pend-
ing, it might be worth trying to replace these lists with genuine priority queues (i.e., heaps,
with O(log N) rather than O(N) performance). But you ought to profile first to see if that’s
really a time sink.

Another thing to keep in mind that the overhead for selecting a next event and firing a
star is fairly large compared to other domains such as SDF. It helps if your stars do a reason-
able amount of useful work per firing; that is, DE encourages “heavyweight” stars. One way
to get around this is to put purely computational subsystems inside SDF wormholes. As dis-
cussedpreviously, an SDF-in-DE wormhole acts as a zero-delay star.

If you are running a long simulation, you should be sure that your machine is not pag-
ing or worse yet swapping; you should have plenty of memory. Usually 64Mb is enough,
though 128Mb can help (gdb takes up a great deal of memory when you use it, too.). Depend-
ing on what platform you are on, you may be able to use the programtop (ftp://
eecs.nwu.edu/pub/top). You might also find it useful to useiostat to see if you are
paging or swapping.

One way to gain a slight amount of speed is to avoid the GUI interface entirely by
usingptcl , which does not have Tk stars. See “Some hints on advanced uses of ptcl with
pigi” on page 3-19 for details.

12.3 An overview of stars in DE
The model of computation in the DE domain makes it amenable to high-level system

modeling. For this reason, stars in the DE domain are often more complicated, and more spe-
cialized than those in the SDF domain. The stars that are distributed with the domain, there-
fore, should be viewed primarily as examples. They do not form a comprehensive set.

We have made every attempt to include in the distribution all of the reasonably generic

12-8 DE Domain

U. C. Berkeley Department of EECS

stars that have been developed, plus a selection of the more esoteric ones (as examples). Keep
in mind that the star libraries of the other domains are also available through the wormhole
mechanism. Users that find themselves frequently needing stars from other domains may wish
to build a library of single-star galaxies. Such galaxies can be used in any domain, regardless
of the domain in which the single star resides. Ptolemy automatically implements this as a
wormhole.

The top-level palette is shown in figure 12-4.

The following star is available in all the palettes:

BlackHole Discard all input particles.

12.3.1 Source stars

Strictly speaking, source stars are stars with no inputs. They generate signals, and may
represent external inputs to the system, constant data, or synthesized stimuli. By convention,
these stars are fired once at time zero automatically. During this and all subsequent firings, the
star itself must determine when its next firing should occur. It schedules this next firing with a
call to the methodrefireAtTime(time) . The source palette is shown in figure 12-5.

Clock Generate events at regular intervals, starting at time zero.

Impulse Generate a single event at time zero.

Null Do nothing. This is useful for connecting to unused input ports.

Poisson Generate events according to a Poisson process. The first event
is generated at time zero. The mean inter-arrival time and mag-
nitude of the events are given as parameters.

PulseGen Generate events with specified values at specified moments.
The events are specified in thevalue array, which consists of
time-value pairs, given in the syntax of complex numbers.

TclScript (Two icons.) Invoke a Tcl script. The script is executed at the
start of the simulation, from within the star’s begin method. It
may define a procedure to be executed each time the star fires,
which can in turn produce output events. There is a chapter of

sinks.pal

sources.pal

control.pal

queues

timing

logic

networking

miscellaneous.palconversion.pal

HOF
hof.pal

Signal Sinks

Signal Sources

Control

Queues, Servers, Delays

Networking

Timing

Logic

Miscellaneous

Higher-order functions

Conversion

FIGURE 12-4: The top level palette of discrete-event stars.

The Almagest 12-9

Ptolemy Last updated: 12/1/97

the Programmer's Manual devoted to how to write these scripts.

TkButtons (Two icons.) Output the specified value when buttons are
pushed. If theallow_simultaneous_events parameter isYES, the
output events are produced only when the button labeled
“PUSH TO PRODUCE EVENTS” is pushed. The time stamps
of each output event is set to the current time of the scheduler
when the button is pushed.

TkSlider Output a value determined by an interactive on-screen scale
slider.

For convenience, some stars are included in the source palette that are not really source stars,
in the above sense. They require an input event in order to produce an output. These are listed
below. The value of the input event is ignored; it is only its time stamp that matters.

Const Produce an output event with a constant value (the default value
is zero) when stimulated by an input event. The time stamp of
the output is the same as that of the input.

Ramp Produce an output event with a monotonically increasing value
when stimulated by an input event. The value of the output
event starts atvalue and increases bystep each time the star
fires.

RanGen (Four icons.) Generate a sequence of random numbers. Upon
receiving an input event, it generates a random number with
uniform , exponential , or normal distribution, as deter-
mined by thedistribution parameter. Depending on the distribu-

FIGURE 12-5: Source stars in the DE domain.

PoissonClock Impulse

RanGen RanGen.exp

RanGen.uniform

RanGen.normal

Null

WaveForm

Ramp

Const

PulseGen

TkSliderTkButtons

Tcl
TclScript

Tcl
TkButtons

Tcl
TclScript

Tcl

singen

Strict sources:

Signal generators:

12-10 DE Domain

U. C. Berkeley Department of EECS

tion, other parameters specify either the mean and variance or
the lower and upper extent of the range.

singen Generate a sample of a sine wave when triggered. This DE gal-
axy contains an SDF singen galaxy (i.e., a wormhole).

WaveForm Upon receiving an input event, output the next value specified
by the array parametervalue (default “1 -1”). This array can
periodically repeat with any period, and you can halt a simula-
tion when the end of the array is reached. The following table
summarizes the capabilities:

The first line of the table gives the default settings. The array
may be read from a file by simply settingvalue to something of
the form< filename .

12.3.2 Sink stars

The sink stars pointed to by the palette in figure 12-6 are those with no outputs. They
display signals in various ways, or write them to files. Several of the stars in this palette are
based on thepxgraph program. This program has many options, summarized in “pxgraph —

haltAtEnd periodic period operation

NO YES 0 The period is the length of the array
NO YES N>0 The period is N
NO NO anything Output the array once, then zeros
YES anything anything Stop after outputting the array once

FIGURE 12-6: Sink stars in the DE domain.

XMgraphXhistogramPrinter

Beep

BarGraphBarGraph XMgraph

TkShowEvents

TkMeter TkMeter

123
Tk
ShowValues

123
Tk
ShowValues

TkText TkText

TkBarGraph TkBarGraph

Tcl
TclScript

Tcl Tcl
TclScript

Tcl

TkStripChart TkStripChart

TkShowEventsTkPlot TkPlot

TkXYPlot

X

Y

TkXYPlot

X

Y

g

To customize the number of input of multi-input
stars, use the Nop stars, accessible through the
icon on the upper right.

Batch displays:

Interactive displays:

The Almagest 12-11

Ptolemy Last updated: 12/1/97

The Plotting Program” on page 20-1. The differences between stars often amount to little
more than the choice of default options. Some, however, preprocess the signal in useful ways
before passing it to thepxgraph program. The first two icons actually correspond to only one
star, with two different configurations. The first allows only one input signal, the second
allows any number (notice the double arrow on the input port).

BarGraph (Two icons.) Generate a plot with thepxgraph program that
uses a zero-order hold to interpolate between event values. Two
points are plotted for each event, one when the event first
occurs, and the second when the event is supplanted by a new
event. A horizontal line then connects the two points. If
draw_line_to_base is YES then a vertical line to the base of the
bar graph is also drawn for each event occurrence.

Printer Print the value of each arriving event, together with its time of
arrival. ThefileNameparameter specifies the file to be written;
the special names<stdout> and<cout> (specifying the stan-
dard output stream), and<stderr> and <cerr> (specifying
the standard error stream), are also supported.

Xhistogram Generate a histogram with thepxgraph program. The parame-
terbinWidth determines the width of a bin in the histogram. The
number of bins will depend on the range of values in the events
that arrive. The time of arrival of events is ignored. This star is
identical to the SDF starXhistogram , but is used often enough
in the DE domain that it is provided here for convenience.

XMgraph (Two icons.) Generate a plot with thepxgraph program with
one point per event. Any number of event sequences can be
plotted simultaneously, up to the limit determined by the
XGraph class. By default, a straight line is drawn between each
pair of events.

TclScript (Two icons.) Invoke a Tcl script. The script is executed at the
start of the simulation, from within the star’s begin method. It
may define a procedure to be executed each time the star fires,
which can in turn read input events. There is a chapter of the
Programmer's Manual that explains how to write these scripts.

TkBarGraph (Two icons.) Take any number of inputs and dynamically dis-
play their values in bar-chart form.

TkMeter (Two icons.) Dynamically display the value of any number of
input signals on a set of bar meters.

TkPlot (Two icons.) Plot Y input(s) vs. time with dynamic updating.
Retracing is done to overlay successive time intervals, as in an
oscilloscope. Thestyle parameter determines which plotting
style is used:dot causes individual points to be plotted,
whereasconnect causes connected lines to be plotted. The
repeat_border_pointsparameter determines whether rightmost

12-12 DE Domain

U. C. Berkeley Department of EECS

events are repeated on the left.
Drawing a box in the plot will reset the plot area to that outlined
by the box. There are also buttons for zooming in and out, and
for resizing the box to just fit the data in view.

TkShowEvents (Two icons.) Display input event values together with the time
stamp at which they occur. The print method of the input parti-
cles is used to show the value, so any data type can be handled,
although the space allocated on the screen may need to be
adjusted.

TkShowValues (Two icons.) Display the values of the inputs in textual form.
The print method of the input particles is used, so any data type
can be handled, although the space allocated on the screen may
need to be adjusted.

TkStripChart (Two icons.) Display events in time, recording the entire his-
tory. The supported styles arehold for zero-order hold,con-
nect for connected dots, anddot for unconnected dots. An
interactive help window describes other options for the plot.

TkText (Two icons.) Display the values of the inputs in a separate win-
dow, keeping a specified number of past values in view. The
print method of the input particles is used, so any data type can
be handled.

TkXYPlot (Two icons.) Plot Y input(s) vs. X input(s) with dynamic updat-
ing. Time stamps are ignored. If there is an event on only one of
a matching pair of X and Y inputs, then the previously received
value (or zero if none) is used for the other. Thestyle parameter
determines which plotting style is used:dot causes individual
points to be plotted, whereasconnect causes connected lines
to be plotted.
Drawing a box in the plot will reset the plot area to that outlined
by the box. There are also buttons for zooming in and out, and
for resizing the box to just fit the data in view.

Beep Cause a beep on the terminal when fired.

12.3.3 Control stars

Control stars (figure 12-7) manipulate the flow of tokens. All of these stars are poly-
morphic; they operate on any data type. From left to right, top to bottom, they are:

Discard Discard input events that occur before the threshold time.
Events after the threshold time are passed immediately to the
output. This star is useful for removing transients and studying
steady-state effects.

Fork (Five icons.) Replicate input events on the outputs with zero
delay.

The Almagest 12-13

Ptolemy Last updated: 12/1/97

LossyInput Route inputs to the “sink” output with the probabilitylossProb-
ability set by the user. All other inputs are sent immediately to
the “save” output.

Merge (Four icons.) Merge input events, keeping temporal order.
Simultaneous events are merged in the order of the port number
on which they appear, with port #1 being processed first.

PassGate If the gate (bottom input) is open, then particles pass from
“input” (left input) to “output.” When the gate is closed, no out-
puts are produced. If input particles arrive while the gate is
closed, the most recent one will be passed to “output” when the
gate is reopened.

Router (Three icons.) Route an input event randomly to one of its out-
puts. The probability is equal for each output. The time delay is
zero.

Sampler Sample the input at the times given by events on the “clock”
input. The data value of the “clock” input is ignored. If no input
is available at the time of sampling, the latest input is used. If
there has been no input, then a “zero” particle is produced. The
exact meaning of zero depends on the particle type.

LeakBucket Discard inputs that arrive too frequently. That is, any input
event that would cause a queue of a given size followed by a
server with a given service rate to overflow are discarded. Inputs
that are not discarded are passed immediately to the output.

FIGURE 12-7: Control stars for the DE domain.

LossyInput

LeakBucketRouter Router

Merge Merge Merge

Sampler

Discard

PassGate

Router

Merge

Case Case Case EndCase EndCase EndCase

12-14 DE Domain

U. C. Berkeley Department of EECS

Case (Three icons.) Switch input events to one of N outputs, as deter-
mined by the last received control input. The value of the con-
trol input must be between 0 and N-1, inclusive, or an error is
flagged.

EndCase (Three icons,) Select an input event from one of N inputs, as
specified by the last received control input. The value of the
control input must be between 0 and N-1 inclusive, or an error
is flagged.

12.3.4 Conversion stars

The palette in figure 12-10 is intended to house a collection of stars for format conver-
sions of various types. As of this writing, however, this collection is very limited. The first two
stars in the conversion palette illustrate the consolidation of multiple data sample into single
particles that can be transmitted as a unit. These stars use the classFloatVecData , which is
simply a vector of floating-point numbers.

Packetize Convert a number of floating-point input samples into a packet
of type FloatVecData . A packet is produced when either an
input appears on the demand input or whenmaxLength data val-
ues have arrived. Note that a null packet is produced if a
demand signal arrives and there is no data.

UnPacketize Convert a packet of typeFloatVecData into a number of
floating-point output samples. The “data” input feeds packets to
the star. Whenever a packet arrives, the previous packet, if any,
is discarded; any remaining contents are discarded. The
“demand” input requests output data. If there is no data left in

FIGURE 12-8: Type conversion stars for the DE domain.

Packetize UnPacketize

ImageToMx
FrameId

MxToImage
FrameId

IntToFloat

FloatToInt

The Almagest 12-15

Ptolemy Last updated: 12/1/97

the current packet, the last output datum is repeated (zero is
used if there has never been a packet). Otherwise the next data
value from the current input packet is output.

MxtoImage Convert a Matrix to aGrayImage output. The double values of
the FloatMatrix are converted to the integer values of the
GrayImage representation.

ImageToMx Accept a black-and-white-image from an input image packet,
and copy the individual pixels to aFloatMatrix . Note that
even though theGrayImage input contains all integer values,
we convert to aFloatMatrix to allow easier manipulation.

12.3.5 Queues, servers, and delays

The palette in figure 12-9 contains stars that model queues, servers, and time delays of various
types. In the DE domain, the delay icon (the small green diamond at the upper left of the pal-
ette) does not represent a time delay. See “The DE target and its schedulers” on page 12-1.

Delay Send each input event to the output with its time stamp incre-
mented by an amount given by thedelayparameter.

VarDelay Delay the input by a variable amount. Thedelay parameter
gives the initial delay, and the delay is changed using the
“newDelay” input.

PSServer Emulate a deterministic, processor-sharing server. If input
events arrive when it is not busy, it delays them by the nominal
service time. If they arrive when it is busy, the server is shared.
Hence prior arrivals that are still in service will be delayed by
more than the nominal service time.

Server Emulate a server. If input events arrive when it is not busy, it
delays them by the service time (a constant parameter). If they
arrive when it is busy, it delays them the service time plus how-

FIGURE 12-9: Queues, servers, and delays in the DE domain.

flushQueueFIFOQueue
Stack

PriorityQueue

Server VarServerPSServerDelay VarDelay

y

12-16 DE Domain

U. C. Berkeley Department of EECS

ever long it takes to become free of previous tasks.

VarServer Emulate a server with a variable service time. If input events
arrive when it is idle, they will be serviced immediately and will
be delayed only by the service time. If input events arrive while
another event is being serviced, they will be queued. When the
server becomes free, it will service any events waiting in its
queue.

FIFOQueue Implement a first-in first-out (FIFO) queue with finite or infinite
length. Events on the “demand” input trigger a dequeue on the
“outData” port if the queue is not empty. If the queue is empty,
then a “demand” event enables the next future “inData” particle
to pass immediately to “outData”. The first particle to arrive at
“inData” is always passed directly to the output, unlessnumDe-
mandsPending is initialized to 0. IfconsolidateDemandsis set
to TRUE (the default), thennumDemandsPending is not permit-
ted to rise above one. The size of the queue is sent to thesize
output whenever an “inData” or “demand” event is processed.
Input data that doesn't fit in the queue is sent to the “overflow”
output.

FlushQueue Implement a FIFO queue that when full, discards all inputs until
it empties completely.

PriorityQueue Emulate a priority queue. Inputs have priorities according to the
number of the input, with “inData#1” having highest priority,
“inData#2” being next, etc. When a “demand” is received, out-
puts are produced by selecting first based on priority, and then
based on time of arrival, using a FIFO policy. A finite total
capacity can be specified by setting thecapacity parameter to a
positive integer. When the capacity is reached, further inputs are
sent to the “overflow” output, and not stored. ThenumDemand-
sPending and consolidateDemands parameters have the same
meaning as in other queue stars. The size of the queue is sent to
the “size” output whenever an “inData” or “demand” event is
processed.

Stack Implement a stack with either finite or infinite length. Events on
the “demand” input pop data from the stack to “outData” if the
stack is not empty. If it is empty, then a “demand” event enables
the next future “inData” particle to pass immediately to “out-
Data.” By default,numDemandsPendingis initialized to 1, so
the first particle to arrive at “inData” is passed directly to the
output. IfconsolidateDemands is set toTRUE (the default), then
numDemandsPendingis not permitted to rise above one. The
size of the stack is sent to the “size” output whenever an
“inData” or “demand” event is processed. Input data that
doesn’t fit on the stack is sent to the “overflow” output.

The Almagest 12-17

Ptolemy Last updated: 12/1/97

The following star does not appear in the palette.

QueueBase Serve as the base class for FIFO and LIFO queues. This star is
not intended to be used except to derive useful stars. All inputs
are simply routed to the “overflow” output. None are stored.

12.3.6 Timing stars

The palette in figure 12-10 contains stars that are primarily concerned with either simulated or
real time.

MeasureDelay Measure the time difference between the first arrival and the
second arrival of an event with the same value. The second
arrival and the time difference are each sent to outputs.

MeasureInterval The value of each output event is the simulated time since the
last input event (or since zero, for the first input event). The
time stamp of each output event is the time stamp of the input
event that triggers it.

StopTimer Generate an output at thestopTime of the DEScheduler
under which this block is running. This can be used to force
actions at the end of a simulation. Within a wormhole, it can
used to force actions at the end of each invocation of the worm-
hole. An input event is required to enable the star.

Timeout Detect time-out conditions and generate an alarm if too much
time elapses before resetting or stopping the timer. Events arriv-
ing on the “Set” input reset and start the timer. Events arriving
on the “Clear” input stop the timer. If no “Set” or “Clear” events
arrive within timeout time units of the most recent “Set”, then
that “Set” event is sent out the “alarm” output.

TimeStamp The value of the output events is the time stamp of the input
events. The time stamp of the output events is also the time
stamp of the input events.

FIGURE 12-10: Timing stars for the DE domain.

StopTimerMeasureDelay Timeout

TimerSynchronize

TimeStamp
Measure
Interval

Stars that operate on time stamps:

Stars that use the system clock:

12-18 DE Domain

U. C. Berkeley Department of EECS

Synchronize Hold input events until the time elapsed on the system clock
since the start of the simulation is greater than or equal to their
time stamp. Then pass them to the output.

Timer Upon receiving a trigger input, output the elapsed real time in
seconds, divided bytimeScale, since the last reset input, or
since the start of the simulation if no reset has been received.
The time stamp of the output is the same as that of the trigger
input. The time in seconds is related to the scheduler (simu-
lated) time through the scaling factortimeScale .

The following star does not appear in the palette, because it is not intended to be used directly
in Ptolemy applications.

TimeoutStar Serve as the base class for stars that check time-out conditions.
The methods “set”, “clear”, and “expired” are provided for set-
ting and testing the timer.

12.3.7 Logic stars

The logic palette in figure 12-10 is made up of only three stars, with the multiplicity of icons
representing different configurations of these stars.

Test (Six icons) Compare two inputs. The test condition can be any
of {EQ NE LT LE GT GE} or { == != < <= > >= }, resulting in
equals, not equals, less-than, less-than or equals, etc.

If crossingsOnly is TRUE, then an output event is generated only
when the value of the output changes. Hence the output events
will always alternate between true and false.

Logic (Nineteen Icons) Apply a logical operation to any number of

FIGURE 12-11: Logic stars for the DE domain.

Test.condition=EQ Test.condition=NE Test.condition=GT Test.condition=GE Test.condition=LT Test.condition=LE

TestLevel

Q’

Q
D

Flip Flop

D

Clk
JK

Flip Flop

J

K

Clk

Q

Q’
T

Flip Flop

T

Clk

Q

Q’

Specific to the DE Domain

The Almagest 12-19

Ptolemy Last updated: 12/1/97

inputs. The inputs are integers interpreted as Booleans, where
zero is aFALSE and nonzero is aTRUE. The logical operations
supported are {NOT AND NAND OR NOR XOR XNOR}.

TestLevel Detect threshold crossings if thecrossingsOnly parameter is
TRUE. Otherwise, it simply compares the input against the
“threshold.”

If crossingsOnly is TRUE, then: (1) aTRUE is sent to “output”
when the “input” particle exceeds or equals the “threshold”
value, having been previously smaller; (2) aFALSE is sent when
the “input” particle is smaller than “threshold” having been pre-
viously larger. Otherwise, no output is produced.

If crossingsOnly is FALSE, then aTRUE is sent to “output”
whenever any “input” particle greater than or equal to “thresh-
old” is received, and aFALSE is sent otherwise.

FlipFlop Stars Binary state is afforded in the DE logic palette with the inclu-
sion of flip flop circuits. Three synchronous sequential circuit
components, FlipFlopJK, FlipFlopT and FlipFlopD, serve as
basic memory elements.

12.3.8 Networking stars

The palette shown in figure 12-12 includes stars that have been designed to model
communication networks. These are illustrative of a common use of the DE domain, for mod-
eling packet-switched networks. However, many of the stars are specialized to a particular
type of network design. Thus, they should be viewed as illustrative examples, rather than as a
comprehensive library.

A NetworkCell class is used in many of these stars. It models packetized data that is
transmitted through cell-relay networks. EachNetworkCell object can carry any user data
of type Message . In addition to this user data, theNetworkCell contains a destination
address and a priority. These are used by stars and galaxies to route the cell through the net-
work. The definition of theNetworkCell class may be found in$PTOLEMY/src/
domains/sdf/image/kernel , since it is used in the SDF and DE domains, and was devel-
oped primarily for modeling packet-switched video.

Cell creation and access

CellLoad Read in anEnvelope , extract itsMessage , and output that
Message in aNetworkCell . Append a destination and prior-
ity to the packet.

CellUnload Remove aMessage from aNetworkCell .

ImageToCell Packetize an image. Each image is divided up into chunks no
larger thanCellSize. Each cell is delayed from its predecessor
by TimePerCell. If a new input arrives while an older one is
being processed, the new input is queued.

12-20 DE Domain

U. C. Berkeley Department of EECS

CellToImage ReadNetworkCell packets containing image data and output
whole images. The current image is sent to the output when the
star reads image data with a higher frame id than the current
image. For each frame, the fraction of input data that was lost is
sent to the “lossPct” output.

Cell routing, control, and service

CellRoute ReadNetworkCell packets from multiple input sources and
route them to the appropriate output using a routing table that
maps addresses into output ports.

PriorityCheck ReadNetworkCell packets from multiple input sources. If the
priority of an inputNetworkCell is less than the most recent
“priority” input, then the cell is sent to the “discard” output.
Otherwise it is sent to the “output” port.

Switch4x4 Implement a four-input, four-output network switch that can
process objects of typeNetworkCell , or any type derived
from NetworkCell . Each NetworkCell object contains a
destination address. This galaxy uses the destination address as
an index into itsRoutesarray parameter to choose an output

FIGURE 12-12: A palette of DE stars dedicated to modeling of communication networks.

CellLoad CellUnload

Switch4x4

SeqATMZeroSeqATMSub

PCM
Voice

Recover

VirtClock

CellToImageImageToCell

CellRoute PriorityCheck

EtherSendEtherRec EtherRecMes

Cell Routing, Control, and Service

Cell Creation and Access

Lost Cell Recovery

Wireless

The Almagest 12-21

Ptolemy Last updated: 12/1/97

port over which the input object will leave. A prioritized queue-
ing scheme is used.

VirtClock Read aNetworkCell . It identifies which virtual circuit num-
ber the cell belongs to and then computes the virtual time stamp
for the cell by applying the virtual clock algorithm (see the
source code in $PTOLEMY/src/domains/de/stars/DEVirt-
Clock.pl). It then outputs all cells in order of increasing virtual
time stamp.

Upon receiving a “demand” input, the cell with the smallest
time stamp is output. An output packet is generated for every
demand input unless all of the queues are empty. Demand
inputs arriving when all queues are empty are ignored.

The number of stored cells is output after the receipt of each
“input” or “demand.”

When a cell arrives and the number of stored cells equalsMax-
Size then the cell with the biggest virtual time stamp is dis-
carded. This cell may or may not be the new arrival. IfMaxSize
is zero or negative, then infinitely many cells can be stored.

Lost cell recovery

The stars in this subgroup implement a variety of mechanisms for replacing lost cells
in a packet-switched network. They use a class calledSeqATMCell that is designed to model
packets in the proposed broadband integrated services digital network (BISDN). The class is
derived fromMessage , but has added facilities for marking the packet with a sequence num-
ber, and setting and reading individual bits. The sequence number is used to determine when
packets have been lost.

PCMVoiceRecover Input a stream ofSeqATMCell objects. All the information bits
in objects received with correct sequence numbers are sent to
“output.”

If a missingSeqATMCell object is detected, this star sends the
most recent 8 *tempSizereceived bits to the “temp” output, and
the most recent (8 *searchWindowSize + numInfoBits) received
bits to the “window” output.

The bits output on the “window” and “temp” outputs can be
used by thePatternMatch galaxy to implement lost-speech
recovery.

SeqATMSub Read a sequence ofSeqATMCells . It will check sequence
numbers, and if aSeqATMCell is found missing, the informa-
tion bits of the previously arrivedSeqATMCell will be output
in its place.

The information bits from each correctly receivedSeqATMCell
are unloaded and sent to the output port.

12-22 DE Domain

U. C. Berkeley Department of EECS

SeqATMZero Read a sequence ofSeqATMCell objects. For each object input
correctly in sequence,headerLength bits are skipped over and
the nextnumInfoBits bits in the cell are output.

If this star finds, by checking sequence numbers, that aSeqAT-
MCell is missing, it will substitutenumInfoBits 0-bits for the
missing bits.

Wireless network simulation

Ether (Not shown in the palette.) This is the base class for transmitter
and receiver stars that communicate over a shared medium.
Each transmitter can communicate with any or all receivers that
have the same value for the “medium” parameter. The commu-
nication is accomplished without graphical connections, and the
communication topology can be continually changing. This
base class implements the data structures that are shared
between the transmitters and receivers.

EtherRec Receive floating-point particles transmitted to it by an
EtherSend star. The particle is produced at the output after
some duration of transmission specified at the transmitter.

EtherRecMes See the explanation for theEtherRec star.The only difference
is that this stars forces the output to be a message.

EtherSend Transmit particles of any type to any or all receivers that have
the same value for themedium parameter. The receiver address
is given by the “address” input, and it must be an string. If the
string begins with a dash “- ”, then it is interpreted as a broad-
cast request, and copies of the particle are sent to all receivers
that use the same medium.

The transmitter “occupies” the medium for the specified dura-
tion. A collision occurs if the medium is occupied when a trans-
mission is requested. In this case, the data to be transmitted is
sent to the “collision” output.

12.3.9 Miscellaneous stars

These stars are shown in figure 12-12.

Hardware modeling

Arbitrate Act as a non-preemptive arbitrator, granting requests for exclu-
sive control. If simultaneous requests arrive, priority is given to
port A. When control is released, any pending requests on the
other port will be serviced. The “requestOut” and “grantIn”
connections allow interconnection of multiple arbitration stars
for more intricate control structures.

HandShake Cooperate with a possibly preemptive arbitrator through the

The Almagest 12-23

Ptolemy Last updated: 12/1/97

“request” and “grant” controls. “Input” particles are passed to
“output”, and an “ackIn” particle must be received before the
next “output” can be sent. This response is made available on
“ackOut.”

handShakeQ Handshake with queued input events.

TclScript Invoke a Tcl script. The script is executed at the start of the sim-
ulation, from within the star’s begin method. It may define a
procedure to be executed each time the star fires, which can in
turn read input events and produce output events. There is a
chapter of the Programmer's Manual devoted to how to write
these scripts.

Statistics and monitoring

Statistics Calculate the average and variance of the input values that have
arrived since the last reset. An output is generated when a
“demand” input is received. When a “reset” input arrives, the
calculations are restarted. When “demand” and “reset” particles
arrive at the same time, an output is produced before the calcu-
lations are restarted.

UDCounter Implement an up/down counter. The processing order of the
ports is: countUp -> countDown -> demand -> reset. Specifi-
cally, all simultaneous “countUp” inputs are processed. Then all
simultaneous “countDown” inputs are processed. If there are
multiple simultaneous “demand” inputs, all but the first are
ignored. Only one output will be produced.

Signal processing

Filter Filter the input signal with a first-order, autoregressive (AR)

FIGURE 12-13: A palette of miscellaneous DE stars.

HandShake handShakeQArbitrate

UDCounterStatistics Filter

Tcl
TclScript

Tcl

Hardware modeling

Statistics and monitoring Signal processing

All-purpose

12-24 DE Domain

U. C. Berkeley Department of EECS

impulse response. The data input is interpreted as weighted
impulses (Dirac delta functions). An output is triggered by a
clock input.

12.3.10 HOF Stars

For a discussion of the HOF stars, please see the “An overview of the HOF stars” on
page 6-15.

12.4 An overview of DE demos
The number of DE demos is considerably smaller than SDF. Many of the demos, how-

ever, are much more complex, often incorporating SDF subsystems to accomplish audio or
video encoding. The top-level palette for demos in the discrete-event domain is shown in fig-
ure 12-14. The subpalettes are described below.

12.4.1 Basic demos

These demos illustrate the use of certain stars without necessarily performing functions that
are particularly interesting. The palette is shown in figure 12-15. The individual demos are
summarized below.

caseDemo Demonstrates theCase star by deconstructing a Poisson count-
ing process into three subprocesses.

conditionals Demonstrate the use of theTest block in its various configura-
tions to compare the values of input events with floating-point
values. The input test signal is a pair of ramps, with each event
repeated once after some delay. Since the ramps have different
steps, they will cross.

logic Demonstrate the use of theLogic star in its various instantia-

FIGURE 12-14: The top-level palette for DE demos.

network.pal

queues.pal

basic.pal

BERKELEY UNIFIED SCHOOL DISTRICT

miscellaneous.pal

wormhole.pal

de.pal

TclTcl
tcltk

Queues, Servers, Delays

Basic

Miscellaneous

Networking

Wormhole

Tcl/Tk Graphics Demos

Higher-Order Functions

The Almagest 12-25

Ptolemy Last updated: 12/1/97

tions as AND, NAND, OR, NOR, XOR, XNOR and inverter
gates. The three test signals consist of square waves with peri-
ods 2, 4, and 6.

merge Demonstrate theMerge star. The star is fed two streams of reg-
ular arrivals, one a ramp beginning at 10.0, and one a ramp
beginning at 0.0. The two streams are merged into one, in chro-
nological order, with simultaneous events appearing in arbitrary
order.

realTime Demonstrate the use of theSynchronize andTimer blocks.
Input events from aClock star are held by theSynchronize
star until their time stamp, multiplied by the universe parameter
timeScale, is equal to or larger than the elapsed real time since
the start of the simulation. TheTimer star then measures the
actual (real) time at which theSynchronize output is pro-
duced. The closer the resulting plot is to a straight line with a
slope of one, the more precise the timing of theSynchronize
outputs are.

router Randomly route an irregular but monotonic signal (a Poisson
counting process) through two channels with random delay, and
merge the channel outputs.

sampler Demonstrate theSampler star. A counting process with regular
arrivals at intervals of 5.0 is sampled at regular intervals of 1.0.
As expected, this produces 5 samples for each level of the
counting process.

statistics Compute the mean and variance of a random process using the
Statistics star. The mean and variance are sent to the stan-

FIGURE 12-15: Basic DE demos.

sampler

merge

router switch

upDownCount

conditionals

timeout

realTime

statistics testPacket

logiccaseDemo

binaryCounter 4BitDownCounter

12-26 DE Domain

U. C. Berkeley Department of EECS

dard output when the simulation stops. This action is triggered
by an event produced by theStopTimer star.

switch Demonstrate the use of theSwitch star. A Poisson counting
process is sent to one output of the switch for the first 10 time
units, and to the other output of the switch for the remaining
time.

testPacket Construct packets consisting of five sequential values from a
ramp, send these packets to a server with a random service time,
and then deconstruct the packets by reading the items in the
packet one by one.

timeout Demonstrate the use of theTimeout star. Every time unit, a
timer is set. If after another 0.5 time units have elapsed, the
timer is not cleared, an output is produced to indicate that the
timer has expired. The signal that clears the timer is a Poisson
process with a mean inter-arrival time of one time unit.

upDownCount Demonstrate theUDCounter star. Events are generated at two
different rates to count up and down. The up rate is faster than
the down rate, so the trend is upwards. The value of the count is
displayed every time it changes.

binaryCounter Demonstrate theFlipFlopJK star.

4BitDownCounter Demonstrate the use of the other Flip Flop stars.

12.4.2 Queues, servers, and delays

The palette of demos illustrating queueing systems is shown in figure 12-16. It includes:

blockage Demonstrate a blocking strategy in a queueing network. In a
cascade of two queues and servers, when the second queue fills
up, it prevents any further dequeueing of particles from the first
queue until it once again has space.

delayVsServer Illustrate the difference between theDelay and Server
blocks. TheDelay passes the input events to the output with a

FIGURE 12-16: Queueing system demos

delayVsServer

queueqAndServer

priority

testServers

psServerblockage measureDelay

The Almagest 12-27

Ptolemy Last updated: 12/1/97

fixed time offset. TheServer accepts inputs only after the pre-
vious inputs have been served, and then holds that input for a
fixed offset.

measureDelay Demonstrate the use of theMeasureDelay block to measure
the sojourn time of particles in a simple queueing system with a
single server with a random service time.

priority Demonstrate the use of thePriorityQueue block together
with a Server . The upper input to thePriorityQueue has
priority over the lower input. Thus, when the queue overflows,
data is lost from the lower input.

psServer Demonstrate the processor-sharing server. Unlike other servers,
this server accepts new inputs at any time, regardless of how
busy it is. Accepting a new input, however, slows down the ser-
vice to all particles currently being served.

qAndServer Demonstrate the use of theFIFOQueue and Stack stars
together withServer s. A regular counting process is enqueued
on both stars. The particles are dequeued whenever the server is
free. TheStack is set with a larger capacity than theFIFO-
Queue, so it overflows second. Overflow events are displayed.

queue Demonstrate the use of theFIFOQueue and Stack stars. A
Poisson counting process is enqueued on both stars, and is
dequeued at a regular rate, every 1.0 time units. The output of
theFIFOQueue is always monotonically increasing, because of
the FIFO policy, but the output of theStack need not be. The
Stack is set with a smaller capacity than theFIFOQueue , so it
overflows first. Overflow events are displayed.

testServers Demonstrate servers with random service times (uniform and
exponential).

12.4.3 Networking demos

A major application of the DE domain is the simulation of communication networks. The pal-
ette in figure 12-17 contains such network simulations. The demos are:

FlushNet Simulate a queue with “input flushing” during overflow. If the
queue reaches capacity, all new arrivals are discarded until all

FIGURE 12-17: Networking demos

LBTest VClockFlushNet
wireless
Network

12-28 DE Domain

U. C. Berkeley Department of EECS

items in the queue have been served.

LBTest Simulate leaky bucket network rate controllers. These control-
lers moderate the flow of packets to keep them within specified
rate and burstiness bounds.

VClock Model a network with four inputs and virtual clock buffer ser-
vice.

wirelessNetwork Demonstrate shared media communication without graphical
connectivity, usingEtherSend andEtherRec stars. Two clus-
ters on the left transmit to two clusters on the right over two dis-
tinct media, radio and infrared. The communication is
implemented using shared data structures between the stars.

12.4.4 Miscellaneous demos

The palette in figure 12-18 shows miscellaneous demos. The first two of these model continu-
ous-time random processes, although only discrete-time samples of these processes can be
displayed.

shotNoise Generate a continuous-time shot-noise process and display reg-
ularly spaced samples of it. The shot noise is generated by feed-
ing a Poisson process into aFilter star.

hdShotNoise Generate a high-density shot noise process and verify its
approximately Gaussian distribution by displaying a histogram.

The following demos illustrate the use of the DE domain for high-level modeling of protocols
for sharing hardware resources.

roundRobin Simulate shared memory with round-robin arbitration at a high
level.

prioritized Simulate a shared memory with prioritized arbitration at a high
level.

FIGURE 12-18: Miscellaneous demos.

shotNoise hdShotNoise

BERKELEY UNIFIED SCHOOL DISTRICT

roundRobin

BERKELEY UNIFIED SCHOOL DISTRICT

prioritized

speechcode shave

Sound-making demos:

Shot noise: Hardware modeling

The Almagest 12-29

Ptolemy Last updated: 12/1/97

The following demos make sounds.

speechcode Perform speech compression with a combination of silence
detection, adaptive quantization, and adaptive estimation. After
speech samples are read from a file, they are encoded, pack-
etized, depacketized, decoded, and played on the workstation
speaker.

shave Demonstrate theSynchronize star to generate a beeping
sound with a real-time rhythm.

12.4.5 Wormhole demos

The palette in figure 12-19 shows some simple demonstrations of multiple domain simula-
tions. Each of these combines SDF with DE. The demos are:

distortion Show the effects on real-time signals of a highly simplified
packet-switched network. Packets can arrive out of order, and
they can also arrive too late to be useful. In this simplified sys-
tem, a sinusoid is generated in the SDF domain, launched into a
communication network implemented in the DE domain, and
compared to the output of the communication network. Plots
are given in the time and frequency domains of the sinusoid
before and after the network.

distortionQ Similar to the distortion demo. The only difference is in the
reorderQ wormhole, which introduces queueing.

worm Show how easy it is to use SDF stars to perform computation on
DE particles. A Poisson process where particles have value 0.0
is sent into an SDF wormhole, where Gaussian noise is added to
the samples.

four_level A four level SDF/DE/SDF/DE system.

FIGURE 12-19: Wormhole demos

wormdistortion distortionQ

four_level sources block

12-30 DE Domain

U. C. Berkeley Department of EECS

sources Show how to use an SDF star as a source by using a dummy
input into the SDF system. The SDF subsystem fires instanta-
neously from the perspective of DE. TheschedulePeriod SDF
target parameter has no effect.

block The schedulePeriod parameter of the SDF target determines
how the inside of the DE system interprets the timing of events
arriving from SDF. When several samples are produced in one
iteration, as here, the time stamps of the corresponding events
are uniformly distributed over the schedule period.

12.4.6 Tcl/Tk Demos

The palette in figure 12-20 contains the Tcl/Tk demos

buttons DemonstrateTkButtons by having the buttons generate events
asynchronously with the simulation.

displays Demonstrate some of the interactive displays in the DE domain.

slider DemonstrateTkSlider by having the slider produce events
asynchronously. The asynchronous events are plotted together
with a clock, which produces periodic outputs in simulated
time. Notice that the behavior is roughly the same regardless of
the interval of the clock.

sources A Tcl script writes asynchronously to its output roughly period-
ically in real time (using the Tk “after” command). The asyn-
chronous events are plotted together with a clock, which
produces periodic outputs in simulated time. Notice that the plot
looks roughly the same regardless of the interval of the clock.

stripChart Demonstrate theTkStripChart by plotting several different

displays sourcessliderbuttons

xyplotstripChart

g

FIGURE 12-20: Tcl/Tk DE demos

The Almagest 12-31

Ptolemy Last updated: 12/1/97

sources.

xyplot Display queue size as a function of time with an exponential
random server.
Note that theTkPlot star overlays the plots as time progresses,
which the TkXYPlot star does not. Thus, the points on the
TkXYPlot star go off the screen to the right. TheTkStrip-
Chart star records the entire history.

12.4.7 HOF Demos

For information on the HOF demos, see “HOF demos in the DE domain” on page 6-
20.

12-32 DE Domain

U. C. Berkeley Department of EECS

