
Chapter 9. PN domain

Authors: Thomas M. Parks

Other Contributors: Brian Evans
Christopher Hylands

9.1 Introduction
In the process network model of computation, concurrent processes communicate

through unidirectional first-in first-out channels. This is a natural model for describing signal
processing systems where infinite streams of data samples are incrementally transformed by a
collection of processes executing in sequence or in parallel. Embedded signal processing sys-
tems are typically designed to operate indefinitely with limited resources. Thus, we want to
execute process network programs forever with bounded buffering on the communication
channels whenever possible. [Par95]

The process network (PN) domain is an experimental implementation of process net-
work model of computation. The PN domain is a superset of the synchronous dataflow (SDF),
Boolean dataflow (BDF), and dynamic dataflow (DDF) domains, as shown in Figure 1-2.
Thus, any SDF, BDF, or DDF star can be used in the PN domain. In the dataflow subdomains,
stars represent dataflow actors, which consume and produce a finite number of particles when
they are fired. In the PN domain, stars represent processes, which consume and produce (pos-
sibly infinite) streams of particles. When a dataflow actor from the SDF, BDF or DDF domain
is used in a PN system, adataflow process is created that repeatedly fires that actor. A separate
thread of execution is created for each process. Thread synchronization mechanisms ensure
that a thread attempting to read from an empty input is automatically suspended, and threads
automatically wake up when data becomes available.

The current implementation of the PN domain is based on a user-level POSIX thread
library called Pthreads [Mue93,Mue95]. By choosing the POSIX standard, we improve the
portability of the PN domain. Several workstation vendors already include an implementation
of POSIX threads in their operating systems, such as Solaris 2.5 and HP-UX 10. Having
threads built into the operating system, as opposed to a user-level library implementation,
offers the opportunity for automatic parallelization on multiprocessor workstations. That is,
the same program would run on uniprocessor workstations and multiprocessor workstations
without needing to be recompiled. When multiple processors are available, multiple threads
can execute in parallel. Even on uniprocessor workstations, multi-threaded execution offers
the advantage that communication can be overlapped with computation.

9.2 Process networks
Kahn describes a model of computation where processes are connected by communi-

cation channels to form a network [Kah74,Kah77]. Processes produce data elements ortokens
and send them along a unidirectional communication channel where they are stored in a first-
in first-out order until the destination process consumes them. Communication channels are

9-2 PN domain

U. C. Berkeley Department of EECS

theonly method processes may use to exchange information. A set of processes that commu-
nicate through a network of first-in first-out queues defines aprogram.

Kahn requires that execution of a process be suspended when it attempts to get data
from an empty input channel. A process may not, for example, examine an input to test for the
presence or absence of data. At any given point, a process is eitherenabled or it is blocked
waiting for data ononly one of its input channels: it cannot wait for data from one channelor
another. Systems that obey Kahn's model aredeterminate: the history of tokens produced on
the communication channels do not depend on the execution order [Kah74]. Therefore, we
can apply different scheduling algorithms without affecting the results produced by executing
a program.

9.2.1 Dataflow process networks

Dataflow is a model of computation that is a special case of process networks. Instead
of using the blocking read semantics of Kahn process networks, dataflow actors have firing
rules. These firing rules specify what tokens must be available at the inputs for the actor to
fire. When an actor fires, it consumes some finite number of input tokens and produces some
finite number of output tokens. For example, when applied to an infinite input stream a firing
functionf may consume just one token and produce one output token:

To produce an infinite output stream, the actor must be fired repeatedly. A process
formed from repeated firings of a dataflow actor is called adataflow process [Lee95]. The
higher-order functionmap converts an actor firing functionf into a process:

A higher-order function takes a function as an argument and returns another function.
When the function returned by is applied to the input stream the result
is a stream in which the firing functionf is applied point-wise to each element of the input
stream. Themap function can also be described recursively using the stream-building function
cons, which inserts an element at the head of a stream:

The use of map can be generalized so thatf can consume and produce multiple tokens
on multiple streams [Lee95].

Breaking a process down into smaller units of execution, such as dataflow actor fir-
ings, makes efficient implementations of process networks possible. The SDF, BDF, and DDF
domains implement dataflow process networks by scheduling the firings of dataflow actors.
The actor firings of one dataflow process are interleaved with the firings of other processes in
a sequence that guarantees the availability of tokens required for each firing. In the PN
domain, a dataflow process is created for each dataflow actor. A separate thread of execution
is created for each process, and the interleaving of threads is performed automatically. Unlike
the dataflow domains, the firing of a dataflow actor isnot an atomic operation in the PN
domain. Because the scheduler does not guarantee the availability of tokens, the firing of an
actor can be suspended if it attempts to read data from an empty input channel.

f x1 x2 x3, , …[,]() f x1()=

map f() x1 x2 x3, , …[,] f x()1 f x()2 f x()3, , …[,]=

map f() x1 x2 x3, , …[,]

map f() x1 x2 x3, , …[,] cons f x1() map f() x2 x3, …[,],()=

The Almagest 9-3

Ptolemy Last updated: 12/1/97

9.2.2 Scheduling dataflow process networks

Because Kahn process networks are determinate, the results produced by executing a
program are unaffected by the order in which operations are carried out. In particular, dead-
lock is a property of the program itself and does not depend on the details of scheduling.
Buffer sizes for the communication channels, on the other hand, do depend on the order in
which read and write operations are carried out.

For Kahn process networks, no finite-time algorithm can decide whether or not a pro-
gram will terminate or require bounded buffering. Since we are interested in programs that
will never terminate, a scheduler has infinite time to decide these questions. Parks [Par95]
developed a scheduling policy that will execute arbitrary Kahn process networks forever with
bounded buffering when possible. To enforce bounded buffering, Parks limits channel capaci-
ties, which places additional restrictions on the order of read and write operations. Parks
reduces the set of possible execution orders to those where the buffer sizes never exceed the
capacity limits. In this approach, execution of the entire program comes to a stop each time we
encounter artificial deadlock, which can severely limit parallelism. Artificial deadlock occurs
when the capacity limits are set too low, causing some processes to block when writing to a
full channel. All scheduling decisions are made dynamically during execution.

9.2.3 Iterations in the PN domain

In a complete execution of a program, the program terminates if and only if all pro-
cesses block attempting to consume data from empty communication channels. Often, it is
desirable to have a partial execution of a process network. An iteration in the PN domain is
defined such that no actor in a dataflow process will fire more than once. Some actors may not
fire, or may fire partially in an iteration if insufficient tokens are available on their inputs.

9.3 Threads
The PN domain creates a separate thread of execution for each node in the program

graph. Threads are sometimes called lightweight processes. Modern operating systems, such
as Unix, support the simultaneous execution of multiple processes. There need not be any
actual parallelism. The operating system can interleave the execution of the processes. Within
a single process, there can be multiple lightweight processes or threads, so there are two levels
of multi-threading. Threads share a single address space, that of the parent process, allowing
them to communicate through simple variables (shared memory). There is no need for more
complex, heavyweight inter-process communication mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive access
to shared data and cannot interfere with one another to corrupt shared data structures. Moni-
tors and condition variables are available to synchronize the execution of threads. A monitor is
an object that can be locked and unlocked. Only one thread may hold the lock on the monitor.
If a thread attempts to lock a monitor that is already locked by another thread, then it will be
suspended until the monitor is unlocked. At that point, it wakes up and tries again to lock the
monitor. Condition variables allow threads to send signals to each other. Condition variables
must be used in conjunction with a monitor; a thread must lock the associated monitor before
using a condition variable.

9-4 PN domain

U. C. Berkeley Department of EECS

9.4 An overview of PN stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all the installed domains. For the PN domain, the star
library is small enough that it is easily contained entirely in one palette, shown in figure 9-1

Many of these stars are re-implementations of similarly named stars in the SDF and DDF
domains. These implementations take advantage of the multi-threaded nature of execution in
the PN domain.

Commutator Takes N input streams (where N is the number of inputs) and
synchronously combines them into one output stream. It con-
sumes B particles from an input (where B is the blockSize), and
produces B particles on the output, then it continues by reading
from the next input. The first B particles on the output come
from the first input, the next B particles from the next input, etc.

Distributor Takes one input stream and splits it into N output streams,
where N is the number of outputs. It consumes B input parti-
cles, where B = blockSize, and sends them to the first output. It
consumes another B input particles and sends them to the next

FIGURE 9-1: The palette of stars for the PN domain.

EndCase

Last

LastOfN

DDF
DDF

BDF
BDF

SDF
main.pal

HOF
hof.pal

Commutator Distributor DelayInt

Merge

IncrementInt

ModuloInt

divisible

notDivisible

Sift

Subdomains

The Almagest 9-5

Ptolemy Last updated: 12/1/97

output, etc.

DelayInt An initializable delay line.

EndCase Depending on the “control” particle, consume a particle from
one of the data inputs and send it to the output. The value of the
control particle should be between zero and N-1, where N is the
number of data inputs.

LastOfN Given a control input with integer value N, consume N particles
from the data input and produce only the last of these at the out-
put.

Merge Merge two increasing sequences, eliminating duplicates.

IncrementInt Increment the input by a constant.

ModuloInt Divides the input stream into a stream of numbers divisible by
N and another stream of numbers that are not divisible by N.

9.5 An overview of PN demos
There are two subpalettes of PN domain demos, a palette of examples from papers by

Gilles Kahn and David B. MacQueen, and a palette of examples from the Ph.D. thesis of Tho-
mas M. Parks. The top-level palette for demos in the Process Network domain is shown in fig-
ure 9-2. The subpalettes are described below.

9.5.1 Examples from papers by Gilles Kahn and David B. MacQueen

These demos are examples from papers by Gilles Kahn and David B. MacQueen. The

FIGURE 9-2: The top-level palette for PN demos.

Kahn.pal

Parks.pal

Process Network Domain
This domain runs under SunOS4 and

Solaris2.x only. Eventually, it should run
under other architectures, such as
HPUX-10.x, Linux and FreeBSD.

Examples from papers by
Gilles Kahn and David B. MacQueen.

Examples from the PhD thesis of
Thomas M. Parks.

9-6 PN domain

U. C. Berkeley Department of EECS

palette is shown in figure 9-3.

Kahn74fig2 Produce a stream of 0’s and 1’s. This demo is from figure 2 in
[Kah74].

Kahn77fig3-opt Sieve of Eratosthenes with non-recursive sift process. This
example shows how process networks can change dynamically
during execution. The sift process inserts new filter processes to
eliminate multiples of newly discovered primes. This demo is
from figure 3 in [Kah77].

eratosthenes Compare this DDF domain demo with the Kahn77fig3-opt
demo above.

Kahn77fig4 Produce a sequence of integers of the form 2a3b5c. An
unbounded number of tokens accumulate in the communication
channels as execution progresses. This demo is from figure 4 in
[Kah77].

Kahn77fig4-opt Produce a sequence of integers of the form 2a3b5c with optimi-
zations to avoid generating duplicate values. An unbounded
number of tokens accumulate in the communication channels as
execution progresses. This demo is from figure 4 in [Kah77].

FIGURE 9-3: PN domain demos of examples from papers by Gilles Kahn and David B. MacQueen

Kahn74fig2

0101...

Primes

eratosthenesKahn77fig3-opt

Primes

Kahn77fig4

 a b c
2 3 5

Kahn77fig4-opt

 a b c
2 3 5

Compare the PN
and DDF versions.

DDFPN

Examples from [Kahn74] and [Kahn77].

Gilles Kahn, "The Semantics of a Simple Language
for Parallel Programming", Information Processing,
North-Holland Publishing Company, pp 471-475, 1974.

[Kahn74]

Gilles Kahn and David B. MacQueen, "Coroutines
and Networks of Parallel Processes," Information
Processing, North-Holland Publishing Company,
pp 993-998, 1977.

[Kahn77]

The Almagest 9-7

Ptolemy Last updated: 12/1/97

9.5.2 Examples from the Ph.D. thesis of Thomas M. Parks

These demos are examples from the Ph.D. thesis of Thomas M. Parks. The palette is
show in figure 9-4.

Parks95fig3.5 Merge two streams of monotonically increasing integers (multi-
ples of 2 and 3) to produce a stream of monotonically increas-
ing integers with no duplicates. Simple data-driven execution of
this example would result in unbounded accumulation of
tokens, while demand-driven execution requires that only a
small number of tokens be stored on the communication chan-
nels. This demo is from figure 3.5 in [Par95].

Parks95fig3.11 Separate a stream of monotonically increasing integers into
those values that are and are not evenly divisible by 3. Simple
demand-driven execution of this example would result in
unbounded accumulation of tokens, while data-driven execution
requires that only a small number of tokens be stored on the
communication channels. This demo is from figure 3.11 in
[Par95].

Parks95fig4.1 Separate an increasing sequence of integers into those values
that are and are not evenly divisible by 5, then merge these two
streams to reproduce a stream of increasing integers. Simple
data-driven or demand-driven execution of this example would
result in unbounded accumulation of tokens. This demo is from
figure 4.1 in [Par95].

Parks95fig3.5 Parks95fig3.11 Parks95fig4.1

Examples from [Parks95].

Thomas M. Parks, Bounded Scheduling of Process Networks,
Technichal Report UCB/ERL-95-105, PhD Dissertation,
EECS Department, University of California, Berkeley,
December 1995.

Parks95]

FIGURE 9-4: PN domain demos of examples from the Ph.D. thesis of Thomas M. Parks.

9-8 PN domain

U. C. Berkeley Department of EECS

