
Chapter 5. SDF Domain

Authors: Shuvra Bhattacharyya
Joseph T. Buck
Michael J. Chen
Brian L. Evans
Soonhoi Ha
Paul Haskell
Christopher Hylands
Alan Kamas
Alireza Khazeni
Bilung Lee
Edward A. Lee
David G. Messerschmitt

Other Contributors: Asawaree Kalavade
Thomas M. Parks
Gregory S. Walter

5.1 Introduction
Synchronous dataflow (SDF) is a data-driven, statically scheduled domain in Ptolemy.

It is a direct implementation of the techniques given in [Lee87a] and [Lee87b]. “Data-driven”
means that the availability ofParticle s at the inputs of a star enables it. Stars without any
inputs are always enabled. “Statically scheduled” means that the firing order of the stars is
determined once, during the start-up phase. The firing order will be periodic. The SDF domain
is one of the most mature in Ptolemy, having a large library of stars and demo programs. It is a
simulation domain, but the model of computation is the same as that used in most of the code
generation domains. A number of different schedulers, including parallel schedulers, have
been developed for this model of computation.

5.1.1 Basic dataflow terminology

SDF is a special case of the dataflow model introduced by Dennis [Den75]. It is equiv-
alent to thecomputation graph model of Karp and Miller [Kar66]. In the terminology of the
dataflow literature, stars are calledactors. An invocation of thego() method of a star is called
afiring. Particles are calledtokens. In a digital signal processing system, a sequence of tokens
might represent a sequence of samples of a speech signal or a sequence of frames in a video
sequence.

When an actor fires, it consumes some number of tokens from its input arcs, and pro-
duces some number of output tokens. In synchronous dataflow, these numbers remain constant
throughout the execution of the system. It is for this reason that this model of computation is
suitable for synchronous signal processing systems, but not for asynchronous systems. The
fact that the firing pattern is determined statically is both a strength and a weakness of this

5-2 SDF Domain

U. C. Berkeley Department of EECS

domain. It means that long runs can be very efficient, a fact that is heavily exploited in the
code generation domains. But it also means that data-dependent flow of control is not allowed.
This would require dynamically changing firing patterns. The Dynamic Dataflow (DDF) and
Boolean Dataflow (BDF) domains were developed to support this, as described in chapters 7
and 8, respectively.

5.1.2 Balancing production and consumption of tokens

Each porthole of each SDF star has an attribute that specifies the number of particles
consumed (for input ports) or the number of particles produced (for output ports). When you
connect two portholes with an arc, the number of particles produced on the arc by the source
star may not be the same as the number of particles consumed from that arc by the destination
star. To maintain a balanced system, the scheduler must fire the source and destination stars
with different frequency.

Consider a simple connection between three stars, as shown in figure 5-1. The symbols
adjacent to the portholes, such as , represent the number of particles consumed or pro-
duced by that porthole when the star fires. For many signal processing stars, these numbers are
simply one, indicating that only a single token is consumed or produced when the star fires.
But there are three basic circumstances in which these numbers differ from one:

 • Vector processing in the SDF domain can be accomplished by consuming and produc-
ing multiple tokens on a single firing. For example, a star that computes a fast Fourier
transform (FFT) will typically consume and produce samples when it fires, where

 is some integer. Examples of vector processing stars that work this way areFFTCx,
Average , Burg , andLevDur . This behavior is quite different from the matrix stars,
which operate on particles where each individual particle represents a matrix.

 • In multirate signal processing systems, a star may consume samples and produce
, thus achieving a sampling rate conversion of . For example, theFIR and

FIRCx stars optionally perform such a sampling rate conversion, and with an appropri-
ate choice of filter coefficients, can interpolate between samples. Other stars that per-
form sample rate conversion includeUpSample , DownSample , andChop.

 • Multiple signals can be merged using stars such asCommutator or a single signal can
be split into subsignals at a lower sample rate using theDistributor star.

To be able to handle these circumstances, the scheduler first associates a simple balance equa-
tion with each connection in the graph. For the graph in figure 5-1, the balance equations are

FIGURE 5-1: A simple connection of SDF stars, used to illustrate the use of balance equations in
constructing a schedule.

A

B

C

NA1

NB2NB1

NC2

NC1

NA2

NA1

2
M

M

M
N N/ M

r ANA1 rCNC1=

r ANA2 r BNB1=

The Almagest 5-3

Ptolemy Last updated: 12/1/97

This is a set of three simultaneous equations in three unknowns. The unknowns, , , and
 are therepetitions of each actor that are required to maintain balance on each arc. The first

task of the scheduler is to find the smallest non-zero integer solution for these repetitions. It is
proven in [Lee87a] that such a solution exists and is unique for every SDF graph that is “con-
sistent,” as defined below.

5.1.3 Iterations in SDF

When running an SDF system under the graphical user interface, you will have the
opportunity to specify “when to stop.” Since the SDF domain has no notion of time, this is not
given in units of time. Instead, it is given in units of SDF iterations. At each SDF iteration,
each star is fired the minimum number of times to satisfy the balance equations.

Suppose for example that star B in figure 5-1 is anFFTCx star with its parameters set
so that it will consume 128 samples and produce 128 samples. Suppose further that star A pro-
duces exactly one sample on each output, and star C consumes one sample from each input. In
summary,

The balance equations become

.

The smallest integer solution is

.

Hence, each iteration of the system includes one firing of theFFTCx star and 128 firings each
of stars A and B.

5.1.4 Inconsistency

It is not always possible to solve the balance equations. Suppose that in figure 5-1 we
have

.

In this case, the balance equations have no non-zero solution. The problem with this system is
that there is no sequence of firings that can be repeated indefinitely with bounded memory. If
we fire A,B,C in sequence, a single token will be left over on the arc between B and C. If we
repeat this sequence, two tokens will be left over. Such a system is said to beinconsistent, and
is flagged as an error. The SDF scheduler will refuse to run it. If you must run such a system,
change the domain of your graph to the DDF domain.

r BNB2 rCNC2=

r A r B
rC

NA1 NA2 NC1 NC2 1= = = =

NB1 NB2 128.= =

r A rC=

r A 128r B=

128r B rC=

r A rC 128= =

r B 1=

NA1 NA2 NC1 NC2 NB1 1= = = = =

NB2 2=

5-4 SDF Domain

U. C. Berkeley Department of EECS

5.1.5 Delays

Delays are indicated in Pigi by small green diamonds that are placed on an arc. Most
of the standard palettes of stars have the delay icon at the upper left. The delay has a single
parameter, the number of samples of delay to be introduced. In the SDF domain, a delay with
parameter equal to one is simply an initial particle on an arc. This initial particle may enable a
star, assuming that the destination star for the delay arc requires one particle in order to fire.
To avoid deadlock, all feedback loops much have delays. The SDF scheduler will flag an error
if it finds a loop with no delays. For most particle types, the initial value of a delay will be
zero. For particles which hold matrices, the initial value is an empty Envelope, which must be
checked for by stars which work on matrix inputs. Initializable delays allow the user to give
values to the initial particles placed in the buffer. Please refer to 2.12.8 on page 2-47 for details
on how to use initializable delays.

5.2 An overview of SDF stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. For the SDF domain, the star
library is large enough that it has been divided into sub-palettes. The top-level palette is shown
in figure 5-2

The “sources” palette contains signal generators of various types. The “sinks” palette
contains various stars that display signals in different ways or write the value of signal sam-
ples to files. The “arithmetic” palette contains basic adders, subtracters, multipliers, and

comm.pal

sources.pal

sinks.pal

arithmetic.pal

nonlinear.pal

control.pal

conversion.pal

dsp.pal

image.pal

logic.pal

matrix.pal

matlab.pal
Matlab HOF

hof.pal

test
contrib.pal

spectral.pal

telecomm.pal

sdfvis.pal

dmm.pal

radar.pal

neural.pal

Signal Sources

Signal Sinks

Arithmetic

Nonlinear Functions

Control

Conversion

Spectral Analysis

Design Flow Management

Telecommunications

Logic

Matlab Functions Higher Order Functions

Spatial Array Processing

User Contributions

Matrix Functions

Signal Processing

Communications

UltraSparc Native DSP

Neural Networks

Image and Video Processing

Synchronous Dataflow (SDF) Stars

FIGURE 5-2: The top-level palette for accessing the library of SDF stars.

The Almagest 5-5

Ptolemy Last updated: 12/1/97

amplifiers, for all the standard scalar data types (floating point, complex, fixed-point, and inte-
ger). The “nonlinear” palette contains stars that compute transcendental functions, such as
logarithm, cosine, sine, and exponential functions, as well as quantizer and table lookup stars.
The “logic” palette contains stars that perform Boolean and comparison operations, such as
and, or, and greater than. The “control” palette contains stars that manipulate the flow of
tokens, such as commutators and distributors, downsamplers and upsamplers, and forks. The
“conversion” palette contains stars that explicitly accomplish type conversion. The “matrix”
palette contains matrix operators such as matrix addition and multiplication. More complex
stars that use matrix operations internally can be found in other palettes, such as the singular
value decomposition and Kalman filters in the “dsp” palette. The “matlab” palette contains
stars that communicate with a Matlab process and thus have access to all of the functionality
of Matlab. The “vis” palette contains stars that use the Sun UltraSparc Visual Instruction
Set.The “dsp” palette contains various signal processing functions such as fixed and adaptive
filters of various types. The “spectral” palette contains spectral estimation functions. The
“communications” palette contains stars that are specific to digital communications functions,
such as pulse shapers, speech coders, and QAM encoders. The “telecommunications” palette
contains touchtone generators and decoders, channel models, and PCM coders. The “spatial
array palette” contains models of sensors, Doppler effects, and beamformers. The “image”
palette contains stars for image and video signal processing. The “neural” palette contains
neural network stars. The “dfm” palette contains design flow management stars that use
strings and files as datatypes. The “hof” palette contains the Higher Order Functions available
in the SDF domain. The HOF stars in this palette are explained in detail in the HOF domain
chapter. The “user” palette contains user contributed stars.

Each palette is summarized in more detail below. In the listing, whenever data types
are not mentioned, double-precision floating point is used. Not all data types are represented
in all stars. Type conversions, automatic or explicit, can be used to complete the collection.

The parameters of a star are shown in italics. More information about each star can be
obtained using the on-lineprofile command (“, ”), or the on-lineman command (“M”).

At the top of each palette, for convenience, are instances of the two delay icons, the
bus icon, and the following star:

BlackHole Discard all inputs. This star is useful for discarding signals that
are not useful.

The delay and bus icons are created on top of an arc to define its properties and are not stars.

5.2.1 Source stars

Source stars are stars with no inputs. They generate signals, and may represent exter-
nal inputs to the system, constant data, or synthesized stimuli. In the dataflow model of com-
putation, they are always enabled, and hence can be fired at any time. In the synchronous
dataflow model, the frequency with which they are fired, relative to other stars in the system,
is determined by the solution to the balance equations. The palette of source stars is shown in
figure 5-3, and the stars are summarized below, in the order they appear in the palette.

Floating-point sources

Const Output a constant signal with value given by thelevel parameter

5-6 SDF Domain

U. C. Berkeley Department of EECS

(default 0.0).

DTMFGenerator Create a dual-tone modulated-frequency signal, such as the tone
generated by a touchtone telephone.

Impulse Generate a single impulse or an impulse train. Each impulse has
an amplitudelevel (default 1.0). Ifperiod (default 0) is equal to
0, then only a single impulse is generated; otherwise,period
specifies the period of the impulse train.

IIDGaussian Generate an identically independently distributed white Gauss-
ian pseudo-random process withmean (default 0) andvariance
(default 1).

IIDUniform Generate an identically independently distributed uniformly
distributed pseudo-random process. Output is uniformly distrib-
uted betweenlower (default 0) andupper (default 1).

Ramp Generate a ramp signal, starting atvalue (default 0.0) and incre-
menting by step sizestep (default 1.0) on each firing.

RanConst Generate an random number with a uniform(u), exponential(e),
or normal(n) distribution, as determined by thedistribution

FIGURE 5-3: The palette of source stars for the SDF domain.

expgen

Const

Const

Impulse

Rect

Ramp

WaveFormCx

RampInt

WaveForm

IIDUniformIIDGaussian

ReadFile singen

RampFix RectFix

TkSlider TkButtons TkButtons

Const

TclTcl
TclScript

TclTcl
TclScript

Window

Matrix CxMatrix FixMatrixIntMatrix

Identity_M
0

0

IdentityInt_M
0

0

IdentityCx_M
0

0

IdentityFix_M
0

0

11010
bits

Var
Read

Matlab
Matlab_M

Matlab
MatlabCx_M

Const

DTMFGenerator

RectCxPCMReadInt

RanConst

Matrix Sources:

Floating-Point Sources

(Interactive)

Integer Sources

Complex SourcesFixed-Point Sources

The Almagest 5-7

Ptolemy Last updated: 12/1/97

parameter. This star is new in Ptolemy 0.7.

ReadFile Read ASCII data from a file. The simulation can be halted on
end-of-file, or the file contents can be periodically repeated, or
the file contents can be padded with zeros.

ReadVar Output the value of a double-precision floating point variable
from a shared memory. Use thewriteVar star to write values
into the shared memory.
WARNING: This star may produce unpredictable results, since
the results will depend on the precendences in the block dia-
gram in which it appears as well as the scheduler used.

Rect Generate a rectangular pulse ofheight (default 1.0) andwidth
(default 8). If period is greater than zero, then the pulse is
repeated with the given period.

singen Generate a sine wave withfrequency (relative to the given
sample_rate) and phase given byphase_in_radians. This is
implemented as a galaxy according to the formula

sin(2π n frequency/ sample_rate + phase_in_radians)

where n is the sample index. Therefore,frequency and
sample_rate must have the same units, e.g. rad/sample, Hz, etc.

WaveForm Output a waveform as specified by the array statevalue (default
“1 -1”). You can get periodic signals with any period, and can
halt a simulation at the end of the given waveform. The follow-
ing table summarizes the capabilities:

The first line of the table gives the default settings. This star
may be used to read a file by simply settingvalue to something
of the form < filename , preferably specifying a complete
path.

Window Generate standard window functions or periodic repetitions of
standard window functions. The possible functions are:Rect-
angle , Bartlett , Hanning , Hamming, Blackman , Kaiser
and SteepBlackman . One period of samples is produced at
each firing.

TclScript (Two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

haltAtEnd periodic period operation

NO YES 0 The period is the length of the waveform

NO YES N>0 The period is N

NO NO anything Output the waveform once, then zeros

YES anything anything Stop after outputting the waveform once

5-8 SDF Domain

U. C. Berkeley Department of EECS

TkSlider Output a value determined by an interactive on-screen scale
slider.

TkButtons This star outputs the value 0.0 on all outputs unless the corre-
sponding button is pushed. When the button is pushed, the out-
put takes the value given by the parametervalue. If synchronous
is YES, then outputs are produced only when some button is
pushed. I.e., the star waits for a button to be pushed before its
go method returns. Ifallow_simultaneous_events is YES, then
the buttons pushed are registered only when the button labeled
“PUSH TO PRODUCE OUTPUTS” is pushed. Note that ifsyn-
chronous is NO, this star is nondeterminate.

Fixed-point sources

ConstFix Constant source for fixed-point values.

RampFix Ramp for fixed-point values.

RectFix Generate a fixed-point rectangular pulse ofheight (default 1.0).
and width (default 8). Ifperiod is greater than zero, then the
pulse is repeated with the given period. The precision ofheight
can be specified in bits.

Complex sources

ConstCx Constant source for complex values.

WaveFormCx Output a complex waveform as specified by the array state
value (default “(1,0) (-1,0)”). Note that “(a,b)” means a + b j.
The parameters work the same way as in theWaveForm star.

expgen Generate a complex exponential with the given frequency (rela-
tive to thesample_rate parameter).

RectCx Generate a rectangular pulse ofheight (default 1.0) andwidth
(default 8). If period is greater than zero, then the pulse is
repeated with the given period.Integer sources

bits Produce “0” with probabilityprobOfZero, else produce “1”.

RampInt Ramp for integer values.

PCMReadInt Read a binaryµ-law encoded PCM file. Return one sample on
each firing. The file format that is read is the same as the one
written by thePlay star. The simulation can be halted on end-
of-file, or the file contents can be periodically repeated, or the
file contents can be padded with zeros. This star is new in
Ptolemy 0.7.

ConstInt Constant source for integer values.

The Almagest 5-9

Ptolemy Last updated: 12/1/97

Matrix Sources

The Matrix and Identity stars each have four different icons for the different
matrix data types.

Matrix (four icons) Produce a matrix with floating-point entries. The
entries are read from the array parameterFloatMatrixContents
in rasterized order: i.e., for aM × N matrix, the first row is filled
from left to right using the firstN values from the array.

Matlab_M Evaluate a Matlab function if inputs are given or evaluate a
Matlab command if no inputs are given. Any Matlab script can
be evaluated, provided that the current machine has a license to
run Matlab. See “Matlab stars” on page 5-26.

MatlabCx_M Complex version of the above star.

Identity_M (four icons) Output a floating-point identity matrix.

5.2.2 Sink stars

The stars in the palette of figure 5-4 are those with no outputs. They display signals in various
ways, or write them to files.

FIGURE 5-4: Sink stars in the SDF domain.

XMgraph WaterfallXscopeXYgraph Xhistogram

Printer

Play

TkMeterTkMeter

123
Tk
ShowValues

123
Tk
ShowValues

TkTextTkText

TkBarGraph TkBarGraph

XMgraph

TkXYPlot

X

Y

TkShow
Booleans

TkShow
Booleans

TclTcl
TclScript

TkPlot TkPlot

Printer

TclTcl
TclScript

TkXYPlot

X

Y

TkBreakPt

Var
Write

Matlab
MatlabCx_M

Other

Batch Plotting Facilities

Interactive Graphics Facilities

Textual Display

Programmable Interactive Sinks Sound Halt

5-10 SDF Domain

U. C. Berkeley Department of EECS

Batch Plotting Facilities

The first six stars in this palette are all based on thepxgraph program. This program
has many options, summarized in “pxgraph — The Plotting Program” on page 20-1. The dif-
ferences between stars often amount to little more than the choice of default options. Some,
however, preprocess the signal in useful ways before passing it to thepxgraph program. The
first allows only one input signal, the second allows any number (notice the double arrow on
the input port).

XMgraph (two icons) Generate a generic multi-signal plot.

XYgraph Generate anX-Y plot with thepxgraph program. TheX data is
on “xInput” and theY data is on “input”.

Xscope Generate a multi-trace plot with thepxgraph program. Succes-
sive traces are overlaid on one another.

Xhistogram Generate a histogram with thepxgraph program. The parame-
terbinWidth determines the bin width.

Waterfall Plot a series of traces in the style of a waterfall plot. This is a
type of three-dimensional plot used to show the evolution of
signals or spectra. Optionally, each plot can be made opaque, so
that lines that would appear behind the plot are eliminated.

Interactive Graphics Facilities

These stars are multiple configurations of only six stars. These stars all use the Tk toolkit
associated with the Tcl language to create interactive, animated displays on the screen.

TkPlot (two icons) Plot “Y” input(s) vs. time with dynamic updating.
Two styles are currently supported:dot causes individual
points to be plotted, whereasconnect causes connected lines
to be plotted. Drawing a box in the plot will reset the plot area
to that outlined by the box. There are also buttons for zooming
in and out, and for resizing the box to just fit the data in view.

TkXYPlot (two icons) Plot “Y” input(s) vs. “X” input(s) with dynamic
updating. Two styles are currently supported:dot causes points
to be plotted, whereasconnect causes connected lines to be
plotted. Drawing a box in the plot will reset the plot area to that
outlined by the box. There are also buttons for zooming in and
out, and for resizing the box to just fit the data in view.

TkShowValues (two icons) Display the values of the inputs in textual form. The
print method of the input particles is used, so any data type can
be handled, although the space allocated on the screen may
need to be adjusted.

TkBarGraph (two icons) Dynamically display the value of any number of
input signals in bar-chart form. The first 12 input signals will be
assigned distinct colors. After that, the colors are repeated. The
colors can be controlled using X resources.

The Almagest 5-11

Ptolemy Last updated: 12/1/97

TkMeter (two icons) Dynamically display the value of any number of
input signals on a set of bar meters.

TkShowBooleans (two icons) Display input Booleans using color to highlight
their value.

Programmable Interactive Sinks

TclScript (two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

MatlabCx_M Evaluate a Matlab function if inputs are given or evaluate a
Matlab command if no inputs are given.

Sound

Play Play an input stream on the workstation speaker. This star
works best on Suns, but can work on SGI Indigos and HP 700s
and 800s. On HPs, you may need other publicly available soft-
ware for this star to work. Thegain parameter (default 1.0) mul-
tiplies the input stream before it isµ-law compressed and
written. The inputs should be in the range of -32000.0 to
32000.0. The file is played at a fixed sampling rate of 8000 sam-
ples per second. When the wrapup method is called, a file of 8-
bit µ-law samples is handed to a program namedptplay which
plays the file. Theptplay program must be in your path.
See“Sounds” on page 2-38 for more information.

Halt

TkBreakPt A conditional break point. Each time this star executes, it evalu-
ates its conditional expression. If the expression evaluates to
true, it causes the run to pause.

Textual Display

Printer (two icons) Print out one sample from each input port per line.
ThefileName parameter specifies the file to be written; the spe-
cial names<stdout> and<cout> which specify the standard
output stream, as well as<stderr> and<cerr> which specify
the standard error stream, are also supported.

TkText (two icons) Display the values of the inputs in a separate win-
dow, keeping a specified number of past values in view. The
print method of the input particles is used, so any data type can
be handled.

Other

WriteVar Write the value of the input to a double-precision floating-point

5-12 SDF Domain

U. C. Berkeley Department of EECS

variable in shared memory. Use theReadVar star to read values
from the shared memory.
WARNING: This star may produce unpredictable results, since
the results will depend on the precedences in the block diagram
in which it appears, as well as the scheduler (target) used.

5.2.3 Arithmetic stars

In principle, it should be possible to overload the basic arithmetic operators so that, for
example, a singleAdd star could handle any data type. Our decision, however, was in favor of
more explicit typing, in which there is anAdd star for each particle type supported in the ker-
nel. As before, when there is no data type suffix in the name of the star, the data type sup-
ported is double-precision floating point.

Many of the stars in this palette have more than one icon, as indicated in figure 5-5.
Each such icon has a different configuration of ports. This is done for visual clarity in sche-
matics. A port with a double arrowhead can accept any number of input signals. Each four
rows of the palette contains equivalent stars for floating-point, complex, fixed-point, and inte-
ger arithmetic, respectively. Listed by the roots of the names of the stars, they are:

Add (two icons) Output the sum of the inputs.

Sub Output the “pos” input minus all “neg” inputs.

Mpy (two icons) Output the product of the inputs.

Gain This is an amplifier; the output is the input multiplied by the
gain (default 1.0).

The floating-point and complex-valued scalar data types also have the following star:

Average Average some number of input samples or blocks of input sam-

FIGURE 5-5: The arithmetic palette in the SDF domain. Note that several of the stars have more
than one icon, each with a different configuration of ports.

Gain

GainCx

Add Add

AddCx AddCx

Sub

SubCx

Mpy Mpy

MpyCx MpyCx

Average

AverageCx

Integrator

AddFixAddFix SubFix MpyFixMpyFix GainFix

AddIntAddInt MpyInt MpyInt GainIntSubInt DivByInt

Complex:

Floating-point:

Fixed-point:

Integer:

The Almagest 5-13

Ptolemy Last updated: 12/1/97

ples. Blocks of successive input samples are treated as vectors.

The floating-point type has one additional arithmetic star:

Integrator This is an integrator with leakage, limits, and reset. With the
default parameters, input samples are simply accumulated, and
the running sum is the output. To prevent any resetting in the
middle of a run, connect aConst source with value 0 to the
“reset” input. Otherwise, whenever a non-zero is received on
this input, the accumulated sum is reset to the current input (i.e.
no feedback).

Limits are controlled by thetop andbottom parameters. Iftop ≤
bottom, no limiting is performed (this is the default). Otherwise,
the output is kept betweenbottom and top. If saturate = YES,
saturation is performed. Ifsaturate = NO, wrap-around is per-
formed (this is the default). Limiting is performed before out-
put.

Leakage is controlled by thefeedbackGain parameter (default
1.0). The output is the data input plusfeedbackGain× state,
wherestate is the previous output.

The integer type has the following star:

DivByInt This is an amplifier. The integer “output” is the integer “input”
divided by the integerdivisor (default 1). Truncated integer
division is used.

5.2.4 Nonlinear stars

The nonlinear palette (figure 5-6) in the SDF domain includes transcendental func-
tions, quantizers, table lookup stars, and miscellaneous nonlinear functions.

Quantizers

AdaptLinQuant Quantize the input to one of 2^bits possible output levels. The
high and low output levels are anti-symmetrically arranged
around zero and their magnitudes are determined by (2^bits-
1)*“inStep”/2. The steps between levels are uniformly spaced at
the step size given by the “inStep” input value. The linear quan-
tizer can be made adaptive by feeding back past information
such as quantization level, quantization value, and step size into
the current step size.

LinQuantIdx Quantize the input to the number of levels given by thelevels
parameter. The quantization levels are uniformly spaced
betweenlow andhigh inclusive. Rounding down is performed,
so that output level will equalhigh only if the input level equals
or exceedshigh. If the input is belowlow, then the quantized
output will equal low. The quantized value is output to the
“amplitude” port, while the index of the quantization level is

5-14 SDF Domain

U. C. Berkeley Department of EECS

output to the “stepNumber” port.

Quant Quantize the input value to one ofN+1 possible output levels
usingN thresholds. For an input less than or equal to the n-th
threshold, but larger than all previous thresholds, the output will
be the n-th level. If the input is greater than all thresholds, the
output is theN+1-th level. If level is specified, there must be
one more level than thresholds; the default value for level is 0,
1, 2, ...N. This star is much slower thanLinQuantIdx , so if
possible, that one should be used instead.

QuantIdx Quantize the input value to one ofN+1 possible output levels
usingN thresholds, and output both the quantized result and the
quantization level. See theQuant star for more information.

Quantizer This star quantizes the input value to the nearest output value in
the given codebook. The nearest value is found by a full search
of the codebook, so the star will be significantly slower than
eitherQuant or LinQuantIdx . The absolute value of the dif-
ference is used as a distance measure.

FIGURE 5-6: Palette of nonlinear stars for the SDF domain.

Table TableCx

Quant

TableInt

SqrtSgn

Floor

Reciprocal

Sin

Cos

Exp LogLimitexpjx

conjcexp

powerEst powerEstLin

Dirichlet

Sinc

LinQuantIdx

powerEstCx

Quantizer

PcwzLinear

Modulo ModuloInt

TclTcl
TclScript

TclTcl
TclScript

DB

Abs

AdaptLin
Quant

input

inStep

amplitude

outStep

stepLevel

MaxMin

output

index

QuantIdx

output

stepNumber

OrderTwoInt

upper

lower

greater

lesser

Other Non-Linear Functions

Math Functions

The Almagest 5-15

Ptolemy Last updated: 12/1/97

Math Functions

Abs Compute the absolute value of its input.

cexp Compute the complex exponential function of its complex
input. See alsoexpjx .

conj Compute the conjugate of its complex input.

Cos Compute the cosine of its input, assumed to be an angle in radi-
ans.

Dirichlet Compute the normalized Dirichlet kernel (also called the
aliased sinc function):

The value of the normalized Dirichlet kernel atx = 0 is always
1, and the normalized Dirichlet kernel oscillates between−1
and +1. The normalized Dirichlet kernel is periodic inx with a
period of either 2π whenN is odd or 4π whenN is even.

Exp Compute the real exponential function of its real input.

expjx Compute the complex exponential function of its real input. See
alsocexp .

Floor Output the greatest integer less than or equal to its input.

Log Output the natural logarithm of its input.

Limit The output of this star is the value of the input limited to the
range betweenbottom andtop inclusive.

MaxMin Finds maximum or minimum, value or magnitude, of a fixed
number of data values on its input. If you want to use this star to
operate over multiple data streams, then precede this star with a
Commutator and set the parameterN accordingly.

Modulo The output is equal to the remainder after dividing the input by
themodulo parameter.

ModuloInt The output is equal to the integer remainder after dividing the
integer input by the integermodulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two
integers.

Reciprocal Output the reciprocal of its input, with an optional magnitude
limit. If the magnitude limit is greater than zero, and the input
value is zero, then the output will equal the magnitude limit.

Sgn Compute the signum of its input. The output is±1. Note that 0.0
maps into 1.

Sin Computes the sine of its input, assumed to be an angle in radi-
ans.

dN x() Nx/ 2()sin
N x/2()sin
--------------------------=

5-16 SDF Domain

U. C. Berkeley Department of EECS

Sinc Computes the sinc of its input given in radians. The sinc func-
tion is defined as sin(x)/x, with value 1.0 whenx = 0.

Sqrt Computes the square root of its input.

Other Nonlinear Functions

DB Convert input to a decibels (dB) scale. Zero and negative values
are assigned the valuemin (default -100). TheinputIsPower
parameter should be set to YES if the input signal is a power
measurement (vs. an amplitude measurement).

PcwzLinear This star implements a piecewise linear mapping from the list of
(x,y) pairs, which specify the breakpoints in the function. The
sequence of x values must be increasing. The function imple-
mented by the star can be represented by drawing straight lines
between the (x,y) pairs, in sequence. The default mapping is the
‘tent’ map, in which inputs between -1.0 and 0.0 are linearly
mapped into the range -1.0 to 1.0. Inputs between 0.0 and 1.0
are mapped into the same range, but with the opposite slope, 1.0
to -1.0. If the input is outside the range specified in the “x” val-
ues of the breakpoints, then the appropriate extreme value will
be used for the output. Thus, for the default map, if the input is -
2.0, the output will be -1.0. If the input is +2.0, the output will
again be -1.0.

powerEst Estimate the power in decibels (dB) by filtering the square of
the input using a first-order filter with the time constant given as
a number of sample periods.

powerEstCx Like powerEst , but for complex inputs.

powerEstLin Same aspowerEst , but the output is on a linear scale instead of
decibels (dB).

Table This star implements a real-valued lookup table indexed by an
integer-valued input. The input must lie between 0 andN-1,
inclusive, whereN is the size of the table. Thevalues parameter
specifies the table. Its first element is indexed by a zero-valued
input. An error occurs if the input value is out-of-bounds.

TableCx Table lookup for complex values.

TableInt Table lookup for integer values.

TclScript (two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

5.2.5 Logic stars

The logic palette shown in figure 5-7 is made up of only three stars. Each star has mul-
tiple icons representing a variety of configurations.

The Almagest 5-17

Ptolemy Last updated: 12/1/97

Test (four icons) Compare two inputs. The test condition can be any
of {EQ NE GT GE} or { == != > >= }, resulting in equals, not
equals, greater than, or greater than or equals. The four icons
represent these possibilities.

If crossingsOnly is TRUE, then the output is non-zero only when
the outcome of the test changes fromTRUE to FALSE or FALSE
to TRUE. In this case, the first output is alwaysTRUE.

Multiple (one icon) Output a 1 if top input is a multiple of bottom input.

Logic (19 icons) This star applies a logical operation to any number of
inputs. The inputs are integers interpreted as Booleans, where
zero is aFALSE and nonzero is aTRUE. The logical operations
supported are {NOT, AND, NAND, OR, NOR, XOR, XNOR}, with any
number of inputs.

5.2.6 Control stars

Control stars (figure 5-8) manipulate the flow of tokens. All of these stars are polymor-
phic; they operate on any data type. From left to right, top to bottom, they are:

Single-Rate Operations

Fork (five icons) Copy input particles to each output. Note that a fork
is automatically inserted in a schematic when a single output is
sent to more than one input. However, when a delay is needed
on one of the connections, then an explicit fork star must be
used.

Reverse On each execution, read a block ofN samples (default 64) and
write them out backwards.

FIGURE 5-7: Logic stars in the SDF palette.

Test

upper

lower

Test Test Test Multiple

5-18 SDF Domain

U. C. Berkeley Department of EECS

Transpose Transpose a rasterized matrix (one that is read as a sequence of
particles, row by row, and written in the same form). The num-
ber of particles produced and consumed equals the product of
samplesInaRow andnumberOfRows.

TkBreakPt A conditional break point. Each time this star executes, it evalu-
ates its conditional expression. If the expression evaluates to
true, it causes the run to pause.

Trainer Pass the value of thetrain input to the output for the firsttrain-
Length samples, then pass thedecision input to the output. This
star is designed for use with adaptive equalizers that require a
training sequence at start-up, but it can be used whenever one
sequence is used during a start-up phase, and another sequence
after that.

Multirate Operations

Commutator (four icons) Synchronously combineN input streams (whereN
is the number of inputs) into one output stream. The star con-
sumesB input particles from each input (whereB is theblock-
Size), and producesN × B particles on the output. The firstB
particles on the output come from the first input, the nextB par-
ticles from the next input, etc.

FIGURE 5-8: Control stars for the SDF domain.

Fork Fork Fork

Reverse

DownSample

UpSampleRepeatDistributor Distributor

Commutator Commutator

Mux

Trainer

Distributor

Commutator

Transpose

Chop
ChopVar
Offset

Commutator

Distributor

Fork
Bus

Fork

TkBreakPt

Mux

input

control

DeMux

input

control

output#1

output#2

DeMux

Single-Rate Operations

Other Operations

Multirate Operations

The Almagest 5-19

Ptolemy Last updated: 12/1/97

DownSample Decimate by a givenfactor (default 2). Thephase tells which
sample of the lastfactor samples to output. Ifphase = 0 (by
default), the most recent sample is the output, while ifphase =
factor −1 the oldest sample is the output. Note thatphase has
the opposite sense of thephase parameter in theUpSample star,
but the same sense as thephase parameter in theFIR star.

Distributor (four icons) Synchronously split one input stream intoN output
streams, whereN is the number of outputs. The star consumesN
× B input particles, whereB is the blockSize parameter, and
sends the firstB particles to the first output, the nextB particles
to the next output, etc.

Repeat Repeat each input sample a specified number of times.

UpSample Upsample by a given factor (default 2), giving inserted samples
the valuefill (default 0.0). Thephase parameter (default 0) tells
where to put the sample in an output block. Aphase of 0 says to
output the input sample first, followed by the inserted samples.
The maximumphase is equal tofactor - 1. Although thefill
parameter is a floating-point number, if the input is of some
other type, such as complex, then thefill particle will be
obtained by castingfill to the appropriate type.

Other Operations

Chop On each execution, this star reads a block ofnread particles and
writes them to the output with the given offset. The number of
particles written is given bynwrite. The output block contains
all or part of the input block, depending onoffset andnwrite.
The offset specifies where in the output block the first (oldest)
particle in the input block will lie. Ifoffset is positive, then the
first offset output particles will be either particles consumed on
previous firings (ifuse_past_inputs parameter isYES), or zero
(otherwise). Ifoffset is negative, then the firstoffset input parti-
cles will be discarded.

ChopVarOffset This star has the same functionality as theChop star except the
offset parameter is determined at run time by a control input.

DeMux (two icons) Demultiplex one input onto any number of output
streams. The star consumesB particles from the input, whereB
is theblockSize. TheseB particles are copied to exactly one out-
put, determined by the “control” input. The other outputs get a
zero of the appropriate type.

Integers from 0 throughN − 1 are accepted at the “control”
input, whereN is the number of outputs. If “control” is outside
this range, all outputs get zeros.

Mux (two icons) Multiplex any number of inputs onto one output

5-20 SDF Domain

U. C. Berkeley Department of EECS

stream.B particles are consumed on each input, whereB is the
blockSize. But only one of these blocks of particles is copied to
the output. The one copied is determined by the “control” input.
Integers from 0 throughN − 1 are accepted at the “control”
input, whereN is the number of inputs. If “control” is outside
this range, an error is signaled.

5.2.7 Conversion stars

The palette in figure 5-9 shows a collection of stars for format conversions of various
types. The first two rows contain stars with functions that are fundamentally different from the
automatic type conversion performed by Ptolemy. From left to right, top to bottom, they are:

Complex data type formats

CxToRect Convert a complex input to real and imaginary parts.

RectToCx Convert real and imaginary inputs to a complex output.

RectToPolar Convert real and imaginary inputs into magnitude and phase

FIGURE 5-9: Type conversion stars for the SDF domain.

CxToRect RectToCx PolarToRectRectToPolar

BitsToInt IntToBits

PCM
BitDecoder

FloatToFix FloatToCx

IntToFloat IntToCxIntToFix

FloatToInt

CxToInt CxToFloatCxToFix

FixToCxFixToInt FixToFloat

Bus
To

Num

Num
To
Bus

Num
To
Bus

NumToBus

Bus
To

Num
BusToNum

MuLaw

FixToCx_MFixToFloat_MFixToInt_M

FloatToCx_MFloatToFix_MFloatToInt_M

IntToCx_MIntToFloat_MIntToFix_M

CxToFix_M CxToFloat_MCxToInt_M

PCM
BitCoder

Other data type formats:

Complex data type formats:

Explicit (vs. automatic) scalar and matrix data type conversion:

Scalar

Matrix

The Almagest 5-21

Ptolemy Last updated: 12/1/97

form. The phase output is in the range−π to π.

PolarToRect Convert magnitude and phase to rectangular form.

Other data type formats

PCMBitCoder Encode voice samples for a 64 kbps bit stream using CCITT
Recommendation G.711. The input is one 8 kHz sample of
voice data and the output is the eight-bit codeword (the low-
order 8 bits of an integer) representing the quantized samples.

MuLaw This star encodes its input into an 8 bit representation using the
nonlinear compandingµ-law. It is similar toPCMBitCoder , but
it does the conversion in a single star, rather than a galaxy.

PCMBitDecoder Decode 8-bit PCM codewords that were encoded usingPCM-
BitCoder .

BitsToInt The integer input sequence is interpreted as a bit stream in
which any non-zero value is a “1” bit. This star consumesnBits
successive bits from the input, packs them into an integer, and
outputs the resulting integer. The first received bit becomes the
most significant bit of the output. IfnBits is larger than the inte-
ger wordsize, then the first bits received will be lost. IfnBits is
smaller than the wordsize minus one, then the output integer
will always be non-negative.

IntToBits Read the least significantnBits bits from an integer input, and
output the bits as integers serially on the output, most signifi-
cant bit first.

BusToNum (two icons) This star accepts a number of input bit streams,
where this number should not exceed the word size of an inte-
ger. Each bit stream has integer particles with values 0, 3, or
anything else. These are interpreted as binary 0, tri-state, or 1,
respectively. When the star fires, it reads one input bit from each
input. If any of the input bits is tri-stated, the output will be the
previous output (or the initial value of theprevious parameter if
the firing is the first one). Otherwise, the bits are assembled into
an integer word, assuming two's complement encoding, and
sign extended. The resulting signed integer is sent to the output.
This star is particularly useful for interfacing to digital logic
simulation domains.

NumToBus (two icons) This star accepts an integer and outputs the low-
order bits that make up the integer on a number of outputs, one
bit per output. The number of outputs should not exceed the
word size of an integer. This star is particularly useful for inter-
facing to digital logic simulation domains.

Automatic type conversion, as implemented in Ptolemy 0.7, has limitations. If a given output

5-22 SDF Domain

U. C. Berkeley Department of EECS

port has more than one destination, then all destinations must have the same type input. This is
true even if an explicitfork star is used. Explicit type conversions are needed to get around
this limitation. For this reason, the palette in figure 5-9 also contains a set of type conversions
that behave exactly the same way the automatic type conversions behave.

IntToFix Convert an integer input to a fixed-point output.

IntToFloat Convert an integer input to a floating-point output.

IntToCx Convert an integer input to a complex output.

FixToInt Convert a fixed-point input to an integer output.

FixToFloat Convert a fixed-point input to a floating-point output.

FixToCx Convert a fixed-point input to a complex output.

FloatToInt Convert a floating-point input to an integer output.

FloatToFix Convert a floating-point input to a fixed-point output.

FloatToCx Convert a floating-point input to a complex output.

CxToInt Convert a complex input to an integer output.

CxToFix Convert a complex input to a fixed-point output.

CxToFloat Convert a complex input to a floating-point output.

Matrix Conversion Stars

The following type conversions construct a new matrix of the destination type by converting
each element of the old matrix as it is copied to the new one. ForFixMatrix types, the preci-
sion is specified as a parameter of the conversion star. The actual conversions are implemented
using the cast conversion in the underlying class, except for the conversions to theFixMa-
trix type which are more complex because they involve possible changes in precision and
require a rounding option. The stars provided are:

IntToFix_M Convert an integer input matrix to a fixed-point output matrix.

IntToFloat_M Convert an integer input matrix to a floating-point output
matrix.

IntToCx_M Convert an integer input matrix to a complex output matrix.

FixToInt_M Convert a fixed-point input matrix to an integer output matrix.

FixToFloat_M Convert a fixed-point input matrix to a floating-point output
matrix.

FixToCx_M Convert a fixed-point input matrix to a complex output matrix.

FloatToInt_M Convert a floating-point input matrix to an integer output
matrix.

FloatToFix_M Convert a floating-point input matrix to a fixed-point output
matrix.

FloatToCx_M Convert a floating-point input matrix to a complex output

The Almagest 5-23

Ptolemy Last updated: 12/1/97

matrix.

CxToInt_M Convert a complex input matrix to an integer output matrix.

CxToFix_M Convert a complex input matrix to a fixed-point output matrix.

CxToFloat_M Convert a complex input matrix to a floating-point output
matrix.

5.2.8 Matrix stars

The stars in the matrix palette (figure 5-10) operate on particles that represent matrices
with floating-point, fixed-point, complex, or integer entries. Most of the work is done in the
underlying matrix classes,FloatMatrix , ComplexMatrix , FixMatrix , andIntMatrix .
These classes are treated as ordinary particles. In Pigi, matrix types are indicated with thick
terminal stems, where the color of the terminal stem corresponds to the data type of the matrix
elements.

The Matrix conversion stars are in the conversion palette, see “Matrix Conversion
Stars” on page 5-22 for more information.

FIGURE 5-10: The matrix palette in the SDF domain. These stars operate on matrices encapsulated
in a particles.

PackFix_M

UnPkFix_M

PackCx_M PackInt_M

UnPkCx_M UnPkInt_M

AddCx_M

AddFix_M

Add_M

AddInt_M

SubCx_MMpyCx_MGainCx_M

T

TransposeCx_M

-1

InverseCx_M

GainFix_M

T

TransposeFix_M

-1

InverseFix_M MpyFix_M SubFix_M

GainInt_M

T

TransposeInt_M

-1

InverseInt_M MpyInt_M SubInt_M

Gain_M

T

Transpose_M

-1

Inverse_M Mpy_M Sub_M

*
Conjugate_M

H

Hermitian_M

UnPk_M

Pack_M

SmithForm SVD_M

R

S

L

AvgSqrErrTable_M TableInt_MTableCx_M

SubMx_M

SubMxInt_M

SubMxFix_M

SubMxCx_M

SampleMean

MxDecom_MMxCom_M

MpyScalar_M MpyScalarFix_MMpyScalarCx_M MpyScalarInt_M

sources.pal

conversion.pal

ToeplitzCx_M ToeplitzFix_M ToeplitzInt_M

Toeplitz_M

Abs_M

Miscellaneous

Matrix-Vector Conversions

Matrix Operations

Matrix data type
conversion stars are
in Conversion palette

Matrix source stars
are in the Signal
Sources palette

--->

--->

5-24 SDF Domain

U. C. Berkeley Department of EECS

Matrix-Vector Conversion

MxCom_M Accept input matrices and create a matrix output. Each input
matrix represents a decomposed submatrix of output matrix in
row by row. Note that for one output image, we will need a total
(numRows/ numRowsSubMx) × (numCols/ numColsSubMx)
input matrices.

MxDecom_M Decompose a portion of input matrix into a sequence of subma-
trices. The desired portion of input matrix is specified by the
parametersstartRow, startCol, numRows, andnumCols. Then
output each submatrix with dimensionnumRowsSubMx× num-
ColsSubMx in row by row. Note that for one input matrix, there
will be a total of (numRows/ numRowsSubMx) × (numCols/
numColsSubMx) output matrices.

The following conversions perform more interesting functions. They also come in four ver-
sions, one for each data type, and again we only list the floating-point version.

Pack_M (4 icons) Produce a matrix with floating-point entries con-
structed from floating-point input particles. The inputs are put
in the matrix in rasterized order, e.g. for aM × N matrix, the first
row is filled from left to right using the first N input particles.

Toeplitz_M (4 icons) Generate a floating-point data matrixX, with dimen-
sions (numRows,numCols), from a stream ofnumRows + num-
Cols− 1 input particles organized as shown below:

HerenumRows = N− M + 1 andnumCols = M. This Toeplitz
matrix is the form of the matrix that is required by theSVD_M
star, among others.

UnPk_M (4 icons) Read a floating-point matrix and output its elements,
row by row, as a stream of floating-point particles.

Matrix operations

The following blocks are functions defined only for theComplexMatrix data type.

Conjugate_M Conjugate a matrix.

Hermitian_M Perform a Hermitian transpose (conjugate transpose) on the
input matrix.

The following blocks also appear in the signal processing palette.

SmithForm Decompose an integer matrixS into one of its Smith formsS =

X

x M 1–() x M 2–() ... x 0()
x M() x M 1–() ... x 1()

...

x N 1–() x N 2–() ... x N M–()

=

The Almagest 5-25

Ptolemy Last updated: 12/1/97

UDV, whereU, D, and V are simpler integer matrices. The
Smith form decomposition for integer matrices is analogous to
singular value decomposition for floating-point matrices.

SVD_M Compute the singular-value decomposition of a Toeplitz data
matrix A by decomposingA into A = UWV’, whereU andV are
orthogonal matrices, andV’ represents the transpose ofV. W is a
diagonal matrix composed of the singular values ofA, and the
columns ofU andV are the left and right singular vectors ofA.

See “Matrix Sources” on page 5-8 for the Matrix source stars.

The following are usual matrix operations. They are arranged row by row, with one row for
each data type (floating point, complex, fixed point, and integer). We list below only the float-
ing point data type, from left to right.

Add_M Add two floating-point matrices.

Gain_M Multiply a floating-point matrix by a static scalar gain value.

Inverse_M Invert a square floating-point matrix.

Mpy_M Multiply two floating-point matricesA andB to produce matrix
C. Matrix A has dimensions (numRows,X). Matrix B has dimen-
sions (X,numCols). Matrix C has dimensions (numRows,num-
Cols). The user need only specifynumRows andnumCols. An
error will be generated if the number of columns inA does not
match the number of rows inB.

Sub_M Subtract floating-point matrixB from A.

Transpose_M Transpose a floating-point matrix read as a single particle.

SubMx_M Find a submatrix of the input matrix.

MpyScalar_M Multiply a floating-point matrix by a scalar gain value given in
parameter.

Miscellaneous

Table_M (3 stars for floating-point, complex and integer) This star imple-
ments a lookup table indexed by an integer-valued input. The
output is a matrix. The input must lie between 0 andN − 1,
inclusive, whereN is the number of matrices in the table. The
floatTable parameter specifies the entries of matrices in the
table. Note that the entries of each matrix in the table should be
given in row major ordering. The first matrix in the table is
indexed by a zero-valued input. An error occurs if the input
value is out of bounds.

SampleMean Find the average amplitude of the components of the input
matrix.

AvgSqrErr Find the average squared error between two input sequences of

5-26 SDF Domain

U. C. Berkeley Department of EECS

matrices.

Abs_M Return the absolute value of each entry of the floating-point
matrix.

5.2.9 Matlab stars

The Matlab stars provide an interface between Ptolemy and Matlab, a numeric compu-
tation and visualization environment from The Math Works, Inc. Each Matlab star can contain
a single Matlab function, command, statement, or several statements. Ptolemy handles the
conversion of inputs into Matlab format and the results from Matlab into Ptolemy format. For
the Matlab stars to work, Matlab version 4.1 or later must be installed. Matlab is not distrib-
uted with Ptolemy1. If a Matlab star is run and Matlab is not installed, then Ptolemy will
report an error. All Matlab stars send their commands to the same Matlab process.

Xavier Warzee of Thomson-CSF provided a method of running Matlab on a remote
machine and obtaining the results from within Ptolemy. If a simulation needs to start Matlab,
then thePTMATLAB_REMOTE_HOST environment variable is checked. If this variable is set,
then its value is assumed to be the name of the remote machine to run Matlab on. The remote
Matlab process is started up with the Unixrsh command. Once the remote process is run-
ning, if theMATLAB_SCRIPT_DIR environment variable is set, then its value is passed to the
remote Matlab process as part of the command

path(path.’ MATLAB_SCRIPT_DIR’)

whereMATLAB_SCRIPT_DIR is the value of that variable on the local machine.

Internally, Matlab distinguishes between real matrices and complex matrices. As a

1. Contact The Math Works, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass. 01760-1500,
USA, Phone: (508) 653-1415. Their Web site is http://www.mathworks.com/.

The Almagest 5-27

Ptolemy Last updated: 12/1/97

consequence, in Figure 5-11 there are two types of Matlab stars: one outputs floating-point

matrices and one outputs complex-valued matrices. These stars can take any number of inputs
provided that the inputs have the same data type (floating point or complex). The two types of
Matlab stars are:

Matlab_M Evaluate a Matlab expression and output the result as floating-
point matrices.

MatlabCx_M Evaluate a Matlab expression and output the result as complex-
valued matrices.

The implementation of Matlab stars is built on Matlab’s engine interface. The interface
is managed by a base star,SDFMatlab . The base star does not have any inputs or outputs. It
provides methods for starting and killing a Matlab process, evaluating Matlab commands,
managing Matlab figures, changing directories in Matlab, and passing Ptolemy matrices in
and out of Matlab. Currently, the base star does support real- and complex-valued matrices,
but not Matlab’s other two matrix data types, sparse and string matrices.

Figures generated by a Matlab star are managed according to the value of the star’s
DeleteOldFigures parameter. IfTRUE or YES, then the Matlab star will close any plots, graph-
ics, etc., that it has generated when the Matlab star is destroyed (e.g., when the run panel in the
graphical interface is closed). Otherwise, the figures remain until Ptolemy exits. For standal-

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Float Matrix Outputs

Complex Matrix Outputs

FIGURE 5-11: Matlab stars in the SDF domain.

5-28 SDF Domain

U. C. Berkeley Department of EECS

one programs generated by compile-SDF, it is better to set this parameter toNO so that the
plots will not disappear when then standalone programs finishes.

There are several ways in which Matlab commands can be specified in the Matlab
stars. The Matlab starsMatlab_M andMatlabCx_M have a parameterMatlabFunction. If
only a Matlab function name is given for this parameter, then the function is applied to the
inputs in the order they are numbered and the output(s) of the function is (are) sent to the star’s
outputs. For example, specifyingeig means to perform the eigendecomposition of the input.
The function will be called to produce one or two outputs, according to how many output
ports there are. If there is a mismatch in the number of inputs and/or outputs between the
Ptolemy star and the Matlab function, Ptolemy will report the error generated by Matlab.

The user may also specify how the inputs are to be passed to a Matlab function or how
the outputs are taken from the Matlab function. For example, consider a two-input, two-output
Matlab star to perform a generalized eigendecomposition. The command

[output#2, output#1] = eig(input#2, input#1)

says to perform the generalized eigendecomposition on the two input matrices, place the gen-
eralized eigenvectors on output#2, and the eigenvalues (as a diagonal matrix) on output#1.
Before this command is sent to Matlab, the pound characters ‘#’ are replaced with underscore
‘_’ characters because the pound character is illegal in a Matlab variable name.

The Matlab stars also allow a sequence of commands to be evaluated. Continuing with
the previous example, we can plot the eigenvalues on a graph after taking the generalized
eigendecomposition:

[output#2, output#1] = eig(input#2, input#1);
plot(output#1)

When entering such a collection of commands in Ptolemy, both commands would appear on
the same line without a newline after the semicolon. In this way, very complicated Matlab
commands can be built up. We can make the plot of eigenvalues always appear in the same
plot without interfering with other plots generated by other Matlab stars:

[output#2, output#1] = eig(input#2, input#1);
if (exist(‘myEigFig’) == 0) myEigFig = figure; end;
figure(myEigFig);
plot(output#1);

For more information about using Matlab stars, please refer to the Matlab demonstrations.

5.2.10 UltraSparc Native DSP

The Visual Instruction Set (VIS) demos only run on Sun Ultrasparc workstations with
the Sun unbundled CC compiler and a Ptolemy tree that has been compiled with thePTARCH
variable set tosol2.5.cfront . The VIS demos will not work the Gnu compilers. You must
have the Sun Visual Instruction Set Development kit installed, seehttp://www.sun.com/
sparc/vis/vsdkfaq.html .

The palette shown in figure 5-12 has icons for the library of Sun UltraSparc Visual

The Almagest 5-29

Ptolemy Last updated: 12/1/97

Instruction Set (VIS) stars.

VISAddSh Add the shorts in a 16 bit partitioned float to the corresponding
shorts in a 16 bit partitioned float. The result is four signed
shorts that is returned as a single floating point number. There is
no saturation arithmetic so that overflow results in wraparound.

VISSubSh Subtract the shorts in a 16 bit partitioned float to the corre-
sponding shorts in a 16 bit partitioned float.The result is four
signed shorts that is returned as a single floating point number.
There is no saturation arithmetic so that overflow results in
wraparound.

VISMpyDblSh Multiplies the shorts in a 16 bit partitioned float to the corre-
sponding shorts in a 16 bit partitioned float. The result is four
signed shorts that is returned as a single floating point number.
Each multiplication results in a 32 bit result, which is then
rounded to 16 bits.

VISBiquad An IIR Biquad filter.

VISFIR A finite impulse response (FIR) filter.

VISFFTCx A single complex sequence FFT using radix 2.

VISPackSh Pack four floating point numbers into a single floating point
number.

VISPackSh

VISAddSh

inA

inB

VISBiquad VISFFTCx

realIn

imagIn

realOut

imagOut

VISFIR

VISMpyDblSh

inA

inB

VISUnpackSh

VISSubSh

inA

inB

Conversion

Arithmetic

Signal Processing

FIGURE 5-12: Sun UltraSparc Visual Instruction Set (VIS) DSP stars in the SDF domain.

5-30 SDF Domain

U. C. Berkeley Department of EECS

VISUnPackSh Unpack a single floating point number into four floating point
numbers.

5.2.11 Signal processing stars

The palette shown in figure 5-13 has icons for the library of signal processing func-
tions. Simple time-domain filtering operations come first.

Filters

Biquad A two-pole, two-zero Infinite Impulse Response filter (a
biquad). The default is a Butterworth filter with a cutoff at 0.1
times the sample frequency. The transfer function is

.

Convolve Convolve two causal finite sequences of floating point numbers.
The truncationDepth parameter specifies the number of terms
used in the convolution sum. SettruncationDepth larger than

FIGURE 5-13: The signal processing (dsp) palette of the SDF domain.

Biquad

BlockAllPole BlockFIR BlockLattice BlockRLattice

FIRCxConvolve FIR

Hilbert

LMS LMSLeak

Lattice RLatticeIIR

LMSCx

phaseShift

FIRFix

LMS
TkPlot

LMSCx
TkPlot

Kalman_M

y[n]

PHI[n] C[n]

x[n]

R[n]Q[n]

LMSPlot LMSPlotCx

IIRFix

blockPredictor blockVocoder

GAL GGAL

GLA SGVQCodebk VQCoderSGVQCoderMRVQCoder

Goertzel

LMSOscDet

signalIn

error

signalOut

cosOmega

ConvolCx
Raised
Cosine

Adaptive Filters

Vector Quantization

Block Filters

Filters

H z()
n0 n1z

1–
n2z

2–
+ +

1 d1z
1–

d2z
2–

+ +
--=

The Almagest 5-31

Ptolemy Last updated: 12/1/97

the number of output samples of interest.

ConvolveCx Convolve two causal finite sequences of complex numbers. The
truncationDepth parameter specifies the number of terms used
in the convolution sum. SettruncationDepth larger than the
number of output samples of interest.

FIR A Finite Impulse Response (FIR) filter. Coefficients are speci-
fied by thetaps parameter. The default coefficients give an 8th
order, linear-phase, lowpass filter. To read coefficients from a
file, replace the default coefficients with< fileName , prefera-
bly specifying a complete path. Rational sampling rate changes,
implemented by polyphase multirate filters, is also supported.

FIRCx A complex FIR filter. Coefficients are specified by thetaps
parameter. The default coefficients give an 8th order, linear
phase, lowpass filter. To read coefficients from a file, use the
syntax:< fileName , preferably specifying a complete path.
Real and imaginary parts should be paired with parentheses,
e.g. (1.0, 0.0). Polyphase multirate filtering is also supported.

RaisedCosine An FIR filter with a magnitude frequency response that is
shaped like the standard raised cosine or square-root raised
cosine used in digital communications. By default, the star
upsamples by a factor of 16, so 16 outputs will be produced for
each input unless theinterpolation parameter is changed.

FIRFix An FIR filter with fixed-point capabilities. The fixed-point coef-
ficients are specified by thetaps parameter. The default coeffi-
cients give an 8th order, linear phase lowpass filter. To read
coefficients from a file, replace the default coefficients with<
fileName , preferably specifying a complete path. Polyphase
multirate filtering is also supported.

Kalman_M Output the state vector estimates of a Kalman filter using a one-
step prediction algorithm.

GAL A Gradient Adaptive Lattice filter.

Goertzel Second-order recursive computation of the kth coefficient of an
N-point DFT using Goertzel’s algorithm.

GGAL Ganged Gradient Adaptive Lattice filters.

Hilbert Output the (approximate) Hilbert transform of the input signal.
This star approximates the Hilbert transform by using an FIR
filter, and is derived from theFIR star.

IIR An Infinite Impulse Response (IIR) filter implemented in direct
form II. The transfer function is of the form

,H z() G
N 1/z()
D 1/z()
-----------------=

5-32 SDF Domain

U. C. Berkeley Department of EECS

whereN() andD() are polynomials. The parametergain speci-
fiesG, and the floating-point arraysnumerator anddenominator
specifyN() andD(), respectively. Both arrays start with the con-
stant terms of the polynomial and decrease in powers ofz
(increase in powers of 1/z). Note that the constant term ofD is
not omitted, as is common in other programs that assume it is
always normalized to unity.

IIRFix This is a fixed-point version of theIIR star. The coefficient pre-
cision, input precision, accumulation precision, and output pre-
cision can all be separately specified.

Lattice An FIR lattice filter. The default reflection coefficients form the
optimal predictor for a particular 4th-order AR random process.
To read other reflection coefficients from a file, replace the
default coefficients with< fileName , preferably specifying a
complete path.

phaseShift This galaxy applies a phase shift to a signal according to the
“shift” input. If the “shift” input value is time varying, then its
slope determines the instantaneous frequency shift.

RLattice A recursive (IIR) lattice filter. The default coefficients imple-
ment the synthesis filter for a particular 4th-order AR random
process. To read reflection coefficients from a file, replace the
default coefficients with< fileName , preferably specifying a
complete path.

Adaptive Filters

LMS An adaptive filter using the Least-Mean Square (LMS) adapta-
tion algorithm. The initial coefficients are given by thetaps
parameter. The default initial coefficients give an 8th order, lin-
ear phase lowpass filter. To read default coefficients from a file,
replace the default coefficients with< fileName , preferably
specifying a complete path. This star, which is derived from
FIR , supports decimation, but not interpolation.

LMSCx Complex version of theLMS star.

LMSCxTkPlot This star is just like theLMSCx star, but with an animated Tk
display of the taps, plus associated controls.

LMSLeak An LMS adaptive filter in which the step size is input (to the
“step” input) every iteration. In addition, themu parameter
specifies a leakage factor in the updates of the filter coefficients.

LMSPlot This star is just like theLMS star, except that, in addition to the
functions ofLMS, it makes a plot of the tap coefficients. It can
produce two types of plots: a plot of the final tap values or a plot
that traces the time evolution of each tap value. The time evolu-

The Almagest 5-33

Ptolemy Last updated: 12/1/97

tion is obtained if the value of the parametertrace is YES.

LMSTkPlot This star is just like theLMS star, but with an animated Tk dis-
play of the taps, plus associated controls.

LMSOscDet This filter tries to lock onto the strongest sinusoidal component
in the input signal, and outputs the current estimate of the
cosine of the frequency of the strongest component and the
error signal. It is a three-tap LMS filter whose first and third
coefficients are fixed at one. The second coefficient is adapted.
It is a normalized version of the Direct Adaptive Frequency
Estimation Technique.

LMSPlotCx Complex version ofLMSPlot . Separate plots are generated for
the magnitude and phase of the filter coefficients.

Block Filters

The next group of stars perform “block filtering”, which means that on each firing, they read a
set of input particles all at once, process them, and produce a set of output particles. The num-
ber of particles in a set is specified by theblockSize parameter.

BlockAllPole This star implements an all pole filter with the denominator
coefficients of the transfer function externally supplied. For
each set of coefficients, a block of input samples is processed,
all in one firing. The transfer function is

where the coefficients of are externally supplied.

BlockFIR This star implements an FIR filter with coefficients that are peri-
odically updated from the outside. For each set of coefficients, a
block of input samples is processed, all in one firing.

BlockLattice A block forward lattice filter. It is identical to theLattice star
except that the reflection coefficients are updated each time the
star fires by reading the “coefs” input. Theorder parameter
indicates how many coefficient should be read. TheblockSize
parameter specifies how many data samples should be pro-
cessed for each set of coefficients.

BlockRLattice A block recursive (IIR) lattice filter. It is identical to theRLat-
tice star, except that the reflection coefficients are updated
each time the star fires by reading the “coefs” input. Theorder
andblockSize parameters have the same interpretation as in the
BlockLattice star.

blockPredictor A block predictor galaxy used in speech processing.

blockVocoder A block vocoder galaxy.

H z() 1
1 D z()–
--------------------=

D z()

5-34 SDF Domain

U. C. Berkeley Department of EECS

Vector Quantization

Quantization is the heart of converting analog signals to digital signals. Traditional
techniques are based onscalar coding which quantizes symbols, such as pixels in images, one
by one. On the other hand, vector quantization can perform better by operating the quantiza-
tion on groups of symbols instead of individual symbols.

GLA Use the Generalized Lloyd Algorithm (GLA) to yield a code-
book from input training vectors. Note that each input matrix
will be viewed as a row vector in row by row. Each row of out-
put matrix represents a codeword of the codebook.

MRVQCoder Mean removed vector quantization coder.

SGVQCodebk Jointly optimized codebook design for shape-gain vector quan-
tization. Note that each input matrix will be viewed as a row
vector in row by row. Each row of first output matrix represents
a codeword of the shape codebook. Each element of the second
output matrix represents a codeword of the gain codebook.

SGVQCoder Shape-gain vector quantization encoder. Note that each input
matrix will be viewed as a row vector in row by row.

VQCoder Full search vector quantization encoder. It consists in finding
the index of the nearest neighbor in the given codebook corre-
sponding to the input matrix. Note that each input matrix will
first be viewed as a row vector in row by row, in order to find the
nearest neighbor codeword in the codebook.

5.2.12 Spectral analysis

The group of stars shown in figure 5-14 are concerned with various signal analysis algorithms.

autocorrelation Estimate a power spectrum using the autocorrelation method, a
method that uses the Levinson-Durbin algorithm to compute
linear predictor coefficients, and then uses these coefficients to
construct an approximate maximum entropy power spectrum
estimate.

blockFFT An overlap and add implementation of the FFT.

burg Estimate a power spectrum using Burg’s method, a method that
computes linear predictor coefficients, and then uses them to
construct a maximum entropy power spectrum estimate.

Burg This star uses Burg's algorithm to estimate the linear predictor
coefficients of an input random process. These coefficients are
produced both in autoregressive form (on the “lp” output) and
in lattice filter form (on the “refl” output). The “errPower” out-
put is the power of the prediction error as a function of the pre-
dictor order. This star is used in theburg galaxy.

DB Convert input to a decibel (dB) scale. Zero and negative values

The Almagest 5-35

Ptolemy Last updated: 12/1/97

are assigned the valuemin (default -100). TheinputIsPower
parameter should be set toYES if the input signal is a power
measurement (vs. an amplitude measurement).

DTFT Compute the discrete-time Fourier transform (DTFT) at fre-
quency points specified on the “omega” input.

FFTCx Compute the discrete-time Fourier transform of a complex input
using the fast Fourier transform (FFT) algorithm. The parame-
ter order (default 8) is the log base 2 of the transform size. The
parametersize (default 256) is the number of samples read (<=
2^order). The parameterdirection (default 1) is 1 for the for-
ward, -1 for the inverse FFT.

GoertzelPower Second-order recursive computation of the power of the kth
coefficient of an N-point DFT using Goertzel’s algorithm. This
form is used in touch-tone decoding.

LevDur This star uses the Levinson-Durbin algorithm to compute the
linear predictor coefficients of a random process, given its auto-
correlation function as an input. These coefficients are produced
both in autoregressive form (on the “lp” output) and in lattice
filter form (on the “refl” output). The “errPower” output is the
power of the prediction error as a function of the predictor
order.

FIGURE 5-14: The spectral analysis palette of the SDF domain

Autocor

Burg

FFTCxDTFT LevDur

Unwrap Window

PattMatch

DB

periodogram

autocorrelation burg

SVD_M

R

S

L

MUSIC_M

SmithForm

blockFFT

Goertzel
Power

Spectral Analysis:

Statistical Operators:

5-36 SDF Domain

U. C. Berkeley Department of EECS

MUSIC_M This star is used to estimate the frequencies of some specified
number of sinusoids in a signal. The output is the eigenspec-
trum of a signal, such that the locations of the peaks of the
eigenspectrum correspond to the frequencies of the sinusoids in
the signal. The input is the right singular vectors in the form
generated by theSVD_M star. The MUSIC algorithm (multiple
signal characterization) is used.

periodogram Estimate a power spectrum using the periodogram method. This
consists in computing the magnitude squared of the DFT of a
set of observations of the signal. The FFT algorithm is used.

SmithForm Decompose an integer matrixS into one of its Smith formsS =
UDV, whereU, D, and V are simpler integer matrices. The
Smith form decomposition for integer matrices is analogous to
singular value decomposition for floating-point matrices.

SVD_M Compute the singular-value decomposition of a Toeplitz data
matrix A by decomposingA into A = UWV’, whereU andV are
orthogonal matrices, andV’ represents the transpose ofV. W is a
diagonal matrix composed of the singular values ofA, and the
columns ofU andV are the left and right singular vectors ofA.

Unwrap Unwraps a phase plot, removing discontinuities of magnitude
2π. This star assumes that the phase never changes by more
thanπ in one sample period. It also assumes that the input is in
the range [−π,π].

Window Generate standard window functions or periodic repetitions of
standard window functions. The possible functions areRect-
angle , Bartlett , Hanning , Hamming, Blackman , Steep-
Blackman , andKaiser . One period of samples is produced on
each firing. This star is also found in the signal sources palette.

Miscellaneous signal processing blocks

Autocor Estimate an autocorrelation function by averaging input sam-
ples. Both biased and unbiased estimates are supported.

PattMatch This star accepts a template and a search window. The template
is slid over the window one sample at a time, and cross correla-
tions are calculated at each step. The cross-correlations are out-
put on the “values” output. The “index” output is the value of
the time-shift which gives the largest cross correlation. This
index refers to a position on the search window beginning with
0 corresponding to the earliest arrived sample of the search win-
dow that is part of the best match with the template.

5.2.13 Communication stars

The limited set of communication stars that have been developed are shown in figure

The Almagest 5-37

Ptolemy Last updated: 12/1/97

5-15, and summarized below. Many of these are galaxies, and should be viewed as examples
of systems that a user can create.

Sources and pulse shapers

bits Produce “0” with probabilityprobOfZero, else produce “1”.

cosine.pal Produce a cosine waveform whose energy is normalized with
respect toAmplitude. It is used in simulations for binary fre-
quency shift keying (BFSK) demonstrations. This galaxy differs
from the cosine star which computes the cosine of the input sig-
nal (see “Nonlinear stars” on page 5-13 for more information on
the cosine star).

Hilbert Output the approximate Hilbert transform of the input signal.
This star approximates the Hilbert transform by using an FIR
filter, and is derived from theFIR star. The Hilbert star is also in
the signal processing palette, which is discussed on page 5-30.

RaisedCosine An FIR filter with a magnitude frequency response shaped like
the standard raised cosine or square-root raised cosine used in
digital communication. By default, the star upsamples by a fac-
tor of 16, so 16 outputs will be produced for each input unless
the interpolation parameter is changed.

FIGURE 5-15: Communication stars in the SDF domain.

freqPhase
nonLinear
Distortion

QAM16

11010
bits

QAM4

hilbertSplit qam4Slicer

AWGN

qam16Slicer

Raised
Cosine

Raised
CosineCx

Telephone
Channel

Scrambler

DeScrambler

baseband
equivalent
channel

noise
channel

2 PAM

xmit2pam

2 PAM

rec2pam

4 PAM

xmit4pam

4 PAM

rec4pam

Q
A
M
16
Decode

Hilbert

phaseShift

cosine.pal

NR2Zero.pal Spread

DeSpreader

2 PSK

rec2psk

2 PSK

xmit2psk

2 FSK

xmit2fsk

Spreader

xmitspread

2 FSK

rec2fsk

Spreader

recspread

Sources and pulse shapers

Transmitter functions

Receiver functions

Channel models

5-38 SDF Domain

U. C. Berkeley Department of EECS

RaisedCosineCx This galaxy uses theRaisedCosine star to implement an FIR
filter for complex inputs with a raised cosine or square-root
raised cosine transfer function.

Transmitter functions

NR2Zero Binary to Nonreturn-to-Zero Signaling Converter

QAM4 Encode an input bit stream into a 4-QAM (or 4-PSK) complex
symbol sequence.

QAM16 Encode an input bit stream into a 16-QAM complex symbol
sequence.

Scrambler Scramble the input bit sequence using a feedback shift register.
The taps of the feedback shift register are given by thepolyno-
mial parameter, which should be a positive integer. The n-th bit
of this integer indicates whether the n-th tap of the delay line is
fed back. The low-order bit is called the 0-th bit, and should
always be set. The next low-order bit indicates whether the out-
put of the first delay should be fed back, etc. The defaultpoly-
nomial is an octal number defining the V.22bis scrambler.

Spread Frame synchronized direct-sequence spreader.

xmit2fsk Binary frequency shift keying (BFSK) transmitter.

xmit2pam Simple 2-level pulse amplitude modulation (PAM) transmitter.

xmit4pam Simple 4-level pulse amplitude modulation (PAM) transmitter.

xmit2psk Binary 2-level phase shift keying (BPSK) Modulator.

xmitspread Direct-sequence spreader (i.e., spread-spectrum transmitter).

Receiver functions

DeScrambler Descramble the input bit sequence using a feedback shift regis-
ter. The taps of the feedback shift register are given by thepoly-
nomial parameter. This is a self-synchronizing descrambler that
will exactly reverse the operation of theScrambler star if the
polynomials are the same. The low-order bit of the polynomial
should always be set.

DeSpreader Frame synchronized direct-sequence despreader.

hilbertSplit This galaxy implements a phase splitter, in which the real-val-
ued input signal is converted to an (approximate) analytic sig-
nal. The signal is filtered by the Hilbert block to generate the
imaginary part of the output, while the real part is obtained by
creating a matching delay.

qam4Slicer This galaxy implements a slicer (decision device) for a 4-QAM
(or equivalently, 4-PSK) signal. The output decision is a com-

The Almagest 5-39

Ptolemy Last updated: 12/1/97

plex number with +1 or -1 for each of the real or imaginary
parts.

qam16Slicer This galaxy implements a slicer (decision device) for a 16-
QAM complex signal. The output decision is a complex number
with +1, -1, +3, or -3 for each of the real or imaginary parts.

qam16Decode A 16-QAM decoder similar to the CCITT V22.bis standard.
The quadrant is differentially de-encoded.

phaseShift Shifts the phase of the input signal on thein input by the shift
value on theshift input. The phase shifting is implemented by
filtering the input signal with a complex FIR filter to convert it
into an analytic signal and the complex result is modulated by a
complex exponential. If theshift value is time varying, then its
slope determines the instantaneous frequency shift.

rec2fsk Binary frequency shift keying (BFSK) Receiver.

rec2pam Simple 2-level pulse amplitude modulation (PAM) receiver.

rec4pam Simple 4-level pulse amplitude modulation (PAM) receiver.

rec2psk Binary pulse shift keying (BPSK) Demodulator.

recspread Direct sequence receiver.

Channel models

AWGNchannel Model an additive Gaussian white noise channel with optional
linear distortion.

basebandEquivChannel
Baseband equivalent channel.

freqPhase Impose frequency offset and/or phase jitter on a signal in order
to model channels, such as telephone channels, that suffer these
impairments.

noiseChannel A simple channel model with additive Gaussian white noise.

nonLinearDistortion
Generate second and third harmonic distortion by squaring and
cubing the signal, and adding the results in controlled propor-
tion to the original signal.

telephoneChannel
Simulate impairments commonly found on a telephone channel,
including additive Gaussian noise, linear and nonlinear distor-
tion, frequency offset, and phase jitter.

5.2.14 Telecommunications

The telecommunications stars are in figure 5-16.

5-40 SDF Domain

U. C. Berkeley Department of EECS

Conversion, Signal Sources, and Signal Tests

MuLaw Transform the input using a logarithmic mapping if thecom-
press parameter is true. In telephony, applying theµ-law to
eight-bit sampled data is called companding, and it is used to
quantize the dynamic range of speech more accurately. The
transformation is defined in terms of the non-negative integer
parametermu:

output = log (1 +mu | input |) / log(1 +mu)

DTMFGenerator Generate a dual-tone modulated-frequency (DTMF) signal by
adding a low frequency and a high frequency sinusoid together.
DTMF tones only consist of first harmonics. The default param-
eters generate a “1” on a touchtone telephone.

PostTest Return whether or not a valid dual-tone modulated-frequency
has been correctly detected based on the last three detection
results.

ToneStrength Decision circuit for dual-tone modulated-frequency (DTMF)
decoding. It returns true ifAmax is greater than or equal to Ai
for i = 1, 2, 3, 4 such that i does not equalindex.

Touchtone Decoders

DTMFDecoder Dual-tone modulated-frequency (DTMF) decoder based on
post-processing of a bank of Goertzel discrete Fourier trans-
form filters. This galaxy decodes touch tones generated by a
telephone.

DTMFDecoderBank Implement one of the banks for detecting dual-tone frequency-

FIGURE 5-16: The palette of telecommunications stars for the SDF domain.

freqPhase
nonLinear
DistortionAWGN

ADPCMCoder
ADPCM
Decoder

ADPCM
ToBits

ADPCM
FromBits

Telephone
Channel

baseband
equivalent
channel

noise
channel

PCM
BitCoder

PCM
BitDecoder

MuLaw

|X[k1]|^2

|X[k2]|^2

Detector

f0Power

f1Power

GoertzelDTMF
Decoder
Bank

index

valid

freqPower

DTMFDecoder

key

valid

PostTest

input

valid

DTMF

Tone
Strength

index

A1

A2

A3

A4

AmaxDTMFGenerator

lmsDualTone

cosOmega1

cosOmega2

error

lms
DTMF
Decoder
Bank

lowFreqIndex

highFreqIndex

valid

L
M
S
DTMFDecoder

key

valid

Conversion, Signal Sources, and Signal Tests

PCM and ADPCM

Touchtone Decoders

Channel models

The Almagest 5-41

Ptolemy Last updated: 12/1/97

modulated (DTMF) touch tones. Touch tones are generated by
adding a low frequency and a high frequency sinusoid together.
The galaxy is used to detect either the low or high frequency
component, depending on the parameter settings. This algo-
rithm examines the magnitude of the expected frequency com-
ponents and their second harmonics. DTMF tones do not have
second harmonics, so if they are present, then the input is likely
speech and not touch tones. The valid output is true if the input
is probably a touch tone. The default parameters are used to
detect the low frequency tones.

GoertzelDetector
Detect the energy of the first and second harmonic using a pair
of Goertzel filters.

lmsDTMFDecoderBank
Dual-tone modulated frequency detection based on the post-
processing of the output of two LMS algorithms in cascade.
These two algorithms are used to detect the two strongest fre-
quencies present in the signal.

lmsDualTone Detect the location of the two strongest harmonic components
in the input signal for every input sample using the normalize
direct frequency estimation technique, which is based on the
LMS algorithm. This galaxy is used in touchtone detection.

lmsDTMFDecoder Least-mean squares dual-tone modulated-frequency decoder.
Dual-tone modulated frequency detection based on the post-
processing of the output of two LMS algorithms in cascade.
These two algorithms are used to detect the two strongest fre-
quencies present in the signal.

Channel Models

For more complete descriptions, see the channel models for the communications stars
given on page 5-36.

AWGN Simulate a channel with additive Gaussian noise.

basebandEquivChannel
Baseband equivalent channel.

freqPhase Impose frequency offset and/or phase jitter on a signal in order
to model channels, such as telephone channels, that suffer these
impairments.

noiseChannel A simple channel model with additive Gaussian white noise.

nonLinearDistortion
Generate second and third harmonic distortion by squaring and
cubing the signal, and adding the results in controlled propor-
tion to the original signal.

5-42 SDF Domain

U. C. Berkeley Department of EECS

TelephoneChannel
Telephone channel simulator with Gaussian noise and nonlinear
distortion.

PCM and ADPCM

ADPCMCoder Implement adaptive differential pulse code modulation using an
LMS star. Both the quantized and unquantized prediction-error
signals are available as outputs.

ADPCMDecoder Decode the quantized prediction error signal produced by the
ADPCMCoder galaxy.

ADPCMFromBits Convert a bit stream encoded with theADPCMToBits galaxy
back to floating-point values. The 4 low-order bits of the input
integer are changed to 1 of 16 floating-point values scaled by
range.

ADPCMToBits Convert the quantized prediction error of theADPCMCoder gal-
axy into a bit stream. The quantized prediction error has 16 pos-
sible levels, so this galaxy produces 4 bits in each output
sample.

PCMBitCoder 64kps PCM encoder (CCITT Recommendation G.711).

PCMBitDecoder 64kps PCM encoder (CCITT Recommendation G.711).

5.2.15 Spatial Array Processing

The spatial array processing stars given here support a single demonstration named
RadarChainProcessing developed by Karim Khiar from Thomson CSF. The radar simula-
tion, though five-dimensional, is implemented using SDF, which is a one-dimensional data-
flow model. The stars on this palette are shown in figure 5-17.

Data Models

RadarAntenna Generate a specified number of Doppler filter outputs. This gal-
axy consists of a cascade of a network of antennas, a bank of
matched filters, a bank of windows, and a Doppler filter. The
bank of matched filters convolves the antenna outputs with a fil-
ter matched to a complex pulse train.

RadarTargets Model the observed data as the addition of the receive signal
plus sensor noise. The received signal consists of a summation
of the emissions of all of the targets.

GenTarget Model the reception of signals by one sensor. A complex pulse
train is delayed and then multiplied by a complex exponential.

RectCx Generate a rectangular pulse of width “width” (default 240). If
“period” is greater than zero, then the pulse is repeated with the
given period.

The Almagest 5-43

Ptolemy Last updated: 12/1/97

Sensor and Antenna Models

SubAntenna Models a subantenna. It multiplies the input by a complex expo-
nential.

sensor Compute the excitation of a plane wave arriving at a sensor at
the given position with the arrival angle specified as an input.
Position (0,0) is assumed to receive phase zero for any angle of
arrival.

ThermalNoise Generate thermal noise as a complex noise process whose real
and imaginary components are identically independently dis-
tributed Gaussian random processes.

Psi Model subantenna excitation.

SpheToCart Compute the inner product of two vectors, one given by a mag-
nitude and two angles in spherical components, the other given
by three cartesian components.

Doppler Effects

PulseComp This galaxy generates any number of targets and performs pulse
compression. It uses the original chirp to perform the pulse
compression. This output represents the output of the radar pro-
cessing along the range bin axis. The y-axis represents the tar-
get magnitude on a linear, logarithmic scale.

OneDoppler Generate one Doppler output. This galaxy performs an antenna

FIGURE 5-17: Spatial Array stars in the SDF domain.

RadarAntenna RadarTargets

sensor

steering

GenTarget

OneDoppler

Psi

PulseComp

SubAntenna ThermalNoise SpheToCart

RectCxDoppler

Data Models

Sensor and Antenna Models

Doppler Effects

Beamforming Methods

5-44 SDF Domain

U. C. Berkeley Department of EECS

to pulse multiprojection transformation followed by a decima-
tor.

Beamforming Methods

steering Multiply a sensor signal by a window sample and apply a steer-
ing correction.

5.2.16 Image processing stars

The image processing stars contained in the palette in figure 5-18 were originally writ-
ten by Paul Haskell. For the Ptolemy 0.6 release, the image processing infrastructure was
rewritten by Bilung Lee to use matrices as the underlying image representation. Since the stars
are using the Matrix particle now, some old stars that are just doing simple matrix operation,
such asSumImage, are removed, and we can use the matrix stars instead, such asAdd_M.

Displaying images

DisplayImage Accept a black-and-white input grayimage represented by a
float matrix and generate output in PGM (portable graymap)
format. Send the output to a user-specified command (by
default,xv is used).
The user can set the root filename of the displayed image
(which will probably be printed in the image display window

FIGURE 5-18: The Image processing palette in the SDF domain.

DCTImage
Inv

DCTImage DPCMImage DPCMImage
Inv

YUVToRGBRGBToYUV

MedianImage

ReadImage ReadRGB

Add
MotionVecs

MotionCmp MotionCmpInv ZigZagImg ZigZagImg
Inv

RunLenImg RunLenImg
Inv

InvDCTImgCdeDCTImgCde

Contrast Dither EdgeDetect RankImage

dataInput

frameIdInput

DisplayImage DisplayRGB DisplayVideo

codef

codei

videosrc

videofwd videoinv

videodpy

SunVideo

output1

output2

output3

frameIdOut

Displays

Color conversion

Coding

Miscellaneous

Sources

The Almagest 5-45

Ptolemy Last updated: 12/1/97

title bar) and can choose whether or not the image file is saved
or deleted. The image frame number is appended to the root
filename in order to form the complete filename of the dis-
played image.

DisplayRGB This is similar to DisplayImage , but accepts three color
images (Red, Green, and Blue) from three input float matrix
and generates a PPM (portable pixmap) format color image file.
The image file is displayed using a user-specified command (by
default,xv is used).

DisplayVideo Accept a stream of black-and-white images from input float
matrix, save the images to files, and display the resulting files as
a moving video sequence. This star requires that programs from
the Utah Raster Toolkit (URT) be in your path. Although this
toolkit is not included with Ptolemy, it is available for free. See
this star’s long description (with the “look-inside” or “manual”
commands in the Ptolemy menu) for information on how to get
the toolkit.

The user can set the root filename of the displayed images
(which probably will be printed in the display window title bar)
with the ImageNameparameter. If no filename is set, a default
will be chosen.

TheSave parameter can be set toYES or NO to choose whether
the created image files should be saved or deleted. Each image’s
frame number is appended to the root filename in order to form
the image’s complete filename.

TheByFields parameter can be set to eitherYES or NO to choose
whether the input images should be treated as interlaced fields
that make up a frame or as entire frames. If the inputs are fields,
then the first field should contain frame lines 1, 3, 5, etc. and the
second field should contain lines 0, 2, 4, 6, etc.

videodpy Display an image sequence in an X window. This is simply the
SDFDisplayVideo star encapsulated in a galaxy so that it can
be easily used in other domains.

Reading images

ReadImage Read a sequence of PGM-format images from different files and
send them out in a float matrix.

If present, the character# in thefileName parameter is replaced
with the frame number to be read next. For example, if the
frameId parameter is set to 2 and if thefileName parameter is
dir.#/pic# then the file that is read and output isdir.2/
pic2 .

5-46 SDF Domain

U. C. Berkeley Department of EECS

ReadRGB Read a PPM-format image from a file and send it out in three
different images— a Red, Green, and Blue image. Each image
is represented in a float matrix. The same mechanism for read-
ing successive frames as inReadImage is supported.

videosrc Read in an image from a specified file. This is simply the
SDFReadImage star encapsulated in a galaxy so that it can be
easily used in other domains.

SunVideo Reads frames from the SunVideo card and outputs them as 3
matrices: one for Y,U and V components. This star is new in
Ptolemy 0.7, and does not yet have any demos.

Color conversions

RGBToYUV Read three float matrices that describe a color image in RGB
format and output three float matrices that describe an image in
YUV format. No downsampling is done on the U and V signals.

YUVToRGB Read three float matrices that describe a color image in YUV
format and output three float matrices that describe an image in
RGB format.

Image and video coding

DCTImage Take a float matrix input particle, compute the discrete cosine
transform (DCT), and output a float matrix.

DCTImageInv Take a float matrix input, compute the inverse discrete cosine
transform (DCT), and output a float matrix.

DCTImgCde Take a float matrix which represents a DCT image, insert “start
of block” markers, run-length encode it, and output the modi-
fied image.

For the run-length encoding, all values with absolute value less
than theThresh parameter are set to 0.0, to help improve com-
pression. Runlengths are coded with a “start of run” symbol and
then an (integer) run-length.

The HiPri parameter determines the number of DCT coeffi-
cients per block are sent to “hiport”, the high-priority output.
The remainder of the coefficients are sent to “loport”, the low-
priority output.

InvDCTImgCde Read two coded float matrices (one high priority and one low-
priority), invert the run-length encoding, and output the result-
ing float matrix. Protection is built in to avoid crashing even if
some of the coded input data is affected by loss.

DPCMImage Implement differential pulse code modulation of an image. If
the “past” input is not a float matrix or has size 0, pass the
“input” directly to the “output”. Otherwise, subtract the “past”

The Almagest 5-47

Ptolemy Last updated: 12/1/97

from the “input” (with leakage factoralpha) and send the result
to “output” .

DPCMImageInv This star inverts differential pulse code modulation of an image.
If the “past” input is not a float matrix or has size 0, pass the
“diff” directly to the “output”. Otherwise, add the “past” to the
“diff” (with leakage factoralpha) and send the result to “out-
put”.

MotionCmp If the “past” input is not a float matrix (e.g.dummyMessage),
copy the “input” image unchanged to the “diffOut” output and
send a null field (zero size matrix) of motion vectors to
“mvHorzOut” and “mvVertOut” outputs. This should usually
happen only on the first firing of the star.

For all other inputs, perform motion compensation and write the
difference frames and motion vector frames to the correspond-
ing outputs.

This star can be used as a base class to implement slightly dif-
ferent motion compensation algorithms. For example, synchro-
nization techniques can be added or reduced-search motion
compensation can be performed.

MotionCmpInv For NULL inputs (zero size matrices) on “mvHorzIn” and/or
“mvVertIn”, copy the “diffIn” input unchanged to “output” and
discard the “pastIn” input. (A NULL input usually indicates the
first frame of a sequence.)

For non-NULL “mvHorzIn” and “mvVertIn” inputs, perform
inverse motion compensation and write the result to “output”.

RunLenImg Accept a float matrix and run-length encode it. All values closer
than Thresh to meanVal are set tomeanVal to help improve
compression. Run lengths are coded with a start symbol of
meanVal and then a run-length between 1 and 255. Runs longer
than 255 must be coded in separate pieces.

RunLenImgInv Accept a float matrix and inverse run-length encode it.

ZigZagImage Zig-zag scan a float matrix and output the result. This is useful
before quantization.

ZigZagImageInv Inverse zig-zag scan a float matrix.

codef This galaxy encodes a sequence of images using motion com-
pensation, a discrete-cosine transform, quantization, and run-
length encoding. The outputs are split into high priority and low
priority, where corruption of the low priority data will impact
the image less.

codei This galaxy inverts the encoding of the codef block, and outputs
a reconstructed image sequence.

5-48 SDF Domain

U. C. Berkeley Department of EECS

videofwd This galaxy is obsolete and will probably disappear in the next
release.

videoinv This galaxy is obsolete and will probably disappear in the next
release.

Miscellaneous image blocks

AddMotionVecs Over each block in the input image, superimpose an arrow indi-
cating the size and direction of the corresponding motion vec-
tor.

Contrast Enhance the contrast in the input image by histogram modifica-
tion. Input image should be in an integer matrix. The possible
contrast type areUniform (default) andHyperbolic .

Dither Do digital halftoning (dither) of input image for monochrome
printing. Input image should be in a float matrix. The possible
dither methods areErr-Diffusion (default), Clustered ,
Dispersed , andOwn. If you specifyOwn, then you can use
your own dither mask.

EdgeDetect Detect edges in the input image. Input image should be in a
float matrix. The possible detectors areSobel (default),Rob-
erts , Prewitt , andFrei-Chen .

MedianImage Accept an input grayimage represented by a float matrix,
median-filter the image, and send the result to the output. Filter
widths of 1, 3, 5 work well. Any length longer than 5 will take a
long time to run.

Median filtering is useful for removing impulse-type noise from
images. It also smooths out textures, so it is a useful pre-pro-
cessing step before edge detection. It removes inter-field flicker
quite well when displaying single frames from a moving
sequence.

RankImage Accept an input grayimage represented by a float matrix, rank
filter the image, and send the result to the output. A common
example of a rank filter is the median filter, e.g.MedianImage ,
which is derived from this star. Pixels at the image boundaries
are copied and not rank filtered.

5.2.17 Neural Networks

The neural network stars demonstrate logic functions using classical artificial neurons
and McCulloch-Pitts neuron. These stars were written by Biao Lu (The University of Texas at
Austin), Brian L. Evans (The University of Texas at Austin), and are present in Ptolemy 0.7

The Almagest 5-49

Ptolemy Last updated: 12/1/97

and later.The neural network stars are shown in figure

MPNeuron This is a McCulloch-Pitts neuron. The activation of this neuron
is binary. That is, at any time step, the neuron either fires, or
does not fire.

Neuron This neuron will output the sum of the weighted inputs, as a
floating value.

ConstThreshold Output a constant signal with value given by the “level” param-
eter (default 0.0)

Binary Binary threshold of the input.

Sigmoid Compute the Sigmoid function, defined as 1/(1 + exp(-
r*input)), where r is the learning rate.

MPandBinary The fact that the McCulloch-Pitts neuron is a digital device
makes this neuron well-suited to the representation of a two-
valued logic, such as AND, OR, and NAND.

MPxorBinary This example shows that a network of McCulloch-Pitts neurons
has the power of the finite state automaton known as a Turing
machine.

xorBinary XOR function can be implemented by a three-layer neural net-
work which consists of an input layer, a hidden layer and an
output layer. A binary activation function is used.

xorSigmoid XOR function can be implemented by a three-layer neural net-
work which consists of an input layer, a hidden layer and an
output layer. A sigmoid activation function is used.

Binary

MPNeuron Neuron

Sigmoid

MPandBinary xorBinary

in1

in2

xorSigmoid

in1

in2

MPxorBinary

in1

in2

Const
Threshold

Logic Functions

Activation Functions

SourcesNeurons

FIGURE 5-19: Neural network stars in the SDF domain.

5-50 SDF Domain

U. C. Berkeley Department of EECS

5.2.18 Higher Order Function stars

The Higher Order Function stars are documented in “An overview of the HOF stars”
on page 6-15.

5.2.19 User Contributions

The User Contributed stars are not documented at this time. These stars have been
contributed by various users as proofs of concepts. They cannot be retargeted to code genera-
tion domains, and we may in the future choose not to release them.

5.2.20 Tcl stars

Most of the stars that interface to Tcl appear in palettes that reflect their function. For
instance, all the stars beginning withTk in the “sinks” palette are actually Tcl stars derived
from TclScript . This is the most generic Tcl star, with no useful function on its own. It
must have a Tcl script associated with it to make it useful. There is a chapter of the Program-
mer’s Manual of the The Almagest devoted to how to write such scripts. The complete palette
of Tcl stars, which includes many stars that also appear in other palettes, is shown in figure 5-
20. These stars, although derived fromTclScript , assume the presence of the Tk graphics
toolkit. For descriptions of the display and “sink” stars, see Sections 5.2.1 and 5.2.2, respec-
tively.

FIGURE 5-20: The Tcl/Tk palette includes many stars that also appear in other palettes.

TclTcl
TclScript

TclTcl
TclScript

TclTcl
TclScript

TclTcl
TclScript

TkMeter

123
Tk
ShowValues

123
Tk
ShowValues

TkText

TkText

TkSlider

LMS
TkPlot

TkBarGraph

TkBarGraph

LMSCx
TkPlot

TkMeter

TkXYPlot

X

Y

TkButtons

TkShow
Booleans

TclTcl
TclScript

TclTcl
TclScript

TkShow
Booleans

TkButtons TkXYPlot

X

Y

TkPlot TkPlot

Displays and sources:

Generic:

Signal processing:

The Almagest 5-51

Ptolemy Last updated: 12/1/97

5.3 An overview of SDF demonstrations
A rather large number of SDF demonstrations have been developed. These can serve

as valuable illustrations of the possibilities. Almost every star is illustrated in the demos.
Because of the large number, the demos are organized into a set of palettes. Certain demos
may appear in more than one palette. A top-level palette, shown in figure 5-21, contains an
icon for each demo palette. Notice that the demo palettes collect the hierarchy in a single col-
umn, whereas the star palettes collect the hierarchy in two columns.

5.3.1 Basic demos

These demos illustrate the use of certain stars without necessarily performing func-
tions that are sophisticated. The palette is shown in figure 5-22. The demos are described
below from left to right, top to bottom.

butterfly Use sines and cosines to compute a curve known as the butterfly
curve, invented by T. Fay. The curve is plotted in polar form.

chaoticNoise Chaotic Markov map example with a nonlinear feedback loop.

comparison Compare two sinusoidal signals using theTest star.

dsp.pal

comm.pal

basic.pal

multirate.pal

image.pal

sound.pal

Fixed-
point

Demosfix.pal

TclTcl
init.pal

matrix.pal

MATLAB
matlab.pal

sdf.pal

script.pal

init.pal

Basic

Multirate

Communications

Signal Processing

Sound

Image Processing

Tcl/Tk Graphics Demos

MATLAB Demos

Higher-Order Functions

Matrix Demos

Scripted Runs

User Contributed Demos

Fixed-Point Demos

SDF Demos
Synchronous dataflow (SDF) is used
to model signal processing systems

with deterministic control flow.

FIGURE 5-21: The top-level demo palette for the SDF domain.

5-52 SDF Domain

U. C. Berkeley Department of EECS

complexExponential
Generate and plot a complex exponential.

delayTest Illustrates the use of initializable delays.

lmsFreqDetect Illustrate the use of the LMS algorithm to estimate the dominant
sinusoidal frequency in the input signal.

freqPhaseOffset Impose frequency jitter and phase offset on a sinusoid using the
freqPhase SDF block.

gaussian Generate a Gaussian white noise signal, and plot its histogram
and estimated autocorrelation.

integrator Demonstrate the features of the integrator star, such as limiting,
leakage, and resetting.

Modulo Demonstrate modulus computation for float and integer data
types.

muxDeMux Demonstrate theMux and DeMux stars, which perform multi-
plexing and demultiplexing. Contrast with thescramble demo
below.

quantize Demonstrate the use of theQuantizer star.

scramble This system rearranges the order of samples of signal using the
Commutator andDistributor stars. Note that because these
are multirate stars, one iteration involves more than one sample.
Contrast with themuxDeMux demo above.

sinMod Modulate a sinusoid by multiplying by another sinusoid.

FIGURE 5-22: Palette for a set of basic demos for the SDF domain.

freq
PhaseOffset

complex
Exponentialbutterfly

sinMod

integratorgaussian

quantize tbusmuxDeMux scramble

comparison delayTestchaoticNoise

Modulo

lmsFreqDetect

Basic demos illustrating
simple uses of Ptolemy and

the use of certain stars

The Almagest 5-53

Ptolemy Last updated: 12/1/97

tbus Illustrate the bus facility in Ptolemy, in which multiple signals
are combined onto a single graphical connection.

5.3.2 Multirate demos

The demos with icons shown in figure 5-23 illustrate synchronous dataflow principles as
applied to multirate signal processing problems. These are arranged roughly in order of
sophistication.

analytic Use aFIRCx star filter to reduce the sample rate of a sinusoid
by a factor of 8/5, and at the same time produce a complex
approximately analytic signal (one that has no negative fre-
quency components).

broken Give an example of an inconsistent SDF system. It fails to run,
generating an error message instead.

downSample Convert from the digital audio tape sampling rate (48 kHz) to
the compact disc sampling rate (44.1 kHz). The conversion is
performed in multiple stages for better performance.

filterBank Implement an eight-level perfect reconstruction one-dimen-
sional filter bank based on the biorthogonal wavelet decomposi-
tion.

filterBank-NonUniform
Implement a simple split of the frequency domain into two non-
uniform frequency bands.

interp Use an FIR filter to upsample by a factor of 8 and linearly inter-
polate between samples.

multirate Upsample a sinusoidal signal by a ratio of 5/2 using a polyphase
lowpass interpolating FIR filter.

upSample Convert from the compact disc sampling rate (44.1 kHz) to the
digital audio tape sampling rate (48 kHz). The conversion is
performed in multiple stages for better performance.

FIGURE 5-23: Multirate signal processing demos in the SDF domain.

interp multirate

analytic broken filterBank

147

160downSample

147

160

upSample
filterBank-
NonUniform

5-54 SDF Domain

U. C. Berkeley Department of EECS

5.3.3 Communications demos

The palette shown in figure 5-24 points to some examples of digital communication
systems and channel simulators. This palette has been steadily growing.

constellation A 16-QAM signal is sent through a baseband equivalent chan-
nel that simulates the following impairments: frequency offset,
phase jitter and white Gaussian noise.

DTMFCodec Dual-Tone Modulated Frequency Demo. Generate touch tones
and decode the based on the Goertzel Algorithm.

eye Plot an eye diagram for a binary antipodal signal with a raised-
cosine pulse shape and user controlled noise.

lmsDTMFCodec Dual-Tone Modulated Frequency Demo. Generate touch tones
and decode them based on the LMS Algorithm.

lossySpeech Illustrate the effect on speech of a zero-substitution policy in a
network (such as ATM) with 48 byte packets and a variable loss
probability. Note that this demo requires audio capability and
will probably only work on Sun workstations.

lossySpeechPrevCell
Illustrate the effect on speech of a previous cell substitution pol-
icy in a network (such as ATM) with 48 byte packets and a vari-
able loss probability. Note that this demo requires audio
capability and will probably only work on Sun workstations.

modem Baseband model of a 16-QAM modem.

pseudoRandom Generate a pseudo-random sequence of zeros and ones using a
maximal-length shift register and test its randomness by esti-
mating it autocorrelation.

pulses Generate raised cosine and square-root raised cosine pulses and
demonstrate matched filtering with the square-root raised
cosine pulse.

FIGURE 5-24: Communication system demos in the SDF domain.

telephone
ChannelTestQAM4withDFE plldemo

pulses

4 PAM

xmit4rec

2 PAM

xmit2recpseudoRandom

eye

modem

constellation

16 QAM
coder/
decoder

xmitber

DTMFCodec lossySpeech
lossySpeech
PrevCelllmsDTMFCodec

qam

Older, batch-mode demos that
nonetheless make some useful points:

The Almagest 5-55

Ptolemy Last updated: 12/1/97

xmitber Bit Error determination through simulation at various noise lev-
els.

xmit2rec Simple 2-level PAM communication system (matched filtering
at the receiver).

xmit4rec Simple 4-level PAM communication system (no filtering at the
receiver).

Older communications demos

qam Produce a 16-point quadrature amplitude modulated (QAM)
signal and displays the eye diagram for the in-phase part, the
constellation, and the modulated transmited signal.

QAM4withDFE This is a model of a digital communication system that uses
quadrature amplitude modulation (QAM) and a fractionally
spaced decision feedback equalizer.

codeDecode Encode and decode a 16-QAM signal using differential encod-
ing for the quadrant and Gray coding for the point within the
quadrant.

plldemo Simulate a fourth-power optical phase-locked loop with laser
phase noise and additive Gaussian white noise operating on a
complex baseband envelope model of the signal.

telephoneChannelTest
Assuming a sampling rate of 8 kHz, a sinusoid at 500 Hz is
transmitted through a simulation of a telephone channel with
additive Gaussian noise, nonlinear distortion, and phase jitter.

5.3.4 Digital signal processing demos

A fairly large number of signal processing applications are represented in the palette
shown in figure 5-25. Several of these serve as good examples to help in solving the exercises
included at the end of the chapter.

adaptFilter An LMS adaptive filter converges so that its transfer function
matches that of a fixed FIR filter.

allPole Two realizations of an all-pole filter are shown to be equivalent.
One uses an FIR filter in a feedback path, the other uses the
BlockAllPole star.

animatedLMS An LMS adaptive filter is configured as in theadaptFilter
demo, but this time the filter taps are displayed as they adapt.

animatedLMSCx A complex LMS adaptive filter is configured as in theadapt-
Filter demo, but in addition, user-controlled noise is added to
the feedback loop using an on-screen slider to control the
amount of noise. The filter taps are displayed as they adapt.

cep Given the coefficients of any polynomial, this demo uses the

5-56 SDF Domain

U. C. Berkeley Department of EECS

cepstrum to find a minimum-phase polynomial. Thus, given the
coefficients of the denominator polynomial of an unstable filter,
this demo will compute the coefficients of a stable denominator
polynomial that has the same magnitude frequency response.

chaos This is a simple demonstration of chaos, in which the phase-
space plot of the famous Henon map is given.

convolve Convolve two rectangular pulses in order to demonstrate the
Convolve star.

dft Compute a discrete Fourier transform of a finite signal using the
FFT star. The magnitude and phase (unwrapped) are plotted.

doppler A sine wave is subjected to four successive amounts of doppler
shift. The doppler shift is accomplished by thephaseShift
galaxy, which forms an analytic signal (using a Hilbert trans-
form) that modulates a complex exponential.

dtft Demonstrate theDTFT star, showing how it is different from the
FFTCx star. Specifically, the range, number, and spacing of fre-
quency samples is arbitrary.

freqsample This system designs FIR filters using the frequency sampling

FIGURE 5-25: Signal processing applications in the SDF domain.

dft

adaptFilter

phased
Array

freqsample

linearPrediction

levinsonDurbin

dtft

power
Spectrum timeVarSpec

allPole

convolve doppler

cep

window

lattice latticeDesign

Design

animatedLMS

overlapAddFFT

chaos

animatedLMSCx

iirDemo

The Almagest 5-57

Ptolemy Last updated: 12/1/97

method. Samples of the frequency response are converted into
FIR filter coefficients.

iirDemo Two equivalent implementations of IIR filtering.

lattice Demonstrate the use of lattice filters to synthesize an auto-
regressive (AR) random process.

latticeDesign Use of Levinson-Durbin algorithm to design a lattice filter with
a specified transfer function.

levinsonDurbin Use the Levinson-Durbin algorithm to estimate the parameters
of an AR process.

linearPrediction
Perform linear prediction on a test signal consisting of three
sinusoids in colored, Gaussian noise. Two mechanisms (Burg's
algorithm and an LMS adaptive filter) for linear prediction are
compared.

overlapAddFFT Convolution is implemented in the frequency domain using
overlap and add.

phasedArray Simulate a plane wave approaching a phased array with four
sensors. The plane wave approaches from angles starting from
head on and slowly rotating 360 degrees. The response of the
antenna is plotted as a function of direction of arrival in polar
form.

powerSpectrum Compare three methods for estimating a power spectrum of a
signal with three sinusoids plus colored noise. The three meth-
ods are the periodogram method, the autocorrelation method,
and Burg's method.

timeVarSpec A time-varying spectrum is computed using the autocorrelation
method and displayed using a waterfall plot.

window Generate and display four window functions and the magnitude
of their Fourier transforms. The windows displayed are the
Hanning, Hamming, Blackman, and steep Blackman.

5.3.5 Sound-making demos

The demos in the palette in figure 5-26 assume that a program calledptplay is in
your path, and that it accepts data of an appropriate format and will play it over a workstation
speaker at an 8 kHz sample rate. If you are using a Sun SPARCStation, these conditions will
most likely be satisfied, if your path is correct. Theptplay program has also been used on
SGI Indigos and HP 700s and 800s. If you are on an HP, you may need other publicly avail-
able software.The samples are written into a file before they are played. Since a large number
of samples must be generated, these demos can take some time to run. By contrast, the CGC
domain has some audio demos that generate sounds in real time at 44.1kHz, assuming a rea-
sonably fast workstation. For further information about playing audio files, see “Sounds” on
page 2-38.

5-58 SDF Domain

U. C. Berkeley Department of EECS

chirpplay Chirp generator that plays on the workstation speaker.

fmplay Sound generator using FM modulation that plays on the work-
station speaker.

speech Read a speech signal from a file, and encode it at two bits per
sample using adaptive differential pulse code modulation with a
feedback-around-quantizer structure. The signal is then recon-
structed from the quantized data. The original and reconstructed
speech are played over the workstation speaker.

KSchord Simulation of plucked string sounds using the Karplus-Strong
algorithm.

vox Coarticulation with an Adaptive Vocoder. The resulting FM
synthesized sound is played over the workstation speaker.

blockVox A block processed version of the vox demo.

lossySpeech Illustrate the effect on speech of a zero-substitution policy in a
network (such as ATM) with 48 byte packets and a variable loss
probability. This demo also appears in the basic demos palette

lossySpeechPrevCell
Illustrate the effect on speech of a previous cell substitution pol-

FIGURE 5-26: Sound-making demos in the SDF domain.

chirpplay fmplay speech KSchord

blockVoxvox

Perfect
Reconstruction Subband

lossySpeech
PrevCelllossySpeech

Sound-making demos
(These require a SparcStation)

The Almagest 5-59

Ptolemy Last updated: 12/1/97

icy in a network (such as ATM) with 48 byte packets and a vari-
able loss probability. This demo also appears in the basic demos
palette.

perfectReconstuction
Eight-channel perfect reconstruction one-dimensional analysis/
synthesis filterbank. The incoming speech signal is split into
eight adjacent frequency bins and then reconstructed. The origi-
nal and reconstructed speech are played over the workstation
speaker.

subbandcoding Four channel subband speech coding with APCM at 16kps.

5.3.6 Image and video processing demos

The demos in figure 5-27 all read images from files on the workstation disk, process
them, and then display them. Some of the demos process short sequences of images, thus
illustrating video processing in Ptolemy. They all use the image classes described in “Image
processing stars” on page 5-44. The set of demos in this palette does not reflect the richness of
possibilities. See the DE domain for more image and video signal processing applications in
the context of packet-switched network simulations. The video display requires that the Utah
Raster Toolkit be installed and available in the user’s path.

BlendImage Combine two images and display the result.

bwDither Demonstrate four different forms of black and white dithering:
error diffusion, clustered dither, dispersed dither, and use cus-
tom mask.

FIGURE 5-27: Image processing demos in the SDF domain.

CompareMedian

ColorImage

DpcmImage

cos()

DctImage

MotionCompMC_DCT

BlendImage bwDither cntrstEnhance

edgeDetect

Vec_Quan

Image and video processing demos

5-60 SDF Domain

U. C. Berkeley Department of EECS

cntrastEnhance Contrast enhancement by histogram modification.

ColorImage Convert an RGB (red-green-blue) format color image to YUV
(luminance-hue-saturation) format and back, and then display it
on the workstation screen.

CompareMedian Median filter an image to reduce artifacts due to interleaved
scanning in video sequences.

DctImage Perform discrete cosine transform (DCT) coding of an image
sequence.

DpcmImage Perform differential pulse code modulation (DPCM) on an
image sequence.

EdgeDetect Demonstrate four different forms of edge detection: Sobel,
Roberts, Prewitt, and Frei-Chen.

MC_DCT Perform motion compensation and DCT encoding of video.

MotionComp Perform motion compensation video coding.

Vector Quantization demonstrations

TheVec_Quan icon in the image processing palette brings up a sub-palette that has several
vector quantization demonstrations in figure 5-28:

fullVQCodebk Generate a codebook for full search vector quantization.

fullVQ Full search vector quantization using codebook generated by
fullVQCodebk .

SGVQCodebk Generate codebooks for shape-gain vector quantization.

SGVQ Shape-gain vector quantization using codebook fromSGVQ-
Codebk .

MRVQCodeBk Generate codebooks for mean-removed vector quantization
using independent quantizer structure.

MRVQmeanCB Generate codebook for mean-removed vector quantization.

MRVQshapeCB Generate the shape codebook for mean-removed quantization

FIGURE 5-28: Vector Quantization demos in the SDF domain

MRVQMRVQCodebk MRVQmeanCB MRVQshapeCB

SGVQCodebk SGVQfullVQCodebk fullVQ

The Almagest 5-61

Ptolemy Last updated: 12/1/97

using alternate structure. This universe uses the codebook gen-
erated byMRVQmeanCB.

MRVQ Mean-removed vector quantization.

5.3.7 Fixed-point demos

The demos shown in figure 5-29 illustrate the use of fixed-point stars in the SDF domain.

These stars are used to model hardware implementations with finite precision.

fixConversion Illustration of the different masking options available.

fixFIR Effect of filter tap precision on the frequency response.

fixIIRdf Comparison of a fourth-order direct-form IIR filter imple-
mented with floating-point arithmetic and a similar filter imple-
mented with fixed-point arithmetic.

fixMpyTest Testing of fixed-point multiplication over a range of numbers by
comparison against floating-point multiplication. The results
should be the same.

5.3.8 Tcl/Tk demos

These demos shown in figure allow the user to interact with the simulation. The inter-
activity is provided by the Tcl scripting language controlling the Tk graphics toolkit. Tcl is
integrated throughout Ptolemy. Tk has been integrated into the graphical user interfaces for
Ptolemy, but not in theptcl textual interpreter. Therefore, these stars do not work inptcl .

animatedLMS See “Digital signal processing demos” on page 5-55.

animatedLMSCx See “Digital signal processing demos” on page 5-55.

buttons DemonstrateTkButtons .

phased_Array DemonstrateTkSlider by creating a vertical array of radar
sensors that can be move in the horizontal plane. Note that
small movements of the sensors radically change the polar gain
plot. This simulation demonstrates the importance of sensor cal-
ibration to performance of the sensor array.

sinWaves DemonstrateTkBarGraph by generating and displaying a
complex exponential.

tclScript DemonstrateTclScript by generating two interactive X win-

FIGURE 5-29: These demos illustrate fixed-point effects in signal processing systems.

fixConversion fixFIR fixIIRdf fixMpyTest

Demos illustrating use of
the fixed-point datatype in Ptolemy

5-62 SDF Domain

U. C. Berkeley Department of EECS

dow follies that consist of circles that move in the same playing
field.

tkMeter DemonstrateTkMeter by creating three bar meters. The first
oscillates sinusoidally. The second displays a random number
between zero and one. The third displays a random walk.

tkShowValues DemonstrateTkShowValues and TkText by displaying the
ASCII form of two ramp sequences.

xyplot Demonstrate the dynamic plotting capabilities of thexyplot
star.

5.3.9 Matrix demos

The systems in figure 5-31 demonstrate the use of matrix particles in Ptolemy. Matrices are
also used in the SDF domain to represent images. See “Image and video processing demos”
on page 5-59. The demonstrations below are primarily to test matrix operations.

MatrixTest1 Demonstrate the use of the Matrix stars that have one input.
These include the operations inverse, transpose, and multiply by
a scalar gain for all matrix types. Also conjugate and Hermitian
transpose are available for the complex matrix type.

FIGURE 5-30: Tcl/Tk demos in the SDF domain

TclTcl
tclScript tkShowValuestkMeter

animatedLMS

sinWaves

animatedLMSCx

xyplot

phased_arraybuttons

Demos illustrating the use
of Tcl/Tk in Ptolemy Stars

The Almagest 5-63

Ptolemy Last updated: 12/1/97

MatrixTest2 Demonstrate the use of some simple Matrix stars with two
inputs. These include multiply, add, and subtract.

MatrixTest3 Demonstrate the use of the Matrix conversion stars. These con-
vert between the scalar particles and the matrix particles as well
as between the various matrix types.

initDelays Illustrate the use of initializable delays with thematrix class.

Kalman_M Compare the convergence properties of a Kalman filter to those
of an LMS filter when addressing the problem of adaptive
equalization of a process in noise.

SVD_MUSIC_1 Show the use of singular-value decomposition (SVD) and the
Multiple-Signal Characterization (MUSIC) algorithm to iden-
tify the frequency of a single sinusoid in a signal that has two
different signal to noise ratios.

SVD_MUSIC_2 Demonstrate the use of the Multiple-Signal Characterization
(MUSIC) algorithm to identify three sinusoids in noise that
have frequencies very close to each other.

FIGURE 5-31: Demonstrations of matrix operations in Ptolemy.

Kalman_M

MatrixTest1 MatrixTest2

SVD_MUSIC_1 SVD_MUSIC_2

MatrixTest3 initDelays

Demos illustrating the use of stars
using the Matrix class

5-64 SDF Domain

U. C. Berkeley Department of EECS

5.3.10 MATLAB Demos

The demos pictured in figure 5-32 illustrate the use of the MATLAB stars. The MAT-

LAB stars convert input values into MATLAB matrices, apply a sequence of MATLAB com-
mands to the matrices, and output the result as Ptolemy matrices. The filterPrototype
demonstration shows how to use MATLAB to compute parameters of stars. For information
about running Matlab on a remote machine, see “Matlab stars” on page 5-26.

matlab_hilb This demo uses MATLAB as a signal source to produce a Hil-
bert matrix. The Hilbert matrix is an ill-conditioned matrix used
to test the robustness of numerical linear algebra routines. The
matrix element (i,j) has the value of 1 / (i + j - 1). The matrix
values appear similar to the coefficients of a discrete Hilbert
transformer.

matlab_eig This demo shows the use of MATLAB to perform eigendecom-
position of a 2 x 2 Hermitian symmetric complex matrix. A
matrix of eigenvectors and a matrix of eigenvalues are pro-
duced. The eigenvalues are real because the input matrix is Her-
mitian symmetric

sombrero This demo is an entire universe composed of a cascade of four
MATLAB stars. The MATLAB stars are used a signal source
and a signal sink. The overall system generates and plots a
mathematical model of a two-dimensional sinc function that
resembles a sombrero.

filterPrototype This system uses a halfband lowpass filter prototype for the
lowpass and highpass filters. All parameters are computed using
MATLAB.

5.3.11 HOF Demos

The Higher Order Function demos are described in the HOF domain chapter. See “An
overview of HOF demos” on page 6-18.

5.3.12 Scripted Runs

A scripted run executes the tcl code in the run control panel tcl script window. Scripted
runs can be used to set up interactive tutorials.The demos shown in figure 5-33 illustrate the

matlab_eig

1
2

1
2
1
3

1
4

1
3

1

_

_

_ _

_

...

...

...matlab_hilb sombrero filterPrototype

Filter Prototype
Hilbert Matrix

Generator
Eigenanalysis Mesh Plots

Matlab used to
compute parameters

MATLAB as
signal source

MATLAB as an
input/output block

Cascade of several
MATLAB functions

FIGURE 5-32: MATLAB demos in the SDF domain.

The Almagest 5-65

Ptolemy Last updated: 12/1/97

use of scripted runs.

demoscript An interactive tutorial that leads a user through a session that
runs a simple universe.

sinescript This demo runs the same sine wave modulation universe three
times, each time with a different frequency.

xmitber This demo runs a bit error determination universe at various
noise levels and then plots the output.

5.4 Targets
As is typical of simulation domains, the SDF domain does not have many targets. To

choose one of these targets, with your mouse cursor in a schematic window, execute the
edit-targe t command under theEdit vem menu choice (or just type “T”). You will get a
list of the availableTarget s in the SDF domain. The “default-SDF” target is normally
selected by default. When you clickOK, dialog box appears with the parameters of the target.
You can edit these, or accept the defaults. The next time you run the schematic, the selected
target will be used. For more information, see “Summary of Uniprocessor schedulers” on
page 4-11.

5.4.1 Default SDF target

The default SDF target has a simple set of options:

logFile (STRING) Default =
The name of a file into which the scheduler will write the final
schedule. The initial default is the empty string.

loopScheduler (STRING) Default = DEF
A String specifying whether to attempt to compact the schedule
for forming looping structure (see below). Choices are DEF,
CLUST, ACYLOOP. The case does not matter: DEF, def, Def
are all the same. For backward compatibility, “0” or “NO”, and
“1” or “YES” are also recognized, with “0” or “NO” being
DEF, and “1” or “YES” being CLUST.

schedulePeriod (FLOAT) Default = 0.0
A floating-point number defining the time taken by one iteration
through the schedule. This is not needed for pure SDF systems,

FIGURE 5-33: Scripted run demos in the SDF domain.

Tutorial
demoscript sinescript xmitber

5-66 SDF Domain

U. C. Berkeley Department of EECS

but if SDF systems are mixed with timed domains, such as DE,
then this will determine the amount of simulated time taken by
one iteration.

The SDF scheduler determines the order of execution of stars in a system at start time. It per-
forms most of its computation during itssetup() phase. If theloopScheduler target parame-
ter is DEF, then we get a scheduler that exactly implements the method described in [Lee87a]
for sequential schedules. If there are sample rate changes in a program graph, some parts of
the graph are executed multiple times. This scheduler does not attempt to generate loops; it
simply generates a linear list of blocks to be executed. For example, if star A is executed 100
times, the generated schedule includes 100 instances of A. A loop scheduler will include in its
“looped” schedule (where possible) only one instance of A and indicate the repetition count of
A, as in (100 A). For simulation, a long unstructured list might be tolerable, but not in code
generation. (The SDF schedulers are also used in the code generation for a single processor
target).

Neglecting the overhead due to each loop, an optimally compact looped schedule is
one that contains only one instance of each actor, and we refer to such schedules assingle
appearance schedules. For example, the looped schedule (3 A)(2 B), corresponding to the fir-
ing sequence AAABB, is a single appearance schedule, whereas the schedule AB(2 A)B is
not.

By setting theloopScheduler target parameter to CLUST, we select a scheduler devel-
oped by Joe Buck. Before applying the non-looping scheduling algorithm, this algorithm col-
lects actors into a hierarchy of clusters. This clustering algorithm consists of alternating a
“merging” step and a “looping” step until no further changes can be made. In the merging
step, blocks connected together are merged into a cluster if there is no sample rate change
between them and the merge will not introduce deadlock. In the looping step, a cluster is
looped until it is possible to merge it with the neighbor blocks or clusters. Since this looping
algorithm is conservative, some complicated looping possibilities are not always discovered.
Hence, even if a graph has a single appearance schedule, this heuristic may not find it.

Setting theloopScheduler target parameter to ACYLOOP results in another loop
scheduler being selected, this one developed by Praveen Murthy and Shuvra ‘Bhattacharyya
[Mur96][Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the uni-
verse is not acyclic, it automatically resets theloopScheduler target parameter to CLUST. This
scheduler is optimized for program as well as buffer memory. Basically, for a given SDF
graph, there could be many different single appearance schedules. These are all optimally
compact in terms of schedule length (or program memory in inline code generation). How-
ever, they will, in general, require differing amounts of buffering memory; the difference in
the buffer memory requirement of an arbitrary single appearance schedule versus a single
appearance schedule optimized for buffer memory usage can be dramatic. Again, in simula-
tion this does not make that much difference (unless really large SDF graphs with large rate
changes are being simulated of-course), but in code generation it is very helpful. Note that
acyclic SDF graphs always have single appearance schedules; hence, this scheduler will
always give single appearance schedules. If thelogFile target parameter is set, then a sum-
mary of internal scheduling steps will be written to that file. Essentially, two different heuris-
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one of
the two is selected. The generated file will contain the schedule generated by each algorithm,

The Almagest 5-67

Ptolemy Last updated: 12/1/97

the resulting buffer memory requirement, and a lower bound on the buffer memory require-
ment (called BMLB) over all possible single appearance schedules.

Note that the ACYLOOP scheduler modifies the universe during its computations;
hence, scripted runs that depend on the universe remaining in the original state, cannot be used
with this scheduler. Since the universe reverts to its original state after a run sequence, the
ACYLOOP scheduler will work fine in normal usage.

5.4.2 The loop-SDF target

An exact looping algorithm, available in an alternative target called theloop-SDF tar-
get, was developed by adding postprocessing steps to the CLUST loop scheduling algorithm.
For lack of a better name, we call this technique “SJS scheduling”, for the first initials of the
designers (Shuvra Bhattacharyya, Joe Buck, and Soonhoi Ha). In the postprocessing, we
attempt to decompose the graph into a hierarchy of acyclic graphs [Bha93b], for which a com-
pact looped schedule can easily be constructed. Cyclic subgraphs that cannot be decomposed
by this method, calledtightly interdependent subgraphs, are expanded to acyclic precedence
graphs in which looping structures are extracted by the techniques developed in [Bha94a] and
extensions to these techniques developed by Soonhoi Ha. This scheduling option is selected
when theloopTarget is chosen instead of the default SDF target. The target options are:

logFile

schedulePeriod

They have the same interpretation as for the default target, but in theloop-SDF target,sched-
ulePeriod has an initial default of 10000.0.

When there are sample rate changes in the program graph, the default SDF scheduler
may be much slower than the loop schedulers, and in code generation, the resulting schedules
may lead to unacceptably large code size. Buck’s scheduler provides a fast way to get compact
looped schedules for many program graphs, although there are no guarantees of optimality.
The somewhat slower SJS scheduler is guaranteed to find a single appearance schedule when-
ever one exists [Bha93c]. Furthermore, a schedule generated by the SJS scheduler contains
only one instance of each actor that is not contained in a tightly interdependent subgraph.
However, neither the SJS scheduler nor Buck’s scheduler will attempt to optimize for buffer
memory usage; this need is met by the ACYLOOP scheduler chosen through the default-SDF
target as described above, for acyclic graphs. Algorithms for generating single appearance
schedules optimized for buffer memory systematically for graphs that may contain cycles
have not yet been implemented.

The looped result can be seen by setting thelogFile target parameter. That file will
contain all the intermediate procedures of looping and the final scheduling result. The loop
scheduling algorithms are usually used in code generation domains, not in the simulation SDF
domain. Refer to the Code Generation domain documentation for a detailed discussion to the
section on “Schedulers” on page 13-6.

5.4.3 Compile-SDF target

A third target in the SDF domain, calledcompile-SDF . Instead of executing a simu-
lation by invoking thego() methods of stars from within the Ptolemy process, it generates a
C++ program that implements the universe, links it with appropriate parts of the Ptolemy ker-

5-68 SDF Domain

U. C. Berkeley Department of EECS

nel, and then invokes that system. The schedule is constructed statically, so the generated pro-
gram has no scheduler linked in. Instead, the generated code directly invokes thego()
methods of the stars. The target parameters are:

directory (STRING) Default=$HOME/PTOLEMY_SYSTEMS
The directory into which to place the generated code.

LoopingLevel (STRING) Default = ACYLOOP
The choices are DEF, CLUST, SJS, or ACYLOOP. Case does
not matter; ACYLOOP is the same as AcyLoOP. If the value is
DEF, no attempt will be made to construct a looped schedule.
This can result in very large programs for multirate systems,
since inline code generation is used, where a codeblock is
inserted for each appearance of an actor in the schedule. Setting
the level to CLUST invokes a quick and simple loop scheduler
that may not always give single appearance schedules. Setting it
to SJS invokes the more sophisticated SJS loop scheduler,
which can take more time to execute, but is guaranteed to find
single appearance schedules whenever they exist. Setting it to
ACYLOOP invokes a scheduler that generates single appear-
ance schedules optimized for buffer memory usage, as long as
the graph is acyclic. If the graph is not acyclic, and ACYLOOP
has been chosen, then the target automatically reverts to the SJS
scheduler. For backward compatibility, “0” or “NO”, “1”, and
“2” or “YES” are also recognized, with “0” or “NO” being
DEF, “1” being CLUST, and “2” or “YES” being SJS.

writeSchedule? (INT) Default = NO
If the value is YES, then the schedule is written out to a file
named.sched in the directory named by thedirectory target
parameter.

If you wish to try this SDF target, open any of the basic SDF demos in figure 5-22, edit the tar-
get to change it to thecompile-SDF target (in vem, hitT), and run the system. You can then
examine the source code and makefile that are placed in the specified directory. An executable
with the same name as the name of the demo will also be placed in that directory. This is a
standalone executable that does not require any part of the Ptolemy system to run (except for
the Ptolemy Tcl/Tk startup scripts in$PTOLEMY/lib/tcl). For example, if you choose the
butterfly demo in figure 5-22, your destination directory will contain the following files:

butterfly
butterfly.cc
code.cc
make.template
makefile

The first of these is executable. Try executing it. You can modify the number of sample points
generated using a command-line argument. For example, to generate 1,000 points instead of
10,000, type

butterfly 1000

The Almagest 5-69

Ptolemy Last updated: 12/1/97

Thecompile-SDF target is an example of a code-generationTarget within the SDF
domain. So, in a very fundamental way, aTarget defines the way a system is executed. The
default target is essentially an interpreter. Thecompile-SDF target synthesizes a standalone
program and then executes it on the native workstation. It should be viewed merely as an
example of the kinds of extensions users can build. More elaborate targets parallelize the code
and execute the resulting programs on remote hardware. Targets can be defined by users and
can make use of existing Ptolemy schedulers. Knowledgeable users can also define their own
schedulers.

Thecompile-SDF target first creates the C++ source code for the current universe in
a file of the same name of the universe followed by.cc . Then, it copies the C++ code into
code.cc and builds themakefile to compilecode.cc using the make template fileCom-
pileMake.template in the$PTOLEMY/lib directory. Next, thecompile-SDF target runs
themakefile to compilecode.cc into an executable calledcode . Thecompile-SDF tar-
get then renamescode to the name of the Ptolemy universe. If there is an error reported by
make, then it is likely that one of make configuration variables is incorrect. Themakefile
includes the configuration makefile for the workstation you are using. The configuration
makefiles are in the$PTOLEMY/mk directory.

The compile-SDF target has a number of known problems:

 • The resulting C++ program is unnecessarily large (a minimum of about half a mega-
byte) because many unnecessary Ptolemy objects get linked in. You can create a much
leaner program using the CGC domain.

 • Error messages during the compile or run are sent to the standard output rather than
displayed in a window on the screen.

 • If you specify a relative directory for the destination directory, instead of the absolute
directory as done in the default, then the location of the directory will be relative to the
current working directory of the Ptolemy system. It is easy to lose track of what that is.

 • Generating code can take quite a bit of time, particularly if a multirate system is used
with theLoopingLevel parameter set to “0”. Unfortunately, there is no convenient
way to interrupt the code generation process.

 • Implicit forks are not currently correctly handled. Consequently, whereas the target
works for simple systems, more elaborate systems inevitably cause problems.

 • Themake program on your path must be the GNUmake program.

 • If you have changed Ptolemy versions, then it is likely that the make template has also
changed. However, Ptolemy will not copyCompileMake.template over an existing
make.template . If you get errors after you have switched versions of Ptolemy, then
delete themake.template andmakefile in the destination directory of thecom-
pile-SDF target.

We would welcome any assistance in fixing these problems.

5.4.4 SDF to PTCL target

The SDF-to-PTCL target was introduced in Ptolemy 0.6. This target is substantially

5-70 SDF Domain

U. C. Berkeley Department of EECS

incomplete, we give a rough outline below. We hope to complete work on theSDF-to-PTCL
target in a later release. TheSDF-to-PTCL target usesCGMultiInOut stars to generate
abstract ptcl graphs which capture the SDF semantics of a simulation SDF universe. These
abstract graphs can then be used to test SDF schedulers.

The ptcl output filename will use the universe name as a prefix, and append.pt to the
name (e.g., the ptcl output for thebutterfly demo would be inbutterfly.pt). Currently
the directory that will contain the ptcl output is hardwired to~/PTOLEMY_SYSTEMS/ptcl/ .
You may need to create this directory by hand.

The most interesting aspect about the target is that it collects statistics on the execution
time of each star. This is valuable for seeing the relative runtimes of the various stars which
can be used in code generation. It collects statistics by running the scheduled universe, accu-
mulating elapsed CPU time totals for each star. This new target does not call thewrapup meth-
ods of the stars, so you will not seeXGraph outputs.

5.5 Exercises
The exercises in this section were developed by Alan Kamas, Edward Lee, and Ken-

nard White for use in the undergraduate and graduate digital signal processing classes at U. C.
Berkeley. If you are assigned these exercises for a class, you should turn in printouts of well-
labeled schematics, showing all non-default parameter values, and printouts of relevant plots.
Combining multiple plots into one can make comparisons more meaningful, and can save
paper. Use theXMgraph star with multiple inputs.

5.5.1 Modulation

This problem explores amplitude modulation (AM) of discrete-time signals. It makes exten-
sive use of FFTs. These will be used to approximate the discrete-time Fourier transform
(DTFT). In subsequent exercises, we will study artifacts that can arise from this approxima-
tion. For our purposes here, the output of theFFTCx block will be interpreted as samples of
the DTFT in the interval from 0 (d.c.) to .

Frequencies in many texts are normalized. To make this exercise more physically meaningful,
you should assume a sampling frequency of 128 kHz (sampling period). Thus
the 0 to range of frequencies (in radians per sample) translates to a range of 0 to 128kHz.
On your output graphs, you should clearly label the units of the x-axis. ThexUnits parameter
of theXMGraph star can be used to do this. If the FFT produces samples, represent-
ing the range from 0 to kHz., thenxUnits should be Hz. Thus each
sample out from the FFT will represent 500Hz. Keep in mind that a DTFT is actually periodic,
and that only one cycle will be shown.

With default parameters, theFFTCx star will read 256 input samples and produce 256 com-
plex output samples. This gives adequate resolution, so just use the defaults for this exercise.
The section “Iterations in SDF” on page 5-3 will tell you, for instance, that you should run
your systems for one iteration only. The section “Particle types” on page 2-20 explains how to
properly manage complex signals. For this exercise, you should only plot the magnitude of the
FFTCx output, ignoring the phase.

The overall goal is to build a modulation system that transmits a speech or music signal
using AM modulation. The transmitted signal is . The receiver demodulates y(n) to get

2π

T 7.8µsec=
2π

N 256=
f s 128= f s/N 500=

x n()
y n()

The Almagest 5-71

Ptolemy Last updated: 12/1/97

the recovered signal . The system is working if . Commercial AM radio
uses carrier frequencies from 500kHz to 2MHz; however, we will use carriers around 32kHz.
This makes the results of the modulation easier to see. The system you will develop (after sev-
eral intermediate phases) is shown below:

1. The first task is to figure out how to use theFFTCx star to plot the magnitude of a DTFT.
Begin by generating a signal where you know the DTFT. Use theRect star to generate a
rectangular pulse

for and . Plot the magnitude of the DTFT. It would be a good idea at this
point to make a galaxy that will output the magnitude of the DTFT of the input signal. Be
sure the axis of your graph is labeled with the frequencies in Hz, assuming a sampling fre-
quency of 128kHz.

2. The signal generated above does not have narrow bandwidth. The next task will be to gen-
erate a signal with narrower bandwidth so that the effects of modulating it can be
seen more clearly and so there are fewer artifacts. A distinctive and convenient lowpass sig-
nal can be generated by feeding an impulse into theRaisedCosine star (found in the
“communications” palette). Set the parameters of theRaisedCosine star as follows:

length: 256
symbol_interval: 8
excessBW: 0.5

Leave theinterpolation parameter on its default value. The detailed functionality of this
star is not important: we are just using it to get a signal we can work with conveniently. Plot
the time domain signal and its magnitude DTFT. What is the bandwidth (single-sided), in
Hz, of the signal? Use the -6dB point (amplitude at 1/2 of the peak) as the band edge. The
signal was chosen to have roughly the bandwidth of a typical AM broadcast signal.

3. The next task is to modulate the signal generated in part (2) with a sine wave. Con-
struct a 32 kHz sine wave using thesingen galaxy and let it be the carrier ; then pro-
duce . Graph the DTFT of . What is the bandwidth of ?
Change the carrier to 5 kHz, and graph the FFT of y(n). Explain in words what has hap-
pened. Keep the carrier at 5 kHz, and determine what the largest possible bandwidth is for

 so that will not have any significant distortion.

4. The next step it to build the demodulator. First multiply again by the same carrier,
, and plot the magnitude DTFT of the result. Explain in words what about

r n() r n() x n()=

x(n) r(n)

c(n) d(n)

y(n) low
pass
filter

w(n)

x n() δ n k–()
k 0=

M

∑=

M 4= M 10=

x n()

x n()
c n()

y n() x n()c n()= y n() y n()

x n() y n()

d n() c n()=

5-72 SDF Domain

U. C. Berkeley Department of EECS

this spectrum is directly attributable to the discrete-time nature of the problem. In other
words, what would be different if this problem were solved in continuous time?

5. To complete the demodulation, you need to filter out the double frequency terms. Use the
FIR filter star with its default coefficients. This is not a very good lowpass filter, but it is a
lowpass filter. Explain in words exactly how the resulting signal is different from the origi-
nal baseband signal. How would you make it more like the original? Do you think it is
enough like the original to be acceptable for AM broadcasting?

5.5.2 Sampling and multirate

This exercise explores sampling and multirate systems. As with the previous exercise, this one
makes extensive use of FFTs to approximate the DTFT in the interval from 0 (d.c.) to
(normalized) or the sampling frequency (unnormalized).

1. The first task is to generate an interesting signal that we can operate on. We will begin with
the same signal used in the previous exercise, generated by feeding an impulse into the
RaisedCosine star. Set the parameters of theRaisedCosine star as follows:

length: 256
symbol_interval: 8
excessBW: 0.5
interpolation: 1

Unlike the previous exercise, you should not leave theinterpolation parameter on its
default value. The time domain should look like the following (after zooming in on the cen-
tral portion):

Assume as in the exercise “Modulation” on page 5-70 a sampling frequency of 128kHz.
Use theFFTCx to compute and plot the magnitude DTFT, properly labeled in absolute fre-
quency. In other words, instead of the normalized sampling frequency , use the actual
sampling frequency, 128kHz. Carefully and completely explain in words what would be
different about this plot if the signal were a continuous-time signal and the plot of the spec-
trum were its Fourier transform instead of a DTFT.

2. Subsample the above signal at 64kHz, 32kHz, and 16kHz. To do this, use theDownSample
star (in the “control” palette) with downsampling factors of 2, 4, and 8. Compare the mag-
nitude spectra. It would be best to plot them on the same plot. To do this, you will need to
keep the number of samples consistent in all signal paths. Since theDownSample star pro-
duces only one sample for every it consumes, theFFTCx star that gets its data should
have itssize parameter proportional to 1/ for each path.

2π
f s

Time domain signal

-3
sec x 10

-0.00

1.00

0.80 1.00 1.20

2π

N
N

The Almagest 5-73

Ptolemy Last updated: 12/1/97

Warning: If you fail to make the numbers consistent, you will either get an error message,
or your system will run for a very long time. Please be sure you understand synchronous
dataflow. Read “Iterations in SDF” on page 5-3.

Answer the following questions:

a. Which of the downsampled signals have significant aliasing distortion?

b. What is the smallest sample rate you can achieve with the downsampler without getting
aliasing distortion?

3. The next task is to show that sometimes subsampling can be used to demodulate a modu-
lated signal.

a. First, modulate our “interesting signal” with acomplex exponential at frequency 32kHz.
The complex exponential can be generated using theexpgen galaxy in the sources
palette. Plot the magnitude spectrum, and explain in words how this spectrum is differ-
ent from the one obtained in the exercise “Modulation” on page 5-70, which modulates
with a cosine at 32kHz.

b. Next, demodulate the signal by downsampling it. What is the appropriate downsampling
ratio?

4. The next task is to explore upsampling.

a. First, generate the signal we will work with by downsampling the original “interesting
signal” at a 32kHz sample rate (a factor of 4 downsampling). Then upsample by a factor
of 4 using theUpSample star. This star will just insert three zero-valued samples for
each input sample. Compare the magnitude spectrum of the original “interesting signal”
with the one that has been downsampled and then upsampled. Explain in words what
you observe.

b. Instead of upsampling with theUpSample star, try using theRepeat star. Instead of
filling with zeros, this one holds the most recent value. This more closely emulates the
behavior of a practical D/A converter. Set thenumTimes parameter to 4. Compare the
magnitude spectrum to that of the original signal. Explain in words the difference
between the two. Is this a better reconstruction than the zero-fill signal of part (a)?

c. Use theBiquad star with default parameters to filter the output of theRepeat star from
part (b). Does this improve the signal? Describe in words how the signal still differs
from the original.

5.5.3 Exponential sequences, transfer functions, and convolution

This exercise explores rational Z transform transfer functions.

1. Generate an exponential sequence , with , and convolve it with a square
pulse of width 10. For this problem, use the following brute-force method for generating
the exponential sequence. Observe that

.

You can use theConst star to generate a constant , feed that constant into theLog star,
multiply it by the sequence generated using theRamp star, and feed the result
into theExp star. For your display, try the following options to theXMgraph star: “-P -nl -
bar”.

anu n() a 0.9=

an eln an() en ln a()()= =

a
n u n()×

5-74 SDF Domain

U. C. Berkeley Department of EECS

2. A much more elegant way to generate an exponential sequence is to implement a filter with
an exponential sequence as its impulse response. Generate the sequence

by feeding an impulse (Impulse star) into a first order filter (IIR star). Try various values
for , including negative numbers and values that make the filter unstable.

a. Let and , where and . Generate
these two sequences using the method above, and convolve them using the convolver
block. Now find without using a convolver block. Print your block dia-
gram, and don’t forget to mark the parameter values on it.

b. Given the Z transform

,

use Ptolemy to find and print the inverse Z transform . Find the poles and zeros of
the transfer function and use them to explain the impulse response you observe.

3. Generate the following sequences:

,

where is the unit step function. Estimate the peak value of each signal. Note that you
can zoom in xgraph by drawing a box around the region of interest.

4. Given the following difference equation:

find so that . Write it down. Use Ptolemy to generate a plot of
. Plot when is a rectangular pulse of width 5. Assume for
.

5. This problem explores feedback systems. An example of an “all-pole” filter is

.

Although there are plenty of zeros (at), they don’t effect the magnitude frequency
response. Hence the name. Although this can be implemented in Ptolemy using theIIR
star, you are to implement it using only one or moreFIR star(s) in the standard feedback
configuration:

anu n()

a

h n() anu n()= x n() bnu n()= a 0.9= b 0.5=

h n()* x n()

H z() 1 0.995z 1––
1 1.99z 1–– z 2–+
--=

h n()

x n() 0.95()n 0.1n()sin u n()=

y n() 0.95()n 0.2n()sin u n()=

u n()

y n() 2x n() 0.75y n 1–() 0.125y n 2–()+ +=

H z() Y z() X z()H z()=
h n() y n() x n() y n() 0=
n 0<

H z() 1

1 2z
1–

1.91z
2–

+– 0.91z
3–

– 0.205z
4–

+
---=

z 0=

G z()

F z()

The Almagest 5-75

Ptolemy Last updated: 12/1/97

Find an to get an overall transfer function of . Then implement it as a
feedback system in Ptolemy and plot the impulse response. Is the impulse response infinite
in extent?

Note: For a feedback system to be implementable in discrete-time, it must have at least one
unit delay () in the loop. Ptolemy needs for this delay to be explicit, not hidden in the
tap values of a filter star. For this reason, you should factor a term out of and
implement it using the delay icon (a small green diamond). Note that the delay is not a star,
and is not connected as a star. It just gets placed on top of an arc, as explained in “Using
delays” on page 2-47. Also note that Ptolemy requires you to use an explicitFork (in the
control palette) if you are going to put a delay on a net with more than one destination.

5.5.4 Linear phase filtering

You can compute the frequency response of a filter in Ptolemy by feeding it an
impulse, and connecting the output to anFFTCx star. Recall that you will only need to run
your system forone iteration when you are using an FFT, or you will get several successive
FFT computations. The output of the FFT is complex, but may be converted to magnitude and
phase using a complex to real (CxToRect) followed by a rectangular to polar (RectToPo-
lar) converter stars. You can also examine the magnitude in dB by feeding it through theDB
star before plotting it.

1. Build an FIR filter with real, symmetric tap values. Use any coefficients you like, as long as
they are symmetric about a center tap. Look at the phase response. Is it linear, modulo ?
Experiment with several sets of tap values, maintaining linear phase. Try long filters and
short filters. Experiment with the phase unwrapper star (Unwrap), which attempts to
remove the ambiguity, keeping continuous phase. Choose your favorite linear-phase fil-
ter, and turn in the plots of its frequency response, together a plot of its tap values.

2. For the filter you used in (1), what is the group delay? How is the group delay related to the
slope of the phase response?

3. Build an FIR filter with odd-symmetric taps (anti-symmetric). Find the phase response of
this filter, and compare it to that in (1). Generate a sine wave (using thesingen galaxy)
and feed it into your filter. What is the phase difference (in radians) between the input
cosine and the output? Try different frequencies.

4. Although linear phase is easy to achieve with FIR filters, it can be achieved with other fil-
ters using signal reversal. If you run the same signal forwards and backwards through the
same filter, you can get linear phase. Given an input and a filter , compute the
output as follows:

.

Obviously, this operation is not causal. Let be such that

.

F z() G z() H z()

z
1–

z
1–

G z()

π

2π

x n() h n()
y n()

g n() h n()* x n()=

r n() h n()* g n–()=

y n() r n–()=

f n()

y n() f n()* x n()=

5-76 SDF Domain

U. C. Berkeley Department of EECS

Find in terms of . If is causal, will also be causal? Find the fre-
quency response , and express it in terms of and . It will help if
you assume all signals are real.

5. All signals in Ptolemy start at time zero, so it is impossible to generate the signal
used above. However, you can collect a block of samples and reverse them, getting

, using theReverse star. This introduces an extra delay of samples. Use a
first-order IIR filter (with an exponentially decaying impulse response) to implement

. First verify that the above methodology yields an impulse response that is symmet-
ric in time. Then measure the phase response. You can use Ptolemy to adjust the computed
phase output to remove the effect of the large delay offset (the center of your symmetric
pulse is nowhere near zero). Compare your result against the theoretical prediction in (4).

Hint: You will want the block size of theReverse star to match that used for theFFTCx
star. Then just run the system through one iteration. Also, you should delay your impulse
into the first filter by half the block size. This will ensure a symmetric impulse response,
which is what you want for linear phase. The center of symmetry should be half the block
size.

5.5.5 Coefficient quantization

1. You will experiment with the following transfer function:

,

which has the following pole-zero plot:

This is a fourth order elliptic filter.

a. Implement this filter in the canonical direct form, or direct form II (using theIIR star).
Plot the magnitude frequency response in dB, and verify that it is what you expect from
the pole-zero plot.

b. The transfer function can be factored as follows, where the poles nearest the unit circle
and the zeros close to those poles appear in the second term:

.

f n() h n() h n() f n()
F ω() H ω() H ω()∠

g n–()

g N n–() N

h n()

H z() 1 2.1872z
1–

3.0055z
2–

+– 2.1872z
3–

– z
4–

+

1 3.1912z
1–

4.1697z
2–

+– 2.5854z
3–

– 0.6443z
4–

+
--=

H z() 1 0.6511z
1–

z
2–

+–

1 1.5684z
1–

0.6879z
2–

+–

 
 
  1 1.5321z

1–
z

2–
+–

1 1.6233z
1–

0.9366z
2–

+–

 
 
 

=

The Almagest 5-77

Ptolemy Last updated: 12/1/97

Implement this as a cascade of two second order sections (using twoIIR stars). Verify
that the frequency response is the same as in part (a). Does the order of the two second
order sections affect the magnitude frequency response?

2. You will now quantize the coefficients for implementation in two’s complement digital
hardware. Assume in all cases that you will use enough bits to the left of the binary point to
represent the integer part of the coefficients perfectly. The left-most bit is the most signifi-
cant bit. You will only vary the number of bits to the right of the binary point, which repre-
sent the fractional part. With zero bits to the right of the binary point, you can only
represent integers. With one bit, you can represent fractional parts that are either .0 or .5.
Other possibilities are given in the table below:

You can use theIIRFix star to implement this. First, we will study the effects of coeffi-
cient quantization only. To minimize the impact of fixed-point internal computations in the
IIRFix star, set theInputPrecision, AccumulationPrecision, and OutputPrecision to
16.16 (meaning 16 bits to the right and 16 bits to the left of the binary point) getting more
than adequate precision.

a. For the cascaded second-order sections of problem 1a, quantize the coefficients with
two bits to the right of the binary point. Compare the resulting frequency response to the
original. What has happened to the pole closest to the unit circle? Do you still have a
fourth-order system? Does the order of the second order sections matter now?

b. Repeat part (a), but using four bits to the right of the binary point. Does this look like it
adequately implements the intended filter?

3. Direct form implementations of filters with order higher than two are especially subject to
coefficient quantization errors. In particular, poles may move so much when coefficients
are quantized that they move outside the unit circle, rendering the implementation unstable.
Determine whether the direct form implementation of problem (1a) is stable when the
coefficients are quantized. Try 2 bits to the right of the binary point and 4 bits to the right of
the binary point. You should plot the impulse response, not the frequency response, to look
for instability. How many bits to the right of the binary point do you need to make the sys-
tem stable?

4. Experiment with the other precision parameters of theIIRFix star. Is this filter more sen-
sitive to accumulation precision than to coefficient precision?

5. Many applications require a very narrowband lowpass filter, used to extract the d.c. compo-
nent of a signal. Unfortunately, the pole locations for second-order direct form 2 structures
are especially sensitive to coefficient quantization in the region near . Consequently,
they are not very well suited to implementing very narrowband lowpass filters.

a. The following transfer function is that of a second-order Butterworth lowpass filter:

number of bits right of the binary point possible values for the fractional part

2 .0, .25, .5, .75

3 .0, .125, .25, .375, .5, .625, .75, .875

4 .0, .0625, .125, .1875 .25, .3125, .375, ...

z 1=

5-78 SDF Domain

U. C. Berkeley Department of EECS

.

Find and sketch the pole and zero locations of this filter. Compute and plot the magni-
tude frequency response. Where is the cutoff frequency (defined to be 3dB below the
peak)?

b. Quantize the coefficients to use four bits to the right of the binary point. How many bits
to the left of the binary point are required so that all the coefficients can be represented
in the same format? Compute and plot the magnitude frequency response of this new fil-
ter. Explain why it is so different. What is wrong with it?

c. The following transfer function is a bit better behaved when quantized to four bits to the
right of the binary point:

.

It is also a second order Butterworth filter. Determine where its 3dB cutoff frequency is.
Quantize the coefficients to four bits right of the binary point, and determine how
closely the resulting filter approximates the original.

d. Use the filter from part (c) (possibly used more than once), together withUpsample and
Downsample stars to implement a lowpass filter with a cutoff of 0.05 radians. Imple-
ment both the full precision and quantized versions. Describe qualitatively the effective-
ness of this design. Your input and output sample rate should be the same, and the
objective is to pass only that part of the input below 0.05 radians to the output unattenu-
ated.

5.5.6 FIR filter design

This lab explores FIR filter design by windowing and by the Parks-McClellan algorithm.

1. Use theRect star to generate rectangular windows of length 8, 16, and 32. Set the ampli-
tude of the windows so that they have the same d.c. content (so that the Fourier transform at
zero will be the same).

a. Find the drop in dB at the peak of the first side-lobe in the frequency domain. Also find
the position (in Hz, assuming the sampling interval) of the peak of the first side-
lobe. Is the dB drop a function of the length of the window? What about the position?

b. Find the drop in dB at the side-lobe nearest radians (the Nyquist frequency) for each
of the three window lengths. What relationship would you infer between window length
and this drop?

2. Repeat problem 1 with a Hanning window instead of a rectangular window. Be sure to set
the period parameter of theWindow star to a negative number in order to get only one
instance of the window.

3. An ideal low-pass filter with cutoff at has impulse response

.

This impulse response can be generated for any range using theRaised-
Cosine star from the communications subpalette, or theSinc star from the nonlinear

H z() 1 2z
1–

z
2–

+ +

1 1.9293z
1–

– 0.9317z
2–

+
---=

H z() 1 2z
1–

z
2–

+ +

1 1.7187z
1–

– 0.7536z
2–

+
---=

T 1=

π

ωc

h n()
ωcn()sin

πn
----------------------=

M– n M≤ ≤

The Almagest 5-79

Ptolemy Last updated: 12/1/97

subpalette. This star is actually an FIR filter, so feed it a unit impulse. Its output will be
shaped like if you set the “excess bandwidth” to zero. Set its parameters as follows:

length: 64 (the length of the filter you want)
symbol_interval: 8 (the number of samples to the first zero crossing)
excessBW: 0.0 (this makes the output ideally lowpass).
interpolation: 1

a. What is the theoretical cutoff frequency given that is the first zero cross-
ing in the impulse response? Give your answer in Hz, assuming that the sampling inter-
val .

b. Multiply the 64-tap impulse response gotten from theRaisedCosine star by Hanning
and steep Blackman windows, and plot the original 64-tap impulse response together
with the two windowed impulse responses. Which impulse responses end more abruptly
on each end?

c. Compute and plot the magnitude frequency response (in dB) of filters with the three
impulse responses plotted in part (b). You will want to change the parameter of the
FFTCx star to get more resolution. You can use anorder of 9 (which corresponds to a
512 point FFT). You can also set thesize to 64 since the input has only 64 non-zero sam-
ples. Describe qualitatively the difference between the three filters. What is the loss at

 compared to d.c.?

4. In this problem, you will use the rather primitive FIR filter design software provided with
Ptolemy. The program you will use is called “optfir ”; it uses the Parks-McClellan algo-
rithm to design equiripple FIR filters. See “optfir — equiripple FIR filter design” on
page C-1 for an explanation of how to use it. The main objective in this problem will be to
compare equiripple designs to the windowed designs of the previous problem.

a. Design a 64 tap filter with the passband edge at (1/16)Hz and stopband edge at (0.1)Hz.
This corresponds very roughly to the designs in problem 3. Compare the magnitude fre-
quency response to those in problem 3. Describe in words the qualitative differences
between them. Which filters are “better”? In what sense?

b. The filter you designed in part (a) should end up having a slightly wider passband than
the designs in problem 3. So to make the comparison fair, we should use a passband
edge smaller than (1/16)Hz. Choose a reasonable number to use and repeat your design.

c. Experiment with different transition band widths. Draw some conclusions about equir-
ipple designs versus windowed designs.

5.5.7 The DFT (discrete Fourier transform)

This exercise explores the DFT, FFT, and circular convolution. Ptolemy has both a
FFTCx (complex FFT) and aDTFT star in the “dsp” palette. TheFFTCx star has anorder
parameter and asizeparameter. It consumessizeinput samples and computes the DFT of a

periodic signal formed by repeating these samples with period . Only integer powers of

two are supported. If , then the unspecified samples are given value zero. This
can also be viewed as computing samples of the DTFT of a finite input signal of lengthsize,

padded with zeros. These samples are evenly spaced from d.c. to , with spac-

h n()

ωc h 8() 0=

T 1=

ωc

2
order

size 2
order≤

2order size– 2π

5-80 SDF Domain

U. C. Berkeley Department of EECS

ing , where .

The DTFT star, by contrast, computes samples of the DTFT of a finite input signal at
arbitrary frequencies (the frequencies are supplied at a second input port). If you are inter-
ested in computing even spaced samples of the DTFT in the whole range from d.c. to the sam-
pling frequency, theDTFT star would be far less efficient than theFFTCx star. However, if you
are interested in only a few samples of the DTFT, then theDTFT star is more efficient. For this
exercise, you should use theFFTCx star.

1. Find the 8 point DFT (order = 3,size = 8) of each of the following signals:

Plot the magnitude, real, and imaginary parts on the same plot. Ignoring any slight round-
off error in the computer, which of the DFTs is purely real? Purely imaginary? Why? Give
a careful and complete explanation.Hint: Do not rely on implicit type conversions, which
are tricky to use. Instead, explicitly use theCxToReal andRectToPolar stars to get the
desired plots.

2. Let

as in (a) above. Compute the 4, 8, 16, 32, and 64 point DFT using theFFTCx star. Plot the
64 point DFT. Explain why the 4 point DFT is as it is, and explain why the progression
does what it does as the order of the DFT increases.

3. Assuming a sample rate of 1 Hz, compare the 128 point FFT (order = 7, size= 128) of a
0.125 Hz cosine wave to the 128 point FFT of a 0.123 Hz cosine wave. It is easy to observe
the differences in the magnitude, so you should plot only the magnitude of the output of the
FFTCx star. Explain why the DFTs are so different.

4. For the same 0.125 Hz signal of problem 3, compute a DFT of order 512 using only 128
samples, padded by zeros (order = 9, size= 128; the zero padding will occur automati-
cally). Explain the difference in the magnitude frequency response from that observed in
problem 3. Do the same for the 0.123 Hz signal. Is its magnitude DFT much different from
that of the 0.125 Hz cosine? Why or why not?

5. Form a rectangular pulse of width 128 and plot its magnitude DFT using a 512 point FFT
(order = 9, size=512). How is this plot related to those in problem 4? Multiply this pulse
by 512 samples of a 0.125 Hz cosine wave and plot the 512 point DFT. How is this related
to the plot in problem 4? Explain.Reminder: If you get an error message “unresolvable
type conflict” then you are probably connecting a float signal to both a float input and a
complex input. You can use explicit type conversion stars to correct the problem.

6. To study circular convolution, let

2π/N N 2order=

n1

0

0

n n

00

n

0
(a) (b) (c) (d)

x n()
1, if n 0 1 2 or 3, , ,=

0, otherwise
=

The Almagest 5-81

Ptolemy Last updated: 12/1/97

and let be as given in problem 2. Use theFFTCx star to compute the 8 point circular
convolution of these two signals. Which points are affected by the overlap caused by circu-
lar convolution? Compute the 16 point circular convolution and compare.

5.5.8 Whitening filters

This exercise, and all the remaining ones in this chapter, involve random signals.

1. Implement a filter with two zeros, located at , where , one pole at
, and one pole at . You may use theBiquad or IIR star in the “dsp” palette.

Filter white noise with it to generate an ARMA process. Then design a whitening filter that
converts the ARMA process back into white noise. Demonstrate that your system does
what is desired by whatever means seems most appropriate.

2. Implement a causal FIR filter with two zeros at and , where

.

Plot its magnitude frequency response and phase response, using theUnwrap star to
remove discontinuities in the phase response. Then implement a second filter with two
zeros at 1/a and 1/a*. Adjust the gain of this filter so that it is the same at d.c. as the first fil-
ter. Verify that the magnitude frequency responses are the same. Compare the phases.
Which is minimum phase? Then implement an allpass filter which when cascaded with the
first filter yields the second. Plot its magnitude and phase frequency response.

5.5.9 Wiener filtering

1. Generate an AR (auto-regressive) process by filtering white Gaussian noise with the
following filter:

.

You can implement this with theIIR filter star. The parameters of the star are:

gain: A float:
numerator: A list of floats separated by spaces: ...
denominator: A list of floats separated by spaces: ...

where the transfer function is:

.

More interestingly, you can implement the filter with an FIR filter in the feedback loop. Try
it both ways, but turn in the latter implementation.

2. Define the “desired” signal to be

,

y n()
1, if n 1 2 3 4 5 or 6, , , , ,=

0, otherwise
=

x n()

z a ja±= a 0.8=
z 0= z 0.9=

z a= z a∗=

a 0.9ejπ/4=

x n()

G z() 1

1 2z
1–

– 1.91z
2–

0.91z
3–

– 0.205z
4–

+ +
---=

g
a0 a1 a2

b0 b1 b2

H z() g
a0 a1z

1–
a2z

2–
...+ + +

b0 b1z
1–

b2z
2–

...+ + +

 
 
 

=

d n() g n()❋x n() w n()+=

5-82 SDF Domain

U. C. Berkeley Department of EECS

where is a white Gaussian noise process with variance 0.5, uncorrelated with ,
and is the impulse response of a filter with the following transfer function:

.

Generate .

3. Design a Wiener filter for estimating from . Verify that the power of the error
signal is equal to the power of the additive white noise .

4. Use an adaptive LMS filter to perform the same function as the fixed Wiener filter in part 3.
Use the default initial tap values for theLMS filter star. Compare the error signals for the
adaptive system to the error signal for fixed system by comparing their power. How closely
does the LMS filter performance approximate that of the fixed Wiener filter? How does its
performance depend on the adaptation step size? How quickly does it converge? How
much do its final tap value look like the optimal Wiener filter solution?

Ptolemy Hint: ThepowerEst galaxy (in the nonlinear palette) is convenient for estimating
power. For theLMS star, to examine the final tap values, set thesaveTapsFile parameter to
some filename. This file will appear in your home directory (even if you started pigi in some
other directory). To examine this file, just type “pxgraph -P filename ” in any shell win-
dow. The -P option causes each point to shown with a dot. You may also wish to experiment
with theLMSTkPlot star to get animated displays of the filter taps as they adapt.

5.5.10 Adaptive equalization

1. Generate random sequence of using theIIDUniform andSgn stars. This represents a
random sequence of bits to be transmitted over a channel. Filter this sequence with the fol-
lowing filter (the same filter used in “Wiener filtering” on page 5-81):

.

Assume this filter represents a channel. Observe that it is very difficult to tell from the
channel output directly what bits were transmitted. Filter the channel output with an LMS
adaptive filter. Try two mechanisms for generating the error used to update the LMS filter
taps:

a. Subtract the LMS filter output from the transmitted bits directly. These bits may be
available at a receiver during a start-up, or “training” phase, when a known sequence is
transmitted.

b. Use theSgn star to make decisions from the LMS filter output, and subtract the filter
output from these decisions. This is a decision-directed structure, which does not
assume that the transmitted bits are known at the receiver.

To get convergence in reasonable time, it may be necessary to initialize the taps of the LMS
filter with something reasonably close to the inverse of the channel response. Try initializ-
ing each tap to the integer nearest the optimal tap value. Experiment with other initial tap
values. Does the decision-directed structure have more difficulty adapting than the “train-
ing” structure that uses the actual transmitted bits? You may wish to experiment with the
LMSTkPlot block to get animated displays of the filter taps.

w n() x n()
g n()

G z() 1 2z
1–

3z
2–

4z
3–

+ + +=

d n()
d n() x n()

e n() d n() y n()–= w n()

1±

A z() 1

1 2z
1–

1.91z
2–

+– 0.91z
3–

– 0.205z
4–

+
---=

The Almagest 5-83

Ptolemy Last updated: 12/1/97

2. For the this problem, you should generate an AR process by filtering Gaussian white noise
with the following filter:

.

Construct an optimal one-step forward linear predictor for this process using theFIR star,
and a similar adaptive linear predictor using theLMS star. Display the two predictions and
the original process on the same plot. Estimate the power of the prediction errors and the
power of the original process. Estimate the prediction gain (in dB) for each predictor. For
each predictor, how many fewer bits would be required to encode the prediction error
power vs. the original signal with the same quantization error? Assume the number of bits
required for each signal to have the same quantization error is determined by the rule,
which means that full scale is equal to four standard deviations.

3. Modify the AR process so that is generated with the following filter:

.

Again estimate the prediction gain in both dB and bits. Explain clearly why the prediction
gain is so much lower.

4. In the file$PTOLEMY/src/domains/sdf/demo/speech.lin there are samples from
two seconds of speech sampled at 8kHz. You need not use all 16,000 samples. The samples
are integer-valued with a peak of around 20,000. You may want to scale the signal down.
Use your one-step forward linear predictor with the LMS algorithm to compute the predic-
tion error signal. Measure the prediction gain in dB, and note that it varies widely for dif-
ferent speech segments. Identify the segments where the prediction gain is greatest, and
explain why. Identify the segments where the prediction gain is small and explain why it is
so. Make an engineering decision about the number of bits that can be saved by this coder
without appreciable degradation in signal quality. You can read the file using theWave-
Form star.

5.5.11 ADPCM speech coding

For the same speech file you used in the last assignment,$PTOLEMY/src/domains/
sdf/demo/speech.lin , you are to construct an adaptive differential pulse code modulation
(ADPCM) coder using the “feedback around quantizer” structure and an LMS filter to form
the approximate linear prediction. Be sure to connect your LMS filter so that at the receiver, if
there are no transmission errors, an LMS filter can also be used in a feedback path, and the
LMS filter will exactly track the one in the transmitter. You will use various amounts of quan-
tization.

To assess the ADPCM system, reconstruct the speech signal from the quantized resid-
ual, subtract this from the original signal, and measure the noise power. If you have a worksta-
tion with a speaker available, listen to the sound, and compare against the original.

1. In your first experiment, do not quantize the signal. Find a good step size, verify that the
feedback around quantizer structure works, measure the reconstruction error power and
prediction gain. Does your reconstruction error make sense? Compare your prediction gain

A z() 1
1 1.94z 1–– 0.98z 2–+
---=

4σ

A z() 1
1 1.2z 1–– 0.6z 2–+
---=

5-84 SDF Domain

U. C. Berkeley Department of EECS

result against that obtained in the previous lab. It should be identical, since all you have
changed is to use the feedback-around-quantizer structure, but you are not yet using a
quantizer.

Assume you have a communication channel where you can transmit bits per sample. You
will now measure the signal quality you can achieve with ADPCM compared to simple PCM
(pulse code modulation) over the same channel. In PCM, you directly quantize the speech sig-
nal to levels, whereas in ADPCM, you quantize the prediction error to levels. For a
given , you should choose the quantization levels carefully. In particular, the quantization
levels for the ADPCM case should not be the same as those for the PCM case. Given a partic-
ular prediction gain , what should the relationship be? You should use theQuant star to
accomplish the quantization in both cases. A useful way to set the parameters of theQuant
star is as follows (shown for bits, meaning 4 quantization levels):

thresholds: (-1*s) (0) (1*s)

levels: (-1.5*s) (-0.5*s) (0.5*s) (1.5*s)

where “s” is a universe parameter. This way, you can easily experiment with various quantiza-
tion spacings without having to continually retype long sequences of numbers.

For each , you should compare (a) the ADPCM encoded speech signal and (b) the PCM
encoded speech signal to the original speech signal. You should make this comparison by
measuring the power in the differences between the reconstructed signals and the original.
How does this difference compare to the prediction gain?

2. Use bits.

3. Use bits.

5.5.12 Spectral estimation

In the Ptolemy “dsp” palette there are three galaxies that perform three different spec-
tral estimation techniques. These are the (1) periodogram, (2) autocorrelation method using
the Levinson-Durbin algorithm, and (3) Burg’s method. The latter two compute linear predic-
tor coefficients, and then use these to determine the frequency response of a whitening filter
for the random process. The magnitude squared of this frequency response is inverted to get
an estimate of the power spectrum of the random process. Study these and make sure you
understand how they work. You are going to use all three to construct power spectral estimates
of various signals and compare them. In particular, note how many input samples are con-
sumed and produced. If you display all three spectral estimates on the same plot, then you
must generate the same number of samples for each estimate. You will begin using only the
Burg galaxy.

1. In this problem, we study the performance of Burg’s algorithm for a simple signal: a sinu-
soid in noise. First, generate a sinusoid with period equal to 25 samples. Add Gaussian
white noise to get an SNR of 10 dB.

a. Using 100 observations, estimate the power spectrum using order 3, 4, 6, and 12th order
AR models. You need not turn in all plots, but please comment on the differences.

b. Fix the order at 6, and construct plots of the power spectrum for SNR of 0, 10, 20, and
30 dB. Again comment on the differences.

N

2
N

2
N

N

G

N 2=

N

N 3=

N 2=

The Almagest 5-85

Ptolemy Last updated: 12/1/97

c. When the AR model order is large relative to the number of data samples observed, an
AR spectral estimate tends to exhibit spurious peaks. Use only 25 input samples, and
experiment with various model orders in the vicinity of 16. Experiment with various
signal to noise ratios. Does noise enhance or suppress the spurious peaks?

d. Spectral line splitting is a well-known artifact of Burg’s method spectral estimates. Spe-
cifically, a single sinusoid may appear as two closely spaced sinusoids. For the same
sinusoid, with an SNR of 30dB, use only 20 observations of the signal and a model
order of 15. For this problem, you will find that the spectral estimate depends heavily on
the starting phase of the sinusoid. Plot the estimate for starting phases of 0, 45, 90, and
135 degrees of a cosine wave.

2. In this problem, we study a synthetic signal that roughly models both voiced and unvoiced
speech.

a. First construct a signal consisting of white noise filtered by the transfer function

.

Then estimate its power spectrum using three methods, a periodogram, the autocorrela-
tion method, and Burg’s method. Use 256 samples of the signal in all three cases, and
order-8 estimates for the autocorrelation and Burg’s methods. Increase and decrease the
number of inputs that you read. Does the periodogram estimate improve? Do the other
estimates improve? How should you measure the quality of the estimates? What order
would work better than 8 for this estimate?

b. Instead of exciting the filter with white noise, excite it with an impulse stream
with period 20 samples. Repeat the spectral estimate experiments. Which estimate is
best? Does increasing the number of input samples observed help any of the estimates?
With the number of input samples observed fixed at 256, try increasing the order of the
autocorrelation and Burg’s estimates. What is the best order for this particular signal?
Note that deciding on an order for such estimates is a difficult problem.

c. Voiced speech is often modeled by an impulse stream into an all-pole filter. Unvoiced
speech is often modeled by white noise into an all-pole filter. A reasonable model
includes some of both, with more noise if the speech is unvoiced, and less if it is voiced.
Mix noise and the periodic impulse stream at the input to the filter in various
ratios and repeat the experiment. Does the noise improve the autocorrelation and Burg
estimates, compared to estimates based on pure impulsive excitation? You should be
able to get excellent estimates using both the autocorrelation and Burg’s methods. You
may wish to run some of these experiments with 1024 input samples.

5.5.13 Lattice filters

In the Ptolemy “dsp” palette there are four lattice filter stars called:Lattice , RLat-
tice , BlockLattice , andBlockRLattice . The “R” refers to “Recursive”, so the “RLat-
tice ” stars are inverse filters (IIR), while the “Lattice ” stars are prediction-error filters
(FIR). The “Block” modifier allows you to connect theLevDur or Burg stars to the Lattice
filters to provide the coefficients. A block of samples is processed with a given set of coeffi-
cients, and then new coefficients can be loaded.

H z() 1

1 1.2z
1–

– 0.6z
2–

+
---=

H z()

H z()

5-86 SDF Domain

U. C. Berkeley Department of EECS

1. Consider an FIR lattice filter with the following values for the reflection coefficients:
0.986959, -0.945207, 0.741774, -0.236531.

a. Is the inverse of this filter stable?

b. Let the transfer function of the FIR lattice filter be written

Use the Levinson-Durbin algorithm to find , ..., . Experiment with various meth-

ods to estimate the autocorrelation. Turn in your estimates of , ..., .

c. Use Ptolemy to verify that an FIR filter with your computed tap values 1, , ..., has
the same transfer function as the lattice filter.

2. In this problem, we compare the biased and unbiased autocorrelation estimates for trouble-
some sequences.

a. Construct a sine wave with a period of 40 samples. Use 64 samples into theAutocor
star to estimate its autocorrelation using both the biased and unbiased estimate. Which
estimate looks more reasonable?

b. Feed the two autocorrelation estimates into theLevDur star to estimate predictor coeffi-
cients for various prediction orders. Increase the order until you get predictor coeffi-
cients that would lead to an unstable synthesis filter. Do you get unstable filters for both
biased and unbiased autocorrelation estimates?

c. Add white noise to the sine wave. Does this help stabilize the synthesis filter?

d. Load your reflection coefficients into theBlockLattice star and compute the predic-
tion error both the biased and unbiased autocorrelation estimate. Which is a better pre-
dictor?

H z() 1 h1z
1–

h2z
2–

... hMz
M–

+ + + +=

h1 hM

h1 hM

h1 hM

