Chapter 1. An Overview of Ptolemy

1.1 Introduction

The core of Ptolemy is a compact software infrastructure upon which specialized
design environments (calledbmaing can be built. The software infrastructure, called
Ptolemy kernelis made up of a family of C++ class definitions. Domains are defined by creat-
ing new C++ classes derived from the base classes in the kernel.

Domains can operate in either of two modes:

* Simulation — A scheduler invokes code segments in an order appropriate to the model
of computation.

« Code generation — Code segments in an arbitrary language are stitched together to
produce one or more programs that implement the specified function.

The use of an object-oriented software technology permits a domain to interact with
one another without knowledge of the features or semantics of the other domain. Thus, using a
variety of domains, a team of designers can model each subsystem of a complex, heteroge-
neous system in a natural and efficient manner. These different subsystems can be nested to
form a tree of subsystems. This hierarchical composition is key in specifying, simulating, and
synthesizing complex, heterogeneous systems.

By supporting heterogeneity, Ptolemy provides a research laboratory to test and
explore design methodologies that support multiple design styles and implementation technol-
ogies. A simple example is simulating the effects of transmitting compressed video and audio
over an asynchronous transfer mode (ATM) network. The network will delay, drop, and reor-
der packets based on the congestion. Compression and decompression, however, work on the
video and audio data, and the time associated with the data is not relevant to the signal pro-
cessing. The simulation in this case is heterogeneous: the network processes discrete events
(packets) with a notion of time, whereas the signal processing processes data independent of
time. Other examples of heterogeneous systems include integrated control and signal process-
ing architectures, mixed analog/digital simulation, and hardware/software codesign.

In short, Ptolemy is a flexible foundation upon which to build prototyping environ-
ments. The Ptolemy 0.7 release contains, for example, dataflow-oriented graphical program-
ming for signal processing [Lee87a,b][Buc91][Buc93a,b,c], a multi-threaded process
networks modeling environment [Par95], a synchronous/reactive programming framework
[Edw97], discrete-event modeling of communication networks [Wal92][Hal93][Cha97], and
synthesis environments for embedded software [Bha93a,b,c][Bha94a,b][Pin95]. We have also
developed prototyping environments that are not released with Ptolemy 0.7, such as design
assistants for hardware/software codesign [Kal93]. The Ptolemy system is fundamentally
extensible, as we release all of the source code. Users can create new component models, new
design process managers, and even entirely new programming environments.
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1.2 History

Ptolemy is a third-generation software environment that started in January of 1990. It
is an outgrowth of two previous generations of design environments, Blosim [Mes84a,b] and
Gabriel [Lee89][Bie90], that were aimed at digital signal processing (DSP). Both environ-
ments use dataflow semantics with block-diagram syntax for the description of algorithms. To
broaden the applicability beyond DSP, the Ptolemy kernel does not build in dataflow seman-
tics, but instead provides support for a wide variety of computational models, such as data-
flow, discrete-event processing, communicating sequential processes, computational models
based on shared data structures, and finite-state machines. For these computational models,
the Ptolemy kernel provides a mixture of compile-time and run-time scheduling techniques.
Unlike Blosim or Gabriel, then, the Ptolemy kernel provides infrastructure that is extensible to
new computational models without re-implementation of the system.

Since 1990, we have had seven major releases of Ptolemy, numbered 0.1 through 0.7.
The zero indicates that Ptolemy is research software and not a commercial product. Between
annual major releases, we put out one or two incremental releases. Our goal is to test our algo-
rithms and methodologies in Ptolemy and to transfer them as quickly as possible to the public
through freely distributable releases. Because of the critical mass of users of Ptolemy world-
wide, a news group callecbmp.soft-sys.ptolemy was formed in 1994. The Ptolemy
Web sitehttp://ptolemy.eecs.berkeley.edu/ went on-line in May of 1994.

The flexibility of Ptolemy is particularly important for enabling research in design
methodology. In September of 1993, the Ptolemy project became part of the technology base
portion of the RASSP project (rapid prototyping of application-specific signal processors),
organized and sponsored by Advanced Research Projects Agency (ARPA) and the United
States Air Force. The Ptolemy part of the RASSP project was to research system-level design
methodology for embedded signal processors. Our project aimed to develop formal models
for such heterogeneous systems, a software environment for the design of such systems, and
synthesis technologies for implementation of such systems. In the latter category, we have
been concentrating on problems not already well addressed elsewhere, such as the synthesis of
embedded software and the partitioning and scheduling of heterogeneous parallel systems. In
1997 the project became part of the DARPA Composite CAD program, and has shifted its
focus towards more aggressively heterogeneous systems, including for example microelectro-
mechanical components, and distributed adaptive signal processing systems.

We have transferred many of our research ideas to computer-aided design tool vendors
such as Cadence, Hewlett Packard, and Synopsys. Cadence’s Signal Processing Workshop
(SPW) includes their version of our synchronous dataflow (SDF) domain and multirate data-
flow schedulers. Cadence’s Convergence environment (released in October, 1995) is
Cadence’s implementation of our ideas for heterogeneous simulation. Cadence has used Con-
vergence to allow SPW and Bones (a discrete-event simulator) to cooperate in a simulation,
just as the Ptolemy kernel has allowed the SDF domain and the Discrete-Event (DE) domain
since 1990. Berkeley Design Technology has a similar cosimulation environment for SPW
and Bones, but their implementation is based on the Ptolemy kernel. In June of 1997, Hewlett
Packard announced plans to release a Ptolemy-based dataflow modeling environment that is
integrated with their highly regarded analog, RF, and microwave circuit simulation software.

U. C. Berkeley Department of EECS
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1.3 Ptolemy Kernel

The overall organization of the latest release of the Ptolemy system is shown in figure
1-1. A typical use of Ptolemy involves starting two Uttfxprocesses, as shown in figure 1-
1(a), by runningigi  (Ptolemy interactive graphical interface). The first process contains the
vem user interface and theet design database [Har86], and the other process contains the
Ptolemy kernel. An alternative is to run Ptolemy without the graphical user interface, as a sin-
gle process, as shown in figure 1-1(b). In this case, the textual interpreter is based on the Tool
Command Language, Tcl [Ous90][Ous94], and is calledbtdll for Ptolemy Tcl. It is pos-
sible to design other user interfaces for the system. We are releasing a preliminary version of a
third interface called Tycho. In its current form, Tycho is best suited for language-sensitive
editing and consoles for tools such as Matlab and Mathematica.

The executable program&iRpc orptcl can be configured to include any subset of
the available domains. The most recent picture of the domains that Berkeley has developed is
shown in figure 1-2. Many different styles of design are represented by these domains. More
are constantly being developed both at U.C. Berkeley and elsewhere, to experiment with or
support alternative styles.

The Ptolemy kernel provides the most extensive support for domains where a design is
represented as a network of blocks, as shown in figure 1-3. A base class in the kernel, called
Block , represents an object in this network. Base classes are also provided for interconnect-
ing blocks PortHole ) as well as for carrying data between blosksddesic ) and manag-
ing garbage collection efficientlyPkasma ). Not all domains use these classes, but most
current ones do, and hence can very effectively use this infrastructure.

Figure 1-3 shows some of the representative methods defined in these base classes. For
example, note thénitialize , run , andwrapup methods in the cla®lock . These pro-
vide an interface to whatever functionality the block provides, representing for example func-
tions performed before, during, and after (respectively) the execution of the system.

Blocks can be hierarchical, as shown in figure 1-4. The lowest level of the hierarchy, as
far as Ptolemy is concerned, is derived from a kernel base classStaledA hierarchical
block is aGalaxy , and a top-level system representationtimigerse

(@) PIGIRPC (with TK) (b)
VEM PTCL (with Tcl) PTCL (with Tcl)
cor DOMAINS DOMAINS
RPC
KERNEL KERNEL
GRAPHICAL USER
INTERFACE

FIGURE 1-1: The overall organization of Ptolemy version 0.7, showing two possible execution styles:
(a) graphical interface and (b) textual interface.
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1.4 Models of Computation

The Ptolemy kernel does not define any model of computation. In particular, although
the Berkeley team has done quite a bit of work with dataflow domains in Ptolemy, every effort
has been made to keep dataflow semantics out of the kernel. Thus, for example, a network of
blocks could just as easily represent a finite-state machine, where each block represents a
state. It is up to a particular domain to define the semantics of a computational model.

Suppose we wish to define a new domain, cailed We would define a set of C++

BDF DDF) PN ) process networks

dynamic dataflow
Boolean dataflow
synchronous dataflow

multidimensional SDF

PTOLEMY
KERNEL

discrete-event

Code generation domains

synchronous reactive
inite state machine

FIGURE 1-2: Domains available with Ptolemy 0.7

\ CG /

Block Geodesic

* initialize() * initialize()

e run() * setSourcePort()
« wrapup() « setDestPort()

Geodesic

PortHole Particle Particle

* initialize() * type()

* receiveData() * print()

« sendData() « initialize()
* type()

FIGURE 1-3: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.
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classes derived from kernel base classes to support this domain. These classes might be called
XXXStar , XXXUniverse , etc., as shown in figure 1-4.

The semantics of a domain are defined by classes that manage the execution of a spec-
ification. These classes could invoke a simulator, or could generate code, or could invoke a
sophisticated compiler. The base class mechanisms to support this are shown in figure 1-5. A
Target is the top-level manager of the execution. Similar Bloak , it has methods called
setup , run , andwrapup . To define a simulation domain callg®X for example, one would
define at least one object derived from Target that runs the simulation. As suggested by figure
1-5, a Target can be quite sophisticated. It can, for example, partition a simulation for parallel
execution, handing off the partitions to other Targets compatible with the domain.

A Target will typically perform its function via a Scheduler. The Scheduler defines the
operational semantics of a domain by controlling the order of execution of functional mod-
ules. Sometimes, schedulers can be specialized. For instance, a subset of the dataflow model
of computation called synchronous dataflow (SDF) allows all scheduling to be done at com-

XXXUniverse

Examples of Derived Classes

» class Star:: Block

¢ class XXXStar:: Star

« class Galaxy:: Block

* class Universe:: Galaxy, Runnable
» class XXXUniverse:: Universe

FIGURE 1-4: A complete Ptolemy application (a Universe) consists of a network of Blocks.
Blocks may be Stars (atomic) or Galaxies (composite). The “XXX" prefix symbol-
izes a particular domain (or model of computation).

Target:: Block

« initialize() / w \
» setup()
e run()

) Wrapup() Target

galaxy
scheduler
children

Caeneauer D )| Caonectuer
(& %

FIGURE 1-5: A Target, derived from Block, manages a simulation or synthesis execution. It c:
invoke it's own Scheduler on a Galaxy, which can in turn invoke Schedulers
sub-Targets.
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pile time. The Ptolemy kernel supports such specialization by allowing nested domains, as
shown in figure 1-6. For example, the SDF domain (see figure 1-2) is a subdomain of the BDF
domain. Thus, a scheduler in the BDF domain can handle all stars in the SDF domain, but a
scheduler in the SDF domain may not be able to handle stars in the BDF domain. A domain
may have more than one scheduler and more than one target.

1.5 Dataflow Models of Computation

One of the most mature domains included in the current system is the synchronous
dataflow (SDF) domain [Lee87a,b], which is similar to that used in Gabriel. This domain is
used for signal processing and communications algorithm development, and has particularly
good support for multirate algorithms [Buc91]. It has been used at Berkeley for instruction, at
both the graduate and undergraduate level [Lee92]. A dynamic dataflow (DDF) domain
extends SDF by allowing data-dependent flow of control, as in Blosim. Boolean dataflow
(BDF) [Buc93a,b,c] has a compile-time scheduler for dynamic dataflow graphs [Lee91a].

Several code-generation domains use dataflow semantics [Pin92][Mur93]. These
domains are capable of synthesis of C code, assembly code for certain programmable DSPs
[Won92], VHDL, and Silage [Kal93]. A significant part of the research that led to the develop-
ment of these domains has been concerned with synthesizing code that is efficient enough for
embedded systems [Bha93a,b,c][Bha94a,b][Buc93b,c]. A large amount of effort has also been
put into the automatic parallelization of the code [Ha91][Ha92][Sih93a,b], and on parallel
architectures that take advantage of it [Lee91b][Sri93].

A generalization of dataflow, called Kahn process networks [Kah74], has been realized
by Tom Parks in the PN domain [Par95].

1.6 Discrete-Event Models of Computation

A number of simulation domains with discrete-event semantics has been developed for
Ptolemy, but only the DE domain is released with Ptolemy 0.7. The DE domain is a generic
discrete-event modeling environment, useful for simulating queueing systems, communica-
tion networks, and hardware systems. The discrete-event domains no longer released with

XXXDomain

YYYDomain

FIGURE 1-6: A Domain (XXX) consists of a set of Stars, Targets and Schedulers that
support a particular model of computation. A sub-Domain (YYY) may sup-
port a more specialized model of computation.
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Ptolemy 0.7 are Thor [Tho88] for modeling circuits at the register-transfer level [Kal93], com-
municating processes (CP) for modeling large-scale systems at a high level of abstraction, and
message queue (MQ) for modeling a centralized network controller in a large-scale cell-relay
network simulations [La094].

1.7 Synchronous Reactive Modeling

The software analogy of synchronous digital circuits has been realized by Stephen
Edwards in the SR domain [Edw97]. This model of computation is better suited than dataflow
to control-intensive applications, and is more efficient than DE.

1.8 Finite State Machines

Another approach to designing control-intensive applications is to mix the new FSM
domain with dataflow, DE, or (in future releases) SR. The FSM domain is still very new and
has many limitations, but we believe that for the long term, it provides one of the most excit-
ing developments in the Ptolemy software.

1.9 Mixing Models of Computation

Large systems often mix hardware, software, and communication subsystems. The
hardware subsystems may include pre-fabricated components, such as custom logic, proces-
sors with varying degrees of programmaubility, systolic arrays, and multiprocessor subsystems.
Tools supporting each of these components are different, possibly using dataflow principles,
regular iterative algorithms, communicating sequential processes, control/dataflow hybrids,
functional languages, finite-state machines, and discrete-event system theory and simulation.

In Ptolemy, domains can be mixed and even nested. Thus, a system-level description
can contain multiple subsystems that are designed or specified using different styles. The ker-
nel support for this is shown in figure 1-7. An object ca&XWormhole in theXXXdomain
is derived fromxXXXStar , so that from the outside it looks just like a primitive in XX

XXXUniverse

/ XXXDomain
XXXWormhole

YYYDomain

EventHorizon

Particles

XXXfromUniversal YYYtoUniversal

XXXtoUniversal ‘

\_ )

FIGURE 1-7:  The universal EventHorizon provides an interface between the external and
internal domains.

YYYfromUniversal Particles
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domain. Thus, the schedulers and targets oK¥¥domain can handle it just as they would

any other primitive block. However, inside, hidden fromx&x domain, is another complete
subsystem defined in another domain, &y That domain gets invoked through Hetup |,

run , andwrapup methods oXXXWormhole. Thus, in a broad sense, the wormhole is poly-
morphic. The wormhole mechanism allows domains to be nested many levels deep, e.g. one
could have a DE domain within an SDF domain within a BDF domain. The FSM domain is
designed to always be used in combination with other domains.

1.10 Code Generation

Domains in figure 1-2 are divided into two classes: simulation and code generation. In
simulation domains, a scheduler invokes the run methods of the blocks in a system specifica-
tion, and those methods perform a function associated with the design. In code generation
domains, the scheduler also invokes the run methods of the blocks, but these run methods syn-
thesize code in some language. That is, they generate code to perform some function, rather
than performing the function directly. The Target then is responsible for generating the con-
necting code between blocks (if any is needed). This mechanism is very simple, and language
independent. We have released code generators for C, Motorola 56000 assembly, and VHDL
languages, as show in figure 1-2.

An alternative mechanism that is supported but less exploited in current Ptolemy
domains is for the target to analyze the network of blocks in a system specification and gener-
ate a single monolithic implementation. This is what we call compilation. In this case, the
primitive blocks Gtar s) must have functionality that is recognized by the target. In the previ-
ous code generation mechanisms, the functionality of the blocks is arbitrary and can be
defined by the end user.

1.11 Conclusion

In summary, the key idea in the Ptolemy project is to mix models of computation,
implementation languages, and design styles, rather than trying to develop one, all-encom-
passing technique. The rationale is that specialized design techniques are (1) more useful to
the system-level designer, and (2) more amenable to high-quality high-level synthesis of hard-
ware and software. The Ptolemy kernel demonstrates one way to mix tools that have funda-
mentally different semantics, and provides a laboratory for experimenting with such mixtures.

1.12 Current Directions

Since early 1995, a significant part of the Ptolemy project personnel have been pursu-
ing models of computations for control-intensive computation, particularly in combination
with compute-intensive subsystems, and mapping computation onto distributed architectures.
The two primary models for control-intensive computation are finite state machines and a syn-
chronous/reactive systems.

In late 1996, we shifted the focus of the project towards the design of distributed, net-
work-aware, adaptive applications. We expect that future releases of our software will be net-
work-savvy, including transparent HTTP support and mutable and migratable computations.
Fundamental work in the semantics of models of computation will of course continue to fuel
experiments with new domains and code generation techniques.

U. C. Berkeley Department of EECS
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1.13 Organization of the documentation

The Ptolemy documentation is divided into three volumes. This volume, the first, is a
user’s manual. It is sufficient for users who do not plan to extend the system by adding code. It
includes brief documentation of the most commonly used domains, and brief summaries of
stars, galaxies, and demonstration programs that are distributed with the system.

The second volume is a programmer’s manual. It includes chapters on writing new
stars, writing targets, defining customized user interfaces by writing new Tcl/Tk code, and
defining new domains. The third volume is the kernel manual. It details every C++ class
defined in the Ptolemy kernel. It also gives full documentation for the classes supporting code
generation. These classes provide the utilities used to build application-specific environments.

1.14 Acknowledgments

Ptolemy is a team effort in every sense. Here we acknowledge the key contributions,
and apologize for inadvertent omissions.

1.14.1 Personnel

The overall coordinators are Prof. Edward A. Lee and Prof. David G. Messerschmitt of
the EECS department at U. C. Berkeley, although there has also been involvement by the
groups of Profs. Rabaey, Brodersen, Linnartz, Kahn, Sangiovanni, and Gray. Professional
staff support has included Brian Evans, Alan Kamas, Christopher Hylands, John Reekie, Mary
Stewart, Kirk Thege, and Kevin Zimmerman. Software organization and project management
has been handled by Joseph Buck, Brian Evans, Alan Kamas, Christopher Hylands, Phil Laps-
ley, José Pino, John Reekie, and Kennard White.

Joseph Buck has been responsible for key management of the development of the ker-
nel, and hence has impacted every aspect of Ptolemy. He also coordinated many of the contri-
butions, and wrote the BDF domain, the interpretgcl (), and the originalptlang
preprocessor. He also designed the memory allocation system used by assembly language
code generation domains. Special thanks to Synopsys for allowing Joe to work on the 0.5
release after joining the company. Special thanks to Joe for his work on the 0.6 release.

Other key contributors to the kernel include Soonhoi Ha and Ichiro Kuroda. Soonhoi
Ha also wrote the DDF, DE, and CGC domains, including many of the basic stars and the
basic domain interface, and also made extensive contributions to the CG domain, the kernel,
and parallel schedulers of all types. Anindo Banerjea and Ed Knightly wrote the DE Sched-
uler that is based on the calendar queue mechanism developed by Randy Brown. This was
based on code written by Hui Zhang. Other significant contributions to the kernel have been
made by Wan-Teh Chang, Mike Chen, Paul Haskell, Asawaree Kalavade, Alireza Khazeni,
Tom Parks, José Pino, and Kennard White. Mike Chen wrote the matrix classes and the matrix
particles, based in part on a prototype supplied by Chris Yu (from the Naval Research Labora-
tories). Mike Chen also developed the MDSDF domain. Joe Buck, Asawaree Kalavade, Alan
Kamas, and Alireza Khazeni wrote the fixed-point particle class. Paul Haskell created the
image particle classes and developed many of the image and video signal processing demos.
Philip Bitar had impact on the design of the DE domain and on the visual style used in the
graphical interface. Brian Evans developed the interfaces to MATLAB and Mathematica, with
help from Steve Eddins at The MathWorks and Steve Gu, respectively.
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All code generation domains are based on a secondary kernel implemented as the CG
domain. Its principal creators are Joe Buck, Soonhoi Ha, Tom Parks, and José Pino. Kennard
White made major extensions to the ptlang preprocessor to support code generation domains.

José Pino has been primarily responsible for assembly code generation domains, and
Tom Parks for the C code generation domain, although extensive contributions have been
made by Joe Buck, Soonhoi Ha, Christopher Hylands, Praveen Murthy, S. Sriram, and Ken-
nard White. Chih-Tsung Huang, with help from José Pino, ported many of the assembly code
generation stars from Gabriel. Many people had contributed to the Gabriel stars, including Jeff
Bier, Martha Fratt, Wai Ho, Steve How, Phil Lapsley, Maureen O’Reilly, and Anthony Wong.
Brian Evans and Luis Gutierrez have enhanced the Motorola 56000 stars, demonstrations, and
targets, and S. Sriram has done the same for the Motorola 96000 stars. Patrick Warner wrote
the C code generation target for the Network Of Workstations distributed operating system by
Prof. Patterson’s group at U.C. Berkeley.

Shuvra Bhattacharyya and Joe Buck wrote the loop scheduling mechanism, and Bhat-
tacharyya contributed the Gantt chart display tool. The parallel schedulers were written by
Gilbert Sih and Soonhoi Ha, with significant contributions from Joe Buck, Tom Parks, José
Pino, and Kennard White. Praveen Murthy wrote the Sproc domain, used to generate parallel
assembly code for the Sproc multiprocessor DSP, and Kennard White wrote the CM-5 target,
used to generate parallel code for the connection machine from Thinking Machines, Inc.

Seungjun Lee and Tom Parks wrote the CP domain. Mike Williamson wrote the
VHDL domains. Ichiro Kuroda from NEC contributed to the state handling mechanism.

The graphical user interface was written by Edwin Goei, based orrthprogram,
written by David Harrison and Rick Spickelmier. It has been extensively modified by Alan
Kamas who has been responsible for the incorporation of Tcl/Tk into Ptolemy. The GUI has
been enhanced by Wan-Teh Chang, Wei-Jen Huang, Mario Silva and Kennard White. Andrea
Cassotto and Bill Bush have provided modifications and improvemeviésto

Christopher Hylands, Edward Lee, and John Reekie are the primary architects of the
Tycho interface [Hyl97]. Tycho, named after the astronomer Tycho Brahe, is written in [Incr
Tcl], an object-oriented extension of Tcl by Michael J. McLennan at AT&T Bell Labs. Signif-
icant development of Tycho has been contributed by Kevin Chang, Joel King, and Cliff Cordi-
ero. Wan-Teh Chang and Bilung Lee have developed graphical editors for finite state
machines. Code by Joseph Buck, Alan Kamas, and Douglas Niehaus originally written for
pigi have been reused in the Tycho kernel. Some contributions to Tycho were made by Brian
Evans.

Several people have had a major impact on the development of Ptolemy through their
major efforts on its predecessor, Gabriel. Phil Lapsley has had incalculable impact on the
directory structure, project management, documentation, and code generation efforts in
Ptolemy. The first version of the graphical interface was written by Holly Heine.

Many people have had an impact on the current release by contributing stars and/or
demo programs. These include, in addition to all the people mentioned above, Egbert
Ammicht (from AT&T Bell Labs), Rachel Bowers, Stefan DeTroch (from IMEC), Rolando
Diesta, Erick Hamilton, Wei-Yi Li, John Loh, and Gregory Walter. Others had an indirect
impact by contributing stars or demo programs to the predecessor program, Gabriel. These
include Jeff Bier, Martha Fratt, Eric Guntvedt, Mike Grimwood, Wai-Hung Ho, Steve How,
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Jonathan Lee, Brian Mountford, Maureen O’Reilly, Andria Wong, and Anthony Wong.

Ptolemy is very much an ongoing project, with current efforts expected to be included
in future releases. Participants will be acknowledged when their work is included in a release.

1.14.2 Support

The Ptolemy project is currently supported by the Defense Advanced Research
Projects Agency (DARPA), the State of California MICRO program, and the following com-
panies: The Alta Group of Cadence Design Systems, Dolby Laboratories, Hewlett Packard,
Hitachi, Hughes Space and Communications, LG Electronics, Lockheed Martin ATL, NEC,
Philips, Rockwell, and the Semiconductor Research Corporation.

Funding at earlier stages of the project was also provided by the National Science
Foundation (NSF), the Office of Naval Technology (ONT), via the Naval Research Labs
(NRL), AT&T, Bell Northern Research (BNR), Hughes Network Systems, Hughes Research
Laboratories, Mentor Graphics, Mitsubishi, Motorola, Sony, and Star Semiconductor.

In-kind contributions have been made by Ariel, Berkeley Camera Engineering, Phil-
ips, Spectrum Signal Processing, Synopsys, Signhal Technology Inc. (STI), Texas Instruments,
Wolfram Research, Inc., and Xilinx.

Other sponsors have contributed indirectly by supporting Gabriel, the predecessor.

1.14.3 Prior software

At every opportunity, we have built upon prior software, much of which we have been
permitted to redistribute together with our Ptolemy distribution. We wish to gratefully
acknowledge the following contributions:

 Theoct tools, written by the CAD group at U.C. Berkeley, under the direction of
Prof. Richard Newton, provide both the design databeisgHar86] and the graphi-
cal editorvem [Har86] foroct . The flexibility ofoct , which makes minimal assump-
tions about the data stored in the database, and the extensibildyn,ofhrough its
rpc interface, have allowed us to use this software in ways unexpected by the authors.

* Tcl/Tk, architected by Prof. John Ousterhout of U.C. Berkeley, has improved the user
interface in Ptolemy. The textual command-line Tcl interface [Ous90][Ous94] is the
basis for the Ptolemy interpretgcl , and the graphics toolkit Tk [Ous94] is the basis
for interactive graphics. Tcl serves a scripting language to control Ptolemy runs, and as
an interpreter to compute parameters. Since Tcl is a scripting language, casual users
have been able to extend Ptolemy’s interface. Tcl is robust and lightweight.

* [Incr Tcl], an object-oriented extension of Tcl written by Michael J. McLennan at
AT&T Bell Labs is used in Tycho.

« The Gnu tools, from the Free Software Foundation, have been instrumental in
Ptolemy’s development. The ability to distribute the compiler used in the development
of Ptolemy has been critical to the success of our dynamic linking mechanism. It
enables us to distribute a compiled executable together with the compiler that gener-
ated it. Thus, users lacking the skill or patience to recompile the Ptolemy system can
nonetheless take advantage of dynamic linking of new functional blocks. They can use
the same version of the compiler used to generate the executable, even if that version
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of the compiler is not the one installed by default on their own system.

e Xgraph, written by David Harrison, of the CAD group at U. C. Berkeley, has provided
the principal data display and presentation mechanism. Joe Buck modified this pro-
gram only slightly, to accept binary input in addition to ASCII. Its flexibility and well
conceived design have permitted us to use it for almost all data display. Only recently
have we augmented it with Tk-based animated displays.
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