
Chapter 3. ptcl: The Ptolemy
Interpreter

Authors: Joseph T. Buck
Wan-Teh Chang
Edward A. Lee

Other Contributors: Brian L. Evans
Christopher Hylands

3.1 Introduction
There are two ways to use Ptolemy: as aninterpreter and agraphical user interface.

The Ptolemy Tcl interpreterptcl conveniently operates on dumb terminals and other envi-
ronments where graphical user interfaces may not be available, and is described in this chap-
ter. The Ptolemy graphical user interfacepigi is described in chapter 2. Whenpigi is run
with the -console option, a ptcl window will appear. This combination allows the user to
interact with Ptolemy using both graphical and textual commands. Invokingtycho , the
Ptolemy syntax manager also brings up a ptcl interpreter window. To invoketycho from
pigi , move the mouse over a facet and type ay.

In Ptolemy 0.7, thetysh binary contains a prototype of a new interface to the kernel
called pitcl. If you starttycho with the-pigi , -ptrim , or -ptiny options, then you will be
running pitcl, not ptcl. Pitcl is not backward compatible with ptcl, and the pitcl interface is
bound to change over time. See the Tycho documentation in$TYCHO/typt/doc/inter-
nals/pticl.html for further information.

The Ptolemy interpreter,ptcl , accepts input commands from the keyboard, or from a
file, or some combination thereof. It allows the user to set up a new simulation by creating
instances of blocks (stars, galaxies, or wormholes), connecting them together, setting the ini-
tial values of internal parameters and states, running the simulation, restarting it, etc. It allows
simulations to be run in batch mode. We have used batch mode simulation to run regression
tests that compare runs from different versions of Ptolemy.

Ptcl is based on John Ousterhout’s Tcl (tool command language), which is an exten-
sible interpreted language. All the commands of Tcl are available inptcl . This interface is
more convenient than the graphical interface when large complex universes are being created
automatically by some other program. Some users also find it more convenient when using a
symbolic debugger to debug a new piece of code linked to Ptolemy.

Ptcl extends the Tcl interpreter language by adding new commands. The underlying
grammar and control structure of Tcl are not altered. Commands in Tcl have a simple syntax:
a verb followed by arguments. This document will not explain Tcl; please refer to the manual
entry at$PTOLEMY/tcltk/itcl/html/tcl7.6/Tcl.n.html which is included with the
Ptolemy distribution. Two other excellent references on Tcl are books by Ousterhout [Ous94]

3-2 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

and Welch [Wel95]. This chapter describes only the extensions to Tcl made byptcl .

3.2 Getting started
Follow the instructions in the section “Setup” on page 2-1. Now typeptcl to invoke

the Ptolemy interpreter. It is also possible to specify a file of interpreter commands as a com-
mand line argument. See “Loading commands from a file” on page 3-13.

3.3 Global information
The interpreter has aknown list containing all the classes of stars and galaxies it cur-

rently knows about. New stars can be added to the known list at run time only by using the
incremental linking facility, but this has restrictions (see thelink command below). You can
also make your own copy of the interpreter with your own stars linked in. Galaxies, however,
are easy to add to the known list (see thedefgalaxy command below).

The interpreter also has acurrent galaxy. Normally, this is the most recently defined
universe, or the most recent universe specified with thecuruniverse command. During the
execution of adefgalaxy command, which defines a galaxy, the current galaxy is set to be
the galaxy being defined. After the closing curly brace of thedefgalaxy command, the cur-
rent galaxy is reset to the previous current universe.

3.4 Commands for defining the simulation
This section describes commands to build simulations and add stars, galaxies, states,

and the connections among them. The commands are summarized in tables 3-1, 3-2 and 3-3.

3.4.1 Creating and deleting universes

The command

univlist

will return the list of names of universes that currently exist. The command

newuniverse ? name? ?dom?

creates a new, empty universe namedname (default “main”) and makes it the current universe
with domaindom (default current domain). If there was previously a universe with this name,
it is deleted. Whatever universe was previously the current universe is not affected, unless it
was namedname. To remove a universe, simply issue the command:

deluniverse ? name?

If no argument is given, this will delete the current universe. After this, the current universe
will be “main.” To find out what the current universe is, issue the command:

curuniverse

With no arguments, this returns the name of the current universe. With one argument, as in:

curuniverse name

it will make the current universe name equal to that argument. A universe can be renamed
using either syntax below:

renameuniv newname

The Almagest 3-3

Ptolemy Last updated: 12/1/97

renameuniv oldname newname

With one argument,renameuniv renames the current universe tonewname. With two argu-
ments, it renames the universe namedoldname to newname. Note that any existing universe
namednewname is deleted.

3.4.2 Setting the domain

Ptolemy supports multiple simulation domains. Before creating a simulation environ-
ment and running it, it is necessary to establish the domain. The interpreter has acurrent
domain which is initially the default domainSDF. The command

domain domain-name

changes the current domain; it is only legal when the current galaxy is empty. The argument
must be the name of a known domain. The command

TABLE 3-1: First third of the summary of ptcl commands. Arguments are in italic; literals are in
Courier ; optional arguments are enclosed in question marks. A block name is indi-
cated by b1 or b2 and a port name by p1 or p2.

command arguments description page

alias galport b1 p1 Connect a galaxy port to a block port. 3-6

animation ?on | off? Enable or disable printing of star names as they fire. 3-11

busconnect b1 p1 b2 p2 w
?delay?

Form a bus connection of widthw between two multi-
portholes.

3-6

cancelAc-
tion

action_handle Cancel an action previously registered usingregisterAc-
tion.

3-15

cd directory Change the current directory to the one given. 3-14

connect b1 p1 b2 p2 ?delay? Form a connection between two portholes. 3-5

cont ?num? Continue executing the current universenum times
(default: 1).

3-10

curuniverse ?name? Print or set the name of the current universe. 3-2

defgalaxy name{ body} Define a new galaxy class. 3-8

delnode name Delete the named node from the current galaxy. 3-12

delstar name Delete the named star from the current galaxy. 3-11

deluniverse ?name? Delete the current or named universe. 3-2

descriptor ?block? Return the descriptor ofblock (default: current galaxy). 3-9

disconnect b1 p1 Remove the connection going to the specified port. 3-11

domain ?name? Set the domain, or print the name of the current domain. 3-3

domains List the known domains. 3-3

exit Exit ptcl. 3-15

halt Request that the current simulation stop. 3-10

help ?command? Print a short description ofcommand, or help onhelp if
the argument is omitted.

3-15

knownlist ?domain? List the known blocks ofdomain (default: current
domain).

3-9

3-4 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

domain

returns the current domain. It is possible to create wormholes—interfaces between domains—
by including adomain command inside a galaxy definition. The command

domains

lists the domains that are currently linked into the interpreter.

3.4.3 Creating instances of stars and galaxies

The first step in any simulation is to define the blocks (stars and galaxies) to be used in
the simulation. The command

star name class

creates a new instance of a star or galaxy of classclass, names itname, and inserts it into the
current galaxy. Any states in the star (or galaxy) are created with their default values. While it
is not enforced, the normal naming convention is thatname begin with a lower case letter and
class begin with an upper case letter (this makes it easy to distinguish instances of a class

command arguments description page

link objfile Incrementally linkobjfile into ptcl. 3-14

listobjs class ?name? List states, ports, or multiports in the named block (default:
current galaxy).

3-9

matlab command ?arg1?
?arg2?

Manage a Matlab process and evaluate Matlab commands. 3-16

mathematica command ?arg1?
?arg2?

Manage a Mathematica process and evaluate commands. 3-16

multilink linker_args code.oLink arbitrary code into the interpreter. 3-14

newstate name type value Define a state for the current galaxy with a default value. 3-6

newuniverse ?name? ?domain?Create a new empty universe (defaults: “main” and the cur-
rent domain).

3-2

node name Create a node for use bynodeconnect. 3-6

nodeconnect b1 p1 node
?delay?

Connect a porthole to a specified node. 3-6

numports b1 p1 number Force a multiporthole to have a given number of portholes. 3-7

permlink linker_args code.oLink arbitrary code into the interpreter permanently. 3-14

pragma b1 b2 name value Set pragmaname to value for blockb2 in parentb1. 3-12

pragmaDe-
faults

target print default values of the pragmas for the target 3-12

print ?b1? print a description of blockb1 (or the current galaxy) 3-9

TABLE 3-2: Second third of the summary of ptcl commands. Arguments are in italic; literals
are in Courier ; optional arguments are enclosed in question marks. A block name
is indicated by b1 or b2 and a port name by p1 or p2.

The Almagest 3-5

Ptolemy Last updated: 12/1/97

from the class itself).

3.4.4 Connecting stars and galaxies

The next step is to connect the blocks so that they can pass data among themselves
using theconnect command. This forms a connection between two stars (or galaxies) by
connecting their portholes. A porthole is specified by giving the star (or galaxy) name fol-
lowed by the port name within the star. The first porthole must be an output porthole and the
second must be an input porthole. For example:

connect mystar output yourstar input

The connect command accepts an optional integer delay parameter. For example:

connect mystar output yourstar input 1

This specifies one delay on the connection. The delay parameter makes sense only for

TABLE 3-3: Final third of the summary of ptcl commands. Arguments are in italic; literals are in
Courier ; optional arguments are enclosed in question marks. A block name is indi-
cated by b1 or b2 and a port name by p1 or p2.

command arguments description page

registerAc-
tion

pre | post
command

Register a Tcl command to be executed before or after
stars fire.

3-15

renameuniv ?oldname?
newname

Rename a universe (default: current universe). 3-2

reset ?name? Empty a universe (default: “main”). 3-11

run ?num? Run the current universenum times (default: 1). 3-10

schedtime ?actual? Print the normalized (default) or unnormalized current
scheduler time.

3-11

schedule Generate and print a schedule (only valid for some
domains).

3-10

seed number Change or print the random number seed. 3-13

setstate b1 state_name valueChange the state of a block tovalue. 3-7

source filename Read commands from the specified file. 3-13

star name class Create a named instance of a star from the given class. 3-4

stoptime Return the stop time of the current run. 3-10

statevalue b1 name
?current |
initial?

Print the current or initial value of statename in block
b1.

3-15

target ?newtarget? Change or display the name of the current target. 3-12

targetparam name ?value? Change or display the value of a target state. 3-12

targets ?domain? List targets usable withdomain (default: current
domain).

3-12

topblocks ?block_or_classnam
e?

List top-level blocks of the named block (default: cur-
rent galaxy).

3-15

univlist List the names of all defined universes. 3-2

wrapup Invoke the wrapup method of all the blocks. 3-10

3-6 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

domains that support it. The delay argument may be an integer expression with variables
referring to galaxy parameters as well.

One or both of the portholes may really be aMultiPortHole . If so, the effect of
doing the connect is to create a new porthole within theMultiPortHole and connect to that
(see also thenumports command).

3.4.5 Netlist-style connections

As an alternative to issuing connect commands (which specify point-to-point connec-
tions) you may specify connections in a netlist style. This syntax is used to connect an output
to more than one input, for example (this is calledauto-forking). Two commands are provided
for this purpose. Thenode command creates a node:

node nodename

Thenodeconnect command connects a porthole to a node:

nodeconnect starname portname nodename ?delay?

Any number of portholes may be connected to a node, but only one of them can be an output
node.

3.4.6 Bus connections between MultiPortHoles

A pair of multiportholes can be connected with a bus connection, which means that
each multiporthole hasN portholes and they all connect in parallel to the corresponding port
in the other multiporthole. The syntax for creating such connections is

busconnect srcstar srcport dststar dstport width ?delay?

Herewidth is an expression specifying the width of the bus (how many portholes in the mul-
tiportholes); anddelay is an optional expression giving the delay on each connection. The
other arguments are identical to those of theconnect command.

3.4.7 Connecting internal galaxy stars and galaxies to the outside

When you define a new galaxy there are typically external connections to that galaxy
that need to be connected through to internal blocks. Thealias command is used to add a
porthole to the current galaxy, and associate it with an input or output porthole of one of the
contained stars within the galaxy. An example is:

alias galaxyin mystar starin

This also works ifstarin is aMultiPortHole (the galaxy will then appear to have a multi-
porthole as well).

3.4.8 Defining parameters and states for a galaxy

A state is a piece of data that is assigned to a galaxy and can be used to affect its
behavior. Typically the value of a state is coupled to the state of blocks within the galaxy,
allowing you to customize the behavior of blocks within the galaxy. Aparameter is the initial
value of a state. Thenewstate command adds a state to the current galaxy. The form of the
command is

newstate state-name state-class default-value

Thestate-name argument is the name to be given to the state. Thestate-class argument

The Almagest 3-7

Ptolemy Last updated: 12/1/97

is the type of state. All standard types are supported (see table 2-6 on page 2-33). The
default-value argument is the default value to be given to the state if the user of the galaxy
does not change it (using thesetstate command described below). Thedefault-value
specifies the initial value of the state, and can be an arbitrary expression involving constant
values and other state names; this expression is evaluated when the simulation starts. The fol-
lowing state names are predefined:YES, NO, TRUE, FALSE, PI . YES andTRUE have value 1;
NO andFALSE have value 0;PI has the value 3.14159... Some examples are:

newstate count int 3
newstate level float 1.0
newstate title string "This is a title"
newstate myfreq float galaxyfreq
newstate angularFreq float "2*PI*freq"

The full syntax of state initial value strings depends on the type of state, and is explained in
“Parameters and states” on page 2-14.

3.4.9 Setting the value of states

Thesetstate command is used to change the value of a state. It can be used in three
contexts:

 • Change the value of a state for a star within the current galaxy.

 • Change the value of a state for a galaxy within the current galaxy.

 • Change the value of a state within the current galaxy.

The latter would normally be used when you want to perform multiple simulations using dif-
ferent parameter values. The syntax forsetstate is:

setstate block-name state-name value

Here,

 • block-name is either the name of a star or a galaxy that is inside the current galaxy,
and it is the block for which the value of the state is to be changed. It can also bethis ,
which says to change a state belonging to the current galaxy itself.

 • state-name is the name of a state which you wish to change.

 • value is the new value for the state. The syntax forvalue is the same as described in
the newstate command. However, the expression forvalue may refer to the name
of one or more states in the current galaxy or an ancestor of the current galaxy.

An example of the use ofsetstate is given in the section describingdefgalaxy below.

3.4.10 Setting the number of ports to a star

Some stars in Ptolemy are defined with an unspecified number of multiple ports. The
number of connections is defined by the user of the star rather than the star itself. Thenum-
ports command applies to stars that contain suchMultiPortHole s; it causes a specified
number ofPortHole s to be created within theMultiPortHole . The syntax is

numports star portname n

wherestar is the name of a star within the current galaxy,portname is the name of aMul-

3-8 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

tiPortHole in the star, andn is an integer, representing the number ofPortHole s to be cre-
ated. After the portholes are created, they may be referred to by appending#i , wherei is an
integer, to the multiporthole name, and enclosing the resulting name in quotes. The main rea-
son for using this command is to allow the portholes to be connected in random order. Here is
an example:

star summer Add
numports summer input 2
alias galInput summer "input#1"
connect foo output summer "input#2"

3.4.11 Defining new galaxies

Thedefgalaxy command allows the user to define a new class of galaxy. The syntax
is

defgalaxy class-name {
command
command
...

}

Hereclass-name is the name of the galaxy type you are creating. While it is not required,
we suggest that you have the name begin with a capital letter in accordance with our standard
naming convention — class names begin with capital letters. Thecommand lines may be any
of the commands described above —star , connect , busconnect , node , nodeconnect ,
numports , newstate , setstate , or alias . The defined class is added to the known list,
and you can then create instances of it and add them to other galaxies. An example is:

reset
domain SDF
defgalaxy SinGen {

domain SDF
The frequency of the sine wave is a galaxy parameter
newstate freq float "0.05"
Create a star instance of class "Ramp" named "ramp"
star ramp Ramp
The ramp advances by 2*pi each sample
setstate ramp step "6.283185307179586"
Multiply the ramp by a value, setting the frequency
star gain Gain
The multiplier is set to "freq"
setstate gain gain "freq"
Finally the sine generator
star sin Sin
connect ramp output gain input
connect gain output sin input
The output of "sin" becomes the galaxy output
alias output sin output

}

In this example, note the use of states to allow the frequency of the sine wave generator to be
changed. For example, we could now run the sine generator, changing its frequency to “0.02”,

The Almagest 3-9

Ptolemy Last updated: 12/1/97

with the interpreter input:
star generator SinGen
setstate generator freq "0.02"
star printer Printer
connect generator output printer input
run 100

You may include adomain command within adefgalaxy command. If the inside domain is
different from the outside domain, this creates an object known as aWormhole , which is an
interface between two domains. An example of this appears in a later section.

3.5 Showing the current status
The following commands display information about the current state of the interpreter.

3.5.1 Displaying the known classes

The knownlist command returns a list of the classes of stars and galaxies on the
known list that are usable in the current domain. The syntax is

knownlist

It is also possible to ask for a list of objects available in other domains; the command

knownlist DE

displays objects available in theDE (discrete event) domain.

3.5.2 Displaying information on a the current galaxy or other class

If invoked without an argument, theprint command displays information on the cur-
rent galaxy. If invoked with an argument, the argument is either the name of a star (or galaxy)
contained in the current galaxy, or the name of a class on the known list, and information is
shown about that star (or galaxy). The syntax is

print
print star-name
print star-class

The command

descriptor ? name?

will print a short description of a block in the current galaxy or on the known list, or of the
current galaxy ifname is omitted. The commands

listobjs states ? name?
listobjs ports ? name?
listobjs multiports ? name?

will list the names of the states, ports, or multiportholes associated with the named star or gal-
axy.

3.6 Running the simulation
Once a simulation has been constructed using the commands previously described

(also see thesource command in “Loading commands from a file” on page 3-13), use the

3-10 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

commands in this section to run the simulation.

3.6.1 Creating a schedule

Theschedule command generates and returns the schedule (the order in which stars
are invoked). For domains such as DE, this command returns a not-implemented message
(since there is no “compile time” DE schedule as there is for SDF). The syntax is:

schedule

3.6.2 Running the simulation

The run command generates the schedule and runs itn times, wheren is the argu-
ment (the argument may be omitted; its default value is 1). For the DE interpreter, this com-
mand runs the simulation forn time units, andn may be a floating point number (default 1.0).
If this command is repeated, the simulation is started from the beginning. If animation is
enabled, the full name of each star will be printed to the standard output when the star fires.
The syntax is:

run
run n

3.6.3 Continuing a simulation

The cont command continues the simulation forn additional steps, or time units. If
the argument is omitted, the default value of the argument is the value of the last argument
given to arun or cont command (1.0 if no argument was ever given). The syntax is

cont
cont n

3.6.4 Wrapping up a simulation

Thewrapup command calls the wrapup method of the current target (which, as a rule,
will call thewrapup method of each star), signaling the end of the simulation run. The syntax
is

wrapup

3.6.5 Interrupting a simulation

The command

halt

requests a halt of the currently executing simulation. Note that the halt does not occur immedi-
ately. This merely registers the request with the scheduler. This is especially useful within Tcl
stars.

3.6.6 Obtaining the stop time of the current run

The command

stoptime

returns the time until which the current simulation will run. Tcl/Tk stars can use this com-
mand in their setup or go methods to find out the stop time of the current run.

The Almagest 3-11

Ptolemy Last updated: 12/1/97

3.6.7 Obtaining time information from the scheduler

The command

schedtime

returns the current time from the top-level scheduler of the current universe. If the target has a
parameter named “schedulePeriod”, then the returned time is divided by this value. The com-
mand

schedtime actual

returns the scheduler time without dividing by “schedulePeriod.”

In SDF,schedtime actual should return the number of iterations. In SDF, “sched-
ulePeriod” is usually set to 0, since in SDF has no notion of time, and to a timed domain, such
as DE, SDF universes appear to fire instantaneously.

3.6.8 Animating a simulation

Theanimation command can be used to display on the standard output the name of
each star as it runs. The syntax

animation on

enables animation, while

animation off

disables it. The syntax

animation

simply tells you whether animation is enabled or disabled.

3.7 Undoing what you have done
The commands in this section remove part or all of the structure you have built with

previous commands.

3.7.1 Resetting the interpreter

The reset command replaces the universemain or a named universe by an empty
universe. Anydefgalaxy definitions you have made are still remembered. The syntax is

reset
reset universe_name

3.7.2 Removing a star

Thedelstar command removes the named star from the current galaxy. The syntax
is

delstar name

wherename is the name of the star.

3.7.3 Removing a connection

Thedisconnect command reverses the effect of a previousconnect or nodecon-
nect command. The syntax is

3-12 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

disconnect starname portname

wherestarname andportname , taken together, specify one of the two connected portholes.
Note that you can disconnect by specifying either end of a porthole for a point-to-point con-
nection.

3.7.4 Removing a node

Thedelnode command removes a node from the current galaxy. Syntax:

delnode node

3.8 Targets
Ptolemy uses a structure called atarget to control the execution of a simulation, or, in

code generation, to control code generation, compilation, and execution. There is always a tar-
get; by default (if you issue no target commands), your target will have the namedefault-
XXX, whereXXX is replaced by the name of the current domain. Alternative targets for simula-
tion can be used to specify different behavior (for example, to use a different scheduler or to
analyze a schematic rather than running a simulation). For code generation, the target contains
information about the target of compilation, and has methods for downloading code and start-
ing execution.

3.8.1 What targets are available?

The command

targets

returns the list of targets available for the current domain. The command

targets domain

returns the list of targets available fordomain.

3.8.2 Changing the target

The command

target

displays the target for the current universe or current galaxy, together with its parameters.
Specifying an argument, e.g.

target new-target-name

changes the target tonew-target-name .

3.8.3 Changing target parameters

Target parameters may be queried or changed with thetargetparam command. The syntax
is

targetparam param-name ? new-value ?

3.8.4 Pragmas

Ptolemy can use target pragmas as a generalization of the attribute mechanism to
inform the target of the user’s wishes. The Dynamic Dataflow (DDF) domain uses pragmas to

The Almagest 3-13

Ptolemy Last updated: 12/1/97

specify the number of firings of a star required in one iteration. The C Code Generation
(CGC) domain uses pragmas to identify any parameters that the user would like to change on
the command line. See “Setting Parameters Using Command-line Arguments” on page 14-4.

pragma b1 b2 name value

Set pragmaname to value for blockb2 in parentb1.

pragmaDefaults target

Print the default values of the pragmas for the target.

3.9 Miscellaneous commands
This section describes the remaining interpreter commands.

3.9.1 Loading commands from a file

For complicated simulations it is best to store your interpreter commands—at least
those defining the simulation connectivity—in a file rather than typing them into the inter-
preter directly. This way you can run your favorite editor in one window and run the inter-
preter from another window, easily modifying the simulation and also keeping a permanent
record. Two exceptions to this are changing states using thesetstate command and running
and continuing the simulation usingrun andcont —this is normally done interactively with
the interpreter.

Thesource command reads interpreter commands from the named file, until the end
of the file or a syntax error occurs. The “#” character indicates that the rest of the line is a
comment. By convention, files meant to be read by the load command end in “.pt”. Example:

source "testfile.pt"

The tilde notation for users’ home directories is allowed; for example, if your installation of
Ptolemy was made by creating a userptolemy (see “Setup” on page 2-1), try

source "$PTOLEMY/demo/ptcl/sdf/basic/butterfly.pt"

It is also possible to specify a file to be loaded by the interpreter on the command line. If,
when you start the interpreter you type

ptcl myCommands.pt

the interpreter will load the named file, execute its commands, and then quit. No command
prompt will appear. Thesource command is actually built into Tcl itself, but it is described
here nevertheless, for convenience.

3.9.2 Changing the seed of random number generation

The seed command changes the seed of the random number generation. The default
value is 1. The syntax is

seed n

wheren is an unsigned integer.

3-14 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

3.9.3 Changing the current directory

Thecd command changes the current directory. For example,

cd "$PTOLEMY/demo/ptcl/sdf/basic"
source "butterfly.pt"

will load the same file as the example in the previous section. Again, we have assumed that
your installation contains a userptolemy (see “Setup” on page 2-1). To see what the inter-
preter’s current directory is, you can type

pwd

3.9.4 Dynamically linking new stars

The interpreter has the ability to extend itself by linking in outside object files; the
object files in question must define single stars (they will have the right format if they are pro-
duced from preprocessor input). Unlikepigi , the graphical interface, the interpreter will not
automatically run the preprocessor and compiler; it expects to be given object files that have
already been compiled. The syntax is

link object-file-name

Any star object files that are linked in this way must only call routines that are already stati-
cally or permanently linked into the interpreter. For that reason, it is possible that a star that
can be linked intopigi might not be linkable into the interpreter, although this is rare. Specif-
ically, pigi contains Tk, an X window toolkit based on Tcl, whileptcl does not. Hence, any
star that uses Tk is excluded fromptcl .

Building object files for linking into Ptolemy can be tricky since the command line
arguments to produce the object file depend on the operating system, the compiler and
whether or not shared libraries are used.$PTOLEMY/mk/userstars.mk includes rules to
build the proper object file for a star. See “Dynamic linking fails” on page A-30. for hints
about fixing incremental linking problems.

It is also possible to link in several object files at once, or pull in functions from librar-
ies by use of themultilink command. The syntax is

multilink opt1 opt2 opt3 ...

where the options may be the names of object files, linker options such as “-L” or “-l”
switches, etc. These arguments are supplied to the Unix linker along with whatever options
are needed to completely specify the incremental link.

When the above linker commands are used, the linked code has temporary status; sym-
bols for it are not entered into the symbol table (meaning that the code cannot be linked
against by future incremental links), and it can be replaced; for example, an error in the loaded
modules could be corrected and thelink or multilink command could be repeated. There
is an alternative linking command that specifies that the new code is to be considered “perma-
nent”; it causes a new symbol table to be produced for use in future links (See the ptlang
derivedFrom item in the Ptolemy Programmers Manual for more information). Such code
cannot be replaced, but it can be linked against by future incremental link commands. The
syntax is

permlink opt1 opt2 opt3 ...

where the options are the same as for themultilink command.

The Almagest 3-15

Ptolemy Last updated: 12/1/97

3.9.5 Top-level blocks

The command

topblocks

returns the list of top-level blocks in the current galaxy or universe. With an argument,

topblocks block

it returns the list of top-level blocks in the named block.

3.9.6 Examining states

Thestatevalue command takes the form

statevalue block state

and returns the current value of the statestate within the blockblock . The command takes
an optional third argument, which may be either“current” to specify that the current value
should be returned (the default), or“initial” to specify that the initial value (the parameter
value) should be returned.

3.9.7 Giving up

Theexit command exits the interpreter. The syntax is

exit

3.9.8 Getting help

Thehelp command implements a simple help system describing the commands avail-
able and their syntax. It does not provide help with the standard Tcl functions. The syntax is

help topic

or
help ?

for a list of topics. If the argument is omitted, a short "help on help" is printed.

3.9.9 Registering actions

It is possible to associate a Tcl action with the firing of any star. TheregisterAc-
tion command does this. The syntax is

registerAction pre tcl_command
registerAction post tcl_command

The first argument specifies whether the action should occur before or after the firing of a star.
The second argument is a string giving the first part of a tcl command. Before this command is
invoked, the name of the star that triggered the action will be appended as an argument. For
example:

registerAction pre puts

will result in the name of a star being printed on the standard output before it is fired. A typical
“action” resulting from this command would be

puts universe_name.galaxy_name.star_name

The value returned byregisterAction is an “action_handle”, which must be used to can-
cel the action usingcancelAction . The syntax is

3-16 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

set action_handle [registerAction pre tcl_command]
cancelAction action_handle

3.9.10 The Interface to Matlab and Mathematica

Ptcl can control Matlab [Han96] and Mathematica [Wol92] processes by means of the
matlab andmathematica commands. The commands have a similar syntax:

matlab command ?arg1? ?arg2?
mathematica command ?arg1? ?arg2?

Thematlab command controls the interaction with a shared Matlab process. The pos-
sible commands and arguments are:

Themathematica command controls the interaction with a shared Mathematica pro-
cess. The possible commands and arguments are

To initiate a connection to a Matlab and Mathematica process, use

matlab start
mathematica start

To generate a simple plot of a straight line in Matlab and Mathematica, use

matlab send { plot([0 1 2 3])}
mathematica send { Plot[x, {x, 0, 3}] }

The send command suppresses the output normally returned by interacting with the
program using the command interface. Theeval command, on the other hand, returns the

command arguments description

end terminate a session with Matlab

eval script evaluate a Matlab script and print the result

get name script evaluate a Matlab script and get the named Matlab matrix as Tcl
lists of numbers

getpairs name script evaluate a Matlab script and get the named Matlab matrix as
ordered pairs of numbers

send script evaluate a Matlab script and suppress the output

set name rows cols real imag set the named Matlab matrix with real and imaginary values

start start a new Matlab session

status return the status of the Tcl/Matlab connection (0 means con-
nected, -1 means not initialized, and 1 means error)

unset name unset the named Matlab matrix

command arguments description

end terminate a session with Mathematica

eval script evaluate a Mathematica script and print the result

get name script evaluate a Mathematica script and get the named Mathematica
variable as a Tcl string

send script evaluate a Mathematica script and suppress the output

start start a new Mathematica session

status return the status of the Tcl/Mathematica connection (0 means
connected, -1 means not initialized, and 1 means error)

The Almagest 3-17

Ptolemy Last updated: 12/1/97

dialog with the console interface:

mathematica eval { Plot[x, {x, 0, 3}] }
-Graphics-

To terminate the connection, use

matlab end
mathematica end

One can work with matrices as Tcl lists or in Matlab format. To create a new Matlab
matrix x that has two rows and three columns:

matlab set x 2 3 "1 2 3 4 5 6" "1 1 1 1 1 1"

We can retrieve this Matlab matrix in the same format:

matlab get x
2 3 {1.0 2.0 3.0 4.0 5.0 6.0} {1.0 1.0 1.0 1.0 1.0 1.0}

We can also retrieve the matrix elements as a Tcl list of complex numbers in an ordered-pair
format:

matlab getpairs x
(1.0,1.0) (2.0,1.0) (3.0,1.0) (4.0,1.0) (5.0,1.0) (6.0,1.0)

Now, matrices can be manipulated in both Tcl and Matlab.

Javier Contreras contributed the following example that creates a Tcl list, sends it to MAT-
LAB as a 2x2 matrix, calculates the inverse in MATLAB and retrieves it back to Tcl as list
and/or pairs.

ptcl> matlab start
ptcl> set a 1
1
ptcl> set b 2
2
ptcl> set c 3
3
ptcl> set d 4
4
ptcl> set e [expr "{$a $b $c $d}"]
1 2 3 4
ptcl> set f [expr "{$a $b $c $d}"]
1 2 3 4
ptcl> matlab set matrix $b $b $e $f
ptcl> matlab eval {matrix(1,1)}
>>
ans =

1.0000 + 1.0000i

ptcl> set inv_matrix [matlab get inverse {inverse = inv(matrix)}]
2 2 {-1.0 0.5 0.75 -0.25} {1.0 -0.5 -0.75 0.25}
ptcl> set inv_matrix [matlab getpairs inverse {inverse =
inv(matrix)}]
(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
ptcl> set new $inv_matrix

3-18 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
ptcl> lindex $new 0
(-1.0,1.0)
ptcl> matlab unset matrix
ptcl> matlab eval {matrix(1,1)}
ptcl> matlab end

For other examples of the use of the matlab and mathematica Ptcl commands, see
“Using Matlab and Mathematica to Compute Parameters” on page 2-18. These commands
support the Matlab and Mathematica consoles in Tycho.

3.10 Limitations of the interpreter
There should be many more commands returning information on the simulation, to

permit better exploitation of the full power of the Tcl language.

3.11 A wormhole example
Here is an example of a simulation that contains both an SDF portion and a DE por-

tion. In this example, a Poisson process where particles have value 0.0 is sent into an SDF
wormhole, where Gaussian noise is added to the samples. This demo shows how easy it is to
use the SDF stars to perform computation on DE particles. The overall delay of the SDF
wormhole is zero, so the result is simply Poisson arrivals of Gaussian noise samples.

A Wormhole has anouter domain and aninner domain. The outer domain is deter-
mined by the current domain at the time the user starts thedefgalaxy command to create the
wormhole. The inner domain is determined by thedomain command that appears inside the
galaxy definition.

reset
create the wormhole
domain DE
defgalaxy wormBody {

domain SDF
star add Add; numports add input 2
star IIDGaussian1 IIDGaussian
alias out add output
alias in add "input#1"
connect IIDGaussian1 output add "input#2"

}
Creating the main universe.
domain DE
star wormBody1 wormBody
star Poisson1 Poisson; star graf XMgraph
numports graf input 2
setstate graf title "Noisy Poisson Process"
setstate graf options "-P -0 original -1 noisy"
node node1
nodeconnect Poisson1 output node1
nodeconnect wormBody1 in node1
nodeconnect graf "input#1" node1

The Almagest 3-19

Ptolemy Last updated: 12/1/97

connect wormBody1 out graf "input#2"
run 40
wrapup

3.12 Some hints on advanced uses of ptcl with pigi
Although we have not had time to pursue it aggressively in this release, flexible control

of Ptolemy simulations (e.g. executing a simulation many times with different parameter set-
tings) is now possible. This can be done by usingptcl andpigi together.

Warning : This mechanism is still under development, so please note that what is described in
this section is likely to change.

3.12.1 Ptcl as a simulation control language for pigi

If you startpigi with the-console option, then a console window will appear that
will acceptptcl commands. To experiment with this, open thesinMod demo in the SDF
basic demo palette, and execute thepigi commandcompile-facet (in the Exec sub-
menu). This command reads the oct facet from disk, and constructs the Ptolemy data struc-
tures to represent it in memory. In your console window, you should see the prompt:

pigi>

Note what happens if you ask for the name of the current universe:

pigi> curuniverse
sinMod
pigi>

By compiling the facet, you have created a universe calledsinMod , and made it the current
universe. If you just startedpigi , then this is one of only two universes in existence:

pigi> univlist
main sinMod
pigi>

The universemain is the default, empty universe that Ptolemy starts with. To verify the con-
tents of thesinMod universe, use theprint command:

pigi> print
GALAXY: sinMod
Descriptor: An interpreted galaxy
Contained blocks: singen2 modulator1 XMgraph.input=11
pigi>

You can execute this universe from the console window:

pigi> run 400
pigi> wrapup

Notice that you will not see any output until you invoke the wrapup command, since the
XMgraph star creates the output plot in its wrapup method.

So far, you have not done anything you could not have done more directly usingpigi .
However, you can change the value of parameters fromptcl . To do this, you must first deter-
mine the name of the instance of the star or galaxy with the parameter you want to control.
Place the mouse over thesingen icon in thesinMod galaxy, and issue the pigishow-name

3-20 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

(‘n’) command. Most likely, the name will besingen2 , although it could be different on suc-
cessive runs. This is an instance name generated automatically bypigi . Notice that it is the
name shown by the print command above. Also, use theedit-params (‘e’) command over
thesingen icon to determine thatsingen2 has a parameter namedfrequency with value
PI/100 . Now try the following commands:

pigi> setstate singen2 frequency PI/50
pigi> run 400
pigi> wrapup

Notice that the frequency of the modulating sinusoid is now twice as high as before.

Much more interestingly, you can now construct a series of runs using Tcl as a script-
ing language:

pigi> foreach i {0.25 0.5 0.75 1 1.25 1.5} {
pigi? setstate singen2 frequency $i*PI/100
pigi? setstate XMgraph.input=11 title \
pigi? "message frequency = [expr 0.01*$i]*PI"
pigi? run 400
pigi? wrapup
pigi? }
pigi>

This will invoke six runs, each with a different frequency parameter for thesingen galaxy
singen2 . The foreach command is a standard Tcl command. Notice that in the third and
fourth lines, we have also set the title parameter of theXMgraph star. This is advisable
because otherwise it might be very difficult to tell which result corresponded to which run.
Notice that the name of theXMgraph instance is “XMgraph.input=11 ”. It is a more compli-
cated name because the icon is specialized to have only a single input port.

Using the full power of the Tcl language, the above mechanism can become extremely
powerful. To use its full power, however, you will most likely want to construct your Tcl
scripts in files. These files can even include the universe definition, as explained below, so you
can create scripts that can be run underptcl only, independent ofpigi .

3.12.2 The pigi log file pigiLog.pt

In eachpigi session, a log file namedpigiLog.pt is generated in the user’s home
directory. Every time an oct facet that represents a Ptolemy galaxy or universe is compiled, for
example when running a simulation, the equivalentptcl commands building the galaxy or
universe are logged in pigiLog.pt. For example, if you followed the above procedure, opening
the sinMod demo and issuing thecompile-facet command, yourpigiLog.pt file will
contain something like the following:

reset
domain SDF
defgalaxy singen {

domain SDF
newstate sample_rate FLOAT "2*PI"
newstate frequency FLOAT "PI/50"
newstate phase_in_radians float 0.0
star Ramp1 Ramp

The Almagest 3-21

Ptolemy Last updated: 12/1/97

setstate Ramp1 step "2*PI*frequency/sample_rate"
setstate Ramp1 value phase_in_radians
star Sin1 Sin
connect Ramp1 output Sin1 input
alias out Sin1 output

}
defgalaxy modulator {

domain SDF
newstate freq FLOAT 0.062832
star "Mpy.input=21" Mpy
numports "Mpy.input=21" input 2
star singen1 singen
setstate singen1 sample_rate "2*PI"
setstate singen1 frequency freq
setstate singen1 phase_in_radians 0.0
alias in "Mpy.input=21" "input#1"
alias out "Mpy.input=21" output
connect singen1 out "Mpy.input=21" "input#2"

}
newuniverse sinMod SDF
target default-SDF

targetparam logFile ""
targetparam loopScheduler NO
targetparam schedulePeriod 10000.0
star singen2 singen
setstate singen2 sample_rate "2*PI"
setstate singen2 frequency "PI/100"
setstate singen2 phase_in_radians 0.0
star modulator1 modulator
setstate modulator freq "0.2*PI"
star "XMgraph.input=11" XMgraph
numports "XMgraph.input=11" input 1
setstate "XMgraph.input=11" title "A modulator demo"
setstate "XMgraph.input=11" saveFile ""
setstate "XMgraph.input=11" options "=800x400+0+0 -0 x"
setstate "XMgraph.input=11" ignore 0
setstate "XMgraph.input=11" xUnits 1.0
setstate "XMgraph.input=11" xInit 0.0
connect singen2 out modulator1 in
connect modulator1 out "XMgraph.input=11" "input#1"

This is aptcl definition of a universe that is equivalent to the oct facet. In normal usage, you
may need to edit this file considerably to extract the portions you need, because all the galax-
ies and universes compiled in apigi session are logged in the same log file. Also, as of this
writing, the file does not necessarily get flushed after your compile-facet command completes,
so the last few lines may not appear until more lines are written to the file, or you exitpigi .

Note thatpigi compiles the sub-galaxies recursively before compiling the top-level
universe. Therefore, theptcl definitions are generated and logged in this recursive order. For

3-22 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

instance, in the pigiLog.pt shown above,ptcl definitions of thesingen andmodulator
galaxies appear before that of thesinMod universe. Also, if a galaxy has been compiled
before, and thus is on the knownlist, itsptcl definition will not be generated and logged
again when it is used in another universe.

One use of theptcl definitions obtained from pigiLog.pt is to submit bug reports. It is
the best way to describe in ASCII text the Ptolemy universe that causes problems.

3.12.3 Using pigiLog.pt to build scripts

If you restartpigi , run thesinMod demo in the SDF basic demo palette once, then
quit pigi , then yourpigiLog.pt file will be as above. Make a copy ofpigiLog.pt and
name it, say,sinMod.pl .

To run this simulation with different message waveform frequencies, you may do the
following in ptcl , analogous to the above commands inpigi :

build the sinMod universe
source sinMod.pl
foreach i {0.25 0.5 0.75 1 1.25 1.5} {

set parameter values
setstate singen2 frequency $i*PI/100
setstate XMgraph.input=11 title \
"message frequency = [expr 0.01*$i]*PI"
execute it
run 400
wrapup

}

The combination ofptcl andpigi is very powerful. The above are just some hints on how
they can be used together.

3.12.4 oct2ptcl

Kennard White’s programoct2ptcl can be used to convert Ptolemy facets to ptcl
code.Oct2ptcl is not part of the default distribution, and it is not built automatically. You
can find theoct2ptcl sources in the other.src tar file inptolemy/src/octtools/tkoct/
oct2ptcl . oct2ptcl is not formally part of Ptolemy, but some developers may find it use-
ful.

