
Appendix D. Shared Libraries

Authors: Christopher Hylands
Alain Girault

D.1 Introduction
Shared libraries are a facility that can provide many benefits to software but have a

slight cost of additional complications. In this appendix we discuss the pros and cons of
shared libraries. For further information about shared libraries, you should consult the pro-
grammer’s documentation that comes with your operating system, such as the Unixld man-
ual page.

D.1.1 Static Libraries

A static library file is a file that consists of an archive of object files (.o files) collected
into one file by thear program. Static libraries usually end with.a (i.e., libg++.a). At link
time, static libraries are searched for each global function or variable symbol. If the symbol is
found then the code for that symbol is copied into the binary. In addition, any other symbols
that were in the original.o file for the symbol in question are also copied into the binary. In
this way, if we need a symbol that is dependent on other functions in the.o file in which it is
defined, at link time we get the dependent functions. There are several important details about
linking, such as the order of libraries, that should be discussed in your system documentation.

D.1.2 Shared Libraries

Most modern operating systems have shared libraries that can be linked in at runtime.
SunOS4.x, Solaris2.x and HPUX all have shared libraries.

Shared libraries allow multiple programs to share a library on disk, rather than copying
code into a binary, resulting in smaller binaries. Also shared libraries allow a binary to access
all of the symbols in a shared library at runtime, even if a symbol was not needed at link time.

A shared library consists of an archive of object files (.o files) collected into one file
by either the compiler or the linker. Usually, to create a shared library, the.o files must be
compiled into Position Independent Code (PIC) by the compiler. The compiler usually has a
special option to produce PIC code, undergcc /g++, the -fPIC option produces PIC code.
Shared libraries have suffixes that are architecture dependent: under SunOS4.1 and Solaris,
shared libraries end with.so (i.e., libg++.so); under HPUX, shared libraries end with.sl
(i.e., libg++.sl).

In addition, shared libraries can also have versioning information included in the
name. Shared library versioning is architecture dependent, but a versioned shared library
name might look likelibg++.so.2.7.1 . Note that the version of a shared library can be
encoded in the shared library in theSONAME feature of that library. Usually, theSONAME of a
library is the same as the filename (i.e., theSONAME of /users/ptolemy/gnu/sol2/lib/
libg++.so.2.7.1 would be libg++.so.2.7.1). Interestingly, if you rename a shared

D-2

U. C. Berkeley Department of EECS

library without changing theSONAME and then link against the renamed shared library, then at
runtime the binary may report that it cannot find the proper library.

The constraint with shared libraries is that the binary be able to find the shared librar-
ies at run time. Exactly how this is done is architecture dependent, but in general the runtime
linker looks for special environment variable that contains pathnames for directories to be
searched. Under SunOS4.1.x and Solaris2.x, this environment variable is named
LD_LIBRARY_PATH. Under HPUX, the variable is namedSHLIB_PATH. A binary can also
have a list of pathnames to be searched encoded inside it. Usually this is called theRPATH. In
general, asking the user to set theLD_LIBRARY_PATH or SHLIB_PATH is frowned upon. It is
better if the binary has the properRPATH set at link time.

D.1.3 Differences between static and shared libraries: Unresolved symbols

A library consists of.o files archived together. A.o file inside a library might contain
symbols (functions, variables etc.) that are not used by your program.

At link time, a static library can have unresolved symbols in it, as long as you don’t
need the unresolved symbols, and you don’t need any symbol that is in a.o file that contains
an unresolved symbol. However, with shared libraries, you must resolve all the symbols at
link time, even if you don’t necessarily use the unresolved symbol.

As an example, say you have a program that uses a symbol from thepigi library
($PTOLEMY/lib.$PTARCH/libpigi.*), but does not use Octtools which is used by other
files that make up thepigi library

If you are linking with a static library, you can have some unresolved symbols in the
static library, as long as you don’t reference the unresolved symbols. So, in our example, you
could just link with the staticlibpigi.a .

If you are linking with a sharedlibpigi , you must resolve all the unresolved sym-
bols. So, if you need a symbol from thelibpigi library, then you must also include refer-
ences to the Octtools libraries that pigilib uses, even though you are not using Octtools. So
you would have to link inliboct.so andlibport.so and the other Octtools libraries.

One positive benefit of this is thatall the symbols in pigilib are available at run time,
which makes incremental linking much easier, especially if we have a shared g++ library.

D.1.4 Differences between static and shared libraries: Pulling in stars

If you are using static libraries, then for a symbol to be present in the binary, you must
explicitly reference that symbol at link time. When building Ptolemy with static libraries, each
star directory contains axxxstars.c file (wherexxx is the domain name, an example file is
$PTOLEMY/src/domains/sdf/stars/sdfstars.c) which gets compiled intoxxx-
stars.o . At link time, thexxxstars.o file is included in the link command and the linker
searcheslib xxxstars.a for the symbols defined inxxxstars.o , and pulls in the rest of the
star definition.

If you are using shared libraries, then all the symbols in thelib xxxstars file are
present at runtime, so you need not include thexxxstars.o file at link time.

The Almagest D-3

Ptolemy Last updated: 11/6/97

D.2 Shared library problems
 • Start up time of a binary that uses shared libraries is increased. We believe that some

of the increased startup time comes from running star constructors. We are working on
modifying Ptolemy so that startup time of binaries that use shared libraries is
decreased. See “Startup Time” below for more information.

 • The time necessary to start up a debugger is sometimes increased. When the debugger
starts up, it usually has to load all the shared libraries so that the debugger knows
where to find symbols.

 • Building is more complex. Unfortunately, shared libraries are very architecture depen-
dent. Also, the commands and command line arguments differ between architectures.
Finally, how different versions of the same shared library are handled, along with the
shared library naming conventions also vary between architectures.

 • You need to keep track of where the shared libraries are, either by usingRPATH at link
time or settingLD_LIBRARY_PATH or SHLIB_PATH. The problem is that if you are
building a C Code Generation (CGC) application that uses shared libraries, then at
runtime the user needs to either have the necessary shared libraries in their
LD_LIBRARY_PATH or SHLIB_PATH, or the binary needs to have theRPATH to the
shared libraries encoded into it. This can be done with an option of the linker. The var-
ious commands to do this are architecture dependent, andDefault-CGC target usu-
ally fails. TheMakefile_C target and theTclTk_Target which is derived from
Makefile_C is much more likely to work with shared libraries.

 • It could be the case that binaries that use shared libraries might use slightly more
memory.

D.2.1 Startup Time

In Ptolemy you can build apigiRpc that has only the domains you are interested in
with Jose Pino’smkPtolemyTree script in$PTOLEMY/bin , see the Programmer’s Manual
for more information. The startup time for a fullpigiRpc is greater than for a
pigiRpc.ptrim (SDF, DE, CGC and a few other small domains). If you use either
pigiRpc.ptrim or pigiRpc.ptiny (SDF and DE only), then the start up time is quite rea-
sonable. If you regularly use some of the other less common domains, then you can build spe-
cial pigiRpc with just your domains.

One reason that startup time is increased might be because Ptolemy constructs a lot of
objects and processes many lists of things like domains. We may be able to decrease startup
time by carefully managing the star constructors.

One way to speed things up might be to create a large shared library that has the
domains in which you are interested. Startup time might be faster if everything is in one file.
Currently we have about 80 different shared libraries.

Combining these libraries into a few big libraries for ptiny, ptrim and pigi binaries
might help. Of course, we could leave the 80 libraries and just add the new libraries. We have
not tried this, but it might be interesting.

D-4

U. C. Berkeley Department of EECS

D.3 Reasons to use shared libraries
 • All the symbols in a shared library are available at runtime. This is especially impor-

tant with incremental linking of stars. If you have a sharedlibg++ , then you can use
all the symbols inlibg++ in a star for which you did not use thelibg++ symbol at
link time. If you use static linking, then when you incrementally link, you only have
symbols that you used when you linked the binary. The same is true for symbols in the
Ptolemy kernel and the domain kernels.

 • You don’t need to write dummy functions to pull in code from a library.$PTOLEMY/
src/domains/sdf/stars/sdfstars.c is an automatically generated C file that
pulls in the stars fromlibsdfstars.a . If you use shared libraries, then you need not
have asdfstars.c file. Also, more than one person has been confused because they
added new file containing new functionality to the Ptolemy kernel, and then when they
tried to link in a star, the symbols they just wrote couldn’t be found. Usually this is
because they are not using the new symbols anywhere at link time, so the new symbols
are not being pulled into the binary. If the Ptolemy kernel is a shared library, then this
problem goes away, as the new symbols are present at incremental link time.

 • Smaller binary size on disk. Shared library binaries are smaller on disk, so it is possi-
ble to have many versions ofpigiRpc that include different domains, without using
up a lot of disk space. If you use shared libraries, apigiRpc is about 1.5Mb; if you
use static libraries, then apigiRpc is about 8Mb.

 • Link time is greatly decreased with shared libraries. Under Solaris with shared librar-
ies, it takes almost no time to link a binary. Under SunOS with static libraries it can
take 8 minutes to link. Using a tool like Pure Inc.’spurelink can help, but
purelink is expensive and is not available everywhere.

 • If you are running multiplepigi s on one machine, the memory usage should be
reduced because of all the pigi binaries are sharing libraries. In theory, if a binary is
built with static libraries, you should get some sharing of memory, but often the shared
libraries result in better memory usage. If you use shared libraries for X11 and Tcl/Tk,
then your memory usage should be lower.

 • Usingdlopen() to incrementally link in new stars is usually faster than the older
method of usingld -A . Eventually, we may be able to link in entire domains at run-
time usingdlopen() .

D.4 Architectural Dependencies
In this section, we discuss shared library architectural dependencies

Table 1: Commands to use to find out information about a binary or library

Architecture
Command(s) that prints what

libraries a binary needs
Library Path

Environment Variable

hppa chatr file SHLIB_PATH

irix5 elfdump -Dl file LD_LIBRARY_PATH

The Almagest D-5

Ptolemy Last updated: 11/6/97

D.4.1 Solaris

Under Solaris the/usr/ccs/bin/dump -Lv file will tell you more shared library
information about abinary. Under Solaris2, binaries compiled with shared libraries can have a
path compiled that is used to search for shared libraries. This path is called theRPATH. Theld
option-R is used to set this at compile time. Use/usr/ccs/bin/dump -Lv binary to view
theRPATH for binary. TheRPATH for a library can be set at the time of creation with the-L
flag:

g++ -shared -L/users/ptolemy/lib.$PTARCH -o librx.so *.o

or by passing the -R flag to the linker:
g++ -shared -Wl,-R,/users/ptolemy/lib.$PTARCH -o librx.so *.o

Constructors and Destructors between SunOS4.x and Solaris2

The Solaris2 SPARCompiler c++4.0 Answerbook says

On SunOS 5.x, all static constructors and destructors are called from the .init
and .fini sections respectively. All static constructors in a shared library linked
to an application will be called beforemain() is executed. This behavior is
slightly different from that on SunOS4.x where only the static constructors
from library modules used by the application are called.

D.4.2 SunOS

The SunOS4.x port of Ptolemy uses BSDld style linking, which willnot work with a
binary that is linked withany shared libraries. For incremental linking of stars to work, the ldd
command must returnstatically linked when run on a SunOS4.xpigiRpc or ptcl
binary.

ptolemy@mho 2% ldd ~ptolemy/bin.sun4/pigiRpc
/users/ptolemy/bin.sun4/pigiRpc: statically linked

D.4.3 HPUX

Under HPUX, shared libraries must be executable or they will not work. Also, for per-
formance reasons, it is best if the shared libraries are not writable.

Under HPUX, shared libraries have a.sl suffix, and HPUX uses theSHLIB_PATH
environment variable to search for libraries.

Under HPUX10, when you are building shared objects, you need to specify both-
fPIC and-shared . (-fpic -shared will also work). The reason is that the temporary files
that are generated by g++’s collect program need to be compiled with-fPIC or -fpic . Other
platforms don’t need both arguments present.

sol2 ldd file
/usr/ccs/bin/dump -Lv file

LD_LIBRARY_PATH

sun4 ldd file LD_LIBRARY_PATH

Architecture
Command(s) that prints what

libraries a binary needs
Library Path

Environment Variable

D-6

U. C. Berkeley Department of EECS

D.5 GateKeeper Error
If there are problems with shared libraries, then you may see
ERROR: GateKeeper error!

message when you exitpigi .

GateKeeper s are objects that are used to ensure atomic operations within the
Ptolemy kernel. The Ptolemy error handling routines useGateKeepers to ensure that the
error messages are not garbled by two errors trying to write to the screen at once.

Say we have two files that make up two different libraries, and both contain the line:
KeptGate gate;

With static libraries, the linker will resolve gate to one address and call the constructor
once. The destructor will also be called once.

With shared libraries, there are two instances of this variable, so the constructor and
the destructor get called twice.

The problem is that there are several different implementations of the error routines
depending on if we are running underpigi , ptcl or tycho . The static function
Error::error is defined in several places, and which definition we get depends on the order
of the libraries. (See $PTOLEMY/src/kernel/Error.[cc,h] , $PTOLEMY/src/pig-
ilib/XError.cc , $PTOLEMY/src/ptcl/ptclError.cc and $PTOLEMY/src/tycho/
tysh/TyError.cc). Each implementation defines a static instancegate of KeptGate .

You will see theERROR: GateKeeper error! message when you exit if there is
more than oneKeptGate gate , and the destructor is called twice forgate .

Under HPUX10.x, the error message is produced iflibptolemy is static and the
other lib (libpigi , libptcl , libtysh) is shared. Here the work around is to make the
other library static too.

The way to debugGateKeeper Error! problems is to set breakpoints in
Error::error , and then trigger an error and make sure that the right error routine in the
right file is being called. One quick way to trigger an error is to set the current domain to a
non-existent domain. Try typingdomain foo into apigi -console , ptcl or
tycho -ptiny prompt.

