
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
BERKELEY, CALIFORNIA 94720

U N I V E R S I T Y O F C A L I F O R N I A AT B E R K E L E Y
A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T

The
Almagest

Vol. 1 - Ptolemy 0.7 User’s Manual

The
Almagest

Ptolemy Last updated: 3/3/97

Primary Authors
Shuvra Bhattacharyya, Joseph T. Buck, Wan-Teh Chang, Michael J. Chen, Brian L.

Evans, Edwin E. Goei, Soonhoi Ha, Paul Haskell, Chih-Tsung Huang, Wei-Jen Huang, Chris-
topher Hylands, Asawaree Kalavade, Alan Kamas, Allen Lao, Edward A. Lee, Seungjun Lee,
David G. Messerschmitt, Praveen Murthy, Thomas M. Parks, José Luis Pino, John Reekie,
Gilbert Sih, S. Sriram, Mary P. Stewart, Michael C. Williamson, Kennard White.

Other contributors
Raza Ahmed, Egbert Amicht (AT&T), Sunil Bhave, Anindo Banerjea, Neal Becker

(Comsat), Jeff Bier, Philip Bitar, Rachel Bowers, Andrea Cassotto, Gyorgy Csertan (T.U.
Budapest), Stefan De Troch (IMEC), Rolando Diesta, Martha Fratt, Mike Grimwood, Luis
Gutierrez, Eric Guntvedt, Erick Hamilton, Richard Han, David Harrison, Holly Heine, Wai-
Hung Ho, John Hoch, Sangjin Hong, Steve How, Alireza Khazeni, Ed Knightly, Christian
Kratzer (U. Stuttgart), Ichiro Kuroda (NEC), Tom Lane (Structured Software Systems, Inc.),
Phil Lapsley, Bilung Lee, Jonathan Lee, Wei-Yi Li, Yu Kee Lim, Brian Mountford, Douglas
Niehaus (Univ. of Kansas), Maureen O’Reilly, Sunil Samel (IMEC), Chris Scannel (NRL),
Sun-Inn Shih, Mario Jorge Silva, Rick Spickelmier, Eduardo N. Spring, Richard S. Stevens
(NRL), Richard Tobias (White Eagle Systems Technology, Inc.), Alberto Vignani (Fiat), Gre-
gory Walter, Xavier Warzee (Thomson), Anders Wass, Jürgen Weiss (U. Stuttgart), Andria
Wong, Anthony Wong, Mei Xiao, Chris Yu (NRL).

Copyright © 1990-1997
The Regents of the University of California

All rights reserved.
Permission is hereby granted, without written agreement and without license or royalty fees,
to use, copy, modify, and distribute the Ptolemy software and its documentation for any pur-
pose, provided that the above copyright notice and the following two paragraphs appear in all
copies of the software and documentation.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMEN-
TATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CAL-
IFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Current Sponsors
Various parts of the Ptolemy project have been supported by the Advanced Research Projects
Agency and the U.S. Air Force (under the RASSP program, contract F33615-93-C-1317), the
Semiconductor Research Corporation (SRC) (project 95-DC-324-016), the National Science
Foundation (MIP-9201605), the State of California MICRO program, and the following com-
panies: Bell Northern Research, Cadence, Dolby Laboratories, Hitachi, Mentor Graphics,
Mitsubishi, Motorola, NEC, Pacific Bell, Philips, and Rockwell.

The Ptolemy project is an ongoing research project focusing on design methodology for heter-
ogeneous systems. Additional support for further research is always welcome.

Trademarks
Sun Workstation, OpenWindows, SunOS, Sun-4, SPARC, and SPARCstation are trademarks
of Sun Microsystems, Inc.

Unix is a trademark of Unix Systems Laboratories, Inc.

PostScript is a trademark of Adobe Systems, Inc.

About the Cover
The image on the cover is from an engraving at the Granger Collection in New York. It depicts
Claudius Ptolemy, an astronomer from the second century A. D. Ptolemy codified the Greek
geocentric view of the universe, and rationalized the apparent retrograde motion of the planets
usingepicycles. The Ptolemaic system remained the accepted wisdom until the Polish scholar
Copernicus proposed a heliocentric view in 1543.

The Almagest i

Ptolemy Last updated: 12/1/97

Contents
1. An Overview of Ptolemy

1.1 Introduction . 1-1
1.2 History . 1-2
1.3 Ptolemy Kernel . 1-3
1.4 Models of Computation . 1-4
1.5 Dataflow Models of Computation . 1-6
1.6 Discrete-Event Models of Computation 1-6
1.7 Synchronous Reactive Modeling . 1-7
1.8 Finite State Machines . 1-7
1.9 Mixing Models of Computation . 1-7
1.10 Code Generation . 1-8
1.11 Conclusion . 1-8
1.12 Current Directions . 1-8
1.13 Organization of the documentation 1-9
1.14 Acknowledgments . 1-9

Personnel 1-9
Support 1-11
Prior software 1-11

2. The Interactive Graphical Interface
2.1 Introduction . 2-1

Setup 2-1
2.2 Running the Ptolemy demos . 2-2

Starting Ptolemy 2-2
Exploring the menus 2-4
Traversing the hierarchy 2-5
Running a Ptolemy application 2-6
Examining schematics more closely 2-9
Invoking on-line documentation for stars 2-10
More extensive exploration of the demos 2-11
What’s new 2-12

2.3 Dialog boxes . 2-12
Tk control panels 2-12
Athena widget dialog boxes 2-13

2.4 Parameters and states . 2-14
A note on terminology 2-14
Changing or setting parameters 2-15
Reading Parameter Values From Files 2-16
Inserting Comments in Parameters 2-16

ii

U. C. Berkeley Department of EECS

Using Tcl Expressions in Parameters 2-17
Using Matlab and Mathematica to Compute Parameters 2-18
Array parameters 2-19
String Parameters 2-19

2.5 Particle types . 2-20
2.6 The oct design database and its editor, vem. 2-21
2.7 Creating universes . 2-22

Opening working windows 2-23
Some basic vem commands 2-24
Building an example 2-26

2.8 Using galaxies . 2-30
Creating a galaxy 2-30
Using a galaxy 2-31
Galaxy and universe parameters 2-32

2.9 Editing Icons. 2-34
2.10 Sounds . 2-38

Workstation Audio Internet Resources 2-38
Solaris 2-38
HPUX 2-39
Playing Audio over the Network 2-39
Ptolemy Sounds 2-40

2.11 Hardcopy. 2-40
Printing oct facets 2-41
Capturing a screen image 2-41

2.12 Other useful information . 2-44
Plotting signals and Fourier transforms 2-44
Moving objects 2-44
Copying objects 2-44
Labeling a design 2-45
Icon orientation 2-45
Finding the names of terminals 2-45
Multiple inputs and outputs 2-46
Using delays 2-47
Auto-forking 2-48
Dealing with errors 2-49
Copying and moving designs 2-50
Environment variables 2-51
Command-line options 2-53

2.13 X Resources . 2-54
2.14 Tk options . 2-55
2.15 Multi-domain universes . 2-55

3. ptcl: The Ptolemy Interpreter
3.1 Introduction . 3-1

The Almagest iii

Ptolemy Last updated: 12/1/97

3.2 Getting started . 3-2
3.3 Global information . 3-2
3.4 Commands for defining the simulation 3-2

Creating and deleting universes 3-2
Setting the domain 3-3
Creating instances of stars and galaxies 3-4
Connecting stars and galaxies 3-5
Netlist-style connections 3-6
Bus connections between MultiPortHoles 3-6
Connecting internal galaxy stars and galaxies to the outside 3-6
Defining parameters and states for a galaxy 3-6
Setting the value of states 3-7
Setting the number of ports to a star 3-7
Defining new galaxies 3-8

3.5 Showing the current status . 3-9
Displaying the known classes 3-9
Displaying information on a the current galaxy or other class 3-9

3.6 Running the simulation . 3-9
Creating a schedule 3-10
Running the simulation 3-10
Continuing a simulation 3-10
Wrapping up a simulation 3-10
Interrupting a simulation 3-10
Obtaining the stop time of the current run 3-10
Obtaining time information from the scheduler 3-11
Animating a simulation 3-11

3.7 Undoing what you have done . 3-11
Resetting the interpreter 3-11
Removing a star 3-11
Removing a connection 3-11
Removing a node 3-12

3.8 Targets . 3-12
What targets are available? 3-12
Changing the target 3-12
Changing target parameters 3-12
Pragmas 3-12

3.9 Miscellaneous commands . 3-13
Loading commands from a file 3-13
Changing the seed of random number generation 3-13
Changing the current directory 3-14
Dynamically linking new stars 3-14
Top-level blocks 3-15
Examining states 3-15
Giving up 3-15

iv

U. C. Berkeley Department of EECS

Getting help 3-15
Registering actions 3-15
The Interface to Matlab and Mathematica 3-16

3.10 Limitations of the interpreter . 3-18
3.11 A wormhole example . 3-18
3.12 Some hints on advanced uses of ptcl with pigi 3-19

Ptcl as a simulation control language for pigi 3-19
The pigi log file pigiLog.pt 3-20
Using pigiLog.pt to build scripts 3-22
oct2ptcl 3-22

4. Introduction to Domains, Targets, and Foreign Tool Interfaces
4.1 Introduction . 4-1
4.2 Synchronous dataflow (SDF) . 4-3
4.3 Higher-Order Functions (HOF) . 4-3
4.4 Dynamic dataflow (DDF) . 4-3
4.5 Boolean dataflow (BDF). 4-4
4.6 Process Network (PN) . 4-4
4.7 Synchronous Reactive (SR) . 4-5
4.8 Finite State Machine (FSM) . 4-5
4.9 Discrete Event (DE) . 4-5
4.10 Multidimensional Synchronous Dataflow (MDSDF) 4-6
4.11 Code generation (CG) . 4-6
4.12 Code generation in C (CGC) . 4-6
4.13 Code generation for the Motorola DSP56000 (CG56) 4-7
4.14 Code generation in VHDL (VHDL, VHDLB) 4-7
4.15 Domains that have been removed 4-12

Circuit simulation (Thor) 4-12
Communicating processes (CP) 4-13
Message queueing (MQ) 4-13
Code generation for the Sproc multiprocessor DSP (Sproc) 4-13
Code generation for the Motorola DSP96000 (CG96) 4-14
Code generation in Silage (Silage) 4-14
Functional Code Generation in VHDL (VHDLF) 4-14

4.16 Interfaces to Foreign Tools . 4-15
Specification and Layout 4-15
Parameter Calculation 4-16
Algorithm Prototyping and Visualization 4-16
Simulation 4-16
Synthesis 4-16

5. SDF Domain
5.1 Introduction . 5-1

The Almagest v

Ptolemy Last updated: 12/1/97

Basic dataflow terminology 5-1
Balancing production and consumption of tokens 5-2
Iterations in SDF 5-3
Inconsistency 5-3
Delays 5-4

5.2 An overview of SDF stars. 5-4
Source stars 5-5
Sink stars 5-9
Arithmetic stars 5-12
Nonlinear stars 5-13
Logic stars 5-16
Control stars 5-17
Conversion stars 5-20
Matrix stars 5-23
Matlab stars 5-26
UltraSparc Native DSP 5-28
Signal processing stars 5-30
Spectral analysis 5-34
Communication stars 5-36
Telecommunications 5-39
Spatial Array Processing 5-42
Image processing stars 5-44
Neural Networks 5-48
Higher Order Function stars 5-50
User Contributions 5-50
Tcl stars 5-50

5.3 An overview of SDF demonstrations 5-51
Basic demos 5-51
Multirate demos 5-53
Communications demos 5-54
Digital signal processing demos 5-55
Sound-making demos 5-57
Image and video processing demos 5-59
Fixed-point demos 5-61
Tcl/Tk demos 5-61
Matrix demos 5-62
MATLAB Demos 5-64
HOF Demos 5-64
Scripted Runs 5-64

5.4 Targets . 5-65
Default SDF target 5-65
The loop-SDF target 5-67
Compile-SDF target 5-67
SDF to PTCL target 5-69

5.5 Exercises . 5-70

vi

U. C. Berkeley Department of EECS

Modulation 5-70
Sampling and multirate 5-72
Exponential sequences, transfer functions, and convolution 5-73
Linear phase filtering 5-75
Coefficient quantization 5-76
FIR filter design 5-78
The DFT (discrete Fourier transform) 5-79
Whitening filters 5-81
Wiener filtering 5-81
Adaptive equalization 5-82
ADPCM speech coding 5-83
Spectral estimation 5-84
Lattice filters 5-85

6. HOF Domain
6.1 Introduction . 6-1
6.2 Using the HOF domain. 6-2

The Map star and its variants 6-2
Managing multidimensional data 6-9
Other higher-order control structures 6-11
Statically evaluated recursion 6-12
Bus manipulation stars 6-13

6.3 An overview of the HOF stars . 6-15
Bus manipulation stars 6-15
Map-like stars 6-16

6.4 An overview of HOF demos. 6-18
HOF demos in the SDF domain 6-18
HOF demos in the DE domain 6-20
HOF demos in the CGC domain 6-20

7. DDF Domain
7.1 Introduction . 7-1
7.2 The DDF Schedulers . 7-2

The default scheduler 7-4
The clustering scheduler 7-5
The fast scheduler 7-6

7.3 Inconsistency in DDF. 7-7
7.4 The default-DDF target. 7-8
7.5 An overview of DDF stars . 7-9
7.6 An overview of DDF demos. 7-10
7.7 Mixing DDF with other domains . 7-12

8. BDF Domain
8.1 Introduction . 8-1

The Almagest vii

Ptolemy Last updated: 12/1/97

8.2 The default-BDF target . 8-2
8.3 An overview of BDF stars . 8-2
8.4 An overview of BDF demos . 8-3

9. PN domain
9.1 Introduction . 9-1
9.2 Process networks . 9-1

Dataflow process networks 9-2
Scheduling dataflow process networks 9-3
Iterations in the PN domain 9-3

9.3 Threads . 9-3
9.4 An overview of PN stars. 9-4
9.5 An overview of PN demos . 9-5

Examples from papers by Gilles Kahn and David B. MacQueen 9-5
Examples from the Ph.D. thesis of Thomas M. Parks 9-7

10. SR domain
10.1 Introduction . 10-1
10.2 SR concepts . 10-1
10.3 SR compared to other domains. 10-1
10.4 The semantics of SR. 10-1
10.5 Overview of SR stars . 10-3

General stars 10-3
Itcl stars 10-4
MIDI stars 10-4

10.6 An overview of SR demos . 10-5
Use of the Yamaha CBX-K1XG as a midi keyboard controller 10-5

11. Finite State Machine Domain
11.1 Introduction . 11-1
11.2 Graphical User Interface . 11-1

Edit a new STD file 11-1
Edit the Input/Output and Internal Events Names 11-1
Draw/Edit a State 11-1
Draw/Edit a Transition 11-2
Delete a State/Transition 11-2
Move/Reshape a State/Transition 11-2
Slave Processes of States 11-2

11.3 Working within Ptolemy . 11-2
Make an Icon in Vem 11-2
Look Inside an FSM Galaxy 11-3
Compile an FSM Galaxy 11-3

11.4 An overview of FSM demonstrations 11-3

viii

U. C. Berkeley Department of EECS

11.5 Current Limitations . 11-4

12. DE Domain
12.1 Introduction . 10-1
12.2 The DE target and its schedulers 10-1

Events and chronology 10-2
Event generators 10-2
Simultaneous events 10-3
Delay-free loops 10-4
Wormholes 10-4
DE Performance Issues 10-7

12.3 An overview of stars in DE . 10-7
Source stars 10-8
Sink stars 10-10
Control stars 10-12
Conversion stars 10-14
Queues, servers, and delays 10-15
Timing stars 10-17
Logic stars 10-18
Networking stars 10-19
Miscellaneous stars 10-22
HOF Stars 10-24

12.4 An overview of DE demos . 10-24
Basic demos 10-24
Queues, servers, and delays 10-26
Networking demos 10-27
Miscellaneous demos 10-28
Wormhole demos 10-29
Tcl/Tk Demos 10-30
HOF Demos 10-31

13. CG Domain
13.1 Introduction . 11-1
13.2 Targets . 11-1

default-CG 11-2
bdf-CG 11-3
FullyConnected 11-3
SharedBus 11-6

13.3 Schedulers . 11-6
Single-Processor Schedulers 11-6
Multiple-Processor Schedulers 11-7

13.4 Interfacing Issues. 11-10
Interface Synthesis between Code Generation Targets 11-10
Interface Synthesis between Code Generation and Simulation Do-

The Almagest ix

Ptolemy Last updated: 12/1/97

mains 11-10
13.5 Dynamic constructs in CG domain 11-11

Dynamic constructs as a cluster 11-11
Quasi-static scheduling of dynamic constructs 11-12
DDF-type Stars for dynamic constructs 11-13

13.6 Stars . 11-14
13.7 Demos . 11-15

14. CGC Domain
14.1 Introduction . 12-1
14.2 CGC Targets . 12-1

Single-Processor Targets 12-2
Multi-Processor Targets 12-3
Setting Parameters Using Command-line Arguments 12-4

14.3 An Overview of CGC Stars. 12-5
Source Stars 12-5
Sink Stars 12-7
Arithmetic Stars 12-8
Nonlinear Stars 12-8
Control Stars 12-9
Logic Stars 12-11
Conversion Stars 12-11
Signal Processing Stars 12-12
Communications Stars 12-12
BDF Stars 12-13
Tcl/Tk Stars 12-13
Higher Order Function Stars 12-14
UltraSparc VIS (Visual Instruction Set) Stars 12-14
An Overview of CGC Demos 12-18
Basic Demos 12-19
Multirate Demos 12-20
Signal Processing Demos 12-20
Multi-Processor Demos 12-21
Fixed-Point Demos 12-22
Sound-Making Demos 12-22
Tcl/Tk Demos 12-24
BDF Demos 12-25
Higher Order Function Demos 12-25
SDF-CGC Wormhole demos 12-25
UltraSparc VIS Demos 12-26
EECS20 demos 12-26
Tycho Demos 12-27

15. CG56 Domain
15.1 Introduction . 13-1

x

U. C. Berkeley Department of EECS

15.2 An overview of CG56 stars . 13-1
Source stars 13-3
I/O Stars 13-3
Arithmetic stars 13-6
Nonlinear stars 13-7
Logic stars 13-10
Control stars 13-11
Conversion stars 13-12
Signal processing stars 13-13

15.3 An overview of CG56 Demos . 13-15
Basic/Test demos 13-15
Motorola Simulator Demos 13-16
S-56X Demos 13-16
CGC-S56X Demos 13-17

15.4 Targets . 13-19
Default CG56 (default-CG56) target 13-19
CG56 Simulator (sim-CG56) target 13-20
Ariel S-56X (S-56X) target 13-21
CG56 Subroutine (sub-CG56) target 13-21
Multiprocessor 56k Simulator (MultiSim-56000) target 13-21

16. VHDL Domain
16.1 Introduction . 14-1

Setting Environment Variables 14-2
16.2 VHDL Targets . 14-3

The default-VHDL Target 14-3
The struct-VHDL Target 14-4
The SimVSS-VHDL Target 14-4
The SimMT-VHDL Target 14-5
The Synth-VHDL Target 14-6
Cadence Leapfrog Ptolemy Interface 14-7

16.3 An Overview of VHDL Stars . 14-7
Source Stars 14-8
Sink Stars 14-9
Arithmetic Stars 14-9
Nonlinear Stars 14-10
Control Stars 14-10
Conversion Stars 14-11
Signal Processing Stars 14-11

16.4 An Overview of VHDL Demos . 14-12
Code Generation Demos 14-13
Simulation Demos 14-13
Synthesis Demos 14-14
Cosimulation Demos 14-14

The Almagest xi

Ptolemy Last updated: 12/1/97

17. C50 Domain
17.1 Introduction . 15-1
17.2 An overview of C50 stars . 15-1

Source stars 15-2
I/O Stars 15-3
Arithmetic stars 15-4
Nonlinear stars 15-5
Logic stars 15-7
Control stars 15-8
Conversion stars 15-9
Signal processing stars 15-10

17.3 An overview of C50 Demos . 15-12
Basic/Test demos 15-12
DSK 320C5x demos 15-12

17.4 Targets . 15-13
Default C50 (default-C50) target 15-13
C50 Subroutine (sub-C50) target 15-14
C50 DSP Starter Kit (DSKC50) target 15-14

18. Creating Documentation
18.1 Introduction . 15-1
18.2 Printing the manual . 15-1
18.3 Using FrameMaker . 15-2

Index Entries 15-2
Special fonts and displays 15-4

18.4 Using HTML to document stars. 15-5

19. Vem — The Graphical Editor for Oct
19.1 Terminology . 16-1
19.2 Using Dialog Boxes . 16-4
19.3 General Commands . 16-7
19.4 Options . 16-11
19.5 Selection . 16-15
19.6 Property and Bag editing . 16-17
19.7 Physical editing commands. 16-17
19.8 Symbolic editing commands . 16-20
19.9 Schematic editing commands . 16-20
19.10 Remote application commands. 16-22
19.11 Customizing Vem . 16-23
19.12 Bugs . 16-23

20. pxgraph — The Plotting Program
20.1 Introduction . 17-1

xii

U. C. Berkeley Department of EECS

20.2 Invoking xgraph . 17-1
20.3 Detailed description . 17-1
20.4 Options . 17-3
20.5 Bugs . 17-6

Appendix A. Installation and Troubleshooting
A.1 Introduction . A-1
A.2 Obtaining Ptolemy . A-1

Access via the Internet A-2
Access via the World Wide Web A-2
Obtaining documentation only A-2

A.3 Ptolemy mailing lists and the Ptolemy newsgroup. A-2
Ptolemy mailing lists A-2
Ptolemy Newsgroup A-3

A.4 Installation . A-3
Location of the Ptolemy installation A-4
Basic Ptolemy installation A-5
The ptolemy user A-5
Installation without creating a ptolemy user A-5
Obtaining Ptolemy A-6
Special considerations for use under OpenWindows A-7
Gnu Installation A-7
Testing the Installation A-9
Rebuilding Ptolemy From Source A-10
Freeing up Disk Space A-14
Other useful software packages A-14

A.5 Troubleshooting . A-15
Problems with tar files A-15
Problems starting pigi A-16
Common problems while running pigi A-19
Window system problems A-20
Problems with the compiler A-23
Problems compiling files A-25
Generated code in CGC fails to compile A-27
Ptolemy will not recompile A-27
Dynamic linking fails A-30
Dynamic linking and makefiles A-31
Path and/or environment variables not set in “debug” pigi A-32
DE Performance Issues A-32

A.6 Known bugs . A-33
Bugs in vem A-33
Bugs in pigi A-34
Bugs in tycho A-35
Code generation bugs A-35

The Almagest xiii

Ptolemy Last updated: 12/1/97

Bugs in pxgraph A-35
HPPA specific bugs A-36
IBM AIX specific bugs A-37
Silicon Graphics IRIX5 specific bugs A-37
Linux specific bugs A-38
Sun Solaris 2.4 specific bugs A-38
Sun OS4 specific bugs A-39
DEC Alpha specific bugs A-39
GNU compiler bugs A-39

A.7 Additional resources .A-40
A.8 Submitting a bug report .A-40

Appendix B. Introduction to the X Window System
B.1 A model user’s home directory .B-1
B.2 Running Pigi using Sun’s OpenWindows system.B-1
B.3 Starting X .B-2
B.4 Manipulating Windows .B-3

Appendix C. Filter design programs
C.1 Introduction .C-1
C.2 optfir — equiripple FIR filter designC-1
C.3 wfir — window method FIR filter design.C-4

Appendix D. Shared Libraries
D.1 Introduction .D-1

Static Libraries D-1
Shared Libraries D-1
Differences between static and shared libraries: Unresolved symbols

D-2
Differences between static and shared libraries: Pulling in stars D-2

D.2 Shared library problems. .D-3
Startup Time D-3

D.3 Reasons to use shared libraries .D-4
D.4 Architectural Dependencies .D-4

Solaris D-5
SunOS D-5
HPUX D-5

D.5 GateKeeper Error .D-6

Appendix E. Glossary
References

Index

xiv

U. C. Berkeley Department of EECS

Chapter 1. An Overview of Ptolemy

1.1 Introduction
The core of Ptolemy is a compact software infrastructure upon which specialized

design environments (calleddomains) can be built. The software infrastructure, calledthe
Ptolemy kernel, is made up of a family of C++ class definitions. Domains are defined by creat-
ing new C++ classes derived from the base classes in the kernel.

Domains can operate in either of two modes:

 • Simulation — A scheduler invokes code segments in an order appropriate to the model
of computation.

 • Code generation — Code segments in an arbitrary language are stitched together to
produce one or more programs that implement the specified function.

The use of an object-oriented software technology permits a domain to interact with
one another without knowledge of the features or semantics of the other domain. Thus, using a
variety of domains, a team of designers can model each subsystem of a complex, heteroge-
neous system in a natural and efficient manner. These different subsystems can be nested to
form a tree of subsystems. This hierarchical composition is key in specifying, simulating, and
synthesizing complex, heterogeneous systems.

By supporting heterogeneity, Ptolemy provides a research laboratory to test and
explore design methodologies that support multiple design styles and implementation technol-
ogies. A simple example is simulating the effects of transmitting compressed video and audio
over an asynchronous transfer mode (ATM) network. The network will delay, drop, and reor-
der packets based on the congestion. Compression and decompression, however, work on the
video and audio data, and the time associated with the data is not relevant to the signal pro-
cessing. The simulation in this case is heterogeneous: the network processes discrete events
(packets) with a notion of time, whereas the signal processing processes data independent of
time. Other examples of heterogeneous systems include integrated control and signal process-
ing architectures, mixed analog/digital simulation, and hardware/software codesign.

In short, Ptolemy is a flexible foundation upon which to build prototyping environ-
ments. The Ptolemy 0.7 release contains, for example, dataflow-oriented graphical program-
ming for signal processing [Lee87a,b][Buc91][Buc93a,b,c], a multi-threaded process
networks modeling environment [Par95], a synchronous/reactive programming framework
[Edw97], discrete-event modeling of communication networks [Wal92][Hal93][Cha97], and
synthesis environments for embedded software [Bha93a,b,c][Bha94a,b][Pin95]. We have also
developed prototyping environments that are not released with Ptolemy 0.7, such as design
assistants for hardware/software codesign [Kal93]. The Ptolemy system is fundamentally
extensible, as we release all of the source code. Users can create new component models, new
design process managers, and even entirely new programming environments.

1-2 An Overview of Ptolemy

U. C. Berkeley Department of EECS

1.2 History
Ptolemy is a third-generation software environment that started in January of 1990. It

is an outgrowth of two previous generations of design environments, Blosim [Mes84a,b] and
Gabriel [Lee89][Bie90], that were aimed at digital signal processing (DSP). Both environ-
ments use dataflow semantics with block-diagram syntax for the description of algorithms. To
broaden the applicability beyond DSP, the Ptolemy kernel does not build in dataflow seman-
tics, but instead provides support for a wide variety of computational models, such as data-
flow, discrete-event processing, communicating sequential processes, computational models
based on shared data structures, and finite-state machines. For these computational models,
the Ptolemy kernel provides a mixture of compile-time and run-time scheduling techniques.
Unlike Blosim or Gabriel, then, the Ptolemy kernel provides infrastructure that is extensible to
new computational models without re-implementation of the system.

Since 1990, we have had seven major releases of Ptolemy, numbered 0.1 through 0.7.
The zero indicates that Ptolemy is research software and not a commercial product. Between
annual major releases, we put out one or two incremental releases. Our goal is to test our algo-
rithms and methodologies in Ptolemy and to transfer them as quickly as possible to the public
through freely distributable releases. Because of the critical mass of users of Ptolemy world-
wide, a news group calledcomp.soft-sys.ptolemy was formed in 1994. The Ptolemy
Web sitehttp://ptolemy.eecs.berkeley.edu/ went on-line in May of 1994.

The flexibility of Ptolemy is particularly important for enabling research in design
methodology. In September of 1993, the Ptolemy project became part of the technology base
portion of the RASSP project (rapid prototyping of application-specific signal processors),
organized and sponsored by Advanced Research Projects Agency (ARPA) and the United
States Air Force. The Ptolemy part of the RASSP project was to research system-level design
methodology for embedded signal processors. Our project aimed to develop formal models
for such heterogeneous systems, a software environment for the design of such systems, and
synthesis technologies for implementation of such systems. In the latter category, we have
been concentrating on problems not already well addressed elsewhere, such as the synthesis of
embedded software and the partitioning and scheduling of heterogeneous parallel systems. In
1997 the project became part of the DARPA Composite CAD program, and has shifted its
focus towards more aggressively heterogeneous systems, including for example microelectro-
mechanical components, and distributed adaptive signal processing systems.

We have transferred many of our research ideas to computer-aided design tool vendors
such as Cadence, Hewlett Packard, and Synopsys. Cadence’s Signal Processing Workshop
(SPW) includes their version of our synchronous dataflow (SDF) domain and multirate data-
flow schedulers. Cadence’s Convergence environment (released in October, 1995) is
Cadence’s implementation of our ideas for heterogeneous simulation. Cadence has used Con-
vergence to allow SPW and Bones (a discrete-event simulator) to cooperate in a simulation,
just as the Ptolemy kernel has allowed the SDF domain and the Discrete-Event (DE) domain
since 1990. Berkeley Design Technology has a similar cosimulation environment for SPW
and Bones, but their implementation is based on the Ptolemy kernel. In June of 1997, Hewlett
Packard announced plans to release a Ptolemy-based dataflow modeling environment that is
integrated with their highly regarded analog, RF, and microwave circuit simulation software.

The Almagest 1-3

Ptolemy Last updated: 6/18/97

1.3 Ptolemy Kernel
The overall organization of the latest release of the Ptolemy system is shown in figure

1-1. A typical use of Ptolemy involves starting two UnixTM processes, as shown in figure 1-
1(a), by runningpigi (Ptolemy interactive graphical interface). The first process contains the
vem user interface and theoct design database [Har86], and the other process contains the
Ptolemy kernel. An alternative is to run Ptolemy without the graphical user interface, as a sin-
gle process, as shown in figure 1-1(b). In this case, the textual interpreter is based on the Tool
Command Language, Tcl [Ous90][Ous94], and is called callptcl for Ptolemy Tcl. It is pos-
sible to design other user interfaces for the system. We are releasing a preliminary version of a
third interface called Tycho. In its current form, Tycho is best suited for language-sensitive
editing and consoles for tools such as Matlab and Mathematica.

The executable programspigiRpc or ptcl can be configured to include any subset of
the available domains. The most recent picture of the domains that Berkeley has developed is
shown in figure 1-2. Many different styles of design are represented by these domains. More
are constantly being developed both at U.C. Berkeley and elsewhere, to experiment with or
support alternative styles.

The Ptolemy kernel provides the most extensive support for domains where a design is
represented as a network of blocks, as shown in figure 1-3. A base class in the kernel, called
Block , represents an object in this network. Base classes are also provided for interconnect-
ing blocks (PortHole) as well as for carrying data between blocks (Geodesic) and manag-
ing garbage collection efficiently (Plasma). Not all domains use these classes, but most
current ones do, and hence can very effectively use this infrastructure.

Figure 1-3 shows some of the representative methods defined in these base classes. For
example, note theinitialize , run , andwrapup methods in the classBlock . These pro-
vide an interface to whatever functionality the block provides, representing for example func-
tions performed before, during, and after (respectively) the execution of the system.

Blocks can be hierarchical, as shown in figure 1-4. The lowest level of the hierarchy, as
far as Ptolemy is concerned, is derived from a kernel base class calledStar . A hierarchical
block is aGalaxy , and a top-level system representation is aUniverse .

PTCL (with Tcl)

FIGURE 1-1: The overall organization of Ptolemy version 0.7, showing two possible execution styles:
(a) graphical interface and (b) textual interface.

KERNEL

PIGIRPC (with Tk)

OCT RPC
DOMAINS

GRAPHICAL USER
INTERFACE

PTCL (with Tcl)

KERNEL

DOMAINS

(a) (b)

VEM

1-4 An Overview of Ptolemy

U. C. Berkeley Department of EECS

1.4 Models of Computation
The Ptolemy kernel does not define any model of computation. In particular, although

the Berkeley team has done quite a bit of work with dataflow domains in Ptolemy, every effort
has been made to keep dataflow semantics out of the kernel. Thus, for example, a network of
blocks could just as easily represent a finite-state machine, where each block represents a
state. It is up to a particular domain to define the semantics of a computational model.

Suppose we wish to define a new domain, calledXXX. We would define a set of C++

FIGURE 1-2: Domains available with Ptolemy 0.7

SDF DDFBDF

DE

SR

CGC

CG56

VHDL

CG

PTOLEMY
KERNEL

MDSDF

PN

VHDLB

synchronous dataflow

dynamic dataflow

multidimensional SDF

Boolean dataflow

discrete-event

synchronous reactive
finite state machine

process networks

C
od

e
ge

ne
ra

tio
n

do
m

ai
ns

FSM

C50

FIGURE 1-3: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.

PortHole PortHole

Block
• initialize()
• run()
• wrapup()

PortHole
• initialize()
• receiveData()
• sendData()
• type()

PortHole PortHole

Geodesic

Plasma

Geodesic
• initialize()
• setSourcePort()
• setDestPort()

Particle
• type()
• print()
• initialize()

Particle

Block Block

The Almagest 1-5

Ptolemy Last updated: 6/18/97

classes derived from kernel base classes to support this domain. These classes might be called
XXXStar , XXXUniverse , etc., as shown in figure 1-4.

The semantics of a domain are defined by classes that manage the execution of a spec-
ification. These classes could invoke a simulator, or could generate code, or could invoke a
sophisticated compiler. The base class mechanisms to support this are shown in figure 1-5. A
Target is the top-level manager of the execution. Similar to aBlock , it has methods called
setup , run , andwrapup . To define a simulation domain calledXXX, for example, one would
define at least one object derived from Target that runs the simulation. As suggested by figure
1-5, a Target can be quite sophisticated. It can, for example, partition a simulation for parallel
execution, handing off the partitions to other Targets compatible with the domain.

A Target will typically perform its function via a Scheduler. The Scheduler defines the
operational semantics of a domain by controlling the order of execution of functional mod-
ules. Sometimes, schedulers can be specialized. For instance, a subset of the dataflow model
of computation called synchronous dataflow (SDF) allows all scheduling to be done at com-

FIGURE 1-4: A complete Ptolemy application (a Universe) consists of a network of Blocks.
Blocks may be Stars (atomic) or Galaxies (composite). The “XXX” prefix symbol-
izes a particular domain (or model of computation).

Examples of Derived Classes
• class Star:: Block
• class XXXStar:: Star
• class Galaxy:: Block
• class Universe:: Galaxy, Runnable
• class XXXUniverse:: Universe

XXXStar Galaxy XXXStar XXXStar

XXXStar

Galaxy XXXStar

XXXStar

XXXUniverse

Target:: Block
• initialize()
• setup()
• run()
• wrapup()
• galaxy
• scheduler
• children

Scheduler

Target

Target Target

Scheduler Scheduler

FIGURE 1-5: A Target, derived from Block, manages a simulation or synthesis execution. It ca
invoke it’s own Scheduler on a Galaxy, which can in turn invoke Schedulers
sub-Targets.

1-6 An Overview of Ptolemy

U. C. Berkeley Department of EECS

pile time. The Ptolemy kernel supports such specialization by allowing nested domains, as
shown in figure 1-6. For example, the SDF domain (see figure 1-2) is a subdomain of the BDF
domain. Thus, a scheduler in the BDF domain can handle all stars in the SDF domain, but a
scheduler in the SDF domain may not be able to handle stars in the BDF domain. A domain
may have more than one scheduler and more than one target.

1.5 Dataflow Models of Computation
One of the most mature domains included in the current system is the synchronous

dataflow (SDF) domain [Lee87a,b], which is similar to that used in Gabriel. This domain is
used for signal processing and communications algorithm development, and has particularly
good support for multirate algorithms [Buc91]. It has been used at Berkeley for instruction, at
both the graduate and undergraduate level [Lee92]. A dynamic dataflow (DDF) domain
extends SDF by allowing data-dependent flow of control, as in Blosim. Boolean dataflow
(BDF) [Buc93a,b,c] has a compile-time scheduler for dynamic dataflow graphs [Lee91a].

Several code-generation domains use dataflow semantics [Pin92][Mur93]. These
domains are capable of synthesis of C code, assembly code for certain programmable DSPs
[Won92], VHDL, and Silage [Kal93]. A significant part of the research that led to the develop-
ment of these domains has been concerned with synthesizing code that is efficient enough for
embedded systems [Bha93a,b,c][Bha94a,b][Buc93b,c]. A large amount of effort has also been
put into the automatic parallelization of the code [Ha91][Ha92][Sih93a,b], and on parallel
architectures that take advantage of it [Lee91b][Sri93].

A generalization of dataflow, called Kahn process networks [Kah74], has been realized
by Tom Parks in the PN domain [Par95].

1.6 Discrete-Event Models of Computation
A number of simulation domains with discrete-event semantics has been developed for

Ptolemy, but only the DE domain is released with Ptolemy 0.7. The DE domain is a generic
discrete-event modeling environment, useful for simulating queueing systems, communica-
tion networks, and hardware systems. The discrete-event domains no longer released with

FIGURE 1-6: A Domain (XXX) consists of a set of Stars, Targets and Schedulers that
support a particular model of computation. A sub-Domain (YYY) may sup-
port a more specialized model of computation.

Scheduler

YYYDomain

Scheduler

Scheduler

YYYStar
XXXStar

YYYStar

Target

Target

Target

XXXDomain

XXXStar
YYYStar

The Almagest 1-7

Ptolemy Last updated: 6/18/97

Ptolemy 0.7 are Thor [Tho88] for modeling circuits at the register-transfer level [Kal93], com-
municating processes (CP) for modeling large-scale systems at a high level of abstraction, and
message queue (MQ) for modeling a centralized network controller in a large-scale cell-relay
network simulations [Lao94].

1.7 Synchronous Reactive Modeling
The software analogy of synchronous digital circuits has been realized by Stephen

Edwards in the SR domain [Edw97]. This model of computation is better suited than dataflow
to control-intensive applications, and is more efficient than DE.

1.8 Finite State Machines
Another approach to designing control-intensive applications is to mix the new FSM

domain with dataflow, DE, or (in future releases) SR. The FSM domain is still very new and
has many limitations, but we believe that for the long term, it provides one of the most excit-
ing developments in the Ptolemy software.

1.9 Mixing Models of Computation
Large systems often mix hardware, software, and communication subsystems. The

hardware subsystems may include pre-fabricated components, such as custom logic, proces-
sors with varying degrees of programmability, systolic arrays, and multiprocessor subsystems.
Tools supporting each of these components are different, possibly using dataflow principles,
regular iterative algorithms, communicating sequential processes, control/dataflow hybrids,
functional languages, finite-state machines, and discrete-event system theory and simulation.

In Ptolemy, domains can be mixed and even nested. Thus, a system-level description
can contain multiple subsystems that are designed or specified using different styles. The ker-
nel support for this is shown in figure 1-7. An object calledXXXWormhole in theXXX domain
is derived fromXXXStar , so that from the outside it looks just like a primitive in theXXX

FIGURE 1-7: The universal EventHorizon provides an interface between the external and
internal domains.

XXXUniverse

XXXWormhole

XXXDomain

YYYDomain

YYYtoUniversalXXXfromUniversal

YYYfromUniversalXXXtoUniversal

E
ve

nt
H

or
iz

on

Scheduler

Scheduler

Particles

Particles

1-8 An Overview of Ptolemy

U. C. Berkeley Department of EECS

domain. Thus, the schedulers and targets of theXXX domain can handle it just as they would
any other primitive block. However, inside, hidden from theXXX domain, is another complete
subsystem defined in another domain, sayYYY. That domain gets invoked through thesetup ,
run , andwrapup methods ofXXXWormhole. Thus, in a broad sense, the wormhole is poly-
morphic. The wormhole mechanism allows domains to be nested many levels deep, e.g. one
could have a DE domain within an SDF domain within a BDF domain. The FSM domain is
designed to always be used in combination with other domains.

1.10 Code Generation
Domains in figure 1-2 are divided into two classes: simulation and code generation. In

simulation domains, a scheduler invokes the run methods of the blocks in a system specifica-
tion, and those methods perform a function associated with the design. In code generation
domains, the scheduler also invokes the run methods of the blocks, but these run methods syn-
thesize code in some language. That is, they generate code to perform some function, rather
than performing the function directly. The Target then is responsible for generating the con-
necting code between blocks (if any is needed). This mechanism is very simple, and language
independent. We have released code generators for C, Motorola 56000 assembly, and VHDL
languages, as show in figure 1-2.

An alternative mechanism that is supported but less exploited in current Ptolemy
domains is for the target to analyze the network of blocks in a system specification and gener-
ate a single monolithic implementation. This is what we call compilation. In this case, the
primitive blocks (Star s) must have functionality that is recognized by the target. In the previ-
ous code generation mechanisms, the functionality of the blocks is arbitrary and can be
defined by the end user.

1.11 Conclusion
In summary, the key idea in the Ptolemy project is to mix models of computation,

implementation languages, and design styles, rather than trying to develop one, all-encom-
passing technique. The rationale is that specialized design techniques are (1) more useful to
the system-level designer, and (2) more amenable to high-quality high-level synthesis of hard-
ware and software. The Ptolemy kernel demonstrates one way to mix tools that have funda-
mentally different semantics, and provides a laboratory for experimenting with such mixtures.

1.12 Current Directions
Since early 1995, a significant part of the Ptolemy project personnel have been pursu-

ing models of computations for control-intensive computation, particularly in combination
with compute-intensive subsystems, and mapping computation onto distributed architectures.
The two primary models for control-intensive computation are finite state machines and a syn-
chronous/reactive systems.

In late 1996, we shifted the focus of the project towards the design of distributed, net-
work-aware, adaptive applications. We expect that future releases of our software will be net-
work-savvy, including transparent HTTP support and mutable and migratable computations.
Fundamental work in the semantics of models of computation will of course continue to fuel
experiments with new domains and code generation techniques.

The Almagest 1-9

Ptolemy Last updated: 6/18/97

1.13 Organization of the documentation
The Ptolemy documentation is divided into three volumes. This volume, the first, is a

user’s manual. It is sufficient for users who do not plan to extend the system by adding code. It
includes brief documentation of the most commonly used domains, and brief summaries of
stars, galaxies, and demonstration programs that are distributed with the system.

The second volume is a programmer’s manual. It includes chapters on writing new
stars, writing targets, defining customized user interfaces by writing new Tcl/Tk code, and
defining new domains. The third volume is the kernel manual. It details every C++ class
defined in the Ptolemy kernel. It also gives full documentation for the classes supporting code
generation. These classes provide the utilities used to build application-specific environments.

1.14 Acknowledgments
Ptolemy is a team effort in every sense. Here we acknowledge the key contributions,

and apologize for inadvertent omissions.

1.14.1 Personnel

The overall coordinators are Prof. Edward A. Lee and Prof. David G. Messerschmitt of
the EECS department at U. C. Berkeley, although there has also been involvement by the
groups of Profs. Rabaey, Brodersen, Linnartz, Kahn, Sangiovanni, and Gray. Professional
staff support has included Brian Evans, Alan Kamas, Christopher Hylands, John Reekie, Mary
Stewart, Kirk Thege, and Kevin Zimmerman. Software organization and project management
has been handled by Joseph Buck, Brian Evans, Alan Kamas, Christopher Hylands, Phil Laps-
ley, José Pino, John Reekie, and Kennard White.

Joseph Buck has been responsible for key management of the development of the ker-
nel, and hence has impacted every aspect of Ptolemy. He also coordinated many of the contri-
butions, and wrote the BDF domain, the interpreter (ptcl), and the originalptlang
preprocessor. He also designed the memory allocation system used by assembly language
code generation domains. Special thanks to Synopsys for allowing Joe to work on the 0.5
release after joining the company. Special thanks to Joe for his work on the 0.6 release.

Other key contributors to the kernel include Soonhoi Ha and Ichiro Kuroda. Soonhoi
Ha also wrote the DDF, DE, and CGC domains, including many of the basic stars and the
basic domain interface, and also made extensive contributions to the CG domain, the kernel,
and parallel schedulers of all types. Anindo Banerjea and Ed Knightly wrote the DE Sched-
uler that is based on the calendar queue mechanism developed by Randy Brown. This was
based on code written by Hui Zhang. Other significant contributions to the kernel have been
made by Wan-Teh Chang, Mike Chen, Paul Haskell, Asawaree Kalavade, Alireza Khazeni,
Tom Parks, José Pino, and Kennard White. Mike Chen wrote the matrix classes and the matrix
particles, based in part on a prototype supplied by Chris Yu (from the Naval Research Labora-
tories). Mike Chen also developed the MDSDF domain. Joe Buck, Asawaree Kalavade, Alan
Kamas, and Alireza Khazeni wrote the fixed-point particle class. Paul Haskell created the
image particle classes and developed many of the image and video signal processing demos.
Philip Bitar had impact on the design of the DE domain and on the visual style used in the
graphical interface. Brian Evans developed the interfaces to MATLAB and Mathematica, with
help from Steve Eddins at The MathWorks and Steve Gu, respectively.

1-10 An Overview of Ptolemy

U. C. Berkeley Department of EECS

All code generation domains are based on a secondary kernel implemented as the CG
domain. Its principal creators are Joe Buck, Soonhoi Ha, Tom Parks, and José Pino. Kennard
White made major extensions to the ptlang preprocessor to support code generation domains.

José Pino has been primarily responsible for assembly code generation domains, and
Tom Parks for the C code generation domain, although extensive contributions have been
made by Joe Buck, Soonhoi Ha, Christopher Hylands, Praveen Murthy, S. Sriram, and Ken-
nard White. Chih-Tsung Huang, with help from José Pino, ported many of the assembly code
generation stars from Gabriel. Many people had contributed to the Gabriel stars, including Jeff
Bier, Martha Fratt, Wai Ho, Steve How, Phil Lapsley, Maureen O’Reilly, and Anthony Wong.
Brian Evans and Luis Gutierrez have enhanced the Motorola 56000 stars, demonstrations, and
targets, and S. Sriram has done the same for the Motorola 96000 stars. Patrick Warner wrote
the C code generation target for the Network Of Workstations distributed operating system by
Prof. Patterson’s group at U.C. Berkeley.

Shuvra Bhattacharyya and Joe Buck wrote the loop scheduling mechanism, and Bhat-
tacharyya contributed the Gantt chart display tool. The parallel schedulers were written by
Gilbert Sih and Soonhoi Ha, with significant contributions from Joe Buck, Tom Parks, José
Pino, and Kennard White. Praveen Murthy wrote the Sproc domain, used to generate parallel
assembly code for the Sproc multiprocessor DSP, and Kennard White wrote the CM-5 target,
used to generate parallel code for the connection machine from Thinking Machines, Inc.

Seungjun Lee and Tom Parks wrote the CP domain. Mike Williamson wrote the
VHDL domains. Ichiro Kuroda from NEC contributed to the state handling mechanism.

The graphical user interface was written by Edwin Goei, based on thevem program,
written by David Harrison and Rick Spickelmier. It has been extensively modified by Alan
Kamas who has been responsible for the incorporation of Tcl/Tk into Ptolemy. The GUI has
been enhanced by Wan-Teh Chang, Wei-Jen Huang, Mario Silva and Kennard White. Andrea
Cassotto and Bill Bush have provided modifications and improvements tovem.

Christopher Hylands, Edward Lee, and John Reekie are the primary architects of the
Tycho interface [Hyl97]. Tycho, named after the astronomer Tycho Brahe, is written in [Incr
Tcl], an object-oriented extension of Tcl by Michael J. McLennan at AT&T Bell Labs. Signif-
icant development of Tycho has been contributed by Kevin Chang, Joel King, and Cliff Cordi-
ero. Wan-Teh Chang and Bilung Lee have developed graphical editors for finite state
machines. Code by Joseph Buck, Alan Kamas, and Douglas Niehaus originally written for
pigi have been reused in the Tycho kernel. Some contributions to Tycho were made by Brian
Evans.

Several people have had a major impact on the development of Ptolemy through their
major efforts on its predecessor, Gabriel. Phil Lapsley has had incalculable impact on the
directory structure, project management, documentation, and code generation efforts in
Ptolemy. The first version of the graphical interface was written by Holly Heine.

Many people have had an impact on the current release by contributing stars and/or
demo programs. These include, in addition to all the people mentioned above, Egbert
Ammicht (from AT&T Bell Labs), Rachel Bowers, Stefan DeTroch (from IMEC), Rolando
Diesta, Erick Hamilton, Wei-Yi Li, John Loh, and Gregory Walter. Others had an indirect
impact by contributing stars or demo programs to the predecessor program, Gabriel. These
include Jeff Bier, Martha Fratt, Eric Guntvedt, Mike Grimwood, Wai-Hung Ho, Steve How,

The Almagest 1-11

Ptolemy Last updated: 6/18/97

Jonathan Lee, Brian Mountford, Maureen O’Reilly, Andria Wong, and Anthony Wong.

Ptolemy is very much an ongoing project, with current efforts expected to be included
in future releases. Participants will be acknowledged when their work is included in a release.

1.14.2 Support

The Ptolemy project is currently supported by the Defense Advanced Research
Projects Agency (DARPA), the State of California MICRO program, and the following com-
panies: The Alta Group of Cadence Design Systems, Dolby Laboratories, Hewlett Packard,
Hitachi, Hughes Space and Communications, LG Electronics, Lockheed Martin ATL, NEC,
Philips, Rockwell, and the Semiconductor Research Corporation.

Funding at earlier stages of the project was also provided by the National Science
Foundation (NSF), the Office of Naval Technology (ONT), via the Naval Research Labs
(NRL), AT&T, Bell Northern Research (BNR), Hughes Network Systems, Hughes Research
Laboratories, Mentor Graphics, Mitsubishi, Motorola, Sony, and Star Semiconductor.

In-kind contributions have been made by Ariel, Berkeley Camera Engineering, Phil-
ips, Spectrum Signal Processing, Synopsys, Signal Technology Inc. (STI), Texas Instruments,
Wolfram Research, Inc., and Xilinx.

Other sponsors have contributed indirectly by supporting Gabriel, the predecessor.

1.14.3 Prior software

At every opportunity, we have built upon prior software, much of which we have been
permitted to redistribute together with our Ptolemy distribution. We wish to gratefully
acknowledge the following contributions:

 • Theoct tools, written by the CAD group at U.C. Berkeley, under the direction of
Prof. Richard Newton, provide both the design databaseoct [Har86] and the graphi-
cal editorvem [Har86] foroct . The flexibility ofoct , which makes minimal assump-
tions about the data stored in the database, and the extensibility ofvem, through its
rpc interface, have allowed us to use this software in ways unexpected by the authors.

 • Tcl/Tk, architected by Prof. John Ousterhout of U.C. Berkeley, has improved the user
interface in Ptolemy. The textual command-line Tcl interface [Ous90][Ous94] is the
basis for the Ptolemy interpreterptcl , and the graphics toolkit Tk [Ous94] is the basis
for interactive graphics. Tcl serves a scripting language to control Ptolemy runs, and as
an interpreter to compute parameters. Since Tcl is a scripting language, casual users
have been able to extend Ptolemy’s interface. Tcl is robust and lightweight.

 • [Incr Tcl], an object-oriented extension of Tcl written by Michael J. McLennan at
AT&T Bell Labs is used in Tycho.

 • The Gnu tools, from the Free Software Foundation, have been instrumental in
Ptolemy’s development. The ability to distribute the compiler used in the development
of Ptolemy has been critical to the success of our dynamic linking mechanism. It
enables us to distribute a compiled executable together with the compiler that gener-
ated it. Thus, users lacking the skill or patience to recompile the Ptolemy system can
nonetheless take advantage of dynamic linking of new functional blocks. They can use
the same version of the compiler used to generate the executable, even if that version

1-12 An Overview of Ptolemy

U. C. Berkeley Department of EECS

of the compiler is not the one installed by default on their own system.

 • Xgraph, written by David Harrison, of the CAD group at U. C. Berkeley, has provided
the principal data display and presentation mechanism. Joe Buck modified this pro-
gram only slightly, to accept binary input in addition to ASCII. Its flexibility and well
conceived design have permitted us to use it for almost all data display. Only recently
have we augmented it with Tk-based animated displays.

Chapter 2. The Interactive Graphical
Interface

Authors: Joseph T. Buck
Edwin E. Goei
Wei-Jen Huang
Alan Kamas
Edward A. Lee

Other Contributors: Andrea Cassotto
Wan-Teh Chang
Michael J. Chen
Brian L. Evans
David Harrison
Holly Heine
Christopher Hylands
Tom Lane
Phil Lapsley
David G. Messerschmitt
Rick Spickelmier
Matthew Tavis

2.1 Introduction
The Ptolemy interactive graphical interface (pigi) is a design editor for Ptolemy

applications. It is based on tools from the Berkeley CAD framework. Inpigi , Ptolemy appli-
cations are constructed graphically, by connecting icons. Hierarchy is used to manage com-
plexity, to abstract subsystem designs, and to mix domains (models of computation).

2.1.1 Setup

Ptolemy uses several environment variables (see page 2-51). In order for Ptolemy to
run properly, the following two environment variables must be set in your.cshrc file:

 • PTOLEMY is the full path name of the Ptolemy installation, and

 • PTARCH is the type of computer on which you are running Ptolemy.

Example settings for a.cshrc file follow, along with how to update your path vari-
able:

setenv PTOLEMY ~ptolemy
setenv PTARCH ‘$PTOLEMY/bin/ptarch‘
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

When Ptolemy was installed, a fictitious user named ‘ptolemy ’ may have been cre-
ated whose home directory is the Ptolemy installation. If Ptolemy has been installed without

2-2 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

creating a ‘ptolemy ’ user, then use the appropriate path name of the Ptolemy installation for
the value of the PTOLEMY environment variable, such as/usr/eesww/share/
ptolemy0.7 , for example. Once you make the appropriate changes to your.cshrc file, you
will need to reevaluate the file:

source ~/.cshrc

In the documentation, we will generally refer to the home directory of the Ptolemy
installation as$PTOLEMY, but sometimes we forget and use~ptolemy .

Pigi requires the MIT X Window System. If you are not familiar with this system, see
the appendix, “Introduction to the X Window System” on page B-1. Some X window manag-
ers are configured to require that you click in a window before the “focus” moves to that win-
dow. This means that the window will not respond to input just because you have placed the
mouse cursor inside it. You must first click a mouse button in the window. While it is possible
to usepigi with this configuration, it is extremely unpleasant. In fact, it will be rather
unpleasant to useany modern program that makes use of the window system. You will want to
change the mode of the window manager so that the focus follows the mouse. The precise
mechanism for doing this depends on the window manager. For the Motif window manager,
mwm, the appropriate line in the.Xdefaults file is:

Mwm*keyboardFocusPolicy: pointer

For the open-look window manager,olwm, the line is:

OpenWindows.SetInput: followmouse

Alternatively, you can invokeolwm with the option-follow . Typically, the window manager
is started in a file called.xinitrc in your home directory.

If you are running Sun’s OpenWindows, you may find that the Athena widgets have
not been installed;pigi will not run without them. See the installation instructions in the
appendix. For more information on usingpigi with OpenWindows, see “Introduction to the
X Window System” on page B-1.

2.2 Running the Ptolemy demos
A good way to start is by running a few of the Ptolemy demos. Any user can do this,

although average users are not permitted to change the demos. If you feel compelled to change
a demo, you can copy it to your own directory by usingcp -r (see the section below, “Copy-
ing objects” on page 2-44). You can modify the copied version.

2.2.1 Starting Ptolemy

In any terminal window, change to the master demo directory:

cd $PTOLEMY/demo

Start the Ptolemy graphical interface:

pigi &

You should get three windows: avem console window at the upper left of your screen, a pal-
ette with icons of demonstrations below that, and a message window identifying the version of
Ptolemy, as shown in figure 2-1. The borders on your windows may look different, since they
are determined by the window manager that you use. If you have problems starting pigi, see

The Almagest 2-3

Ptolemy Last updated: 11/6/97

“Problems starting pigi” on page A-16. A complete list of options that you can specify on the
command line is given in the section “Command-line options” on page 2-53. For example, if
you are only interested in running the instructional/demonstration version, which only con-
tains the Synchronous Dataflow and Discrete-Event Domains, then evaluate

FIGURE 2-1: If you start pigi in the directory $PTOLEMY, once the system is started you will see
these three windows. The upper left window is the vem console window. Below that is
a palette of icons representing demo directories. To the right is the Ptolemy welcome
window.

2-4 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

pigi -ptiny &

Once you get all three windows, you have started two processes: the graphical editor,
vem, and a process namedpigiRpc that contains thepigi code and the Ptolemy kernel. The
vem window prints the textual commands corresponding to your selections with the mouse.
Watching thevem window is useful in diagnosing mistakes, such as drawing a box when you
meant to draw a line. Thevem console window also displays debugging messages, as well as
the error and warning messages that appear in popup windows.

Clicking any mouse button in the welcome window (the one with the picture of Mr.
Ptolemy) will dismiss it. Clicking the left mouse button on the “more information” button will
display copyright information. The remaining windows can be moved and resized using what-
ever mechanism your window manager supports. The windows can be closed by typing a con-
trol-d with the mouse cursor inside the window. Closing thevem console window will
terminate the entire program.

For reference, a summary of the pertinent terms is given in table 2-1 on page 2-4.
These will be discussed in more detail as we go.

The palette window contains icons. Five different types of icons are used inpigi , as
shown in figure 2-2. The ones in the palette window are of the first type; they represent other
palettes. If you have a color monitor, the outline on these icons is purple.

2.2.2 Exploring the menus

Place the mouse cursor on the icon labeled “SDF”. Get thepigi command menu by
holding the shift key and clicking the middle mouse button. This style of menu is called a
“walking menu.” Make sure you hold the shift button. The resulting command menu is shown

Category Term Definition

Programs Ptolemy The entire design environment

pigi The Ptolemy graphical interface, including bothpigiRpc andvem

vem A graphical editor for oct, upon whichpigi is built

pigiRpc A process (with remote procedure calls) attached tovem by pigi

Design
database

oct The design manager and database

facet A design object (a schematic or a palette)

schematic A block diagram

palette A facet that contains a library of icons rather than a schematic

Ptolemy
objects

Star Lowest level block in Ptolemy, with functionality defined in C++

Galaxy A block made up of connected sub-blocks, with inputs and/or outputs

Universe An outermost block representing a complete system that the user can run

Domain An object defining the model of computation, which defines the behavior of a net-
work of blocks. In code generation, a domain also corresponds to single target
language.

Wormhole A galaxy that does not have the same domain on the outside as the inside.

Tcl/Tk Tcl An interpreted language built in topigi

Tk An X window toolkit attached to Tcl

TABLE 2-1: Summary of terms defining software components.

The Almagest 2-5

Ptolemy Last updated: 11/6/97

below:

The names displayed in the left main menu are only headers. To see the individual commands
under each header, you must move the mouse to the arrows at the right of the menu. The sub-
menu that appears on the right contains commands. Clicking any mouse button with a com-
mand highlighted as shown on the right will execute that command. To remove the menu
without executing any command, simply click a mouse button anywhere outside the menu.

2.2.3 Traversing the hierarchy

Go to the “Window” sub-menu, and execute thelook-inside command, as shown above
on the right. A new palette will open, containing icons representing further palettes. Look
inside the first of these, labeled “Basic”. The icons inside contain application programs, called
“universes” in Ptolemy. The two palettes you have just opened are shown in figure 2-3. They
are both explained in further detail in “An overview of SDF demonstrations” on page 5-51.

Note in the Ptolemy menu that thelook-inside directive has an “i” next to it. This is a
“single key accelerator.” Without using the walking menu, you can look inside any icon by
simply placing the mouse cursor and hitting the “i” key on the keyboard. The single-key accel-
erators are extremely useful. In time, you will find that you use the menu only for commands
that have no accelerator, or for which you cannot remember the accelerator. The Ptolemy
commands obtained through the above menu are summarized in table 2-2. The few commands
you will need immediately are shaded in table 2-2.

Look inside the first demo on the third row, labeled “sinMod ”. You will see the sche-

FIGURE 2-2: Five different types of icons are used in pigi. From left to right, the icons represent pal-
ettes (windows containing more icons), universes (windows containing Ptolemy appli-
cations), galaxies (functional blocks defined using other functional blocks), and stars
(elementary or atomic functional blocks). The last icon on the right is the cursor, mark-
ing the position into which the next icon will be placed. On a color monitor, the borders
of the icons have the indicated colors. The designs inside the icons and their shape
are the default. They may be customized.

black border green border blue borderpurple border

��
��

galaxy

the next
icon goes

here
�
���

��
��
��
�
�
�
�

��
��
��
��

palette

�
�
�

��
��

universe star

pigiRpcShell@host

Edit ⇒
Window ⇒
Exec ⇒
Extend ⇒
Filter ⇒
Utilities ⇒
Other ⇒

pigiRpcShell@host

Edit ⇒
Window ⇒
Exec ⇒
Extend ⇒
Filter ⇒
Utilities ⇒
Other ⇒

O open-palette
F open-facet
I edit-icon
i look-inside
y Tycho

2-6 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

matic shown in figure 2-4. Try looking inside any of the icons in this schematic. If you look
inside the icon labeled “modulator”, you will see the lower schematic in figure 2-4. If you
look inside the icon labeled “XMgraph”, this time, instead of graphics, you will see text that
defines the functionality of the block. The syntax of this text is explained in the programmer’s
manual, volume 3 of the Almagest. You can change the editor used to display the text by set-
ting an environment variablePT_DISPLAY (see “Environment variables” on page 2-51).

2.2.4 Running a Ptolemy application

To run thesinMod system using the walking menu, place the mouse cursor anywhere
in the window containing thesinMod schematic, i.e., your cursor should be in the window

dsp.pal

comm.pal

basic.pal

multirate.pal

image.pal

sound.pal

Fixed-
point

Demosfix.pal

TclTcl
init.pal

matrix.pal

MATLAB
matlab.pal

sdf.pal

script.pal

init.pal

Basic

Multirate

Communications

Signal Processing

Sound

Image Processing

Tcl/Tk Graphics Demos

MATLAB Demos

Higher-Order Functions

Matrix Demos

Scripted Runs

User Contributed Demos

Fixed-Point Demos

SDF Demos
Synchronous dataflow (SDF) is used
to model signal processing systems

with deterministic control flow.

FIGURE 2-3: The “SDF” and “basic” palettes. The SDF palette contains icons representing other
palettes containing a variety of demos in the synchronous dataflow domain. The
“basic” palette is one such palette of demos. The icons here represent universes.
These palettes are explained in more detail in “An overview of SDF demonstrations”
on page 5-51

freq
PhaseOffset

complex
Exponentialbutterfly

sinMod

integratorgaussian

quantize tbusmuxDeMux scramble

comparison delayTestchaoticNoise

Modulo

lmsFreqDetect

Basic demos illustrating
simple uses of Ptolemy and

the use of certain stars

The Almagest 2-7

Ptolemy Last updated: 11/6/97

TABLE 2-2: A summary of the Ptolemy commands in the pigi menu, which is obtained by holding
the shift button and clicking the middle mouse button. The single-key accelerators for
commands that have them are shown. The commands that are most useful for
exploring the Ptolemy demos are shaded.

Menu Heading Command Key Description

pigi Edit edit-params e change parameters of a star, galaxy, or universe

edit-domain d change the domain of a universe or galaxy

edit-target T specify a target to manage the execution

edit-comment ; add comment to a universe or descriptor to a galaxy

edit-pragmas a specify attributes of blocks

edit-seed # set the random number seed

find-name highlight a block with a specified name

clear-marks clear all icon highlighting

Window open-palette O open one of the standard palettes of blocks

open-facet F open an arbitrary palette, universe, or galaxy

edit-icon I modify the physical appearance of an icon

look-inside i look inside an icon for its definition

Tycho y invoke the Tycho language-sensitive editor

Exec run R run a universe

run-all-demos testing command - run everything in a palette

compile-facet testing command - translate oct to Ptolemy

display-schedule show the most recent static schedule, if any

Extend make-schem-icon @ make an icon to represent a facet

make-star * dynamically link a new star and make an icon

load-star L dynamically link a star that already has an icon

load-star-perm K link a star so that derived stars can link dynamically

Filter equiripple FIR < invoke a provisional filter design utility

window FIR > invoke another provisional filter design utility

Utilities plot signal ~ plot a signal read from a file

plot Cx signal - plot a complex signal read from a file

DFT ^ plot the DFT of a signal read from a file

DFT of Cx signal _ plot the DFT of a complex signal read from a file

Other facet number H testing command - display the Tcl facet handle

man M open a manual page corresponding to a star

profile , display a brief summary of the functionality of a star

print-facet cntr-P print a facet or generate a PostScript file

show-name n display the name of an icon and its master

options change various esoteric options

version display the version of Ptolemy that is running

exit-pigi quit Ptolemy without exiting vem

2-8 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

that contains the following schematic:

Again holding the shift key, click the middle mouse button. Go to the “Exec” sub-menu, and
select “run” by clicking any button. Notice that typing an “R” would have had the same effect.

singen

��
��

���
���

modulator XMgraph

Modulation of a sine wave
by another sine wave

FIGURE 2-4: One of the synchronous dataflow demos. This Ptolemy application modulates a sine
wave with another sine wave. The upper diagram is the top level. The lower is the con-
tents of the “modulator” subsystem.

Mpy

����
����
����

singen

��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

sinMod universe

modulator galaxy

singen

��
��

���
���

modulator XMgraph

Modulation of a sine wave
by another sine wave

The Almagest 2-9

Ptolemy Last updated: 11/6/97

The following control panel pops up:

If you click the left mouse button on the “GO” button (or hit “return”), Ptolemy will run this
application through 400 iterations. When the run is finished, a graph appears, as shown in fig-
ure 2-5. Try resizing and moving this display. Experiment in thispxgraph window by draw-
ing boxes; to draw a box, just drag any mouse button. This causes a new window to open with
a display of only the area that your box enclosed. Although the new window covers the old, if
you move it out of the way, you can see both at once. Any of the now numerous open windows
can be closed with a control-d.

2.2.5 Examining schematics more closely

Place the mouse cursor in any schematic or palette window, and click the middle
mouse button without holding the shift key. Thevem command menu, which is different from
the pigi command menu, appears. This menu is the same style of “walking menu” as the

FIGURE 2-5: The graph generated by the “sinMod” application in figure 2-4. The graph is displayed
by a program called “pxgraph,” based on xgraph by David Harrison.

2-10 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

pigi menu, and is shown below:

Thevem menu is used for manipulating the graphical description of an application. The com-
mands obtained through this menu are summarized in table 2-3, and explained in full detail in
Chapter 19.

A few additional window manipulations will prove useful almost immediately. In any
of the vem windows, you can closely examine any part of the window by drawing a box
enclosing the area of interest and typing an “o”. Like in apxgraph window, this causes a
newwindow to open, showing only the enclosed area. Unlikepxgraph windows, typing the
“o” is necessary. In addition, you can enlarge a window using your window manager manipu-
lation, and type an “f” to fill the window with the schematic. You can also zoom-in (or mag-
nify) by typing a “z”, and zoom-out by typing a “Z” (see table 2-3 on page 2-11). These and
othervem commands are referenced again later, and documented completely in chapter 19.

2.2.6 Invoking on-line documentation for stars

You may wish to understand exactly how thissinMod example works. There are sev-
eral clues to the functionality of the stars. After a while, the icons themselves will be all you
will need. At this point, you can get several levels of detail about them. First, you will want to
know the name of each star. If you have closed thesinMod window, open it again. Notice the
names that appear on each of the icons. In more complicated schematics, when the icons are
much smaller, the names will not show. You can zoom-in on a region of the window to see the
names. Alternatively, you can place the mouse on any icon and issue the “show-name” com-
mand (in the “Other” menu), or type “n”.

Find thesingen block at the left of thesinMod schematic. To understand its func-
tion, place the mouse cursor on it, and execute the Other:profile command. Here “Other”
refers to the command category and “profile” to the command in the submenu (you may also
type “,”). This command invokes a window that summarizes the behavior of the block, as
shown below:

For some blocks, further information can be obtained with the Other:man1 (“M”) command,

schematic

System ⇒
Display ⇒
Options ⇒
Undo ⇒
Edit ⇒
Selection ⇒
Application ⇒

schematic

System ⇒
Display ⇒
Options ⇒
Undo ⇒
Edit ⇒
Selection ⇒
Application ⇒

p pan
z zoom-in
Z zoom-out
f show-all
= same-scale

The Almagest 2-11

Ptolemy Last updated: 11/6/97

which displays a formatted manual page. Try it on theXMgraph block at the right of the sche-
matic. The ultimate documentation for any block is, of course, its source code. For thesin-
gen block, the source is another schematic. Use the “look-inside” command (using the
accelerator key “i”) to see it. Recall that you can also look at the source code of the lowest
level blocks (calledstars) by looking inside them.

2.2.7 More extensive exploration of the demos

You can safely explore other demos in the palette by the same mechanism. Thebut-

1.The man command uses Tycho to display the HTML format star documentation that
is automatically generated by theptlang program.

TABLE 2-3: A summary of the Ptolemy commands in the vem menu, which is obtained by clicking
the middle mouse button without holding the shift button. The single-key accelerators
for commands that have them are shown. The commands that are most useful for
exploring the Ptolemy demos are shaded. More complete documentation can be
found in chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1.

Menu Heading Command Key Description
vem none no command name cntr-h remove the last argument (point, box, etc.)

del remove the last argument (point, box, etc.)

cntr-u remove all arguments from the argument list

cntr-l (control lower case L) redraw the window

System open-window o open a new view into a facet

close-window cntr-d close a window

where ? find the position of the cursor in oct units

palette P open the color palette for editing icons

save-window S save a facet

bindings b display key bindings (single key accelerators)

re-read restore a facet to the last saved version

Display pan p move the view to be centered at a given spot

zoom-in z zoom in for a closer view of a facet

zoom-out Z zoom out

show-all f rescale the schematic to fit the window

same-scale = used to get two windows to use the same scale

Options window-options adjust snap, grid spacing, etc.

layer-display selectively display colors

toggle-grid g turn on or off the grid display

Undo undo U undo any number of previous changes

Edit create c create a line, icon, name, etc.

delete-objects D remove selected objects from an icon drawing

edit-label E modify a label in a schematic

Selection select-objects s add an object to the argument list for a command

select-net cntr-N select a wire (net) connecting blocks

unselect-objects u remove an object from the argument list

transform t rotate or reflect an object

move-objects m move an object in a schematic

copy-objects x copy one or more objects in a schematic

delete-objects D delete objects from a schematic

Application rpc-any r start a vem application (pigiRpc is one)

2-12 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

terfly demo at the upper left of the “basic” palette in figure 2-3 is particularly worthwhile.
The demos in this and other palettes are briefly summarized in “An overview of SDF demon-
strations” on page 5-51.

The init.pal palette in figure 2-1 contains icons leading to a top-level demo direc-
tory for each domain distributed with Ptolemy. Some of these are labeled “experimental”.
These domains largely reflect research in progress and should be viewed as concept demon-
strations only. The mature domains have no such label, although even these domains contain
some experimental work. A quick tour of the basic capabilities can be had by looking inside
the icon labeled “quick tour” in the start-up palette shown in figure 2-1. Each time you
encounter a universe, run it.

2.2.8 What’s new

For readers familiar with previous versions of Ptolemy, you may wish to take a tour of
the new features only. The “What’s New” icon in theinit.pal palette in figure 2-1 leads to
such a tour. Look inside it and you will see an icon for each of the last several releases. Open
any one and explore the icons therein. Each time you encounter a universe, feel free to run it.

2.3 Dialog boxes
As you explore the demos, you will frequently encounter dialog boxes and control

panels. For example, the run command opens a control panel like the one shown above that,
among other things, allows you to specify how long the simulation should run. Most of the
control panels that you will encounter have been designed using an X window toolkit called
Tk, and every effort has been made to follow the Motif design style. Hopefully, this will look
familiar to most people.

2.3.1 Tk control panels

Most of the items in a control panel are self-explanatory. Consider the run control
panel shown on page 2-9. The button with the double relief (the GO button) is the default but-
ton. Hitting the return key has the same effect at clicking the mouse on this button. A different
type of button is the “check button”, labeled “Debug”. Clicking on this button expands the
control panel, as shown below, giving the user options that are sometimes useful in debugging
a complex application.

The “Animation” buttons show (textually or graphically) which blocks are running at any

The Almagest 2-13

Ptolemy Last updated: 11/6/97

given time. Graphical animation will dramatically slow down a simulation, so it is not advised
except for occasional use. It is often useful in combination with theSTEP button, which will
fire stars one a time.

The EARLY END button terminates the simulation as of the point currently reached, but
then it runs thewrapup methods of the stars, just as if the simulation had ended normally.
Thus, it is an invasive alteration of the behavior of the simulation. The results displayed dur-
ing wrapup may be subtly or wildly different from the results that would have been obtained
if the simulation had been allowed to proceed to its scheduled end time. Some of the demos
will in fact deliver incorrect, or at least unexpected, results if stopped early.

The EARLY END button differs from theABORT button in that theEARLY END button
calls thewrapup methods,ABORT does not. Thus, for example, signal plots that normally
appear at the end of a simulation will not appear whenABORT is used.

Clicking on theDebug button a second time will reduce the control panel to its previ-
ous form.

Many control panels have text widgets. In the control panel above, for example, the
box labeled “When to stop” is a text widget. To change the number, you must use Emacs-like
editing control characters. These are summarized in table 2-4. In addition, using the mouse,
you can position the cursor anywhere in the text to begin editing by clicking the left button.
For example, to enter a new number for “when to stop”, position the cursor in the number box
and type control-k followed by the new number. You can then push the GO button (or type
return) to run the application the specified number of iterations.

Many control panels have more than one text widget. The current field is the one with
the cursor, and anything you type will go into it. To change the current field to a different one,
move the mouse or use the “Tab” key to move to the next one.

2.3.2 Athena widget dialog boxes

Although we have been working hard to eliminate them, a few old-style dialog boxes
based on the Athena widgets from MIT still survive in the system. You will recognize these
immediately because they are much uglier and more difficult to work with than the Tk-based

Key Description

Delete, control-h Delete previous character.

control-a Move to beginning of line

control-b Move backward one character

control-d Delete next character

control-e Move to end of line

control-f Move forward one character

control-k Kill (delete) to end of line

TABLE 2-4: Summary of key bindings for Emacs-style text editing.

2-14 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

widgets. Here is an example:

The text widgets in these dialog boxes also use Emacs-style commands. However, do not type
return; this adds a second line to the dialog entry, which for most commands is confusing at
best. If you accidentally type return, you can backspace sufficiently to get back to one line.
Meta-return is the standard way to invoke the “OK” button in these widgets.

2.4 Parameters and states
To see the parameter values of a star or galaxy, execute the Edit:edit-params command,

which has the accelerator key “e”. Thesingen star in thesinMod application has the fol-
lowing parameter screen:

Notice that thefrequencyparameter is given as an expression, “PI/100” (PI represents the con-
stantπ). This section describes the expression language for specifying parameter values.

The parameter screen can be kept open while you experiment with different values of
the parameters. Try changing the value “PI/100” to “PI/200”. Click “Apply” in the parameter
window, and then “GO” in the run control panel. How does this change the display? Clicking
“Cancel” in the parameter window will restore the parameter values to the last saved values
and dismiss the parameter window. Clicking “Close” will dismiss the parameter window with-
out restoring the parameter values.

2.4.1 A note on terminology

A State is a data-structure associated with a star and is used to remember data values
from one invocation to the next. For example, the gain of an automatic gain control is a state.
A state need not be dynamic since its value may not change during the course of a simulation.
Technically, aparameter is the initial value of a state.Pigi is responsible for defining param-
eter values and storing them in the design database.

The Almagest 2-15

Ptolemy Last updated: 11/6/97

2.4.2 Changing or setting parameters

Theedit-params command inpigi permits the user to set the initial value of a settable
state of any star (lowest level block) and to define and set parameters for a galaxy (composite
block) or universe (complete application).

Passing parameters through the hierarchy

Star parameters may be linked to the parameters of the galaxy or universe that contains
the star. The syntax for linking the values of the star parameters to values of galaxy or universe
parameters is simple. Consider again thesinMod application shown in figure 2-4. The param-
eter screen for themodulator block is shown below:

This block, however, is a galaxy, not a star. If you look inside (as has been done in figure 2-4),
and edit the parameters of thesingen block insidemodulator , you will see

Notice now that the value of thefrequency parameter is a symbolic expression, “freq”. This
refers to the galaxy parameter “freq”. Thus, parameter values can be passed down through the
hierarchy. These symbolic references can appear in expressions, which we discuss next.

Parameter expressions

Parameter values set throughpigi can be arithmetic expressions. This is particularly
useful for propagating values down from a universe parameter to star parameters somewhere
down in the hierarchy. An example of a valid parameter expression is:

PI/(2*order)

whereorder is a parameter defined in the galaxy or universe. The basic arithmetic operators
are addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (^). These
operators work on integers and floating-point numbers. Currently all intermediate expressions
are converted to the type of the parameter being computed. Hence, it is necessary to be very
careful when, for example, using floating-point values to compute an integer parameter. In an
integer parameter specification, all intermediate expressions will be converted to integers.

2-16 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

Complex-valued parameters

When defining complex values, the basic syntax is

(real, imag)

wherereal andimag evaluate to integers or floats.

Fixed-point parameters

Fixed-point parameters may be assigned a precision directly. To do this, the parameter
is given in the syntax “(value, precision)”, wherevalue is an ordinary number andprecision is
given by either of two syntaxes:

 • Syntax 1: As a string like “3.2”, or more generally “m.n”, wherem is the number of
integer bits (to the left of the binary point) andn is the number of fractional bits (to the
right of the binary point). Thus length ism+n.

 • Syntax 2: A string like “24/32” which means 24 fraction bits from a total length of 32.
This format is often more convenient because the word length often remains constant
while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at least one.

Thus, for example, a fixed-point parameter might be defined as “(0.8, 2/4).” This
means that a 4-bit word will be used with two fraction bits. Since the value “0.8” cannot be
represented precisely in this precision, the actual value of the parameter will be rounded to
“0.75”.

A fixed-point parameter can also be given a value without a precision. In this case, the
default precision is used. This has a total word length of 24 bits with the number of integer bits
set as required to store the value. For example, the number 1.0 creates a fixed-point object
with precision 2.22, and a value like 0.5 would create one with precision 1.23.

The precision of internal computations in a star is typically given by a parameter of
typeprecision . A precision parameter has a value specified using either of the two syntaxes
above.

2.4.3 Reading Parameter Values From Files

The values of most parameter types can be read from a file. This syntax for this is to
use the symbol< as in the following example:

< filename

First, any parameters appearing in thefilename in the form of{parameter} are
replaced with their values. Then, any references to environment variables or home directories
are substituted to generate a complete path name. Finally, the contents of the file are then read
and spliced into the parameter expression and reparsed. File inputs can be very useful for
array parameters which may require a large amount of data. Other expression may come
before or after the<filename syntax (any white space that appears after the< character is
ignored).

2.4.4 Inserting Comments in Parameters

Comments are also supported for non-string parameters. A comment is specified with

The Almagest 2-17

Ptolemy Last updated: 11/6/97

the# symbol. Everything after the# until the end of the line is discarded when the parameter
is evaluated. Comments are especially useful in combination with files as they can help
remind the user of which galaxy or star parameter the file was written.

For example, a comment could be added to thefrequency parameter above:

freq # This is set to the Galaxy parameter

Comments are not supported for the String parameter or String Array parameter types.
In fact, when the image processing stars use String states to represent a filename, the# charac-
ter is used to denote the frame number of the image being processed.

2.4.5 Using Tcl Expressions in Parameters

Arbitrary Tcl expressions can be embedded in a parameter expression by preceding the
expression with the! character as in the following example:

! "expression"

First, parameters in the form of{parameter} appearing in the expression are
replaced by their values. Then, the string is sent to the pigiRpc Tcl interpreter for evaluation.
Finally, the result is spliced into the parameter expression and reparsed. The pigiRpc Tcl inter-
preter is the same interpreter that appears as a window whenpigi is started by usingpigi -
console .

This facility is general and supports both numeric and symbolic computing of expres-
sions. Through Tcl, one can access all of its math functions, which generally behave as the
ANSI C functions of the same name:abs , acos , asin , atan , atan2 , ceil , cos , cosh ,
double , exp , floor , fmod , hypot , int , log , log10 , pow, round , sin , sinh , sqrt , tan ,
andtanh . So, a parameter expression could be

! "expr sqrt(2.0 / {BitDuration})"

for the amplitude of the oscillators in a binary frequency shift keying system, in which
BitDuration is a parameter. Theexpr command is a Tcl command that treats its arguments
as a single mathematical expression that must evaluate to a number.

The Tcl mechanism can be used to return symbolic expressions:

! "join 2*gain1"

Becausegain1 is not surrounded by curly braces, its value is not substituted before
passing the expression to the Tcl interpreter. The Tcl interpreter will return2*gain1 which is
then evaluated by the parameter parser.

Note that whitespace between! and" is permitted in numeric parameters, but not in
string parameters: to get a Tcl call to be recognized in a string parameter you must write:

!"list /users/ptolemy/myfile"

There are several Tcl commands embedded inpigiRpc that help support parameter
calculations. They are:listApplyExpression , max, min , range , rangeApplyExpres-
sion , andsign . For example,

! "min [max 1 2 3] [sign -2]"

first evaluates tomin 3 -1 and then to-1 . The procedurerange returns a consecu-
tive sequence of numbers:

2-18 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

! "range 0 5"

returns0 1 2 3 4 5 . The rangeApplyExpression procedure generates a
sequence of values by applying a consecutive sequence of numbers to a Tcl expression that is
a function ofi . For example, you can generate the taps of an FIR filter that is a sampled sinu-
soid by using

! "rangeApplyExpression { cos(2*{PI}*$i/5) } 0 4"

generates one period of sinusoidal function and returns

1.0 0.309042 -0.808986 -0.809064 0.308916

The listApplyExpression is similar torangeApplyExpression except that it
only takes two arguments: the second argument is a list of numbers to substitute fori in the
expression. The command

! "listApplyExpression { cos(2*{PI}*$i/5) } [range 0 4]"

is equivalent to the previous example of therangeApplyExpression function.

If you are running Tycho TclShell from withinpigi or pigi -console , you can
receive help on the new Tcl procedureslistApplyExpression , max, min , range , range-
ApplyExpression , andsign , by typing

help sign

at the prompt. To start Tycho from withinpigi , type ay while the mouse is over avem facet
or palette.

The Tycho TclShell and thepigiRpc console includes the Ptolemy interpreter (ptcl)
which defines the help mechanism. Help is available on all of the commands we have added to
the Tcl language.

2.4.6 Using Matlab and Mathematica to Compute Parameters

Since Tcl can be used to compute parameters as described in the previous section,
Ptolemy’s Tcl interface to Matlab [Han96] and Mathematica [Wol91][Bla92] can be used to
compute parameters. This allows even more expressiveness, but the drawback is that demon-
strations relying on Matlab and Mathematica will only work at sites that have Matlab and
Mathematica installed. For example, we can use Matlab to design an 32-order FIR half-band
filter using the Parks-McClellan optimal equiripple FIR filter design algorithm:

! "matlab getpairs c {c=remez(32, [0 0.4 0.6 1], [1 1 0 0])}"

Similarly, we can use Mathematica to derive formulas to be used as parameters:

! "mathematica get c {c=Integrate[A x, {x, 0, 1}]}"

This command returns the symbolic expressionA/2 which is reparsed by Ptolemy.
Matlab and Mathematica can be used to keep track of how parameter values are computed.
Mathematica can also be used to return symbolic expressions that can be used in conjunction
with higher-order functions to define scalable systems [Eva95].

The Ptolemy interface to Matlab and Mathematica can also be accessed from the
pigiRpc console window, and the Tycho editor offers console windows that mimic the Matlab
and Mathematica teletype (tty) interfaces. More information about the options of the Tcl com-
mandsmatlab andmathematica can be found by using the help facility described above.

The Almagest 2-19

Ptolemy Last updated: 11/6/97

2.4.7 Array parameters

When defining arrays of integers, floats, complex numbers, fixed-point numbers, or
strings, the basic syntax is a simple list separated by spaces. For example,

1 2 3 4 5

defines an integer array with five elements. The elements can be expressions if they are sur-
rounded by parentheses:

1 2 PI (2*PI)

Repetition can be indicated using the following syntax:

value[n]

wheren evaluates to an integer. An array or portion of an array can be input from a file using
the symbol< as in the following example:

1 2 < filename 3 4

Here the first two elements of the array will be 1 and 2, the next elements will be read from file
filename, and the last two elements will be 3 and 4. This latter capability can be used in
combination with theWaveForm star to read a signal from a file.

2.4.8 String Parameters

There is a bit of complication when one wishes to set a string parameter or string array
parameter equal to the value of a galaxy or universe parameter. This is because a distinction
must be made between a sequence of characters that give the name of a symbol and a
sequence of characters to be interpreted literally. The syntax to use is explained in the exam-
ple:

This string has the word {word} taken from another parameter

Here{word} represents the value of a string universe or galaxy parameter. This capability is
especially useful for constructing labels for output plots. When using string states to specify
options for a Unix command, as in the options parameter inXgraph stars, you can use either
double quotes or single quotes to include white space within a single word:

-0 ’original signal’ -1 ’estimated signal’

String arrays have a few more special restrictions. Each word (separated by white
space) is a separate entry in the array. To include white space in an element of the array, use
quotation marks. Thus, the following string array

first "the second element" third

has three elements in it. The string array

repeat[10]

has ten separate copies of the string “repeat” in 10 separate entries in the array. Curly braces
are used to substitute in values from galaxy parameters. Thus, in

{paramname}

paramname must be the name of either a string array or a scalar-valued parameter (an integer,
float or complex array, for example, is not permitted). If it is a string array, then each element
of paramname becomes an element of the parameter. If it is some other kind of parameter the
value becomes a single element of the string array.

2-20 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

To use one of[,] , { , or } literally, quote them with double quotes. To turn off the spe-
cial meaning of a double quote, precede it with a backslash:\" . Similarly, use\\ to get a sin-
gle backslash.

String array values may also be read from files using the< symbol. For details on how
to use file references, see section 2.4.3 above. Note that for string arrays, the filename can be a
literal string such as

< $PTOLEMY/data/filename

as well as a string that refers to parameters such as

< $PTOLEMY/{data_dir}/data_file

in which case the value of the parameterdata_dir would be substituted. Ptolemy does not per-
form expansion of filenames such asfile.{1,2} into file1 file2 as a Unix shell might
do.

2.5 Particle types
The packets of data that pass from one star to another in Ptolemy are calledparticles.

So far, all particles have simply been floating-point numbers representing samples of signals.
However, several other data types are supported. Each star icon has a stem for each porthole.
In pigi , if you are using a color monitor, the color of the stem indicates the type of data that
the porthole consumes or produces, as summarized in table 2-5. A blue stem on an input or
output of a star icon indicates type “float”, a purple stem indicates type “fix” for fix-point par-
ticles, a white stem indicates type “complex”, an orange stem indicates type “int” for integer
particles, a green stem indicates “message”, a black stem indicates type “string”, a yellow
stem indicates type “file”, and a red stem indicates “anytype”. The “message” type is a user-
defined data type (see the programmer’s manual). A star that operates on “anytype” particles
is said to bepolymorphic. Polymorphic stars operate on multiple types of data. For example, a
Printer star can produce a textual representation of any type of particle. In addition, stars

TABLE 2-5: Data types supported by the Ptolemy kernel.

Type name Stem Color Description

ANYTYPE red any data type is accepted

FLOAT blue floating-point scalars

FLOAT_MATRIX_ENV blue (thick) floating-point matrices

COMPLEX white complex scalars

COMPLEX_MATRIX_ENV white (thick) complex matrix

INT orange integer scalar

INT_MATRIX_ENV orange (thick) integer matrix

FIX violet fixed-point scalar

FIX_MATRIX_ENV violet (thick) fixed-point matrices

MESSAGE green user-defined data type

STRING black string

FILE yellow filename

The Almagest 2-21

Ptolemy Last updated: 11/6/97

which input or output Matrix type particles have stems which are extra thick with colors corre-
sponding to the four main types, float, int, complex, and fix.

Ptolemy usually makes conversions between numeric particle types automatically. The
float to complex conversion does the obvious thing, putting the float value into the real part of
the complex number and setting the imaginary part to zero. The complex to float conversion
computes the magnitude of the complex number. Int to float is easy enough. Float to int
rounds to the nearest integer.

TheXscope star, and some other stars that generate output, accept “anytype” of input.
HoweverXscope isn’t completely polymorphic, because it converts all inputs to float inter-
nally. So for a complex input, the magnitude will be plotted. If you want to plot both the real
and imaginary parts you should use theComplexReal conversion star first.

In some situations automatic type conversions cannot be made. A common difficulty
involves several outputs of different types feeding aMerge star. Ptolemy must assign a spe-
cific type to theMerge star’s output, but in this case it will be unable to decide which type to
use, so it will complain that it “can’t determine DataType” for the output. The solution is to
insert one or more type conversion stars, so that all the values arriving at theMerge star have
the same type. (The type conversion stars can be found in the “conversion” palette of the
appropriate domain. It will be explained below how to find this.)

There are no automatic conversions between matrix particles and scalar particles; in
fact the matrix particle types do not support automatic type conversion at all. Conversion stars
need to be explicitly inserted between two stars that work on different Matrix types.

Some domains are more restrictive about particle type conversions than others.
Assignment of types to ANYTYPE portholes and resolution of type conflicts is discussed fur-
ther in section 4.6 of the Ptolemy Programmer’s Manual, and in the Ptolemy Kernel Manual.

2.6 The oct design database and its editor, vem
With the experience gained so far, it may be helpful to explain more clearly the soft-

ware architecture of the system.Pigi is built on top of existing CAD tools that are part of the
Berkeley CAD framework. An important component of this framework isoct , which serves
as the design database.Oct keeps track of block connections, parameter values, hierarchy, and
file structure, and hence moderates all accesses to designs stored on disk. The organization is
shown in figure 2-6.Vem is an interactive graphical editor foroct . Vem provides one of many
ways to examine and edit designs stored byoct . This chapter gives just enough information
aboutvem to use it with Ptolemy in simple ways. More complete documentation is contained
in chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1.

In pigi , the Ptolemy kernel runs in a separate Unix process, calledpigiRpc ,
attached tovem. Users edit designs usingvem, store their designs usingoct , and execute their
application through the link to the Ptolemy kernel. The two Unix processes are shown in the
shaded boxes in figure 2-6. The user interacts with both processes but only the user interface
of thepigiRpc process has been upgraded to use Tcl/Tk, as explained above. With this soft-
ware architecture in mind, we can now define terms that we have been using informally.

Oct objects (which are stored on disk) are called facets. Afacet is the fundamental
unit that a user edits withvem. As an analogy, we can think of a facet as a text file in a com-

2-22 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

puter system andvem as a text editor, such asvi or emacs. However, instead of calling sys-
tem routines to access the data stored in a text file likevi does,vem calls oct routines to
access the data stored in a facet. Thus,oct manages all data accesses to facets. Facets may
define a universe or a galaxy, for example. Thus, figure 2-4 on page 2-8 shows a facet that
defines a universe and a second one that defines a galaxy.

Facets may also define the physical appearance and formal terminals of icons that rep-
resent stars, galaxies, universes, and wormholes, e.g., the physical appearance of each icon in
figure 2-4 is defined in another facet called theinterface facet. A schematic that uses icons, by
contrast, is called acontents facet.The “edit-icon” command (“I”) will open the facet defining
an icon. Instructions for modifying the appearance of an icon are given in “Editing Icons” on
page 2-34.

A facet may also contain apalette, which is simply a collection of disconnected icons.
Palettes are directories of stars, galaxies, and universes in a library. Thus, for example, figure
2-3 on page 2-6 shows two palettes, both of which contain sets of icons. Note that facet
names, like file names in Unix, should not contain spaces.

2.7 Creating universes
If you are following this chapter sequentially, then you still have Ptolemy running

from previous sections. To see how Ptolemy will behave when started in your own directory,
exit pigi . Do this by typing a control-d character in thevem console window. A dialog box
may appear with a menu of facets thatvem thinks have been changed. Since all of these
belong to the user “ptolemy”, you do not want to save them. If it appears, do not select any of
them. Just click “OK”. A a warning window may then appear telling you that closing the con-
sole window will terminate the program. Just click “Yes”.

In this section, we will show how to create your own universes with a simple example
that is very similar to thesinMod demo explored above. First, be sure you are in a directory
where you have write permission, like your home directory.

FIGURE 2-6: The software architecture of the Ptolemy design environment running under pigi, the
graphical interface. The user interacts with two Unix processes, pigiRpc and vem.

file

oc
t

oc
t

Tcl/Tk

pigiRpc

vem

Ptolemy kernel

Athena widgets

Ptolemy user

remote
procedure
calls

Ptolemy domains
system

X window system

The Almagest 2-23

Ptolemy Last updated: 11/6/97

 • Create a new work area:

mkdir example
cd example

 • Startpigi :

pigi

You will see the message:

creating initial facet "init.pal"

Wait until the welcome window with the picture of Ptolemy appears. We are now ready to
learn about the basics of usingvem.

2.7.1 Opening working windows

Now we are ready to create a simple universe. Let’s create a simulation that generates
a sine wave and displays it.

 • Open a new facet: The facet that is already open, called “init.pal ”, is special
becausepigi always opens a facet by this name in the directory in which it starts.
Convention in Ptolemy dictates that “init.pal ” should be used to store icons repre-
senting complete applications, so instead of using this facet, we will create a new one.

 - Place the cursor in window labeled “init.pal:schematic”.

 - Select theopen-facet command from the “Window”pigi menu (shift-middle-
button). Alternatively, type an “F”. You will get a directory browser that looks
like this:

 - Replace the name “init.pal” in the text widget with “wave” and click the “OK”
button (or hit the return key). A quick way to delete the “init.pal” is using con-
trol-u. A new blank window will appear.

2-24 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

 • Open a palette:

 - Place the cursor in either blank window.

 - Select theopen-palette command from the “Window”pigi menu. Alterna-
tively, type an “O”.

 - Pigi will present a palette menu. Select the “sdf” palette by clicking the left
button in the box next to “$PTOLEMY/src/domains/sdf/icons/main.pal” (the
first entry) and then click on “OK”.

 - The palette that opens is shown on the left of figure 2-7. This palette shows the
basic categories of synchronous dataflow stars that are available. There are too
many stars to put in just one palette. You can use the Window:look-inside (“i”)
command to open any of the palettes. At this point you should look inside the
“Signal Sources”, “Nonlinear Functions”, and “Signal Sinks”. Arrange these
palettes on the screen so that you can see the blank window labeled “wave”.
The stars and palettes are summarized in “An overview of SDF stars” on
page 5-4.

2.7.2 Some basic vem commands

At this time, it is worth exploring some basicvem commands for manipulating win-
dow displays.Vem uses post-fix commands. This means that the user enters the arguments to a
command before the command name itself. Arguments appear in thevem console window as
the user enters them. Note that although the text of what the user enters is displayed in the
console window, the cursor should be in one of the facet windows.

There are several types of arguments. Each argument type is entered in a different way.
All graphics arguments are created with the left mouse button. The five types of arguments are
listed below:

Point: Position the cursor, click the left mouse button.

Box: Position the cursor, drag1 the left mouse button.

Line: Make a point, position the cursor on the point, and drag the left mouse button.

Object: Useselect-objects andunselect-objects commands (explained later).

Text: Enclose text in double quotes.

Arguments can be removed from the command line by typing the delete key, backspace key,
or “control-u”, which deletes all the current arguments. There are three ways to enter com-
mands:

Menus: Click the middle-button forvem commands, shift-middle-but-

1. “Drag” means to press down on a mouse button, move the mouse while holding it down, and then
release the button.

The Almagest 2-25

Ptolemy Last updated: 11/6/97

ton forpigi commands. Menus are of the “walking” variety, as
explained before.

Key bindings: Commands can be bound to single keys and activated by just
pressing the key. Key bindings are also called “single-key accel-
erators”, and are case sensitive. The key bindings are summa-
rized in table 2-2 on page 2-7 and table 2-3 on page 2-11.

FIGURE 2-7: The master palette for the stars in the SDF domain (left) and one of the sub-palettes
(right). The subpalette shows “sources” (signal generators). The palettes are
explained in more detail in “An overview of SDF stars” on page 5-4.

comm.pal

sources.pal

sinks.pal

arithmetic.pal

nonlinear.pal

control.pal

conversion.pal

dsp.pal

image.pal

logic.pal

matrix.pal

matlab.pal
Matlab HOF

hof.pal

test
contrib.pal

spectral.pal

telecomm.pal

sdfvis.pal

dmm.pal

radar.pal

neural.pal

Signal Sources

Signal Sinks

Arithmetic

Nonlinear Functions

Control

Conversion

Spectral Analysis

Design Flow Management

Telecommunications

Logic

Matlab Functions Higher Order Functions

Spatial Array Processing

User Contributions

Matrix Functions

Signal Processing

Communications

UltraSparc Native DSP

Neural Networks

Image and Video Processing

Synchronous Dataflow (SDF) Stars

expgen

Const

Const

Impulse

Rect

Ramp

WaveFormCx

RampInt

WaveForm

IIDUniformIIDGaussian

ReadFile

bus

singen

RampFix RectFix

TkSlider TkButtons TkButtons

Const

TclTcl
TclScript

TclTcl
TclScript

Window

Matrix CxMatrix FixMatrixIntMatrix

Identity_M
0

0

IdentityInt_M
0

0

IdentityCx_M
0

0

IdentityFix_M
0

0

11010
bits

Var
Read

Matlab
Matlab_M

Matlab
MatlabCx_M

Const

DTMFGenerator

RectCxPCMReadInt

RanConst

Signal Sources

Matrix Sources:

Floating-Point Sources

(Interactive)

Integer Sources

Complex SourcesFixed-Point Sources

2-26 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

Type-in: Type a colon followed by the command name. This is rarely
used by Ptolemy users, butvem experts use it occasionally.

Let’s try a few examples, some of which should be familiar by now. Place the cursor in one of
the palette windows (containing library stars) and:

 • Type “shift-Z” (capital Z) forzoom-out. This makes everything smaller.

 • Type “z” (lower-case z) forzoom-in. This makes everything bigger. If you zoom in
sufficiently, labels will appear below each icon giving the name of the star.Vem does
not display these labels if they would be too small.

 • Try “p” for pan. Pan moves the spot under the cursor to the center of the window.

 • Thevem pan command can also take as an argument a point which will indicate the
new center of the window. Recall that the argument must be entered first. Place a point
somewhere in the palette window by clicking the left button, and type “p”. The loca-
tion of your point became the center of the window.

 • Thevem open-window command can take a box as an argument. Draw a box in the
palette window by dragging the left mouse button and then type “o”, or find theopen-
window command in thevem menu.

 • Try placing points in the new window. Notice that they also appear in the original pal-
ette window. Also notice that you are only permitted to place points at certain loca-
tions. Vem has an implicitgrid to which pointssnap. The default snap resolution is
suitable for making Ptolemy universes.

 • You can get rid of your point (or any argument list) by typing “control-u”. You can
delete arguments one-at-a-time by typing “control-h”. Try placing several points and
then deleting them one by one.

 • You can close the new window (or anyvem window) with “control-d”.

 • A particularly useful command at this time isshow-all, or “f”. This rescales and
recenters the display so that everything in the facet is visible. Try this command in the
palette window that you have been working with.

 • You can also resize a window, using whatever X Window bindings you have installed,
and then type “f” to rescale the display to fill the window.

2.7.3 Building an example

 • Create an instance of the star called “Ramp”. This star is at the upper right of the
sources palette. Its icon has an orange triangle. To do this:

 - Put the cursor in the window “wave:schematic”.

 - Create a point anywhere in the window by clicking the left button.

 - Move the cursor over the “Ramp” icon in the palette and press the “c” key. This
is a key binding that executes thevem “create” command.

The Almagest 2-27

Ptolemy Last updated: 11/6/97

 - You have just created aninstance of the “Ramp” icon. The actual data that
describes how the “Ramp” icon should be drawn is stored in another facet (an
“interface facet”). Aninstance of the “Ramp” icon points to this facet.

 • Delete and select instances: Sometimes in the process of editing your schematic, you
may need to delete objects. As an example, let’s create anotherRamp instance and then
delete it.

 - Create anotherRamp instance next to the first one: place a point near the origi-
nal Ramp, place the cursor over theRamp icon in the palette and press “c”.
Actually, you don’t have to use the icon in the palette — you could also put the
cursor over the already existingRamp icon to achieve the same effect.

 - Place the cursor over the newRamp icon and executeselect-objects by typing
“s”. This creates an object argument on thevem command line. This is neces-
sary because thevem delete-objects command takes arguments of type
“object”. Theselect-objects command takes point, box, and/or line arguments
and turns the items underneath them into object arguments. Theunselect-
objects command (“u”) does the reverse ofselect-objects.

 - Executedelete-objects by typing “D” (upper-case!). This deletes the objects
we selected previously.

 - You could also have deleted the newly created Ramp with theundo command
(“U”). This is an infinite undo, so you can backtrack through all changes you
have made since starting thevem session by repeatedly executing the undo
command.

 - Occasionally when you use the select and unselect commands, the objects are
not redrawn correctly. When this happens, use thevem redraw-window com-
mand, “control-l” (lower case L), to redraw.

 • Create the remaining instances in our example:

 - Create an instance of the “Sin ” icon to the right of the Ramp. “Sin ” is in the
“nonlinear” palette, where icons are arranged alphabetically by name. Make
sure it does not overlap with the Ramp icon. If it overlaps, you can delete it and
create a new one.

 - Create an “XMgraph ” instance to the right of theSin icon. “XMgraph ” is the
first icon in the first row of the “sinks” palette.

We now have three icons: aRamp, aSin , and anXMgraph . Your facet should look something

2-28 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

like this:

Next, we will connect them together.

 • Connect theRamp output to theSin input using the following steps:

 - With the mouse cursor in the “wave” window, type “f” to show all. This will
rescale your system, and make it easier to make connections.

 - Draw a line between the output of theRamp and the input of theSin : put the
cursor over theRamp output, double-click on the left mouse button, drag the
cursor to theSin input, and then let up on the mouse button. If the two termi-
nals are not on a horizontal line, you can bend the line by momentarily releas-
ing the mouse button while dragging it.

 - Type “c” (forcreate) to create a wire. Notice that thecreate command creates
wires or instances depending on the type of arguments it is called with.

 - If you need to delete a wire, you can draw a box around it (click and drag with
the mouse), select it (press “s”), and then delete it (“D”).

 • Connect theSin output to theXMgraph input in a similar way.

 • Run the universe: We now have a complete universe that we can simulate.

 - Execute therun command from thepigi “Exec” menu, or type an “R”.

 - Enter “100” for “When to stop”. Do this by typing “control-u” to remove the
default entry in the text widget and typing 100. This specifies that the system
should be run through 100 “iterations”. What constitutes an iteration is
explained in chapter 5, “SDF Domain” on page 5-1. For this simple system, it
is just the number of samples processed.

 - Clicking on the GO button or typing a return character will run the system.

A new window with a graph of a rough sine wave should appear. The system generates the
sine wave by taking the sine of a sequence of increasing numbers generated by theRamp star.
The execution of theXMgraph star created this new window to show the output of our simula-
tion. To remove this window, click on the “Close” button or press “control-d” in it.

 • Save the facet by typing “S” (upper-case) with the cursor in the “wave” window. This

Ramp
����
����
����
����

Sin

XMgraph

The Almagest 2-29

Ptolemy Last updated: 11/6/97

executes thevem save-window command. It is wise to periodically save your work in
case the editor or computer system fails unexpectedly.

 • Change parameters: If we look at the output, the sine wave appears jagged. This is
because theRamp star has a set of default parameters which cause it to generate output
values with an increment that is too large. We can change the parameters of as follows:

 - Place the cursor over theRamp icon and executeedit-params in thepigi menu
(or type “e”). A dialog box will appear that shows the current parameters.

 - Replace the value ofstepwith “PI/50”. (You can use “control-u” to erase the
old value.) Finally, click the “OK” button to store the new parameters. This is
an example of Ptolemy’s parameter expression syntax, explained above.

 • Run the simulation again using 100 iterations. This time the output should look like
one cycle of a reasonably smooth sine wave.

 • Usesave-window again to save the new parameters.

To be able to conveniently access this example again, you should create an icon for it. We will
do this with thepigi command “Extend:make-schem-icon”, or “@”.

 • Place the mouse cursor in the “wave” facet window, and hit the “@” key. A dialog box
appears asking for the name of the palette in which you would like to put the icon. By
convention, we put universe icons in palettes called “init.pal”. So replace the default
entry (which should be “./user.pal”) with “init.pal”. When the icon is made, find the
“init.pal” window that first opened when you started the system, and type “f” to show
all. It should look like this:

Looking inside this icon (“i”) will get you your “wave” facet. The second item in the
palette is a marker indicating where the next icon that you create will go. Henceforth,
anytime you startpigi in this same directory, the first window you will see will be
this “init.pal” window.

 • Our example is now complete. To exit:

 - Close all pxgraph windows with “control-d”.

 - Type “control-d” in thevem console window. If nothing needed to be saved,
the program exits immediately. Otherwise, a dialog box appears asking you to
choose buffers to be saved. Unfortunately, as of this writing, some of the buff-
ers listed may have already been saved and do not need to be saved again. The
program is overly cautious. To indicate which of the listed buffers you wish to

the next
icon goes

here

�
�
�

�

wave

2-30 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

save, click on the box to the left of each name. Then click on the “OK” button.

 - A final warning appears telling you that closing the console window will termi-
nate the program. Click on “Yes”.

2.8 Using galaxies
In this section we will explain how to create galaxies. Galaxies allow you to use hierar-

chy to partition your design into more manageable pieces and to re-use designs as components
in other designs.

2.8.1 Creating a galaxy

Use the schematic we created in the last example to make a sine wave generator galaxy.

 • Instead of modifying our previous example, we will make a copy of it. In your “exam-
ple” directory, type:

cp -r wave singen

The recursive copy,cp -r , is necessary becauseoct stores data using a hierarchical directory
structure. Of course, if the facetsingen exists already, you must remove it withrm -r first
before copying.

 • Startpigi .

 • Useopen-palette (or “O”) to open the “$PTOLEMY/lib/colors/ptolemy/system” pal-
ette (the last one in the list of palettes). The system palette contains input and output
ports which can be instantiated into schematics just like stars. The contents of the pal-
ette are shown below:

 • Useopen-facet (or “F”) to open the “singen” you created using “cp -r ”. You can use
the file browser shown on page 2-23; just double click on the name “singen” in the
lower window of the browser.

 • In the “singen” window, delete theXMgraph star and the wire attached to it. The easi-
est way to do this is draw a box (click-drag) around the star and its input wire, press
“s” to select these objects, and then press “D” to delete them. (You may want to
enlarge your window to make it easier to work.)

 • Place an output port where theXMgraph star used to be and connect it to the output of
the Sin star. The output port is the icon in the system palette with an arrowhead (an
input port, by contrast, has a fish tail), as shown above.

 • Name the output port “out”:

 - Position the cursor over the black box on the new output port.

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

bus			
			
			
			

The Almagest 2-31

Ptolemy Last updated: 11/6/97

 - Type “out” as a text argument, including quotation marks.

 - Type “c” forcreate. Again, note that thecreate command has a different action
than before. It names input or output terminals when given a text argument.

We now have a galaxy. The fact that a schematic has input or output ports distinguishes it as a
galaxy. This galaxy that you just created is similar to the “singen” galaxy in the “Signal
Sources” palette. Find it, and look inside, to make the comparison.

2.8.2 Using a galaxy

We have just created a galaxy that we would like to use in another design. In order to
do this, we need to create an icon for this galaxy that we will then instantiate in our other
design.

 • Create an icon:

 - Place cursor in “singen:schematic” window.

 - Executemake-schem-icon in thepigi “Extend” menu (“@”).

 - The dialog box should contain:
Palette: ./user.pal

This specifies the name of the palette that will contain your icon. By conven-
tion, we usually put galaxy icons in the palette called “user.pal” in the current
directory. Hence, this is the default name.

 - Since you had already created an icon for the “wave” universe, and that icon
was copied by yourcp -r , vem asks whether it is OK to overwrite the icon.
Click “OK”. Wait until make-schem-icon is done.Vem informs you that it is
done with a message in thevem console window, which may be buried by now.

 • Open the palette called “user.pal ” usingopen-palette (“O”). The newly created gal-
axy icon should appear in this palette along with the same special icon we saw before,
called acursor. A cursor distinguishes a palette from other types of facets and it
determines where the next icon will be placed.

 • At this point, we have an icon for our sine wave generator galaxy. It is this icon facet
that is instantiated in the “user.pal ” palette. We can now use our sine generator gal-
axy simply by instantiating our icon into another schematic.

 • Useopen-facet to create a new facet with the name “modulation ”.

 • In the “modulation” window, create a universe that takes two “singen” galaxies, multi-
plies their outputs together, and then plots the result using “XMgraph ”. The
“XMgraph ” star can be found again in the “Signal Sinks” subpalette of the SDF pal-
ette. The multiplier star, calledMpy, is in the “Arithmetic” subpalette.

Hint : If you place the icons so that their terminals fall on top of one another, then a connection

2-32 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

gets made without having to draw a wire.

 • Now run the universe with “when to stop” set to 100. The output should appear as a
squared sine wave, which is just a sine wave of twice the frequency shifted up by 1/2.

So far, we have created a galaxy and used it in another universe. But we could also have used
our galaxy within another galaxy. In this way, large systems can be broken up into smaller
more manageable pieces.

2.8.3 Galaxy and universe parameters

One of the problems with the “singen” galaxy that we just created is that it generates
sine waves with a fixed frequency. We would like to make the frequency of the generator
parameterizable. That way, we could set the two “singen” galaxies in our “modulation” uni-
verse to two different frequencies.

To make a galaxy parameterizable, we createformal parameters in the galaxy and
then link the formal parameters to theactual parameters of the instances contained in the
galaxy. The terms, “formal” and “actual” parameters, are analogous to formal and actual
parameters in any procedural programming language. An example will make this clear.

 • Create formal parameters:

 - Place the cursor in the “singen” window but away from any instance, i.e., in the
grey background of the facet.

 - Executeedit-params (“e”). An empty parameter window will appear, looking
like this:

To add parameters to the galaxy, click on the “Add parameter” button. A win-
dow appears looking like this:

Fill in the dialog as follows:

The Almagest 2-33

Ptolemy Last updated: 11/6/97

name: freq
type: float
value: PI/50

The value will be thedefault value. Then click on “OK”. Recall that you can
use “tab” to move from one field to the next of the dialog box and “Return”
instead of “OK”. Hence, the dialog can be managed from the keyboard without
requiring the mouse.

We just created a new formal parameter called “freq” with a default value of “PI/50”.
Additional parameters may be added or old ones changed. The default value of a formal
parameter can always be changed by executingedit-params in the background of the galaxy.
Executing edit-params on the icon representing the galaxy changes the parameter values only
for the instance represented by the icon. It overrides the default value specified in the back-
ground of the galaxy definition. The possible types for parameters are listed in table 2-6. The
syntax for specifying values for parameters is described above in “Changing or setting param-
eters” on page 2-15. Exactly the same procedure can be used to attach formal parameters to a
universe. This allows you to parameterize a complete Ptolemy application.

 • Link formal parameters to actual parameters:

 - Place the cursor over theRamp icon in thesingen window.

 - Executeedit-params and fill in the dialog as follows:
step: freq
value: 0.0

This allows thefreq parameter of a singen instance to control the increment of
the internal ramp star, thus controlling the output frequency.

 • Change the frequency of one of thesingen instances to “PI/5” by usingedit-params.
This singen will be ten times the frequency of the other.

 • Run the universe with an iteration of 100. The output should show the product of two
sine waves with different frequencies. Don’t forget to save the facets we just created. It

TABLE 2-6: Parameter types supported in Ptolemy

Type name Description Example

float floating-point number 0.2/PI

int integer 10

complex pair specified as (real-part, imag-part) (1.0, 2.0)

string string this is a string

floatarray array of floating-point numbers 0.0 [10] 1.0 0.0 [10]

intarray array of integers 1 2 3 4 5 6 7

complexarray array of complex numbers (0.1, 0.2) (0.3, 0.4) (0.5, 0.6)

stringarray array of strings this string array “has five” elements

file filename /tmp/input.test

2-34 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

would also be a good idea to create an icon formodulation and put it ininit.pal .

2.9 Editing Icons
Pigi automatically generates icons for stars and galaxies, respectively, when you

invoke themake-star or make-schem-icon command from the Extend menu.Pigi puts the
new icon in a user-specified palette, which by default is user.pal in the directory in which you
startedpigi . More or less anyvem manipulations can be performed on this icon, but some
guidelines should be followed. These icons have a generic symbol, shown in figure 2-2 on
page 2-5. To change it, place the cursor over the icon and execute theedit-icon (“I”) command
in thepigi menu.1 A new window containing the icon facet will appear.

Recall from section 2.6 on page 2-21 that icons are stored ininterface facets and that
the icons that appear incontents facets are really instances of icons. These instances merely
refer to the actual icon facet. Theedit-icon command opens a window into the actual icon.
Any changes made in this window will affect the appearance of all instances referring to the
icon.

Recall also that icon facets store a different kind of data from other facets. Icon facets
contain information that tellsvem how to draw objects. Hence, a different set of commands
must be used to edit icons. Whenever you edit an icon,vem switches to a different mode
called “physical editing style.” In this mode, we create objects such as lines, boxes, and poly-
gons. This is in contrast to “schematic editing style” which we used before to create instances
and connect them together with wires. Physical editing style shares many commands with
schematic editing style. For example,select-objects is active in both modes. A list of useful
physical editing style commands and their key bindings is given in table 2-7.

The commands that create geometry expect a layer argument. The layer of an object
determines its color and its fill pattern. To specify a layer, place the cursor over an object
attached to the desired layer before executing a command. You can open a palette of layers
with thepalette (“P”) command. The palette is shown in figure 2-8.

The layer palette contains several columns of solid and outline colors, with the name
of the color at the top of the column. Colors at the top of each icon will be layered on top of
colors below them in the columns. A set of special layers are arranged at the bottom of the pal-
ette. The layers for icon stems are explained below. The layers for icon bodies define the icon
background and optional icon shadow.

A few simple notes will help greatly. First note that when the icon window is opened,
the snap is automatically set to 5 “oct units”. This is because the default snap for schematic
windows, normally 25 units, is far too coarse for most icon editing functions. A reasonable
compromise is 5 units, unless you are going to try to create a very elaborate icon, in which
case 1 unit is probably what you want. Thevem Options:window-options command allows
you to change the snap.

When editing an icon, thevem menu is slightly different than when you are editing a
schematic. Invem terminology, this is because you are working with thephysical view of a
facet. The commands are shown in table 2-7. Most icons can be created by experimenting with
the following operations:

1. You must have write permission on the facet to change the icon.

The Almagest 2-35

Ptolemy Last updated: 11/6/97

 • Select the default symbol within the icon that Ptolemy created when it created the icon

TABLE 2-7: A summary of the Ptolemy commands in the vem menu in icon editing mode. These
commands are obtained by clicking the middle mouse button without holding the shift
button when your mouse cursor is in an icon window. The single-key accelerators for
commands that have them are shown. More complete documentation can be found in
chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1. The command that
differ significantly from those in table 2-3 are shaded.

Menu Heading Command Key Description

vem none no command name cntr-h remove the last argument (point, box, etc.)

del remove the last argument (point, box, etc.)

cntr-u remove all arguments from the argument list

cntr-l (control lower case L) redraw the window

System open-window o open a new view into a facet

close-window cntr-d close a window

where ? find the position of the cursor in oct units

palette P open the color palette for editing icons

save-window S save a facet

bindings b display key bindings (single key accelerators)

re-read restore a facet to the last saved version

Display pan p move the view to be centered at a given spot

zoom-in z zoom in for a closer view of a facet

zoom-out Z zoom out

show-all f rescale the schematic to fit the window

same-scale = used to get two windows to use the same scale

Options window-options adjust snap, grid spacing, etc.

layer-display selectively display colors

toggle-grid g turn on or off the grid display

Undo undo U undo any number of previous changes

Edit create-geometry c create a line, box, circle, etc.

alter-geometry a replace an object with one on the argument list

change-layer l change the color of an object

set-path-width w change the width of lines

create-circle C draw a filled or empty circle

edit-label E specify or modify a label

delete-physical D remove the specified object

Selection select-objects s add an object to the argument list for a command

unselect-objects u remove an object from the argument list

move-physical m move an object

copy-physical x copy one or more objects in a schematic

transform t rotate or reflect an object

select-terms cntr-t select terminals

delete-physical D delete objects

Application rpc-any r start a vem application (pigiRpc is one)

2-36 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

(a star, galaxy, cluster of galaxies, or palette symbol, as shown in figure 2-2 on page 2-
5). You can do this by drawing a box (drag the left mouse button) and typing “s” (or
using Selection:select-objects in the menu). You can unselect with “u” or control-u.
An alternative selection method is to place a point and type “s”. This usually provokes
a dialog box to resolve ambiguities. Delete whatever parts of the icon you don’t want
using “D” or Selection:delete-objects. WARNING: Do not delete terminals! If you
accidentally delete a terminal, the easiest action is begin again from scratch, asking
pigi to create a new icon.

 • Bring up thevem color palette by typing “P” (or System:palette in the menu). You will
get the window shown in figure 2-8.

 • Draw a line by clicking the left button to place a point, and pushing and dragging the
mouse button from the same point. Then move the mouse to desired color in the color
palette and type “c” (or Edit:create-geometry from the menu). A line may consist of
multiple line segments by just repeatedly pushing and dragging the mouse button.

 • To create filled polygons, place points at the vertices, then type “c” on the appropriate
solid color in the palette.

 • To create a circle, place a point at the center, a point on periphery, and type “C” on the
appropriate color. To create a filled circle, use a line segment instead of a pair of
points.

 • Objects can be moved by selecting them, dragging the mouse (using the right button)
to produce an image of the object in the desired place, and typing “m”.

 • You may change (or delete) the label thatpigi automatically puts at the bottom of the
icon. To change it, select it and type “E” (Edit:edit-label in the menu). The resulting

FIGURE 2-8: The palette of colors and layers that can be used to create icons. This palette is
invoked by the “palette” vem command (“P”). Each color has a column of boxes. The
higher the box you use, the closer to the front an object will be. The colors at the bot-
tom are special, in that they are associated with particular data types.

The Almagest 2-37

Ptolemy Last updated: 11/6/97

dialog box is self explanatory. The standard Emacs-like editing commands apply.

 • BE SURE TO SAVE YOUR ICON. This can be done by typing “S” (System:save-
window in thevem menu). You can close your window with control-d. Note thatvem
buffers the data in the window. You can close it and reopen it without saving it, as long
as the session has not been interrupted.

By convention, the data types supported by a terminal are indicated by the color of the stem
that connects the terminal to the body of the icon. The following colors are currently in use:

ANYTYPE: red
FLOAT: blue
INT: brown
FIX: purple
COMPLEX: white

PACKET: green
FILE: yellow
STRING: black

The color is currently set automatically by the icon generator by using layers defined specifi-
cally for this purpose, calledanytypeColor , floatColor , intColor , fixColor , com-
plexColor , packetColor , stringColor andfileColor . These colors are shown at the
bottom of the color palette in figure 2-8.

You can change the color of an object manually, if you wish. To do this, select the
object, type “"xxxx"”, where xxxx is replaced by the color name (the quotation marks are nec-
essary), and then type the single character “l” (an el — or Edit:change-layer in the menu). Be
sure not to change the color of a terminal! Again, be sure to save the window.

One final editing operation is a little trickier: moving terminals.Pigi places terminals
rather arbitrarily, since it knows nothing of their function. You may wish to have a smaller
icon than the default, in which case you have to move the input terminals closer to the output
terminals. Or may wish to change the order of the terminals, or you may want to have termi-
nals on the top or bottom of the icon rather than right or left. All of these can be done, but the
following cautions must be observed:

 • Do not move terminals of icons that have already been used in applications. Unfortu-
nately, if you do this, the block will become disconnected in all applications where it is
used. If you are tempted to move terminals in a commonly used block, consider the
tedium of finding all applications (belonging to all users) and reconnecting the block.
ONLY MOVE TERMINALS ON BRAND NEW ICONS.

 • You must respect the default snap of 25 for schematic windows, and move terminals to
a point that falls on a multiple of 25 units. Otherwise, connecting to the terminal will
be very difficult. Normally, when the icon window opens, the grid lines are 10 units
apart. So you can place terminals any multiple of 2.5 grid lines away from the center.

 • To orient terminals so they are aiming up or down, select the terminal, type “t” (or
Selection:transform in the menu), then type “m” to move it. Repeatedly typing “t” will
continue to transform (rotate) the terminal.

A little more detail on theoct internals may be useful if you explore the files that are created
by these operations. For make-schem-icon, if the schematic is calledxxx, then the icon itself is

2-38 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

stored in “xxx/schematic/interface;”. The semicolon is part of the filename (this creates some
interesting challenges when manipulating this file in Unix, since the Unix shell interprets the
semicolon as a command delimiter). The standard stars that are normally part of the Ptolemy
distribution are stored in “$PTOLEMY/src/domains/ dom”, wheredom is the domain name
such assdf or de. The icons for the stars are stored in a subdirectory calledicons , the icons
for demo systems in a subdirectory calleddemo, and the source code for the stars are stored in
a subdirectory calledstars . Feel free to explore these directories.

Changing the number of terminals in galaxy icons

Whenever the contents of a galaxy are changed so that the new definition has different
I/O ports, the icon must be updated as well. You can do this by callingmake-schem-icon again
to replace the old icon with a new one.Vem will not allow you to overwrite the old icon if you
have instances of the old icon in any open window (regardless of whether the window is icon-
ified). Hence, you must either close those windows with “control-d” or delete the offending
icon before replacing it with a new icon. Note that changing number of terminals will also
change their layout, so that connections in existing schematics may no longer be valid.

2.10 Sounds
On some workstations (currently only SGI Indigos, HP 700s and HP 800s and Sun

SparcStations,), Ptolemy can play sounds over the workstation speaker. Below we discuss var-
ious details about playing sounds on various workstations.

2.10.1 Workstation Audio Internet Resources

Below we list several workstation audio resources on the Internet.

ftp://ftp.cwi.nl/pub/audio
Home of the audio file format FAQ.

http://orbit.cs.engr.latech.edu/AF
The AF program is an audio server similar to the X server
which allows remote machine to play audio on the local
machine. The user starts the AF program in the background and
then uses theaplay program to play sounds. AF is not directly
supported by Ptolemy, but is nonetheless useful.

http://www.spies.com/Sox/
Thesox program converts files between various formats.

ftp://ftp.hyperion.com/WorkMan
The workman program can play audio CDs on Sun SparcSta-
tions.

2.10.2 Solaris

Sun workstations running Solaris2.x can play 8kHz mu law sounds directly through
/dev/audio . The Solaris2.x/usr/openwin/bin/audiotool program can be used to
control the record and play volume and the input and output sources. In Ptolemy 0.7 and later,
the SDF Play star writes the appropriate.au file header.

The Almagest 2-39

Ptolemy Last updated: 11/6/97

Most Sun workstations can only play 8 bit u-law audio at 8khz. Sun UltraSparcs can
play a range of audio formats: 8 bit u-law, 8 bit A-law and 16 bit linear. UltraSparcs can also
play a range of sample rates, including CD (44.1khz) and DAT (48khz).

The Solaris/usr/demo/SOUND contains sample sounds and programs. See/usr/
demo/SOUND/bin/soundtool for a graphical sound program with a slightly different inter-
face. For further information about audio on Sun workstations, see the man pages in/usr/
demo/SOUND/man, and the man pages foraudioamd , audiocs , dbri , sbpro , audio , and
cdio .

SparcStation CD-ROM

Theworkman program can play audio CD’s via the Sun SparcStation CD-ROM drive.
workman can be configured to use the Solarisvolmgt program so that when an audio CD is
inserted into the drive it is automatically played. Only the Sparc5 and a few obscure Sparc10s
can get audio from the CD directly.Most other Sparcs can use a mini jump plug from the head-
phone jack on the CD-ROM to the line in on the back of the machine. You can then use
audiotool to control the inputs and outputs. Look under theVolume menu button for the
proper controls. It may take a few minutes to adjust the levels appropriately. Theworkman
program can be used as an audio source with the CGC Tycho demos (see “Tycho Demos” on
page 14-27) to demonstrate the various audio effects.

2.10.3 HPUX

Under HPUX10.x, the/opt/audio/bin/audio_editor program can play sounds.
Under HPXU9.x, use/usr/audio/bin/audio_editor .

2.10.4 Playing Audio over the Network

If you use Ptolemy to create audio files, then you may want to share them with others
over the network.There are several ways to play audio over the network, we discuss them
below.

Via the Web

Audio files can be placed on HTML pages and played by many HTML browsers over
the network. There are many proprietary commercial server packages that allow users to listen
to audio via their browser, we do not cover those packages here, instead we discuss two com-
mon formats:.au and .wav . In general, SparcStations can directly play only.au files and
Windows and Macintosh machines can play both.au and.wav files. If you use Ptolemy to
generate a.au file, the file must have a proper header. The SDFPlay star will generate that
header for you.

Under Solaris, you can use thexplaygizmo and AudioFileaplay programs to play
audio files via a browser. To set this up, place the following in the.mailcap file in your
home directory and restart your browser.

audio/*; xplaygizmo -p -q /usr/sww/AF/bin/aplay; stream-buffer-
size=2000

On the Macintosh to play the.au files under Netscape, you may need to install a
sound program. If you are using the “Berkeley Internet Kit”, then you probably already have
installed a programSoundApp that can play the Sun audio files. However, Netscape may not

2-40 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

be configured to use it. You can change this by selectingGeneral Preferences from the
Options menu, and selecting theHelpers page within that. UnderULAW audio , you
should set the file type toULAW and the application program toSoundApp .

Java

Java can play.au files over the net, but again, these files must have a proper header.

AF

The AudioFile programAF is a audio server that allows a user to listen to a sound gen-
erated on a remote machine. See the link above for more information.

2.10.5 Ptolemy Sounds

You can try playing sounds with the universe you just created. Replace theXMgraph
star inwaveform window with an instance of thePlay star (second row of the sinks palette,
right of center, with a stylized loudspeaker as an icon). Edit the parameters of thePlay star
entering 16000 for thegain parameter. (To see details about thePlay star, execute the “pro-
file” command in the “Other” menu, or type a comma (“,”) with the mouse on thePlay icon).
The SPARCstation’s speaker is driven by a codec that operates at an 8 kHz sample rate. So
running this universe for 40000 samples will produce about 5 seconds of sound. The sound
produced by the current parameters is not particularly attractive. Experiment with different
parameter values. Try PI/1000 in place of the PI/50.

An interesting variant of this system modulates a chirp instead of a pure sinusoid with
a low frequency sinusoid. A chirp is a sinusoid that sweeps over a frequency range. You could
replace one of yoursinegen instances with something that generates a chirp, and again
experiment with parameters.

A chirp can be created with three stars: aRamp, anIntegrator and aSin , connected
in series. Thestep parameter of theRamp should be very small, such as 0.0001. With this
value, you will hear some aliasing if you create five seconds of sound. TheIntegrator is in
the “arithmetic” palette, furthest on the right, and its default parameter values are fine for this
purpose. Use the “profile” command (“,”) to read about it. Note that a fourth star, aConst
(second star in “sources” palette) is needed to set theIntegrator reset input to zero.

In the SDF domain, sound output is collected into a file, and then played out in real
time. Another alternative, available in the CGC domain, is to generate the output in real-time.
Since the CGC stars have not been optimized for real-time performance, only simple signals
can be generated at this time.

This is a good time to try out your own examples. In general, when you create new gal-
axies and universes that depend on each other, it is a good idea to keep them together in one
directory. For example, all of the facets we have created so far are in the “example” directory.
You can use the extensive Ptolemy demos as models.

2.11 Hardcopy
There are several options for printing graphs and schematics developed under Ptolemy.

The first option generates a PostScript1 description and routes it to a printer or file. The second
uses the screen capture capability of the X Window system.

The Almagest 2-41

Ptolemy Last updated: 11/6/97

2.11.1 Printing oct facets

A block diagram underpigi is stored as anoct facet. To print it to a PostScript
printer, first save the facet. Do this by moving the mouse to the facet and press the “S” key to
save. The facet must be saved. Then, keeping the mouse in the facet, invoke the “print facet”
command from the “Other”pigi menu. You will get a dialog box that looks like this:

Most entries are self-explanatory. The default printer is determined by your environment vari-
able PRINTER, which you can set by putting the following line in your .cshrc file:

setenv PRINTER printername

You will have to restartpigi for this change to be registered.

If you select the option “To file only”, then PostScript code suitable for importing into
other applications will be generated. The image will be positioned at the lower left of the
page. The facets displayed in this document were generated this way and imported into
FrameMaker. See chapter 18, “Creating Documentation” on page 18-1 for more information.

The “EPSI” option will create Encapsulated Postscript output. Note that you need to
have GNU ghostscript installed to generate EPSI. See “Other useful software packages” on
page A-14 for further information about GNU ghostscript.

2.11.2 Capturing a screen image

Under the X window system and compatible systems, there are facilities for capturing
screen images. These can be used directly with Ptolemy. However, colors that work well on
the screen are not always ideal for hardcopy. For this reason, two sets of alternative colors
have been devised for use with black and white printers, these color sets are selected at startup
with the pigi command line option-bw or -cp . For black and white printers, use the-bw
command line option when starting Ptolemy, as in:

1. PostScript is a registered trademark of Adobe Systems Inc.

2-42 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

pigi -bw

The screen capture command can be used effectively. For example, under the X Window sys-
tem, the following command will print a window on a black and white PostScript printer:

xwd | xpr -width 4 -portrait -device ps -gray 4 | lpr

If you wish to grab the window manager frame, then you can use:

xwd -frame > myfile.xwd

Other alternatives include a program calledxgrabsc or some equivalent that may be avail-
able on your windowing system. A simple use of this is to generate an encapsulated PostScript
image using the following command

xgrabsc -eps -page 4x2 -o mySchematic.ps

where “mySchematic.ps” is the name of the file into which you would like to store the EPS
image. Then with the left mouse button, draw a box around the desired portion of the screen.
This command will then save an encapsulated PostScript file four inches by two inches called
mySchematic.ps. This file can then be used an a wide variety of document processing systems.
To grab an entire window, including whatever borders your window manager provides, use the
xgrabsc -click option.

Importing an image as PostScript

For example, to include this PostScript in a TeX document, include the command
\include{psfig}

in the TeX file and use the commands
\begin{figure}

\centerline{
\psfig{figure=mySchematic.ps,width=4in,height=2in}}
\caption{Ptolemy Schematic}

\end{figure}

To display the PostScript as a figure within a FrameMaker document.

The “print-facet” command can optionally generate a PostScript file suitable for inclu-
sion in a FrameMaker document. Once you have generated this file, the preferred way to
include it is as follows. First, create an anchored frame by using the "Anchored Frame" menu
choice under the "Special" menu. The anchored frame will contain two disconnected text col-
umns, one for the figure, the other for the figure paragraph that describes the figure. Create the
first disconnected text column using the graphics tools. Then, put in the text box a#include
line. For example, the text box might contain the following line:

#include /users/ptolemy/doc/users_man/figures/butterfly.ps

Unfortunately, the file must be specified using an absolute path, unless you always start
FrameMaker from the same directory. With the cursor in the newly created text column, issue
the command “Customize Text Frame” from the “Customize Layout” submenu in the “For-
mat” menu, and select “PostScript code.” When you print the document, you will get the fol-

The Almagest 2-43

Ptolemy Last updated: 11/6/97

lowing graphic:

The graphic will be anchored at the lower left of the text column you created.

The second disconnected text column is created in a similar fashion with the Graphics
tool, but text is entered into the text column rather than the include directive.

It is possible, instead of using the#include line as above, to directly import the Post-
Script file into FrameMaker. However, this makes the text document very large, and the
FrameMaker process appears to grow in size uncontrollably. Unfortunately, as of this writing,
it does not appear possible to convert these PostScript files to encapsulated PostScript, which
would have the advantage of displaying a semblance of the image.

Importing an Image as a X bitmap (XBM)

FrameMaker and some other text processing systems can import and print ordinary
color X window dumps. To have these displayed in color on the screen, the following lines
may need to appear in your X resources file:

Maker.colorImages: True
Maker.colorDocs: True

One can use various programs, such as the FrameMaker 3.1 utilityfmcolor and the Poskan-
zer Bitmap (PBM) tools to reduce a color window dump to a black and white window dump.
This will save space and avoid any dithered imitations of color. However, sincefmcolor
applies a threshold based on color intensity to the image, some foreground colors may get
mapped to white instead of black. To prevent this, use the-cp (cp stands for color printer)
command line option when startingpigi , as in

pigi -cp

Then color window dumps can be converted to black and white window dumps using the fol-
lowing FrameMaker 3.1 command:

fmcolor -i 90 filein fileout

A useful hint when using such a document editor is to turn off the labels inpigi before cap-
turing the image, and then to use the document editor itself to annotate the image. The fonts
then will be printer fonts rather than screen fonts. To turn off the labels, execute thevem com-
mand “layer-display” under thevem “Options” menu.

Gain
���
���

Gain���
���
���

Gain
��
��

Add
���
���

Mpy��
��
��

Mpy���
���
���

Mpy���
���
���

Ramp
��
��
��

PolarToRect
��
��
��
��

Sin

Cos

Cos

Exp

XYgraph

The Butterfly Curve
(T. Fay, American Mathematical

Monthly, 96(5), 1989)

2-44 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

2.12 Other useful information
In this section we cover additional information which may be useful. More advanced

topics will be covered in following chapters.

2.12.1 Plotting signals and Fourier transforms

The Ptolemy menu has a submenu calledUtilities that invokes some useful, frequently
used, predefined universes. For example, the “plot-signal” (“~”) command will plot a signal.
The signal can be read from a file or specified using the syntax for specifying the value of a
floatarray parameter inpigi . For example, if the value of thesignal parameter is:

1 [10] -1 [10]

then the “plot-signal” command will plot ten points with value 1.0 and ten points with value
-1.0. Theoptions parameter can accept any options understood by the pxgraph program (see
the pxgraph section of theAlmagest). To plot a signal stored in a file, simply use the following
syntax for thesignal parameter:

< filename

You may need to specify the full path name for the file.

Another usefulUtilities command isDFT (“^”), which reads a signal just as above and
plots the magnitude and phase of the discrete-time Fourier transform of the signal. These are
plotted as a function of frequency normalized to the sampling rate, from to . The sam-
pling frequency is assumed to be . A simple phase unwrapping algorithm is used to give
more meaningful phase plots. A radix-2 FFT is used, so the order (the number of points) of the
fast Fourier transform must be a power of two. That is, the user actually specifies

. The order can be longer than the signal, in which case, zero-padding will
occur.

2.12.2 Moving objects

Sometimes you may want to move objects around within your schematic. Use thevem
commandmove-objects (“m”) in the Selection menu to do this. You can move objects as fol-
lows:

 • Select the objects that you want to move.

 • Using the right mouse button, drag the objects to the desired location.

 • Executemove-objects, “m”.

2.12.3 Copying objects

You can create a new instance of any object in a facet by placing a point where you
want the new instance, moving the mouse to the object you wish to copy, and executing “cre-
ate” (“c”). However, this does not copy the parameter values. If you wish to create a new
instance of a star or galaxy that has exactly the same parameter values as an existing instance,
you should use thecopy-objects (“x”) command in thevem “Selection” menu. To do this, first
select the object or objects you wish to copy. Then place a point in the center of the object.
Then place a second point in the location where you would like the new object, and type “x”.
The new object starts life selected, so you can immediately move it, or type “control-u” to
unselect it. As of this writing,vem unfortunately does not allow you to copy objects from one

π– π
2π

log2 order()

The Almagest 2-45

Ptolemy Last updated: 11/6/97

facet to another.

2.12.4 Labeling a design

It is often useful to annotate a block diagram with titles and comments. Thevem edit-
label (“E”) command in the “Edit” menu will do this. It takes two arguments: a point specify-
ing the position of the label, and the name of alayer, which determines the color of the label.
Place a point where you would like the label, and then type a layer name, such as “blackSolid”
(with the quotation marks). Then type “E”. An Athena widget dialog box like that on page 2-
14 will appear, offering various options. Type the text for your label in the “Label” box. It can
contain carriage returns to get more than one line of text. To select a text height (font size) you
can move the slider to the right of the “Text Height” box. The middle button moves the slider
by large amounts, and the left and right buttons are used for fine tuning. The initial default is
40, in releases earlier than Ptolemy 0.6, the default was 100, which was too big for all but the
loudest titles. Sizes 60 and 40 work well with the overall scaling of Ptolemy facets. You can
also change the justification by clicking the left button to the right of each justification box. A
pop-up menu lists the options. The colors recommended for labels are:

blackSolid
blueSolid
brownSolid
greenSolid
orangeSolid
redSolid
violetSolid
whiteSolid
yellowSolid

2.12.5 Icon orientation

Most Ptolemy icons have inputs coming in from the left and outputs going out to the
right. To get better looking diagrams, you may sometimes wish to reorient the icons. This can
be done with thevem command “transform” (“t”). Select the icon you wish to transform and
type “t” as many times as necessary to get the desired orientation. Each time, you get a 90
degree rotation. Then execute the move-object “m” to commit the change. Notice that a 180
degree rotation results in an upside down icon. To avoid this, reflect the icon rather than rotat-
ing it. To reflect it in the vertical direction (exchanging what’s on top for what’s on the bot-
tom), select the object, type “my” (include the quotation marks), type “t” to transform, and
“m” to move. To reflect along the horizontal direction, use “mx” instead of “my”. In sum-
mary:

To reflect an object horizontally, select it, and type:

"mx" t m

To reflect it vertically, type:

"my" t m

2.12.6 Finding the names of terminals

Some stars have several terminals, each with a different function. The documentation
may refer to these terminals only by name. Unfortunately, the name of a terminal is not nor-

2-46 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

mally visible when an icon is viewed with normal scaling. However, zooming in will eventu-
ally reveal the name. The easiest way to do this is to draw a box around the terminal and open
a new window with the “o” command. Then you can zoom in if necessary. Future versions of
Ptolemy will hopefully have a better mechanism.

2.12.7 Multiple inputs and outputs

Ptolemy supports star definitions that do not specify how many inputs or outputs there
are. TheAdd andFork stars are defined this way, for instance. Consider the following two
icons, found in the “arithmetic” palette of the SDF domain:

They both represent exactly the same star, as you can verify with the “look-inside” command.
The icon on the right, however, has a peculiar double arrow at its input. This is a “multiple
input” terminal that allows you to connect any number of signals to it. All the signals will be
added. The icon on the left has two ordinary input terminals. It can add only two signals. Why
have both kinds?

Sometimes, multiple input terminals are not convenient. A rather technical reason is
given below, in the section “Auto-forking” on page 2-48. A more mundane reason is simply
that schematics often look better with two-input adders.

There are three ways to work with a star that has a multiple-input or multiple-output
connection (technically, a “multiporthole”).

First, you can just draw multiple connections to or from the double-arrow porthole
icon. This is easy, but it has some limitations. You can’t control what order the connections
will actually be made in. That doesn’t matter for anAdd star, but for some star types it’s
important to know which connection corresponds to which element of the multiporthole.
Also, the connected portholes can’t be connected to any other stars, nor can you use delay
icons, becausevem will get confused (see “Auto-forking” on page 2-48).

Second, you can attach a “bus create” or “bus break out” icon to the multiporthole ter-
minal, choosing one that provides the right number of terminals for your schematic. (These
icons are available in the “Higher order functions” section of the domain’s palette.) This
solves both of the problems with multiple connections to a single terminal. It may not make
for a very pretty schematic, however.

Third, you can make a custom icon for the star that replaces the double-arrow terminal
with the right number of simple terminals. This is what the two-inputAdd icon actually
is.This method takes the most work but may be worth it to make the nicest-looking schematic.

Let’s go through an example of how to create a star icon that has multiple input termi-
nals based on an existing Ptolemy star that supports multiple inputs. Suppose you need an icon
for an adder with eight inputs. As of this writing, unfortunately, you need to have write per-
mission in the directory in which Ptolemy icons are stored to create this new icon. Alterna-
tively, you can create your own version of the star in your own directory (see the
programmer’s manual). If you have write permission in the directory where the icons are

Add
iiii
iiii
iiii
iiii
iiii

Add
����
����
����
����
����

The Almagest 2-47

Ptolemy Last updated: 11/6/97

stored, then you can create a new icon with eight inputs as follows.

In any facet, execute thepigi command “Extend:make-star” (“*”). A dialog box
appears. Enter “Add.input=8” for the star name, “SDF” for the domain, and “$PTOLEMY/src/
domains/sdf/stars” for the star src directory (assuming this is where the source code is stored).
Note that “input” is the name of the particular multiple input that we want to specify. If you do
not know where the source code is stored, then just look-inside (“i”) an existing instance of
the star. Thevem console window and the header of the editing window that open both tell
where the star source code is. A second dialog box appears asking you where you would like
the icon put. Accept the default, “./user.pal”. Then open user.pal using “O” to see the new
eight-input adder icon. You may edit this icon, as explained in “Editing Icons” on page 2-34.

2.12.8 Using delays

In several domains, delays can be placed on arcs. A delay is not a star, but rather is a
property of the arc connecting two stars. The interpretation of the delay in the dataflow
domains (SDF, DDF, BDF, and most code generation domains) is as an initial particle on the
arc. An initial particle for the scalar data types is one whose value is zero. When the arc passes
particles containing “message” type data, a delay on the arc will create an “empty” message.
Most often, the destination star of the arc must be able to interpret such “empty” messages
explicitly in context of the user-defined type because a “zero” might have different meanings
depending on the type. Any feedback loop in the SDF domain must have a delay, or the com-
putation in the loop would not be able to begin.

To use these delays inpigi , the user places a delay icon on top of the wire connecting
two instances. The delay icon is a white diamond with a green border in the SDF and system
palettes. You can specify the number of delays by executingedit-params with the cursor on
top of the delay icon.

Other domains (besides dataflow) also use delays, but the meaning can be quite differ-
ent. See the appropriate chapter describing the domain.

A new feature added to Ptolemy releases greater than 0.5 is the support of initializable
delays for simulation domains. These delays use a different icon from the old white diamond
with green borders. The new delays use an icon that is a green diamond with a white border
and has an “I” in the middle of the diamond to signify that it is initializable. We have kept
around the old delays for backward compatibility, but the syntax for the two is quite different
and the user should probably use just one type to prevent confusion.

The syntax for the new delays is that the arguments to the delay are the initial value
themselves. There is no value in the argument that signifies the number of delay particles.
Instead, a count of the number of values in the delay arguments is the number of delay parti-
cles that will be added to the buffer of the arc corresponding to the delay. These arguments are
specified as a string and are parsed according to the data type associated to the arc. For exam-
ple, an initializable delay with parameter “1 0 1” on an arc passing float particles will have a
buffer with three initial particles. The three particles will have the values 1.0, 0.0, and 1.0
respectively. If the arc was working on complex particles instead, an error would be given
since complex numbers must be specified using a pair of numbers. A proper argument list for
the delay in that case would be “(1,0) (0,0) (1,1)”. The shorthand for declaring multiple values
in the argument list is valid, just as in the arraystate case. For example, an argument list of “2

2-48 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

[5]” would specify five initial particles with value 2.

Initializable delays also work on arcs which handle matrix particles. The argument
string in this case is parsed differently than above. The first two values in the last specify the
number of rows and columns in the initial matrix, respectively. For example, an initializable
delay with parameter “1 2 3 [2]” on an arc passing integer matrices would place one matrix
with dimension one row by two columns, whose entries all have the value three, in the buffer
for that arc. For the case where multiple initial matrices are desired, simply give enough
entries in the delay argument string to fill multiple numbers of initial matrices of the given
size. For example, an initializable delay with parameter “1 2 3 3 4 4 5 5” on an arc passing
integer matrices would create three matrices, all of dimension one row by two columns, such
that the first initial matrix on the buffer has all entries equal to three, the second has all entries
equal to four, and the last matrix has all entries equal to five.

2.12.9 Auto-forking

In pigi , a single output can be connected to any number of inputs, as one would
expect. The interpretation in most domains is that the one output is broadcast to all the inputs.
There are several point-to-point connections, therefore, represented by the net.

However, there are restrictions. To understand these restrictions, it is worth explaining
that vem stores connectivity information in the form of netlists, simply listing all terminals
that are connected together. If a delay appears somewhere on a net, and that net has more than
one point-to-point connection, then it is not easy to determine for which connection(s) the
delay is intended. Consequently, at the time of this writing, delays are disallowed on nets with
more than one connection. If you attempt to put a delay on such a net, then when you try to
run the system, an error message will be issued, and the offending net will be highlighted. To
get rid of the highlighting, execute thepigi command “Edit:clear-marks”. To fix the prob-
lem, delete the offending net, and replace it with one or morefork stars and a set of point-to-
point connections. An incorrect and correct example are shown below:

This example also illustrates the use of a delay on a feedback loop. The delay is required here,
assuming we are in the SDF domain, because without it, deadlock would ensue. This is due to
the fact that thefork star cannot fire until theadd star does, but theadd star cannot fire until
the fork star produces its output.

A second restriction is that forks must be explicit when connected directly to input or

Add
iii
iii
iii

�����
�����
�����
�����
�����

����
����
����
����
����

		
		
		

Add
iii
iii
iii

����
����
����
����
����

�����
�����
�����
�����
�����

		
		
		

fork

Incorrect Correct

The Almagest 2-49

Ptolemy Last updated: 11/6/97

output terminals of a galaxy. An incorrect and correct example are shown below:

There is also a more subtle restriction. Suppose two outputs are connected to a single
multiple-input terminal. Then neither of these outputs can also be connected to some other
input terminal. If they are, Ptolemy will issue the error message “multiple output ports found
on the same node.” The reason this happens is simple.Vem knows nothing about multiple
inputs, so it sees a net with more than one output and more than one input. Ptolemy is not
given enough information to reconcile this and figure out which outputs should be connected
to which inputs. To avoid this problem, it is again necessary to use explicit fork stars, as
shown below:

Another solution, which may look nicer than inserting an explicit fork star, is to
replace the multiple-input terminal with several simple terminals. You can do that by inserting
a “bus create” icon or by using a different icon for the multiple-input star, as was explained in
“Multiple inputs and outputs” on page 2-46.

All of the above restrictions may be eliminated in future versions.

2.12.10 Dealing with errors

Ptolemy is composed of several components, as shown in figure 2-6 on page 2-22.
When errors occur, it helps to know which component detected the error so that it can be cor-
rected.

When errors occur invem, vem prints the error in the console window. For example, if
you enter a point argument and executecreate when the cursor is not over an instance, then
vem displays the message “Can’t find any instance under spot.” Usually,vem errors are easy to
fix. In this case,vem expects the user to specify the instance to be created.

����
����
����
����

����
����
����
����

����
����
����
����
����

Gain����
����
����
����

Gain
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

Gain����
����
����
����

Gain
����
����
����

fork

Incorrect Correct

����
����
����
����

����
����
����
����

����
����
����
����

Gain
���
���
���

Gain���
���
���

����
����
����
����

Add
���
���
���

Gain���
���
���

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����
�����

Gain
���
���
���

Gain���
���
���

����
����
����
����

Add
��
��
��

Gain����
����
����

fork

Incorrect Correct

2-50 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

Errors in thepigiRpc process can occur when any of thepigi commands are
invoked. The error messages, in this case, are displayed in a popup window, which is much
more helpful. Error messages may also be displayed in the xterm window in whichpigi was
started. In addition,pigi often highlights in red the object in the schematic associated with
the error. When this happens, you can execute theclear-marks command to clear the high-
lighting. If such an error occurs and the reason for the error is not obvious, try deleting the
indicated objects and redrawing them.

2.12.11 Copying and moving designs

In one of our examples, we usedcp -r to make a copy of a facet. In general, however,
copying entire designs this way does not work. For it to work in the general case, you must
also change some data in the facets that you copy. In particular, each facet has pointers to the
icons it uses. If you move a galaxy, for example, then any pointer to the icon for that galaxy
becomes invalid (or “inconsistent” inoct terminology).

A utility program calledmasters has been provided for this purpose. This replaces
the program from theocttools distribution, calledoctmvlib , that was used with earlier
versions of Ptolemy.

Palettes, star icons, galaxies, and universes are stored asoct facets. Special care is
required when moving or copyingoct facets. First, as emphasized before, everyoct facet is
stored as a directory tree, so a copy should usecp -r . Next, keep in mind that there may be
pointers to the moved object in other facets. If you know where all these pointers might be,
then moving facets is easy. If you do not know where all the pointers are, then your only prac-
tical choice is to leave a symbolic link in place of the old location pointing to the new.

Moving facets

Suppose you have developed a fantastic new galaxy calledalphaCentaur , and you
wish to install it in a directory that is available for general use. Since you have developed the
galaxy, you know where it is used. The galaxy icon itself is stored in two facets:

alphaCentaur/schematic/contents;

alphaCentaur/schematic/interface;

The first of these stores the schematic, the second stores the icon. The peculiar semicolon at
the end is actually part of the file name. First move the icon:

mv alphaCentaur destinationDirectory

This moves the entire directory tree. You must now change all references to the icon so that
they reflect the new location. Suppose you have a test universe calledalphaTest . This
should be modified by running themasters program as follows:

% masters alphaTest
Running masters on wave
Pathname to replace (? for a listing):

User input is shown in bold type; program output is shown in regular (not bold) type. Enter a
question mark to get a list of all icons referenced in the facet:

The Almagest 2-51

Ptolemy Last updated: 11/6/97

Pathname to replace (? for a listing): ?
Pathnames currently found in the facet:

~yourname/oldDirectory/alphaCentaur
$PTOLEMY/src/domains/sdf/icons/Ramp
$PTOLEMY/src/domains/sdf/icons/Sin
$PTOLEMY/src/domains/sdf/icons/XMgraph

Pathname to replace (? for help):

The last three items are pointers to official Ptolemy icons. There is no need to change these.
You should now enter the string you need to replace and the replacement value:

Pathname to replace (? for help): ~yourname/oldDirectory
New pathname: ~yourname/destinationDirectory

Next, usemasters the same way to modify any palettes that reference the moved icon. For
instance, the “user.pal” palette in the directory in which you developedAlphaCentaur is a
likely candidate. If you miss a reference,oct will issue an error message when it tries to open
the offending palette, indicating that it is inconsistent.

2.12.12 Environment variables

The following environment variables can be set to customize certain behavior. These should
be set (normally) in the user’s.cshrc file.

PIGIBW This variable tells Ptolemy to display all of its windows in black and
white.

PIGIRPC Specifies an alternative executable file for Ptolemy. Ptolemy is an
extensible, modifiable system. Many users will wish to create their own
versions to incorporate their own extensions. Details on how to write
extensions are given in the programmer’s manual, volume 3 of the
Almagest. Once you (or someone else) has created a customized ver-
sion, you can invoke it by specifying the precise name of the executable
(complete with its full path, or path relative to an environment variable
or user’s name). The default executable is$PTOLEMY/bin.$PTARCH/
pigiRpc . An alternative specification might be:

setenv PIGIRPC ~myname/Ptolemy/bin.sol2.5/pigiRpc

PT_DISPLAY Determines the text editor used to display text files. This determines
how text files will be displayed to the user. The value of this variable is
a printf format string with one%s in it. That%s is replaced with the
name of the file to be viewed. In the default, thePT_DISPLAY variable
is not set, and the Tycho editor is used.For example, to view files in a
new xterm window with thevi editor, put the following line in your
.cshrc file

2-52 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

setenv PT_DISPLAY "xterm -e vi %s"

and source the file before startingpigi .

PTARCH This variable specifies the computer architecture you are using such as
sol2.5 . The architecture setting is returned by the$PTOLEMY/bin/
ptarch script.

PT_DEBUG If set, this specifies the script to execute when starting pigi in debug
mode (using the-debug option). An example of a suitable script is
ptgdb , located in$PTOLEMY/bin . This script invokesgdb , the Gnu
debugger, insideemacs.

PTMATLAB_REMOTE_HOST
This variable, if set, specifies the name of a remote machine on which
to run Matlab if Ptolemy ever invokes Matlab.

PTOLEMY This variable points to the root directory of where Ptolemy is installed.

PTOLEMY_SYM_TABLE
This variable is an internal symbol that is used during dynamic linking.

PTPWD This variable gives the command to print the current working directory,
which is usually pwd.

TYCHO This variable points to the root directory of where Tycho is installed.

Ptolemy is based on Tcl and [incr Tcl]. These packages set the following environment
variables: TCL_LIBRARY, TK_LIBRARY, ITCL_LIBRARY , ITK_LIBRARY , and
IWIDGETS_LIBRARY. See$PTOLEMY/bin/ptsetup.csh .

Below we discuss a few Unix system environment variables that affect how Ptolemy
functions.

DISPLAY Specifies what X11 Display Ptolemy should start up on. If you are
unfamiliar with $DISPLAY, then see “Introduction to the X Window
System” on page B-1.

GCC_EXEC_PREFIX
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
LIBRARY_PATH
These variables are used by the Gnu compilers to find components of
the compilers, see “Gnu Installation” on page A-7.

HOME This variable points to the root directory of the user’s account. This
variable must be set foritclsh and the software that usesitclsh
(ptcl andtycho) to work properly.

LD_LIBRARY_PATH
This variable is used by the run time linker to find shared libraries. If
you are using prebuilt binaries, and your Ptolemy installation is not at

The Almagest 2-53

Ptolemy Last updated: 11/6/97

/users/ptolemy , then you may need to set this variable, see “pigi
fails to start up, giving shared library messages” on page A-17. See also
your Unix ld man page, and “Shared Libraries” on page D-1.

PATH This variable contains a list of directories of executable programs. The
order of the directories listed is very important. See$PTOLEMY/
.cshrc for guidelines on the proper order.

PRINTER Determines the default printer used for hardcopy output. This is used to
determine the default printer when printingvem facets. If you use the
provided makefile to print Ptolemy documentation, then this environ-
ment variable will determine the printer used. In$PTOLEMY/.cshrc
the pertinent line reads:

setenv PRINTER lw

You should replacelw with whatever printer name you are using.

SHLIB_PATH Hewlett-Packard systems use SHLIB_PATH instead of
LD_LIBRARY_PATH to find shared libraries. See the
LD_LIBRARY_PATH description above for details.

USER This variable gives the name of the user running Ptolemy. This variable
is set by every shell. In your.cshrc file, add the following line:

if (! $?USER) setenv USER $LOGNAME

Many of Ptolemy’s domains rely on additional environment variables. The CG56
domain relies onS56DSP to indicate the path name where the tools for the S56X Motorola
56000 board are installed andQCKMON to indicate the path name where the QCK Monitor
tools are installed. The VHDL domain relies onSYNOPSYS to indicate the root directory for
the installation of Synopsys tools andSIM_ARCH to be set to the computer architecture you
are using for the Synopsys tools.

2.12.13 Command-line options

The pigi program is actually acsh script, located in$PTOLEMY/bin . That script
starts two processes:vem andpigiRpc . The usage is

pigi [options] [facet-name]

The optional facet name specifies avem facet that should be opened upon starting the system.
The command-line options are:

-bw Use black and white, even on a color monitor. This is useful for generating
readable hardcopy from X Window dumps.

-cp Fine tune the colors to improve the quality of hardcopy made on a color printer
from X Window dumps.

-console Open a command console through which the user can issue Tcl commands.

-debug Invoke Ptolemy running undergdb , a symbolic debugger. If a version of the
pigiRpc executable with debug symbols can be found, the script will it. If

2-54 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

$PIGIRPC is set then that binary is used. If$PIGIRPC is not set, then the pro-
gram first looks for

$PTOLEMY/bin.$PTARCH/pigiRpc.debug
If that is not found, then the program looks for

$PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug
If that is not found, then

$PTOLEMY/bin.$PTARCH/pigiRpc
is used. If thePT_DEBUG environment variable is set, then its value is the name
of a script used to invoke the debugger. For example, the scriptptgdb , located
in $PTOLEMY/bin , invokesgdb underemacs.

-ptiny Invoke the smallest version of Ptolemy, if it can be found. The executable that
is used is calledpigiRpc.ptiny . This version contains only the SDF and DE
domains, but without the image processing stars and the user-contributed stars.

-ptrim Invoke an intermediate-sized version of Ptolemy, if it can be found. The exe-
cutable used is calledpigiRpc.ptrim . This version contains only SDF, BDF,
DDF, DE, and CGC domains, but without the parallel targets.

-display display-name
Specify an alternative display to use. If this option is missing, then theDIS-
PLAY environment variable is used.

-help print out the usage information

-rpc ptolemy-executable
Specify an alternative Ptolemy executable to use. The default is$PTOLEMY/
bin.$PTARCH/pigiRpc .

-xres X-resource-filename
Specify an X resource file to merge before running Ptolemy. The standard X
programxrdb is used with the-merge option.

2.13 X Resources
A large number of X window resources can be set by a user to customize various

aspects of the user interface. The best way to explore these is to examine the file$PTOLEMY/
lib/pigiXRes9 for the defaults. These defaults can typically be overridden in the
user’s.Xdefaults file, and incorporated into the X environment using the programxrdb . For
example,

Vem*font: *-times-medium-r-normal--*-120-*

changes the font in thevem console window, menus, dialog boxes, etc., to something smaller
than the default. Also,

Vem*background: antiqueWhite

changes the background in thevem console window and dialog boxes to the color “antique-
White.”

The Almagest 2-55

Ptolemy Last updated: 11/6/97

2.14 Tk options
In Tycho, many of the user interface features are controlled through the preferences

manager, which is available under the TychoHelp menu. In the older non-Tycho Tk windows,
a number of user interface options are specified through Tk options rather than directly
through X resources. These are defined in the file$PTOLEMY/lib/tcl/ptkOptions.tcl .
One way to override these is to start pigi with a console window:

pigi -console

and in the console window, change the options. For example, the command

option add Pigi*background gray98

changes the dialog box backgrounds to a very light gray. This option was used to create the X
window dumps used in this manual.

2.15 Multi-domain universes
The domain of a facet is set using thepigi “Edit:edit-domain” or “d” command. This

command causes a checklist to appear listing all domains currently linked into the system. All
examples in the SDF Demo palette are one-domain applications, using only SDF. Several
examples of multi-domain applications can be found in the DDF and DE Demo palettes. It is
instructive to explore these applications, using the edit-domain command at all levels of the
hierarchy to see what domains are used. In addition, the section “Wormholes” on page 12-4 in
the DE chapter contains a useful discussion on mixing the DE domain with other domains in
Ptolemy.

Recall that aWormhole in Ptolemy is a block that has a different domain on the out-
side than on the inside. Inpigi , wormholes look exactly like galaxies -- in fact, they are both
just facets with ports. The only difference is that the domain is different on the inside than on
the outside. Thus, whether a particular facet compiles into a plain galaxy or a wormhole
depends on whether it is referenced from an outer facet of the same domain or a different
domain. You get a wormhole if the domains are different.

To build multi-domain applications, it is necessary to understand the models of com-
putation in each domain, to ensure that application will behave consistently at the domain
boundaries. For this, it is necessary to refer to the domain chapters in this user’s manual.

In some domains, it is possible to select one of several targets, which manage the exe-
cution of the domain in different ways. The target for a facet is set using thepigi “Edit:edit-
target” or “T” command. This command causes a checklist to appear listing all targets avail-
able for the current domain. If a target is selected (rather than pushing “Cancel”), another dia-
log box appears containing whatever parameters the selected target may have. Both the
current target selection and the parameters for it are recorded with the facet when you execute
“save-window”.

If “edit-target” is executed in a galaxy facet (not a universe facet), then it offers a
choice labeled<parent> in addition to the target(s) for the facet’s domain. This choice sim-
ply means “use the outer facet’s target selection and target parameters”. If you select this
choice, then no target parameter dialog box appears.

The<parent> target choice is extremely important, because . If you choose anything
other than<parent> , then your galaxy will always be compiled into a wormhole, so that it

2-56 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

can have a separate target from the outer galaxy or universe. A wormhole will be created even
if you have in fact selected the same domain, same target and same target parameters as in the
outer facet ---pigi doesn’t check. Thus, if you accidentally set the target choice to something
besides<parent> , you’ll end up with wormholes rather than plain galaxies. This can cause
unexpected behavior, because the semantics of an XXX-in-XXX wormhole aren’t necessarily
the same as just embedding a galaxy into another galaxy. (DE domain, in particular, has some
oddities with DE-in-DE wormholes as of this writing.) Even if the semantics are unaffected, a
wormhole will be slower than a plain galaxy. So be careful to use<parent> in galaxies,
unless you really intend to create a wormhole having a different target. In most cases, you
only want to make specific target selections in universe facets.

Chapter 3. ptcl: The Ptolemy
Interpreter

Authors: Joseph T. Buck
Wan-Teh Chang
Edward A. Lee

Other Contributors: Brian L. Evans
Christopher Hylands

3.1 Introduction
There are two ways to use Ptolemy: as aninterpreter and agraphical user interface.

The Ptolemy Tcl interpreterptcl conveniently operates on dumb terminals and other envi-
ronments where graphical user interfaces may not be available, and is described in this chap-
ter. The Ptolemy graphical user interfacepigi is described in chapter 2. Whenpigi is run
with the -console option, a ptcl window will appear. This combination allows the user to
interact with Ptolemy using both graphical and textual commands. Invokingtycho , the
Ptolemy syntax manager also brings up a ptcl interpreter window. To invoketycho from
pigi , move the mouse over a facet and type ay.

In Ptolemy 0.7, thetysh binary contains a prototype of a new interface to the kernel
called pitcl. If you starttycho with the-pigi , -ptrim , or -ptiny options, then you will be
running pitcl, not ptcl. Pitcl is not backward compatible with ptcl, and the pitcl interface is
bound to change over time. See the Tycho documentation in$TYCHO/typt/doc/inter-
nals/pticl.html for further information.

The Ptolemy interpreter,ptcl , accepts input commands from the keyboard, or from a
file, or some combination thereof. It allows the user to set up a new simulation by creating
instances of blocks (stars, galaxies, or wormholes), connecting them together, setting the ini-
tial values of internal parameters and states, running the simulation, restarting it, etc. It allows
simulations to be run in batch mode. We have used batch mode simulation to run regression
tests that compare runs from different versions of Ptolemy.

Ptcl is based on John Ousterhout’s Tcl (tool command language), which is an exten-
sible interpreted language. All the commands of Tcl are available inptcl . This interface is
more convenient than the graphical interface when large complex universes are being created
automatically by some other program. Some users also find it more convenient when using a
symbolic debugger to debug a new piece of code linked to Ptolemy.

Ptcl extends the Tcl interpreter language by adding new commands. The underlying
grammar and control structure of Tcl are not altered. Commands in Tcl have a simple syntax:
a verb followed by arguments. This document will not explain Tcl; please refer to the manual
entry at$PTOLEMY/tcltk/itcl/html/tcl7.6/Tcl.n.html which is included with the
Ptolemy distribution. Two other excellent references on Tcl are books by Ousterhout [Ous94]

3-2 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

and Welch [Wel95]. This chapter describes only the extensions to Tcl made byptcl .

3.2 Getting started
Follow the instructions in the section “Setup” on page 2-1. Now typeptcl to invoke

the Ptolemy interpreter. It is also possible to specify a file of interpreter commands as a com-
mand line argument. See “Loading commands from a file” on page 3-13.

3.3 Global information
The interpreter has aknown list containing all the classes of stars and galaxies it cur-

rently knows about. New stars can be added to the known list at run time only by using the
incremental linking facility, but this has restrictions (see thelink command below). You can
also make your own copy of the interpreter with your own stars linked in. Galaxies, however,
are easy to add to the known list (see thedefgalaxy command below).

The interpreter also has acurrent galaxy. Normally, this is the most recently defined
universe, or the most recent universe specified with thecuruniverse command. During the
execution of adefgalaxy command, which defines a galaxy, the current galaxy is set to be
the galaxy being defined. After the closing curly brace of thedefgalaxy command, the cur-
rent galaxy is reset to the previous current universe.

3.4 Commands for defining the simulation
This section describes commands to build simulations and add stars, galaxies, states,

and the connections among them. The commands are summarized in tables 3-1, 3-2 and 3-3.

3.4.1 Creating and deleting universes

The command

univlist

will return the list of names of universes that currently exist. The command

newuniverse ? name? ?dom?

creates a new, empty universe namedname (default “main”) and makes it the current universe
with domaindom (default current domain). If there was previously a universe with this name,
it is deleted. Whatever universe was previously the current universe is not affected, unless it
was namedname. To remove a universe, simply issue the command:

deluniverse ? name?

If no argument is given, this will delete the current universe. After this, the current universe
will be “main.” To find out what the current universe is, issue the command:

curuniverse

With no arguments, this returns the name of the current universe. With one argument, as in:

curuniverse name

it will make the current universe name equal to that argument. A universe can be renamed
using either syntax below:

renameuniv newname

The Almagest 3-3

Ptolemy Last updated: 11/6/97

renameuniv oldname newname

With one argument,renameuniv renames the current universe tonewname. With two argu-
ments, it renames the universe namedoldname to newname. Note that any existing universe
namednewname is deleted.

3.4.2 Setting the domain

Ptolemy supports multiple simulation domains. Before creating a simulation environ-
ment and running it, it is necessary to establish the domain. The interpreter has acurrent
domain which is initially the default domainSDF. The command

domain domain-name

changes the current domain; it is only legal when the current galaxy is empty. The argument
must be the name of a known domain. The command

TABLE 3-1: First third of the summary of ptcl commands. Arguments are in italic; literals are in
Courier ; optional arguments are enclosed in question marks. A block name is indi-
cated by b1 or b2 and a port name by p1 or p2.

command arguments description page

alias galport b1 p1 Connect a galaxy port to a block port. 3-6

animation ?on | off? Enable or disable printing of star names as they fire. 3-11

busconnect b1 p1 b2 p2 w
?delay?

Form a bus connection of widthw between two multi-
portholes.

3-6

cancelAc-
tion

action_handle Cancel an action previously registered usingregisterAc-
tion.

3-15

cd directory Change the current directory to the one given. 3-14

connect b1 p1 b2 p2 ?delay? Form a connection between two portholes. 3-5

cont ?num? Continue executing the current universenum times
(default: 1).

3-10

curuniverse ?name? Print or set the name of the current universe. 3-2

defgalaxy name{ body} Define a new galaxy class. 3-8

delnode name Delete the named node from the current galaxy. 3-12

delstar name Delete the named star from the current galaxy. 3-11

deluniverse ?name? Delete the current or named universe. 3-2

descriptor ?block? Return the descriptor ofblock (default: current galaxy). 3-9

disconnect b1 p1 Remove the connection going to the specified port. 3-11

domain ?name? Set the domain, or print the name of the current domain. 3-3

domains List the known domains. 3-3

exit Exit ptcl. 3-15

halt Request that the current simulation stop. 3-10

help ?command? Print a short description ofcommand, or help onhelp if
the argument is omitted.

3-15

knownlist ?domain? List the known blocks ofdomain (default: current
domain).

3-9

3-4 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

domain

returns the current domain. It is possible to create wormholes—interfaces between domains—
by including adomain command inside a galaxy definition. The command

domains

lists the domains that are currently linked into the interpreter.

3.4.3 Creating instances of stars and galaxies

The first step in any simulation is to define the blocks (stars and galaxies) to be used in
the simulation. The command

star name class

creates a new instance of a star or galaxy of classclass, names itname, and inserts it into the
current galaxy. Any states in the star (or galaxy) are created with their default values. While it
is not enforced, the normal naming convention is thatname begin with a lower case letter and
class begin with an upper case letter (this makes it easy to distinguish instances of a class

command arguments description page

link objfile Incrementally linkobjfile into ptcl. 3-14

listobjs class ?name? List states, ports, or multiports in the named block (default:
current galaxy).

3-9

matlab command ?arg1?
?arg2?

Manage a Matlab process and evaluate Matlab commands. 3-16

mathematica command ?arg1?
?arg2?

Manage a Mathematica process and evaluate commands. 3-16

multilink linker_args code.oLink arbitrary code into the interpreter. 3-14

newstate name type value Define a state for the current galaxy with a default value. 3-6

newuniverse ?name? ?domain?Create a new empty universe (defaults: “main” and the cur-
rent domain).

3-2

node name Create a node for use bynodeconnect. 3-6

nodeconnect b1 p1 node
?delay?

Connect a porthole to a specified node. 3-6

numports b1 p1 number Force a multiporthole to have a given number of portholes. 3-7

permlink linker_args code.oLink arbitrary code into the interpreter permanently. 3-14

pragma b1 b2 name value Set pragmaname to value for blockb2 in parentb1. 3-12

pragmaDe-
faults

target print default values of the pragmas for the target 3-12

print ?b1? print a description of blockb1 (or the current galaxy) 3-9

TABLE 3-2: Second third of the summary of ptcl commands. Arguments are in italic; literals
are in Courier ; optional arguments are enclosed in question marks. A block name
is indicated by b1 or b2 and a port name by p1 or p2.

The Almagest 3-5

Ptolemy Last updated: 11/6/97

from the class itself).

3.4.4 Connecting stars and galaxies

The next step is to connect the blocks so that they can pass data among themselves
using theconnect command. This forms a connection between two stars (or galaxies) by
connecting their portholes. A porthole is specified by giving the star (or galaxy) name fol-
lowed by the port name within the star. The first porthole must be an output porthole and the
second must be an input porthole. For example:

connect mystar output yourstar input

The connect command accepts an optional integer delay parameter. For example:

connect mystar output yourstar input 1

This specifies one delay on the connection. The delay parameter makes sense only for

TABLE 3-3: Final third of the summary of ptcl commands. Arguments are in italic; literals are in
Courier ; optional arguments are enclosed in question marks. A block name is indi-
cated by b1 or b2 and a port name by p1 or p2.

command arguments description page

registerAc-
tion

pre | post
command

Register a Tcl command to be executed before or after
stars fire.

3-15

renameuniv ?oldname?
newname

Rename a universe (default: current universe). 3-2

reset ?name? Empty a universe (default: “main”). 3-11

run ?num? Run the current universenum times (default: 1). 3-10

schedtime ?actual? Print the normalized (default) or unnormalized current
scheduler time.

3-11

schedule Generate and print a schedule (only valid for some
domains).

3-10

seed number Change or print the random number seed. 3-13

setstate b1 state_name valueChange the state of a block tovalue. 3-7

source filename Read commands from the specified file. 3-13

star name class Create a named instance of a star from the given class. 3-4

stoptime Return the stop time of the current run. 3-10

statevalue b1 name
?current |
initial?

Print the current or initial value of statename in block
b1.

3-15

target ?newtarget? Change or display the name of the current target. 3-12

targetparam name ?value? Change or display the value of a target state. 3-12

targets ?domain? List targets usable withdomain (default: current
domain).

3-12

topblocks ?block_or_classnam
e?

List top-level blocks of the named block (default: cur-
rent galaxy).

3-15

univlist List the names of all defined universes. 3-2

wrapup Invoke the wrapup method of all the blocks. 3-10

3-6 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

domains that support it. The delay argument may be an integer expression with variables
referring to galaxy parameters as well.

One or both of the portholes may really be aMultiPortHole . If so, the effect of
doing the connect is to create a new porthole within theMultiPortHole and connect to that
(see also thenumports command).

3.4.5 Netlist-style connections

As an alternative to issuing connect commands (which specify point-to-point connec-
tions) you may specify connections in a netlist style. This syntax is used to connect an output
to more than one input, for example (this is calledauto-forking). Two commands are provided
for this purpose. Thenode command creates a node:

node nodename

Thenodeconnect command connects a porthole to a node:

nodeconnect starname portname nodename ?delay?

Any number of portholes may be connected to a node, but only one of them can be an output
node.

3.4.6 Bus connections between MultiPortHoles

A pair of multiportholes can be connected with a bus connection, which means that
each multiporthole hasN portholes and they all connect in parallel to the corresponding port
in the other multiporthole. The syntax for creating such connections is

busconnect srcstar srcport dststar dstport width ?delay?

Herewidth is an expression specifying the width of the bus (how many portholes in the mul-
tiportholes); anddelay is an optional expression giving the delay on each connection. The
other arguments are identical to those of theconnect command.

3.4.7 Connecting internal galaxy stars and galaxies to the outside

When you define a new galaxy there are typically external connections to that galaxy
that need to be connected through to internal blocks. Thealias command is used to add a
porthole to the current galaxy, and associate it with an input or output porthole of one of the
contained stars within the galaxy. An example is:

alias galaxyin mystar starin

This also works ifstarin is aMultiPortHole (the galaxy will then appear to have a multi-
porthole as well).

3.4.8 Defining parameters and states for a galaxy

A state is a piece of data that is assigned to a galaxy and can be used to affect its
behavior. Typically the value of a state is coupled to the state of blocks within the galaxy,
allowing you to customize the behavior of blocks within the galaxy. Aparameter is the initial
value of a state. Thenewstate command adds a state to the current galaxy. The form of the
command is

newstate state-name state-class default-value

Thestate-name argument is the name to be given to the state. Thestate-class argument

The Almagest 3-7

Ptolemy Last updated: 11/6/97

is the type of state. All standard types are supported (see table 2-6 on page 2-33). The
default-value argument is the default value to be given to the state if the user of the galaxy
does not change it (using thesetstate command described below). Thedefault-value
specifies the initial value of the state, and can be an arbitrary expression involving constant
values and other state names; this expression is evaluated when the simulation starts. The fol-
lowing state names are predefined:YES, NO, TRUE, FALSE, PI . YES andTRUE have value 1;
NO andFALSE have value 0;PI has the value 3.14159... Some examples are:

newstate count int 3
newstate level float 1.0
newstate title string "This is a title"
newstate myfreq float galaxyfreq
newstate angularFreq float "2*PI*freq"

The full syntax of state initial value strings depends on the type of state, and is explained in
“Parameters and states” on page 2-14.

3.4.9 Setting the value of states

Thesetstate command is used to change the value of a state. It can be used in three
contexts:

 • Change the value of a state for a star within the current galaxy.

 • Change the value of a state for a galaxy within the current galaxy.

 • Change the value of a state within the current galaxy.

The latter would normally be used when you want to perform multiple simulations using dif-
ferent parameter values. The syntax forsetstate is:

setstate block-name state-name value

Here,

 • block-name is either the name of a star or a galaxy that is inside the current galaxy,
and it is the block for which the value of the state is to be changed. It can also bethis ,
which says to change a state belonging to the current galaxy itself.

 • state-name is the name of a state which you wish to change.

 • value is the new value for the state. The syntax forvalue is the same as described in
the newstate command. However, the expression forvalue may refer to the name
of one or more states in the current galaxy or an ancestor of the current galaxy.

An example of the use ofsetstate is given in the section describingdefgalaxy below.

3.4.10 Setting the number of ports to a star

Some stars in Ptolemy are defined with an unspecified number of multiple ports. The
number of connections is defined by the user of the star rather than the star itself. Thenum-
ports command applies to stars that contain suchMultiPortHole s; it causes a specified
number ofPortHole s to be created within theMultiPortHole . The syntax is

numports star portname n

wherestar is the name of a star within the current galaxy,portname is the name of aMul-

3-8 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

tiPortHole in the star, andn is an integer, representing the number ofPortHole s to be cre-
ated. After the portholes are created, they may be referred to by appending#i , wherei is an
integer, to the multiporthole name, and enclosing the resulting name in quotes. The main rea-
son for using this command is to allow the portholes to be connected in random order. Here is
an example:

star summer Add
numports summer input 2
alias galInput summer "input#1"
connect foo output summer "input#2"

3.4.11 Defining new galaxies

Thedefgalaxy command allows the user to define a new class of galaxy. The syntax
is

defgalaxy class-name {
command
command
...

}

Hereclass-name is the name of the galaxy type you are creating. While it is not required,
we suggest that you have the name begin with a capital letter in accordance with our standard
naming convention — class names begin with capital letters. Thecommand lines may be any
of the commands described above —star , connect , busconnect , node , nodeconnect ,
numports , newstate , setstate , or alias . The defined class is added to the known list,
and you can then create instances of it and add them to other galaxies. An example is:

reset
domain SDF
defgalaxy SinGen {

domain SDF
The frequency of the sine wave is a galaxy parameter
newstate freq float "0.05"
Create a star instance of class "Ramp" named "ramp"
star ramp Ramp
The ramp advances by 2*pi each sample
setstate ramp step "6.283185307179586"
Multiply the ramp by a value, setting the frequency
star gain Gain
The multiplier is set to "freq"
setstate gain gain "freq"
Finally the sine generator
star sin Sin
connect ramp output gain input
connect gain output sin input
The output of "sin" becomes the galaxy output
alias output sin output

}

In this example, note the use of states to allow the frequency of the sine wave generator to be
changed. For example, we could now run the sine generator, changing its frequency to “0.02”,

The Almagest 3-9

Ptolemy Last updated: 11/6/97

with the interpreter input:
star generator SinGen
setstate generator freq "0.02"
star printer Printer
connect generator output printer input
run 100

You may include adomain command within adefgalaxy command. If the inside domain is
different from the outside domain, this creates an object known as aWormhole , which is an
interface between two domains. An example of this appears in a later section.

3.5 Showing the current status
The following commands display information about the current state of the interpreter.

3.5.1 Displaying the known classes

The knownlist command returns a list of the classes of stars and galaxies on the
known list that are usable in the current domain. The syntax is

knownlist

It is also possible to ask for a list of objects available in other domains; the command

knownlist DE

displays objects available in theDE (discrete event) domain.

3.5.2 Displaying information on a the current galaxy or other class

If invoked without an argument, theprint command displays information on the cur-
rent galaxy. If invoked with an argument, the argument is either the name of a star (or galaxy)
contained in the current galaxy, or the name of a class on the known list, and information is
shown about that star (or galaxy). The syntax is

print
print star-name
print star-class

The command

descriptor ? name?

will print a short description of a block in the current galaxy or on the known list, or of the
current galaxy ifname is omitted. The commands

listobjs states ? name?
listobjs ports ? name?
listobjs multiports ? name?

will list the names of the states, ports, or multiportholes associated with the named star or gal-
axy.

3.6 Running the simulation
Once a simulation has been constructed using the commands previously described

(also see thesource command in “Loading commands from a file” on page 3-13), use the

3-10 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

commands in this section to run the simulation.

3.6.1 Creating a schedule

Theschedule command generates and returns the schedule (the order in which stars
are invoked). For domains such as DE, this command returns a not-implemented message
(since there is no “compile time” DE schedule as there is for SDF). The syntax is:

schedule

3.6.2 Running the simulation

The run command generates the schedule and runs itn times, wheren is the argu-
ment (the argument may be omitted; its default value is 1). For the DE interpreter, this com-
mand runs the simulation forn time units, andn may be a floating point number (default 1.0).
If this command is repeated, the simulation is started from the beginning. If animation is
enabled, the full name of each star will be printed to the standard output when the star fires.
The syntax is:

run
run n

3.6.3 Continuing a simulation

The cont command continues the simulation forn additional steps, or time units. If
the argument is omitted, the default value of the argument is the value of the last argument
given to arun or cont command (1.0 if no argument was ever given). The syntax is

cont
cont n

3.6.4 Wrapping up a simulation

Thewrapup command calls the wrapup method of the current target (which, as a rule,
will call thewrapup method of each star), signaling the end of the simulation run. The syntax
is

wrapup

3.6.5 Interrupting a simulation

The command

halt

requests a halt of the currently executing simulation. Note that the halt does not occur immedi-
ately. This merely registers the request with the scheduler. This is especially useful within Tcl
stars.

3.6.6 Obtaining the stop time of the current run

The command

stoptime

returns the time until which the current simulation will run. Tcl/Tk stars can use this com-
mand in their setup or go methods to find out the stop time of the current run.

The Almagest 3-11

Ptolemy Last updated: 11/6/97

3.6.7 Obtaining time information from the scheduler

The command

schedtime

returns the current time from the top-level scheduler of the current universe. If the target has a
parameter named “schedulePeriod”, then the returned time is divided by this value. The com-
mand

schedtime actual

returns the scheduler time without dividing by “schedulePeriod.”

In SDF,schedtime actual should return the number of iterations. In SDF, “sched-
ulePeriod” is usually set to 0, since in SDF has no notion of time, and to a timed domain, such
as DE, SDF universes appear to fire instantaneously.

3.6.8 Animating a simulation

Theanimation command can be used to display on the standard output the name of
each star as it runs. The syntax

animation on

enables animation, while

animation off

disables it. The syntax

animation

simply tells you whether animation is enabled or disabled.

3.7 Undoing what you have done
The commands in this section remove part or all of the structure you have built with

previous commands.

3.7.1 Resetting the interpreter

The reset command replaces the universemain or a named universe by an empty
universe. Anydefgalaxy definitions you have made are still remembered. The syntax is

reset
reset universe_name

3.7.2 Removing a star

Thedelstar command removes the named star from the current galaxy. The syntax
is

delstar name

wherename is the name of the star.

3.7.3 Removing a connection

Thedisconnect command reverses the effect of a previousconnect or nodecon-
nect command. The syntax is

3-12 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

disconnect starname portname

wherestarname andportname , taken together, specify one of the two connected portholes.
Note that you can disconnect by specifying either end of a porthole for a point-to-point con-
nection.

3.7.4 Removing a node

Thedelnode command removes a node from the current galaxy. Syntax:

delnode node

3.8 Targets
Ptolemy uses a structure called atarget to control the execution of a simulation, or, in

code generation, to control code generation, compilation, and execution. There is always a tar-
get; by default (if you issue no target commands), your target will have the namedefault-
XXX, whereXXX is replaced by the name of the current domain. Alternative targets for simula-
tion can be used to specify different behavior (for example, to use a different scheduler or to
analyze a schematic rather than running a simulation). For code generation, the target contains
information about the target of compilation, and has methods for downloading code and start-
ing execution.

3.8.1 What targets are available?

The command

targets

returns the list of targets available for the current domain. The command

targets domain

returns the list of targets available fordomain.

3.8.2 Changing the target

The command

target

displays the target for the current universe or current galaxy, together with its parameters.
Specifying an argument, e.g.

target new-target-name

changes the target tonew-target-name .

3.8.3 Changing target parameters

Target parameters may be queried or changed with thetargetparam command. The syntax
is

targetparam param-name ? new-value ?

3.8.4 Pragmas

Ptolemy can use target pragmas as a generalization of the attribute mechanism to
inform the target of the user’s wishes. The Dynamic Dataflow (DDF) domain uses pragmas to

The Almagest 3-13

Ptolemy Last updated: 11/6/97

specify the number of firings of a star required in one iteration. The C Code Generation
(CGC) domain uses pragmas to identify any parameters that the user would like to change on
the command line. See “Setting Parameters Using Command-line Arguments” on page 14-4.

pragma b1 b2 name value

Set pragmaname to value for blockb2 in parentb1.

pragmaDefaults target

Print the default values of the pragmas for the target.

3.9 Miscellaneous commands
This section describes the remaining interpreter commands.

3.9.1 Loading commands from a file

For complicated simulations it is best to store your interpreter commands—at least
those defining the simulation connectivity—in a file rather than typing them into the inter-
preter directly. This way you can run your favorite editor in one window and run the inter-
preter from another window, easily modifying the simulation and also keeping a permanent
record. Two exceptions to this are changing states using thesetstate command and running
and continuing the simulation usingrun andcont —this is normally done interactively with
the interpreter.

Thesource command reads interpreter commands from the named file, until the end
of the file or a syntax error occurs. The “#” character indicates that the rest of the line is a
comment. By convention, files meant to be read by the load command end in “.pt”. Example:

source "testfile.pt"

The tilde notation for users’ home directories is allowed; for example, if your installation of
Ptolemy was made by creating a userptolemy (see “Setup” on page 2-1), try

source "$PTOLEMY/demo/ptcl/sdf/basic/butterfly.pt"

It is also possible to specify a file to be loaded by the interpreter on the command line. If,
when you start the interpreter you type

ptcl myCommands.pt

the interpreter will load the named file, execute its commands, and then quit. No command
prompt will appear. Thesource command is actually built into Tcl itself, but it is described
here nevertheless, for convenience.

3.9.2 Changing the seed of random number generation

The seed command changes the seed of the random number generation. The default
value is 1. The syntax is

seed n

wheren is an unsigned integer.

3-14 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

3.9.3 Changing the current directory

Thecd command changes the current directory. For example,

cd "$PTOLEMY/demo/ptcl/sdf/basic"
source "butterfly.pt"

will load the same file as the example in the previous section. Again, we have assumed that
your installation contains a userptolemy (see “Setup” on page 2-1). To see what the inter-
preter’s current directory is, you can type

pwd

3.9.4 Dynamically linking new stars

The interpreter has the ability to extend itself by linking in outside object files; the
object files in question must define single stars (they will have the right format if they are pro-
duced from preprocessor input). Unlikepigi , the graphical interface, the interpreter will not
automatically run the preprocessor and compiler; it expects to be given object files that have
already been compiled. The syntax is

link object-file-name

Any star object files that are linked in this way must only call routines that are already stati-
cally or permanently linked into the interpreter. For that reason, it is possible that a star that
can be linked intopigi might not be linkable into the interpreter, although this is rare. Specif-
ically, pigi contains Tk, an X window toolkit based on Tcl, whileptcl does not. Hence, any
star that uses Tk is excluded fromptcl .

Building object files for linking into Ptolemy can be tricky since the command line
arguments to produce the object file depend on the operating system, the compiler and
whether or not shared libraries are used.$PTOLEMY/mk/userstars.mk includes rules to
build the proper object file for a star. See “Dynamic linking fails” on page A-30. for hints
about fixing incremental linking problems.

It is also possible to link in several object files at once, or pull in functions from librar-
ies by use of themultilink command. The syntax is

multilink opt1 opt2 opt3 ...

where the options may be the names of object files, linker options such as “-L” or “-l”
switches, etc. These arguments are supplied to the Unix linker along with whatever options
are needed to completely specify the incremental link.

When the above linker commands are used, the linked code has temporary status; sym-
bols for it are not entered into the symbol table (meaning that the code cannot be linked
against by future incremental links), and it can be replaced; for example, an error in the loaded
modules could be corrected and thelink or multilink command could be repeated. There
is an alternative linking command that specifies that the new code is to be considered “perma-
nent”; it causes a new symbol table to be produced for use in future links (See the ptlang
derivedFrom item in the Ptolemy Programmers Manual for more information). Such code
cannot be replaced, but it can be linked against by future incremental link commands. The
syntax is

permlink opt1 opt2 opt3 ...

where the options are the same as for themultilink command.

The Almagest 3-15

Ptolemy Last updated: 11/6/97

3.9.5 Top-level blocks

The command

topblocks

returns the list of top-level blocks in the current galaxy or universe. With an argument,

topblocks block

it returns the list of top-level blocks in the named block.

3.9.6 Examining states

Thestatevalue command takes the form

statevalue block state

and returns the current value of the statestate within the blockblock . The command takes
an optional third argument, which may be either“current” to specify that the current value
should be returned (the default), or“initial” to specify that the initial value (the parameter
value) should be returned.

3.9.7 Giving up

Theexit command exits the interpreter. The syntax is

exit

3.9.8 Getting help

Thehelp command implements a simple help system describing the commands avail-
able and their syntax. It does not provide help with the standard Tcl functions. The syntax is

help topic

or
help ?

for a list of topics. If the argument is omitted, a short "help on help" is printed.

3.9.9 Registering actions

It is possible to associate a Tcl action with the firing of any star. TheregisterAc-
tion command does this. The syntax is

registerAction pre tcl_command
registerAction post tcl_command

The first argument specifies whether the action should occur before or after the firing of a star.
The second argument is a string giving the first part of a tcl command. Before this command is
invoked, the name of the star that triggered the action will be appended as an argument. For
example:

registerAction pre puts

will result in the name of a star being printed on the standard output before it is fired. A typical
“action” resulting from this command would be

puts universe_name.galaxy_name.star_name

The value returned byregisterAction is an “action_handle”, which must be used to can-
cel the action usingcancelAction . The syntax is

3-16 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

set action_handle [registerAction pre tcl_command]
cancelAction action_handle

3.9.10 The Interface to Matlab and Mathematica

Ptcl can control Matlab [Han96] and Mathematica [Wol92] processes by means of the
matlab andmathematica commands. The commands have a similar syntax:

matlab command ?arg1? ?arg2?
mathematica command ?arg1? ?arg2?

Thematlab command controls the interaction with a shared Matlab process. The pos-
sible commands and arguments are:

Themathematica command controls the interaction with a shared Mathematica pro-
cess. The possible commands and arguments are

To initiate a connection to a Matlab and Mathematica process, use

matlab start
mathematica start

To generate a simple plot of a straight line in Matlab and Mathematica, use

matlab send { plot([0 1 2 3])}
mathematica send { Plot[x, {x, 0, 3}] }

The send command suppresses the output normally returned by interacting with the
program using the command interface. Theeval command, on the other hand, returns the

command arguments description

end terminate a session with Matlab

eval script evaluate a Matlab script and print the result

get name script evaluate a Matlab script and get the named Matlab matrix as Tcl
lists of numbers

getpairs name script evaluate a Matlab script and get the named Matlab matrix as
ordered pairs of numbers

send script evaluate a Matlab script and suppress the output

set name rows cols real imag set the named Matlab matrix with real and imaginary values

start start a new Matlab session

status return the status of the Tcl/Matlab connection (0 means con-
nected, -1 means not initialized, and 1 means error)

unset name unset the named Matlab matrix

command arguments description

end terminate a session with Mathematica

eval script evaluate a Mathematica script and print the result

get name script evaluate a Mathematica script and get the named Mathematica
variable as a Tcl string

send script evaluate a Mathematica script and suppress the output

start start a new Mathematica session

status return the status of the Tcl/Mathematica connection (0 means
connected, -1 means not initialized, and 1 means error)

The Almagest 3-17

Ptolemy Last updated: 11/6/97

dialog with the console interface:

mathematica eval { Plot[x, {x, 0, 3}] }
-Graphics-

To terminate the connection, use

matlab end
mathematica end

One can work with matrices as Tcl lists or in Matlab format. To create a new Matlab
matrix x that has two rows and three columns:

matlab set x 2 3 "1 2 3 4 5 6" "1 1 1 1 1 1"

We can retrieve this Matlab matrix in the same format:

matlab get x
2 3 {1.0 2.0 3.0 4.0 5.0 6.0} {1.0 1.0 1.0 1.0 1.0 1.0}

We can also retrieve the matrix elements as a Tcl list of complex numbers in an ordered-pair
format:

matlab getpairs x
(1.0,1.0) (2.0,1.0) (3.0,1.0) (4.0,1.0) (5.0,1.0) (6.0,1.0)

Now, matrices can be manipulated in both Tcl and Matlab.

Javier Contreras contributed the following example that creates a Tcl list, sends it to MAT-
LAB as a 2x2 matrix, calculates the inverse in MATLAB and retrieves it back to Tcl as list
and/or pairs.

ptcl> matlab start
ptcl> set a 1
1
ptcl> set b 2
2
ptcl> set c 3
3
ptcl> set d 4
4
ptcl> set e [expr "{$a $b $c $d}"]
1 2 3 4
ptcl> set f [expr "{$a $b $c $d}"]
1 2 3 4
ptcl> matlab set matrix $b $b $e $f
ptcl> matlab eval {matrix(1,1)}
>>
ans =

1.0000 + 1.0000i

ptcl> set inv_matrix [matlab get inverse {inverse = inv(matrix)}]
2 2 {-1.0 0.5 0.75 -0.25} {1.0 -0.5 -0.75 0.25}
ptcl> set inv_matrix [matlab getpairs inverse {inverse =
inv(matrix)}]
(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
ptcl> set new $inv_matrix

3-18 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
ptcl> lindex $new 0
(-1.0,1.0)
ptcl> matlab unset matrix
ptcl> matlab eval {matrix(1,1)}
ptcl> matlab end

For other examples of the use of the matlab and mathematica Ptcl commands, see
“Using Matlab and Mathematica to Compute Parameters” on page 2-18. These commands
support the Matlab and Mathematica consoles in Tycho.

3.10 Limitations of the interpreter
There should be many more commands returning information on the simulation, to

permit better exploitation of the full power of the Tcl language.

3.11 A wormhole example
Here is an example of a simulation that contains both an SDF portion and a DE por-

tion. In this example, a Poisson process where particles have value 0.0 is sent into an SDF
wormhole, where Gaussian noise is added to the samples. This demo shows how easy it is to
use the SDF stars to perform computation on DE particles. The overall delay of the SDF
wormhole is zero, so the result is simply Poisson arrivals of Gaussian noise samples.

A Wormhole has anouter domain and aninner domain. The outer domain is deter-
mined by the current domain at the time the user starts thedefgalaxy command to create the
wormhole. The inner domain is determined by thedomain command that appears inside the
galaxy definition.

reset
create the wormhole
domain DE
defgalaxy wormBody {

domain SDF
star add Add; numports add input 2
star IIDGaussian1 IIDGaussian
alias out add output
alias in add "input#1"
connect IIDGaussian1 output add "input#2"

}
Creating the main universe.
domain DE
star wormBody1 wormBody
star Poisson1 Poisson; star graf XMgraph
numports graf input 2
setstate graf title "Noisy Poisson Process"
setstate graf options "-P -0 original -1 noisy"
node node1
nodeconnect Poisson1 output node1
nodeconnect wormBody1 in node1
nodeconnect graf "input#1" node1

The Almagest 3-19

Ptolemy Last updated: 11/6/97

connect wormBody1 out graf "input#2"
run 40
wrapup

3.12 Some hints on advanced uses of ptcl with pigi
Although we have not had time to pursue it aggressively in this release, flexible control

of Ptolemy simulations (e.g. executing a simulation many times with different parameter set-
tings) is now possible. This can be done by usingptcl andpigi together.

Warning : This mechanism is still under development, so please note that what is described in
this section is likely to change.

3.12.1 Ptcl as a simulation control language for pigi

If you startpigi with the-console option, then a console window will appear that
will acceptptcl commands. To experiment with this, open thesinMod demo in the SDF
basic demo palette, and execute thepigi commandcompile-facet (in the Exec sub-
menu). This command reads the oct facet from disk, and constructs the Ptolemy data struc-
tures to represent it in memory. In your console window, you should see the prompt:

pigi>

Note what happens if you ask for the name of the current universe:

pigi> curuniverse
sinMod
pigi>

By compiling the facet, you have created a universe calledsinMod , and made it the current
universe. If you just startedpigi , then this is one of only two universes in existence:

pigi> univlist
main sinMod
pigi>

The universemain is the default, empty universe that Ptolemy starts with. To verify the con-
tents of thesinMod universe, use theprint command:

pigi> print
GALAXY: sinMod
Descriptor: An interpreted galaxy
Contained blocks: singen2 modulator1 XMgraph.input=11
pigi>

You can execute this universe from the console window:

pigi> run 400
pigi> wrapup

Notice that you will not see any output until you invoke the wrapup command, since the
XMgraph star creates the output plot in its wrapup method.

So far, you have not done anything you could not have done more directly usingpigi .
However, you can change the value of parameters fromptcl . To do this, you must first deter-
mine the name of the instance of the star or galaxy with the parameter you want to control.
Place the mouse over thesingen icon in thesinMod galaxy, and issue the pigishow-name

3-20 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

(‘n’) command. Most likely, the name will besingen2 , although it could be different on suc-
cessive runs. This is an instance name generated automatically bypigi . Notice that it is the
name shown by the print command above. Also, use theedit-params (‘e’) command over
thesingen icon to determine thatsingen2 has a parameter namedfrequency with value
PI/100 . Now try the following commands:

pigi> setstate singen2 frequency PI/50
pigi> run 400
pigi> wrapup

Notice that the frequency of the modulating sinusoid is now twice as high as before.

Much more interestingly, you can now construct a series of runs using Tcl as a script-
ing language:

pigi> foreach i {0.25 0.5 0.75 1 1.25 1.5} {
pigi? setstate singen2 frequency $i*PI/100
pigi? setstate XMgraph.input=11 title \
pigi? "message frequency = [expr 0.01*$i]*PI"
pigi? run 400
pigi? wrapup
pigi? }
pigi>

This will invoke six runs, each with a different frequency parameter for thesingen galaxy
singen2 . The foreach command is a standard Tcl command. Notice that in the third and
fourth lines, we have also set the title parameter of theXMgraph star. This is advisable
because otherwise it might be very difficult to tell which result corresponded to which run.
Notice that the name of theXMgraph instance is “XMgraph.input=11 ”. It is a more compli-
cated name because the icon is specialized to have only a single input port.

Using the full power of the Tcl language, the above mechanism can become extremely
powerful. To use its full power, however, you will most likely want to construct your Tcl
scripts in files. These files can even include the universe definition, as explained below, so you
can create scripts that can be run underptcl only, independent ofpigi .

3.12.2 The pigi log file pigiLog.pt

In eachpigi session, a log file namedpigiLog.pt is generated in the user’s home
directory. Every time an oct facet that represents a Ptolemy galaxy or universe is compiled, for
example when running a simulation, the equivalentptcl commands building the galaxy or
universe are logged in pigiLog.pt. For example, if you followed the above procedure, opening
the sinMod demo and issuing thecompile-facet command, yourpigiLog.pt file will
contain something like the following:

reset
domain SDF
defgalaxy singen {

domain SDF
newstate sample_rate FLOAT "2*PI"
newstate frequency FLOAT "PI/50"
newstate phase_in_radians float 0.0
star Ramp1 Ramp

The Almagest 3-21

Ptolemy Last updated: 11/6/97

setstate Ramp1 step "2*PI*frequency/sample_rate"
setstate Ramp1 value phase_in_radians
star Sin1 Sin
connect Ramp1 output Sin1 input
alias out Sin1 output

}
defgalaxy modulator {

domain SDF
newstate freq FLOAT 0.062832
star "Mpy.input=21" Mpy
numports "Mpy.input=21" input 2
star singen1 singen
setstate singen1 sample_rate "2*PI"
setstate singen1 frequency freq
setstate singen1 phase_in_radians 0.0
alias in "Mpy.input=21" "input#1"
alias out "Mpy.input=21" output
connect singen1 out "Mpy.input=21" "input#2"

}
newuniverse sinMod SDF
target default-SDF

targetparam logFile ""
targetparam loopScheduler NO
targetparam schedulePeriod 10000.0
star singen2 singen
setstate singen2 sample_rate "2*PI"
setstate singen2 frequency "PI/100"
setstate singen2 phase_in_radians 0.0
star modulator1 modulator
setstate modulator freq "0.2*PI"
star "XMgraph.input=11" XMgraph
numports "XMgraph.input=11" input 1
setstate "XMgraph.input=11" title "A modulator demo"
setstate "XMgraph.input=11" saveFile ""
setstate "XMgraph.input=11" options "=800x400+0+0 -0 x"
setstate "XMgraph.input=11" ignore 0
setstate "XMgraph.input=11" xUnits 1.0
setstate "XMgraph.input=11" xInit 0.0
connect singen2 out modulator1 in
connect modulator1 out "XMgraph.input=11" "input#1"

This is aptcl definition of a universe that is equivalent to the oct facet. In normal usage, you
may need to edit this file considerably to extract the portions you need, because all the galax-
ies and universes compiled in apigi session are logged in the same log file. Also, as of this
writing, the file does not necessarily get flushed after your compile-facet command completes,
so the last few lines may not appear until more lines are written to the file, or you exitpigi .

Note thatpigi compiles the sub-galaxies recursively before compiling the top-level
universe. Therefore, theptcl definitions are generated and logged in this recursive order. For

3-22 ptcl: The Ptolemy Interpreter

U. C. Berkeley Department of EECS

instance, in the pigiLog.pt shown above,ptcl definitions of thesingen andmodulator
galaxies appear before that of thesinMod universe. Also, if a galaxy has been compiled
before, and thus is on the knownlist, itsptcl definition will not be generated and logged
again when it is used in another universe.

One use of theptcl definitions obtained from pigiLog.pt is to submit bug reports. It is
the best way to describe in ASCII text the Ptolemy universe that causes problems.

3.12.3 Using pigiLog.pt to build scripts

If you restartpigi , run thesinMod demo in the SDF basic demo palette once, then
quit pigi , then yourpigiLog.pt file will be as above. Make a copy ofpigiLog.pt and
name it, say,sinMod.pl .

To run this simulation with different message waveform frequencies, you may do the
following in ptcl , analogous to the above commands inpigi :

build the sinMod universe
source sinMod.pl
foreach i {0.25 0.5 0.75 1 1.25 1.5} {

set parameter values
setstate singen2 frequency $i*PI/100
setstate XMgraph.input=11 title \
"message frequency = [expr 0.01*$i]*PI"
execute it
run 400
wrapup

}

The combination ofptcl andpigi is very powerful. The above are just some hints on how
they can be used together.

3.12.4 oct2ptcl

Kennard White’s programoct2ptcl can be used to convert Ptolemy facets to ptcl
code.Oct2ptcl is not part of the default distribution, and it is not built automatically. You
can find theoct2ptcl sources in the other.src tar file inptolemy/src/octtools/tkoct/
oct2ptcl . oct2ptcl is not formally part of Ptolemy, but some developers may find it use-
ful.

Chapter 4. Introduction to Domains,
Targets, and Foreign Tool Interfaces

Authors: Joseph T. Buck
Brian L. Evans
Soonhoi Ha
Asawaree Kalavade
Edward A. Lee
Thomas M. Parks

Michael C. Williamson

Other Contributors: The entire Ptolemy team

4.1 Introduction
The Ptolemy software architecture is described in Chapter 1 and shown in Figure 1-2.

The Ptolemy kernel provides a basic set of C++ classes and functions used by the rest of
Ptolemy, but it does not implement any particular model of computation. Instead, a model of
computation is defined by a domain. A domain defines the semantics of the model, but not
how the computations are performed. The computations can be performed using one or more
implementation languages, such as C++, C, MATLAB, and VHDL. A target coordinates the
scheduling and implementation of algorithms described in a particular domain. As part of the
coordination, a target may provide an interface to software (compiler, assembler, simulator,
etc.) or hardware. A typical domain supports many different types of schedulers and many dif-
ferent implementation technologies, which is possible by having many different targets. Over
twenty domains have been developed for Ptolemy, and 14 are released in Ptolemy 0.7; of
these, nine support multiple targets.

In Ptolemy, a complex system is specified as a hierarchical composition (nested tree
structure) of simpler subsystems. Each subsystem is modeled by a domain. A subsystem (also
called a galaxy) can internally use a different domain than that of its parent or children. In
mixing domains, the key is to ensure that at the interface, the child galaxy obeys the semantics
of the parent domain. This interface is called a wormhole. Ptolemy does not yet make the
wormhole mechanism foolproof. Any domain can be used at the top level.

As shown in Figure 1-2, Ptolemy consists of dataflow, discrete-event, and control-ori-
ented families of domains. The Synchronous Dataflow (SDF) and Discrete-Event (DE)
domains are the most mature. In terms of semantics, the Discrete-Event domains are the fur-
thest from the dataflow domains in the 0.7 distribution. Other domains with semantics very
different from dataflow, are the Finite State Machine (FSM) and Synchronous/Reactive (SR)
domains.

Domains perform either simulation or code generation. Simulation domains are inter-

4-2 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

preters that run an executable specification of a system on the local workstation. Code genera-
tion domains translate the specification into some language such as C or VHDL and then
optionally manage the execution of that generated code. In 0.6 and later, code generation
domains can be mixed with each other and with simulation domains. Thanks to José Pino for
developing hierarchical scheduling to support this capability.

The model of computation is thesemantics of the network of blocks. It defines what is
meant by an interconnection of blocks, and how the interconnection will behave when exe-
cuted. The domain determines the model of computation, but in the case of code generation
domains, it also determines the target language. So for example, the CGC (Code Generation in
C), C50 (Code Generation for the Texas Instruments TMS320C50) and the CG56 (Code Gen-
eration for the Motorola DSP56000) domains all use the synchronous dataflow model of com-
putation (the same as the SDF domain). The CGC domain also supports features of the
Boolean dataflow (BDF) domain, which supports a measure of run-time scheduling in a very
efficient way.

Simulation domains can be either timed or untimed. Untimed domains carry no notion
of time in their semantic model. Instead of chronology, they deal only with the order of parti-
cles or actions. Timed domains have a notion ofsimulated time, where each particle or action
is modeled as occurring at some particular point in this simulated time. Particles and actions
are processed chronologically. Timed and untimed domains can be mixed. From the perspec-
tive of a timed domain, actions in an untimed domain will appear to be instantaneous. More-
over, timed domains can exist at several levels of the hierarchy, or in parallel at a given level of
the hierarchy, separated by untimed domains, and their chronologies will be synchronized.
That is, the notion of simulated time in Ptolemy is a global notion. When particles and actions
are processed chronologically in each timed domain that is present, then they will be pro-
cessed chronologically globally.

In this chapter, we also introduce theTarget class. The basic role of this class is in
managing design flow. In a simulation domain, the target selects the scheduler to use (there
can be several schedulers in a single domain) and starts and stops a simulation. In a code gen-
eration domain, the target also selects the scheduler, but then also generates the code, com-
piles it, and runs it on a suitable platform. Targets can be defined hierarchically; for example,
a multiprocessor target may consist of several, possibly heterogeneous execution platforms,
each specified itself as a target. In this example, the top level target might handle the partition-
ing and interprocessor communication, and the lower level targets might handle the code gen-
eration, compilation, and execution. Targets play a much bigger role in code generation
domains than in simulation domains.

Ptolemy users often prematurely set out to make a new domain. While it is the intent
of Ptolemy to support such experimentation, this task should be undertaken with some trepi-
dation. Although any software engineer can create a domain that will work, defining a useful
and correct model of computation is a much harder task. It is very easy, for example, to define
a non-determinate model of computation. This means that the behavior of an application will
depend on implementation details in the scheduler that are not explicitly known to the user. As
a consequence, a user make a small, seemingly innocuous change in an application, and unex-
pectedly get radically different behavior. At Berkeley, many more domains have been built
than are currently distributed. Sometimes, domains have been discarded because of unex-
pected subtleties in the model of computation. In other cases, domains have been built on top

The Almagest 4-3

Ptolemy Last updated: 6/18/97

of third-party software or hardware that has become obsolete.

A prerequisite for creating any new domain is understanding the existing domains in
Ptolemy. Frequently, one of these domains will meet your needs with simpler extensions, like
a new target or a family of stars. If, for example, you are unhappy with the performance of a
scheduler, it may make more sense to define a new scheduler (and a target to support it) within
an existing domain, rather than creating a new domain.

This chapter gives a brief introduction to the simulation and code generation domains
released in Ptolemy 0.7. It also highlights the domains that were present in earlier versions of
Ptolemy but are no longer released. This chapter ends with an overview of the interfaces to
foreign tools, such as simulators, interpreters, and compilers.

4.2 Synchronous dataflow (SDF)
The SDF domain in Ptolemy is the oldest, most mature domain. Much of its basic

capability was ported from Gabriel, the predecessor system [Bie90][Lee89], although it has
been extended considerably. SDF is a special case of the dataflow model of computation
developed by Dennis [Den75]. The specialization of the model of computation is to those
dataflow graphs where the flow of control is completely predictable at compile time. It is a
good match for synchronous signal processing systems, those with sample rates that are ratio-
nal multiples of one another.

The SDF domain is suitable for fixed and adaptive digital filtering, in the time or fre-
quency domains. It naturally supports multirate applications, and its rich star library includes
polyphase real and complex FIR filters. Applications with examples in the demo library
include speech coding, sample-rate conversion, analysis-synthesis filter banks, modems,
phase-locked loops, channel simulation, linear prediction, chaos, filter design, Kalman filter-
ing, phased array beamforming, spectral estimation, sound synthesis, image processing, and
video coding. The SDF domain has been used for a number of years at Berkeley for instruc-
tion in signal processing, at both the graduate and undergraduate level. The exercises that are
assigned to the students are included in the SDF chapter.

4.3 Higher-Order Functions (HOF)
A function ishigher-order if it takes a function as an argument and/or returns a func-

tion. A classic example ismapcar in Lisp, which takes two arguments, a function and a list. Its
behavior is to apply the function to each element of the list and to return a list of the results.
The HOF domain implements a similar function, in the form of a star calledMap, that can
apply any other star (or galaxy) to the sequence(s) at its inputs. Many other useful higher-
order functions are also provided by this domain.

The HOF domain provides a collection of stars designed to be usable in all other
Ptolemy domains. It is intended to be included as a subdomain by all other domains.

4.4 Dynamic dataflow (DDF)
The predictable control flow of SDF allows for efficient scheduling, but limits the

range of applications. In particular, data-dependent flow of control is only allowed within the
confines of a star. To support broader applications, the DDF domain uses dynamic (run-time)

4-4 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

scheduling. For long runs, involving many iterations, this is more expensive than the static
scheduling that is possible with SDF. But in exchange for this additional cost, we get a model
of computation that is as versatile as that of conventional programming languages. It supports
conditionals, data-dependent iteration, and true recursion.

Although the DDF domain is, in principle, a fully general programming environment,
it is nonetheless better suited to some applications than others. We have found that signal pro-
cessing applications with a limited amount of run-time control are a good match. Examples
include systems with multiple modes of operation, such as modems (which have start-up
sequences and often implement multiple standards), signal coding algorithms (which often
offer a range of compression schemes), and asynchronous signal processing applications, such
as timing recovery and arbitrary sample-rate conversion. The demos provided with the domain
show how to realize conditionals, iteration, and recursion.

The SDF domain is a subdomain of DDF, which means that SDF stars can be used in
DDF systems. For greater efficiency on long runs, the two domains can also be mixed using
the Ptolemy hierarchy. A galaxy within a DDF system can be SDF, meaning that it will use an
SDF scheduler. Conversely, a galaxy within an SDF system can be DDF.

4.5 Boolean dataflow (BDF)
Boolean dataflow was developed by Joe Buck as part of his Ph.D. thesis research

[Buc93c]. Like DDF, it supports run-time flow of control. Unlike DDF, it attempts to construct
a compile-time schedule. Thus it achieves the efficiency of SDF with the generality of DDF. It
currently supports a somewhat more limited range of stars than DDF, and does not support
recursion, but the model of computation is, in principle, equally general. Its applications are
the same as those of DDF.

The basic mechanism used in BDF is to construct anannotated schedule, by which we
mean a static schedule where each firing in the schedule is annotated with the Boolean condi-
tions under which it occurs. Thus, any sequence of firings can depend on a sequence of Bool-
ean values computed during the execution. Executing the annotated schedule involves much
less overhead than executing a dynamic dataflow schedule.

4.6 Process Network (PN)
The process network domain, created by Thomas M. Parks and documented in his

Ph.D. thesis [Par95], implements Kahn process networks, a generalization of dataflow where
processes replace actors. It has some of the flavor of the recently removed CP domain, in that
it implements concurrent processes, but unlike the CP domain, it is determinate and has no
model of time. The PN domain is implemented using POSIX threads. In principle, PN sys-
tems can run in parallel on multiprocessor workstations with appropriate OS support for
threads.

The SDF, BDF and DDF domains are subdomains of PN, which means that these stars
can be used directly in PN systems. When stars from these domains are used in a PN system,
each dataflow actor becomes a dataflow process [Lee95]. For greater efficiency, dataflow
domains can be mixed with PN using the Ptolemy hierarchy. A galaxy within a PN system can
be SDF, BDF, or DDF, using a scheduler appropriate for that domain. The galaxy as a whole
becomes a single process in the PN system.

The Almagest 4-5

Ptolemy Last updated: 6/18/97

4.7 Synchronous Reactive (SR)
The Synchronous Reactive domain, created by Stephen Edwards and documented in

his Ph.D. thesis [Edw97], is a new and very experimental domain. The Synchronous Reactive
domain is a statically-scheduled simulation domain in Ptolemy designed for concurrent, con-
trol-dominated systems. To allow precise control over timing, it adopts the synchronous
model of time, which is logically equivalent to assuming that computation is instantaneous

SR is similar to existing Ptolemy domains, but differs from them in important ways.
Like Synchronous Dataflow (SDF), it is statically scheduled and deterministic, but it does not
have buffered communication or multi-rate behavior. SR is better for control-dominated sys-
tems that need control over when things happen relative to each other; SDF is better for data-
dominated systems, especially those with multi-rate behavior.

SR also resembles the Discrete Event (DE) domain. Like DE, its communication chan-
nels transmit events, but unlike DE, it is deterministic, statically scheduled, and allows zero-
delay feedback loops. DE is better formodeling the behavior of systems (i.e., to better under-
stand their behavior), whereas SR is better forspecifying a system’s behavior (i.e., as a way to
actually build it).

4.8 Finite State Machine (FSM)
The Finite State Machine domain, created by Bilung Lee, is a new and very experi-

mental domain. The finite state machine (FSM) has been one of the most popular models for
describing control-oriented systems, e.g., real-time process controllers. The FSM domain uses
Tycho graphical user interface for the specification of FSM blocks. Currently FSM can inter-
operate with SDF and DE domains.

4.9 Discrete Event (DE)
The DE domain is a relatively mature domain using an event-driven model of compu-

tation. In this domain, particles carry time stamps, and represent events that occur at arbitrary
points in simulated time. Events are processed in chronological order. Two schedulers are
available. The default scheduler is based on the “calendar queue” mechanism developed by
Randy Brown and was written by Anindo Banerjea and Ed Knightly. Since this scheduler is
relatively new, the older and simpler but less efficient scheduler is also provided.

DE schedulers maintain an event queue, which is a list of events sorted chronologi-
cally by time stamp. The scheduler selects the next event on the list, and determines which star
should be fired to process the event. The difference between the efficient calendar queue
scheduler and the naive simple scheduler is in the efficiency with which this queue is updated
and accessed. Considerable effort was put into consistent and predictable handling of simulta-
neous events.

The DE domain is suitable for high-level modeling of communications networks,
queueing systems, hardware systems, and transportation networks. The demos included with
the domain include a variety of queueing systems, shared resource management, communica-
tion network protocols, packet-switched networks, wireless networks, and multimedia sys-
tems. The latter class of applications take advantage of the ability that Ptolemy has to mix
domains by modeling speech and video encoding algorithms using the SDF domain and a

4-6 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

packet switched network using the DE domain. There are also some more specialized uses of
the DE domain, such as modeling shot noise and synchronizing a simulation to a real-time
clock.

4.10 Multidimensional Synchronous Dataflow (MDSDF)
The MDSDF domain was developed by Mike Chen and is still very experimental. This

domain is an extension of the Synchronous Dataflow model to multidimensional streams and
is based on the work of Edward Lee [Lee93b]. MDSDF provides the ability to express a
greater variety of dataflow schedules in a graphically compact way. It also allows nested reset-
table loops and delays. Additionally, MDSDF has the potential for revealing data parallelism
in algorithms. The current implementation of the MDSDF domain only allows two dimen-
sional streams, although we hope that many of the ideas used in the development of the
domain can be generalized to higher dimensions.

For a full discussion of the MDSDF domain in Ptolemy, see [Che94].

4.11 Code generation (CG)
The CG domain is the base from which all other code generation domains (such as

CGC and CG56) are derived. This domain supports a general dataflow model equivalent to the
BDF and SDF models. The stars in this domain do little more than generate comments when
fired, but they can serve to demonstrate and test the features of scheduling algorithms. In this
domain, you can build test systems, view the generated code (comments) for multiple proces-
sors, and display a Gantt chart for parallel schedules. In derived domains, real code is gener-
ated, compiled, downloaded and executed, all under control of the selected target. In Ptolemy
0.7, one serious weakness of the code generation domains is that they only support scalar data
types (complex, floating-point, integer, and fixed-point) on the input and output ports.

4.12 Code generation in C (CGC)
The CGC domain uses Boolean-controlled dataflow semantics, and hasC as its target

language. We have made every effort to name stars and their parameters consistently so that it
is easy to move from one domain to another. With a little effort, one could create CGC ver-
sions of all SDF stars. If this were accomplished, then retargeting from one domain to another
would be a simple matter of changing domains and targets and running the system again.

The generatedC code is statically scheduled, and the memory used to buffer data
between stars is statically allocated. Moreover, for many of the stars, the code that is generated
depends on the values of the parameters. One way to think of this is that the parameters of the
star are evaluated at code generation time, so no run-time overhead is incurred from the added
flexibility of parameterizing the star.

There are several targets to choose from in the CGC domain. Thebdf-CGC target
supports the boolean-controlled dataflow model of computation. It must be used whenever
stars with BDF semantics are present in a program graph. Thedefault-CGC target supports
the SDF model of computation, so it can be used when the program graph contains only stars
with SDF semantics. TheTclTk_Target target also supports SDF, and must be used when-
ever Tcl/Tk stars are present in the program graph. TheunixMulti_C target supports SDF
and partitions the program graph for execution on multiple workstations on a network.

The Almagest 4-7

Ptolemy Last updated: 6/18/97

4.13 Code generation for the Motorola DSP56000 (CG56)
This domain synthesizes assembly code for the Motorola DSP56000 family. The code

generation techniques that are used are described in [Pin93]. They are derived from techniques
used in Gabriel [Bie90]. We have used this domain to generate real-time implementations of
various modem standards, touchtone generators, and touchtone decoders [Eva96], on an Ariel
S-56X 560001 board.

4.14 Code generation in VHDL (VHDL, VHDLB)
This pair of domains is for generating code in VHDL (VHSIC Hardware Description

Language). The VHDL domain supports functional models using the SDF model of computa-
tion, while VHDLB supports behavioral models using the native VHDL discrete event model
of computation. Since the VHDL domain is based on the SDF model, it is independent of any
notion of time. The VHDLB domain supports time delays and time-dependent behavior of
blocks. The VHDL domain is intended for modeling systems at the functional block level, as
in DSP functions for filtering and transforms, or in digital logic functions, independent of
implementation issues. The VHDLB domain is intended for modeling the behavior of compo-
nents and their interactions in system designs at all levels of abstraction.

Within the VHDL domain there are a number of differentTarget s to choose from.
The default target,default-VHDL , generates sequential VHDL code in a single process
within a single entity, following the execution order from the SDF scheduler. This code is suit-
able for efficient simulation, since it does not generate events on signals. TheSimVSS-VHDL
target is derived fromdefault-VHDL and it provides facilities for simulation using the Syn-
opsys VSS VHDL simulator. Communication actors and facilities in theSimVSS-VHDL target
support code synthesis and co-simulation of heterogeneous CG systems under theCompi-
leCGSubsystems target developed by José Luis Pino. There is also aSimMT-VHDL target
for use with the Model Technology VHDL simulator. Thestruct-VHDL target generates
VHDL code where individual actor firings are encapsulated in separate entities connected by
VHDL signals. This target generates code which is intended for circuit synthesis. TheSynth-
VHDL target, derived fromstruct-VHDL , provides facilities for synthesizing circuit represen-
tations from the structural code using the Synopsys Design Analyzer toolset. Because the
VHDL domain uses SDF semantics, it supports retargeting from other domains with SDF
semantics (SDF, CGC, etc.) provided that the stars in the original graph are available in the
VHDL domain. As this experimental domain evolves, more options for VHDL code genera-
tion from dataflow graphs will be provided. These options will include varying degrees of user
control and automation depending on the target and the optimization goals of the code genera-
tion, particularly in VHDL circuit synthesis.

Unlike the VHDL domain, the older and less-developed VHDLB domain is much sim-
pler in its operation. When a universe in the VHDLB domain is run, the graph is traversed and
a codefile is generated in a pop-up window and in a subdirectory which reflects the topology
and hierarchy of the graph. The generated VHDL code will reference VHDL entities which
are expected to be included in other files. There is a VHDL codefile in the$PTOLEMY/src/
domains/vhdlb/lib directory for each VHDL star in the main star palettes of the
$PTOLEMY/src/domains/vhdlb/icons directory. Adding a new star is a matter of writ-
ing VHDL code for the entity and adding a star file in the stars subdirectory of the VHDLB

4-8 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

domain which reflects the inputs, outputs, and parameters of that star. The existing stars
should serve as examples for how new stars can be written.

Table 4-1 below summarizes the various domains

Domain Description

Synchronous Data Flow (SDF)

• Oldest and most mature domain; it is a sub-domain of
DDF, BDF, and PN.

• Special case of data flow model of computation
developed by Dennis.

• Flow is completely predictable at compile time thus
allows for efficient scheduling.

• Allows for static scheduling.
• Good match for synchronous signal processing systems

with sample rates that are rational multiples of one
another.

• Supports multi-rate applications and has a rich star
library.

• Range of applications is limited.

Dynamic Data Flow (DDF)

• Versatile model of computation as it supports
conditionals, data-dependent iteration, and true
recursion.

• More general than SDF.
• Uses dynamic (run-time) scheduling which is more

expensive than static scheduling.
• Good match for signal processing applications with a

limited amount of run-time control.

Boolean Data Flow (BDF)

• Relatively new domain which supports run-time flow of
control.

• Attempts to construct a compile-time schedule to try
and achieve efficiency of SDF with generality of DDF.

• More limited than DDF.
• Constructs an annotated schedule: execution of a task is

annotated with a boolean condition.

Integer and State Controlled Data Flow
(STDF)

• Very new to Ptolemy and still experimental.
• Realizes data flow control by integer control data and

port statuses. It is an extension to BDF.
• Scheduling is static and conditional like BDF.
• It has user-defined evaluation functions.

Discrete Event (DE)

• Relatively mature domain which uses an event-driven
model of computation.

• Particles carry time-stamps which represent events that
occur at arbitrary points in simulated time.

• Events are processed in chronological order.

Finite State Machine (FSM)

• Very new to Ptolemy and still experimental.
• Good match for control-oriented systems like real-time

process controllers.
• Uses a directed node-and-arc graph called a state

transition diagram (STD) to describe the FSM.

The Almagest 4-9

Ptolemy Last updated: 6/18/97

Higher Order Functions (HOF)

• Implements behavior of functions that may take a
function as an argument and return a function.

• HOF collection of stars may be used in all other
domains.

• Intended to be included only as a sub-domain by other
domains.

Process Network (PN)

• Relatively new domain that implements Kahn process
networks which is a generalization of data flow –
processes replace actors.

• Implements concurrent processes but without a model
of time.

• Uses POSIX threads.
• SDF, BDF, and DDF are sub-domains of PN.

Multidimensional Synchronous Data
Flow (MDSDF)

• Relatively new and experimental.
• Extends SDF to multidimensional streams.
• Provides ability to express a greater variety of dataflow

schedules in a graphically compact way.
• Currently only implements a two-dimensional stream.

Synchronous/Reactive (SR)

• Very new to Ptolemy and still experimental.
• Implements model of computation based on model of

time used in Esterel.
• Good match for specifying discrete reactive controllers.

Code Generation (CG)

• Base domain from which all code generation domains
are derived.

• Supports a dataflow model that is equivalent to BDF
and SDF semantics.

• This domain only generates comments, allows viewing
of the generated comments, and displays a Gantt Chart
for parallel schedules.

• Can only support scalar data types on the input and
output ports.

• All derived domains obey SDF semantics.
• Useful for testing and debugging schedulers.
• Targets include bdf-CGC which supports BDF, default-

CGC which supports SDF semantics, TclTk_Target
which supports SDF and must be used when Tcl/Tk
stars are present, and unixMulti_C which supports SDF
semantics and partitions the graph for multiple
workstations on a network.

Code Generation in C (CGC)
• Uses data flow semantics and generates C code.
• Generated C code is statically scheduled and memory

used to buffer data between stars is statically allocated.

Code Generation for the Motorola DSP
56000 (CG56)

• Synthesizes assembly code for the Motorola DSP56000
family.

Domain Description

4-10 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

Code Generation in VHDL (VHDL,
VHDLB)

• Relatively new and experimental
• Generates VHDL code.
• VHDL domain supports SDF semantics whereas

VHDLB supports behavioral models using native
VHDL discrete event model of computation.

• Many targets to choose from.
• VHDL domain is good for modeling systems at

functional block level whereas VHDLB is good for
modeling behavior of components and their
interactions at all levels of abstraction.

Domain Description

TABLE 4-1: Summary of the various Ptolemy domains.

The Almagest 4-11

Ptolemy Last updated: 6/18/97

The table below summarizes the various schedulers

Scheduler Name Features

Default SDF Scheduler

• Performed at compile time.
• Many possible schedules but schedule is chosen based on a

heuristic that minimizes resource costs and amount of buffering
required.

• No looping employed so if there are large sample rate changes,
size of generated code is large.

Joe’s Scheduler

• Performed at compile time.
• Sample rates are merged wherever deadlock does not occur.
• Loops introduced to match the sample rates.
• Results in hierarchical clustering.
• Heuristic solution so some looping possibilities are undetected.

SJS (Shuvra-Joe-Soonhoi)
Scheduler

• Performed at compile time.
• Uses Joe’s Scheduler at front end and then uses an algorithm on

the remaining graph to find the maximum amount of looping
available.

Acyclic Loop Scheduler

• Performed at compile time.
• Constructs a single appearance schedule that minimizes amount

of buffering required.
• Only intended for acyclic dataflow graphs.

TABLE 4-2: Summary of Uniprocessor schedulers

4-12 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

Table 4-3 below summarizes the multiprocessor schedulers.

4.15 Domains that have been removed
This section highlights the experimental domains that were removed from the Ptolemy

distribution. If any users are interested in resurrecting these domains, then please send e-mail
to ptolemy@ptolemy.eecs.berkeley.edu .

4.15.1 Circuit simulation (Thor)

Like DE, the Thor domain was event-driven. However, it was specialized to register-
transfer level simulation of digital circuits. It was based on the Thor simulator developed at
Stanford, which in turn was based on a simulation kernel developed at the University of Colo-
rado. The domain was written by Suengjun Lee. Its capabilities were similar to a variety of
commercial circuit simulators. The Thor domain was based on very old circuit simulation
technology. Contemporary equivalents include VHDL and Verilog simulators. The VHDL
domains thus replace Thor, at least in part, although currently the star library is not as rich.

Scheduler Name Features

Hu’s Level-based List Scheduler

• Performed at compile time.
• Most widely used.
• Tasks assigned priorities and placed in a list in order of

decreasing priority.
• Ignores communication costs when assigning functional blocks

to processors.

Sih’s Dynamic Level Scheduler

• Performed at compile-time.
• Assumes that communication and computation can be

overlapped.
• Accounts for interprocessor communication overheads and

interconnection topology.

Sih’s Declustering Scheduler

• Performed at compile-time.
• Addresses trade-off between exploiting parallelism and

interprocessor communication overheads.
• Analyzes a schedule and finds the most promising placements of

APEG nodes.
• Not single pass but takes an iterative approach.

Pino’s Hierarchical Scheduler

• Performed at compile time.
• Partially expands the APEG.
• Can use any of the above parallel schedulers as a top-level

scheduler.
• Supports user-specified clustering.
• Realizes multiple orders of magnitude speedup in scheduling

time and reduction in memory usage.

TABLE 4-3: Summary of multiprocessor schedulers.

The Almagest 4-13

Ptolemy Last updated: 6/18/97

4.15.2 Communicating processes (CP)

The CP domain, developed by Suengjun Lee and based on thread classes developed by
Thomas M. Parks, modeled multiple simultaneous processes with independent flow of con-
trol. It was based on the Sun lightweight process library. Because of this dependence on pro-
prietary code, it was only available on Sun workstations. CP was a timed domain. Processes
communicated by exchanging particles with time stamps. The particles are processed in chro-
nological order, in that the process with the oldest time stamps at its inputs is activated. From
the perspective of the star writer, the star is always running, presumably in an infinite loop,
responding to input events and producing output events. Because of this model, the domain
was well suited to high-level modeling of distributed systems. Each component in the system
would be represented as a program that appears to run as an autonomous agent, concurrently
with other components of the system.

The CP domain is probably the most useful of the domains that have been removed.
The problem is that it is based on the Sun lightweight process library, which Sun Microsys-
tems is no longer supporting. The Lightweight Processes library does not run on recent
releases of the Solaris operating systems. We took a stab at porting the domain to use Posix
threads, the modern replacement, but this task overwhelmed the resources we had available.
We would be very interested in volunteers interested in pursuing this.

4.15.3 Message queueing (MQ)

The MQ domain was based on an object-oriented approach for software development
developed by E. C. Arnold and D. W. Brown at AT&T Bell Laboratories. The run-time envi-
ronment viewed components as addressable objects capable of receiving messages, sending
messages, and maintaining an individual state managed solely by the component’s methods.
Each message contained sufficient information for its destination object to perform appropri-
ate updating of internal data structures and to produce other messages.

By applying this model in Ptolemy, stars would pass message particles to one another.
Connections between pairs of stars are bidirectional so that client-server relationships can be
established over these links. From the name of this domain, it can be understood that mes-
sages sent from a particular star to another were always processed in sequence. However, the
execution order of stars in the system is arbitrary, and a star, when fired, steps through its port-
holes in an arbitrary fashion as well, processing the first incoming message arriving at each
port, should one exist.

The MQ domain was well-suited to the development of call-processing software. Its
use in the modeling of system control was illustrated in a sophisticated cell-relay network
simulation. This large-scale, heterogeneous demo used the SDF domain to specify space-divi-
sion packet switching fabrics, the DE domain to model “timed” network subsystems, and the
MQ domain to describe a centralized network controller.

Although it introduced a number of interesting features, this domain did not find wide
usage, so it has been removed.

4.15.4 Code generation for the Sproc multiprocessor DSP (Sproc)

The Sproc multiprocessor DSP used to be made by Star Semiconductor [Mur93], how-
ever, neither the processor nor the company now exist, so this domain has been removed.

4-14 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

4.15.5 Code generation for the Motorola DSP96000 (CG96)

This domain is similar to CG56, except that the synthesized language is assembly code
for the Motorola DSP96000 (floating-point) family. This processor is no longer being devel-
oped or improved by Motorola, so we have removed this domain.

4.15.6 Code generation in Silage (Silage)

This was a code generation domain for the Silage language. Silage is an applicative
functional textual language that was developed to describe fixed-point digital signal process-
ing (DSP) algorithms, which are well-suited for hardware implementation. Silage descriptions
serve as the input specification for some high-level synthesis tools (e.g. Hyper from U.C. Ber-
keley, Cathedral from IMEC, and the DSP Station from Mentor Graphics). Asawaree Kala-
vade used the Ptolemy interface to Hyper to estimate costs of hardware implementations in
hardware/software codesign experiments [Kal93,Kal94,Kal96]. Berkeley, however, is moving
away from Silage, and there appears to be little future for it, so we have removed this domain.

4.15.7 Functional Code Generation in VHDL (VHDLF)

The VHDLF domain was originally intended to contrast with the VHDLB domain. It
supported structural code generation using VHDL blocks with no execution delay or timing
behavior, just functionality. The semantics for the VHDLF domain were not strictly defined,
and the scheduling depended on how the underlying VHDL code blocks associated with each
VHDLF star were written. The VHDLF domain has been replaced by the VHDL domain. The
VHDL domain is not meant to be used in the same way as the VHDLF domain, however. The
VHDL domain is for generating code from functional block diagrams with SDF semantics.

The Almagest 4-15

Ptolemy Last updated: 6/18/97

4.16 Interfaces to Foreign Tools
The Ptolemy design environment is a collection of dozens of collaborating tools with

interfaces to dozens of others, as shown in Figure 4-4. Within Ptolemy there are many differ-
ent domains, schedulers, and targets, each of which is a tool in its own right. Those tools are
derived from a common framework provided by the Ptolemy kernel. Other tools, such as an
expression evaluator for parameter expressions and filter design programs, are also embedded.

Not every Ptolemy interface is listed in Figure 4-4. We have written several targets and
domains that we have not released to the public. For example, we are developing a CGC target
for the UltraSparc Visual Instruction Set. We have developed but never released code genera-
tion domains for the AT&T DSP 3 multiprocessor system and the Philips Video Signal Pro-
cessor system [Shi94]. We have eliminated several domains, as listed in Section 4.15, such as
a code generation for the Sproc multiprocessor DSP system [Mur93].

This rest of this section focuses on Ptolemy interfaces to foreign tools that are not
included in the Ptolemy release. These foreign tools are standalone programs, such as compil-
ers, assemblers, interpreters, and simulators.

4.16.1 Specification and Layout

Defining systems, subsystems, blocks, and connections can be expressed graphically
using pigi (see Chapter 2) and textually using ptcl (see Chapter 3). Graphical descriptions can
be converted to textual specifications. The two interfaces can work together. By running pigi
with the -console option, one can evaluate ptcl commands in the pigi console. The pigi run-

oct/vem
higher-order functions
ptcl
Tycho
expression evaluator
Tcl
simulation domains
filter designer

Tcl/Tk, Itcl/Tk
pxgraph, xv
simulation domains
multirate schedulers
run-time schedulers
wormholes
code generation domains
gcc, g++, gmake
parallel schedulers
hierarchical scheduler

Specification and Layout

Parameter Calculation

Algorithm Prototyping

Display and Visualization

Simulation

Synthesis

Emacs, vi, xedit

MATLAB
Mathematica
MATLAB
Utah Raster Toolkit
Esterel
MATLAB
soundtool, audiotool
sim56000, sim96000
Synopsys VSS
Model Technology VSIM
IPUS, ArrayOL domains
asm56000, Ariel S-56X card
commercial C/C++ compilers
Synopsys Design Analyzer

Released with Ptolemy System Design

TABLE 4-4: Ptolemy interfaces to various tools.

Not Released with Ptolemy

4-16 Introduction to Domains, Targets, and Foreign Tool

U. C. Berkeley Department of EECS

control panel allows control of runs by ptcl scripts. Blocks exists that execute ptcl scripts.

Schematic entry is implemented by vem, and schematics are databased in oct. Scalable
systems can be specified graphically using higher-order functions. Tycho provides a language-
sensitive editor and an evolving framework for future graphical user interfaces.

4.16.2 Parameter Calculation

Parameter calculation maps system parameters into parameters in the subsystems,
blocks, and connections. The calculation is controlled by an expression evaluator, which sup-
ports calls to ptcl. Because ptcl has interfaces to MATLAB and Mathematica, MATLAB and
Mathematica expressions can be embedded in parameter specifications.

4.16.3 Algorithm Prototyping and Visualization

A designer can develop domain-specific algorithms in Ptolemy, such as for speech
coding. For filter design, one can use MATLAB or Ptolemy’s filter design programs. A variety
of Unix and X windows utilities are used for display and visualization of data.

4.16.4 Simulation

Ptolemy provides the ability to simulate complex systems. The key is the notion of a
wormhole that allows a designer to mix domain-specific algorithms together to cosimulate the
functionality or behavior of the system. wormholes & hierarchical scheduling

4.16.5 Synthesis

Ptolemy provides mature abilities to synthesis dataflow systems. From dataflow
graphs, Ptolemy can generate C, C++, Motorola 56000 assembly code, and VHDL for unipro-
cessor and multi-processor systems.

Ptolemy provides the ability to synthesis complex systems. The key is the notion of
hierarchical scheduling that allows multiple implementation technologies to cosimulate. Mix-
ing this with wormholes allows simulation domains to participate in cosimulation. This com-
binations allows a complex system to be simulated at a variety of levels of detail.

Chapter 5. SDF Domain

Authors: Shuvra Bhattacharyya
Joseph T. Buck
Michael J. Chen
Brian L. Evans
Soonhoi Ha
Paul Haskell
Christopher Hylands
Alan Kamas
Alireza Khazeni
Bilung Lee
Edward A. Lee
David G. Messerschmitt

Other Contributors: Asawaree Kalavade
Thomas M. Parks
Gregory S. Walter

5.1 Introduction
Synchronous dataflow (SDF) is a data-driven, statically scheduled domain in Ptolemy.

It is a direct implementation of the techniques given in [Lee87a] and [Lee87b]. “Data-driven”
means that the availability ofParticle s at the inputs of a star enables it. Stars without any
inputs are always enabled. “Statically scheduled” means that the firing order of the stars is
determined once, during the start-up phase. The firing order will be periodic. The SDF domain
is one of the most mature in Ptolemy, having a large library of stars and demo programs. It is a
simulation domain, but the model of computation is the same as that used in most of the code
generation domains. A number of different schedulers, including parallel schedulers, have
been developed for this model of computation.

5.1.1 Basic dataflow terminology

SDF is a special case of the dataflow model introduced by Dennis [Den75]. It is equiv-
alent to thecomputation graph model of Karp and Miller [Kar66]. In the terminology of the
dataflow literature, stars are calledactors. An invocation of thego() method of a star is called
afiring. Particles are calledtokens. In a digital signal processing system, a sequence of tokens
might represent a sequence of samples of a speech signal or a sequence of frames in a video
sequence.

When an actor fires, it consumes some number of tokens from its input arcs, and pro-
duces some number of output tokens. In synchronous dataflow, these numbers remain constant
throughout the execution of the system. It is for this reason that this model of computation is
suitable for synchronous signal processing systems, but not for asynchronous systems. The
fact that the firing pattern is determined statically is both a strength and a weakness of this

5-2 SDF Domain

U. C. Berkeley Department of EECS

domain. It means that long runs can be very efficient, a fact that is heavily exploited in the
code generation domains. But it also means that data-dependent flow of control is not allowed.
This would require dynamically changing firing patterns. The Dynamic Dataflow (DDF) and
Boolean Dataflow (BDF) domains were developed to support this, as described in chapters 7
and 8, respectively.

5.1.2 Balancing production and consumption of tokens

Each porthole of each SDF star has an attribute that specifies the number of particles
consumed (for input ports) or the number of particles produced (for output ports). When you
connect two portholes with an arc, the number of particles produced on the arc by the source
star may not be the same as the number of particles consumed from that arc by the destination
star. To maintain a balanced system, the scheduler must fire the source and destination stars
with different frequency.

Consider a simple connection between three stars, as shown in figure 5-1. The symbols
adjacent to the portholes, such as , represent the number of particles consumed or pro-
duced by that porthole when the star fires. For many signal processing stars, these numbers are
simply one, indicating that only a single token is consumed or produced when the star fires.
But there are three basic circumstances in which these numbers differ from one:

 • Vector processing in the SDF domain can be accomplished by consuming and produc-
ing multiple tokens on a single firing. For example, a star that computes a fast Fourier
transform (FFT) will typically consume and produce samples when it fires, where

 is some integer. Examples of vector processing stars that work this way areFFTCx,
Average , Burg , andLevDur . This behavior is quite different from the matrix stars,
which operate on particles where each individual particle represents a matrix.

 • In multirate signal processing systems, a star may consume samples and produce
, thus achieving a sampling rate conversion of . For example, theFIR and

FIRCx stars optionally perform such a sampling rate conversion, and with an appropri-
ate choice of filter coefficients, can interpolate between samples. Other stars that per-
form sample rate conversion includeUpSample , DownSample , andChop.

 • Multiple signals can be merged using stars such asCommutator or a single signal can
be split into subsignals at a lower sample rate using theDistributor star.

To be able to handle these circumstances, the scheduler first associates a simple balance equa-
tion with each connection in the graph. For the graph in figure 5-1, the balance equations are

FIGURE 5-1: A simple connection of SDF stars, used to illustrate the use of balance equations in
constructing a schedule.

A

B

C

NA1

NB2NB1

NC2

NC1

NA2

NA1

2
M

M

M
N N/ M

r ANA1 rCNC1=

r ANA2 r BNB1=

The Almagest 5-3

Ptolemy Last updated: 11/6/97

This is a set of three simultaneous equations in three unknowns. The unknowns, , , and
 are therepetitions of each actor that are required to maintain balance on each arc. The first

task of the scheduler is to find the smallest non-zero integer solution for these repetitions. It is
proven in [Lee87a] that such a solution exists and is unique for every SDF graph that is “con-
sistent,” as defined below.

5.1.3 Iterations in SDF

When running an SDF system under the graphical user interface, you will have the
opportunity to specify “when to stop.” Since the SDF domain has no notion of time, this is not
given in units of time. Instead, it is given in units of SDF iterations. At each SDF iteration,
each star is fired the minimum number of times to satisfy the balance equations.

Suppose for example that star B in figure 5-1 is anFFTCx star with its parameters set
so that it will consume 128 samples and produce 128 samples. Suppose further that star A pro-
duces exactly one sample on each output, and star C consumes one sample from each input. In
summary,

The balance equations become

.

The smallest integer solution is

.

Hence, each iteration of the system includes one firing of theFFTCx star and 128 firings each
of stars A and B.

5.1.4 Inconsistency

It is not always possible to solve the balance equations. Suppose that in figure 5-1 we
have

.

In this case, the balance equations have no non-zero solution. The problem with this system is
that there is no sequence of firings that can be repeated indefinitely with bounded memory. If
we fire A,B,C in sequence, a single token will be left over on the arc between B and C. If we
repeat this sequence, two tokens will be left over. Such a system is said to beinconsistent, and
is flagged as an error. The SDF scheduler will refuse to run it. If you must run such a system,
change the domain of your graph to the DDF domain.

r BNB2 rCNC2=

r A r B
rC

NA1 NA2 NC1 NC2 1= = = =

NB1 NB2 128.= =

r A rC=

r A 128r B=

128r B rC=

r A rC 128= =

r B 1=

NA1 NA2 NC1 NC2 NB1 1= = = = =

NB2 2=

5-4 SDF Domain

U. C. Berkeley Department of EECS

5.1.5 Delays

Delays are indicated in Pigi by small green diamonds that are placed on an arc. Most
of the standard palettes of stars have the delay icon at the upper left. The delay has a single
parameter, the number of samples of delay to be introduced. In the SDF domain, a delay with
parameter equal to one is simply an initial particle on an arc. This initial particle may enable a
star, assuming that the destination star for the delay arc requires one particle in order to fire.
To avoid deadlock, all feedback loops much have delays. The SDF scheduler will flag an error
if it finds a loop with no delays. For most particle types, the initial value of a delay will be
zero. For particles which hold matrices, the initial value is an empty Envelope, which must be
checked for by stars which work on matrix inputs. Initializable delays allow the user to give
values to the initial particles placed in the buffer. Please refer to 2.12.8 on page 2-47 for details
on how to use initializable delays.

5.2 An overview of SDF stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. For the SDF domain, the star
library is large enough that it has been divided into sub-palettes. The top-level palette is shown
in figure 5-2

The “sources” palette contains signal generators of various types. The “sinks” palette
contains various stars that display signals in different ways or write the value of signal sam-
ples to files. The “arithmetic” palette contains basic adders, subtracters, multipliers, and

comm.pal

sources.pal

sinks.pal

arithmetic.pal

nonlinear.pal

control.pal

conversion.pal

dsp.pal

image.pal

logic.pal

matrix.pal

matlab.pal
Matlab HOF

hof.pal

test
contrib.pal

spectral.pal

telecomm.pal

sdfvis.pal

dmm.pal

radar.pal

neural.pal

Signal Sources

Signal Sinks

Arithmetic

Nonlinear Functions

Control

Conversion

Spectral Analysis

Design Flow Management

Telecommunications

Logic

Matlab Functions Higher Order Functions

Spatial Array Processing

User Contributions

Matrix Functions

Signal Processing

Communications

UltraSparc Native DSP

Neural Networks

Image and Video Processing

Synchronous Dataflow (SDF) Stars

FIGURE 5-2: The top-level palette for accessing the library of SDF stars.

The Almagest 5-5

Ptolemy Last updated: 11/6/97

amplifiers, for all the standard scalar data types (floating point, complex, fixed-point, and inte-
ger). The “nonlinear” palette contains stars that compute transcendental functions, such as
logarithm, cosine, sine, and exponential functions, as well as quantizer and table lookup stars.
The “logic” palette contains stars that perform Boolean and comparison operations, such as
and, or, and greater than. The “control” palette contains stars that manipulate the flow of
tokens, such as commutators and distributors, downsamplers and upsamplers, and forks. The
“conversion” palette contains stars that explicitly accomplish type conversion. The “matrix”
palette contains matrix operators such as matrix addition and multiplication. More complex
stars that use matrix operations internally can be found in other palettes, such as the singular
value decomposition and Kalman filters in the “dsp” palette. The “matlab” palette contains
stars that communicate with a Matlab process and thus have access to all of the functionality
of Matlab. The “vis” palette contains stars that use the Sun UltraSparc Visual Instruction
Set.The “dsp” palette contains various signal processing functions such as fixed and adaptive
filters of various types. The “spectral” palette contains spectral estimation functions. The
“communications” palette contains stars that are specific to digital communications functions,
such as pulse shapers, speech coders, and QAM encoders. The “telecommunications” palette
contains touchtone generators and decoders, channel models, and PCM coders. The “spatial
array palette” contains models of sensors, Doppler effects, and beamformers. The “image”
palette contains stars for image and video signal processing. The “neural” palette contains
neural network stars. The “dfm” palette contains design flow management stars that use
strings and files as datatypes. The “hof” palette contains the Higher Order Functions available
in the SDF domain. The HOF stars in this palette are explained in detail in the HOF domain
chapter. The “user” palette contains user contributed stars.

Each palette is summarized in more detail below. In the listing, whenever data types
are not mentioned, double-precision floating point is used. Not all data types are represented
in all stars. Type conversions, automatic or explicit, can be used to complete the collection.

The parameters of a star are shown in italics. More information about each star can be
obtained using the on-lineprofile command (“, ”), or the on-lineman command (“M”).

At the top of each palette, for convenience, are instances of the two delay icons, the
bus icon, and the following star:

BlackHole Discard all inputs. This star is useful for discarding signals that
are not useful.

The delay and bus icons are created on top of an arc to define its properties and are not stars.

5.2.1 Source stars

Source stars are stars with no inputs. They generate signals, and may represent exter-
nal inputs to the system, constant data, or synthesized stimuli. In the dataflow model of com-
putation, they are always enabled, and hence can be fired at any time. In the synchronous
dataflow model, the frequency with which they are fired, relative to other stars in the system,
is determined by the solution to the balance equations. The palette of source stars is shown in
figure 5-3, and the stars are summarized below, in the order they appear in the palette.

Floating-point sources

Const Output a constant signal with value given by thelevel parameter

5-6 SDF Domain

U. C. Berkeley Department of EECS

(default 0.0).

DTMFGenerator Create a dual-tone modulated-frequency signal, such as the tone
generated by a touchtone telephone.

Impulse Generate a single impulse or an impulse train. Each impulse has
an amplitudelevel (default 1.0). Ifperiod (default 0) is equal to
0, then only a single impulse is generated; otherwise,period
specifies the period of the impulse train.

IIDGaussian Generate an identically independently distributed white Gauss-
ian pseudo-random process withmean (default 0) andvariance
(default 1).

IIDUniform Generate an identically independently distributed uniformly
distributed pseudo-random process. Output is uniformly distrib-
uted betweenlower (default 0) andupper (default 1).

Ramp Generate a ramp signal, starting atvalue (default 0.0) and incre-
menting by step sizestep (default 1.0) on each firing.

RanConst Generate an random number with a uniform(u), exponential(e),
or normal(n) distribution, as determined by thedistribution

FIGURE 5-3: The palette of source stars for the SDF domain.

expgen

Const

Const

Impulse

Rect

Ramp

WaveFormCx

RampInt

WaveForm

IIDUniformIIDGaussian

ReadFile singen

RampFix RectFix

TkSlider TkButtons TkButtons

Const

TclTcl
TclScript

TclTcl
TclScript

Window

Matrix CxMatrix FixMatrixIntMatrix

Identity_M
0

0

IdentityInt_M
0

0

IdentityCx_M
0

0

IdentityFix_M
0

0

11010
bits

Var
Read

Matlab
Matlab_M

Matlab
MatlabCx_M

Const

DTMFGenerator

RectCxPCMReadInt

RanConst

Matrix Sources:

Floating-Point Sources

(Interactive)

Integer Sources

Complex SourcesFixed-Point Sources

The Almagest 5-7

Ptolemy Last updated: 11/6/97

parameter. This star is new in Ptolemy 0.7.

ReadFile Read ASCII data from a file. The simulation can be halted on
end-of-file, or the file contents can be periodically repeated, or
the file contents can be padded with zeros.

ReadVar Output the value of a double-precision floating point variable
from a shared memory. Use thewriteVar star to write values
into the shared memory.
WARNING: This star may produce unpredictable results, since
the results will depend on the precendences in the block dia-
gram in which it appears as well as the scheduler used.

Rect Generate a rectangular pulse ofheight (default 1.0) andwidth
(default 8). If period is greater than zero, then the pulse is
repeated with the given period.

singen Generate a sine wave withfrequency (relative to the given
sample_rate) and phase given byphase_in_radians. This is
implemented as a galaxy according to the formula

sin(2π n frequency/ sample_rate + phase_in_radians)

where n is the sample index. Therefore,frequency and
sample_rate must have the same units, e.g. rad/sample, Hz, etc.

WaveForm Output a waveform as specified by the array statevalue (default
“1 -1”). You can get periodic signals with any period, and can
halt a simulation at the end of the given waveform. The follow-
ing table summarizes the capabilities:

The first line of the table gives the default settings. This star
may be used to read a file by simply settingvalue to something
of the form < filename , preferably specifying a complete
path.

Window Generate standard window functions or periodic repetitions of
standard window functions. The possible functions are:Rect-
angle , Bartlett , Hanning , Hamming, Blackman , Kaiser
and SteepBlackman . One period of samples is produced at
each firing.

TclScript (Two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

haltAtEnd periodic period operation

NO YES 0 The period is the length of the waveform

NO YES N>0 The period is N

NO NO anything Output the waveform once, then zeros

YES anything anything Stop after outputting the waveform once

5-8 SDF Domain

U. C. Berkeley Department of EECS

TkSlider Output a value determined by an interactive on-screen scale
slider.

TkButtons This star outputs the value 0.0 on all outputs unless the corre-
sponding button is pushed. When the button is pushed, the out-
put takes the value given by the parametervalue. If synchronous
is YES, then outputs are produced only when some button is
pushed. I.e., the star waits for a button to be pushed before its
go method returns. Ifallow_simultaneous_events is YES, then
the buttons pushed are registered only when the button labeled
“PUSH TO PRODUCE OUTPUTS” is pushed. Note that ifsyn-
chronous is NO, this star is nondeterminate.

Fixed-point sources

ConstFix Constant source for fixed-point values.

RampFix Ramp for fixed-point values.

RectFix Generate a fixed-point rectangular pulse ofheight (default 1.0).
and width (default 8). Ifperiod is greater than zero, then the
pulse is repeated with the given period. The precision ofheight
can be specified in bits.

Complex sources

ConstCx Constant source for complex values.

WaveFormCx Output a complex waveform as specified by the array state
value (default “(1,0) (-1,0)”). Note that “(a,b)” means a + b j.
The parameters work the same way as in theWaveForm star.

expgen Generate a complex exponential with the given frequency (rela-
tive to thesample_rate parameter).

RectCx Generate a rectangular pulse ofheight (default 1.0) andwidth
(default 8). If period is greater than zero, then the pulse is
repeated with the given period.Integer sources

bits Produce “0” with probabilityprobOfZero, else produce “1”.

RampInt Ramp for integer values.

PCMReadInt Read a binaryµ-law encoded PCM file. Return one sample on
each firing. The file format that is read is the same as the one
written by thePlay star. The simulation can be halted on end-
of-file, or the file contents can be periodically repeated, or the
file contents can be padded with zeros. This star is new in
Ptolemy 0.7.

ConstInt Constant source for integer values.

The Almagest 5-9

Ptolemy Last updated: 11/6/97

Matrix Sources

The Matrix and Identity stars each have four different icons for the different
matrix data types.

Matrix (four icons) Produce a matrix with floating-point entries. The
entries are read from the array parameterFloatMatrixContents
in rasterized order: i.e., for aM × N matrix, the first row is filled
from left to right using the firstN values from the array.

Matlab_M Evaluate a Matlab function if inputs are given or evaluate a
Matlab command if no inputs are given. Any Matlab script can
be evaluated, provided that the current machine has a license to
run Matlab. See “Matlab stars” on page 5-26.

MatlabCx_M Complex version of the above star.

Identity_M (four icons) Output a floating-point identity matrix.

5.2.2 Sink stars

The stars in the palette of figure 5-4 are those with no outputs. They display signals in various
ways, or write them to files.

FIGURE 5-4: Sink stars in the SDF domain.

XMgraph WaterfallXscopeXYgraph Xhistogram

Printer

Play

TkMeterTkMeter

123
Tk
ShowValues

123
Tk
ShowValues

TkTextTkText

TkBarGraph TkBarGraph

XMgraph

TkXYPlot

X

Y

TkShow
Booleans

TkShow
Booleans

TclTcl
TclScript

TkPlot TkPlot

Printer

TclTcl
TclScript

TkXYPlot

X

Y

TkBreakPt

Var
Write

Matlab
MatlabCx_M

Other

Batch Plotting Facilities

Interactive Graphics Facilities

Textual Display

Programmable Interactive Sinks Sound Halt

5-10 SDF Domain

U. C. Berkeley Department of EECS

Batch Plotting Facilities

The first six stars in this palette are all based on thepxgraph program. This program
has many options, summarized in “pxgraph — The Plotting Program” on page 20-1. The dif-
ferences between stars often amount to little more than the choice of default options. Some,
however, preprocess the signal in useful ways before passing it to thepxgraph program. The
first allows only one input signal, the second allows any number (notice the double arrow on
the input port).

XMgraph (two icons) Generate a generic multi-signal plot.

XYgraph Generate anX-Y plot with thepxgraph program. TheX data is
on “xInput” and theY data is on “input”.

Xscope Generate a multi-trace plot with thepxgraph program. Succes-
sive traces are overlaid on one another.

Xhistogram Generate a histogram with thepxgraph program. The parame-
terbinWidth determines the bin width.

Waterfall Plot a series of traces in the style of a waterfall plot. This is a
type of three-dimensional plot used to show the evolution of
signals or spectra. Optionally, each plot can be made opaque, so
that lines that would appear behind the plot are eliminated.

Interactive Graphics Facilities

These stars are multiple configurations of only six stars. These stars all use the Tk toolkit
associated with the Tcl language to create interactive, animated displays on the screen.

TkPlot (two icons) Plot “Y” input(s) vs. time with dynamic updating.
Two styles are currently supported:dot causes individual
points to be plotted, whereasconnect causes connected lines
to be plotted. Drawing a box in the plot will reset the plot area
to that outlined by the box. There are also buttons for zooming
in and out, and for resizing the box to just fit the data in view.

TkXYPlot (two icons) Plot “Y” input(s) vs. “X” input(s) with dynamic
updating. Two styles are currently supported:dot causes points
to be plotted, whereasconnect causes connected lines to be
plotted. Drawing a box in the plot will reset the plot area to that
outlined by the box. There are also buttons for zooming in and
out, and for resizing the box to just fit the data in view.

TkShowValues (two icons) Display the values of the inputs in textual form. The
print method of the input particles is used, so any data type can
be handled, although the space allocated on the screen may
need to be adjusted.

TkBarGraph (two icons) Dynamically display the value of any number of
input signals in bar-chart form. The first 12 input signals will be
assigned distinct colors. After that, the colors are repeated. The
colors can be controlled using X resources.

The Almagest 5-11

Ptolemy Last updated: 11/6/97

TkMeter (two icons) Dynamically display the value of any number of
input signals on a set of bar meters.

TkShowBooleans (two icons) Display input Booleans using color to highlight
their value.

Programmable Interactive Sinks

TclScript (two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

MatlabCx_M Evaluate a Matlab function if inputs are given or evaluate a
Matlab command if no inputs are given.

Sound

Play Play an input stream on the workstation speaker. This star
works best on Suns, but can work on SGI Indigos and HP 700s
and 800s. On HPs, you may need other publicly available soft-
ware for this star to work. Thegain parameter (default 1.0) mul-
tiplies the input stream before it isµ-law compressed and
written. The inputs should be in the range of -32000.0 to
32000.0. The file is played at a fixed sampling rate of 8000 sam-
ples per second. When the wrapup method is called, a file of 8-
bit µ-law samples is handed to a program namedptplay which
plays the file. Theptplay program must be in your path.
See“Sounds” on page 2-38 for more information.

Halt

TkBreakPt A conditional break point. Each time this star executes, it evalu-
ates its conditional expression. If the expression evaluates to
true, it causes the run to pause.

Textual Display

Printer (two icons) Print out one sample from each input port per line.
ThefileName parameter specifies the file to be written; the spe-
cial names<stdout> and<cout> which specify the standard
output stream, as well as<stderr> and<cerr> which specify
the standard error stream, are also supported.

TkText (two icons) Display the values of the inputs in a separate win-
dow, keeping a specified number of past values in view. The
print method of the input particles is used, so any data type can
be handled.

Other

WriteVar Write the value of the input to a double-precision floating-point

5-12 SDF Domain

U. C. Berkeley Department of EECS

variable in shared memory. Use theReadVar star to read values
from the shared memory.
WARNING: This star may produce unpredictable results, since
the results will depend on the precedences in the block diagram
in which it appears, as well as the scheduler (target) used.

5.2.3 Arithmetic stars

In principle, it should be possible to overload the basic arithmetic operators so that, for
example, a singleAdd star could handle any data type. Our decision, however, was in favor of
more explicit typing, in which there is anAdd star for each particle type supported in the ker-
nel. As before, when there is no data type suffix in the name of the star, the data type sup-
ported is double-precision floating point.

Many of the stars in this palette have more than one icon, as indicated in figure 5-5.
Each such icon has a different configuration of ports. This is done for visual clarity in sche-
matics. A port with a double arrowhead can accept any number of input signals. Each four
rows of the palette contains equivalent stars for floating-point, complex, fixed-point, and inte-
ger arithmetic, respectively. Listed by the roots of the names of the stars, they are:

Add (two icons) Output the sum of the inputs.

Sub Output the “pos” input minus all “neg” inputs.

Mpy (two icons) Output the product of the inputs.

Gain This is an amplifier; the output is the input multiplied by the
gain (default 1.0).

The floating-point and complex-valued scalar data types also have the following star:

Average Average some number of input samples or blocks of input sam-

FIGURE 5-5: The arithmetic palette in the SDF domain. Note that several of the stars have more
than one icon, each with a different configuration of ports.

Gain

GainCx

Add Add

AddCx AddCx

Sub

SubCx

Mpy Mpy

MpyCx MpyCx

Average

AverageCx

Integrator

AddFixAddFix SubFix MpyFixMpyFix GainFix

AddIntAddInt MpyInt MpyInt GainIntSubInt DivByInt

Complex:

Floating-point:

Fixed-point:

Integer:

The Almagest 5-13

Ptolemy Last updated: 11/6/97

ples. Blocks of successive input samples are treated as vectors.

The floating-point type has one additional arithmetic star:

Integrator This is an integrator with leakage, limits, and reset. With the
default parameters, input samples are simply accumulated, and
the running sum is the output. To prevent any resetting in the
middle of a run, connect aConst source with value 0 to the
“reset” input. Otherwise, whenever a non-zero is received on
this input, the accumulated sum is reset to the current input (i.e.
no feedback).

Limits are controlled by thetop andbottom parameters. Iftop ≤
bottom, no limiting is performed (this is the default). Otherwise,
the output is kept betweenbottom and top. If saturate = YES,
saturation is performed. Ifsaturate = NO, wrap-around is per-
formed (this is the default). Limiting is performed before out-
put.

Leakage is controlled by thefeedbackGain parameter (default
1.0). The output is the data input plusfeedbackGain× state,
wherestate is the previous output.

The integer type has the following star:

DivByInt This is an amplifier. The integer “output” is the integer “input”
divided by the integerdivisor (default 1). Truncated integer
division is used.

5.2.4 Nonlinear stars

The nonlinear palette (figure 5-6) in the SDF domain includes transcendental func-
tions, quantizers, table lookup stars, and miscellaneous nonlinear functions.

Quantizers

AdaptLinQuant Quantize the input to one of 2^bits possible output levels. The
high and low output levels are anti-symmetrically arranged
around zero and their magnitudes are determined by (2^bits-
1)*“inStep”/2. The steps between levels are uniformly spaced at
the step size given by the “inStep” input value. The linear quan-
tizer can be made adaptive by feeding back past information
such as quantization level, quantization value, and step size into
the current step size.

LinQuantIdx Quantize the input to the number of levels given by thelevels
parameter. The quantization levels are uniformly spaced
betweenlow andhigh inclusive. Rounding down is performed,
so that output level will equalhigh only if the input level equals
or exceedshigh. If the input is belowlow, then the quantized
output will equal low. The quantized value is output to the
“amplitude” port, while the index of the quantization level is

5-14 SDF Domain

U. C. Berkeley Department of EECS

output to the “stepNumber” port.

Quant Quantize the input value to one ofN+1 possible output levels
usingN thresholds. For an input less than or equal to the n-th
threshold, but larger than all previous thresholds, the output will
be the n-th level. If the input is greater than all thresholds, the
output is theN+1-th level. If level is specified, there must be
one more level than thresholds; the default value for level is 0,
1, 2, ...N. This star is much slower thanLinQuantIdx , so if
possible, that one should be used instead.

QuantIdx Quantize the input value to one ofN+1 possible output levels
usingN thresholds, and output both the quantized result and the
quantization level. See theQuant star for more information.

Quantizer This star quantizes the input value to the nearest output value in
the given codebook. The nearest value is found by a full search
of the codebook, so the star will be significantly slower than
eitherQuant or LinQuantIdx . The absolute value of the dif-
ference is used as a distance measure.

FIGURE 5-6: Palette of nonlinear stars for the SDF domain.

Table TableCx

Quant

TableInt

SqrtSgn

Floor

Reciprocal

Sin

Cos

Exp LogLimitexpjx

conjcexp

powerEst powerEstLin

Dirichlet

Sinc

LinQuantIdx

powerEstCx

Quantizer

PcwzLinear

Modulo ModuloInt

TclTcl
TclScript

TclTcl
TclScript

DB

Abs

AdaptLin
Quant

input

inStep

amplitude

outStep

stepLevel

MaxMin

output

index

QuantIdx

output

stepNumber

OrderTwoInt

upper

lower

greater

lesser

Other Non-Linear Functions

Math Functions

The Almagest 5-15

Ptolemy Last updated: 11/6/97

Math Functions

Abs Compute the absolute value of its input.

cexp Compute the complex exponential function of its complex
input. See alsoexpjx .

conj Compute the conjugate of its complex input.

Cos Compute the cosine of its input, assumed to be an angle in radi-
ans.

Dirichlet Compute the normalized Dirichlet kernel (also called the
aliased sinc function):

The value of the normalized Dirichlet kernel atx = 0 is always
1, and the normalized Dirichlet kernel oscillates between−1
and +1. The normalized Dirichlet kernel is periodic inx with a
period of either 2π whenN is odd or 4π whenN is even.

Exp Compute the real exponential function of its real input.

expjx Compute the complex exponential function of its real input. See
alsocexp .

Floor Output the greatest integer less than or equal to its input.

Log Output the natural logarithm of its input.

Limit The output of this star is the value of the input limited to the
range betweenbottom andtop inclusive.

MaxMin Finds maximum or minimum, value or magnitude, of a fixed
number of data values on its input. If you want to use this star to
operate over multiple data streams, then precede this star with a
Commutator and set the parameterN accordingly.

Modulo The output is equal to the remainder after dividing the input by
themodulo parameter.

ModuloInt The output is equal to the integer remainder after dividing the
integer input by the integermodulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two
integers.

Reciprocal Output the reciprocal of its input, with an optional magnitude
limit. If the magnitude limit is greater than zero, and the input
value is zero, then the output will equal the magnitude limit.

Sgn Compute the signum of its input. The output is±1. Note that 0.0
maps into 1.

Sin Computes the sine of its input, assumed to be an angle in radi-
ans.

dN x() Nx/ 2()sin
N x/2()sin
--------------------------=

5-16 SDF Domain

U. C. Berkeley Department of EECS

Sinc Computes the sinc of its input given in radians. The sinc func-
tion is defined as sin(x)/x, with value 1.0 whenx = 0.

Sqrt Computes the square root of its input.

Other Nonlinear Functions

DB Convert input to a decibels (dB) scale. Zero and negative values
are assigned the valuemin (default -100). TheinputIsPower
parameter should be set to YES if the input signal is a power
measurement (vs. an amplitude measurement).

PcwzLinear This star implements a piecewise linear mapping from the list of
(x,y) pairs, which specify the breakpoints in the function. The
sequence of x values must be increasing. The function imple-
mented by the star can be represented by drawing straight lines
between the (x,y) pairs, in sequence. The default mapping is the
‘tent’ map, in which inputs between -1.0 and 0.0 are linearly
mapped into the range -1.0 to 1.0. Inputs between 0.0 and 1.0
are mapped into the same range, but with the opposite slope, 1.0
to -1.0. If the input is outside the range specified in the “x” val-
ues of the breakpoints, then the appropriate extreme value will
be used for the output. Thus, for the default map, if the input is -
2.0, the output will be -1.0. If the input is +2.0, the output will
again be -1.0.

powerEst Estimate the power in decibels (dB) by filtering the square of
the input using a first-order filter with the time constant given as
a number of sample periods.

powerEstCx Like powerEst , but for complex inputs.

powerEstLin Same aspowerEst , but the output is on a linear scale instead of
decibels (dB).

Table This star implements a real-valued lookup table indexed by an
integer-valued input. The input must lie between 0 andN-1,
inclusive, whereN is the size of the table. Thevalues parameter
specifies the table. Its first element is indexed by a zero-valued
input. An error occurs if the input value is out-of-bounds.

TableCx Table lookup for complex values.

TableInt Table lookup for integer values.

TclScript (two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

5.2.5 Logic stars

The logic palette shown in figure 5-7 is made up of only three stars. Each star has mul-
tiple icons representing a variety of configurations.

The Almagest 5-17

Ptolemy Last updated: 11/6/97

Test (four icons) Compare two inputs. The test condition can be any
of {EQ NE GT GE} or { == != > >= }, resulting in equals, not
equals, greater than, or greater than or equals. The four icons
represent these possibilities.

If crossingsOnly is TRUE, then the output is non-zero only when
the outcome of the test changes fromTRUE to FALSE or FALSE
to TRUE. In this case, the first output is alwaysTRUE.

Multiple (one icon) Output a 1 if top input is a multiple of bottom input.

Logic (19 icons) This star applies a logical operation to any number of
inputs. The inputs are integers interpreted as Booleans, where
zero is aFALSE and nonzero is aTRUE. The logical operations
supported are {NOT, AND, NAND, OR, NOR, XOR, XNOR}, with any
number of inputs.

5.2.6 Control stars

Control stars (figure 5-8) manipulate the flow of tokens. All of these stars are polymor-
phic; they operate on any data type. From left to right, top to bottom, they are:

Single-Rate Operations

Fork (five icons) Copy input particles to each output. Note that a fork
is automatically inserted in a schematic when a single output is
sent to more than one input. However, when a delay is needed
on one of the connections, then an explicit fork star must be
used.

Reverse On each execution, read a block ofN samples (default 64) and
write them out backwards.

FIGURE 5-7: Logic stars in the SDF palette.

Test

upper

lower

Test Test Test Multiple

5-18 SDF Domain

U. C. Berkeley Department of EECS

Transpose Transpose a rasterized matrix (one that is read as a sequence of
particles, row by row, and written in the same form). The num-
ber of particles produced and consumed equals the product of
samplesInaRow andnumberOfRows.

TkBreakPt A conditional break point. Each time this star executes, it evalu-
ates its conditional expression. If the expression evaluates to
true, it causes the run to pause.

Trainer Pass the value of thetrain input to the output for the firsttrain-
Length samples, then pass thedecision input to the output. This
star is designed for use with adaptive equalizers that require a
training sequence at start-up, but it can be used whenever one
sequence is used during a start-up phase, and another sequence
after that.

Multirate Operations

Commutator (four icons) Synchronously combineN input streams (whereN
is the number of inputs) into one output stream. The star con-
sumesB input particles from each input (whereB is theblock-
Size), and producesN × B particles on the output. The firstB
particles on the output come from the first input, the nextB par-
ticles from the next input, etc.

FIGURE 5-8: Control stars for the SDF domain.

Fork Fork Fork

Reverse

DownSample

UpSampleRepeatDistributor Distributor

Commutator Commutator

Mux

Trainer

Distributor

Commutator

Transpose

Chop
ChopVar
Offset

Commutator

Distributor

Fork
Bus

Fork

TkBreakPt

Mux

input

control

DeMux

input

control

output#1

output#2

DeMux

Single-Rate Operations

Other Operations

Multirate Operations

The Almagest 5-19

Ptolemy Last updated: 11/6/97

DownSample Decimate by a givenfactor (default 2). Thephase tells which
sample of the lastfactor samples to output. Ifphase = 0 (by
default), the most recent sample is the output, while ifphase =
factor −1 the oldest sample is the output. Note thatphase has
the opposite sense of thephase parameter in theUpSample star,
but the same sense as thephase parameter in theFIR star.

Distributor (four icons) Synchronously split one input stream intoN output
streams, whereN is the number of outputs. The star consumesN
× B input particles, whereB is the blockSize parameter, and
sends the firstB particles to the first output, the nextB particles
to the next output, etc.

Repeat Repeat each input sample a specified number of times.

UpSample Upsample by a given factor (default 2), giving inserted samples
the valuefill (default 0.0). Thephase parameter (default 0) tells
where to put the sample in an output block. Aphase of 0 says to
output the input sample first, followed by the inserted samples.
The maximumphase is equal tofactor - 1. Although thefill
parameter is a floating-point number, if the input is of some
other type, such as complex, then thefill particle will be
obtained by castingfill to the appropriate type.

Other Operations

Chop On each execution, this star reads a block ofnread particles and
writes them to the output with the given offset. The number of
particles written is given bynwrite. The output block contains
all or part of the input block, depending onoffset andnwrite.
The offset specifies where in the output block the first (oldest)
particle in the input block will lie. Ifoffset is positive, then the
first offset output particles will be either particles consumed on
previous firings (ifuse_past_inputs parameter isYES), or zero
(otherwise). Ifoffset is negative, then the firstoffset input parti-
cles will be discarded.

ChopVarOffset This star has the same functionality as theChop star except the
offset parameter is determined at run time by a control input.

DeMux (two icons) Demultiplex one input onto any number of output
streams. The star consumesB particles from the input, whereB
is theblockSize. TheseB particles are copied to exactly one out-
put, determined by the “control” input. The other outputs get a
zero of the appropriate type.

Integers from 0 throughN − 1 are accepted at the “control”
input, whereN is the number of outputs. If “control” is outside
this range, all outputs get zeros.

Mux (two icons) Multiplex any number of inputs onto one output

5-20 SDF Domain

U. C. Berkeley Department of EECS

stream.B particles are consumed on each input, whereB is the
blockSize. But only one of these blocks of particles is copied to
the output. The one copied is determined by the “control” input.
Integers from 0 throughN − 1 are accepted at the “control”
input, whereN is the number of inputs. If “control” is outside
this range, an error is signaled.

5.2.7 Conversion stars

The palette in figure 5-9 shows a collection of stars for format conversions of various
types. The first two rows contain stars with functions that are fundamentally different from the
automatic type conversion performed by Ptolemy. From left to right, top to bottom, they are:

Complex data type formats

CxToRect Convert a complex input to real and imaginary parts.

RectToCx Convert real and imaginary inputs to a complex output.

RectToPolar Convert real and imaginary inputs into magnitude and phase

FIGURE 5-9: Type conversion stars for the SDF domain.

CxToRect RectToCx PolarToRectRectToPolar

BitsToInt IntToBits

PCM
BitDecoder

FloatToFix FloatToCx

IntToFloat IntToCxIntToFix

FloatToInt

CxToInt CxToFloatCxToFix

FixToCxFixToInt FixToFloat

Bus
To

Num

Num
To
Bus

Num
To
Bus

NumToBus

Bus
To

Num
BusToNum

MuLaw

FixToCx_MFixToFloat_MFixToInt_M

FloatToCx_MFloatToFix_MFloatToInt_M

IntToCx_MIntToFloat_MIntToFix_M

CxToFix_M CxToFloat_MCxToInt_M

PCM
BitCoder

Other data type formats:

Complex data type formats:

Explicit (vs. automatic) scalar and matrix data type conversion:

Scalar

Matrix

The Almagest 5-21

Ptolemy Last updated: 11/6/97

form. The phase output is in the range−π to π.

PolarToRect Convert magnitude and phase to rectangular form.

Other data type formats

PCMBitCoder Encode voice samples for a 64 kbps bit stream using CCITT
Recommendation G.711. The input is one 8 kHz sample of
voice data and the output is the eight-bit codeword (the low-
order 8 bits of an integer) representing the quantized samples.

MuLaw This star encodes its input into an 8 bit representation using the
nonlinear compandingµ-law. It is similar toPCMBitCoder , but
it does the conversion in a single star, rather than a galaxy.

PCMBitDecoder Decode 8-bit PCM codewords that were encoded usingPCM-
BitCoder .

BitsToInt The integer input sequence is interpreted as a bit stream in
which any non-zero value is a “1” bit. This star consumesnBits
successive bits from the input, packs them into an integer, and
outputs the resulting integer. The first received bit becomes the
most significant bit of the output. IfnBits is larger than the inte-
ger wordsize, then the first bits received will be lost. IfnBits is
smaller than the wordsize minus one, then the output integer
will always be non-negative.

IntToBits Read the least significantnBits bits from an integer input, and
output the bits as integers serially on the output, most signifi-
cant bit first.

BusToNum (two icons) This star accepts a number of input bit streams,
where this number should not exceed the word size of an inte-
ger. Each bit stream has integer particles with values 0, 3, or
anything else. These are interpreted as binary 0, tri-state, or 1,
respectively. When the star fires, it reads one input bit from each
input. If any of the input bits is tri-stated, the output will be the
previous output (or the initial value of theprevious parameter if
the firing is the first one). Otherwise, the bits are assembled into
an integer word, assuming two's complement encoding, and
sign extended. The resulting signed integer is sent to the output.
This star is particularly useful for interfacing to digital logic
simulation domains.

NumToBus (two icons) This star accepts an integer and outputs the low-
order bits that make up the integer on a number of outputs, one
bit per output. The number of outputs should not exceed the
word size of an integer. This star is particularly useful for inter-
facing to digital logic simulation domains.

Automatic type conversion, as implemented in Ptolemy 0.7, has limitations. If a given output

5-22 SDF Domain

U. C. Berkeley Department of EECS

port has more than one destination, then all destinations must have the same type input. This is
true even if an explicitfork star is used. Explicit type conversions are needed to get around
this limitation. For this reason, the palette in figure 5-9 also contains a set of type conversions
that behave exactly the same way the automatic type conversions behave.

IntToFix Convert an integer input to a fixed-point output.

IntToFloat Convert an integer input to a floating-point output.

IntToCx Convert an integer input to a complex output.

FixToInt Convert a fixed-point input to an integer output.

FixToFloat Convert a fixed-point input to a floating-point output.

FixToCx Convert a fixed-point input to a complex output.

FloatToInt Convert a floating-point input to an integer output.

FloatToFix Convert a floating-point input to a fixed-point output.

FloatToCx Convert a floating-point input to a complex output.

CxToInt Convert a complex input to an integer output.

CxToFix Convert a complex input to a fixed-point output.

CxToFloat Convert a complex input to a floating-point output.

Matrix Conversion Stars

The following type conversions construct a new matrix of the destination type by converting
each element of the old matrix as it is copied to the new one. ForFixMatrix types, the preci-
sion is specified as a parameter of the conversion star. The actual conversions are implemented
using the cast conversion in the underlying class, except for the conversions to theFixMa-
trix type which are more complex because they involve possible changes in precision and
require a rounding option. The stars provided are:

IntToFix_M Convert an integer input matrix to a fixed-point output matrix.

IntToFloat_M Convert an integer input matrix to a floating-point output
matrix.

IntToCx_M Convert an integer input matrix to a complex output matrix.

FixToInt_M Convert a fixed-point input matrix to an integer output matrix.

FixToFloat_M Convert a fixed-point input matrix to a floating-point output
matrix.

FixToCx_M Convert a fixed-point input matrix to a complex output matrix.

FloatToInt_M Convert a floating-point input matrix to an integer output
matrix.

FloatToFix_M Convert a floating-point input matrix to a fixed-point output
matrix.

FloatToCx_M Convert a floating-point input matrix to a complex output

The Almagest 5-23

Ptolemy Last updated: 11/6/97

matrix.

CxToInt_M Convert a complex input matrix to an integer output matrix.

CxToFix_M Convert a complex input matrix to a fixed-point output matrix.

CxToFloat_M Convert a complex input matrix to a floating-point output
matrix.

5.2.8 Matrix stars

The stars in the matrix palette (figure 5-10) operate on particles that represent matrices
with floating-point, fixed-point, complex, or integer entries. Most of the work is done in the
underlying matrix classes,FloatMatrix , ComplexMatrix , FixMatrix , andIntMatrix .
These classes are treated as ordinary particles. In Pigi, matrix types are indicated with thick
terminal stems, where the color of the terminal stem corresponds to the data type of the matrix
elements.

The Matrix conversion stars are in the conversion palette, see “Matrix Conversion
Stars” on page 5-22 for more information.

FIGURE 5-10: The matrix palette in the SDF domain. These stars operate on matrices encapsulated
in a particles.

PackFix_M

UnPkFix_M

PackCx_M PackInt_M

UnPkCx_M UnPkInt_M

AddCx_M

AddFix_M

Add_M

AddInt_M

SubCx_MMpyCx_MGainCx_M

T

TransposeCx_M

-1

InverseCx_M

GainFix_M

T

TransposeFix_M

-1

InverseFix_M MpyFix_M SubFix_M

GainInt_M

T

TransposeInt_M

-1

InverseInt_M MpyInt_M SubInt_M

Gain_M

T

Transpose_M

-1

Inverse_M Mpy_M Sub_M

*
Conjugate_M

H

Hermitian_M

UnPk_M

Pack_M

SmithForm SVD_M

R

S

L

AvgSqrErrTable_M TableInt_MTableCx_M

SubMx_M

SubMxInt_M

SubMxFix_M

SubMxCx_M

SampleMean

MxDecom_MMxCom_M

MpyScalar_M MpyScalarFix_MMpyScalarCx_M MpyScalarInt_M

sources.pal

conversion.pal

ToeplitzCx_M ToeplitzFix_M ToeplitzInt_M

Toeplitz_M

Abs_M

Miscellaneous

Matrix-Vector Conversions

Matrix Operations

Matrix data type
conversion stars are
in Conversion palette

Matrix source stars
are in the Signal
Sources palette

--->

--->

5-24 SDF Domain

U. C. Berkeley Department of EECS

Matrix-Vector Conversion

MxCom_M Accept input matrices and create a matrix output. Each input
matrix represents a decomposed submatrix of output matrix in
row by row. Note that for one output image, we will need a total
(numRows/ numRowsSubMx) × (numCols/ numColsSubMx)
input matrices.

MxDecom_M Decompose a portion of input matrix into a sequence of subma-
trices. The desired portion of input matrix is specified by the
parametersstartRow, startCol, numRows, andnumCols. Then
output each submatrix with dimensionnumRowsSubMx× num-
ColsSubMx in row by row. Note that for one input matrix, there
will be a total of (numRows/ numRowsSubMx) × (numCols/
numColsSubMx) output matrices.

The following conversions perform more interesting functions. They also come in four ver-
sions, one for each data type, and again we only list the floating-point version.

Pack_M (4 icons) Produce a matrix with floating-point entries con-
structed from floating-point input particles. The inputs are put
in the matrix in rasterized order, e.g. for aM × N matrix, the first
row is filled from left to right using the first N input particles.

Toeplitz_M (4 icons) Generate a floating-point data matrixX, with dimen-
sions (numRows,numCols), from a stream ofnumRows + num-
Cols− 1 input particles organized as shown below:

HerenumRows = N− M + 1 andnumCols = M. This Toeplitz
matrix is the form of the matrix that is required by theSVD_M
star, among others.

UnPk_M (4 icons) Read a floating-point matrix and output its elements,
row by row, as a stream of floating-point particles.

Matrix operations

The following blocks are functions defined only for theComplexMatrix data type.

Conjugate_M Conjugate a matrix.

Hermitian_M Perform a Hermitian transpose (conjugate transpose) on the
input matrix.

The following blocks also appear in the signal processing palette.

SmithForm Decompose an integer matrixS into one of its Smith formsS =

X

x M 1–() x M 2–() ... x 0()
x M() x M 1–() ... x 1()

...

x N 1–() x N 2–() ... x N M–()

=

The Almagest 5-25

Ptolemy Last updated: 11/6/97

UDV, whereU, D, and V are simpler integer matrices. The
Smith form decomposition for integer matrices is analogous to
singular value decomposition for floating-point matrices.

SVD_M Compute the singular-value decomposition of a Toeplitz data
matrix A by decomposingA into A = UWV’, whereU andV are
orthogonal matrices, andV’ represents the transpose ofV. W is a
diagonal matrix composed of the singular values ofA, and the
columns ofU andV are the left and right singular vectors ofA.

See “Matrix Sources” on page 5-8 for the Matrix source stars.

The following are usual matrix operations. They are arranged row by row, with one row for
each data type (floating point, complex, fixed point, and integer). We list below only the float-
ing point data type, from left to right.

Add_M Add two floating-point matrices.

Gain_M Multiply a floating-point matrix by a static scalar gain value.

Inverse_M Invert a square floating-point matrix.

Mpy_M Multiply two floating-point matricesA andB to produce matrix
C. Matrix A has dimensions (numRows,X). Matrix B has dimen-
sions (X,numCols). Matrix C has dimensions (numRows,num-
Cols). The user need only specifynumRows andnumCols. An
error will be generated if the number of columns inA does not
match the number of rows inB.

Sub_M Subtract floating-point matrixB from A.

Transpose_M Transpose a floating-point matrix read as a single particle.

SubMx_M Find a submatrix of the input matrix.

MpyScalar_M Multiply a floating-point matrix by a scalar gain value given in
parameter.

Miscellaneous

Table_M (3 stars for floating-point, complex and integer) This star imple-
ments a lookup table indexed by an integer-valued input. The
output is a matrix. The input must lie between 0 andN − 1,
inclusive, whereN is the number of matrices in the table. The
floatTable parameter specifies the entries of matrices in the
table. Note that the entries of each matrix in the table should be
given in row major ordering. The first matrix in the table is
indexed by a zero-valued input. An error occurs if the input
value is out of bounds.

SampleMean Find the average amplitude of the components of the input
matrix.

AvgSqrErr Find the average squared error between two input sequences of

5-26 SDF Domain

U. C. Berkeley Department of EECS

matrices.

Abs_M Return the absolute value of each entry of the floating-point
matrix.

5.2.9 Matlab stars

The Matlab stars provide an interface between Ptolemy and Matlab, a numeric compu-
tation and visualization environment from The Math Works, Inc. Each Matlab star can contain
a single Matlab function, command, statement, or several statements. Ptolemy handles the
conversion of inputs into Matlab format and the results from Matlab into Ptolemy format. For
the Matlab stars to work, Matlab version 4.1 or later must be installed. Matlab is not distrib-
uted with Ptolemy1. If a Matlab star is run and Matlab is not installed, then Ptolemy will
report an error. All Matlab stars send their commands to the same Matlab process.

Xavier Warzee of Thomson-CSF provided a method of running Matlab on a remote
machine and obtaining the results from within Ptolemy. If a simulation needs to start Matlab,
then thePTMATLAB_REMOTE_HOST environment variable is checked. If this variable is set,
then its value is assumed to be the name of the remote machine to run Matlab on. The remote
Matlab process is started up with the Unixrsh command. Once the remote process is run-
ning, if theMATLAB_SCRIPT_DIR environment variable is set, then its value is passed to the
remote Matlab process as part of the command

path(path.’ MATLAB_SCRIPT_DIR’)

whereMATLAB_SCRIPT_DIR is the value of that variable on the local machine.

Internally, Matlab distinguishes between real matrices and complex matrices. As a

1. Contact The Math Works, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass. 01760-1500,
USA, Phone: (508) 653-1415. Their Web site is http://www.mathworks.com/.

The Almagest 5-27

Ptolemy Last updated: 11/6/97

consequence, in Figure 5-11 there are two types of Matlab stars: one outputs floating-point

matrices and one outputs complex-valued matrices. These stars can take any number of inputs
provided that the inputs have the same data type (floating point or complex). The two types of
Matlab stars are:

Matlab_M Evaluate a Matlab expression and output the result as floating-
point matrices.

MatlabCx_M Evaluate a Matlab expression and output the result as complex-
valued matrices.

The implementation of Matlab stars is built on Matlab’s engine interface. The interface
is managed by a base star,SDFMatlab . The base star does not have any inputs or outputs. It
provides methods for starting and killing a Matlab process, evaluating Matlab commands,
managing Matlab figures, changing directories in Matlab, and passing Ptolemy matrices in
and out of Matlab. Currently, the base star does support real- and complex-valued matrices,
but not Matlab’s other two matrix data types, sparse and string matrices.

Figures generated by a Matlab star are managed according to the value of the star’s
DeleteOldFigures parameter. IfTRUE or YES, then the Matlab star will close any plots, graph-
ics, etc., that it has generated when the Matlab star is destroyed (e.g., when the run panel in the
graphical interface is closed). Otherwise, the figures remain until Ptolemy exits. For standal-

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
Matlab_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Matlab
MatlabCx_M

Float Matrix Outputs

Complex Matrix Outputs

FIGURE 5-11: Matlab stars in the SDF domain.

5-28 SDF Domain

U. C. Berkeley Department of EECS

one programs generated by compile-SDF, it is better to set this parameter toNO so that the
plots will not disappear when then standalone programs finishes.

There are several ways in which Matlab commands can be specified in the Matlab
stars. The Matlab starsMatlab_M andMatlabCx_M have a parameterMatlabFunction. If
only a Matlab function name is given for this parameter, then the function is applied to the
inputs in the order they are numbered and the output(s) of the function is (are) sent to the star’s
outputs. For example, specifyingeig means to perform the eigendecomposition of the input.
The function will be called to produce one or two outputs, according to how many output
ports there are. If there is a mismatch in the number of inputs and/or outputs between the
Ptolemy star and the Matlab function, Ptolemy will report the error generated by Matlab.

The user may also specify how the inputs are to be passed to a Matlab function or how
the outputs are taken from the Matlab function. For example, consider a two-input, two-output
Matlab star to perform a generalized eigendecomposition. The command

[output#2, output#1] = eig(input#2, input#1)

says to perform the generalized eigendecomposition on the two input matrices, place the gen-
eralized eigenvectors on output#2, and the eigenvalues (as a diagonal matrix) on output#1.
Before this command is sent to Matlab, the pound characters ‘#’ are replaced with underscore
‘_’ characters because the pound character is illegal in a Matlab variable name.

The Matlab stars also allow a sequence of commands to be evaluated. Continuing with
the previous example, we can plot the eigenvalues on a graph after taking the generalized
eigendecomposition:

[output#2, output#1] = eig(input#2, input#1);
plot(output#1)

When entering such a collection of commands in Ptolemy, both commands would appear on
the same line without a newline after the semicolon. In this way, very complicated Matlab
commands can be built up. We can make the plot of eigenvalues always appear in the same
plot without interfering with other plots generated by other Matlab stars:

[output#2, output#1] = eig(input#2, input#1);
if (exist(‘myEigFig’) == 0) myEigFig = figure; end;
figure(myEigFig);
plot(output#1);

For more information about using Matlab stars, please refer to the Matlab demonstrations.

5.2.10 UltraSparc Native DSP

The Visual Instruction Set (VIS) demos only run on Sun Ultrasparc workstations with
the Sun unbundled CC compiler and a Ptolemy tree that has been compiled with thePTARCH
variable set tosol2.5.cfront . The VIS demos will not work the Gnu compilers. You must
have the Sun Visual Instruction Set Development kit installed, seehttp://www.sun.com/
sparc/vis/vsdkfaq.html .

The palette shown in figure 5-12 has icons for the library of Sun UltraSparc Visual

The Almagest 5-29

Ptolemy Last updated: 11/6/97

Instruction Set (VIS) stars.

VISAddSh Add the shorts in a 16 bit partitioned float to the corresponding
shorts in a 16 bit partitioned float. The result is four signed
shorts that is returned as a single floating point number. There is
no saturation arithmetic so that overflow results in wraparound.

VISSubSh Subtract the shorts in a 16 bit partitioned float to the corre-
sponding shorts in a 16 bit partitioned float.The result is four
signed shorts that is returned as a single floating point number.
There is no saturation arithmetic so that overflow results in
wraparound.

VISMpyDblSh Multiplies the shorts in a 16 bit partitioned float to the corre-
sponding shorts in a 16 bit partitioned float. The result is four
signed shorts that is returned as a single floating point number.
Each multiplication results in a 32 bit result, which is then
rounded to 16 bits.

VISBiquad An IIR Biquad filter.

VISFIR A finite impulse response (FIR) filter.

VISFFTCx A single complex sequence FFT using radix 2.

VISPackSh Pack four floating point numbers into a single floating point
number.

VISPackSh

VISAddSh

inA

inB

VISBiquad VISFFTCx

realIn

imagIn

realOut

imagOut

VISFIR

VISMpyDblSh

inA

inB

VISUnpackSh

VISSubSh

inA

inB

Conversion

Arithmetic

Signal Processing

FIGURE 5-12: Sun UltraSparc Visual Instruction Set (VIS) DSP stars in the SDF domain.

5-30 SDF Domain

U. C. Berkeley Department of EECS

VISUnPackSh Unpack a single floating point number into four floating point
numbers.

5.2.11 Signal processing stars

The palette shown in figure 5-13 has icons for the library of signal processing func-
tions. Simple time-domain filtering operations come first.

Filters

Biquad A two-pole, two-zero Infinite Impulse Response filter (a
biquad). The default is a Butterworth filter with a cutoff at 0.1
times the sample frequency. The transfer function is

.

Convolve Convolve two causal finite sequences of floating point numbers.
The truncationDepth parameter specifies the number of terms
used in the convolution sum. SettruncationDepth larger than

FIGURE 5-13: The signal processing (dsp) palette of the SDF domain.

Biquad

BlockAllPole BlockFIR BlockLattice BlockRLattice

FIRCxConvolve FIR

Hilbert

LMS LMSLeak

Lattice RLatticeIIR

LMSCx

phaseShift

FIRFix

LMS
TkPlot

LMSCx
TkPlot

Kalman_M

y[n]

PHI[n] C[n]

x[n]

R[n]Q[n]

LMSPlot LMSPlotCx

IIRFix

blockPredictor blockVocoder

GAL GGAL

GLA SGVQCodebk VQCoderSGVQCoderMRVQCoder

Goertzel

LMSOscDet

signalIn

error

signalOut

cosOmega

ConvolCx
Raised
Cosine

Adaptive Filters

Vector Quantization

Block Filters

Filters

H z()
n0 n1z

1–
n2z

2–
+ +

1 d1z
1–

d2z
2–

+ +
--=

The Almagest 5-31

Ptolemy Last updated: 11/6/97

the number of output samples of interest.

ConvolveCx Convolve two causal finite sequences of complex numbers. The
truncationDepth parameter specifies the number of terms used
in the convolution sum. SettruncationDepth larger than the
number of output samples of interest.

FIR A Finite Impulse Response (FIR) filter. Coefficients are speci-
fied by thetaps parameter. The default coefficients give an 8th
order, linear-phase, lowpass filter. To read coefficients from a
file, replace the default coefficients with< fileName , prefera-
bly specifying a complete path. Rational sampling rate changes,
implemented by polyphase multirate filters, is also supported.

FIRCx A complex FIR filter. Coefficients are specified by thetaps
parameter. The default coefficients give an 8th order, linear
phase, lowpass filter. To read coefficients from a file, use the
syntax:< fileName , preferably specifying a complete path.
Real and imaginary parts should be paired with parentheses,
e.g. (1.0, 0.0). Polyphase multirate filtering is also supported.

RaisedCosine An FIR filter with a magnitude frequency response that is
shaped like the standard raised cosine or square-root raised
cosine used in digital communications. By default, the star
upsamples by a factor of 16, so 16 outputs will be produced for
each input unless theinterpolation parameter is changed.

FIRFix An FIR filter with fixed-point capabilities. The fixed-point coef-
ficients are specified by thetaps parameter. The default coeffi-
cients give an 8th order, linear phase lowpass filter. To read
coefficients from a file, replace the default coefficients with<
fileName , preferably specifying a complete path. Polyphase
multirate filtering is also supported.

Kalman_M Output the state vector estimates of a Kalman filter using a one-
step prediction algorithm.

GAL A Gradient Adaptive Lattice filter.

Goertzel Second-order recursive computation of the kth coefficient of an
N-point DFT using Goertzel’s algorithm.

GGAL Ganged Gradient Adaptive Lattice filters.

Hilbert Output the (approximate) Hilbert transform of the input signal.
This star approximates the Hilbert transform by using an FIR
filter, and is derived from theFIR star.

IIR An Infinite Impulse Response (IIR) filter implemented in direct
form II. The transfer function is of the form

,H z() G
N 1/z()
D 1/z()
-----------------=

5-32 SDF Domain

U. C. Berkeley Department of EECS

whereN() andD() are polynomials. The parametergain speci-
fiesG, and the floating-point arraysnumerator anddenominator
specifyN() andD(), respectively. Both arrays start with the con-
stant terms of the polynomial and decrease in powers ofz
(increase in powers of 1/z). Note that the constant term ofD is
not omitted, as is common in other programs that assume it is
always normalized to unity.

IIRFix This is a fixed-point version of theIIR star. The coefficient pre-
cision, input precision, accumulation precision, and output pre-
cision can all be separately specified.

Lattice An FIR lattice filter. The default reflection coefficients form the
optimal predictor for a particular 4th-order AR random process.
To read other reflection coefficients from a file, replace the
default coefficients with< fileName , preferably specifying a
complete path.

phaseShift This galaxy applies a phase shift to a signal according to the
“shift” input. If the “shift” input value is time varying, then its
slope determines the instantaneous frequency shift.

RLattice A recursive (IIR) lattice filter. The default coefficients imple-
ment the synthesis filter for a particular 4th-order AR random
process. To read reflection coefficients from a file, replace the
default coefficients with< fileName , preferably specifying a
complete path.

Adaptive Filters

LMS An adaptive filter using the Least-Mean Square (LMS) adapta-
tion algorithm. The initial coefficients are given by thetaps
parameter. The default initial coefficients give an 8th order, lin-
ear phase lowpass filter. To read default coefficients from a file,
replace the default coefficients with< fileName , preferably
specifying a complete path. This star, which is derived from
FIR , supports decimation, but not interpolation.

LMSCx Complex version of theLMS star.

LMSCxTkPlot This star is just like theLMSCx star, but with an animated Tk
display of the taps, plus associated controls.

LMSLeak An LMS adaptive filter in which the step size is input (to the
“step” input) every iteration. In addition, themu parameter
specifies a leakage factor in the updates of the filter coefficients.

LMSPlot This star is just like theLMS star, except that, in addition to the
functions ofLMS, it makes a plot of the tap coefficients. It can
produce two types of plots: a plot of the final tap values or a plot
that traces the time evolution of each tap value. The time evolu-

The Almagest 5-33

Ptolemy Last updated: 11/6/97

tion is obtained if the value of the parametertrace is YES.

LMSTkPlot This star is just like theLMS star, but with an animated Tk dis-
play of the taps, plus associated controls.

LMSOscDet This filter tries to lock onto the strongest sinusoidal component
in the input signal, and outputs the current estimate of the
cosine of the frequency of the strongest component and the
error signal. It is a three-tap LMS filter whose first and third
coefficients are fixed at one. The second coefficient is adapted.
It is a normalized version of the Direct Adaptive Frequency
Estimation Technique.

LMSPlotCx Complex version ofLMSPlot . Separate plots are generated for
the magnitude and phase of the filter coefficients.

Block Filters

The next group of stars perform “block filtering”, which means that on each firing, they read a
set of input particles all at once, process them, and produce a set of output particles. The num-
ber of particles in a set is specified by theblockSize parameter.

BlockAllPole This star implements an all pole filter with the denominator
coefficients of the transfer function externally supplied. For
each set of coefficients, a block of input samples is processed,
all in one firing. The transfer function is

where the coefficients of are externally supplied.

BlockFIR This star implements an FIR filter with coefficients that are peri-
odically updated from the outside. For each set of coefficients, a
block of input samples is processed, all in one firing.

BlockLattice A block forward lattice filter. It is identical to theLattice star
except that the reflection coefficients are updated each time the
star fires by reading the “coefs” input. Theorder parameter
indicates how many coefficient should be read. TheblockSize
parameter specifies how many data samples should be pro-
cessed for each set of coefficients.

BlockRLattice A block recursive (IIR) lattice filter. It is identical to theRLat-
tice star, except that the reflection coefficients are updated
each time the star fires by reading the “coefs” input. Theorder
andblockSize parameters have the same interpretation as in the
BlockLattice star.

blockPredictor A block predictor galaxy used in speech processing.

blockVocoder A block vocoder galaxy.

H z() 1
1 D z()–
--------------------=

D z()

5-34 SDF Domain

U. C. Berkeley Department of EECS

Vector Quantization

Quantization is the heart of converting analog signals to digital signals. Traditional
techniques are based onscalar coding which quantizes symbols, such as pixels in images, one
by one. On the other hand, vector quantization can perform better by operating the quantiza-
tion on groups of symbols instead of individual symbols.

GLA Use the Generalized Lloyd Algorithm (GLA) to yield a code-
book from input training vectors. Note that each input matrix
will be viewed as a row vector in row by row. Each row of out-
put matrix represents a codeword of the codebook.

MRVQCoder Mean removed vector quantization coder.

SGVQCodebk Jointly optimized codebook design for shape-gain vector quan-
tization. Note that each input matrix will be viewed as a row
vector in row by row. Each row of first output matrix represents
a codeword of the shape codebook. Each element of the second
output matrix represents a codeword of the gain codebook.

SGVQCoder Shape-gain vector quantization encoder. Note that each input
matrix will be viewed as a row vector in row by row.

VQCoder Full search vector quantization encoder. It consists in finding
the index of the nearest neighbor in the given codebook corre-
sponding to the input matrix. Note that each input matrix will
first be viewed as a row vector in row by row, in order to find the
nearest neighbor codeword in the codebook.

5.2.12 Spectral analysis

The group of stars shown in figure 5-14 are concerned with various signal analysis algorithms.

autocorrelation Estimate a power spectrum using the autocorrelation method, a
method that uses the Levinson-Durbin algorithm to compute
linear predictor coefficients, and then uses these coefficients to
construct an approximate maximum entropy power spectrum
estimate.

blockFFT An overlap and add implementation of the FFT.

burg Estimate a power spectrum using Burg’s method, a method that
computes linear predictor coefficients, and then uses them to
construct a maximum entropy power spectrum estimate.

Burg This star uses Burg's algorithm to estimate the linear predictor
coefficients of an input random process. These coefficients are
produced both in autoregressive form (on the “lp” output) and
in lattice filter form (on the “refl” output). The “errPower” out-
put is the power of the prediction error as a function of the pre-
dictor order. This star is used in theburg galaxy.

DB Convert input to a decibel (dB) scale. Zero and negative values

The Almagest 5-35

Ptolemy Last updated: 11/6/97

are assigned the valuemin (default -100). TheinputIsPower
parameter should be set toYES if the input signal is a power
measurement (vs. an amplitude measurement).

DTFT Compute the discrete-time Fourier transform (DTFT) at fre-
quency points specified on the “omega” input.

FFTCx Compute the discrete-time Fourier transform of a complex input
using the fast Fourier transform (FFT) algorithm. The parame-
ter order (default 8) is the log base 2 of the transform size. The
parametersize (default 256) is the number of samples read (<=
2^order). The parameterdirection (default 1) is 1 for the for-
ward, -1 for the inverse FFT.

GoertzelPower Second-order recursive computation of the power of the kth
coefficient of an N-point DFT using Goertzel’s algorithm. This
form is used in touch-tone decoding.

LevDur This star uses the Levinson-Durbin algorithm to compute the
linear predictor coefficients of a random process, given its auto-
correlation function as an input. These coefficients are produced
both in autoregressive form (on the “lp” output) and in lattice
filter form (on the “refl” output). The “errPower” output is the
power of the prediction error as a function of the predictor
order.

FIGURE 5-14: The spectral analysis palette of the SDF domain

Autocor

Burg

FFTCxDTFT LevDur

Unwrap Window

PattMatch

DB

periodogram

autocorrelation burg

SVD_M

R

S

L

MUSIC_M

SmithForm

blockFFT

Goertzel
Power

Spectral Analysis:

Statistical Operators:

5-36 SDF Domain

U. C. Berkeley Department of EECS

MUSIC_M This star is used to estimate the frequencies of some specified
number of sinusoids in a signal. The output is the eigenspec-
trum of a signal, such that the locations of the peaks of the
eigenspectrum correspond to the frequencies of the sinusoids in
the signal. The input is the right singular vectors in the form
generated by theSVD_M star. The MUSIC algorithm (multiple
signal characterization) is used.

periodogram Estimate a power spectrum using the periodogram method. This
consists in computing the magnitude squared of the DFT of a
set of observations of the signal. The FFT algorithm is used.

SmithForm Decompose an integer matrixS into one of its Smith formsS =
UDV, whereU, D, and V are simpler integer matrices. The
Smith form decomposition for integer matrices is analogous to
singular value decomposition for floating-point matrices.

SVD_M Compute the singular-value decomposition of a Toeplitz data
matrix A by decomposingA into A = UWV’, whereU andV are
orthogonal matrices, andV’ represents the transpose ofV. W is a
diagonal matrix composed of the singular values ofA, and the
columns ofU andV are the left and right singular vectors ofA.

Unwrap Unwraps a phase plot, removing discontinuities of magnitude
2π. This star assumes that the phase never changes by more
thanπ in one sample period. It also assumes that the input is in
the range [−π,π].

Window Generate standard window functions or periodic repetitions of
standard window functions. The possible functions areRect-
angle , Bartlett , Hanning , Hamming, Blackman , Steep-
Blackman , andKaiser . One period of samples is produced on
each firing. This star is also found in the signal sources palette.

Miscellaneous signal processing blocks

Autocor Estimate an autocorrelation function by averaging input sam-
ples. Both biased and unbiased estimates are supported.

PattMatch This star accepts a template and a search window. The template
is slid over the window one sample at a time, and cross correla-
tions are calculated at each step. The cross-correlations are out-
put on the “values” output. The “index” output is the value of
the time-shift which gives the largest cross correlation. This
index refers to a position on the search window beginning with
0 corresponding to the earliest arrived sample of the search win-
dow that is part of the best match with the template.

5.2.13 Communication stars

The limited set of communication stars that have been developed are shown in figure

The Almagest 5-37

Ptolemy Last updated: 11/6/97

5-15, and summarized below. Many of these are galaxies, and should be viewed as examples
of systems that a user can create.

Sources and pulse shapers

bits Produce “0” with probabilityprobOfZero, else produce “1”.

cosine.pal Produce a cosine waveform whose energy is normalized with
respect toAmplitude. It is used in simulations for binary fre-
quency shift keying (BFSK) demonstrations. This galaxy differs
from the cosine star which computes the cosine of the input sig-
nal (see “Nonlinear stars” on page 5-13 for more information on
the cosine star).

Hilbert Output the approximate Hilbert transform of the input signal.
This star approximates the Hilbert transform by using an FIR
filter, and is derived from theFIR star. The Hilbert star is also in
the signal processing palette, which is discussed on page 5-30.

RaisedCosine An FIR filter with a magnitude frequency response shaped like
the standard raised cosine or square-root raised cosine used in
digital communication. By default, the star upsamples by a fac-
tor of 16, so 16 outputs will be produced for each input unless
the interpolation parameter is changed.

FIGURE 5-15: Communication stars in the SDF domain.

freqPhase
nonLinear
Distortion

QAM16

11010
bits

QAM4

hilbertSplit qam4Slicer

AWGN

qam16Slicer

Raised
Cosine

Raised
CosineCx

Telephone
Channel

Scrambler

DeScrambler

baseband
equivalent
channel

noise
channel

2 PAM

xmit2pam

2 PAM

rec2pam

4 PAM

xmit4pam

4 PAM

rec4pam

Q
A
M
16
Decode

Hilbert

phaseShift

cosine.pal

NR2Zero.pal Spread

DeSpreader

2 PSK

rec2psk

2 PSK

xmit2psk

2 FSK

xmit2fsk

Spreader

xmitspread

2 FSK

rec2fsk

Spreader

recspread

Sources and pulse shapers

Transmitter functions

Receiver functions

Channel models

5-38 SDF Domain

U. C. Berkeley Department of EECS

RaisedCosineCx This galaxy uses theRaisedCosine star to implement an FIR
filter for complex inputs with a raised cosine or square-root
raised cosine transfer function.

Transmitter functions

NR2Zero Binary to Nonreturn-to-Zero Signaling Converter

QAM4 Encode an input bit stream into a 4-QAM (or 4-PSK) complex
symbol sequence.

QAM16 Encode an input bit stream into a 16-QAM complex symbol
sequence.

Scrambler Scramble the input bit sequence using a feedback shift register.
The taps of the feedback shift register are given by thepolyno-
mial parameter, which should be a positive integer. The n-th bit
of this integer indicates whether the n-th tap of the delay line is
fed back. The low-order bit is called the 0-th bit, and should
always be set. The next low-order bit indicates whether the out-
put of the first delay should be fed back, etc. The defaultpoly-
nomial is an octal number defining the V.22bis scrambler.

Spread Frame synchronized direct-sequence spreader.

xmit2fsk Binary frequency shift keying (BFSK) transmitter.

xmit2pam Simple 2-level pulse amplitude modulation (PAM) transmitter.

xmit4pam Simple 4-level pulse amplitude modulation (PAM) transmitter.

xmit2psk Binary 2-level phase shift keying (BPSK) Modulator.

xmitspread Direct-sequence spreader (i.e., spread-spectrum transmitter).

Receiver functions

DeScrambler Descramble the input bit sequence using a feedback shift regis-
ter. The taps of the feedback shift register are given by thepoly-
nomial parameter. This is a self-synchronizing descrambler that
will exactly reverse the operation of theScrambler star if the
polynomials are the same. The low-order bit of the polynomial
should always be set.

DeSpreader Frame synchronized direct-sequence despreader.

hilbertSplit This galaxy implements a phase splitter, in which the real-val-
ued input signal is converted to an (approximate) analytic sig-
nal. The signal is filtered by the Hilbert block to generate the
imaginary part of the output, while the real part is obtained by
creating a matching delay.

qam4Slicer This galaxy implements a slicer (decision device) for a 4-QAM
(or equivalently, 4-PSK) signal. The output decision is a com-

The Almagest 5-39

Ptolemy Last updated: 11/6/97

plex number with +1 or -1 for each of the real or imaginary
parts.

qam16Slicer This galaxy implements a slicer (decision device) for a 16-
QAM complex signal. The output decision is a complex number
with +1, -1, +3, or -3 for each of the real or imaginary parts.

qam16Decode A 16-QAM decoder similar to the CCITT V22.bis standard.
The quadrant is differentially de-encoded.

phaseShift Shifts the phase of the input signal on thein input by the shift
value on theshift input. The phase shifting is implemented by
filtering the input signal with a complex FIR filter to convert it
into an analytic signal and the complex result is modulated by a
complex exponential. If theshift value is time varying, then its
slope determines the instantaneous frequency shift.

rec2fsk Binary frequency shift keying (BFSK) Receiver.

rec2pam Simple 2-level pulse amplitude modulation (PAM) receiver.

rec4pam Simple 4-level pulse amplitude modulation (PAM) receiver.

rec2psk Binary pulse shift keying (BPSK) Demodulator.

recspread Direct sequence receiver.

Channel models

AWGNchannel Model an additive Gaussian white noise channel with optional
linear distortion.

basebandEquivChannel
Baseband equivalent channel.

freqPhase Impose frequency offset and/or phase jitter on a signal in order
to model channels, such as telephone channels, that suffer these
impairments.

noiseChannel A simple channel model with additive Gaussian white noise.

nonLinearDistortion
Generate second and third harmonic distortion by squaring and
cubing the signal, and adding the results in controlled propor-
tion to the original signal.

telephoneChannel
Simulate impairments commonly found on a telephone channel,
including additive Gaussian noise, linear and nonlinear distor-
tion, frequency offset, and phase jitter.

5.2.14 Telecommunications

The telecommunications stars are in figure 5-16.

5-40 SDF Domain

U. C. Berkeley Department of EECS

Conversion, Signal Sources, and Signal Tests

MuLaw Transform the input using a logarithmic mapping if thecom-
press parameter is true. In telephony, applying theµ-law to
eight-bit sampled data is called companding, and it is used to
quantize the dynamic range of speech more accurately. The
transformation is defined in terms of the non-negative integer
parametermu:

output = log (1 +mu | input |) / log(1 +mu)

DTMFGenerator Generate a dual-tone modulated-frequency (DTMF) signal by
adding a low frequency and a high frequency sinusoid together.
DTMF tones only consist of first harmonics. The default param-
eters generate a “1” on a touchtone telephone.

PostTest Return whether or not a valid dual-tone modulated-frequency
has been correctly detected based on the last three detection
results.

ToneStrength Decision circuit for dual-tone modulated-frequency (DTMF)
decoding. It returns true ifAmax is greater than or equal to Ai
for i = 1, 2, 3, 4 such that i does not equalindex.

Touchtone Decoders

DTMFDecoder Dual-tone modulated-frequency (DTMF) decoder based on
post-processing of a bank of Goertzel discrete Fourier trans-
form filters. This galaxy decodes touch tones generated by a
telephone.

DTMFDecoderBank Implement one of the banks for detecting dual-tone frequency-

FIGURE 5-16: The palette of telecommunications stars for the SDF domain.

freqPhase
nonLinear
DistortionAWGN

ADPCMCoder
ADPCM
Decoder

ADPCM
ToBits

ADPCM
FromBits

Telephone
Channel

baseband
equivalent
channel

noise
channel

PCM
BitCoder

PCM
BitDecoder

MuLaw

|X[k1]|^2

|X[k2]|^2

Detector

f0Power

f1Power

GoertzelDTMF
Decoder
Bank

index

valid

freqPower

DTMFDecoder

key

valid

PostTest

input

valid

DTMF

Tone
Strength

index

A1

A2

A3

A4

AmaxDTMFGenerator

lmsDualTone

cosOmega1

cosOmega2

error

lms
DTMF
Decoder
Bank

lowFreqIndex

highFreqIndex

valid

L
M
S
DTMFDecoder

key

valid

Conversion, Signal Sources, and Signal Tests

PCM and ADPCM

Touchtone Decoders

Channel models

The Almagest 5-41

Ptolemy Last updated: 11/6/97

modulated (DTMF) touch tones. Touch tones are generated by
adding a low frequency and a high frequency sinusoid together.
The galaxy is used to detect either the low or high frequency
component, depending on the parameter settings. This algo-
rithm examines the magnitude of the expected frequency com-
ponents and their second harmonics. DTMF tones do not have
second harmonics, so if they are present, then the input is likely
speech and not touch tones. The valid output is true if the input
is probably a touch tone. The default parameters are used to
detect the low frequency tones.

GoertzelDetector
Detect the energy of the first and second harmonic using a pair
of Goertzel filters.

lmsDTMFDecoderBank
Dual-tone modulated frequency detection based on the post-
processing of the output of two LMS algorithms in cascade.
These two algorithms are used to detect the two strongest fre-
quencies present in the signal.

lmsDualTone Detect the location of the two strongest harmonic components
in the input signal for every input sample using the normalize
direct frequency estimation technique, which is based on the
LMS algorithm. This galaxy is used in touchtone detection.

lmsDTMFDecoder Least-mean squares dual-tone modulated-frequency decoder.
Dual-tone modulated frequency detection based on the post-
processing of the output of two LMS algorithms in cascade.
These two algorithms are used to detect the two strongest fre-
quencies present in the signal.

Channel Models

For more complete descriptions, see the channel models for the communications stars
given on page 5-36.

AWGN Simulate a channel with additive Gaussian noise.

basebandEquivChannel
Baseband equivalent channel.

freqPhase Impose frequency offset and/or phase jitter on a signal in order
to model channels, such as telephone channels, that suffer these
impairments.

noiseChannel A simple channel model with additive Gaussian white noise.

nonLinearDistortion
Generate second and third harmonic distortion by squaring and
cubing the signal, and adding the results in controlled propor-
tion to the original signal.

5-42 SDF Domain

U. C. Berkeley Department of EECS

TelephoneChannel
Telephone channel simulator with Gaussian noise and nonlinear
distortion.

PCM and ADPCM

ADPCMCoder Implement adaptive differential pulse code modulation using an
LMS star. Both the quantized and unquantized prediction-error
signals are available as outputs.

ADPCMDecoder Decode the quantized prediction error signal produced by the
ADPCMCoder galaxy.

ADPCMFromBits Convert a bit stream encoded with theADPCMToBits galaxy
back to floating-point values. The 4 low-order bits of the input
integer are changed to 1 of 16 floating-point values scaled by
range.

ADPCMToBits Convert the quantized prediction error of theADPCMCoder gal-
axy into a bit stream. The quantized prediction error has 16 pos-
sible levels, so this galaxy produces 4 bits in each output
sample.

PCMBitCoder 64kps PCM encoder (CCITT Recommendation G.711).

PCMBitDecoder 64kps PCM encoder (CCITT Recommendation G.711).

5.2.15 Spatial Array Processing

The spatial array processing stars given here support a single demonstration named
RadarChainProcessing developed by Karim Khiar from Thomson CSF. The radar simula-
tion, though five-dimensional, is implemented using SDF, which is a one-dimensional data-
flow model. The stars on this palette are shown in figure 5-17.

Data Models

RadarAntenna Generate a specified number of Doppler filter outputs. This gal-
axy consists of a cascade of a network of antennas, a bank of
matched filters, a bank of windows, and a Doppler filter. The
bank of matched filters convolves the antenna outputs with a fil-
ter matched to a complex pulse train.

RadarTargets Model the observed data as the addition of the receive signal
plus sensor noise. The received signal consists of a summation
of the emissions of all of the targets.

GenTarget Model the reception of signals by one sensor. A complex pulse
train is delayed and then multiplied by a complex exponential.

RectCx Generate a rectangular pulse of width “width” (default 240). If
“period” is greater than zero, then the pulse is repeated with the
given period.

The Almagest 5-43

Ptolemy Last updated: 11/6/97

Sensor and Antenna Models

SubAntenna Models a subantenna. It multiplies the input by a complex expo-
nential.

sensor Compute the excitation of a plane wave arriving at a sensor at
the given position with the arrival angle specified as an input.
Position (0,0) is assumed to receive phase zero for any angle of
arrival.

ThermalNoise Generate thermal noise as a complex noise process whose real
and imaginary components are identically independently dis-
tributed Gaussian random processes.

Psi Model subantenna excitation.

SpheToCart Compute the inner product of two vectors, one given by a mag-
nitude and two angles in spherical components, the other given
by three cartesian components.

Doppler Effects

PulseComp This galaxy generates any number of targets and performs pulse
compression. It uses the original chirp to perform the pulse
compression. This output represents the output of the radar pro-
cessing along the range bin axis. The y-axis represents the tar-
get magnitude on a linear, logarithmic scale.

OneDoppler Generate one Doppler output. This galaxy performs an antenna

FIGURE 5-17: Spatial Array stars in the SDF domain.

RadarAntenna RadarTargets

sensor

steering

GenTarget

OneDoppler

Psi

PulseComp

SubAntenna ThermalNoise SpheToCart

RectCxDoppler

Data Models

Sensor and Antenna Models

Doppler Effects

Beamforming Methods

5-44 SDF Domain

U. C. Berkeley Department of EECS

to pulse multiprojection transformation followed by a decima-
tor.

Beamforming Methods

steering Multiply a sensor signal by a window sample and apply a steer-
ing correction.

5.2.16 Image processing stars

The image processing stars contained in the palette in figure 5-18 were originally writ-
ten by Paul Haskell. For the Ptolemy 0.6 release, the image processing infrastructure was
rewritten by Bilung Lee to use matrices as the underlying image representation. Since the stars
are using the Matrix particle now, some old stars that are just doing simple matrix operation,
such asSumImage, are removed, and we can use the matrix stars instead, such asAdd_M.

Displaying images

DisplayImage Accept a black-and-white input grayimage represented by a
float matrix and generate output in PGM (portable graymap)
format. Send the output to a user-specified command (by
default,xv is used).
The user can set the root filename of the displayed image
(which will probably be printed in the image display window

FIGURE 5-18: The Image processing palette in the SDF domain.

DCTImage
Inv

DCTImage DPCMImage DPCMImage
Inv

YUVToRGBRGBToYUV

MedianImage

ReadImage ReadRGB

Add
MotionVecs

MotionCmp MotionCmpInv ZigZagImg ZigZagImg
Inv

RunLenImg RunLenImg
Inv

InvDCTImgCdeDCTImgCde

Contrast Dither EdgeDetect RankImage

dataInput

frameIdInput

DisplayImage DisplayRGB DisplayVideo

codef

codei

videosrc

videofwd videoinv

videodpy

SunVideo

output1

output2

output3

frameIdOut

Displays

Color conversion

Coding

Miscellaneous

Sources

The Almagest 5-45

Ptolemy Last updated: 11/6/97

title bar) and can choose whether or not the image file is saved
or deleted. The image frame number is appended to the root
filename in order to form the complete filename of the dis-
played image.

DisplayRGB This is similar to DisplayImage , but accepts three color
images (Red, Green, and Blue) from three input float matrix
and generates a PPM (portable pixmap) format color image file.
The image file is displayed using a user-specified command (by
default,xv is used).

DisplayVideo Accept a stream of black-and-white images from input float
matrix, save the images to files, and display the resulting files as
a moving video sequence. This star requires that programs from
the Utah Raster Toolkit (URT) be in your path. Although this
toolkit is not included with Ptolemy, it is available for free. See
this star’s long description (with the “look-inside” or “manual”
commands in the Ptolemy menu) for information on how to get
the toolkit.

The user can set the root filename of the displayed images
(which probably will be printed in the display window title bar)
with the ImageNameparameter. If no filename is set, a default
will be chosen.

TheSave parameter can be set toYES or NO to choose whether
the created image files should be saved or deleted. Each image’s
frame number is appended to the root filename in order to form
the image’s complete filename.

TheByFields parameter can be set to eitherYES or NO to choose
whether the input images should be treated as interlaced fields
that make up a frame or as entire frames. If the inputs are fields,
then the first field should contain frame lines 1, 3, 5, etc. and the
second field should contain lines 0, 2, 4, 6, etc.

videodpy Display an image sequence in an X window. This is simply the
SDFDisplayVideo star encapsulated in a galaxy so that it can
be easily used in other domains.

Reading images

ReadImage Read a sequence of PGM-format images from different files and
send them out in a float matrix.

If present, the character# in thefileName parameter is replaced
with the frame number to be read next. For example, if the
frameId parameter is set to 2 and if thefileName parameter is
dir.#/pic# then the file that is read and output isdir.2/
pic2 .

5-46 SDF Domain

U. C. Berkeley Department of EECS

ReadRGB Read a PPM-format image from a file and send it out in three
different images— a Red, Green, and Blue image. Each image
is represented in a float matrix. The same mechanism for read-
ing successive frames as inReadImage is supported.

videosrc Read in an image from a specified file. This is simply the
SDFReadImage star encapsulated in a galaxy so that it can be
easily used in other domains.

SunVideo Reads frames from the SunVideo card and outputs them as 3
matrices: one for Y,U and V components. This star is new in
Ptolemy 0.7, and does not yet have any demos.

Color conversions

RGBToYUV Read three float matrices that describe a color image in RGB
format and output three float matrices that describe an image in
YUV format. No downsampling is done on the U and V signals.

YUVToRGB Read three float matrices that describe a color image in YUV
format and output three float matrices that describe an image in
RGB format.

Image and video coding

DCTImage Take a float matrix input particle, compute the discrete cosine
transform (DCT), and output a float matrix.

DCTImageInv Take a float matrix input, compute the inverse discrete cosine
transform (DCT), and output a float matrix.

DCTImgCde Take a float matrix which represents a DCT image, insert “start
of block” markers, run-length encode it, and output the modi-
fied image.

For the run-length encoding, all values with absolute value less
than theThresh parameter are set to 0.0, to help improve com-
pression. Runlengths are coded with a “start of run” symbol and
then an (integer) run-length.

The HiPri parameter determines the number of DCT coeffi-
cients per block are sent to “hiport”, the high-priority output.
The remainder of the coefficients are sent to “loport”, the low-
priority output.

InvDCTImgCde Read two coded float matrices (one high priority and one low-
priority), invert the run-length encoding, and output the result-
ing float matrix. Protection is built in to avoid crashing even if
some of the coded input data is affected by loss.

DPCMImage Implement differential pulse code modulation of an image. If
the “past” input is not a float matrix or has size 0, pass the
“input” directly to the “output”. Otherwise, subtract the “past”

The Almagest 5-47

Ptolemy Last updated: 11/6/97

from the “input” (with leakage factoralpha) and send the result
to “output” .

DPCMImageInv This star inverts differential pulse code modulation of an image.
If the “past” input is not a float matrix or has size 0, pass the
“diff” directly to the “output”. Otherwise, add the “past” to the
“diff” (with leakage factoralpha) and send the result to “out-
put”.

MotionCmp If the “past” input is not a float matrix (e.g.dummyMessage),
copy the “input” image unchanged to the “diffOut” output and
send a null field (zero size matrix) of motion vectors to
“mvHorzOut” and “mvVertOut” outputs. This should usually
happen only on the first firing of the star.

For all other inputs, perform motion compensation and write the
difference frames and motion vector frames to the correspond-
ing outputs.

This star can be used as a base class to implement slightly dif-
ferent motion compensation algorithms. For example, synchro-
nization techniques can be added or reduced-search motion
compensation can be performed.

MotionCmpInv For NULL inputs (zero size matrices) on “mvHorzIn” and/or
“mvVertIn”, copy the “diffIn” input unchanged to “output” and
discard the “pastIn” input. (A NULL input usually indicates the
first frame of a sequence.)

For non-NULL “mvHorzIn” and “mvVertIn” inputs, perform
inverse motion compensation and write the result to “output”.

RunLenImg Accept a float matrix and run-length encode it. All values closer
than Thresh to meanVal are set tomeanVal to help improve
compression. Run lengths are coded with a start symbol of
meanVal and then a run-length between 1 and 255. Runs longer
than 255 must be coded in separate pieces.

RunLenImgInv Accept a float matrix and inverse run-length encode it.

ZigZagImage Zig-zag scan a float matrix and output the result. This is useful
before quantization.

ZigZagImageInv Inverse zig-zag scan a float matrix.

codef This galaxy encodes a sequence of images using motion com-
pensation, a discrete-cosine transform, quantization, and run-
length encoding. The outputs are split into high priority and low
priority, where corruption of the low priority data will impact
the image less.

codei This galaxy inverts the encoding of the codef block, and outputs
a reconstructed image sequence.

5-48 SDF Domain

U. C. Berkeley Department of EECS

videofwd This galaxy is obsolete and will probably disappear in the next
release.

videoinv This galaxy is obsolete and will probably disappear in the next
release.

Miscellaneous image blocks

AddMotionVecs Over each block in the input image, superimpose an arrow indi-
cating the size and direction of the corresponding motion vec-
tor.

Contrast Enhance the contrast in the input image by histogram modifica-
tion. Input image should be in an integer matrix. The possible
contrast type areUniform (default) andHyperbolic .

Dither Do digital halftoning (dither) of input image for monochrome
printing. Input image should be in a float matrix. The possible
dither methods areErr-Diffusion (default), Clustered ,
Dispersed , andOwn. If you specifyOwn, then you can use
your own dither mask.

EdgeDetect Detect edges in the input image. Input image should be in a
float matrix. The possible detectors areSobel (default),Rob-
erts , Prewitt , andFrei-Chen .

MedianImage Accept an input grayimage represented by a float matrix,
median-filter the image, and send the result to the output. Filter
widths of 1, 3, 5 work well. Any length longer than 5 will take a
long time to run.

Median filtering is useful for removing impulse-type noise from
images. It also smooths out textures, so it is a useful pre-pro-
cessing step before edge detection. It removes inter-field flicker
quite well when displaying single frames from a moving
sequence.

RankImage Accept an input grayimage represented by a float matrix, rank
filter the image, and send the result to the output. A common
example of a rank filter is the median filter, e.g.MedianImage ,
which is derived from this star. Pixels at the image boundaries
are copied and not rank filtered.

5.2.17 Neural Networks

The neural network stars demonstrate logic functions using classical artificial neurons
and McCulloch-Pitts neuron. These stars were written by Biao Lu (The University of Texas at
Austin), Brian L. Evans (The University of Texas at Austin), and are present in Ptolemy 0.7

The Almagest 5-49

Ptolemy Last updated: 11/6/97

and later.The neural network stars are shown in figure

MPNeuron This is a McCulloch-Pitts neuron. The activation of this neuron
is binary. That is, at any time step, the neuron either fires, or
does not fire.

Neuron This neuron will output the sum of the weighted inputs, as a
floating value.

ConstThreshold Output a constant signal with value given by the “level” param-
eter (default 0.0)

Binary Binary threshold of the input.

Sigmoid Compute the Sigmoid function, defined as 1/(1 + exp(-
r*input)), where r is the learning rate.

MPandBinary The fact that the McCulloch-Pitts neuron is a digital device
makes this neuron well-suited to the representation of a two-
valued logic, such as AND, OR, and NAND.

MPxorBinary This example shows that a network of McCulloch-Pitts neurons
has the power of the finite state automaton known as a Turing
machine.

xorBinary XOR function can be implemented by a three-layer neural net-
work which consists of an input layer, a hidden layer and an
output layer. A binary activation function is used.

xorSigmoid XOR function can be implemented by a three-layer neural net-
work which consists of an input layer, a hidden layer and an
output layer. A sigmoid activation function is used.

Binary

MPNeuron Neuron

Sigmoid

MPandBinary xorBinary

in1

in2

xorSigmoid

in1

in2

MPxorBinary

in1

in2

Const
Threshold

Logic Functions

Activation Functions

SourcesNeurons

FIGURE 5-19: Neural network stars in the SDF domain.

5-50 SDF Domain

U. C. Berkeley Department of EECS

5.2.18 Higher Order Function stars

The Higher Order Function stars are documented in “An overview of the HOF stars”
on page 6-15.

5.2.19 User Contributions

The User Contributed stars are not documented at this time. These stars have been
contributed by various users as proofs of concepts. They cannot be retargeted to code genera-
tion domains, and we may in the future choose not to release them.

5.2.20 Tcl stars

Most of the stars that interface to Tcl appear in palettes that reflect their function. For
instance, all the stars beginning withTk in the “sinks” palette are actually Tcl stars derived
from TclScript . This is the most generic Tcl star, with no useful function on its own. It
must have a Tcl script associated with it to make it useful. There is a chapter of the Program-
mer’s Manual of the The Almagest devoted to how to write such scripts. The complete palette
of Tcl stars, which includes many stars that also appear in other palettes, is shown in figure 5-
20. These stars, although derived fromTclScript , assume the presence of the Tk graphics
toolkit. For descriptions of the display and “sink” stars, see Sections 5.2.1 and 5.2.2, respec-
tively.

FIGURE 5-20: The Tcl/Tk palette includes many stars that also appear in other palettes.

TclTcl
TclScript

TclTcl
TclScript

TclTcl
TclScript

TclTcl
TclScript

TkMeter

123
Tk
ShowValues

123
Tk
ShowValues

TkText

TkText

TkSlider

LMS
TkPlot

TkBarGraph

TkBarGraph

LMSCx
TkPlot

TkMeter

TkXYPlot

X

Y

TkButtons

TkShow
Booleans

TclTcl
TclScript

TclTcl
TclScript

TkShow
Booleans

TkButtons TkXYPlot

X

Y

TkPlot TkPlot

Displays and sources:

Generic:

Signal processing:

The Almagest 5-51

Ptolemy Last updated: 11/6/97

5.3 An overview of SDF demonstrations
A rather large number of SDF demonstrations have been developed. These can serve

as valuable illustrations of the possibilities. Almost every star is illustrated in the demos.
Because of the large number, the demos are organized into a set of palettes. Certain demos
may appear in more than one palette. A top-level palette, shown in figure 5-21, contains an
icon for each demo palette. Notice that the demo palettes collect the hierarchy in a single col-
umn, whereas the star palettes collect the hierarchy in two columns.

5.3.1 Basic demos

These demos illustrate the use of certain stars without necessarily performing func-
tions that are sophisticated. The palette is shown in figure 5-22. The demos are described
below from left to right, top to bottom.

butterfly Use sines and cosines to compute a curve known as the butterfly
curve, invented by T. Fay. The curve is plotted in polar form.

chaoticNoise Chaotic Markov map example with a nonlinear feedback loop.

comparison Compare two sinusoidal signals using theTest star.

dsp.pal

comm.pal

basic.pal

multirate.pal

image.pal

sound.pal

Fixed-
point

Demosfix.pal

TclTcl
init.pal

matrix.pal

MATLAB
matlab.pal

sdf.pal

script.pal

init.pal

Basic

Multirate

Communications

Signal Processing

Sound

Image Processing

Tcl/Tk Graphics Demos

MATLAB Demos

Higher-Order Functions

Matrix Demos

Scripted Runs

User Contributed Demos

Fixed-Point Demos

SDF Demos
Synchronous dataflow (SDF) is used
to model signal processing systems

with deterministic control flow.

FIGURE 5-21: The top-level demo palette for the SDF domain.

5-52 SDF Domain

U. C. Berkeley Department of EECS

complexExponential
Generate and plot a complex exponential.

delayTest Illustrates the use of initializable delays.

lmsFreqDetect Illustrate the use of the LMS algorithm to estimate the dominant
sinusoidal frequency in the input signal.

freqPhaseOffset Impose frequency jitter and phase offset on a sinusoid using the
freqPhase SDF block.

gaussian Generate a Gaussian white noise signal, and plot its histogram
and estimated autocorrelation.

integrator Demonstrate the features of the integrator star, such as limiting,
leakage, and resetting.

Modulo Demonstrate modulus computation for float and integer data
types.

muxDeMux Demonstrate theMux and DeMux stars, which perform multi-
plexing and demultiplexing. Contrast with thescramble demo
below.

quantize Demonstrate the use of theQuantizer star.

scramble This system rearranges the order of samples of signal using the
Commutator andDistributor stars. Note that because these
are multirate stars, one iteration involves more than one sample.
Contrast with themuxDeMux demo above.

sinMod Modulate a sinusoid by multiplying by another sinusoid.

FIGURE 5-22: Palette for a set of basic demos for the SDF domain.

freq
PhaseOffset

complex
Exponentialbutterfly

sinMod

integratorgaussian

quantize tbusmuxDeMux scramble

comparison delayTestchaoticNoise

Modulo

lmsFreqDetect

Basic demos illustrating
simple uses of Ptolemy and

the use of certain stars

The Almagest 5-53

Ptolemy Last updated: 11/6/97

tbus Illustrate the bus facility in Ptolemy, in which multiple signals
are combined onto a single graphical connection.

5.3.2 Multirate demos

The demos with icons shown in figure 5-23 illustrate synchronous dataflow principles as
applied to multirate signal processing problems. These are arranged roughly in order of
sophistication.

analytic Use aFIRCx star filter to reduce the sample rate of a sinusoid
by a factor of 8/5, and at the same time produce a complex
approximately analytic signal (one that has no negative fre-
quency components).

broken Give an example of an inconsistent SDF system. It fails to run,
generating an error message instead.

downSample Convert from the digital audio tape sampling rate (48 kHz) to
the compact disc sampling rate (44.1 kHz). The conversion is
performed in multiple stages for better performance.

filterBank Implement an eight-level perfect reconstruction one-dimen-
sional filter bank based on the biorthogonal wavelet decomposi-
tion.

filterBank-NonUniform
Implement a simple split of the frequency domain into two non-
uniform frequency bands.

interp Use an FIR filter to upsample by a factor of 8 and linearly inter-
polate between samples.

multirate Upsample a sinusoidal signal by a ratio of 5/2 using a polyphase
lowpass interpolating FIR filter.

upSample Convert from the compact disc sampling rate (44.1 kHz) to the
digital audio tape sampling rate (48 kHz). The conversion is
performed in multiple stages for better performance.

FIGURE 5-23: Multirate signal processing demos in the SDF domain.

interp multirate

analytic broken filterBank

147

160downSample

147

160

upSample
filterBank-
NonUniform

5-54 SDF Domain

U. C. Berkeley Department of EECS

5.3.3 Communications demos

The palette shown in figure 5-24 points to some examples of digital communication
systems and channel simulators. This palette has been steadily growing.

constellation A 16-QAM signal is sent through a baseband equivalent chan-
nel that simulates the following impairments: frequency offset,
phase jitter and white Gaussian noise.

DTMFCodec Dual-Tone Modulated Frequency Demo. Generate touch tones
and decode the based on the Goertzel Algorithm.

eye Plot an eye diagram for a binary antipodal signal with a raised-
cosine pulse shape and user controlled noise.

lmsDTMFCodec Dual-Tone Modulated Frequency Demo. Generate touch tones
and decode them based on the LMS Algorithm.

lossySpeech Illustrate the effect on speech of a zero-substitution policy in a
network (such as ATM) with 48 byte packets and a variable loss
probability. Note that this demo requires audio capability and
will probably only work on Sun workstations.

lossySpeechPrevCell
Illustrate the effect on speech of a previous cell substitution pol-
icy in a network (such as ATM) with 48 byte packets and a vari-
able loss probability. Note that this demo requires audio
capability and will probably only work on Sun workstations.

modem Baseband model of a 16-QAM modem.

pseudoRandom Generate a pseudo-random sequence of zeros and ones using a
maximal-length shift register and test its randomness by esti-
mating it autocorrelation.

pulses Generate raised cosine and square-root raised cosine pulses and
demonstrate matched filtering with the square-root raised
cosine pulse.

FIGURE 5-24: Communication system demos in the SDF domain.

telephone
ChannelTestQAM4withDFE plldemo

pulses

4 PAM

xmit4rec

2 PAM

xmit2recpseudoRandom

eye

modem

constellation

16 QAM
coder/
decoder

xmitber

DTMFCodec lossySpeech
lossySpeech
PrevCelllmsDTMFCodec

qam

Older, batch-mode demos that
nonetheless make some useful points:

The Almagest 5-55

Ptolemy Last updated: 11/6/97

xmitber Bit Error determination through simulation at various noise lev-
els.

xmit2rec Simple 2-level PAM communication system (matched filtering
at the receiver).

xmit4rec Simple 4-level PAM communication system (no filtering at the
receiver).

Older communications demos

qam Produce a 16-point quadrature amplitude modulated (QAM)
signal and displays the eye diagram for the in-phase part, the
constellation, and the modulated transmited signal.

QAM4withDFE This is a model of a digital communication system that uses
quadrature amplitude modulation (QAM) and a fractionally
spaced decision feedback equalizer.

codeDecode Encode and decode a 16-QAM signal using differential encod-
ing for the quadrant and Gray coding for the point within the
quadrant.

plldemo Simulate a fourth-power optical phase-locked loop with laser
phase noise and additive Gaussian white noise operating on a
complex baseband envelope model of the signal.

telephoneChannelTest
Assuming a sampling rate of 8 kHz, a sinusoid at 500 Hz is
transmitted through a simulation of a telephone channel with
additive Gaussian noise, nonlinear distortion, and phase jitter.

5.3.4 Digital signal processing demos

A fairly large number of signal processing applications are represented in the palette
shown in figure 5-25. Several of these serve as good examples to help in solving the exercises
included at the end of the chapter.

adaptFilter An LMS adaptive filter converges so that its transfer function
matches that of a fixed FIR filter.

allPole Two realizations of an all-pole filter are shown to be equivalent.
One uses an FIR filter in a feedback path, the other uses the
BlockAllPole star.

animatedLMS An LMS adaptive filter is configured as in theadaptFilter
demo, but this time the filter taps are displayed as they adapt.

animatedLMSCx A complex LMS adaptive filter is configured as in theadapt-
Filter demo, but in addition, user-controlled noise is added to
the feedback loop using an on-screen slider to control the
amount of noise. The filter taps are displayed as they adapt.

cep Given the coefficients of any polynomial, this demo uses the

5-56 SDF Domain

U. C. Berkeley Department of EECS

cepstrum to find a minimum-phase polynomial. Thus, given the
coefficients of the denominator polynomial of an unstable filter,
this demo will compute the coefficients of a stable denominator
polynomial that has the same magnitude frequency response.

chaos This is a simple demonstration of chaos, in which the phase-
space plot of the famous Henon map is given.

convolve Convolve two rectangular pulses in order to demonstrate the
Convolve star.

dft Compute a discrete Fourier transform of a finite signal using the
FFT star. The magnitude and phase (unwrapped) are plotted.

doppler A sine wave is subjected to four successive amounts of doppler
shift. The doppler shift is accomplished by thephaseShift
galaxy, which forms an analytic signal (using a Hilbert trans-
form) that modulates a complex exponential.

dtft Demonstrate theDTFT star, showing how it is different from the
FFTCx star. Specifically, the range, number, and spacing of fre-
quency samples is arbitrary.

freqsample This system designs FIR filters using the frequency sampling

FIGURE 5-25: Signal processing applications in the SDF domain.

dft

adaptFilter

phased
Array

freqsample

linearPrediction

levinsonDurbin

dtft

power
Spectrum timeVarSpec

allPole

convolve doppler

cep

window

lattice latticeDesign

Design

animatedLMS

overlapAddFFT

chaos

animatedLMSCx

iirDemo

The Almagest 5-57

Ptolemy Last updated: 11/6/97

method. Samples of the frequency response are converted into
FIR filter coefficients.

iirDemo Two equivalent implementations of IIR filtering.

lattice Demonstrate the use of lattice filters to synthesize an auto-
regressive (AR) random process.

latticeDesign Use of Levinson-Durbin algorithm to design a lattice filter with
a specified transfer function.

levinsonDurbin Use the Levinson-Durbin algorithm to estimate the parameters
of an AR process.

linearPrediction
Perform linear prediction on a test signal consisting of three
sinusoids in colored, Gaussian noise. Two mechanisms (Burg's
algorithm and an LMS adaptive filter) for linear prediction are
compared.

overlapAddFFT Convolution is implemented in the frequency domain using
overlap and add.

phasedArray Simulate a plane wave approaching a phased array with four
sensors. The plane wave approaches from angles starting from
head on and slowly rotating 360 degrees. The response of the
antenna is plotted as a function of direction of arrival in polar
form.

powerSpectrum Compare three methods for estimating a power spectrum of a
signal with three sinusoids plus colored noise. The three meth-
ods are the periodogram method, the autocorrelation method,
and Burg's method.

timeVarSpec A time-varying spectrum is computed using the autocorrelation
method and displayed using a waterfall plot.

window Generate and display four window functions and the magnitude
of their Fourier transforms. The windows displayed are the
Hanning, Hamming, Blackman, and steep Blackman.

5.3.5 Sound-making demos

The demos in the palette in figure 5-26 assume that a program calledptplay is in
your path, and that it accepts data of an appropriate format and will play it over a workstation
speaker at an 8 kHz sample rate. If you are using a Sun SPARCStation, these conditions will
most likely be satisfied, if your path is correct. Theptplay program has also been used on
SGI Indigos and HP 700s and 800s. If you are on an HP, you may need other publicly avail-
able software.The samples are written into a file before they are played. Since a large number
of samples must be generated, these demos can take some time to run. By contrast, the CGC
domain has some audio demos that generate sounds in real time at 44.1kHz, assuming a rea-
sonably fast workstation. For further information about playing audio files, see “Sounds” on
page 2-38.

5-58 SDF Domain

U. C. Berkeley Department of EECS

chirpplay Chirp generator that plays on the workstation speaker.

fmplay Sound generator using FM modulation that plays on the work-
station speaker.

speech Read a speech signal from a file, and encode it at two bits per
sample using adaptive differential pulse code modulation with a
feedback-around-quantizer structure. The signal is then recon-
structed from the quantized data. The original and reconstructed
speech are played over the workstation speaker.

KSchord Simulation of plucked string sounds using the Karplus-Strong
algorithm.

vox Coarticulation with an Adaptive Vocoder. The resulting FM
synthesized sound is played over the workstation speaker.

blockVox A block processed version of the vox demo.

lossySpeech Illustrate the effect on speech of a zero-substitution policy in a
network (such as ATM) with 48 byte packets and a variable loss
probability. This demo also appears in the basic demos palette

lossySpeechPrevCell
Illustrate the effect on speech of a previous cell substitution pol-

FIGURE 5-26: Sound-making demos in the SDF domain.

chirpplay fmplay speech KSchord

blockVoxvox

Perfect
Reconstruction Subband

lossySpeech
PrevCelllossySpeech

Sound-making demos
(These require a SparcStation)

The Almagest 5-59

Ptolemy Last updated: 11/6/97

icy in a network (such as ATM) with 48 byte packets and a vari-
able loss probability. This demo also appears in the basic demos
palette.

perfectReconstuction
Eight-channel perfect reconstruction one-dimensional analysis/
synthesis filterbank. The incoming speech signal is split into
eight adjacent frequency bins and then reconstructed. The origi-
nal and reconstructed speech are played over the workstation
speaker.

subbandcoding Four channel subband speech coding with APCM at 16kps.

5.3.6 Image and video processing demos

The demos in figure 5-27 all read images from files on the workstation disk, process
them, and then display them. Some of the demos process short sequences of images, thus
illustrating video processing in Ptolemy. They all use the image classes described in “Image
processing stars” on page 5-44. The set of demos in this palette does not reflect the richness of
possibilities. See the DE domain for more image and video signal processing applications in
the context of packet-switched network simulations. The video display requires that the Utah
Raster Toolkit be installed and available in the user’s path.

BlendImage Combine two images and display the result.

bwDither Demonstrate four different forms of black and white dithering:
error diffusion, clustered dither, dispersed dither, and use cus-
tom mask.

FIGURE 5-27: Image processing demos in the SDF domain.

CompareMedian

ColorImage

DpcmImage

cos()

DctImage

MotionCompMC_DCT

BlendImage bwDither cntrstEnhance

edgeDetect

Vec_Quan

Image and video processing demos

5-60 SDF Domain

U. C. Berkeley Department of EECS

cntrastEnhance Contrast enhancement by histogram modification.

ColorImage Convert an RGB (red-green-blue) format color image to YUV
(luminance-hue-saturation) format and back, and then display it
on the workstation screen.

CompareMedian Median filter an image to reduce artifacts due to interleaved
scanning in video sequences.

DctImage Perform discrete cosine transform (DCT) coding of an image
sequence.

DpcmImage Perform differential pulse code modulation (DPCM) on an
image sequence.

EdgeDetect Demonstrate four different forms of edge detection: Sobel,
Roberts, Prewitt, and Frei-Chen.

MC_DCT Perform motion compensation and DCT encoding of video.

MotionComp Perform motion compensation video coding.

Vector Quantization demonstrations

TheVec_Quan icon in the image processing palette brings up a sub-palette that has several
vector quantization demonstrations in figure 5-28:

fullVQCodebk Generate a codebook for full search vector quantization.

fullVQ Full search vector quantization using codebook generated by
fullVQCodebk .

SGVQCodebk Generate codebooks for shape-gain vector quantization.

SGVQ Shape-gain vector quantization using codebook fromSGVQ-
Codebk .

MRVQCodeBk Generate codebooks for mean-removed vector quantization
using independent quantizer structure.

MRVQmeanCB Generate codebook for mean-removed vector quantization.

MRVQshapeCB Generate the shape codebook for mean-removed quantization

FIGURE 5-28: Vector Quantization demos in the SDF domain

MRVQMRVQCodebk MRVQmeanCB MRVQshapeCB

SGVQCodebk SGVQfullVQCodebk fullVQ

The Almagest 5-61

Ptolemy Last updated: 11/6/97

using alternate structure. This universe uses the codebook gen-
erated byMRVQmeanCB.

MRVQ Mean-removed vector quantization.

5.3.7 Fixed-point demos

The demos shown in figure 5-29 illustrate the use of fixed-point stars in the SDF domain.

These stars are used to model hardware implementations with finite precision.

fixConversion Illustration of the different masking options available.

fixFIR Effect of filter tap precision on the frequency response.

fixIIRdf Comparison of a fourth-order direct-form IIR filter imple-
mented with floating-point arithmetic and a similar filter imple-
mented with fixed-point arithmetic.

fixMpyTest Testing of fixed-point multiplication over a range of numbers by
comparison against floating-point multiplication. The results
should be the same.

5.3.8 Tcl/Tk demos

These demos shown in figure allow the user to interact with the simulation. The inter-
activity is provided by the Tcl scripting language controlling the Tk graphics toolkit. Tcl is
integrated throughout Ptolemy. Tk has been integrated into the graphical user interfaces for
Ptolemy, but not in theptcl textual interpreter. Therefore, these stars do not work inptcl .

animatedLMS See “Digital signal processing demos” on page 5-55.

animatedLMSCx See “Digital signal processing demos” on page 5-55.

buttons DemonstrateTkButtons .

phased_Array DemonstrateTkSlider by creating a vertical array of radar
sensors that can be move in the horizontal plane. Note that
small movements of the sensors radically change the polar gain
plot. This simulation demonstrates the importance of sensor cal-
ibration to performance of the sensor array.

sinWaves DemonstrateTkBarGraph by generating and displaying a
complex exponential.

tclScript DemonstrateTclScript by generating two interactive X win-

FIGURE 5-29: These demos illustrate fixed-point effects in signal processing systems.

fixConversion fixFIR fixIIRdf fixMpyTest

Demos illustrating use of
the fixed-point datatype in Ptolemy

5-62 SDF Domain

U. C. Berkeley Department of EECS

dow follies that consist of circles that move in the same playing
field.

tkMeter DemonstrateTkMeter by creating three bar meters. The first
oscillates sinusoidally. The second displays a random number
between zero and one. The third displays a random walk.

tkShowValues DemonstrateTkShowValues and TkText by displaying the
ASCII form of two ramp sequences.

xyplot Demonstrate the dynamic plotting capabilities of thexyplot
star.

5.3.9 Matrix demos

The systems in figure 5-31 demonstrate the use of matrix particles in Ptolemy. Matrices are
also used in the SDF domain to represent images. See “Image and video processing demos”
on page 5-59. The demonstrations below are primarily to test matrix operations.

MatrixTest1 Demonstrate the use of the Matrix stars that have one input.
These include the operations inverse, transpose, and multiply by
a scalar gain for all matrix types. Also conjugate and Hermitian
transpose are available for the complex matrix type.

FIGURE 5-30: Tcl/Tk demos in the SDF domain

TclTcl
tclScript tkShowValuestkMeter

animatedLMS

sinWaves

animatedLMSCx

xyplot

phased_arraybuttons

Demos illustrating the use
of Tcl/Tk in Ptolemy Stars

The Almagest 5-63

Ptolemy Last updated: 11/6/97

MatrixTest2 Demonstrate the use of some simple Matrix stars with two
inputs. These include multiply, add, and subtract.

MatrixTest3 Demonstrate the use of the Matrix conversion stars. These con-
vert between the scalar particles and the matrix particles as well
as between the various matrix types.

initDelays Illustrate the use of initializable delays with thematrix class.

Kalman_M Compare the convergence properties of a Kalman filter to those
of an LMS filter when addressing the problem of adaptive
equalization of a process in noise.

SVD_MUSIC_1 Show the use of singular-value decomposition (SVD) and the
Multiple-Signal Characterization (MUSIC) algorithm to iden-
tify the frequency of a single sinusoid in a signal that has two
different signal to noise ratios.

SVD_MUSIC_2 Demonstrate the use of the Multiple-Signal Characterization
(MUSIC) algorithm to identify three sinusoids in noise that
have frequencies very close to each other.

FIGURE 5-31: Demonstrations of matrix operations in Ptolemy.

Kalman_M

MatrixTest1 MatrixTest2

SVD_MUSIC_1 SVD_MUSIC_2

MatrixTest3 initDelays

Demos illustrating the use of stars
using the Matrix class

5-64 SDF Domain

U. C. Berkeley Department of EECS

5.3.10 MATLAB Demos

The demos pictured in figure 5-32 illustrate the use of the MATLAB stars. The MAT-

LAB stars convert input values into MATLAB matrices, apply a sequence of MATLAB com-
mands to the matrices, and output the result as Ptolemy matrices. The filterPrototype
demonstration shows how to use MATLAB to compute parameters of stars. For information
about running Matlab on a remote machine, see “Matlab stars” on page 5-26.

matlab_hilb This demo uses MATLAB as a signal source to produce a Hil-
bert matrix. The Hilbert matrix is an ill-conditioned matrix used
to test the robustness of numerical linear algebra routines. The
matrix element (i,j) has the value of 1 / (i + j - 1). The matrix
values appear similar to the coefficients of a discrete Hilbert
transformer.

matlab_eig This demo shows the use of MATLAB to perform eigendecom-
position of a 2 x 2 Hermitian symmetric complex matrix. A
matrix of eigenvectors and a matrix of eigenvalues are pro-
duced. The eigenvalues are real because the input matrix is Her-
mitian symmetric

sombrero This demo is an entire universe composed of a cascade of four
MATLAB stars. The MATLAB stars are used a signal source
and a signal sink. The overall system generates and plots a
mathematical model of a two-dimensional sinc function that
resembles a sombrero.

filterPrototype This system uses a halfband lowpass filter prototype for the
lowpass and highpass filters. All parameters are computed using
MATLAB.

5.3.11 HOF Demos

The Higher Order Function demos are described in the HOF domain chapter. See “An
overview of HOF demos” on page 6-18.

5.3.12 Scripted Runs

A scripted run executes the tcl code in the run control panel tcl script window. Scripted
runs can be used to set up interactive tutorials.The demos shown in figure 5-33 illustrate the

matlab_eig

1
2

1
2
1
3

1
4

1
3

1

_

_

_ _

_

...

...

...matlab_hilb sombrero filterPrototype

Filter Prototype
Hilbert Matrix

Generator
Eigenanalysis Mesh Plots

Matlab used to
compute parameters

MATLAB as
signal source

MATLAB as an
input/output block

Cascade of several
MATLAB functions

FIGURE 5-32: MATLAB demos in the SDF domain.

The Almagest 5-65

Ptolemy Last updated: 11/6/97

use of scripted runs.

demoscript An interactive tutorial that leads a user through a session that
runs a simple universe.

sinescript This demo runs the same sine wave modulation universe three
times, each time with a different frequency.

xmitber This demo runs a bit error determination universe at various
noise levels and then plots the output.

5.4 Targets
As is typical of simulation domains, the SDF domain does not have many targets. To

choose one of these targets, with your mouse cursor in a schematic window, execute the
edit-targe t command under theEdit vem menu choice (or just type “T”). You will get a
list of the availableTarget s in the SDF domain. The “default-SDF” target is normally
selected by default. When you clickOK, dialog box appears with the parameters of the target.
You can edit these, or accept the defaults. The next time you run the schematic, the selected
target will be used. For more information, see “Summary of Uniprocessor schedulers” on
page 4-11.

5.4.1 Default SDF target

The default SDF target has a simple set of options:

logFile (STRING) Default =
The name of a file into which the scheduler will write the final
schedule. The initial default is the empty string.

loopScheduler (STRING) Default = DEF
A String specifying whether to attempt to compact the schedule
for forming looping structure (see below). Choices are DEF,
CLUST, ACYLOOP. The case does not matter: DEF, def, Def
are all the same. For backward compatibility, “0” or “NO”, and
“1” or “YES” are also recognized, with “0” or “NO” being
DEF, and “1” or “YES” being CLUST.

schedulePeriod (FLOAT) Default = 0.0
A floating-point number defining the time taken by one iteration
through the schedule. This is not needed for pure SDF systems,

FIGURE 5-33: Scripted run demos in the SDF domain.

Tutorial
demoscript sinescript xmitber

5-66 SDF Domain

U. C. Berkeley Department of EECS

but if SDF systems are mixed with timed domains, such as DE,
then this will determine the amount of simulated time taken by
one iteration.

The SDF scheduler determines the order of execution of stars in a system at start time. It per-
forms most of its computation during itssetup() phase. If theloopScheduler target parame-
ter is DEF, then we get a scheduler that exactly implements the method described in [Lee87a]
for sequential schedules. If there are sample rate changes in a program graph, some parts of
the graph are executed multiple times. This scheduler does not attempt to generate loops; it
simply generates a linear list of blocks to be executed. For example, if star A is executed 100
times, the generated schedule includes 100 instances of A. A loop scheduler will include in its
“looped” schedule (where possible) only one instance of A and indicate the repetition count of
A, as in (100 A). For simulation, a long unstructured list might be tolerable, but not in code
generation. (The SDF schedulers are also used in the code generation for a single processor
target).

Neglecting the overhead due to each loop, an optimally compact looped schedule is
one that contains only one instance of each actor, and we refer to such schedules assingle
appearance schedules. For example, the looped schedule (3 A)(2 B), corresponding to the fir-
ing sequence AAABB, is a single appearance schedule, whereas the schedule AB(2 A)B is
not.

By setting theloopScheduler target parameter to CLUST, we select a scheduler devel-
oped by Joe Buck. Before applying the non-looping scheduling algorithm, this algorithm col-
lects actors into a hierarchy of clusters. This clustering algorithm consists of alternating a
“merging” step and a “looping” step until no further changes can be made. In the merging
step, blocks connected together are merged into a cluster if there is no sample rate change
between them and the merge will not introduce deadlock. In the looping step, a cluster is
looped until it is possible to merge it with the neighbor blocks or clusters. Since this looping
algorithm is conservative, some complicated looping possibilities are not always discovered.
Hence, even if a graph has a single appearance schedule, this heuristic may not find it.

Setting theloopScheduler target parameter to ACYLOOP results in another loop
scheduler being selected, this one developed by Praveen Murthy and Shuvra ‘Bhattacharyya
[Mur96][Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the uni-
verse is not acyclic, it automatically resets theloopScheduler target parameter to CLUST. This
scheduler is optimized for program as well as buffer memory. Basically, for a given SDF
graph, there could be many different single appearance schedules. These are all optimally
compact in terms of schedule length (or program memory in inline code generation). How-
ever, they will, in general, require differing amounts of buffering memory; the difference in
the buffer memory requirement of an arbitrary single appearance schedule versus a single
appearance schedule optimized for buffer memory usage can be dramatic. Again, in simula-
tion this does not make that much difference (unless really large SDF graphs with large rate
changes are being simulated of-course), but in code generation it is very helpful. Note that
acyclic SDF graphs always have single appearance schedules; hence, this scheduler will
always give single appearance schedules. If thelogFile target parameter is set, then a sum-
mary of internal scheduling steps will be written to that file. Essentially, two different heuris-
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one of
the two is selected. The generated file will contain the schedule generated by each algorithm,

The Almagest 5-67

Ptolemy Last updated: 11/6/97

the resulting buffer memory requirement, and a lower bound on the buffer memory require-
ment (called BMLB) over all possible single appearance schedules.

Note that the ACYLOOP scheduler modifies the universe during its computations;
hence, scripted runs that depend on the universe remaining in the original state, cannot be used
with this scheduler. Since the universe reverts to its original state after a run sequence, the
ACYLOOP scheduler will work fine in normal usage.

5.4.2 The loop-SDF target

An exact looping algorithm, available in an alternative target called theloop-SDF tar-
get, was developed by adding postprocessing steps to the CLUST loop scheduling algorithm.
For lack of a better name, we call this technique “SJS scheduling”, for the first initials of the
designers (Shuvra Bhattacharyya, Joe Buck, and Soonhoi Ha). In the postprocessing, we
attempt to decompose the graph into a hierarchy of acyclic graphs [Bha93b], for which a com-
pact looped schedule can easily be constructed. Cyclic subgraphs that cannot be decomposed
by this method, calledtightly interdependent subgraphs, are expanded to acyclic precedence
graphs in which looping structures are extracted by the techniques developed in [Bha94a] and
extensions to these techniques developed by Soonhoi Ha. This scheduling option is selected
when theloopTarget is chosen instead of the default SDF target. The target options are:

logFile

schedulePeriod

They have the same interpretation as for the default target, but in theloop-SDF target,sched-
ulePeriod has an initial default of 10000.0.

When there are sample rate changes in the program graph, the default SDF scheduler
may be much slower than the loop schedulers, and in code generation, the resulting schedules
may lead to unacceptably large code size. Buck’s scheduler provides a fast way to get compact
looped schedules for many program graphs, although there are no guarantees of optimality.
The somewhat slower SJS scheduler is guaranteed to find a single appearance schedule when-
ever one exists [Bha93c]. Furthermore, a schedule generated by the SJS scheduler contains
only one instance of each actor that is not contained in a tightly interdependent subgraph.
However, neither the SJS scheduler nor Buck’s scheduler will attempt to optimize for buffer
memory usage; this need is met by the ACYLOOP scheduler chosen through the default-SDF
target as described above, for acyclic graphs. Algorithms for generating single appearance
schedules optimized for buffer memory systematically for graphs that may contain cycles
have not yet been implemented.

The looped result can be seen by setting thelogFile target parameter. That file will
contain all the intermediate procedures of looping and the final scheduling result. The loop
scheduling algorithms are usually used in code generation domains, not in the simulation SDF
domain. Refer to the Code Generation domain documentation for a detailed discussion to the
section on “Schedulers” on page 13-6.

5.4.3 Compile-SDF target

A third target in the SDF domain, calledcompile-SDF . Instead of executing a simu-
lation by invoking thego() methods of stars from within the Ptolemy process, it generates a
C++ program that implements the universe, links it with appropriate parts of the Ptolemy ker-

5-68 SDF Domain

U. C. Berkeley Department of EECS

nel, and then invokes that system. The schedule is constructed statically, so the generated pro-
gram has no scheduler linked in. Instead, the generated code directly invokes thego()
methods of the stars. The target parameters are:

directory (STRING) Default=$HOME/PTOLEMY_SYSTEMS
The directory into which to place the generated code.

LoopingLevel (STRING) Default = ACYLOOP
The choices are DEF, CLUST, SJS, or ACYLOOP. Case does
not matter; ACYLOOP is the same as AcyLoOP. If the value is
DEF, no attempt will be made to construct a looped schedule.
This can result in very large programs for multirate systems,
since inline code generation is used, where a codeblock is
inserted for each appearance of an actor in the schedule. Setting
the level to CLUST invokes a quick and simple loop scheduler
that may not always give single appearance schedules. Setting it
to SJS invokes the more sophisticated SJS loop scheduler,
which can take more time to execute, but is guaranteed to find
single appearance schedules whenever they exist. Setting it to
ACYLOOP invokes a scheduler that generates single appear-
ance schedules optimized for buffer memory usage, as long as
the graph is acyclic. If the graph is not acyclic, and ACYLOOP
has been chosen, then the target automatically reverts to the SJS
scheduler. For backward compatibility, “0” or “NO”, “1”, and
“2” or “YES” are also recognized, with “0” or “NO” being
DEF, “1” being CLUST, and “2” or “YES” being SJS.

writeSchedule? (INT) Default = NO
If the value is YES, then the schedule is written out to a file
named.sched in the directory named by thedirectory target
parameter.

If you wish to try this SDF target, open any of the basic SDF demos in figure 5-22, edit the tar-
get to change it to thecompile-SDF target (in vem, hitT), and run the system. You can then
examine the source code and makefile that are placed in the specified directory. An executable
with the same name as the name of the demo will also be placed in that directory. This is a
standalone executable that does not require any part of the Ptolemy system to run (except for
the Ptolemy Tcl/Tk startup scripts in$PTOLEMY/lib/tcl). For example, if you choose the
butterfly demo in figure 5-22, your destination directory will contain the following files:

butterfly
butterfly.cc
code.cc
make.template
makefile

The first of these is executable. Try executing it. You can modify the number of sample points
generated using a command-line argument. For example, to generate 1,000 points instead of
10,000, type

butterfly 1000

The Almagest 5-69

Ptolemy Last updated: 11/6/97

Thecompile-SDF target is an example of a code-generationTarget within the SDF
domain. So, in a very fundamental way, aTarget defines the way a system is executed. The
default target is essentially an interpreter. Thecompile-SDF target synthesizes a standalone
program and then executes it on the native workstation. It should be viewed merely as an
example of the kinds of extensions users can build. More elaborate targets parallelize the code
and execute the resulting programs on remote hardware. Targets can be defined by users and
can make use of existing Ptolemy schedulers. Knowledgeable users can also define their own
schedulers.

Thecompile-SDF target first creates the C++ source code for the current universe in
a file of the same name of the universe followed by.cc . Then, it copies the C++ code into
code.cc and builds themakefile to compilecode.cc using the make template fileCom-
pileMake.template in the$PTOLEMY/lib directory. Next, thecompile-SDF target runs
themakefile to compilecode.cc into an executable calledcode . Thecompile-SDF tar-
get then renamescode to the name of the Ptolemy universe. If there is an error reported by
make, then it is likely that one of make configuration variables is incorrect. Themakefile
includes the configuration makefile for the workstation you are using. The configuration
makefiles are in the$PTOLEMY/mk directory.

The compile-SDF target has a number of known problems:

 • The resulting C++ program is unnecessarily large (a minimum of about half a mega-
byte) because many unnecessary Ptolemy objects get linked in. You can create a much
leaner program using the CGC domain.

 • Error messages during the compile or run are sent to the standard output rather than
displayed in a window on the screen.

 • If you specify a relative directory for the destination directory, instead of the absolute
directory as done in the default, then the location of the directory will be relative to the
current working directory of the Ptolemy system. It is easy to lose track of what that is.

 • Generating code can take quite a bit of time, particularly if a multirate system is used
with theLoopingLevel parameter set to “0”. Unfortunately, there is no convenient
way to interrupt the code generation process.

 • Implicit forks are not currently correctly handled. Consequently, whereas the target
works for simple systems, more elaborate systems inevitably cause problems.

 • Themake program on your path must be the GNUmake program.

 • If you have changed Ptolemy versions, then it is likely that the make template has also
changed. However, Ptolemy will not copyCompileMake.template over an existing
make.template . If you get errors after you have switched versions of Ptolemy, then
delete themake.template andmakefile in the destination directory of thecom-
pile-SDF target.

We would welcome any assistance in fixing these problems.

5.4.4 SDF to PTCL target

The SDF-to-PTCL target was introduced in Ptolemy 0.6. This target is substantially

5-70 SDF Domain

U. C. Berkeley Department of EECS

incomplete, we give a rough outline below. We hope to complete work on theSDF-to-PTCL
target in a later release. TheSDF-to-PTCL target usesCGMultiInOut stars to generate
abstract ptcl graphs which capture the SDF semantics of a simulation SDF universe. These
abstract graphs can then be used to test SDF schedulers.

The ptcl output filename will use the universe name as a prefix, and append.pt to the
name (e.g., the ptcl output for thebutterfly demo would be inbutterfly.pt). Currently
the directory that will contain the ptcl output is hardwired to~/PTOLEMY_SYSTEMS/ptcl/ .
You may need to create this directory by hand.

The most interesting aspect about the target is that it collects statistics on the execution
time of each star. This is valuable for seeing the relative runtimes of the various stars which
can be used in code generation. It collects statistics by running the scheduled universe, accu-
mulating elapsed CPU time totals for each star. This new target does not call thewrapup meth-
ods of the stars, so you will not seeXGraph outputs.

5.5 Exercises
The exercises in this section were developed by Alan Kamas, Edward Lee, and Ken-

nard White for use in the undergraduate and graduate digital signal processing classes at U. C.
Berkeley. If you are assigned these exercises for a class, you should turn in printouts of well-
labeled schematics, showing all non-default parameter values, and printouts of relevant plots.
Combining multiple plots into one can make comparisons more meaningful, and can save
paper. Use theXMgraph star with multiple inputs.

5.5.1 Modulation

This problem explores amplitude modulation (AM) of discrete-time signals. It makes exten-
sive use of FFTs. These will be used to approximate the discrete-time Fourier transform
(DTFT). In subsequent exercises, we will study artifacts that can arise from this approxima-
tion. For our purposes here, the output of theFFTCx block will be interpreted as samples of
the DTFT in the interval from 0 (d.c.) to .

Frequencies in many texts are normalized. To make this exercise more physically meaningful,
you should assume a sampling frequency of 128 kHz (sampling period). Thus
the 0 to range of frequencies (in radians per sample) translates to a range of 0 to 128kHz.
On your output graphs, you should clearly label the units of the x-axis. ThexUnits parameter
of theXMGraph star can be used to do this. If the FFT produces samples, represent-
ing the range from 0 to kHz., thenxUnits should be Hz. Thus each
sample out from the FFT will represent 500Hz. Keep in mind that a DTFT is actually periodic,
and that only one cycle will be shown.

With default parameters, theFFTCx star will read 256 input samples and produce 256 com-
plex output samples. This gives adequate resolution, so just use the defaults for this exercise.
The section “Iterations in SDF” on page 5-3 will tell you, for instance, that you should run
your systems for one iteration only. The section “Particle types” on page 2-20 explains how to
properly manage complex signals. For this exercise, you should only plot the magnitude of the
FFTCx output, ignoring the phase.

The overall goal is to build a modulation system that transmits a speech or music signal
using AM modulation. The transmitted signal is . The receiver demodulates y(n) to get

2π

T 7.8µsec=
2π

N 256=
f s 128= f s/N 500=

x n()
y n()

The Almagest 5-71

Ptolemy Last updated: 11/6/97

the recovered signal . The system is working if . Commercial AM radio
uses carrier frequencies from 500kHz to 2MHz; however, we will use carriers around 32kHz.
This makes the results of the modulation easier to see. The system you will develop (after sev-
eral intermediate phases) is shown below:

1. The first task is to figure out how to use theFFTCx star to plot the magnitude of a DTFT.
Begin by generating a signal where you know the DTFT. Use theRect star to generate a
rectangular pulse

for and . Plot the magnitude of the DTFT. It would be a good idea at this
point to make a galaxy that will output the magnitude of the DTFT of the input signal. Be
sure the axis of your graph is labeled with the frequencies in Hz, assuming a sampling fre-
quency of 128kHz.

2. The signal generated above does not have narrow bandwidth. The next task will be to gen-
erate a signal with narrower bandwidth so that the effects of modulating it can be
seen more clearly and so there are fewer artifacts. A distinctive and convenient lowpass sig-
nal can be generated by feeding an impulse into theRaisedCosine star (found in the
“communications” palette). Set the parameters of theRaisedCosine star as follows:

length: 256
symbol_interval: 8
excessBW: 0.5

Leave theinterpolation parameter on its default value. The detailed functionality of this
star is not important: we are just using it to get a signal we can work with conveniently. Plot
the time domain signal and its magnitude DTFT. What is the bandwidth (single-sided), in
Hz, of the signal? Use the -6dB point (amplitude at 1/2 of the peak) as the band edge. The
signal was chosen to have roughly the bandwidth of a typical AM broadcast signal.

3. The next task is to modulate the signal generated in part (2) with a sine wave. Con-
struct a 32 kHz sine wave using thesingen galaxy and let it be the carrier ; then pro-
duce . Graph the DTFT of . What is the bandwidth of ?
Change the carrier to 5 kHz, and graph the FFT of y(n). Explain in words what has hap-
pened. Keep the carrier at 5 kHz, and determine what the largest possible bandwidth is for

 so that will not have any significant distortion.

4. The next step it to build the demodulator. First multiply again by the same carrier,
, and plot the magnitude DTFT of the result. Explain in words what about

r n() r n() x n()=

x(n) r(n)

c(n) d(n)

y(n) low
pass
filter

w(n)

x n() δ n k–()
k 0=

M

∑=

M 4= M 10=

x n()

x n()
c n()

y n() x n()c n()= y n() y n()

x n() y n()

d n() c n()=

5-72 SDF Domain

U. C. Berkeley Department of EECS

this spectrum is directly attributable to the discrete-time nature of the problem. In other
words, what would be different if this problem were solved in continuous time?

5. To complete the demodulation, you need to filter out the double frequency terms. Use the
FIR filter star with its default coefficients. This is not a very good lowpass filter, but it is a
lowpass filter. Explain in words exactly how the resulting signal is different from the origi-
nal baseband signal. How would you make it more like the original? Do you think it is
enough like the original to be acceptable for AM broadcasting?

5.5.2 Sampling and multirate

This exercise explores sampling and multirate systems. As with the previous exercise, this one
makes extensive use of FFTs to approximate the DTFT in the interval from 0 (d.c.) to
(normalized) or the sampling frequency (unnormalized).

1. The first task is to generate an interesting signal that we can operate on. We will begin with
the same signal used in the previous exercise, generated by feeding an impulse into the
RaisedCosine star. Set the parameters of theRaisedCosine star as follows:

length: 256
symbol_interval: 8
excessBW: 0.5
interpolation: 1

Unlike the previous exercise, you should not leave theinterpolation parameter on its
default value. The time domain should look like the following (after zooming in on the cen-
tral portion):

Assume as in the exercise “Modulation” on page 5-70 a sampling frequency of 128kHz.
Use theFFTCx to compute and plot the magnitude DTFT, properly labeled in absolute fre-
quency. In other words, instead of the normalized sampling frequency , use the actual
sampling frequency, 128kHz. Carefully and completely explain in words what would be
different about this plot if the signal were a continuous-time signal and the plot of the spec-
trum were its Fourier transform instead of a DTFT.

2. Subsample the above signal at 64kHz, 32kHz, and 16kHz. To do this, use theDownSample
star (in the “control” palette) with downsampling factors of 2, 4, and 8. Compare the mag-
nitude spectra. It would be best to plot them on the same plot. To do this, you will need to
keep the number of samples consistent in all signal paths. Since theDownSample star pro-
duces only one sample for every it consumes, theFFTCx star that gets its data should
have itssize parameter proportional to 1/ for each path.

2π
f s

Time domain signal

-3
sec x 10

-0.00

1.00

0.80 1.00 1.20

2π

N
N

The Almagest 5-73

Ptolemy Last updated: 11/6/97

Warning: If you fail to make the numbers consistent, you will either get an error message,
or your system will run for a very long time. Please be sure you understand synchronous
dataflow. Read “Iterations in SDF” on page 5-3.

Answer the following questions:

a. Which of the downsampled signals have significant aliasing distortion?

b. What is the smallest sample rate you can achieve with the downsampler without getting
aliasing distortion?

3. The next task is to show that sometimes subsampling can be used to demodulate a modu-
lated signal.

a. First, modulate our “interesting signal” with acomplex exponential at frequency 32kHz.
The complex exponential can be generated using theexpgen galaxy in the sources
palette. Plot the magnitude spectrum, and explain in words how this spectrum is differ-
ent from the one obtained in the exercise “Modulation” on page 5-70, which modulates
with a cosine at 32kHz.

b. Next, demodulate the signal by downsampling it. What is the appropriate downsampling
ratio?

4. The next task is to explore upsampling.

a. First, generate the signal we will work with by downsampling the original “interesting
signal” at a 32kHz sample rate (a factor of 4 downsampling). Then upsample by a factor
of 4 using theUpSample star. This star will just insert three zero-valued samples for
each input sample. Compare the magnitude spectrum of the original “interesting signal”
with the one that has been downsampled and then upsampled. Explain in words what
you observe.

b. Instead of upsampling with theUpSample star, try using theRepeat star. Instead of
filling with zeros, this one holds the most recent value. This more closely emulates the
behavior of a practical D/A converter. Set thenumTimes parameter to 4. Compare the
magnitude spectrum to that of the original signal. Explain in words the difference
between the two. Is this a better reconstruction than the zero-fill signal of part (a)?

c. Use theBiquad star with default parameters to filter the output of theRepeat star from
part (b). Does this improve the signal? Describe in words how the signal still differs
from the original.

5.5.3 Exponential sequences, transfer functions, and convolution

This exercise explores rational Z transform transfer functions.

1. Generate an exponential sequence , with , and convolve it with a square
pulse of width 10. For this problem, use the following brute-force method for generating
the exponential sequence. Observe that

.

You can use theConst star to generate a constant , feed that constant into theLog star,
multiply it by the sequence generated using theRamp star, and feed the result
into theExp star. For your display, try the following options to theXMgraph star: “-P -nl -
bar”.

anu n() a 0.9=

an eln an() en ln a()()= =

a
n u n()×

5-74 SDF Domain

U. C. Berkeley Department of EECS

2. A much more elegant way to generate an exponential sequence is to implement a filter with
an exponential sequence as its impulse response. Generate the sequence

by feeding an impulse (Impulse star) into a first order filter (IIR star). Try various values
for , including negative numbers and values that make the filter unstable.

a. Let and , where and . Generate
these two sequences using the method above, and convolve them using the convolver
block. Now find without using a convolver block. Print your block dia-
gram, and don’t forget to mark the parameter values on it.

b. Given the Z transform

,

use Ptolemy to find and print the inverse Z transform . Find the poles and zeros of
the transfer function and use them to explain the impulse response you observe.

3. Generate the following sequences:

,

where is the unit step function. Estimate the peak value of each signal. Note that you
can zoom in xgraph by drawing a box around the region of interest.

4. Given the following difference equation:

find so that . Write it down. Use Ptolemy to generate a plot of
. Plot when is a rectangular pulse of width 5. Assume for
.

5. This problem explores feedback systems. An example of an “all-pole” filter is

.

Although there are plenty of zeros (at), they don’t effect the magnitude frequency
response. Hence the name. Although this can be implemented in Ptolemy using theIIR
star, you are to implement it using only one or moreFIR star(s) in the standard feedback
configuration:

anu n()

a

h n() anu n()= x n() bnu n()= a 0.9= b 0.5=

h n()* x n()

H z() 1 0.995z 1––
1 1.99z 1–– z 2–+
--=

h n()

x n() 0.95()n 0.1n()sin u n()=

y n() 0.95()n 0.2n()sin u n()=

u n()

y n() 2x n() 0.75y n 1–() 0.125y n 2–()+ +=

H z() Y z() X z()H z()=
h n() y n() x n() y n() 0=
n 0<

H z() 1

1 2z
1–

1.91z
2–

+– 0.91z
3–

– 0.205z
4–

+
---=

z 0=

G z()

F z()

The Almagest 5-75

Ptolemy Last updated: 11/6/97

Find an to get an overall transfer function of . Then implement it as a
feedback system in Ptolemy and plot the impulse response. Is the impulse response infinite
in extent?

Note: For a feedback system to be implementable in discrete-time, it must have at least one
unit delay () in the loop. Ptolemy needs for this delay to be explicit, not hidden in the
tap values of a filter star. For this reason, you should factor a term out of and
implement it using the delay icon (a small green diamond). Note that the delay is not a star,
and is not connected as a star. It just gets placed on top of an arc, as explained in “Using
delays” on page 2-47. Also note that Ptolemy requires you to use an explicitFork (in the
control palette) if you are going to put a delay on a net with more than one destination.

5.5.4 Linear phase filtering

You can compute the frequency response of a filter in Ptolemy by feeding it an
impulse, and connecting the output to anFFTCx star. Recall that you will only need to run
your system forone iteration when you are using an FFT, or you will get several successive
FFT computations. The output of the FFT is complex, but may be converted to magnitude and
phase using a complex to real (CxToRect) followed by a rectangular to polar (RectToPo-
lar) converter stars. You can also examine the magnitude in dB by feeding it through theDB
star before plotting it.

1. Build an FIR filter with real, symmetric tap values. Use any coefficients you like, as long as
they are symmetric about a center tap. Look at the phase response. Is it linear, modulo ?
Experiment with several sets of tap values, maintaining linear phase. Try long filters and
short filters. Experiment with the phase unwrapper star (Unwrap), which attempts to
remove the ambiguity, keeping continuous phase. Choose your favorite linear-phase fil-
ter, and turn in the plots of its frequency response, together a plot of its tap values.

2. For the filter you used in (1), what is the group delay? How is the group delay related to the
slope of the phase response?

3. Build an FIR filter with odd-symmetric taps (anti-symmetric). Find the phase response of
this filter, and compare it to that in (1). Generate a sine wave (using thesingen galaxy)
and feed it into your filter. What is the phase difference (in radians) between the input
cosine and the output? Try different frequencies.

4. Although linear phase is easy to achieve with FIR filters, it can be achieved with other fil-
ters using signal reversal. If you run the same signal forwards and backwards through the
same filter, you can get linear phase. Given an input and a filter , compute the
output as follows:

.

Obviously, this operation is not causal. Let be such that

.

F z() G z() H z()

z
1–

z
1–

G z()

π

2π

x n() h n()
y n()

g n() h n()* x n()=

r n() h n()* g n–()=

y n() r n–()=

f n()

y n() f n()* x n()=

5-76 SDF Domain

U. C. Berkeley Department of EECS

Find in terms of . If is causal, will also be causal? Find the fre-
quency response , and express it in terms of and . It will help if
you assume all signals are real.

5. All signals in Ptolemy start at time zero, so it is impossible to generate the signal
used above. However, you can collect a block of samples and reverse them, getting

, using theReverse star. This introduces an extra delay of samples. Use a
first-order IIR filter (with an exponentially decaying impulse response) to implement

. First verify that the above methodology yields an impulse response that is symmet-
ric in time. Then measure the phase response. You can use Ptolemy to adjust the computed
phase output to remove the effect of the large delay offset (the center of your symmetric
pulse is nowhere near zero). Compare your result against the theoretical prediction in (4).

Hint: You will want the block size of theReverse star to match that used for theFFTCx
star. Then just run the system through one iteration. Also, you should delay your impulse
into the first filter by half the block size. This will ensure a symmetric impulse response,
which is what you want for linear phase. The center of symmetry should be half the block
size.

5.5.5 Coefficient quantization

1. You will experiment with the following transfer function:

,

which has the following pole-zero plot:

This is a fourth order elliptic filter.

a. Implement this filter in the canonical direct form, or direct form II (using theIIR star).
Plot the magnitude frequency response in dB, and verify that it is what you expect from
the pole-zero plot.

b. The transfer function can be factored as follows, where the poles nearest the unit circle
and the zeros close to those poles appear in the second term:

.

f n() h n() h n() f n()
F ω() H ω() H ω()∠

g n–()

g N n–() N

h n()

H z() 1 2.1872z
1–

3.0055z
2–

+– 2.1872z
3–

– z
4–

+

1 3.1912z
1–

4.1697z
2–

+– 2.5854z
3–

– 0.6443z
4–

+
--=

H z() 1 0.6511z
1–

z
2–

+–

1 1.5684z
1–

0.6879z
2–

+–

 
 
  1 1.5321z

1–
z

2–
+–

1 1.6233z
1–

0.9366z
2–

+–

 
 
 

=

The Almagest 5-77

Ptolemy Last updated: 11/6/97

Implement this as a cascade of two second order sections (using twoIIR stars). Verify
that the frequency response is the same as in part (a). Does the order of the two second
order sections affect the magnitude frequency response?

2. You will now quantize the coefficients for implementation in two’s complement digital
hardware. Assume in all cases that you will use enough bits to the left of the binary point to
represent the integer part of the coefficients perfectly. The left-most bit is the most signifi-
cant bit. You will only vary the number of bits to the right of the binary point, which repre-
sent the fractional part. With zero bits to the right of the binary point, you can only
represent integers. With one bit, you can represent fractional parts that are either .0 or .5.
Other possibilities are given in the table below:

You can use theIIRFix star to implement this. First, we will study the effects of coeffi-
cient quantization only. To minimize the impact of fixed-point internal computations in the
IIRFix star, set theInputPrecision, AccumulationPrecision, and OutputPrecision to
16.16 (meaning 16 bits to the right and 16 bits to the left of the binary point) getting more
than adequate precision.

a. For the cascaded second-order sections of problem 1a, quantize the coefficients with
two bits to the right of the binary point. Compare the resulting frequency response to the
original. What has happened to the pole closest to the unit circle? Do you still have a
fourth-order system? Does the order of the second order sections matter now?

b. Repeat part (a), but using four bits to the right of the binary point. Does this look like it
adequately implements the intended filter?

3. Direct form implementations of filters with order higher than two are especially subject to
coefficient quantization errors. In particular, poles may move so much when coefficients
are quantized that they move outside the unit circle, rendering the implementation unstable.
Determine whether the direct form implementation of problem (1a) is stable when the
coefficients are quantized. Try 2 bits to the right of the binary point and 4 bits to the right of
the binary point. You should plot the impulse response, not the frequency response, to look
for instability. How many bits to the right of the binary point do you need to make the sys-
tem stable?

4. Experiment with the other precision parameters of theIIRFix star. Is this filter more sen-
sitive to accumulation precision than to coefficient precision?

5. Many applications require a very narrowband lowpass filter, used to extract the d.c. compo-
nent of a signal. Unfortunately, the pole locations for second-order direct form 2 structures
are especially sensitive to coefficient quantization in the region near . Consequently,
they are not very well suited to implementing very narrowband lowpass filters.

a. The following transfer function is that of a second-order Butterworth lowpass filter:

number of bits right of the binary point possible values for the fractional part

2 .0, .25, .5, .75

3 .0, .125, .25, .375, .5, .625, .75, .875

4 .0, .0625, .125, .1875 .25, .3125, .375, ...

z 1=

5-78 SDF Domain

U. C. Berkeley Department of EECS

.

Find and sketch the pole and zero locations of this filter. Compute and plot the magni-
tude frequency response. Where is the cutoff frequency (defined to be 3dB below the
peak)?

b. Quantize the coefficients to use four bits to the right of the binary point. How many bits
to the left of the binary point are required so that all the coefficients can be represented
in the same format? Compute and plot the magnitude frequency response of this new fil-
ter. Explain why it is so different. What is wrong with it?

c. The following transfer function is a bit better behaved when quantized to four bits to the
right of the binary point:

.

It is also a second order Butterworth filter. Determine where its 3dB cutoff frequency is.
Quantize the coefficients to four bits right of the binary point, and determine how
closely the resulting filter approximates the original.

d. Use the filter from part (c) (possibly used more than once), together withUpsample and
Downsample stars to implement a lowpass filter with a cutoff of 0.05 radians. Imple-
ment both the full precision and quantized versions. Describe qualitatively the effective-
ness of this design. Your input and output sample rate should be the same, and the
objective is to pass only that part of the input below 0.05 radians to the output unattenu-
ated.

5.5.6 FIR filter design

This lab explores FIR filter design by windowing and by the Parks-McClellan algorithm.

1. Use theRect star to generate rectangular windows of length 8, 16, and 32. Set the ampli-
tude of the windows so that they have the same d.c. content (so that the Fourier transform at
zero will be the same).

a. Find the drop in dB at the peak of the first side-lobe in the frequency domain. Also find
the position (in Hz, assuming the sampling interval) of the peak of the first side-
lobe. Is the dB drop a function of the length of the window? What about the position?

b. Find the drop in dB at the side-lobe nearest radians (the Nyquist frequency) for each
of the three window lengths. What relationship would you infer between window length
and this drop?

2. Repeat problem 1 with a Hanning window instead of a rectangular window. Be sure to set
the period parameter of theWindow star to a negative number in order to get only one
instance of the window.

3. An ideal low-pass filter with cutoff at has impulse response

.

This impulse response can be generated for any range using theRaised-
Cosine star from the communications subpalette, or theSinc star from the nonlinear

H z() 1 2z
1–

z
2–

+ +

1 1.9293z
1–

– 0.9317z
2–

+
---=

H z() 1 2z
1–

z
2–

+ +

1 1.7187z
1–

– 0.7536z
2–

+
---=

T 1=

π

ωc

h n()
ωcn()sin

πn
----------------------=

M– n M≤ ≤

The Almagest 5-79

Ptolemy Last updated: 11/6/97

subpalette. This star is actually an FIR filter, so feed it a unit impulse. Its output will be
shaped like if you set the “excess bandwidth” to zero. Set its parameters as follows:

length: 64 (the length of the filter you want)
symbol_interval: 8 (the number of samples to the first zero crossing)
excessBW: 0.0 (this makes the output ideally lowpass).
interpolation: 1

a. What is the theoretical cutoff frequency given that is the first zero cross-
ing in the impulse response? Give your answer in Hz, assuming that the sampling inter-
val .

b. Multiply the 64-tap impulse response gotten from theRaisedCosine star by Hanning
and steep Blackman windows, and plot the original 64-tap impulse response together
with the two windowed impulse responses. Which impulse responses end more abruptly
on each end?

c. Compute and plot the magnitude frequency response (in dB) of filters with the three
impulse responses plotted in part (b). You will want to change the parameter of the
FFTCx star to get more resolution. You can use anorder of 9 (which corresponds to a
512 point FFT). You can also set thesize to 64 since the input has only 64 non-zero sam-
ples. Describe qualitatively the difference between the three filters. What is the loss at

 compared to d.c.?

4. In this problem, you will use the rather primitive FIR filter design software provided with
Ptolemy. The program you will use is called “optfir ”; it uses the Parks-McClellan algo-
rithm to design equiripple FIR filters. See “optfir — equiripple FIR filter design” on
page C-1 for an explanation of how to use it. The main objective in this problem will be to
compare equiripple designs to the windowed designs of the previous problem.

a. Design a 64 tap filter with the passband edge at (1/16)Hz and stopband edge at (0.1)Hz.
This corresponds very roughly to the designs in problem 3. Compare the magnitude fre-
quency response to those in problem 3. Describe in words the qualitative differences
between them. Which filters are “better”? In what sense?

b. The filter you designed in part (a) should end up having a slightly wider passband than
the designs in problem 3. So to make the comparison fair, we should use a passband
edge smaller than (1/16)Hz. Choose a reasonable number to use and repeat your design.

c. Experiment with different transition band widths. Draw some conclusions about equir-
ipple designs versus windowed designs.

5.5.7 The DFT (discrete Fourier transform)

This exercise explores the DFT, FFT, and circular convolution. Ptolemy has both a
FFTCx (complex FFT) and aDTFT star in the “dsp” palette. TheFFTCx star has anorder
parameter and asizeparameter. It consumessizeinput samples and computes the DFT of a

periodic signal formed by repeating these samples with period . Only integer powers of

two are supported. If , then the unspecified samples are given value zero. This
can also be viewed as computing samples of the DTFT of a finite input signal of lengthsize,

padded with zeros. These samples are evenly spaced from d.c. to , with spac-

h n()

ωc h 8() 0=

T 1=

ωc

2
order

size 2
order≤

2order size– 2π

5-80 SDF Domain

U. C. Berkeley Department of EECS

ing , where .

The DTFT star, by contrast, computes samples of the DTFT of a finite input signal at
arbitrary frequencies (the frequencies are supplied at a second input port). If you are inter-
ested in computing even spaced samples of the DTFT in the whole range from d.c. to the sam-
pling frequency, theDTFT star would be far less efficient than theFFTCx star. However, if you
are interested in only a few samples of the DTFT, then theDTFT star is more efficient. For this
exercise, you should use theFFTCx star.

1. Find the 8 point DFT (order = 3,size = 8) of each of the following signals:

Plot the magnitude, real, and imaginary parts on the same plot. Ignoring any slight round-
off error in the computer, which of the DFTs is purely real? Purely imaginary? Why? Give
a careful and complete explanation.Hint: Do not rely on implicit type conversions, which
are tricky to use. Instead, explicitly use theCxToReal andRectToPolar stars to get the
desired plots.

2. Let

as in (a) above. Compute the 4, 8, 16, 32, and 64 point DFT using theFFTCx star. Plot the
64 point DFT. Explain why the 4 point DFT is as it is, and explain why the progression
does what it does as the order of the DFT increases.

3. Assuming a sample rate of 1 Hz, compare the 128 point FFT (order = 7, size= 128) of a
0.125 Hz cosine wave to the 128 point FFT of a 0.123 Hz cosine wave. It is easy to observe
the differences in the magnitude, so you should plot only the magnitude of the output of the
FFTCx star. Explain why the DFTs are so different.

4. For the same 0.125 Hz signal of problem 3, compute a DFT of order 512 using only 128
samples, padded by zeros (order = 9, size= 128; the zero padding will occur automati-
cally). Explain the difference in the magnitude frequency response from that observed in
problem 3. Do the same for the 0.123 Hz signal. Is its magnitude DFT much different from
that of the 0.125 Hz cosine? Why or why not?

5. Form a rectangular pulse of width 128 and plot its magnitude DFT using a 512 point FFT
(order = 9, size=512). How is this plot related to those in problem 4? Multiply this pulse
by 512 samples of a 0.125 Hz cosine wave and plot the 512 point DFT. How is this related
to the plot in problem 4? Explain.Reminder: If you get an error message “unresolvable
type conflict” then you are probably connecting a float signal to both a float input and a
complex input. You can use explicit type conversion stars to correct the problem.

6. To study circular convolution, let

2π/N N 2order=

n1

0

0

n n

00

n

0
(a) (b) (c) (d)

x n()
1, if n 0 1 2 or 3, , ,=

0, otherwise
=

The Almagest 5-81

Ptolemy Last updated: 11/6/97

and let be as given in problem 2. Use theFFTCx star to compute the 8 point circular
convolution of these two signals. Which points are affected by the overlap caused by circu-
lar convolution? Compute the 16 point circular convolution and compare.

5.5.8 Whitening filters

This exercise, and all the remaining ones in this chapter, involve random signals.

1. Implement a filter with two zeros, located at , where , one pole at
, and one pole at . You may use theBiquad or IIR star in the “dsp” palette.

Filter white noise with it to generate an ARMA process. Then design a whitening filter that
converts the ARMA process back into white noise. Demonstrate that your system does
what is desired by whatever means seems most appropriate.

2. Implement a causal FIR filter with two zeros at and , where

.

Plot its magnitude frequency response and phase response, using theUnwrap star to
remove discontinuities in the phase response. Then implement a second filter with two
zeros at 1/a and 1/a*. Adjust the gain of this filter so that it is the same at d.c. as the first fil-
ter. Verify that the magnitude frequency responses are the same. Compare the phases.
Which is minimum phase? Then implement an allpass filter which when cascaded with the
first filter yields the second. Plot its magnitude and phase frequency response.

5.5.9 Wiener filtering

1. Generate an AR (auto-regressive) process by filtering white Gaussian noise with the
following filter:

.

You can implement this with theIIR filter star. The parameters of the star are:

gain: A float:
numerator: A list of floats separated by spaces: ...
denominator: A list of floats separated by spaces: ...

where the transfer function is:

.

More interestingly, you can implement the filter with an FIR filter in the feedback loop. Try
it both ways, but turn in the latter implementation.

2. Define the “desired” signal to be

,

y n()
1, if n 1 2 3 4 5 or 6, , , , ,=

0, otherwise
=

x n()

z a ja±= a 0.8=
z 0= z 0.9=

z a= z a∗=

a 0.9ejπ/4=

x n()

G z() 1

1 2z
1–

– 1.91z
2–

0.91z
3–

– 0.205z
4–

+ +
---=

g
a0 a1 a2

b0 b1 b2

H z() g
a0 a1z

1–
a2z

2–
...+ + +

b0 b1z
1–

b2z
2–

...+ + +

 
 
 

=

d n() g n()❋x n() w n()+=

5-82 SDF Domain

U. C. Berkeley Department of EECS

where is a white Gaussian noise process with variance 0.5, uncorrelated with ,
and is the impulse response of a filter with the following transfer function:

.

Generate .

3. Design a Wiener filter for estimating from . Verify that the power of the error
signal is equal to the power of the additive white noise .

4. Use an adaptive LMS filter to perform the same function as the fixed Wiener filter in part 3.
Use the default initial tap values for theLMS filter star. Compare the error signals for the
adaptive system to the error signal for fixed system by comparing their power. How closely
does the LMS filter performance approximate that of the fixed Wiener filter? How does its
performance depend on the adaptation step size? How quickly does it converge? How
much do its final tap value look like the optimal Wiener filter solution?

Ptolemy Hint: ThepowerEst galaxy (in the nonlinear palette) is convenient for estimating
power. For theLMS star, to examine the final tap values, set thesaveTapsFile parameter to
some filename. This file will appear in your home directory (even if you started pigi in some
other directory). To examine this file, just type “pxgraph -P filename ” in any shell win-
dow. The -P option causes each point to shown with a dot. You may also wish to experiment
with theLMSTkPlot star to get animated displays of the filter taps as they adapt.

5.5.10 Adaptive equalization

1. Generate random sequence of using theIIDUniform andSgn stars. This represents a
random sequence of bits to be transmitted over a channel. Filter this sequence with the fol-
lowing filter (the same filter used in “Wiener filtering” on page 5-81):

.

Assume this filter represents a channel. Observe that it is very difficult to tell from the
channel output directly what bits were transmitted. Filter the channel output with an LMS
adaptive filter. Try two mechanisms for generating the error used to update the LMS filter
taps:

a. Subtract the LMS filter output from the transmitted bits directly. These bits may be
available at a receiver during a start-up, or “training” phase, when a known sequence is
transmitted.

b. Use theSgn star to make decisions from the LMS filter output, and subtract the filter
output from these decisions. This is a decision-directed structure, which does not
assume that the transmitted bits are known at the receiver.

To get convergence in reasonable time, it may be necessary to initialize the taps of the LMS
filter with something reasonably close to the inverse of the channel response. Try initializ-
ing each tap to the integer nearest the optimal tap value. Experiment with other initial tap
values. Does the decision-directed structure have more difficulty adapting than the “train-
ing” structure that uses the actual transmitted bits? You may wish to experiment with the
LMSTkPlot block to get animated displays of the filter taps.

w n() x n()
g n()

G z() 1 2z
1–

3z
2–

4z
3–

+ + +=

d n()
d n() x n()

e n() d n() y n()–= w n()

1±

A z() 1

1 2z
1–

1.91z
2–

+– 0.91z
3–

– 0.205z
4–

+
---=

The Almagest 5-83

Ptolemy Last updated: 11/6/97

2. For the this problem, you should generate an AR process by filtering Gaussian white noise
with the following filter:

.

Construct an optimal one-step forward linear predictor for this process using theFIR star,
and a similar adaptive linear predictor using theLMS star. Display the two predictions and
the original process on the same plot. Estimate the power of the prediction errors and the
power of the original process. Estimate the prediction gain (in dB) for each predictor. For
each predictor, how many fewer bits would be required to encode the prediction error
power vs. the original signal with the same quantization error? Assume the number of bits
required for each signal to have the same quantization error is determined by the rule,
which means that full scale is equal to four standard deviations.

3. Modify the AR process so that is generated with the following filter:

.

Again estimate the prediction gain in both dB and bits. Explain clearly why the prediction
gain is so much lower.

4. In the file$PTOLEMY/src/domains/sdf/demo/speech.lin there are samples from
two seconds of speech sampled at 8kHz. You need not use all 16,000 samples. The samples
are integer-valued with a peak of around 20,000. You may want to scale the signal down.
Use your one-step forward linear predictor with the LMS algorithm to compute the predic-
tion error signal. Measure the prediction gain in dB, and note that it varies widely for dif-
ferent speech segments. Identify the segments where the prediction gain is greatest, and
explain why. Identify the segments where the prediction gain is small and explain why it is
so. Make an engineering decision about the number of bits that can be saved by this coder
without appreciable degradation in signal quality. You can read the file using theWave-
Form star.

5.5.11 ADPCM speech coding

For the same speech file you used in the last assignment,$PTOLEMY/src/domains/
sdf/demo/speech.lin , you are to construct an adaptive differential pulse code modulation
(ADPCM) coder using the “feedback around quantizer” structure and an LMS filter to form
the approximate linear prediction. Be sure to connect your LMS filter so that at the receiver, if
there are no transmission errors, an LMS filter can also be used in a feedback path, and the
LMS filter will exactly track the one in the transmitter. You will use various amounts of quan-
tization.

To assess the ADPCM system, reconstruct the speech signal from the quantized resid-
ual, subtract this from the original signal, and measure the noise power. If you have a worksta-
tion with a speaker available, listen to the sound, and compare against the original.

1. In your first experiment, do not quantize the signal. Find a good step size, verify that the
feedback around quantizer structure works, measure the reconstruction error power and
prediction gain. Does your reconstruction error make sense? Compare your prediction gain

A z() 1
1 1.94z 1–– 0.98z 2–+
---=

4σ

A z() 1
1 1.2z 1–– 0.6z 2–+
---=

5-84 SDF Domain

U. C. Berkeley Department of EECS

result against that obtained in the previous lab. It should be identical, since all you have
changed is to use the feedback-around-quantizer structure, but you are not yet using a
quantizer.

Assume you have a communication channel where you can transmit bits per sample. You
will now measure the signal quality you can achieve with ADPCM compared to simple PCM
(pulse code modulation) over the same channel. In PCM, you directly quantize the speech sig-
nal to levels, whereas in ADPCM, you quantize the prediction error to levels. For a
given , you should choose the quantization levels carefully. In particular, the quantization
levels for the ADPCM case should not be the same as those for the PCM case. Given a partic-
ular prediction gain , what should the relationship be? You should use theQuant star to
accomplish the quantization in both cases. A useful way to set the parameters of theQuant
star is as follows (shown for bits, meaning 4 quantization levels):

thresholds: (-1*s) (0) (1*s)

levels: (-1.5*s) (-0.5*s) (0.5*s) (1.5*s)

where “s” is a universe parameter. This way, you can easily experiment with various quantiza-
tion spacings without having to continually retype long sequences of numbers.

For each , you should compare (a) the ADPCM encoded speech signal and (b) the PCM
encoded speech signal to the original speech signal. You should make this comparison by
measuring the power in the differences between the reconstructed signals and the original.
How does this difference compare to the prediction gain?

2. Use bits.

3. Use bits.

5.5.12 Spectral estimation

In the Ptolemy “dsp” palette there are three galaxies that perform three different spec-
tral estimation techniques. These are the (1) periodogram, (2) autocorrelation method using
the Levinson-Durbin algorithm, and (3) Burg’s method. The latter two compute linear predic-
tor coefficients, and then use these to determine the frequency response of a whitening filter
for the random process. The magnitude squared of this frequency response is inverted to get
an estimate of the power spectrum of the random process. Study these and make sure you
understand how they work. You are going to use all three to construct power spectral estimates
of various signals and compare them. In particular, note how many input samples are con-
sumed and produced. If you display all three spectral estimates on the same plot, then you
must generate the same number of samples for each estimate. You will begin using only the
Burg galaxy.

1. In this problem, we study the performance of Burg’s algorithm for a simple signal: a sinu-
soid in noise. First, generate a sinusoid with period equal to 25 samples. Add Gaussian
white noise to get an SNR of 10 dB.

a. Using 100 observations, estimate the power spectrum using order 3, 4, 6, and 12th order
AR models. You need not turn in all plots, but please comment on the differences.

b. Fix the order at 6, and construct plots of the power spectrum for SNR of 0, 10, 20, and
30 dB. Again comment on the differences.

N

2
N

2
N

N

G

N 2=

N

N 3=

N 2=

The Almagest 5-85

Ptolemy Last updated: 11/6/97

c. When the AR model order is large relative to the number of data samples observed, an
AR spectral estimate tends to exhibit spurious peaks. Use only 25 input samples, and
experiment with various model orders in the vicinity of 16. Experiment with various
signal to noise ratios. Does noise enhance or suppress the spurious peaks?

d. Spectral line splitting is a well-known artifact of Burg’s method spectral estimates. Spe-
cifically, a single sinusoid may appear as two closely spaced sinusoids. For the same
sinusoid, with an SNR of 30dB, use only 20 observations of the signal and a model
order of 15. For this problem, you will find that the spectral estimate depends heavily on
the starting phase of the sinusoid. Plot the estimate for starting phases of 0, 45, 90, and
135 degrees of a cosine wave.

2. In this problem, we study a synthetic signal that roughly models both voiced and unvoiced
speech.

a. First construct a signal consisting of white noise filtered by the transfer function

.

Then estimate its power spectrum using three methods, a periodogram, the autocorrela-
tion method, and Burg’s method. Use 256 samples of the signal in all three cases, and
order-8 estimates for the autocorrelation and Burg’s methods. Increase and decrease the
number of inputs that you read. Does the periodogram estimate improve? Do the other
estimates improve? How should you measure the quality of the estimates? What order
would work better than 8 for this estimate?

b. Instead of exciting the filter with white noise, excite it with an impulse stream
with period 20 samples. Repeat the spectral estimate experiments. Which estimate is
best? Does increasing the number of input samples observed help any of the estimates?
With the number of input samples observed fixed at 256, try increasing the order of the
autocorrelation and Burg’s estimates. What is the best order for this particular signal?
Note that deciding on an order for such estimates is a difficult problem.

c. Voiced speech is often modeled by an impulse stream into an all-pole filter. Unvoiced
speech is often modeled by white noise into an all-pole filter. A reasonable model
includes some of both, with more noise if the speech is unvoiced, and less if it is voiced.
Mix noise and the periodic impulse stream at the input to the filter in various
ratios and repeat the experiment. Does the noise improve the autocorrelation and Burg
estimates, compared to estimates based on pure impulsive excitation? You should be
able to get excellent estimates using both the autocorrelation and Burg’s methods. You
may wish to run some of these experiments with 1024 input samples.

5.5.13 Lattice filters

In the Ptolemy “dsp” palette there are four lattice filter stars called:Lattice , RLat-
tice , BlockLattice , andBlockRLattice . The “R” refers to “Recursive”, so the “RLat-
tice ” stars are inverse filters (IIR), while the “Lattice ” stars are prediction-error filters
(FIR). The “Block” modifier allows you to connect theLevDur or Burg stars to the Lattice
filters to provide the coefficients. A block of samples is processed with a given set of coeffi-
cients, and then new coefficients can be loaded.

H z() 1

1 1.2z
1–

– 0.6z
2–

+
---=

H z()

H z()

5-86 SDF Domain

U. C. Berkeley Department of EECS

1. Consider an FIR lattice filter with the following values for the reflection coefficients:
0.986959, -0.945207, 0.741774, -0.236531.

a. Is the inverse of this filter stable?

b. Let the transfer function of the FIR lattice filter be written

Use the Levinson-Durbin algorithm to find , ..., . Experiment with various meth-

ods to estimate the autocorrelation. Turn in your estimates of , ..., .

c. Use Ptolemy to verify that an FIR filter with your computed tap values 1, , ..., has
the same transfer function as the lattice filter.

2. In this problem, we compare the biased and unbiased autocorrelation estimates for trouble-
some sequences.

a. Construct a sine wave with a period of 40 samples. Use 64 samples into theAutocor
star to estimate its autocorrelation using both the biased and unbiased estimate. Which
estimate looks more reasonable?

b. Feed the two autocorrelation estimates into theLevDur star to estimate predictor coeffi-
cients for various prediction orders. Increase the order until you get predictor coeffi-
cients that would lead to an unstable synthesis filter. Do you get unstable filters for both
biased and unbiased autocorrelation estimates?

c. Add white noise to the sine wave. Does this help stabilize the synthesis filter?

d. Load your reflection coefficients into theBlockLattice star and compute the predic-
tion error both the biased and unbiased autocorrelation estimate. Which is a better pre-
dictor?

H z() 1 h1z
1–

h2z
2–

... hMz
M–

+ + + +=

h1 hM

h1 hM

h1 hM

Chapter 6. HOF Domain

Authors: Edward A. Lee

Other Contributors: Wan-Teh Chang
Christopher Hylands
Tom Lane
Alan Kamas
Karim Khiar
Thomas M. Parks

6.1 Introduction
A function ishigher-order if it takes a function as an argument and/or returns a func-

tion. A classic example ismapcar in Lisp, which takes two arguments, a function and a list. Its
behavior is to apply the function to each element of the list and to return a list of the results.
The HOF domain implements a similar function, in the form of a star calledMap, that can
apply any other star (or galaxy) to the sequence(s) at its inputs. Many other useful higher-
order functions are also provided by this domain.

The HOF domain provides a collection of stars designed to be usable in all other
Ptolemy domains. To preserve this generality, not all interesting higher-order functions can be
implemented in this domain. As a consequence, some individual domains may also define
higher-order functions. In fact, any higher-order function with domain-specific behaviormust
be implemented in its respective domain. The HOF domain is included as a subdomain by all
other domains. In Ptolemy 0.7 and later, HOF can be used in both graphical and non-graphical
Ptolemy Tcl interpreters.

A common feature shared by all the stars in this domain is that they perform all of their
operations in thepreinitialize method. Moreover, their basic operation is always
to disconnect themselves from the graph in which they appear and then to self-destruct. Since
the preinitialization method of the stars in a universe is invoked before the preinitialization
method of the scheduler, the scheduler never sees the HOF stars. They will have self-
destructed by the time the scheduler is invoked. This is why these stars will work in any
domain. In code generation domains, an important feature of the HOF stars is that they add no
run-time overhead at all, since they self-destruct before code generation begins, and therefore
do not appear in any form in the generated code.

Many of the HOF stars will replace themselves with one or more instances of another
star or galaxy, called thereplacement block. Replacement blocks generally go into the graph
in the same position originally occupied by the HOF star, but different HOF stars will connect
these replacement blocks in different ways.

Some HOF stars have no replacement block. Before they self destruct, they will typi-
cally only alter the connections in the graph without adding any new blocks. An example is
theBusMerge block, which merges two busses into one wider bus. These stars are calledbus

6-2 HOF Domain

U. C. Berkeley Department of EECS

manipulation stars.

The experienced reader may have some difficulty connecting the concept of higher-
order functions, as implemented in this domain, to that used in functional programming. This
issue is covered in some depth in [Lee95], but we can nonetheless give a brief motivation here.
In functional languages, there is no syntactic difference between a function argument that is a
data value, one that is a stream (an infinite sequence of data values), and one that is a function.
In visual programming, however, functions typically have two very different syntaxes for their
arguments. Ptolemy is no exception. Stars and galaxies in Ptolemy are functions with two
kinds of arguments: input streams and parameters. The HOF domain only contains stars where
a parameter may be function. It does not contain any stars that will accept functions at their
input portholes as part of an input stream, or produce functions at their output portholes.
Although in principle such higher-order functions can be designed in Ptolemy, their behavior
would not be independent of their domain, so the HOF domain would be the wrong place for
them.

6.2 Using the HOF domain
The HOF stars are found in the main palettes of the domains that use them. For exam-

ple, the HOF stars used in the SDF domain are found in the main SDF palette. Typically,
domains that include the HOF stars will also include demos that use those stars in their demo
palette. Thus, the DE demo palette contains a section of Higher Order Function demonstra-
tions. The HOF stars can be used just as if they belonged to the domain in which you are
working. Although the examples given below are drawn from the SDF domain, please keep in
mind this versatility.

6.2.1 The Map star and its variants

TheMap star is the most basic of all HOF stars. Its icon is shown below:

It has the following parameters:

blockname The name of the replacement block.

where_defined The full path and facet name for the definition of blockname.

parameter_map How to set the parameters of the replacement block.

input_map How to connect the inputs.

output_map How to connect the outputs.

The name of the replacement block is given by theblockname parameter. If the replacement
block is a galaxy, then thewhere_defined parameter should give the full name (including the
full path) of a facet that, when compiled, will define the block. This path name may (and prob-
ably should) begin with the environment variable$PTOLEMY or ~username. This lends a cer-

Map

The Almagest 6-3

Ptolemy Last updated: 6/13/97

tain immunity to changes in the filesystem organization. Currently, the file specified must be
an oct facet, although in the future, other specifications (likeptcl files) may be allowed. Usu-
ally, the oct facet simply contains the definition of the replacement galaxy. If the replacement
block is a built-in star, then there is no need to give a value to thewhere_defined parameter.

The Map star replaces itself in the graph with as many instances of the replacement
block as needed to satisfy all of the inputs to the Map star. Consider the example shown in fig-
ure 6-1. The replacement block is specified to be the built-inRaisedCosine star. Since this
is built-in, there is no need to specify where it is defined, so thewhere_defined parameter is
blank. TheRaisedCosine star has a single input namedsignalInand a single output named
signalOut, so these names are given as the values of theinput_map andoutput_map parame-
ters. Theparameter_map parameter specifies the values of theexcessBWparameter for each
instance of the replacement block to be created;excessBW specifies the excess bandwidth of
the raised cosine pulse generated by the star. The syntax of theparameter_map parameter is
discussed in detail below, but we can see that the value of theexcessBWparameter will be 1.0
for the first instance of theRaisedCosine star, 0.5 for the second, and 0.33 for the third.

The horizontal slash through the last connection on the right in figure 6-1 is aBus,
which is much like a delay in that the icon is placed directly over the arc without any connec-
tions. Its single parameter specifies the number of connections that the single wire represents.
Here, the bus width has to be three or theMap star will issue an error message. This is because
there are three inputs to theMap star, so three instances of theRaisedCosine star will be
created. The three outputs from these three instances need somewhere to go. The result of run-
ning this system is shown in figure 6-2

The block diagram in figure 6-1 is equivalent to that in figure 6-3. Indeed, once the
preinitialization method of theMap star has run, the topology of the Ptolemy universe will be
exactly as figure 6-3. TheMap star itself will not appear in the topology, so examining the
topology with, for example, theptcl print command will not show aMap star instance.

In both figures 6-1 and 6-3, the number of instances of theRaisedCosine star is

Impulse

��

�
�
�
�

Impulse

��
��

�
�
�
�

Impulse

��
��

�
�
�
�

Map XMgraph

bus

3

blockname: RaisedCosine
where_defined:
parameter_map: excessBW = 1.0/instance_number
input_map: signalIn
output_map: signalOut

FIGURE 6-1: An example of the use of the Map star to plot three different raised cosine pulses.

6-4 HOF Domain

U. C. Berkeley Department of EECS

specified graphically. In figure 6-1, it is specified by implication, through the number of
instances of theImpulse star. In figure 6-3 it is specified directly. Neither of these really
takes advantage of higher-order functions. The block diagram in figure 6-4 is equivalent to
both 6-1 and 6-3, but can be more easily modified to include more or fewer instances of the
RaisedCosine star. It is only necessary to modify parameters, not the graphical representa-
tion. For example, if the value of the bus parameters in figure 6-4 were changed from 3 to 10,
the system would then plot ten raised cosines instead of three.

The left-most star in figure 6-4 is a variant of theMap star calledSrc . It has no inputs,
and is used when the replacement block is a pure source block with no input. (This is a sepa-
rate star type only for historical reasons; aMap icon with zero inputs would work as well.

Raised Cosine Pulses with Various Excess Bandwidths

excessBW=1.0

excessBW=0.5

excessBW=0.33

Y

X-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.00 20.00 40.00 60.00

FIGURE 6-2: The plot that results from running the system in figure 6-1.

FIGURE 6-3: A block diagram equivalent to that in figure 6-1, but without higher-order functions.

Impulse

�
�

�
�
�
�

Impulse

�

�
�
�
�

Impulse

�
�

�
�
�
�

XMgraph

RaisedCosine

RaisedCosine

RaisedCosine

The Almagest 6-5

Ptolemy Last updated: 6/13/97

Indeed, for the case of a pure sink replacement block, a Map icon with zero outputs is used.)

Graphical versions of the Map star

Variants of theMap andSrc stars, calledMapGr andSrcGr , have the following icons:

It is important to realize thatMapGr andSrcGr are single icons, each representing a single
star. The complicated shape of the icon is intended to be suggestive of its function when it is
found in a block diagram. TheMapGr andSrcGr stars work just like theMap andSrc stars,
except that the user specifies the replacement block graphically rather than textually. For
example, the system in figure 6-4 can be specified as shown in figure 6-5. Notice that replace-
ment blocksImpulse andRaisedCosine each have one instance wired into the block dia-
gram as an example. Thus, there is no reason for theblockname, where_defined, input_map, or
output_map parameters. TheMapGr and SrcGr stars have only a single parameter, called
parameter_map. The syntax for this parameter is the same as for theMap star, and is fully
explained below.

A variant of theMapGr star has the icon shown below:

FIGURE 6-4: A block diagram equivalent to that in figures 6-1 and 6-3, except that the number of
instances of the RaisedCosine and Impulse stars can be specified by a param-
eter.

Map XMgraph

bus

Src

bus

3

blockname: RaisedCosine
where_defined:
parameter_map: excessBW = 1.0/instance_number
input_map: signalIn
output_map: signalOut

3

blockname: Impulse
where_defined:
parameter_map:
output_map: output

MapGr

888
888
888
888
888
888

888
888
888
888
888
888

etc.

distribute collect

SrcGr

888
888
888
888
888
888

collect

etc.

MapGr

888
888
888
888
888
888

distribute

etc.

6-6 HOF Domain

U. C. Berkeley Department of EECS

This version just represents aMapGr star with no outputs.

A more complex application of theMapGr star is shown in figure 6-6. Here, the
replacement block is aCommutator , which can take any number of inputs. The bus con-
nected to its input multiporthole determines how many inputs will be used in each instance
created by theMapGr star. In the example in figure 6-6, it is set to 2. Thus, each instance of the
replacement block processes two input streams and produces one output stream. Conse-
quently, the input bus must be twice as wide as the output bus, or theMapGr star will issue an
error message. This example produces the plot shown in figure 6-7. A key advantage of
higher-order functions becomes apparent when we realize that these parameters can be
changed. If the parameters are modified to generate 8 instances of theCommutator star, then
the output plot will be as shown in figure 6-8.

Setting parameter values

The parameter_map parameter of theMap star and related stars can be used to set
parameter values in the replacement blocks. Theparameter_map is a string array, a list of

FIGURE 6-5: A block diagram equivalent to that in figure 6-4 except that the replacement blocks for
the two higher-order stars are specified graphically rather than textually.

XMgraph

bus

MapGr

888
888
888
888
888
888
888

888
888
888
888
888
888
888

etc.

distribute collect

SrcGr

888
888
888
888
888
888
888

collect

etc.

bus

Impulse

�
�

�
�
�
�

RaisedCosine
3

parameter_map: excessBW = 1.0/instance_number

3

parameter_map:

FIGURE 6-6: A more complicated example using higher-order functions.

XMgraph

bus

MapGr

888
888
888
888
888
888
888
888

888
888
888
888
888
888
888
888

etc.

distribute collect

Commutator

�����
�����
�����

bus

SrcGr

8888
8888
8888
8888
8888
8888
8888
8888

collect

etc.

bus

Ramp
�����
�����
�����
�����
����� 2

8 4

The Almagest 6-7

Ptolemy Last updated: 6/13/97

strings. The strings are in pairs, where the pairs are separated by spaces, and there are four
acceptable forms for each pair:

name value
name(number) value
name = value
name(number) = value

There should be no spaces betweenname and (number), and the name cannot contain spaces,
=, or (. In all cases,name is the name of a parameter in the replacement block. In the first and
third cases, the value is applied to all instances of the replacement block. In the second and
fourth cases, it is applied only to the instance specified by the instancenumber, (which starts
with 1). The third and fourth cases just introduce an optional equal sign, for readability. If the
= is used, there must be spaces around it.

Thevalue can be any usual Ptolemy expression for giving the value of a parameter. If
this expression has spaces in it, however, then the value should appear in quotation marks so
that the whole expression is kept together. If the stringinstance_number appears anywhere

FIGURE 6-7: The plot created by running the system in figure 6-6.

Interleaved Ramps with Different Slopes

Set 0
Set 1
Set 2
Set 3

Y

X0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 5.00 10.00 15.00

FIGURE 6-8: If the parameters in figure 6-6 are modified to double the number of plots, we get this
output.

Interleaved Ramps with Different Slopes

Set 0
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7

Y

X0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0.00 5.00 10.00 15.00

6-8 HOF Domain

U. C. Berkeley Department of EECS

in value, it will be replaced with the instance number of the replacement block. Note that it
need not be a separate token. For example, the valuexxxinstance_numberyyy will
becomexxx1yyy for the first instance,xxx2yyy for the second, etc. After all appearances of
the stringinstance_number have been replaced,value is evaluated using the usual Ptolemy
expression evaluator for initializing String Array states.

For example, in figure 6-1, theMap star has ablockname of RaisedCosine , and a
parameter_map of

excessBW = 1.0/instance_number

When the system is run, theMap star will create three instances of RaisedCosine. The
first instance will have its excessBW parameter set to 1.0 (which is 1/1), the second instance
of RaisedCosine will have a excessBW of 0.5 (1/2), and the third will have a excessBW of
0.33 (1/3). Since the other RaisedCosine parameters are not mentioned in the parameter_map,
they are set to their default values.

As a further example, supposeparameter_map of theMap star in figure 6-1 were set to

excessBW(1) 0.6 excessBW(2) 0.5 excessBW(3) 0.4 length 128

The firstRaisedCosine would then have anexcessBW of 0.6, the second would have
anexcessBW of 0.5 and the third would have 0.4 for itsexcessBW. All three of theRaised-
Cosine stars would have alength of 128 instead of the default length.

Number of replacement blocks

The number of instances of the replacement block is determined by the number of
input or output connections that have been made to theMap star. Suppose theMap star has
inputs and outputs connected to it. Suppose further that the replacement block has
input ports and output ports. Then

is the number of instances that will be created. This must be an integer. Moreover, the number
of input and output connections must be compatible (must satisfy the above equality), or you
will get an error message like: “too many inputs for the number of outputs.”

How the inputs and outputs are connected

The first inputs to theMap star will be connected to the inputs of the first instance
of the replacement block. To determine in what order these connections should be made,
the names of the inputs to the replacement block should be listed in theinput_map parameter
in the order in which they should be connected. There should be exactly names in the
input_map list. The next inputs to theMap star will be connected to the next replacement
block, again using the ordering specified ininput_map. Similarly for the outputs. If there are
no inputs at all, then the number of instances is determined by the outputs, and vice versa.

For MapGr and its variants, there is noinput_map or output_map parameter; all con-
nections are specified graphically. If the replacement block has more than one input or more
than one output port, these connections must be grouped into a bus connection to the appropri-
ate port of theMapGr star. AHOFNop star (see “Bus manipulation stars” on page 6-13) can be
inserted between theMapGr star and the replacement block to perform this grouping. The
order of the connections to theNop star then determines the precise order in whichMapGr

MI
MO BI

BO

N
MI

BI

MO

BO
--------= =

BI
BI

BI
BI

The Almagest 6-9

Ptolemy Last updated: 6/13/97

makes connections. In this way theNop star’s icon provides the same control graphically that
input_map andoutput_map do textually. (By the way, this use ofNop is the only exception to
the normal rule that only a single replacement-block icon can be connected to aMapGr star.
For bothMap andMapGr, if you want to replicate a multiple-star grouping then you need to
create a galaxy representing the group to be replicated. The same is true of the remaining HOF
stars that generate multiple instances of a block.)

Substituting blocks with multiple input or output ports

When the replacement block has a multiple input port or a multiple output port (shown
graphically as a double arrowhead), the name given in theinput_map parameter should be the
name of the multiple port, repeated for however many instances of the port are desired.

For example, theAdd star has a multiple input port named “input”. If we want the
replacementAdd star(s) to have two inputs each, theninput_map should beinput input . If
we want three inputs in each replacement block, then input_map should beinput input
input . Note thatinput_map andoutput_map are both of the String Array type. Thus one can
use the shortcut stringinput[3] instead of the cumbersomeinput input input string.
These two forms are equivalent asinput[3] is converted automatically toinput input
input when the parameter is initialized by Ptolemy.

For MapGr and its variants, the number of connections to a multiporthole of the
replacement block is controlled by placing a bus icon on the connection, as was illustrated ear-
lier.

A note about data types

All the HOF stars show their input and output datatypes as ANYTYPE. In reality, the
type constraints are those of the replacement blocks, which might have portholes of specific
types.

The HOF stars rewire the schematic before any attempt is made to determine porthole
types, so the actual assignment of particle types is the same as if the schematic had been writ-
ten out in full without using any HOF stars.

This was not true in Ptolemy versions prior to 0.7. In prior versions, porthole type
assignment occurred before HOF star replacement, which had various unpleasant conse-
quences. For example, theMap star used to constrain its input and output particle types to be
the same, which interfered with using a replacement block that changed particle types. Also, it
was necessary to have numerous variants of theSrc andSrcGr stars, one for each possible
output particle type. (If you have any old schematics that contain the type-specificSrc or
SrcGr variants, you’ll need to usemasters or ptfixtree to replace them with the generic
Src or SrcGr icons.)

6.2.2 Managing multidimensional data

There are many alternatives in Ptolemy for managing multidimensional data. One sim-
ple possibility is to use theMatrixParticle class. This encapsulates a matrix into a single
particle. Another alternative is to use theMessage class to define your own multidimensional
data structure. A third alternative (which is still highly experimental) is to use the multidimen-
sional synchronous dataflow (MDSDF) domain. A fourth alternative, discussed here, is to

6-10 HOF Domain

U. C. Berkeley Department of EECS

embed your multidimensional data into one-dimensional streams. Higher-order functions
become extremely useful in this case. Our discussion will center on using the SDF domain,
although the same principles could be applied in other domains as well.

A two-dimensional array of data can be embedded in a one-dimensional stream by ras-
terizing it. This means that the sequence in the stream consists of the first row first, followed
by the second row, followed by the third, etc. This is one example of amultiprojection, so
called because higher-dimensional data is projected onto a one-dimensional sequence. Typi-
cally, however, we wish to perform some operations row-wise, and others column-wise, so the
rasterized format can prove inconvenient. Row-wise operations are easy if the data is raster-
ized, but column-wise operations are awkward. Fortunately, in the SDF domain, we can trans-
pose the data with a cascade of two stars, aDistributor and aCommutator , as shown
below:

If the input is row-wise rasterized, then the output will be column-wise rasterized, meaning
that the first column will come out first, then the second column, then the third, etc. It has been
shown that any transposition of any arbitrary multiprojection can be accomplished with such a
cascade [Khi94].

As an example of the use of a multi-projection transformation, consider the two-
dimensional FFT shown in figure 6-9. Recall that a two-dimensional discrete Fourier trans-
form can be implemented by first applying a one-dimensional DFT to the rows and then
applying a one-dimensional DFT to the columns. The system in figure 6-9 does exactly this.
To see how it works, recall that theFFTCx star in the SDF domain has two key parameters, the
order and thesize. Thesize is the number of input samples read each time the FFT is com-
puted. For the row FFT, this should be equal to the number of columns. These samples are
then padded with zeros (if necessary) to get a total of 2order samples. TheFFTCx star then
computes a 2order point FFT, producing 2order complex outputs. In figure 6-9, these outputs
are then transposed so that they are column-wise rasterized. The secondFFTCx star then com-
putes the FFT of the columns. The output is column-wise rasterized.

Distributor
����
����

Commutator

����
����

������
������
������
������
������

�����
�����
�����
�����
�����

bus

blockSize: numberOfCols

busWidth: numberOfRows

blockSize: 1

FIGURE 6-9: A two-dimensional FFT operating on rasterized input data and using the Distribu-
tor and Commutator stars to transpose one multiprojection into another.

����
����
����
����
����

FFTCx Distributor
���
���

Commutator

���
���

FFTCx �����
�����
�����
�����
�����

bus

row FFT column FFT

order: log2rowFFTorder
size: numberOfCols

blockSize: 2^log2rowFFTorder

buswidth: numberOfRows

blockSize: 1

order: log2colFFTorder
size: numberOfRows

The Almagest 6-11

Ptolemy Last updated: 6/13/97

The effect of a transposition can be accomplished using higher-order functions in a
way that is sometimes more intuitive. In particular, a matrix can be represented as a bus,
where each connection in the bus carries one row, and the width of the bus is the number of
rows. To make this concrete, the same two-dimensional FFT is re-implemented in figure 6-10
using this representation. The rasterized input is first converted into a bus, where each connec-
tion in the bus represents one row. TheMapGr star is then used to apply the FFT to each signal
in the bus. The results are recombined in column-wise rasterized format, and the column FFT
is computed.

These examples are meant to illustrate the richness of possibilities for manipulating
data. A more complete discussion of these issues and their application to radar signal process-
ing are given in [Khi94].

6.2.3 Other higher-order control structures

TheMap star and its variants apply instances of their replacement block in parallel to
the set of input streams. Another alternative is provided by theChain star, which strings
together some specified number of instances of the replacement block in series. The parame-
ters are similar to those of theMap star, except for the addition ofinternal_map. The
internal_map parameter specifies connections made between successive instances of the
replacement block in the cascade. It should consist of an alternating list of output and input
names for the replacement block.

An example of the use of theChain star is a string of biquad filters in series. TheIIR
filter star, which can be used to create a biquad filter, has an input named “signalIn” and an
output named “signalOut.” To have a string of these stars in series, one would want the output
of the firstIIR star in the series to be connected to the input of the second star. And the output
of the second star should be connected to the input of the third, etc. Thus, aChain star that is
a series of biquad filters would have aninternal_map of

signalOut signalIn

to specify that the output of one block is connected to the input of the next.

Another variant is theIfElse block. This star is just likeMap, except that it has two
possible replacement blocks. If thecondition parameter isTRUE, then thetrue_block is used.
Otherwise, thefalse_block is used. It is important to realize that thecondition parameter is

FIGURE 6-10: A two-dimensional FFT implemented using a higher-order function for the row FFTs.

bus

MapGr

88
88
88
88
88

888
888
888
888
888

etc.

distribute collect

FFTCx

Commutator

���
���

bus

FFTCx ����
����
����
����
����

����
����
����
����
����

Distributor
���
���

blockSize: numberOfCols

buswidth: numberOfRows

order: log2rowFFTorder
size: numberOfCols

buswidth: numberOfRows

blockSize: 1
order: log2colFFTorder
size: numberOfRows

Universe parameters:
 numberOfRows
 numberOfCols
 log2rowFFTorder
 log2colFFTorder

row FFT

column FFT

6-12 HOF Domain

U. C. Berkeley Department of EECS

evaluated at preinitialization time. Once a replacement block has been selected, it cannot be
changed. There are two uses for this block. It can be used to parameterize a galaxy in such a
way that the parameter determines which of two functions is used within the computation.
More interestingly, it can be used to implement statically-evaluated recursion.

6.2.4 Statically evaluated recursion

TheMap star and its variants replace themselves with an instance of the block specified
as the replacement block. What if that block is a galaxy within which the veryMap star in
question sits? This is a recursive reference to the galaxy, but a rather awkward one. In fact, in
such a configuration, the preinitialization phase of execution will never terminate. The user
has to manually abort such an execution in order to get it to terminate.

The IfElse star, however, can conditionally specify one of two replacement blocks.
Thecondition parameter determines which block. One of the two replacement blocks can be a
recursive reference to a galaxy as long as thecondition parameter is modified. When the con-
dition parameter changes state, going fromTRUE to FALSE or FALSE to TRUE, then the choice
of replacement block inside the new galaxy instance will change. This can be used to termi-
nate the recursion.

Consider the example shown in figure 6-11. This galaxy has a single parameter,
log2framesize. It will read 2log2framesize input particles and rearrange them in bit reversed
order. That is, they will emerge from the galaxy as if their binary address had been interpreted
with the high-order bit reinterpreted as a low-order bit, and vice versa. Suppose for example
that log2framesize = 3, and that the input sequence is 10,11,12,13,14,15,16,17. Then the out-
put sequence1 will be 10,14,12,16,11,15,13,17. To accomplish this, thebit_reverse galaxy
uses twoIfElse stars, each with a conditional recursive reference to thebit_reverse galaxy.

1. For those unfamiliar with bit-reversed addressing, here is a quick introduction. Sincelog2framesize is
3, galaxy will read in 23=8 values at a time. The first value (10) has address 0 (since computers
always seem to count from zero) which is 000 in binary. Reversed, its address is still 000 so it is out-
put first. The second value (11) has address 1 which is 001 in binary. Reversed, its address is 100
binary which is 4. Thus the value (11) is output in the fifth spot. As a final example, the seventh value
(16) has address 6 which is 110 in binary. Reversed, its binary value is 011 which is 3 and the value
(16) is output forth. After the first 8 values are read, the cycle is repeated for the next 8 values.

FIGURE 6-11: A recursive galaxy, where the IfElse HOF star replaces itself with an instance of the
same galaxy until its condition parameter gets to zero.

�����
�����
�����
�����

����
����
����
����

Distributor���
���

Commutator

���
���

IfThenElse

IfThenElse

blockSize: 1 blockSize: 2^(log2framesize-1)

galaxy name: bit_reverse
galaxy parameters:
 log2framesize

key parameters for both IfThenElse blocks:
 condition: log2framesize-1
 true_block: bit_reverse
 true_parameter_map: log2framesize = log2framesize-1
 false_block: Gain
 false_parameter_map: gain = 1.0

The Almagest 6-13

Ptolemy Last updated: 6/13/97

The condition islog2framesize-1, and thelog2framesize parameter for the inside instances of
the galaxy is set tolog2framesize-1. Whenlog2framesize gets to zero, the replacement block
becomes aGain star with unity gain (which of course has no effect). This terminates the
recursion.

With log2framesize = 3, after the preinitialization phase, the topology of the galaxy
will have become that shown in figure 6-12. It is much easier to see by inspection of this
topology how the bit reversal addressing is accomplished. It is also easier to see how this oper-
ation could be made more efficient (the innermost cluster ofDistributor s, Gain s, and
Commutator s has no effect at all). Unfortunately, we currently have no mechanism for auto-
matically displaying this expanded graph visually. It can, however, be examined usingptcl .

Thebit_reverse galaxy performs the sort of data manipulation that is at the heart of the
decimation-in-time FFT algorithm. See [Lee94] for an implementation of that algorithm using
these same techniques (or see the demos).

6.2.5 Bus manipulation stars

One consequence of the introduction of higher-order functions into Ptolemy is that
busses have suddenly become much more useful than they used to be. Recall that the bus icon
resembles a diagonal slash, as shown in figure 6-1, and is placed over a connection, much like
a delay. Its single parameter specifies the width of the bus.

Fortunately, while increasing the demand for busses, higher-order functions also pro-
vide a cost effective way to manipulate busses. Like theMap star and its variants, the bus
manipulation stars in the HOF domain modify the graph at preinitialization time and then self-
destruct. Thus, they can operate in any domain, and they introduce no run-time overhead.

An example of the use of theBusSplit star is shown in figure 6-13. A bank of 12 ran-
dom number generators produces its output on a bus. The bus is then split into two busses of

FIGURE 6-12: An expansion of the graph in figure 6-11, representing its topology after the preinitia
ization phase assuming log2blocksize at the top level is 3.

�����
�����
�����
�����

����
����
����
����

Distributor���
���

Commutator

���
���

Distributor���
���

Distributor
���
���

Distributor���
���

Distributor

���
���

Distributor���
���

Distributor
���
���

Gain
���
���
���

Gain���
���
���

Gain���
���
���

Gain���
���
���

Gain���
���
���

Gain���
���
���

Gain
���
���

Gain
���
���
���

Commutator

���
���

Commutator

���
���

Commutator
���
���

Commutator

���
���

Commutator

���
���

Commutator

���
���

blockSize: 1

blockSize: 1

blockSize: 1 blockSize: 1

blockSize: 2

blockSize: 4

gain: 1

6-14 HOF Domain

U. C. Berkeley Department of EECS

width 6 so that subsets of the signals can be displayed together. TheBusSplit star rewires
the graph at preinitialization time and then self-destructs. Thus, it introduces zero run-time
overhead.

A more interesting bus manipulation star is theNop star, so called because it really
performs no function at all. It can have any number of inputs, but the number of outputs must
be the same as the number of inputs. All it does is connect its inputs to its outputs (at preini-
tialization time) and the self-destruct. It has many icons, four of which are shown below:

The icon on the left has three individual input ports, and simply combines them into an output
multiporthole. This multiporthole would normally be connected to a bus, which must be of
width three. Thus, this icon provides a way to create a bus from individual connections. The
next icon is similar, except that it has five input lines. The next two icons do the reverse. They
are used to break out a bus into its individual components.

Examples of the uses ofNop stars are shown in figure 6-14. Three signals are individ-
ually generated at the left by three different source stars. These signals are then combined into
a bus of width three using aNop star. The bus is then broken out into three individual lines,
which are fed to threeGain stars. The most interesting use of theNop star, however, is the one
on the right. TheXMgraph star shown there has a multiporthole input. TheNop star is simply
deposited on top of the multiporthole to provide it with three individual inputs. Why do this?
Because when connecting multiple signals to a multiporthole input, as done for example in
figure 6-3, it is difficult to control which input line goes to which specific porthole in the mul-
tiporthole set. Putting theNop star on the porthole gives us this control with no additional run-
time cost.

Recall that many stars in Ptolemy that have multiportholes have multiple icons, each

FIGURE 6-13: A BusSplit star is used to divide a set of signals into two subsets for separate display.

TkBarGraph
�
�
�

�
�
�

�
�

�
�
�
�
��
�
�66

66
66

6
6
6

66
66
6
6
6
6

666 6

bus

SrcGr

888
888
888
888
888
888
888

collect

etc.

IIDUniform

TkBarGraph

�
�
�
�
�
�

� �
�
�
�
�

�
�
�66

66
6
6
66
66
6 6
66
66
6
6

6
6

BusSplit
bus

bus
12

6

6

The Almagest 6-15

Ptolemy Last updated: 6/13/97

icon configured with a different number of individual ports. This proliferation of icons is no
longer necessary, and these icons will disappear from the palettes in future versions of
Ptolemy. This will considerably reduce clutter in the Ptolemy palettes.

6.3 An overview of the HOF stars
The Higher Order Function stars are accessed through the main palette of the domains

that support HOF. For example, the HOF stars are a sub-palette of the SDF star palette since
the SDF domain supports HOF. The top-level palette for the HOF domain is shown in figure
6-15.

6.3.1 Bus manipulation stars

The top group in the main HOF palette are the bus manipulation stars, summarized below:

BusMerge Bridge inputs to outputs and then self-destruct. This star merges
two input busses into a single bus. If the input bus widths are
M1 andM2, and the output bus width isN, then we require that
N = M1 + M2. The firstM1 outputs come from the first input
bus, while the nextM2 outputs come from the second input bus.

BusSplit Bridge inputs to outputs and then self-destruct. This star splits
an input bus into two. If the input bus width isN, and the output
bus widths areM1 andM2, then we require thatN = M1 + M2.
The firstM1 inputs go the first output bus, while the nextM2
inputs go to the second output bus.

BusInterleave Bridge inputs to outputs and then self-destruct. This star inter-
leaves two input busses onto a single bus. The two input busses
must have the same width, which must be half the width of the
output bus. The input signals are connected to the output in an
alternating fashion.

BusDeinterleave Bridge inputs to outputs and then self-destruct. This star

FIGURE 6-14: The Nop star is used to create busses from individual connections, to break busses
down into individual lines, and to break out multiportholes into individual ports.

Rect
���
���

singen

IIDUniform

bus

Gain
���
���
���

Gain���
���
���

Gain���
���
���
���

XMgraph

3

6-16 HOF Domain

U. C. Berkeley Department of EECS

deinterleaves a bus, producing two output busses of equal
width. The input bus must have even width. The even numbered
input signals are connected to the first output bus, while the odd
numbered input signals are connected to the second output bus.

Nop Bridge inputs to outputs and then self-destruct. This star is used
to split a bus into individual lines or combine individual lines
into a bus. It is also used to break out multi-inputs and multi-
outputs into individual ports. These icons are labeled “BusCre-
ate ” and “BusSplit ”, suggesting their usual function.

If you look inside the icon labeled “Nop” to the right of the above stars, you will open another
palette with more icons for theNop stars, shown in figure 6-16.

6.3.2 Map-like stars

Map (Two icons.) Map one or more instances of the named block to
the input stream(s) to produce the output stream(s). This is
implemented by replacing theMap star with one or more
instances of the named block at preinitialization time. The
replacement block(s) are connected as specified byinput_map

Map Map

etc.

distribute collect

MapGr

distribute

etc.

MapGr

Chain

BusMerge BusSplit

BusInterleaveBusDeinterleave

Nop

collect

etc.

SrcGr

IfElse

TRUE

FALSE

IfElseGr

Src

Bus create: Bus break out:

Map stars replicate a block multiple times:

Graphical versions of the Map stars:

Other higher-order functions:

Bus manipulation:

FIGURE 6-15: The top-level palette for the higher-order function stars. The icon labeled “Nop”
points to more variants of bus create and bus break ou

The Almagest 6-17

Ptolemy Last updated: 6/13/97

andoutput_map, using the existing connections to theMap star.
Their parameters are determined byparameter_map. See “Set-
ting parameter values” on page 6-6 for examples of the use of
parameter_map.

Src This is identical to theMap star, except that the replacement
block is a source block (it has no inputs).

MapGr A variant of theMap star where the replacement block is speci-
fied by graphically connecting it. There must be exactly one
block connected in the position of the replacement block. The
Nop stars are the only exception: they may be used in addition
to the one replacement block in order to control the order of
connection.

SrcGr This is identical to theMapGr star, except that the replacement
block is a source block (it has no inputs)

Chain Create one or more instances of the named block connected in a
chain. This is implemented by replacing theChain star with
instances of the named blocks at preinitialization time. The
replacement block(s) are connected as specified byinput_map,
internal_map, and output_map. Their parameters are deter-
mined byparameter_map. If pipeline is YES, then a unit delay
is put on all internal connections.

IfElse This star is just likeMap, except that it chooses one of two
named blocks to replace itself. If thecondition parameter is
TRUE, then thetrue_block is used. Otherwise, thefalse_block is
used. This can be used to parameterize the use of a given block,
or, more interestingly, for statically evaluated recursion.

IfElseGr A variant of theIfElse star where the two possible replace-

FIGURE 6-16: A secondary palette with a more complete set of icons for the Nop star. This palette is
accessed by looking inside the icon labeled “Nop” in figure 6-15.

Bus create: Bus split:

These icons can be used to split a bus into individual
lines or combine individual lines into a bus.
They can be connected directly to multiPortHoles,
in which case the bus width is set automatically.

6-18 HOF Domain

U. C. Berkeley Department of EECS

ment blocks are specified graphically rather than textually.
There must be exactly one block connected in the position of
each of the two the replacement blocks. TheNop stars are the
only exception: they may be used in addition to the two replace-
ment blocks in order to control the order of connection. As of
this writing, this star cannot be used with recursion, because
pigi will attempt to compile the sub-galaxy before it can be
deleted from the schematic byIfElseGr .

6.4 An overview of HOF demos
The HOF demos are divided by domain, and are accessed through the demo palette of

the individual domain. As of this writing, only the SDF, DDF, DE, and CGC domains have
HOF demo palettes.

6.4.1 HOF demos in the SDF domain

The top-level demo palette for the HOF/SDF demos is shown in figure 6-17. The icon
labeled “test” points to a set of demos that are not documented here and are used as part of the
regression tests in Ptolemy.

addingSinWaves
This demo generates a number of sine waves given by the parameter
number_of_sine_waves and adds them all together. The amplitude of each
sine wave is controlled by a Tk slider that is inserted into the control panel
when the system is run. The frequency in radians of each sine wave (rela-
tive to a sample rate of 2π) is instance_number multiplied byπ/32. Thus,
the first sine wave will have a period of 64 samples. The second will have a
period of 32. The third will have a period of 16, etc. The sum of these sine
waves is displayed in bar-graph form.

FIGURE 6-17: The top level palette of the HOF demos in the SDF domain.

adding
SinWaves

bus
Manipulations

cascaded
Biquads

FFT

F
F
T

fft2dfft

sawtooth

scramble square wildColors

fourier
Series

Radar Chain
Processing

fourier
Series
Mathematica phased_array

The Almagest 6-19

Ptolemy Last updated: 6/13/97

busManipulations
This demo is shown above in figure 6-14 and explained in the accompany-
ing text.

cascadedBiquads
The Chain HOF star is used to construct a cascade of two second-order
direct-form recursive filters (biquads). The frequency response of the cas-
cade is compared against the frequency response of a direct-form fourth-
order filter with the same transfer function.

fft This system implements a recursive definition of a decimation-in-time fast
Fourier transform, comparing its output against that of a direct implemen-
tation in C++. The system is configured to use 32 point FFTs to implement
a 256 point FFT. The granularity is controllable with the parameters, and
can be taken all the way down to the level of multipliers and adders. This
system is discussed in detail in [Lee94].

fft2d This system generates the same square as in thesquare demo, and then
computes its two-dimensional FFT using the method given in figure 6-10.

fourierSeries This system generates a number of sinusoids as given by the
number_of_terms parameter. These are then weighted by the appropriate
Fourier series coefficients so that the sum of the sinusoids gives the finite
Fourier series approximation for a square wave with period given by the
period parameter.

fourierSeriesMma
This system is similar to thefourierSeries system above, but uses
Mathematica to calculate parameter values. Mathematica must be licensed
on the local workstation for this demo to run.

phased_array This system models a planar array of sensors with beamforming and steer-
ing, such as might be used with a microphone array or a radar system. The
sensors can be positioned arbitrarily in a plane. With the default parame-
ters, 16 sensors are uniformly spaced along the vertical axis, half a wave-
length apart, except for one, the fourth, which is offset along the horizontal
axis by one tenth of a wavelength. The gain of the array as a function of
direction is plotted in both polar and rectangular form (the latter in dB). A
Hamming window is applied to the sensor data, as is a steering vector
which directs the beam downwards. Zoom into the center of the polar plot
to see the effect of the offset sensor. Try changing theparameter_map of
the left-mostMapGr higher-order function to realign the offset sensor, and
observe the effect on the gain pattern.

RadarChainProcessing
This system simulates radar without beamforming. In this simulation, we
simulate the effect of an electromagnetic signal traveling from a transmitter
to targets and going back to receivers.The delay of the returned signal is
used to provide information on the range of the target. The frequency shift,
or Doppler effect, is used to provide information on the speed of the target.

6-20 HOF Domain

U. C. Berkeley Department of EECS

Thus, with these parameters, we estimate the target’s properties as in a nar-
row band radar.
The system has been converted from a data parallel form that uses a five-
dimensional data array to a functional parallel form that uses higher-order
functions to produce streams of streams. The five dimensions are range bin,
doppler filters, number of sensors, number of targets and number of pulses.
For more information, seehttp://ptolemy.eecs.berkeley.edu/
papers/Radarsimu.ps.Z .

sawtooth This demo is shown above in figure 6-6 and explained in the accompanying
text.

scramble This system demonstrates thebit_reverse galaxy shown above in figure 6-
11 and explained in the accompanying text.

square This system demonstrates theBusMerge HOF star. It generates an image
consisting of a light square on a dark background. The image is first repre-
sented using a bus, where each connection in the bus represents one row.
TheCommutator star then rasterizes the image.

wildColors This demo is shown above in figure 6-13 and explained in the accompany-
ing text.

6.4.2 HOF demos in the DE domain

At this time, there are only two simple demos in the DE domain.

poisson This system generates any number of Poisson processes (default 10) and
displays them together. To distinguish them, each process produces events
with a distinct value.

exponential Combine a number of Poisson processes and show that the interarrival
times are exponentially distributed by plotting a histogram. Notice that the
histogram bin centered at zero is actually only half as a wide as the others
(since the interarrival time cannot be negative), so the histogram displays a
value for the zero bin that is half as high as what would be expected.

6.4.3 HOF demos in the CGC domain

The top-level demo palette for the HOF demos in the C Code generation domain
(CGC) is shown in figure 6-18.

busses Create a set of ramps of different slopes and display them in both a bar

busses wildColorsCGCscrambleCGC soundHOF

FIGURE 6-18: The top level palette of the HOF demos in the CGC domain.

The Almagest 6-21

Ptolemy Last updated: 6/13/97

chart and using pxgraph.

scrambledCGC This system demonstrates recursion in code generation by taking a ramp in
and reordering samples in bit-reversed order.

soundHOF This system produces a sound made by adding a fundamental and its har-
monics in amounts controlled by sliders. This demo will work only on Sun
workstations.

wildColorsCGC This system is a CGC version of the SDF demowildColors . It creates a
number of random sequences and plots them in a pair of bar graphs.

6-22 HOF Domain

U. C. Berkeley Department of EECS

Chapter 7. DDF Domain

Authors: Soonhoi Ha
Edward A. Lee
Thomas M. Parks

Other Contributors: Joseph T. Buck

7.1 Introduction
The dynamic dataflow (DDF) domain in Ptolemy is a superset of the synchronous

dataflow (SDF) and Boolean dataflow (BDF) domains. In the SDF domain, a star consumes
and produces a fixed number of particles per invocation (or “firing”). This static information
(the number of particles produced or consumed for each star) makes possible compile-time
scheduling. In the BDF domain, some actors with data-dependent production or consumption
are allowed. The BDF schedulers attempt to construct a compile-time schedule; however, they
may fail to do so and fall back on a DDF scheduler. In the DDF domain, the schedulers make
no attempt to construct a compile-time schedule. For this reason, there are few constraints on
the production and consumption behavior of stars in this domain.

In DDF, a run-time scheduler detects which stars are runnable and fires them one by
one until no star is runnable (the system is deadlocked), or until a specified stopping condition
has been reached. A star is runnable if it has enough data on its inputs to satisfy its require-
ments. Thus, the only constraint on DDF stars is that they must specify on each firing how
much data they require on each input to be fired again later.

In practice, stars in the DDF domain are written in a slightly simpler way. They are
either SDF stars, in which case the number of particles required at each input is a constant, or
they are dynamic, in which case they always alert the scheduler before finishing a firing that to
be refired they expect some specific number of particles on one particular input. The input that
a star is waiting for data on is called thewaitPort.

Since the DDF domain is a superset of the SDF domain, all SDF stars can be used in
the DDF domain. Similarly for BDF stars. Besides the SDF stars, the DDF domain has some
DDF-specific stars that will be described in this chapter. The DDF-specific stars overcome the
main modeling limitation of the SDF domain in that they can model dynamic constructs such
asconditionals, data-dependent iteration, andrecursion. All of these except recursion are also
supported by the BDF domain. It is even possible, in principle, to dynamically modify a DDF
graph as it executes (the implementation of recursion does exactly this). The lower run-time
efficiency of dynamic scheduling is the cost that we have to pay for the enhanced modeling
power.

Run-time scheduling is expensive. In figure 7-1 we have plotted the execution time of
a simple example (setup and run, not including the pigi “compile” or the wrapup). The exam-
ple contains 17 stars, all simple, all homogeneous synchronous dataflow (producing or con-
suming a single sample at each port). The tests were run on a Sparc 10 using theptrim

7-2 DDF Domain

U. C. Berkeley Department of EECS

executable (on August 26, 1995). The default schedulers in the SDF and DDF domains were
used. Note that both schedulers took approximately 13ms at startup, and then exhibited a close
to linear increase in execution time. For the SDF scheduler, the slope is approximately 650µs
per iteration, while for the DDF scheduler, it is approximately 1,370µs per iteration. With 17
stars, this comes to about 38µs per firing for SDF and 81µs per firing for DDF. For multirate
systems, both of these schedulers will perform poorly compared to the loop scheduler in SDF.
Note that for this simple system, DDF is more than twice as expensive as SDF. For systems
that require DDF, Ptolemy allows us to regain much of this efficiency by grouping SDF stars
in a wormhole that contains an SDF domain. For critical systems that are executed for many
iterations, this can provide for considerably faster execution.

There are some subtleties, however, in DDF scheduling. Due to these subtleties, there
have been three DDF schedulers implemented, all accessible by setting appropriate target
parameters. In the next section, we explain these schedulers.

7.2 The DDF Schedulers
In Ptolemy, a scheduler determines the order of execution of blocks. This would seem

to be a simple task in the DDF domain, since there is nothing to do at setup time, and at run
time, the scheduler only needs to determine which blocks are runnable and then fire those
blocks. Experience dictates, however, that this simple-minded policy is not adequate. In par-
ticular, it may use more memory than is required (it may even require an unbounded amount
of memory when a bounded amount of memory would suffice). It may also be difficult for a
user to specify for how long an execution should proceed.

Run Times vs. Number of Iterations, Butterfly Demo

sdf

ddf

sec x 10-3

N

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0.00 20.00 40.00 60.00 80.00 100.00

•• •
• •

•
•

•
• • •

•

••
•

•

•
•

•

•
•

•

•
•

FIGURE 7-1: Time (in milliseconds) vs. number of iterations for the default SDF and default DDF
schedulers for a 17 star, single-sample-rate example.

The Almagest 7-3

Ptolemy Last updated: 6/11/97

In the SDF domain, aniteration is well-defined. It is the minimum number of firings
that brings the buffers back to their original state. In SDF, this can be found by a compile-time
scheduler by solving the balance equations. In both BDF and DDF, it turns out that it isunde-
cidable whether such a sequence of firings exists. This means that no algorithm can answer
the question for all graphs of a given size in finite time. This explains, in part, why the BDF
domain may fail to construct a compile-time schedule and fall back on the DDF schedulers.

We have three simple and obvious criteria that a DDF scheduler should satisfy:

a. The scheduler should be able to execute a graph forever if it is possible to execute
a graph forever. In particular, it should not stop prematurely if there are runnable
stars.

b. The scheduler should be able to execute a graph forever in bounded memory if it is
possible to execute the graph forever in bounded memory.

c. The scheduler should execute the graph in a sequence of well-defined and determi-
nate iterations so that the user can control the length of an execution by specifying
the number of iterations to execute.

Somewhat surprisingly, it turns out to be extremely difficult to satisfy all three criteria at once.
The first few versions of the DDF scheduler (up to and including release 0.5.2) did not satisfy
(b) or (c). The older scheduler is still available (set theuseFastScheduler target parameter to
YES), but its use is not recommended. Its behavior is somewhat unpredictable and sometimes
counterintuitive. For example, told to run a graph for one iteration, it may in fact run it forever.
Nonetheless, it is still available because it is significantly faster than the newer schedulers. We
have not found a way (yet) to combine its efficient and clever algorithm with the criteria
above.

The reason that these criteria are hard to satisfy is fundamental. We have already
pointed out that it is undecidable whether a sequence of firings exists that will return the graph
to its original state. This fact can be used to show that it is undecidable whether a graph can be
executed in bounded memory. Thus, no finite analysis can always guarantee (b). The trick is
that the DDF scheduler in fact has infinite time to run an infinite execution, so, remarkably, it
is still possible to guarantee condition (b). The new DDF schedulers do this.

Regarding condition (a), it is also undecidable whether a graph can be executed for-
ever. This question is equivalent to thehalting problem, and the DDF model of computation is
sufficiently rich that the halting problem cannot always be solved in finite time. Again, we are
fortunate that the scheduler has infinite time to carry out an infinite execution. This is really
what we mean by dynamic scheduling!

Condition (c) is more subtle and centers around the desire fordeterminate execution.
What we mean by this, intuitively, is that a user should be able to tell immediately what stars
will fire in one iteration, knowing the state of the graph. In other words, which stars fire should
not depend on arbitrary decisions made by the scheduler, like the order in which it examines
the stars.

To illustrate that this is a major issue, suppose we naively define an iteration to consist
of “firing all enabled stars at most once.” Consider the simple example in figure 7-2. Star A is
enabled, so we can fire it. Suppose this makes star B enabled. Should it be fired in the same

7-4 DDF Domain

U. C. Berkeley Department of EECS

iteration? Will the order in which we fire enabled stars or determine whether stars are enabled
impact the outcome?

We have implemented two policies in DDF. These are explained below.

7.2.1 The default scheduler

The default scheduler, realized in the classDDFSimpleSched , first scans all stars and
determines which are enabled. In a second pass, it then fires the enabled stars. Thus, the order
in which the stars fire has no impact on which ones fire in a given iteration.

Unfortunately, as stated, this simple policy still does not work. Suppose that star A in
figure 7-2 produces two particles each time it fires, and actor B consumes 1. Then our policy
will be to fire actor A in the first iteration and both A and B in all subsequent iterations. This
violates criterion (b), because it will not execute in bounded memory. More importantly, it is
counterintuitive. Thus, theDDFSimpleSched class implements a more elaborate algorithm.

One iteration, by default, consists of firing all enabled and non-deferrable stars once. If
no stars fire, then one deferrable star is carefully chosen to be fired. Adeferrable star is one
with any output arc (except a self-loop) that has enough data to satisfy the destination actor. In
other words providing more data on that output arc will not help the downstream actor become
enabled; it either already has enough data, or it is waiting for data on another arc. If a deferra-
ble star is fired, it will be the one that has the smallest maximum output buffer sizes. The algo-
rithm is formally given in figure 7-3.

This default iteration is defined to fire actors at most once. Sometimes, a user needs
several suchbasic iterations to be treated as a single iteration. For example, a user may wish
for a user iteration to include one firing of anXMgraph star, so that each iteration results in

FIGURE 7-2: A simple example used to illustrate the notion of an iteration.

A B

At the start of the iteration compute {
E = enabled actors
D = deferrable actors

}

One default iteration consists of {
if (E-D != 0) fire stars in (E-D)
else if (D != 0) fire the minimax star in D
else deadlocked.

}
The minimax star is the one with the smallest
maximum number of tokens on its output paths.

FIGURE 7-3: The algorithm implementing one basic iteration in the DDFSimpleSched class.

The Almagest 7-5

Ptolemy Last updated: 6/11/97

one point plotted. The basic iteration may not include one such firing. Another more critical
example is a wormhole that contains a DDF system but will be embedded in an SDF system.
In this case, it is necessary to ensure that one user iteration consists of enough firings to pro-
duce the expected number of output particles.

This larger notion of an iteration can be specified using the targetpragma mechanism
to identify particular stars that must fire some specific number of times (greater than or equal
to one) in each user iteration. To use this, make sure the domain is DDF and the target isDDF-
default . Then in pigi, place the mouse over the icon of the star in question, and issue the
edit-pragmas command (“a”). One pragma (the one understood by this target) will appear; it
is calledfiringsPerIteration. Set it to the desired value. This will then define what makes up an
iteration.

7.2.2 The clustering scheduler

If you set the target parameterrestructure to YES, you will get a scheduler that clus-
ters SDF actors when possible and invokes the SDF scheduler on them. The scheduler is
implemented in the classDDFClustSched . WARNING : As of this writing, this scheduler
will not work with wormholes, and will issue a warning. Nonetheless, it is an interesting
scheduler for two reasons, the first of which is its clustering behavior. The second is that it
uses a different definition of a basic iteration. In this definition, a basic iteration (loosely) con-
sists of as many firings as possible subject to the constraint that no actor fires more than once
and that deferrable actors are avoided if possible. The complete algorithm is given in figure 7-
4. Use of this scheduler is not advised at this time, however. For one thing, the implementation
of clustering adds enough overhead that this scheduler is invariably slower than the default
scheduler.

The following sets are updated every time a star fires:
E = enabled actors
D = deferrable actors
S = source actors
F = actors that have fired once already in this iteration

One default iteration consists of:
while (E-D-F != 0) {

fire actors in (E-D-F)
}
if (F == 0) {

// All enabled actors are deferrable.
// Try the non-sources first.
if (E-S != 0) {

fire (E-S);
} else {

fire (S);
}

}
if (F == 0) deadlock

FIGURE 7-4: A basic iteration of the DDFClustSched scheduler.

7-6 DDF Domain

U. C. Berkeley Department of EECS

7.2.3 The fast scheduler

In case the new definition of an iteration is inconvenient for legacy systems, we pre-
serve an older and faster scheduler that is not guaranteed to satisfy criteria (b) and (c) above.
The basic operation of the fast scheduler is to repeatedly scan the list of stars in the domain
and execute the runnable stars until no more stars are runnable, with certain constraints
imposed on the execution of sources. For the purpose of determining whether a star is runna-
ble, the stars are divided into three groups. The first group of the stars have input ports that
consume a fixed number of particles. All SDF stars, except those with no input ports, are
included in this group. For this group, the scheduler simply checks all inputs to determine
whether the star is runnable.

The second group consists of the DDF-specific stars where the number of particles
required on the input ports is unspecified. An example is theEndCase star (a multi-input ver-
sion of the BDFSelect star). TheEndCase star has one control input and one multiport
input for data. The control input value specifies which data input port requires a particle. Stars
in this group must specify at run time how many input particles they require on each input
port. Stars specify a port with a call to a method calledwaitPort and the number of particles
needed with a call towaitNum. To determine whether a star is runnable, the scheduler checks
whether a specified input port has the specified number of particles.

For example, in theEndCase star, thewaitPort points to thecontrol input port at the
beginning. If thecontrol input has enough data (one particle), the star is fired. When it is fired,
it checks the value of the particle in thecontrol port, and changes thewaitPort pointer to the
input port on which it needs the next particle. The star will be fired again when it has enough
data on the input port pointed bywaitPort. This time, it collects the input particle and sends it
to the output port. See Figure 7-5.

The third group of stars comprises sources. Sources are always runnable. Source stars
introduce a significant complication into the DDF domain. In particular, since they are always
runnable, it is difficult to ensure that they are not invoked too often. This scheduler has a rea-
sonable but not foolproof policy for dealing with this. Recall that the DDF domain is a super-
set of the SDF domain. The definition of one iteration for this scheduler tries to obtain the
same results as the SDF scheduler when only SDF stars are used. In the SDF domain, the
number of firings of each source star, relative to other stars, is determined by solving the bal-
ance equations. However, in the DDF domain, the balance equations do not apply in the same

EndCase.input=2 EndCase.input=2 EndCase.input=2

W

W

EndCase.input=2 EndCase.input=2

0
(a) (b) (c) (d) (e)

FIGURE 7-5: (a) The EndCase star waits on the control port. (b) The star fires when data
arrives on the control port (the value of the data is 0). (c) Now the star waits
for input to arrive on input port 0. (d) The star fires again when data arrives on
input port 0. (e) The data that arrived on input port 0 is transmitted by the out-
put port of the EndCase star.

The Almagest 7-7

Ptolemy Last updated: 6/11/97

form1. The technique we use instead islazy-evaluation.

Lazy evaluation

At the beginning of each iteration of a DDF application, we fire all source stars exactly
once, and temporarily declare them “not runnable.” We also fire all stars that have enoughini-
tial tokens on their inputs. After that, the scheduler starts scanning the list of stars in the
domain. If a star has some particles on some input arcs, but is not runnable yet, then the star
initiates the (lazy) evaluation of those stars that are connected to the input ports requiring
more data. This evaluation is “lazy” because it occurs only if the data it produces are actually
needed. The lazy-evaluation technique ensures that the relative number of firings of source
stars is the same under the DDF scheduler as it would be under the SDF scheduler.

We can now define what is meant byone iterationin DDF. An iteration consists of one
firing of each source star, followed by as many lazy-evaluation passes as possible, until the
system deadlocks. One way to view this (loosely) is that enough stars are fired to consume all
of the data produced in the first pass, where the source stars were each fired once. This may
involve repeatedly firing some of the source stars. However, a lazy-evaluation is only initiated
if a star in need of inputs already has at least one input with enough tokens to fire. Because of
this, in some circumstances, the firings that make up an iteration may not be exactly what is
expected. In particular, when there is more than one sink star in the system, and the sink stars
fire at different rates, the ones firing at higher rates may not be fired as many times as
expected. It is also possible for one iteration to never terminate.

When a DDF wormhole is invoked, it will execute one iteration of the DDF system
contained in it. This is a serious problem in many applications, since the user may need more
control over what constitutes one firing of the wormhole.

7.3 Inconsistency in DDF
So far, we have assumed an error-free program. In the SDF domain, compile-time

analysis detects errors due to inconsistent rates of production and consumption of tokens
because the balance equations cannot be solved. In DDF, however, such inconsistencies are
harder to detect. Our strategy is to detect them at run time, an approach that has two disadvan-
tages. First, it is costly, as will be explained shortly. Second, it is not easy to isolate the sources
of errors.

We call a dataflow graphconsistent if on each arc, in the long run, the same number of
particles are consumed as produced [Lee91a]. One source of inconsistency is the sample-rate
mismatch that is common to the SDF domain. The DDF domain has more subtle error
sources, however, due to the dynamic behavior of DDF stars. In an inconsistent graph, an arc
may queue an unbounded number of tokens in the long run. To prevent this, we examine the
number of tokens on each arc to detect whether the number is greater than a certain limit (the
default is 1024). If we find an arc with too many tokens, we consider it an error and halt the
execution. We can modify the limit by setting the target parameter namedmaxBufferSize. The
two new schedulers will interpret a negative number here to be infinite capacity. An inconsis-
tent system will run until your computer runs out of memory.

1. Note that the BDF domain adapts the balance equations to the dynamic dataflow case.

7-8 DDF Domain

U. C. Berkeley Department of EECS

The value of themaxBufferSize parameter will be the maximum allowed buffer size.
Since the source of inconsistency is not unique, isolating the source of the error is usually not
possible. We can just point out which arc has a large number of tokens. Of course, if the limit
is set too high, some errors will take very long to detect. Note however that there exist per-
fectly correct DDF systems (which are consistent) that nonetheless cannot execute in bounded
memory. It is for this reason that the new schedulers support infinite capacity.

7.4 The default-DDF target
The DDF domain only has one target. The parameters of the target are:

maxBufferSize (INT) Default =1024
The capacity of an arc (in particles). This is used for the run-
time detection of inconsistencies, as explained above. If any arc
exceeds this capacity, an error is flagged and the simulation
halts. A negative number is interpreted as infinite capacity
(unlessuseFastScheduler is YES). The value of this parameter
does not specify how much memory is allocated for the buffers,
since the memory is allocated dynamically.

schedulePeriod (FLOAT) Default =0.0
This defines the amount of time taken by one iteration (defined
above) of the DDF schedule. This is used only for interface with
timed domains, such as DE. Note that if you want the count
given in the debug panel of the run control panel to indicate the
number of iterations, you should set this parameter to one.

runUntilDeadlock (INT) Default =NO
UnlessuseFastScheduler is set, this modifies the definition of a
single iteration to invoke all stars as many times as possible,
until the system halts. It is risky to use this because the system
may not halt. But in wormholes it is sometimes useful.

restructure (INT) Default =NO
This specifies that the experimental schedulerDDFClustSched
should be used. This scheduler attempts to form SDF clusters
for more efficient execution. Its use is not advised at this time,
however, since it does not work properly with wormholes and is
slower than the default scheduler.

useFastScheduler (INT) Default =NO
This specifies that the older and faster DDF scheduler (from
version 0.5.2) should be used. It is difficult, however, to control
the length of a run with this scheduler.

numOverlapped (INT) Default =1
For the fast scheduler only, this gives the number of iteration
cycles that can be overlapped for execution. When a DDF sys-
tem starts up, it normally begins by firing each source star once,
as explained above. It then goes into a lazy evaluation mode.

The Almagest 7-9

Ptolemy Last updated: 6/11/97

Setting this parameter to an integerN larger than one allows the
scheduler to begin withN firings of the source stars instead of
just one. This can make execution more efficient, because stars
downstream from the sources will be able to fire multiple times
in each pass through the graph. The default value of this param-
eter is 1.

logFile (STRING) Default =
The default is the empty string. If non-empty, this gives the
name of a file to be used for recording scheduler information.

7.5 An overview of DDF stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. For the DDF domain, the star
library is small enough that it is contained entirely in one palette, shown in figure 7-6.

Case (Three icons.) Route an input particle to one of the outputs
depending on the control particle. The control particle should be
between zero andN − 1, inclusive, whereN is the number of
outputs.

EndCase (Three icons.) Depending on the control particle, consume a
particle from one of the data inputs and send it to the output.
The control particle should have value between zero andN − 1,
inclusive, whereN is the number of inputs.

DownCounter Given an integer input with valueN, produce a sequence of out-
put integers with values (N − 1), (N − 2), ... 1, 0.

LastOfN Given a control input with integer valueN, consumeN particles
from the data input and produce only the last of these at the out-
put.

FIGURE 7-6: The palette of stars for the DDF domain.

Case

DownCounter

EndCase

Last

LastOfN Repeater

SelfSelf Self Self Self

Case EndCaseCase EndCase

HOF
hof.pal

Token routing

Higher
Order

Functions

Recursion

Upsample/Downsample

7-10 DDF Domain

U. C. Berkeley Department of EECS

Repeater Given a control input with integer valueN, and a single input
data particle, produceN copies of the data particle on the out-
put.

The Higher Order Functions icon leads to the HOF palette that contains HOF stars that
can be used within DDF.

Self (Five icons.) This is a first exploration of recursion and higher-
order functions in dataflow. It is still experimental, so do not
expect it to be either efficient or bug-free.

The star “represents” the galaxy given by the parameterrecur-
Gal, which must be above it in the hierarchy. That is, when the
Self star fires, it actually invokes the galaxy that it represents.
Since that galaxy is above theSelf star in the hierarchy, it con-
tains theSelf star somewhere within it. Thus, this star imple-
ments recursion. Since theSelf star takes an argument
(recurGal) that specifies the function to invoke, it is itself a
higher-order function.

The instance of therecurGal galaxy is not created until it is
actually needed, so the number of instances (the depth of the
recursion) does not need to be knowna priori. If the parameter
reinitialize is NO or FALSE, then the instance of the galaxy is
created the first time it fires and reused on subsequent firings. If
reinitialize is YES or TRUE, then the galaxy is created on every
firing and destroyed after the firing. Inputs are sent to the
instance of the galaxy and outputs are retrieved from it. The
inputs of the named galaxy must be named “input#?” and the
outputs must be named “output#?”, where “?” is replaced with
an integer starting with zero. This allows the inputs and outputs
of this star to be matched unambiguously with the inputs and
outputs of the referenced galaxy.

7.6 An overview of DDF demos
The demos with icons shown in figure 7-7 illustrate dynamic dataflow principles.

eratosthenes The sieve of Eratosthenes is a recursive algorithm for comput-
ing prime numbers. This demo illustrates the implementation of
recursion in the DDF domain. This is a concept demonstration
only.

errorDemo An example of an inconsistent DDF system. An inconsistent
DDF program is one where the long term average number of
particles produced on an arc is not the same as the average long
term number of particles consumed. This error is detected by
bounding the buffer sizes and detecting overflow.

ifThenElse This demo illustrates the use of an SDF wormhole to implement

The Almagest 7-11

Ptolemy Last updated: 6/11/97

a dynamically scheduled construct using the DDF domain. An
if-then-else is such a dynamically scheduled construct. The top
level schematic represents an SDF system, while the inside
schematic represents a DDF system (implementing an if-then-
else).

fibonnacci Generate the Fibonnacci sequence using a rather inefficient
recursive algorithm that is nonetheless a good example of how
to realize recursion.

loop This demo illustrates data-dependent iteration. Input integers
are repeatedly multiplied by 0.5 until the product is less than
0.5. Turn on animation to see the iteration.

picture Construct a two-dimensional random walk using a hierarchy of
nested wormholes. The outermost SDF domain has a wormhole
called “drawline” which internally uses the DDF domain. That
wormhole, in turn, has a wormhole called “display” which
internally uses the SDF domain.

repeat This simple demo shows the effect of running a DDF scheduler
on an SDF system. ThefiringsPerIteration pragma is used to
control the meaning of an iteration.

repeater This is a simple illustration of theRepeater star, used in an
SDF wormhole (DDF inside SDF).

router This is a simple illustration of theEndCase star.

SDFinDDF This rather trivial demo illustrates the use of a DDF wormhole
whose inside domain is SDF. The top-level system (in the DDF
domain) has an if-then-else overall structure, implemented of a
matching pair ofCase andEndCase stars. The inside system

FIGURE 7-7: The DDF demos.

router

ifThenElse

repeater SDFinDDF

fibonnacci

picture

timing

errorDemo

Primes

eratosthenes

test

loop

threshtest

repeat

7-12 DDF Domain

U. C. Berkeley Department of EECS

(in the SDF domain) multiplies the data value by a ramp.

threshtest This demo shows that Karp & Miller style thresholds are sup-
ported in DDF. TheThresh star is a dummy that implements a
settable threshold.

timing This demo illustrates the use of the DDF domain to implement
asynchronous signal processing systems. In this case, the sys-
tem performs baud-rate timing recovery using an approximate
minimum mean-square-error (MMSE) technique.

7.7 Mixing DDF with other domains
The mixture of the DDF domain with other domains requires a conversion between

different computational models. In particular, some domains associate atime stamp with each
particle, and other domains do not. Thus, a common function at theEventHorizon is the
addition of time stamps, the stripping off of time stamps, interpolation between time stamps,
or removal of redundant repetitions of identical particles. In this section, DDF-specific fea-
tures on the domain interface will be discussed.

A galaxy or universe implemented using DDF may have a wormhole which contains a
subsystem implemented in another domain. The DDF wormhole looks exactly like a DDF star
from the outside. However, there are certain technical restrictions. In particular, it cannot have
dynamic input portholes, meaning the number of particles consumed by the wormhole inputs
is a compile-time constant. The wormhole is therefore fired when all input ports have new par-
ticles. When it is fired, it consumes the input data, invokes the scheduler of the inner domain,
and retrieves the output particles. Thus, in all respects except one, the DDF wormhole behaves
like an SDF wormhole (see “Wormholes” on page 12-4 for more information). The one excep-
tion is that the DDF wormhole need not consistently produce outputs.

When a DDF system is embedded within another domain, you may need to explicitly
control what constitutes a firing of the subsystem. Specifically, by setting thefiringsPerItera-
tion pragma of a star in the DDF subsystem, you control how many firings of that star are
required to complete an iteration. Zero means “don’t care.”

Note that some work has been done with a CGDDF target which recognizes and
implements certain commonly used programming constructs [Sha92]. See “CG Domain” on
page 13-1 for more information.

Chapter 8. BDF Domain

Authors: Joseph T. Buck

Other Contributors: Edward A. Lee

8.1 Introduction
Boolean-controlled dataflow (BDF) is a domain that can be thought of as a generaliza-

tion of synchronous dataflow (SDF). It supports dynamic flow of control but still permits
much of the scheduling work to be performed at compile time. The dynamic dataflow (DDF)
domain, by contrast, makes all scheduling decisions at run time. Thus, while BDF is a gener-
alization of SDF, DDF is still more general. Accordingly, the BDF domain permits SDF actors
to be used, and the DDF domain permits BDF actors to be used. This chapter will assume that
the reader is familiar with the SDF domain.

The BDF domain can execute any actor that falls into the class of Boolean-controlled
dataflow actors. For an actor to be SDF, the number of particles read by each input porthole, or
written by each output porthole, must be constant. Under BDF, a generalization is permitted:
the number of particles read or written by a porthole may be either a constant or a two-valued
function of a particle read on a control porthole for the same star. One of the two values of the
function must be zero. The effect of this is that a porthole might read tokens only if the corre-
sponding control particle is zero (FALSE) or nonzero (TRUE). The control porthole is always
of type integer, and it must read or write exactly one particle. Although the particles on the
control porthole are of integer type, we treat them as Booleans, using the C/C++ convention
that zero is false and nonzero is true.

We say that a porthole that conditionally transfers data based on a control token is a
conditional porthole. A conditional input porthole must be controlled by a control input. A
conditional output porthole may be controlled by either a control input or a control output.
These restrictions permit the run-time flow of control to be determined by looking only at the
values of particles on control ports. The compile-time scheduler determines exactly how the
flow of control will be altered at run time by the values of these particles. It constructs what
we call anannotated schedule, which is a compile-time schedule where each firing is anno-
tated with the run-time conditions under which the firing should occur.

The theory that describes graphs of BDF actors and their properties is called the token
flow model. Its properties are summarized in [Buc93b] and developed in much more detail in
[Buc93c].

The BDF scheduler performs the following functions. First, it performs a consistency
check analogous to the one performed by the SDF scheduler to detect certain types of errors
corresponding to mismatches in particle flow rates [Lee91a]. Assuming that no error is
detected, it then applies a clustering algorithm to the graph, attempting to map it into tradi-
tional control structures such as if-then-else and do-while. If this clustering process succeeds
in reducing the entire graph to a single cluster, the graph is then executed with the quasi-static

8-2 BDF Domain

U. C. Berkeley Department of EECS

schedule corresponding to the clusters. (It is not completely static since some actors will be
conditionally executed based on control particle values, but the result is “as static as possi-
ble.”) If the clustering does not succeed, then the resulting clusters may optionally be executed
by the same dynamic scheduler as is used in the DDF domain. Dynamic execution of clusters
is enabled or disabled by setting the “allowDynamic” parameter of the default-BDF target.

8.2 The default-BDF target
At this time, there is only one BDF target. The parameters of the target are:

logFile (STRING) Default =
The default is the empty string. The filename to which to report
various information about a run. If this parameter is empty (the
default), there will be no reporting. If the parameter is “<cerr>”
or “<cout>”, messages will go to the Unix standard error or
standard output, respectively.

allowDynamic (INT) Default =NO
If TRUE or YES, then dynamic scheduling will be used if the
compile-time analysis fails to completely cluster the graph. As
shown in [Buc93c], there will always be some valid graphs that
cannot be clustered.

requireStronglyConsistent
(INT) Default =NO
If TRUE or YES, then a graph will be rejected if it is not
“strongly consistent” [Lee91a]. This will cause some valid sys-
tems, even systems that can be successfully statically sched-
uled, to be rejected.

schedulePeriod (FLOAT) Default =10000.0
This defines the amount of time taken by one iteration of the
BDF schedule. The notion of “iteration” is defined in the SDF
chapter, in the section 5.1.3.

8.3 An overview of BDF stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. At the current time, the BDF
star library is small enough that it is contained entirely in one palette, shown in figure 8-1.

CondGate If the value on the “control” input is nonzero, the input particle
is copied to output. Otherwise, no input is consumed (except the
control particle) and no output is produced. This is effectively
one half of aSelect .

Fork (Two icons.) Copy the input particle to each output. The SDF
fork is not used here because the BDF domain requires some
extra steps to assert that each output of a fork is logically equiv-
alent if the input is a Boolean signal.

The Almagest 8-3

Ptolemy Last updated: 6/9/97

Not Output the logical inverse of the Boolean input. Again, the
equivalent SDF logic block is not adequate because extra steps
are needed to assert the logical relationship between the input
and the output.

Select If the value on the “control” porthole is nonzero,N tokens (from
the parameterN) from “trueInput” are copied to the output; oth-
erwise,N tokens from “falseInput” are copied to the output.

Switch Switch input particles to one of two outputs, depending on the
value of the control input. The parameterN gives the number of
particles read in one firing. If the particle read from the control
input isTRUE, then the values are written to “trueOutput”; oth-
erwise they are written to “falseOutput”.

The Higher Order Functions icon leads to the HOF palette that contains HOF stars that
can be used within BDF.

8.4 An overview of BDF demos
The demos with icons shown in figure 8-2 illustrate Boolean-controlled dataflow prin-

ciples. A useful way to understand these principles when running BDF demos is to display the
schedule after a run. This can be done from pigi using the display-schedule command under

FIGURE 8-1: The palette of stars for the BDF domain. All SDF stars may also be used.

Switch

T

FSelect

T

F

Not

Fork ForkCondGate

HOF
hof.pal

Higher
Order

Functions

FIGURE 8-2: The BDF demos.

loopTheLoop

bdfTiming ifThenElsedataIter

loopinsanity mandelbrot

8-4 BDF Domain

U. C. Berkeley Department of EECS

the Exec menu. It must be done before the control panel is dismissed, because dismissing the
control panel destroys the scheduler.

bdfTiming This demo is identical to the DDF timing demo, except that it
uses BDFSwitch andSelect stars instead of DDFCase and
EndCase. The static schedule has some simple if-then con-
structs to implement conditional firing.

dataIter This simple system, which does nothing interesting, is surpris-
ingly difficult to schedule statically. It requires nesting an if-
then within a do-while within a manifest iteration.

ifThenElse This simple system usesSwitch andSelect stars to construct
an if-then-else.

insanity This peculiar system applies two functions, log and cosine, but
the order of application is chosen at random. The BDF cluster-
ing algorithm fails to complete on this graph. If theallowDy-
namic parameter of the target is set toYES, then the scheduler
will construct four SDF subschedules, which must then be
invoked dynamically.

loop This system illustrates the classic dataflow mechanism for
implementing data-dependent iteration (a do-while). A
sequence of integers (a ramp) is the overall input. Each input
value gets multiplied by 0.5 inside the loop until its magnitude
is smaller than 0.5. Then that smaller result is sent to the output.

loopTheLoop This system is similar to theloop demo, except that a second
do-while loop is nested within the first.

mandelbrot This system calculates the Mandelbrot set and uses Matlab to
plot the output. Matlab must be installed on the local worksta-
tion to view the output of this demo, or Matlab must be avail-
able on a machine that is accessible via the Unix rsh command.
See “Matlab stars” on page 5-26 for more information.

Chapter 9. PN domain

Authors: Thomas M. Parks

Other Contributors: Brian Evans
Christopher Hylands

9.1 Introduction
In the process network model of computation, concurrent processes communicate

through unidirectional first-in first-out channels. This is a natural model for describing signal
processing systems where infinite streams of data samples are incrementally transformed by a
collection of processes executing in sequence or in parallel. Embedded signal processing sys-
tems are typically designed to operate indefinitely with limited resources. Thus, we want to
execute process network programs forever with bounded buffering on the communication
channels whenever possible. [Par95]

The process network (PN) domain is an experimental implementation of process net-
work model of computation. The PN domain is a superset of the synchronous dataflow (SDF),
Boolean dataflow (BDF), and dynamic dataflow (DDF) domains, as shown in Figure 1-2.
Thus, any SDF, BDF, or DDF star can be used in the PN domain. In the dataflow subdomains,
stars represent dataflow actors, which consume and produce a finite number of particles when
they are fired. In the PN domain, stars represent processes, which consume and produce (pos-
sibly infinite) streams of particles. When a dataflow actor from the SDF, BDF or DDF domain
is used in a PN system, adataflow process is created that repeatedly fires that actor. A separate
thread of execution is created for each process. Thread synchronization mechanisms ensure
that a thread attempting to read from an empty input is automatically suspended, and threads
automatically wake up when data becomes available.

The current implementation of the PN domain is based on a user-level POSIX thread
library called Pthreads [Mue93,Mue95]. By choosing the POSIX standard, we improve the
portability of the PN domain. Several workstation vendors already include an implementation
of POSIX threads in their operating systems, such as Solaris 2.5 and HP-UX 10. Having
threads built into the operating system, as opposed to a user-level library implementation,
offers the opportunity for automatic parallelization on multiprocessor workstations. That is,
the same program would run on uniprocessor workstations and multiprocessor workstations
without needing to be recompiled. When multiple processors are available, multiple threads
can execute in parallel. Even on uniprocessor workstations, multi-threaded execution offers
the advantage that communication can be overlapped with computation.

9.2 Process networks
Kahn describes a model of computation where processes are connected by communi-

cation channels to form a network [Kah74,Kah77]. Processes produce data elements ortokens
and send them along a unidirectional communication channel where they are stored in a first-
in first-out order until the destination process consumes them. Communication channels are

9-2 PN domain

U. C. Berkeley Department of EECS

theonly method processes may use to exchange information. A set of processes that commu-
nicate through a network of first-in first-out queues defines aprogram.

Kahn requires that execution of a process be suspended when it attempts to get data
from an empty input channel. A process may not, for example, examine an input to test for the
presence or absence of data. At any given point, a process is eitherenabled or it is blocked
waiting for data ononly one of its input channels: it cannot wait for data from one channelor
another. Systems that obey Kahn's model aredeterminate: the history of tokens produced on
the communication channels do not depend on the execution order [Kah74]. Therefore, we
can apply different scheduling algorithms without affecting the results produced by executing
a program.

9.2.1 Dataflow process networks

Dataflow is a model of computation that is a special case of process networks. Instead
of using the blocking read semantics of Kahn process networks, dataflow actors have firing
rules. These firing rules specify what tokens must be available at the inputs for the actor to
fire. When an actor fires, it consumes some finite number of input tokens and produces some
finite number of output tokens. For example, when applied to an infinite input stream a firing
functionf may consume just one token and produce one output token:

To produce an infinite output stream, the actor must be fired repeatedly. A process
formed from repeated firings of a dataflow actor is called adataflow process [Lee95]. The
higher-order functionmap converts an actor firing functionf into a process:

A higher-order function takes a function as an argument and returns another function.
When the function returned by is applied to the input stream the result
is a stream in which the firing functionf is applied point-wise to each element of the input
stream. Themap function can also be described recursively using the stream-building function
cons, which inserts an element at the head of a stream:

The use of map can be generalized so thatf can consume and produce multiple tokens
on multiple streams [Lee95].

Breaking a process down into smaller units of execution, such as dataflow actor fir-
ings, makes efficient implementations of process networks possible. The SDF, BDF, and DDF
domains implement dataflow process networks by scheduling the firings of dataflow actors.
The actor firings of one dataflow process are interleaved with the firings of other processes in
a sequence that guarantees the availability of tokens required for each firing. In the PN
domain, a dataflow process is created for each dataflow actor. A separate thread of execution
is created for each process, and the interleaving of threads is performed automatically. Unlike
the dataflow domains, the firing of a dataflow actor isnot an atomic operation in the PN
domain. Because the scheduler does not guarantee the availability of tokens, the firing of an
actor can be suspended if it attempts to read data from an empty input channel.

f x1 x2 x3, , …[,]() f x1()=

map f() x1 x2 x3, , …[,] f x()1 f x()2 f x()3, , …[,]=

map f() x1 x2 x3, , …[,]

map f() x1 x2 x3, , …[,] cons f x1() map f() x2 x3, …[,],()=

The Almagest 9-3

Ptolemy Last updated: 6/9/97

9.2.2 Scheduling dataflow process networks

Because Kahn process networks are determinate, the results produced by executing a
program are unaffected by the order in which operations are carried out. In particular, dead-
lock is a property of the program itself and does not depend on the details of scheduling.
Buffer sizes for the communication channels, on the other hand, do depend on the order in
which read and write operations are carried out.

For Kahn process networks, no finite-time algorithm can decide whether or not a pro-
gram will terminate or require bounded buffering. Since we are interested in programs that
will never terminate, a scheduler has infinite time to decide these questions. Parks [Par95]
developed a scheduling policy that will execute arbitrary Kahn process networks forever with
bounded buffering when possible. To enforce bounded buffering, Parks limits channel capaci-
ties, which places additional restrictions on the order of read and write operations. Parks
reduces the set of possible execution orders to those where the buffer sizes never exceed the
capacity limits. In this approach, execution of the entire program comes to a stop each time we
encounter artificial deadlock, which can severely limit parallelism. Artificial deadlock occurs
when the capacity limits are set too low, causing some processes to block when writing to a
full channel. All scheduling decisions are made dynamically during execution.

9.2.3 Iterations in the PN domain

In a complete execution of a program, the program terminates if and only if all pro-
cesses block attempting to consume data from empty communication channels. Often, it is
desirable to have a partial execution of a process network. An iteration in the PN domain is
defined such that no actor in a dataflow process will fire more than once. Some actors may not
fire, or may fire partially in an iteration if insufficient tokens are available on their inputs.

9.3 Threads
The PN domain creates a separate thread of execution for each node in the program

graph. Threads are sometimes called lightweight processes. Modern operating systems, such
as Unix, support the simultaneous execution of multiple processes. There need not be any
actual parallelism. The operating system can interleave the execution of the processes. Within
a single process, there can be multiple lightweight processes or threads, so there are two levels
of multi-threading. Threads share a single address space, that of the parent process, allowing
them to communicate through simple variables (shared memory). There is no need for more
complex, heavyweight inter-process communication mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive access
to shared data and cannot interfere with one another to corrupt shared data structures. Moni-
tors and condition variables are available to synchronize the execution of threads. A monitor is
an object that can be locked and unlocked. Only one thread may hold the lock on the monitor.
If a thread attempts to lock a monitor that is already locked by another thread, then it will be
suspended until the monitor is unlocked. At that point, it wakes up and tries again to lock the
monitor. Condition variables allow threads to send signals to each other. Condition variables
must be used in conjunction with a monitor; a thread must lock the associated monitor before
using a condition variable.

9-4 PN domain

U. C. Berkeley Department of EECS

9.4 An overview of PN stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all the installed domains. For the PN domain, the star
library is small enough that it is easily contained entirely in one palette, shown in figure 9-1

Many of these stars are re-implementations of similarly named stars in the SDF and DDF
domains. These implementations take advantage of the multi-threaded nature of execution in
the PN domain.

Commutator Takes N input streams (where N is the number of inputs) and
synchronously combines them into one output stream. It con-
sumes B particles from an input (where B is the blockSize), and
produces B particles on the output, then it continues by reading
from the next input. The first B particles on the output come
from the first input, the next B particles from the next input, etc.

Distributor Takes one input stream and splits it into N output streams,
where N is the number of outputs. It consumes B input parti-
cles, where B = blockSize, and sends them to the first output. It
consumes another B input particles and sends them to the next

FIGURE 9-1: The palette of stars for the PN domain.

EndCase

Last

LastOfN

DDF
DDF

BDF
BDF

SDF
main.pal

HOF
hof.pal

Commutator Distributor DelayInt

Merge

IncrementInt

ModuloInt

divisible

notDivisible

Sift

Subdomains

The Almagest 9-5

Ptolemy Last updated: 6/9/97

output, etc.

DelayInt An initializable delay line.

EndCase Depending on the “control” particle, consume a particle from
one of the data inputs and send it to the output. The value of the
control particle should be between zero and N-1, where N is the
number of data inputs.

LastOfN Given a control input with integer value N, consume N particles
from the data input and produce only the last of these at the out-
put.

Merge Merge two increasing sequences, eliminating duplicates.

IncrementInt Increment the input by a constant.

ModuloInt Divides the input stream into a stream of numbers divisible by
N and another stream of numbers that are not divisible by N.

9.5 An overview of PN demos
There are two subpalettes of PN domain demos, a palette of examples from papers by

Gilles Kahn and David B. MacQueen, and a palette of examples from the Ph.D. thesis of Tho-
mas M. Parks. The top-level palette for demos in the Process Network domain is shown in fig-
ure 9-2. The subpalettes are described below.

9.5.1 Examples from papers by Gilles Kahn and David B. MacQueen

These demos are examples from papers by Gilles Kahn and David B. MacQueen. The

FIGURE 9-2: The top-level palette for PN demos.

Kahn.pal

Parks.pal

Process Network Domain
This domain runs under SunOS4 and

Solaris2.x only. Eventually, it should run
under other architectures, such as
HPUX-10.x, Linux and FreeBSD.

Examples from papers by
Gilles Kahn and David B. MacQueen.

Examples from the PhD thesis of
Thomas M. Parks.

9-6 PN domain

U. C. Berkeley Department of EECS

palette is shown in figure 9-3.

Kahn74fig2 Produce a stream of 0’s and 1’s. This demo is from figure 2 in
[Kah74].

Kahn77fig3-opt Sieve of Eratosthenes with non-recursive sift process. This
example shows how process networks can change dynamically
during execution. The sift process inserts new filter processes to
eliminate multiples of newly discovered primes. This demo is
from figure 3 in [Kah77].

eratosthenes Compare this DDF domain demo with the Kahn77fig3-opt
demo above.

Kahn77fig4 Produce a sequence of integers of the form 2a3b5c. An
unbounded number of tokens accumulate in the communication
channels as execution progresses. This demo is from figure 4 in
[Kah77].

Kahn77fig4-opt Produce a sequence of integers of the form 2a3b5c with optimi-
zations to avoid generating duplicate values. An unbounded
number of tokens accumulate in the communication channels as
execution progresses. This demo is from figure 4 in [Kah77].

FIGURE 9-3: PN domain demos of examples from papers by Gilles Kahn and David B. MacQueen

Kahn74fig2

0101...

Primes

eratosthenesKahn77fig3-opt

Primes

Kahn77fig4

 a b c
2 3 5

Kahn77fig4-opt

 a b c
2 3 5

Compare the PN
and DDF versions.

DDFPN

Examples from [Kahn74] and [Kahn77].

Gilles Kahn, "The Semantics of a Simple Language
for Parallel Programming", Information Processing,
North-Holland Publishing Company, pp 471-475, 1974.

[Kahn74]

Gilles Kahn and David B. MacQueen, "Coroutines
and Networks of Parallel Processes," Information
Processing, North-Holland Publishing Company,
pp 993-998, 1977.

[Kahn77]

The Almagest 9-7

Ptolemy Last updated: 6/9/97

9.5.2 Examples from the Ph.D. thesis of Thomas M. Parks

These demos are examples from the Ph.D. thesis of Thomas M. Parks. The palette is
show in figure 9-4.

Parks95fig3.5 Merge two streams of monotonically increasing integers (multi-
ples of 2 and 3) to produce a stream of monotonically increas-
ing integers with no duplicates. Simple data-driven execution of
this example would result in unbounded accumulation of
tokens, while demand-driven execution requires that only a
small number of tokens be stored on the communication chan-
nels. This demo is from figure 3.5 in [Par95].

Parks95fig3.11 Separate a stream of monotonically increasing integers into
those values that are and are not evenly divisible by 3. Simple
demand-driven execution of this example would result in
unbounded accumulation of tokens, while data-driven execution
requires that only a small number of tokens be stored on the
communication channels. This demo is from figure 3.11 in
[Par95].

Parks95fig4.1 Separate an increasing sequence of integers into those values
that are and are not evenly divisible by 5, then merge these two
streams to reproduce a stream of increasing integers. Simple
data-driven or demand-driven execution of this example would
result in unbounded accumulation of tokens. This demo is from
figure 4.1 in [Par95].

Parks95fig3.5 Parks95fig3.11 Parks95fig4.1

Examples from [Parks95].

Thomas M. Parks, Bounded Scheduling of Process Networks,
Technichal Report UCB/ERL-95-105, PhD Dissertation,
EECS Department, University of California, Berkeley,
December 1995.

Parks95]

FIGURE 9-4: PN domain demos of examples from the Ph.D. thesis of Thomas M. Parks.

9-8 PN domain

U. C. Berkeley Department of EECS

Chapter 10. SR domain

Authors: Stephen Edwards

Other Contributors: Christopher Hylands
Mary Stewart

10.1 Introduction
The Synchronous Reactive domain is a statically-scheduled simulation domain in

Ptolemy designed for concurrent, control-dominated systems. To allow precise control over
timing, it adopts the synchronous model of time, which is logically equivalent to assuming
that computation is instantaneous.

10.2 SR concepts
Time in the SR domain is a sequence of instants. In each instant, the system observes

its inputs and computes its reaction to them. Each instant is assumed to take no time at all. All
computation is treated as being instantaneous.

Communication in the SR domain takes place through unbuffered single driver, multi-
ple receiver channels. In each instant, each channel may have a single event with a value, have
no event, or be undefined, corresponding to the case where the system could not decide
whether the channel had an event or not. Communication is instantaneous, meaning that if an
event is emitted on a channel in a certain instant, every star connected to the channel will see
the event in the same instant.

10.3 SR compared to other domains
SR is similar to existing Ptolemy domains, but differs from them in important ways.

Like Synchronous Dataflow (SDF), it is statically scheduled and deterministic, but it does not
have buffered communication or multi-rate behavior. SR is better for control-dominated sys-
tems that need control over when things happen relative to each other; SDF is better for data-
dominated systems, especially those with multi-rate behavior.

SR also resembles the Discrete Event (DE) domain. Like DE, its communication chan-
nels transmit events, but unlike DE, it is deterministic, statically scheduled, and allows zero-
delay feedback loops. DE is better formodeling the behavior of systems (i.e., to better under-
stand their behavior), whereas SR is better forspecifying a system’s behavior (i.e., as a way to
actually build it).

10.4 The semantics of SR
An SR star must be well-behaved in the following mathematical sense to make SR sys-

tems deterministic. It must compute a monotonic function of its inputs, meaning that when it
is presented with more-defined inputs, it must produce more-defined outputs. In particular, an
output may only switch from undefined to either present or absent when one or more inputs

10-2 SR domain

U. C. Berkeley Department of EECS

do, but it may not change its value or become undefined.

The semantics of SR are defined as the least fixed point of the system, meaning the
least-defined set of values on the communication channels that is consistent with all the stars’
functions. That is, if any star were evaluated, it will not want to change its output---the value is
already correct. The monotonicity constraint on the stars ensures that there is always exactly
one least-defined set, and this is what the SR schedulers calculate.

There are two schedulers for the SR domain,default-SR anddynamic-SR . The
dynamic scheduler is the easiest to understand. In each instant, it first initializes all the com-
munication channels to “undefined” and then executes all the stars in the system until none of
them try to change their outputs. The default scheduler is more shrewd. It uses the communi-
cation structure of the system to determine an execution order for the stars that will make them
converge. This is based on a topological sort of the stars, but is made more complicated when
there are feedback loops.

The Almagest 10-3

Ptolemy Last updated: 6/18/97

10.5 Overview of SR stars
The top-level palette is shown in figure 10-1.

10.5.1 General stars

Const Output a constantly-present integer output given by the
level parameter.

Pre Emit the value of the integer input from the most recent instant
in which it was present.

And Emits the logical AND of the two integer inputs, or absent if
both inputs are absent.

Add Emit the sum of the two integer inputs, or the value of the
present input if the other is absent.

FIGURE 10-1: The top-level palette for SR demos.

And

input1

input2

Add

input1

input2

Const

ItclCounter

in

command

ItclDatabase

character

index

in

out

indexOut

ItclDisplay

leftmost

cursor

string

ItclEditor

key

read

write

leftmost

cursor

string

ItclIn ItclInOut

ItclModeSelect

jump

count

editKey

ItclOut

MIDIin

channel

onPitch

onVelocity

offPitch

offVelocity

pitchBend

controller

controlValue

reset

Mux

trueInput

falseInput

select

Pre Printer

SerialIn

StringToInt Sub

input1

input2

When

input

clock

SynthControl

onPitch

onVelocity

offPitch

pitchBend

reset

done#1

done#2

done#3

done#4

frequency#1

frequency#2

frequency#3

frequency#4

velocity#1

velocity#2

velocity#3

velocity#4

EnvelopeGen

velocity

controller

controlValue

done

amplitude

index

IntToString

HOF
hof.pal

SR
Stars

General stars

Itcl stars

MIDI stars

Higher Order Functions

10-4 SR domain

U. C. Berkeley Department of EECS

Printer Print the value of each input to the file specified by thefileName
state. All inputs are printed on a single line with the prefix in the
prefix state.

IntToString Convert the integer input to a string.

StringToInt Convert the string input to an integer.

Sub Emits the different of the two integer inputs, or absent if both
inputs are absent.

When When the clock is true, emit the input on the output, otherwise,
leave the clock absent.

Mux Depending on the value of the select input, copy either the true
input or the false input to the output.

10.5.2 Itcl stars

 By default, all of these stars have no behavior. They provide an interface for user-writ-
ten Itcl scripts that specify their behavior. Each has the following states:itclClassName, the
class name of the itcl object associated with the star,itclSourceFile, the path name of the itcl
script containing the definition of this class, anditclObjectName, the name of the itcl object to
create. If this field is left blank, the object is given the name of the star instance. See the SR
chapter in the Programmer’s Manual for more information.

ItclOut Single output Itcl star.

ItclIn Single input Itcl star.

ItclInOut One input, one output Itcl star.

ItclCounter Itcl incrementer/decrementer.

ItclModeSelect Itcl star used in the Rolodex demo.

ItclDatabase Simple sorted database.

ItclDisplay Display for the rolodex.

ItclEditor Editor for the rolodex

10.5.3 MIDI stars

The MIDI stars below are used in the MIDISynthesizer demo described later in this
chapter. We include these stars only as an example of what can be done with the Synchronous
Reactive domain.

SerialIn Emit the character waiting on the serial port, or leave the
output absent if there isn’t one. ThedeviceName state specifies
the port, andbaudRate specifies the speed.

MIDIin An interpreter for the MIDI protocol. It takes an incoming
MIDI stream and fans it out to Note On and Note Off com-
mands.

SynthControl A polyphonic synthesizer control.

The Almagest 10-5

Ptolemy Last updated: 6/18/97

EnvelopeGen An envelope generator for FM sound synthesis.

10.6 An overview of SR demos
There are currently three SR demos. The palette is shown in figure.

ramp Prints a sequence of increasing integers. Essentially a “hello
world” for the SR domain, this demonstrates how Pre can inter-
act with an adder.

rolodex A digital address book implemented in SR. This demonstrates
how itcl stars can be used to prototype user-interface-dominated
systems at a high level. The system is divided into keyboard,
database, editor, and display blocks.

MIDIsynthesizer A music synthesizer written in SR. This is a polyphonic sound
synthesizer written using custom SR stars for the control por-
tion. Waveform synthesis is done using an FM algorithm imple-
mented in CGC. This requires a MIDI keyboard to be attached
to /dev/ttya , and functioning CGC audio drivers for your
platform. More information on demonstrating the Midi stars
with a Yamaha keyboard controller follows.

10.6.1 Use of the Yamaha CBX-K1XG as a midi keyboard controller

Setting Up Hardware Connections:

 • The keyboard has an external power supply. Connect one end of the power supply to
the DC IN jack on the rear panel of the keyboard and connect the other to a suitable
electrical outlet.

 • Connect theTO HOST Terminal of the keyboard to the serial port of the Sparcstation
using an 8-pin Mini-DIN to D-Sub 25-pin cable. You will probably need to use a null
modem with this connection.

 • SelectPC2 (38,400 baud) with theHost Select Switch , located on the rear panel of
the midi keyboard.

 • You may need to use a Y cable if the Sparcstation to which you are connecting has
more than one port (A-B).

ramp rolodex MIDIsynthesizer

FIGURE 10-2: Synchronous Reactive demos.

10-6 SR domain

U. C. Berkeley Department of EECS

*Note that it is necessary to have functioning CGC audio drivers in order to demo the
SR stars written for a keyboard controller.

Operation of the Yamaha keyboard controller

A sequence of keys specific to Yamaha’s controller architecture must be triggered to
send midi messages to the SR stars to generate synthesized sound within Ptolemy. See the
Yamaha user’s manual for detailed instructions

Chapter 11. Finite State Machine
Domain

Authors: Bilung Lee

Other Contributors: Christopher Hylands
Mary Stewart

11.1 Introduction
The finite state machine (FSM) has been one of the most popular models for describ-

ing control-oriented systems, e.g., real-time process controllers. A directed node-and-arc
graph, called a state transition diagram (STD), can be used to describe an FSM. An STD rep-
resents a system in the form of states (nodes) and transitions (arcs) between states.

11.2 Graphical User Interface
The original visual interface to Ptolemy, called Vem, is not suitable for drawing the

STD for an FSM. A new visual editor based on Tycho, a hierarchical syntax manager and part
of the Ptolemy project, is being developed based on drawing mechanisms created by Wan-teh
Chang.

11.2.1 Edit a new STD file

A new STD file can be created from a Tycho editor that is running inside Ptolemy or
from a standalone Tycho process. To start Tycho from within Ptolemy, type ay. To start a
standalone Tycho process, runtycho from the shell prompt. Once Tycho is started, either
open a file with the file extension.std , or select the TychoWindow menu and chooseState
transition diagram editor . A message window will pop up to ask for machine type.
Currently there is one type of FSM supported, called mixedMealy/Moore machine .

11.2.2 Edit the Input/Output and Internal Events Names

If there are any input/output and internal events for the FSM, their names must be
specified as follows: Select theSpecial menu and chooseI/O Port Names... , then enter
the names for the input/output. Each name should be separated by at least one space.

11.2.3 Draw/Edit a State

To draw a state, either select theEdit menu and chooseNew Node , or use the key-
board acceleratorN key. A crossbar cursor will appear in the window. Press and hold (don’t
release) the left mouse button and move the mouse to get a different shape of node. Release
the button to finish the drawing.

To edit a state, first select the state by pressing the left mouse button on your selection.
Then either select theEdit menu and chooseEdit Item , or use the keyboard shortcut and

11-2 Finite State Machine Domain

U. C. Berkeley Department of EECS

type ane.

11.2.4 Draw/Edit a Transition

To draw a transition, either select theEdit menu and chooseNew Arc , or use the key-
board shortcut and type anA. A crossbar cursor will appear in the window. Press the left
mouse button on the periphery of the starting state. Move the mouse and press the left mouse
button to get a more delicate arc. To finish the drawing, move the mouse on the periphery of
the ending state and press the left mouse button.

To edit a transition, select the transition by pressing the left mouse button. Then either
select theEdit menu and chooseEdit Item , or use the keyboard shortcut and type ane.

11.2.5 Delete a State/Transition

First select the state/transition by pressing the left mouse button on your selection.
Then select theEdit menu and chooseDelete .

11.2.6 Move/Reshape a State/Transition

To move a state, press and hold the left mouse button on the state and then move the
mouse to the desired position. To reshape a state, first select the state, and then move the cur-
sor to the up/down/left/right periphery of the state to get an up/down/left/right arrow-shape
cursor. Press and hold the left mouse button and move the mouse to reshape it.

To move/reshape a transition, first select it, then some small rectangles will appear
along the arc. Select and move the rectangles to move/reshape the arc.

11.2.7 Slave Processes of States

In an FSM, each state may be associated with a slave process. This slave process could
be a subsystem of any other Ptolemy domain or be another FSM Galaxy. To specify the slave
process of a state, when editing a state, give the full path name and file name of the subsystem.
For example, a Vem facet could be specified for the Galaxy of any other Ptolemy domain, or
an STD file could be specified for the FSM Galaxy.

11.3 Working within Ptolemy
In terms of implementation, a standalone FSM domain in Ptolemy is not very interest-

ing. The reason for this is that most applications, in addition to control, contain many other
features, e.g., signal processing. Moreover, there are other Ptolemy domains with which an
FSM can interact. By mixing the FSM domain with other domains, we get a very powerful
FSM model. Currently the FSM domain only works with the SDF and DE domains.

11.3.1 Make an Icon in Vem

Unlike other domains, an FSM galaxy is edited in a.std file using Tycho instead of
Vem. However, to work with other domains, an icon in Vem is required to represent the corre-
sponding FSM galaxy described in an STD file. To make an icon in Vem for the STD file, first
start Tycho from within Ptolemy by pressingy. Open the file in Tycho and chooseMake
Icon... .from the Special pull-down menu. This will load the FSM galaxy into the
Ptolemy kernel and generate an icon with appropriate input/output ports in the specified pal-

The Almagest 11-3

Ptolemy Last updated: 10/16/97

ette in Vem.

The icon looks like a star (blue outline) but it is actually a galaxy. This may be confus-
ing, but the idea is to avoid using an Octtools handle. There are two different ways to make an
icon in Vem: ptkSetMkSchemIcon and ptkSetMkStar . The former needs anOct-
FacetHandle as one argument and is used for other “Vem” galaxies. However, since the
FSM galaxy uses Tycho as the editor instead of Vem, there is noOctFacetHandle . There-
fore the latter (ptksetMkStar) , which uses the star (or galaxy) name instead, is more appro-
priate.

11.3.2 Look Inside an FSM Galaxy

Similar to the galaxy icon in the other domain, when thei key is pressed on the icon to
look inside the galaxy, the corresponding STD file which describes the FSM galaxy will be
automatically invoked in Tycho. (Note: if the environment variablePT_DISPLAY is set to
another editor instead of Tycho, it must be unset for the look-inside to work.)

11.3.3 Compile an FSM Galaxy

The FSM domain uses EditSTD to edit a Galaxy, but other domains use Vem as the
editor. Therefore, when an FSM Galaxy is compiled, the EditSTD (Tycho) is invoked to com-
pile the state transition graph into the Ptolemy kernel.

11.4 An overview of FSM demonstrations
There are currently three FSM demos illustrated in figure.

modulus8 A three-bit counter with initialization and interruption mecha-
nisms. This demonstrates how the three-bit counter is built by
three one-bit counters communicating in the SDF domain.

Modulus8 DigitalWatch ReflexGame

Finite State Machine
Domain

FIGURE 11-1: Finite State Machine demos.

11-4 Finite State Machine Domain

U. C. Berkeley Department of EECS

reflexGame A simple game to test the reflexes of the player. The top-level
DE domain models a clock, while the FSM domain models the
various states in the reflex game. The SDF domain is used for
numerical computations.

digiWatch A digital watch example. This demonstrates that a system with
sophisticated control can be achieved by hierarchically nesting
the FSM domain.

11.5 Current Limitations
As of Ptolemy release 0.7, this domain is still experimental and is not yet fully devel-

oped. Under current implementation, the FSM domain can only be used as a Galaxy. Thus, the
FSM domain has to work with other domains that support the inputs to the FSM Galaxy and
display the outputs generated by the FSM Galaxy. However, it is possible to implement some
blocks that provide the inputs and that display the outputs in the FSM domain.

An FSM system terminates when it reaches a final state, but this feature is not yet
implemented. Further, since the FSM system must currently be embedded in other domains
under current implementation, the termination of a system is controlled by the topmost
domain.

Chapter 12. DE Domain

Authors: Joseph T. Buck
Soonhoi Ha
Paul Haskell
Edward A. Lee
Thomas M. Parks

Other Contributors: Anindo Banerjea
Philip Bitar
Rolando Diesta
Brian L. Evans
Richard Han
Christopher Hylands
Ed Knightly
Tom Lane
Gregory S. Walter

12.1 Introduction
The discrete event (DE) domain in Ptolemy provides a general environment for time-

oriented simulations of systems such as queueing networks, communication networks, and
high-level models of computer architectures. In this domain, eachParticle represents an
event that corresponds to a change of the system state. The DE schedulers process events in
chronological order. Since the time interval between events is generally not fixed, each parti-
cle has an associatedtime stamp. Time stamps are generated by the block producing the parti-
cle based on the time stamps of the input particles and the latency of the block.

12.2 The DE target and its schedulers
The DE domain, at this time, has only one target. This target has three parameters:

timeScale (FLOAT) Default =1.0
A scaling factor relating local simulated time to the time of
other domains that might be communicating with DE.

syncMode (INT) Default =YES
An experimental optimization explained below, again aimed at
mixed-domain systems.

calendar queue scheduler?
(INT) Default =YES
A Boolean indicating whether or not to use the faster “calendar
queue” scheduler, explained below.

The DE schedulers in Ptolemy determine the order of execution of the blocks. There are two

12-2 DE Domain

U. C. Berkeley Department of EECS

schedulers that have been implemented which are distributed with the domain. They expect
particular behavior (operational semantics) on the part of the stars. In this section, we describe
the semantics.

12.2.1 Events and chronology

A DE star models part of a system response to a change in the system state. The
change of state, which is called anevent, is signaled by a particle in the DE domain. Each par-
ticle is assigned a time stamp indicating when (in simulated time) it is to be processed. Since
events are irregularly spaced in time and system responses are generally very dynamic, all
scheduling actions are performed at run-time. At run-time, the DE scheduler processes the
events in chronological order until simulated time reaches a global “stop time.”

Each scheduler maintains aglobal event queue where particles currently in the system
are sorted in accordance with their time stamps; the earliest event in simulated time being at
the head of the queue. The difference between the two schedulers is primarily in the manage-
ment of this event queue. Anindo Banerjea and Ed Knightly wrote the default DE Scheduler,
which is based on the “calendar queue” mechanism developed by Randy Brown [Bro88].
(This was based on code written by Hui Zhang.) This mechanism handles large event queues
much more efficiently than the alternative, a more direct DE scheduler, which uses a single
sorted list with linear searching. The alternative scheduler can be selected by changing a
parameter in the default DE target.

Each scheduler fetches the event at the head of the event queue and sends it to the
input ports of its destination block. A DE star is executed (fired) whenever there is a new
event on any of its input portholes. Before executing the star, the scheduler searches the event
queue to find out whether there are any simultaneous events at the other input portholes of the
same star, and fetches those events. Thus, for each firing, a star can consume all simultaneous
events for its input portholes. After a block is executed it may generate some output events on
its output ports. These events are put into the global event queue. Then the scheduler fetches
another event and repeats its action until the given stopping condition is met.

It is worth noting that the particle movement is not throughGeodesic s, as in most
other domains, but through the global queue in the DE domain. Since the geodesic is a FIFO
queue, we cannot implement the incoming events which do not arrive in chronological order if
we put the particles into geodesics. Instead, the particles are managed globally in the event
queue.

12.2.2 Event generators

Some DE stars are event generators that do not consume any events, and hence cannot
be triggered by input events. They are first triggered by system-generated particles that are
placed in the event queue before the system is started. Subsequent firings are requested by the
star itself, which gives the time at which it wishes to be refired. All such stars are derived from
the base classRepeatStar .

RepeatStar is also used by stars that do have input portholes, but also need to sched-
ule themselves to execute at particular future times whether or not any outside event will
arrive then. An example isPSServer .

In a RepeatStar , a special hidden pair of input and output ports is created and con-

The Almagest 12-3

Ptolemy Last updated: 6/13/97

nected together. This allows the star to schedule itself to execute at any desired future time(s),
by emitting events with appropriate time stamps on the feedback loop port. The hidden ports
are in every way identical to normal ports, except that they are not visible in the graphical user
interface. The programmer of a derived star sometimes needs to be aware that these ports are
present. For example, the star must not be declared to be a delay star (meaning that no input
port can trigger a zero-delay output event) unless the condition also holds for the feedback
port (meaning that refire events don’t trigger immediate outputs either). See the Programmer’s
Manual for more information on usingRepeatStar .

12.2.3 Simultaneous events

A special effort has been made to handle simultaneous events in a rational way. As
noted above, all available simultaneous events at all input ports are made available to a star
when it is fired. In addition, if two distinct stars can be fired because they both have events at
their inputs with identical time stamps, some choice must be made as to which one to fire. A
common strategy is to choose one arbitrarily. This scheme has the simplest implementation,
but can lead to unexpected and counter-intuitive results from a simulation.

The choice of which to fire is made in Ptolemy by statically assigning priorities to the
stars according to a topological sort. Thus, if one of two enabled stars could produce events
with zero delay that would affect the other, as shown in figure 12-1, then that star will be fired
first. The topological sort is actually even more sophisticated than we have indicated. It fol-
lows triggering relationships between input and output portholes selectively, according to
assertions made in the star definition. Thus, the priorities are actually assigned to individual
portholes, rather than to entire stars. See the Programmer’s Manual for further details.

There is a pitfall in managing time stamps. Two time stamps are not considered equal
unless they are exactly equal, to the limit of double-precision floating-point arithmetic. If two
time stamps were computed by two separate paths, they are likely to differ in the least signifi-
cant bits, unless all values in the computation can be represented exactly in a binary represen-
tation. If simultaneity is critical in a given application, then exact integral values should be
used for time stamps. This will work reliably as long as the integers are small enough to be
represented exactly as double-precision values. Note that the DE domain does not enforce
integer timestamps --- it is up to the stars being used to generate only integer-valued event
timestamps, perhaps by rounding off their calculated output event times.

FIGURE 12-1: When DE stars are enabled by simultaneous events, the choice of which to fire is
determined by priorities based on a topological sort. Thus if B and C both have events
with identical time stamps, B will take priority over C. The delay on the path from C to
A serves to break the topological sort.

A

B

C

12-4 DE Domain

U. C. Berkeley Department of EECS

12.2.4 Delay-free loops

Many stars in the DE domain produce events with the same time stamps as their input
events. These zero-delay stars can create some subtleties in a simulation. Anevent-path con-
sists of the physical arcs between output portholes and input portholes plus zero-delay paths
inside the stars, through which an input event instantaneously triggers an output event. If an
event-path forms a loop, we call it adelay-free loop. While a delay-free loop in the SDF
domain results in a deadlock of the system, a delay-free loop in the DE domain potentially
causes unbounded computation. Therefore, it is advisable to detect the delay-free loop at com-
pile-time. If a delay-free loop is detected, an error is signaled.

Detecting delay-free loops reliably is difficult. Some stars, such asServer and
Delay , take a parameter that specifies the amount of delay. If this is set to zero, it will fool the
scheduler. It is the user’s responsibility to avoid this pathological case. This is a special case of
a more general problem, in which stars conditionally produce zero-delay events. Without
requiring the scheduler to know a great deal about such stars, we cannot reliably detect zero-
delay loops. What appears to be a delay-free path can be safe under conditions understood by
the programmer. In such situations, the programmer can avoid the error message placing a
delay element on some arc of the loop. The delay element is the small green diamond found at
the top of every star palette in Pigi.It does not actually produce any time delay in simulated
time. Instead, it declares to the scheduler that the arc with the delay element should be treated
as if it had a delay, even though it does not. A delay element on a directed loop thus suppresses
the detection of a delay-free loop.

Another way to think about a delay marker in the DE domain is that it tells the sched-
uler that it’s OK for a particle crossing that arc to be processed in the “next” simulated instant,
even if the particle is emitted with timestamp equal to current time. Particles with identical
timestamps are normally processed in an order that gives dataflow-like behavior within a sim-
ulated instant. This is ensured by assigning suitable firing priorities to the stars. A delay
marker causes its arc to be ignored while determining the dataflow-based priority of star fir-
ing; so a particle crossing that arc triggers a new round of dataflow-like evaluation.

12.2.5 Wormholes

“Time” in the DE domain means simulated time. The DE domain may be used in com-
bination with other domains in Ptolemy, even if the other domains do not have a notion of sim-
ulated time. A given simulation, therefore, may involve several schedulers, some of which use
a notion of simulated time, and some of which do not. There may also be more than one DE
scheduler active in one simulation. The notion of time in the separate schedulers needs to be
coordinated. This coordination is specific to the inner and outer domains of the wormhole.
Important cases are described below.

SDF within DE

A common combination of domains pairs the SDF domain with the DE domain. There
are two possible scenarios. If the SDF domain is inside the DE domain, as shown in figure 12-
2, then the SDF subsystem appears to the DE system as a zero-delay block. Suppose, for
example, that an event with time stamp is available at the input to the SDF subsystem. Then
when the DE scheduler reaches this time, it fires the SDF subsystem. The SDF subsystem runs
the SDF scheduler through one iteration, consuming the input event. In response, it will typi-

T

The Almagest 12-5

Ptolemy Last updated: 6/13/97

cally produce one output event, and this output event will be given the time stamp .

If the SDF subsystem in figure 12-2 is a multirate system, the effects are somewhat
more subtle. First, a single event at the input may not be sufficient to cycle through one itera-
tion of the SDF schedule. In this case, the SDF subsystem will simply return, having produced
no output events. Only when enough input events have accumulated at the input will any out-
put events be produced. Second, when output events are produced, more than one event may
be produced. In the current implementation, all of the output events that are produced have the
same time stamp. This may change in future implementations.

More care has to be taken when one wants an SDF subsystem to serve as a source star
in a discrete-event domain. Recall that source stars in the DE domain have to schedule them-
selves. One solution is to create an SDF “source” subsystem that takes an input, and then con-
nect a DE source to the input of the SDF wormhole. We are considering modifying the
wormhole interface to support mixing sources from different domains automatically.

DE within SDF

The reverse scenario is where a DE subsystem is included within an SDF system. The
key requirement, in this case, is that when the DE subsystem is fired, it must produce output
events, since these will be expected by the SDF subsystem. A very simple example is shown
in figure 12-3. The DE subsystem in the figure routes input events through a time delay. The
events at the output of the time delay, however, will be events in the future. TheSampler star,

FIGURE 12-2: When an SDF domain appears within a DE domain, events at the input to the SDF
subsystem result in zero-delay events at the output of the SDF subsystem. Thus, the
time stamps at the output are identical to the time stamps at the inputs.

DE
SDF

zero time delay

T

FIGURE 12-3: A typical DE subsystem intended for inclusion within an SDF system. When a DE sub-
system appears within an SDF subsystem, the DE subsystem must ensure that the
appropriate number of output events are produced in response to input events. This is
typically accomplished with a “Sampler” star, as shown.

�����
�����
�����
�����
�����

������
������
������
������
������
������

Sampler
Server
���
���
���
���

����
����
����
����

12-6 DE Domain

U. C. Berkeley Department of EECS

therefore, is introduced to produce an output event at the current simulation time. This output
event, therefore, is produced before the DE scheduler returns control to the output SDF sched-
uler.

The behavior shown in figure 12-3 may not be the desired behavior. TheSampler
star, given an event on its control input (the bottom input), copies the most recent event from
its data input (the left input) to the output. If there has been no input data event, then a zero-
valued event is produced. There are many alternative ways to ensure that an output event is
produced. For this reason, the mechanism for ensuring that this output event is produced is not
built in. The user must understand the semantics of the interacting domains, and act accord-
ingly.

Timed domains within timed domains

The DE domain is a timed domain. Suppose it contains another timed domain in a DE
wormhole. In this case, the inner domain may need to be activated at a given point in simu-
lated time even if there are no new events on its input portholes. Suppose, for instance, that the
inner domain contains a clock that internally generates events at regular intervals. Then these
events need to be processed at the appropriate time regardless of whether the inner system has
any new external stimulus.

The mechanism for handling this situation is simple. When the internal domain is ini-
tialized or fired, it can, before returning, place itself on the event queue of the outer domain,
much the same way that an event generator star would. This ensures that the inner event will
be processed at the appropriate time in the overall chronology. Thus, when a timed domain sits
within a timed domain wormhole, before returning control to the scheduler of the outer
domain, it requests rescheduling at the time corresponding to the oldest time stamp on its
event queue, if there is such an event.

When an internal timed domain is invoked by another time domain, it is told to run
until a given “stop time,” usually the time of the events at the inputs to the internal domain that
triggered the invocation. This “stop time” is the current time of the outer scheduler. Since the
inner scheduler is requested to not exceed that time, it can only produce events with time
stamp equal to that time. Thus, a timed domain wormhole, when fired, will always either pro-
duce no output events, or produce output events with time stamp equal to the simulated time at
which it was fired.

To get a time delay through such a wormhole, two firings are required. Suppose the
first firing is triggered by an input event at time , then the inside system generates an internal
event at a future time . Before returning control to the outer scheduler, the inner sched-
uler requests that it be reinvoked at time . When the “current time” of the outer scheduler
reaches , it reinvokes the inner scheduler, which then produces an output event at time

.

With this conservative style of timed interaction, we say that the DE domain operates
in the synchronized mode. Synchronized mode operation suffers significant overhead at run
time, since the wormhole is called at every time increment in the inner timed domain. Some-
times, however, this approach is too conservative.

In some applications, when an input event arrives, we can safely execute the wormhole
into the future until either (a) we reach the time of the next event on the event queue of the
outer domain, or (b) there are no more events to process in the inner domain. In other words,

T
T τ+

T τ+
T τ+

T τ+

The Almagest 12-7

Ptolemy Last updated: 6/13/97

in certain situations, we can safely ignore the request from the output domain that we execute
only up until the time of the input event. As an experimental facility to improve run-time effi-
ciency, an option avoids synchronized operation. Then, we say that the DE domain operates in
theoptimized mode. We specify this mode by setting the target parametersyncMode to FALSE
(zero). This should only be done by knowledgeable users who understand the DE model of
computation very well. The default value of thesyncMode parameter isTRUE (one), which
means synchronized operation.

12.2.6 DE Performance Issues

DE Performance can be an issue with large, long-running universes. Below we discuss
a few potential solutions.

The calendar queue scheduler is not always the one to use. It works well as long as the
“density” of events in simulated time is fairly uniform. But if events are very irregularly
spaced, you may get better performance with the simpler scheduler, because it makes no
assumptions about timestamp values. For example, Tom Lane reported that the CQ scheduler
did not behave well in a simulation that had a few events at time zero and then the bulk of the
events between times 800000000 and 810000000 --- most of the events ended up in a single
CQ “bucket”, so that performance was worse than the simple scheduler.

Tom Lane also pointed out that both the CQ and simple schedulers ultimately depend
on simple linear lists of events. If your application usually has large numbers of events pend-
ing, it might be worth trying to replace these lists with genuine priority queues (i.e., heaps,
with O(log N) rather than O(N) performance). But you ought to profile first to see if that’s
really a time sink.

Another thing to keep in mind that the overhead for selecting a next event and firing a
star is fairly large compared to other domains such as SDF. It helps if your stars do a reason-
able amount of useful work per firing; that is, DE encourages “heavyweight” stars. One way
to get around this is to put purely computational subsystems inside SDF wormholes. As dis-
cussedpreviously, an SDF-in-DE wormhole acts as a zero-delay star.

If you are running a long simulation, you should be sure that your machine is not pag-
ing or worse yet swapping; you should have plenty of memory. Usually 64Mb is enough,
though 128Mb can help (gdb takes up a great deal of memory when you use it, too.). Depend-
ing on what platform you are on, you may be able to use the programtop (ftp://
eecs.nwu.edu/pub/top). You might also find it useful to useiostat to see if you are
paging or swapping.

One way to gain a slight amount of speed is to avoid the GUI interface entirely by
usingptcl , which does not have Tk stars. See “Some hints on advanced uses of ptcl with
pigi” on page 3-19 for details.

12.3 An overview of stars in DE
The model of computation in the DE domain makes it amenable to high-level system

modeling. For this reason, stars in the DE domain are often more complicated, and more spe-
cialized than those in the SDF domain. The stars that are distributed with the domain, there-
fore, should be viewed primarily as examples. They do not form a comprehensive set.

We have made every attempt to include in the distribution all of the reasonably generic

12-8 DE Domain

U. C. Berkeley Department of EECS

stars that have been developed, plus a selection of the more esoteric ones (as examples). Keep
in mind that the star libraries of the other domains are also available through the wormhole
mechanism. Users that find themselves frequently needing stars from other domains may wish
to build a library of single-star galaxies. Such galaxies can be used in any domain, regardless
of the domain in which the single star resides. Ptolemy automatically implements this as a
wormhole.

The top-level palette is shown in figure 12-4.

The following star is available in all the palettes:

BlackHole Discard all input particles.

12.3.1 Source stars

Strictly speaking, source stars are stars with no inputs. They generate signals, and may
represent external inputs to the system, constant data, or synthesized stimuli. By convention,
these stars are fired once at time zero automatically. During this and all subsequent firings, the
star itself must determine when its next firing should occur. It schedules this next firing with a
call to the methodrefireAtTime(time) . The source palette is shown in figure 12-5.

Clock Generate events at regular intervals, starting at time zero.

Impulse Generate a single event at time zero.

Null Do nothing. This is useful for connecting to unused input ports.

Poisson Generate events according to a Poisson process. The first event
is generated at time zero. The mean inter-arrival time and mag-
nitude of the events are given as parameters.

PulseGen Generate events with specified values at specified moments.
The events are specified in thevalue array, which consists of
time-value pairs, given in the syntax of complex numbers.

TclScript (Two icons.) Invoke a Tcl script. The script is executed at the
start of the simulation, from within the star’s begin method. It
may define a procedure to be executed each time the star fires,
which can in turn produce output events. There is a chapter of

sinks.pal

sources.pal

control.pal

queues

timing

logic

networking

miscellaneous.palconversion.pal

HOF
hof.pal

Signal Sinks

Signal Sources

Control

Queues, Servers, Delays

Networking

Timing

Logic

Miscellaneous

Higher-order functions

Conversion

FIGURE 12-4: The top level palette of discrete-event stars.

The Almagest 12-9

Ptolemy Last updated: 6/13/97

the Programmer's Manual devoted to how to write these scripts.

TkButtons (Two icons.) Output the specified value when buttons are
pushed. If theallow_simultaneous_events parameter isYES, the
output events are produced only when the button labeled
“PUSH TO PRODUCE EVENTS” is pushed. The time stamps
of each output event is set to the current time of the scheduler
when the button is pushed.

TkSlider Output a value determined by an interactive on-screen scale
slider.

For convenience, some stars are included in the source palette that are not really source stars,
in the above sense. They require an input event in order to produce an output. These are listed
below. The value of the input event is ignored; it is only its time stamp that matters.

Const Produce an output event with a constant value (the default value
is zero) when stimulated by an input event. The time stamp of
the output is the same as that of the input.

Ramp Produce an output event with a monotonically increasing value
when stimulated by an input event. The value of the output
event starts atvalue and increases bystep each time the star
fires.

RanGen (Four icons.) Generate a sequence of random numbers. Upon
receiving an input event, it generates a random number with
uniform , exponential , or normal distribution, as deter-
mined by thedistribution parameter. Depending on the distribu-

FIGURE 12-5: Source stars in the DE domain.

PoissonClock Impulse

RanGen RanGen.exp

RanGen.uniform

RanGen.normal

Null

WaveForm

Ramp

Const

PulseGen

TkSliderTkButtons

Tcl
TclScript

Tcl
TkButtons

Tcl
TclScript

Tcl

singen

Strict sources:

Signal generators:

12-10 DE Domain

U. C. Berkeley Department of EECS

tion, other parameters specify either the mean and variance or
the lower and upper extent of the range.

singen Generate a sample of a sine wave when triggered. This DE gal-
axy contains an SDF singen galaxy (i.e., a wormhole).

WaveForm Upon receiving an input event, output the next value specified
by the array parametervalue (default “1 -1”). This array can
periodically repeat with any period, and you can halt a simula-
tion when the end of the array is reached. The following table
summarizes the capabilities:

The first line of the table gives the default settings. The array
may be read from a file by simply settingvalue to something of
the form< filename .

12.3.2 Sink stars

The sink stars pointed to by the palette in figure 12-6 are those with no outputs. They
display signals in various ways, or write them to files. Several of the stars in this palette are
based on thepxgraph program. This program has many options, summarized in “pxgraph —

haltAtEnd periodic period operation

NO YES 0 The period is the length of the array
NO YES N>0 The period is N
NO NO anything Output the array once, then zeros
YES anything anything Stop after outputting the array once

FIGURE 12-6: Sink stars in the DE domain.

XMgraphXhistogramPrinter

Beep

BarGraphBarGraph XMgraph

TkShowEvents

TkMeter TkMeter

123
Tk
ShowValues

123
Tk
ShowValues

TkText TkText

TkBarGraph TkBarGraph

Tcl
TclScript

Tcl Tcl
TclScript

Tcl

TkStripChart TkStripChart

TkShowEventsTkPlot TkPlot

TkXYPlot

X

Y

TkXYPlot

X

Y

g

To customize the number of input of multi-input
stars, use the Nop stars, accessible through the
icon on the upper right.

Batch displays:

Interactive displays:

The Almagest 12-11

Ptolemy Last updated: 6/13/97

The Plotting Program” on page 20-1. The differences between stars often amount to little
more than the choice of default options. Some, however, preprocess the signal in useful ways
before passing it to thepxgraph program. The first two icons actually correspond to only one
star, with two different configurations. The first allows only one input signal, the second
allows any number (notice the double arrow on the input port).

BarGraph (Two icons.) Generate a plot with thepxgraph program that
uses a zero-order hold to interpolate between event values. Two
points are plotted for each event, one when the event first
occurs, and the second when the event is supplanted by a new
event. A horizontal line then connects the two points. If
draw_line_to_base is YES then a vertical line to the base of the
bar graph is also drawn for each event occurrence.

Printer Print the value of each arriving event, together with its time of
arrival. ThefileNameparameter specifies the file to be written;
the special names<stdout> and<cout> (specifying the stan-
dard output stream), and<stderr> and <cerr> (specifying
the standard error stream), are also supported.

Xhistogram Generate a histogram with thepxgraph program. The parame-
terbinWidth determines the width of a bin in the histogram. The
number of bins will depend on the range of values in the events
that arrive. The time of arrival of events is ignored. This star is
identical to the SDF starXhistogram , but is used often enough
in the DE domain that it is provided here for convenience.

XMgraph (Two icons.) Generate a plot with thepxgraph program with
one point per event. Any number of event sequences can be
plotted simultaneously, up to the limit determined by the
XGraph class. By default, a straight line is drawn between each
pair of events.

TclScript (Two icons.) Invoke a Tcl script. The script is executed at the
start of the simulation, from within the star’s begin method. It
may define a procedure to be executed each time the star fires,
which can in turn read input events. There is a chapter of the
Programmer's Manual that explains how to write these scripts.

TkBarGraph (Two icons.) Take any number of inputs and dynamically dis-
play their values in bar-chart form.

TkMeter (Two icons.) Dynamically display the value of any number of
input signals on a set of bar meters.

TkPlot (Two icons.) Plot Y input(s) vs. time with dynamic updating.
Retracing is done to overlay successive time intervals, as in an
oscilloscope. Thestyle parameter determines which plotting
style is used:dot causes individual points to be plotted,
whereasconnect causes connected lines to be plotted. The
repeat_border_pointsparameter determines whether rightmost

12-12 DE Domain

U. C. Berkeley Department of EECS

events are repeated on the left.
Drawing a box in the plot will reset the plot area to that outlined
by the box. There are also buttons for zooming in and out, and
for resizing the box to just fit the data in view.

TkShowEvents (Two icons.) Display input event values together with the time
stamp at which they occur. The print method of the input parti-
cles is used to show the value, so any data type can be handled,
although the space allocated on the screen may need to be
adjusted.

TkShowValues (Two icons.) Display the values of the inputs in textual form.
The print method of the input particles is used, so any data type
can be handled, although the space allocated on the screen may
need to be adjusted.

TkStripChart (Two icons.) Display events in time, recording the entire his-
tory. The supported styles arehold for zero-order hold,con-
nect for connected dots, anddot for unconnected dots. An
interactive help window describes other options for the plot.

TkText (Two icons.) Display the values of the inputs in a separate win-
dow, keeping a specified number of past values in view. The
print method of the input particles is used, so any data type can
be handled.

TkXYPlot (Two icons.) Plot Y input(s) vs. X input(s) with dynamic updat-
ing. Time stamps are ignored. If there is an event on only one of
a matching pair of X and Y inputs, then the previously received
value (or zero if none) is used for the other. Thestyle parameter
determines which plotting style is used:dot causes individual
points to be plotted, whereasconnect causes connected lines
to be plotted.
Drawing a box in the plot will reset the plot area to that outlined
by the box. There are also buttons for zooming in and out, and
for resizing the box to just fit the data in view.

Beep Cause a beep on the terminal when fired.

12.3.3 Control stars

Control stars (figure 12-7) manipulate the flow of tokens. All of these stars are poly-
morphic; they operate on any data type. From left to right, top to bottom, they are:

Discard Discard input events that occur before the threshold time.
Events after the threshold time are passed immediately to the
output. This star is useful for removing transients and studying
steady-state effects.

Fork (Five icons.) Replicate input events on the outputs with zero
delay.

The Almagest 12-13

Ptolemy Last updated: 6/13/97

LossyInput Route inputs to the “sink” output with the probabilitylossProb-
ability set by the user. All other inputs are sent immediately to
the “save” output.

Merge (Four icons.) Merge input events, keeping temporal order.
Simultaneous events are merged in the order of the port number
on which they appear, with port #1 being processed first.

PassGate If the gate (bottom input) is open, then particles pass from
“input” (left input) to “output.” When the gate is closed, no out-
puts are produced. If input particles arrive while the gate is
closed, the most recent one will be passed to “output” when the
gate is reopened.

Router (Three icons.) Route an input event randomly to one of its out-
puts. The probability is equal for each output. The time delay is
zero.

Sampler Sample the input at the times given by events on the “clock”
input. The data value of the “clock” input is ignored. If no input
is available at the time of sampling, the latest input is used. If
there has been no input, then a “zero” particle is produced. The
exact meaning of zero depends on the particle type.

LeakBucket Discard inputs that arrive too frequently. That is, any input
event that would cause a queue of a given size followed by a
server with a given service rate to overflow are discarded. Inputs
that are not discarded are passed immediately to the output.

FIGURE 12-7: Control stars for the DE domain.

LossyInput

LeakBucketRouter Router

Merge Merge Merge

Sampler

Discard

PassGate

Router

Merge

Case Case Case EndCase EndCase EndCase

12-14 DE Domain

U. C. Berkeley Department of EECS

Case (Three icons.) Switch input events to one of N outputs, as deter-
mined by the last received control input. The value of the con-
trol input must be between 0 and N-1, inclusive, or an error is
flagged.

EndCase (Three icons,) Select an input event from one of N inputs, as
specified by the last received control input. The value of the
control input must be between 0 and N-1 inclusive, or an error
is flagged.

12.3.4 Conversion stars

The palette in figure 12-10 is intended to house a collection of stars for format conver-
sions of various types. As of this writing, however, this collection is very limited. The first two
stars in the conversion palette illustrate the consolidation of multiple data sample into single
particles that can be transmitted as a unit. These stars use the classFloatVecData , which is
simply a vector of floating-point numbers.

Packetize Convert a number of floating-point input samples into a packet
of type FloatVecData . A packet is produced when either an
input appears on the demand input or whenmaxLength data val-
ues have arrived. Note that a null packet is produced if a
demand signal arrives and there is no data.

UnPacketize Convert a packet of typeFloatVecData into a number of
floating-point output samples. The “data” input feeds packets to
the star. Whenever a packet arrives, the previous packet, if any,
is discarded; any remaining contents are discarded. The
“demand” input requests output data. If there is no data left in

FIGURE 12-8: Type conversion stars for the DE domain.

Packetize UnPacketize

ImageToMx
FrameId

MxToImage
FrameId

IntToFloat

FloatToInt

The Almagest 12-15

Ptolemy Last updated: 6/13/97

the current packet, the last output datum is repeated (zero is
used if there has never been a packet). Otherwise the next data
value from the current input packet is output.

MxtoImage Convert a Matrix to aGrayImage output. The double values of
the FloatMatrix are converted to the integer values of the
GrayImage representation.

ImageToMx Accept a black-and-white-image from an input image packet,
and copy the individual pixels to aFloatMatrix . Note that
even though theGrayImage input contains all integer values,
we convert to aFloatMatrix to allow easier manipulation.

12.3.5 Queues, servers, and delays

The palette in figure 12-9 contains stars that model queues, servers, and time delays of various
types. In the DE domain, the delay icon (the small green diamond at the upper left of the pal-
ette) does not represent a time delay. See “The DE target and its schedulers” on page 12-1.

Delay Send each input event to the output with its time stamp incre-
mented by an amount given by thedelayparameter.

VarDelay Delay the input by a variable amount. Thedelay parameter
gives the initial delay, and the delay is changed using the
“newDelay” input.

PSServer Emulate a deterministic, processor-sharing server. If input
events arrive when it is not busy, it delays them by the nominal
service time. If they arrive when it is busy, the server is shared.
Hence prior arrivals that are still in service will be delayed by
more than the nominal service time.

Server Emulate a server. If input events arrive when it is not busy, it
delays them by the service time (a constant parameter). If they
arrive when it is busy, it delays them the service time plus how-

FIGURE 12-9: Queues, servers, and delays in the DE domain.

flushQueueFIFOQueue
Stack

PriorityQueue

Server VarServerPSServerDelay VarDelay

y

12-16 DE Domain

U. C. Berkeley Department of EECS

ever long it takes to become free of previous tasks.

VarServer Emulate a server with a variable service time. If input events
arrive when it is idle, they will be serviced immediately and will
be delayed only by the service time. If input events arrive while
another event is being serviced, they will be queued. When the
server becomes free, it will service any events waiting in its
queue.

FIFOQueue Implement a first-in first-out (FIFO) queue with finite or infinite
length. Events on the “demand” input trigger a dequeue on the
“outData” port if the queue is not empty. If the queue is empty,
then a “demand” event enables the next future “inData” particle
to pass immediately to “outData”. The first particle to arrive at
“inData” is always passed directly to the output, unlessnumDe-
mandsPending is initialized to 0. IfconsolidateDemandsis set
to TRUE (the default), thennumDemandsPending is not permit-
ted to rise above one. The size of the queue is sent to thesize
output whenever an “inData” or “demand” event is processed.
Input data that doesn't fit in the queue is sent to the “overflow”
output.

FlushQueue Implement a FIFO queue that when full, discards all inputs until
it empties completely.

PriorityQueue Emulate a priority queue. Inputs have priorities according to the
number of the input, with “inData#1” having highest priority,
“inData#2” being next, etc. When a “demand” is received, out-
puts are produced by selecting first based on priority, and then
based on time of arrival, using a FIFO policy. A finite total
capacity can be specified by setting thecapacity parameter to a
positive integer. When the capacity is reached, further inputs are
sent to the “overflow” output, and not stored. ThenumDemand-
sPending and consolidateDemands parameters have the same
meaning as in other queue stars. The size of the queue is sent to
the “size” output whenever an “inData” or “demand” event is
processed.

Stack Implement a stack with either finite or infinite length. Events on
the “demand” input pop data from the stack to “outData” if the
stack is not empty. If it is empty, then a “demand” event enables
the next future “inData” particle to pass immediately to “out-
Data.” By default,numDemandsPendingis initialized to 1, so
the first particle to arrive at “inData” is passed directly to the
output. IfconsolidateDemands is set toTRUE (the default), then
numDemandsPendingis not permitted to rise above one. The
size of the stack is sent to the “size” output whenever an
“inData” or “demand” event is processed. Input data that
doesn’t fit on the stack is sent to the “overflow” output.

The Almagest 12-17

Ptolemy Last updated: 6/13/97

The following star does not appear in the palette.

QueueBase Serve as the base class for FIFO and LIFO queues. This star is
not intended to be used except to derive useful stars. All inputs
are simply routed to the “overflow” output. None are stored.

12.3.6 Timing stars

The palette in figure 12-10 contains stars that are primarily concerned with either simulated or
real time.

MeasureDelay Measure the time difference between the first arrival and the
second arrival of an event with the same value. The second
arrival and the time difference are each sent to outputs.

MeasureInterval The value of each output event is the simulated time since the
last input event (or since zero, for the first input event). The
time stamp of each output event is the time stamp of the input
event that triggers it.

StopTimer Generate an output at thestopTime of the DEScheduler
under which this block is running. This can be used to force
actions at the end of a simulation. Within a wormhole, it can
used to force actions at the end of each invocation of the worm-
hole. An input event is required to enable the star.

Timeout Detect time-out conditions and generate an alarm if too much
time elapses before resetting or stopping the timer. Events arriv-
ing on the “Set” input reset and start the timer. Events arriving
on the “Clear” input stop the timer. If no “Set” or “Clear” events
arrive within timeout time units of the most recent “Set”, then
that “Set” event is sent out the “alarm” output.

TimeStamp The value of the output events is the time stamp of the input
events. The time stamp of the output events is also the time
stamp of the input events.

FIGURE 12-10: Timing stars for the DE domain.

StopTimerMeasureDelay Timeout

TimerSynchronize

TimeStamp
Measure
Interval

Stars that operate on time stamps:

Stars that use the system clock:

12-18 DE Domain

U. C. Berkeley Department of EECS

Synchronize Hold input events until the time elapsed on the system clock
since the start of the simulation is greater than or equal to their
time stamp. Then pass them to the output.

Timer Upon receiving a trigger input, output the elapsed real time in
seconds, divided bytimeScale, since the last reset input, or
since the start of the simulation if no reset has been received.
The time stamp of the output is the same as that of the trigger
input. The time in seconds is related to the scheduler (simu-
lated) time through the scaling factortimeScale .

The following star does not appear in the palette, because it is not intended to be used directly
in Ptolemy applications.

TimeoutStar Serve as the base class for stars that check time-out conditions.
The methods “set”, “clear”, and “expired” are provided for set-
ting and testing the timer.

12.3.7 Logic stars

The logic palette in figure 12-10 is made up of only three stars, with the multiplicity of icons
representing different configurations of these stars.

Test (Six icons) Compare two inputs. The test condition can be any
of {EQ NE LT LE GT GE} or { == != < <= > >= }, resulting in
equals, not equals, less-than, less-than or equals, etc.

If crossingsOnly is TRUE, then an output event is generated only
when the value of the output changes. Hence the output events
will always alternate between true and false.

Logic (Nineteen Icons) Apply a logical operation to any number of

FIGURE 12-11: Logic stars for the DE domain.

Test.condition=EQ Test.condition=NE Test.condition=GT Test.condition=GE Test.condition=LT Test.condition=LE

TestLevel

Q’

Q
D

Flip Flop

D

Clk
JK

Flip Flop

J

K

Clk

Q

Q’
T

Flip Flop

T

Clk

Q

Q’

Specific to the DE Domain

The Almagest 12-19

Ptolemy Last updated: 6/13/97

inputs. The inputs are integers interpreted as Booleans, where
zero is aFALSE and nonzero is aTRUE. The logical operations
supported are {NOT AND NAND OR NOR XOR XNOR}.

TestLevel Detect threshold crossings if thecrossingsOnly parameter is
TRUE. Otherwise, it simply compares the input against the
“threshold.”

If crossingsOnly is TRUE, then: (1) aTRUE is sent to “output”
when the “input” particle exceeds or equals the “threshold”
value, having been previously smaller; (2) aFALSE is sent when
the “input” particle is smaller than “threshold” having been pre-
viously larger. Otherwise, no output is produced.

If crossingsOnly is FALSE, then aTRUE is sent to “output”
whenever any “input” particle greater than or equal to “thresh-
old” is received, and aFALSE is sent otherwise.

FlipFlop Stars Binary state is afforded in the DE logic palette with the inclu-
sion of flip flop circuits. Three synchronous sequential circuit
components, FlipFlopJK, FlipFlopT and FlipFlopD, serve as
basic memory elements.

12.3.8 Networking stars

The palette shown in figure 12-12 includes stars that have been designed to model
communication networks. These are illustrative of a common use of the DE domain, for mod-
eling packet-switched networks. However, many of the stars are specialized to a particular
type of network design. Thus, they should be viewed as illustrative examples, rather than as a
comprehensive library.

A NetworkCell class is used in many of these stars. It models packetized data that is
transmitted through cell-relay networks. EachNetworkCell object can carry any user data
of type Message . In addition to this user data, theNetworkCell contains a destination
address and a priority. These are used by stars and galaxies to route the cell through the net-
work. The definition of theNetworkCell class may be found in$PTOLEMY/src/
domains/sdf/image/kernel , since it is used in the SDF and DE domains, and was devel-
oped primarily for modeling packet-switched video.

Cell creation and access

CellLoad Read in anEnvelope , extract itsMessage , and output that
Message in aNetworkCell . Append a destination and prior-
ity to the packet.

CellUnload Remove aMessage from aNetworkCell .

ImageToCell Packetize an image. Each image is divided up into chunks no
larger thanCellSize. Each cell is delayed from its predecessor
by TimePerCell. If a new input arrives while an older one is
being processed, the new input is queued.

12-20 DE Domain

U. C. Berkeley Department of EECS

CellToImage ReadNetworkCell packets containing image data and output
whole images. The current image is sent to the output when the
star reads image data with a higher frame id than the current
image. For each frame, the fraction of input data that was lost is
sent to the “lossPct” output.

Cell routing, control, and service

CellRoute ReadNetworkCell packets from multiple input sources and
route them to the appropriate output using a routing table that
maps addresses into output ports.

PriorityCheck ReadNetworkCell packets from multiple input sources. If the
priority of an inputNetworkCell is less than the most recent
“priority” input, then the cell is sent to the “discard” output.
Otherwise it is sent to the “output” port.

Switch4x4 Implement a four-input, four-output network switch that can
process objects of typeNetworkCell , or any type derived
from NetworkCell . Each NetworkCell object contains a
destination address. This galaxy uses the destination address as
an index into itsRoutesarray parameter to choose an output

FIGURE 12-12: A palette of DE stars dedicated to modeling of communication networks.

CellLoad CellUnload

Switch4x4

SeqATMZeroSeqATMSub

PCM
Voice

Recover

VirtClock

CellToImageImageToCell

CellRoute PriorityCheck

EtherSendEtherRec EtherRecMes

Cell Routing, Control, and Service

Cell Creation and Access

Lost Cell Recovery

Wireless

The Almagest 12-21

Ptolemy Last updated: 6/13/97

port over which the input object will leave. A prioritized queue-
ing scheme is used.

VirtClock Read aNetworkCell . It identifies which virtual circuit num-
ber the cell belongs to and then computes the virtual time stamp
for the cell by applying the virtual clock algorithm (see the
source code in $PTOLEMY/src/domains/de/stars/DEVirt-
Clock.pl). It then outputs all cells in order of increasing virtual
time stamp.

Upon receiving a “demand” input, the cell with the smallest
time stamp is output. An output packet is generated for every
demand input unless all of the queues are empty. Demand
inputs arriving when all queues are empty are ignored.

The number of stored cells is output after the receipt of each
“input” or “demand.”

When a cell arrives and the number of stored cells equalsMax-
Size then the cell with the biggest virtual time stamp is dis-
carded. This cell may or may not be the new arrival. IfMaxSize
is zero or negative, then infinitely many cells can be stored.

Lost cell recovery

The stars in this subgroup implement a variety of mechanisms for replacing lost cells
in a packet-switched network. They use a class calledSeqATMCell that is designed to model
packets in the proposed broadband integrated services digital network (BISDN). The class is
derived fromMessage , but has added facilities for marking the packet with a sequence num-
ber, and setting and reading individual bits. The sequence number is used to determine when
packets have been lost.

PCMVoiceRecover Input a stream ofSeqATMCell objects. All the information bits
in objects received with correct sequence numbers are sent to
“output.”

If a missingSeqATMCell object is detected, this star sends the
most recent 8 *tempSizereceived bits to the “temp” output, and
the most recent (8 *searchWindowSize + numInfoBits) received
bits to the “window” output.

The bits output on the “window” and “temp” outputs can be
used by thePatternMatch galaxy to implement lost-speech
recovery.

SeqATMSub Read a sequence ofSeqATMCells . It will check sequence
numbers, and if aSeqATMCell is found missing, the informa-
tion bits of the previously arrivedSeqATMCell will be output
in its place.

The information bits from each correctly receivedSeqATMCell
are unloaded and sent to the output port.

12-22 DE Domain

U. C. Berkeley Department of EECS

SeqATMZero Read a sequence ofSeqATMCell objects. For each object input
correctly in sequence,headerLength bits are skipped over and
the nextnumInfoBits bits in the cell are output.

If this star finds, by checking sequence numbers, that aSeqAT-
MCell is missing, it will substitutenumInfoBits 0-bits for the
missing bits.

Wireless network simulation

Ether (Not shown in the palette.) This is the base class for transmitter
and receiver stars that communicate over a shared medium.
Each transmitter can communicate with any or all receivers that
have the same value for the “medium” parameter. The commu-
nication is accomplished without graphical connections, and the
communication topology can be continually changing. This
base class implements the data structures that are shared
between the transmitters and receivers.

EtherRec Receive floating-point particles transmitted to it by an
EtherSend star. The particle is produced at the output after
some duration of transmission specified at the transmitter.

EtherRecMes See the explanation for theEtherRec star.The only difference
is that this stars forces the output to be a message.

EtherSend Transmit particles of any type to any or all receivers that have
the same value for themedium parameter. The receiver address
is given by the “address” input, and it must be an string. If the
string begins with a dash “- ”, then it is interpreted as a broad-
cast request, and copies of the particle are sent to all receivers
that use the same medium.

The transmitter “occupies” the medium for the specified dura-
tion. A collision occurs if the medium is occupied when a trans-
mission is requested. In this case, the data to be transmitted is
sent to the “collision” output.

12.3.9 Miscellaneous stars

These stars are shown in figure 12-12.

Hardware modeling

Arbitrate Act as a non-preemptive arbitrator, granting requests for exclu-
sive control. If simultaneous requests arrive, priority is given to
port A. When control is released, any pending requests on the
other port will be serviced. The “requestOut” and “grantIn”
connections allow interconnection of multiple arbitration stars
for more intricate control structures.

HandShake Cooperate with a possibly preemptive arbitrator through the

The Almagest 12-23

Ptolemy Last updated: 6/13/97

“request” and “grant” controls. “Input” particles are passed to
“output”, and an “ackIn” particle must be received before the
next “output” can be sent. This response is made available on
“ackOut.”

handShakeQ Handshake with queued input events.

TclScript Invoke a Tcl script. The script is executed at the start of the sim-
ulation, from within the star’s begin method. It may define a
procedure to be executed each time the star fires, which can in
turn read input events and produce output events. There is a
chapter of the Programmer's Manual devoted to how to write
these scripts.

Statistics and monitoring

Statistics Calculate the average and variance of the input values that have
arrived since the last reset. An output is generated when a
“demand” input is received. When a “reset” input arrives, the
calculations are restarted. When “demand” and “reset” particles
arrive at the same time, an output is produced before the calcu-
lations are restarted.

UDCounter Implement an up/down counter. The processing order of the
ports is: countUp -> countDown -> demand -> reset. Specifi-
cally, all simultaneous “countUp” inputs are processed. Then all
simultaneous “countDown” inputs are processed. If there are
multiple simultaneous “demand” inputs, all but the first are
ignored. Only one output will be produced.

Signal processing

Filter Filter the input signal with a first-order, autoregressive (AR)

FIGURE 12-13: A palette of miscellaneous DE stars.

HandShake handShakeQArbitrate

UDCounterStatistics Filter

Tcl
TclScript

Tcl

Hardware modeling

Statistics and monitoring Signal processing

All-purpose

12-24 DE Domain

U. C. Berkeley Department of EECS

impulse response. The data input is interpreted as weighted
impulses (Dirac delta functions). An output is triggered by a
clock input.

12.3.10 HOF Stars

For a discussion of the HOF stars, please see the “An overview of the HOF stars” on
page 6-15.

12.4 An overview of DE demos
The number of DE demos is considerably smaller than SDF. Many of the demos, how-

ever, are much more complex, often incorporating SDF subsystems to accomplish audio or
video encoding. The top-level palette for demos in the discrete-event domain is shown in fig-
ure 12-14. The subpalettes are described below.

12.4.1 Basic demos

These demos illustrate the use of certain stars without necessarily performing functions that
are particularly interesting. The palette is shown in figure 12-15. The individual demos are
summarized below.

caseDemo Demonstrates theCase star by deconstructing a Poisson count-
ing process into three subprocesses.

conditionals Demonstrate the use of theTest block in its various configura-
tions to compare the values of input events with floating-point
values. The input test signal is a pair of ramps, with each event
repeated once after some delay. Since the ramps have different
steps, they will cross.

logic Demonstrate the use of theLogic star in its various instantia-

FIGURE 12-14: The top-level palette for DE demos.

network.pal

queues.pal

basic.pal

BERKELEY UNIFIED SCHOOL DISTRICT

miscellaneous.pal

wormhole.pal

de.pal

TclTcl
tcltk

Queues, Servers, Delays

Basic

Miscellaneous

Networking

Wormhole

Tcl/Tk Graphics Demos

Higher-Order Functions

The Almagest 12-25

Ptolemy Last updated: 6/13/97

tions as AND, NAND, OR, NOR, XOR, XNOR and inverter
gates. The three test signals consist of square waves with peri-
ods 2, 4, and 6.

merge Demonstrate theMerge star. The star is fed two streams of reg-
ular arrivals, one a ramp beginning at 10.0, and one a ramp
beginning at 0.0. The two streams are merged into one, in chro-
nological order, with simultaneous events appearing in arbitrary
order.

realTime Demonstrate the use of theSynchronize andTimer blocks.
Input events from aClock star are held by theSynchronize
star until their time stamp, multiplied by the universe parameter
timeScale, is equal to or larger than the elapsed real time since
the start of the simulation. TheTimer star then measures the
actual (real) time at which theSynchronize output is pro-
duced. The closer the resulting plot is to a straight line with a
slope of one, the more precise the timing of theSynchronize
outputs are.

router Randomly route an irregular but monotonic signal (a Poisson
counting process) through two channels with random delay, and
merge the channel outputs.

sampler Demonstrate theSampler star. A counting process with regular
arrivals at intervals of 5.0 is sampled at regular intervals of 1.0.
As expected, this produces 5 samples for each level of the
counting process.

statistics Compute the mean and variance of a random process using the
Statistics star. The mean and variance are sent to the stan-

FIGURE 12-15: Basic DE demos.

sampler

merge

router switch

upDownCount

conditionals

timeout

realTime

statistics testPacket

logiccaseDemo

binaryCounter 4BitDownCounter

12-26 DE Domain

U. C. Berkeley Department of EECS

dard output when the simulation stops. This action is triggered
by an event produced by theStopTimer star.

switch Demonstrate the use of theSwitch star. A Poisson counting
process is sent to one output of the switch for the first 10 time
units, and to the other output of the switch for the remaining
time.

testPacket Construct packets consisting of five sequential values from a
ramp, send these packets to a server with a random service time,
and then deconstruct the packets by reading the items in the
packet one by one.

timeout Demonstrate the use of theTimeout star. Every time unit, a
timer is set. If after another 0.5 time units have elapsed, the
timer is not cleared, an output is produced to indicate that the
timer has expired. The signal that clears the timer is a Poisson
process with a mean inter-arrival time of one time unit.

upDownCount Demonstrate theUDCounter star. Events are generated at two
different rates to count up and down. The up rate is faster than
the down rate, so the trend is upwards. The value of the count is
displayed every time it changes.

binaryCounter Demonstrate theFlipFlopJK star.

4BitDownCounter Demonstrate the use of the other Flip Flop stars.

12.4.2 Queues, servers, and delays

The palette of demos illustrating queueing systems is shown in figure 12-16. It includes:

blockage Demonstrate a blocking strategy in a queueing network. In a
cascade of two queues and servers, when the second queue fills
up, it prevents any further dequeueing of particles from the first
queue until it once again has space.

delayVsServer Illustrate the difference between theDelay and Server
blocks. TheDelay passes the input events to the output with a

FIGURE 12-16: Queueing system demos

delayVsServer

queueqAndServer

priority

testServers

psServerblockage measureDelay

The Almagest 12-27

Ptolemy Last updated: 6/13/97

fixed time offset. TheServer accepts inputs only after the pre-
vious inputs have been served, and then holds that input for a
fixed offset.

measureDelay Demonstrate the use of theMeasureDelay block to measure
the sojourn time of particles in a simple queueing system with a
single server with a random service time.

priority Demonstrate the use of thePriorityQueue block together
with a Server . The upper input to thePriorityQueue has
priority over the lower input. Thus, when the queue overflows,
data is lost from the lower input.

psServer Demonstrate the processor-sharing server. Unlike other servers,
this server accepts new inputs at any time, regardless of how
busy it is. Accepting a new input, however, slows down the ser-
vice to all particles currently being served.

qAndServer Demonstrate the use of theFIFOQueue and Stack stars
together withServer s. A regular counting process is enqueued
on both stars. The particles are dequeued whenever the server is
free. TheStack is set with a larger capacity than theFIFO-
Queue, so it overflows second. Overflow events are displayed.

queue Demonstrate the use of theFIFOQueue and Stack stars. A
Poisson counting process is enqueued on both stars, and is
dequeued at a regular rate, every 1.0 time units. The output of
theFIFOQueue is always monotonically increasing, because of
the FIFO policy, but the output of theStack need not be. The
Stack is set with a smaller capacity than theFIFOQueue , so it
overflows first. Overflow events are displayed.

testServers Demonstrate servers with random service times (uniform and
exponential).

12.4.3 Networking demos

A major application of the DE domain is the simulation of communication networks. The pal-
ette in figure 12-17 contains such network simulations. The demos are:

FlushNet Simulate a queue with “input flushing” during overflow. If the
queue reaches capacity, all new arrivals are discarded until all

FIGURE 12-17: Networking demos

LBTest VClockFlushNet
wireless
Network

12-28 DE Domain

U. C. Berkeley Department of EECS

items in the queue have been served.

LBTest Simulate leaky bucket network rate controllers. These control-
lers moderate the flow of packets to keep them within specified
rate and burstiness bounds.

VClock Model a network with four inputs and virtual clock buffer ser-
vice.

wirelessNetwork Demonstrate shared media communication without graphical
connectivity, usingEtherSend andEtherRec stars. Two clus-
ters on the left transmit to two clusters on the right over two dis-
tinct media, radio and infrared. The communication is
implemented using shared data structures between the stars.

12.4.4 Miscellaneous demos

The palette in figure 12-18 shows miscellaneous demos. The first two of these model continu-
ous-time random processes, although only discrete-time samples of these processes can be
displayed.

shotNoise Generate a continuous-time shot-noise process and display reg-
ularly spaced samples of it. The shot noise is generated by feed-
ing a Poisson process into aFilter star.

hdShotNoise Generate a high-density shot noise process and verify its
approximately Gaussian distribution by displaying a histogram.

The following demos illustrate the use of the DE domain for high-level modeling of protocols
for sharing hardware resources.

roundRobin Simulate shared memory with round-robin arbitration at a high
level.

prioritized Simulate a shared memory with prioritized arbitration at a high
level.

FIGURE 12-18: Miscellaneous demos.

shotNoise hdShotNoise

BERKELEY UNIFIED SCHOOL DISTRICT

roundRobin

BERKELEY UNIFIED SCHOOL DISTRICT

prioritized

speechcode shave

Sound-making demos:

Shot noise: Hardware modeling

The Almagest 12-29

Ptolemy Last updated: 6/13/97

The following demos make sounds.

speechcode Perform speech compression with a combination of silence
detection, adaptive quantization, and adaptive estimation. After
speech samples are read from a file, they are encoded, pack-
etized, depacketized, decoded, and played on the workstation
speaker.

shave Demonstrate theSynchronize star to generate a beeping
sound with a real-time rhythm.

12.4.5 Wormhole demos

The palette in figure 12-19 shows some simple demonstrations of multiple domain simula-
tions. Each of these combines SDF with DE. The demos are:

distortion Show the effects on real-time signals of a highly simplified
packet-switched network. Packets can arrive out of order, and
they can also arrive too late to be useful. In this simplified sys-
tem, a sinusoid is generated in the SDF domain, launched into a
communication network implemented in the DE domain, and
compared to the output of the communication network. Plots
are given in the time and frequency domains of the sinusoid
before and after the network.

distortionQ Similar to the distortion demo. The only difference is in the
reorderQ wormhole, which introduces queueing.

worm Show how easy it is to use SDF stars to perform computation on
DE particles. A Poisson process where particles have value 0.0
is sent into an SDF wormhole, where Gaussian noise is added to
the samples.

four_level A four level SDF/DE/SDF/DE system.

FIGURE 12-19: Wormhole demos

wormdistortion distortionQ

four_level sources block

12-30 DE Domain

U. C. Berkeley Department of EECS

sources Show how to use an SDF star as a source by using a dummy
input into the SDF system. The SDF subsystem fires instanta-
neously from the perspective of DE. TheschedulePeriod SDF
target parameter has no effect.

block The schedulePeriod parameter of the SDF target determines
how the inside of the DE system interprets the timing of events
arriving from SDF. When several samples are produced in one
iteration, as here, the time stamps of the corresponding events
are uniformly distributed over the schedule period.

12.4.6 Tcl/Tk Demos

The palette in figure 12-20 contains the Tcl/Tk demos

buttons DemonstrateTkButtons by having the buttons generate events
asynchronously with the simulation.

displays Demonstrate some of the interactive displays in the DE domain.

slider DemonstrateTkSlider by having the slider produce events
asynchronously. The asynchronous events are plotted together
with a clock, which produces periodic outputs in simulated
time. Notice that the behavior is roughly the same regardless of
the interval of the clock.

sources A Tcl script writes asynchronously to its output roughly period-
ically in real time (using the Tk “after” command). The asyn-
chronous events are plotted together with a clock, which
produces periodic outputs in simulated time. Notice that the plot
looks roughly the same regardless of the interval of the clock.

stripChart Demonstrate theTkStripChart by plotting several different

displays sourcessliderbuttons

xyplotstripChart

g

FIGURE 12-20: Tcl/Tk DE demos

The Almagest 12-31

Ptolemy Last updated: 6/13/97

sources.

xyplot Display queue size as a function of time with an exponential
random server.
Note that theTkPlot star overlays the plots as time progresses,
which the TkXYPlot star does not. Thus, the points on the
TkXYPlot star go off the screen to the right. TheTkStrip-
Chart star records the entire history.

12.4.7 HOF Demos

For information on the HOF demos, see “HOF demos in the DE domain” on page 6-
20.

12-32 DE Domain

U. C. Berkeley Department of EECS

Chapter 13. CG Domain

Authors: Joseph T. Buck
Soonhoi Ha
Christopher Hylands
Edward A. Lee
Praveen Murthy
Thomas Parks
José Luis Pino
Kennard White

13.1 Introduction
The Code Generation (CG) domain and its derivative domains, such as the CG56

domain (Motorola DSP56000) and the C language (CGC) domain, are used to generate code
rather than to run simulations. Only the derivative domains are of practical use for generating
code. The stars in the CG domain itself can be thought of as “comment generators”; they are
useful for testing and debugging schedulers and for little else. The CG domain is intended as a
model and a collection of base classes for derivative domains. This section documents the
common features and general structure of all code generation domains.

All the code generation domains that are derived from the CG domain in this release
obey SDF semantics and can thus be scheduled at compile time. Internally, however, the CG
only assumes that stars obey data flow semantics. Currently, we have implemented two
approaches for data-dependent execution, CGDDF, which recognizes and implements certain
commonly used programming constructs [Sha92], and BDF (“Boolean dataflow” or the token-
flow model) [Buc93c]. Even when these are implemented, the vast majority of stars in any
given application should obey the SDF rules to permit efficient multiprocessor code genera-
tion.

A key feature of code generation domains is the notion of a target architecture. Every
application must have a user-specified target architecture, selected from a set of targets sup-
ported by the user-selected domain. Every target architecture is derived from the base class
Target , and controls such operations as scheduling, compiling, assembling, and download-
ing code. Since the target controls scheduling, multiprocessor architectures can be supported
with automated task partitioning and synchronization.

Another feature of the code generation domains is the ability to use different schedul-
ers. A key idea in Ptolemy is that there is no single scheduler that is expected to handle all sit-
uations. We have designed a suite of specialized schedulers that can be mixed and matched for
specific applications. Some targets in the CG domain, in addition to serving as base classes for
derived domains, allow the user to experiment with these various schedulers.

13.2 Targets
A code generation Domain is specific to the language generated, such as C (CGC) and

13-2 CG Domain

U. C. Berkeley Department of EECS

DSP56000 assembly code (CG56). In previous versions of Ptolemy, we released code genera-
tion domains for the Sproc assembly language [Mur93], the DSP96000 assembly language,
and the Silage language. Each code generation domain has a default target which defines rou-
tines generic to the target language. These targets are derived from targets defined in the CG
domain.

A Target object has methods for generating a schedule, compiling the code, and run-
ning the code (which may involve downloading code to the target hardware and beginning its
execution). There also may be child targets (for representing multiprocessor targets) together
with methods for scheduling the communication between them. Targets also have parameters
that are user specified. There are four targets in the CG domain; these are described below.

13.2.1 default-CG

This target is the default target for the CG domain. It allows the user to experiment
with the various uniprocessor schedulers. Currently, there is a suite of schedulers that generate
schedules of various forms of optimality. For instance, the default SDF scheduler generates
schedules that try to minimize the amount of buffering required on arcs, while the loop sched-
ulers try to minimize the amount of code that is generated. Refer to the schedulers section in
this chapter for a discussion on these schedulers. There are only two parameters for this target:

directory (STRING) Default =$HOME/PTOLEMY_SYSTEMS
This is the directory to which all generated files will be written
to.

looping Level (STRING) Default =ACYLOOP
The choices are DEF, CLUST, SJS, or ACYLOOP. Case does
not matter; ACYLOOP is the same as AcyLoOP. If the value is
DEF, no attempt will be made to construct a looped schedule.
This can result in very large programs for multirate systems,
since inline code generation is used, where a codeblock is
inserted for each appearance of an actor in the schedule. Setting
the level to CLUST invokes a quick and simple loop scheduler
that may not always give single appearance schedules. Setting it
to SJS invokes the more sophisticated SJS loop scheduler
[Bha93c], which can take more time to execute, but is guaran-
teed to find single appearance schedules whenever they exist.
Setting it to ACYLOOP invokes a scheduler that generates sin-
gle appearance schedules optimized for buffer memory usage
[Mur96][Bha96], as long as the graph is acyclic. If the graph is
not acyclic, and ACYLOOP has been chosen, then the target
automatically reverts to the SJS scheduler. For backward com-
patibility, “0” or “NO”, “1”, and “2” or “YES” are also recog-
nized, with “0” or “NO” being DEF, “1” being CLUST, and “2”
or “YES” being SJS. NOTE: Loop scheduling only applies to
uniprocessor targets; hence, this parameter does not appear in
theFullyConnected target.

In addition to these parameters, there are a number of parameters that are in this target

The Almagest 13-3

Ptolemy Last updated: 11/6/97

that are not visible to the user. These parameters may be made visible to the user by derived
targets. The complete list of these parameters follows:

host (STRING) Default =
The default is the empty string. This is the host machine to com-
pile or assemble code on. All code is written to and compiled
and run on the computer specified by this parameter. If a remote
computer is specified here thenrsh commands are used to
place files on that computer and to invoke the compiler. You
should verify that your .rhosts file is properly configured so that
rsh will work.

file (STRING) Default =
The default is the empty string. This represents the prefix for
file names for all generated files.

display? (INT) Default =YES
If this flag is set toYES, then the generated code will be dis-
played on the screen.

compile? (INT) Default =YES
If this flag is set toYES, then the generated code will be com-
piled (or assembled).

load? (INT) Default =YES
If this flag is set toYES, then the compiled code will be loaded
onto a chip.

run? (INT) Default =YES
If this flag is set toYES, then the generated code is run.

13.2.2 bdf-CG

This target demonstrates the use of BDF semantics in code generation. It uses the BDF
scheduler to generate code. See the BDF domain documentation for more information on
BDF scheduling. There is only one target parameter available to the user; thedirectory
parameter above. This parameter has the same functionality as above.

13.2.3 FullyConnected

This target models a fully connected multiprocessor architecture. It forms the base-
class for all multiprocessor targets with the fully connected topology. Its parameters are
mostly to do with multiprocessor scheduling.

The parameters for FullyConnected are:

nprocs (INT) Default =2
Number of processors in the target architecture.

sendTime (INT) Default =1
This is the time required, in processor cycles, to send or receive
one datum in the multiprocessor architecture. Sending and
receiving are assumed to take the same amount of time.

13-4 CG Domain

U. C. Berkeley Department of EECS

oneStarOneProc (INT) Default =NO
If this is YES, then all invocations of a star are scheduled onto
the same processor.

manualAssignment (INT) Default =NO
If this is YES, then the processor assignment is done manually
by the user by setting theprocId state in each star.

adjustSchedule (INT) Default =NO
If this isYES, then the automatically generated schedule is over-
ridden by manual assignment. This feature requires improve-
ments in the user interface before it can be implemented; hence,
the default isNO.

childType (STRINGARRAY) Default =default-CG
This parameter specifies the names of the child targets, sepa-
rated by spaces. If the number of strings is fewer than the num-
ber of processors specified by thenprocs parameter, the
remaining processors are of type given by the last string. For
example, if there are four processors, andchildType is set to
default-CG56[2] default-CGC , then the first two child
targets will be of typedefault-CG56 , and the next two of type
default-CGC .

resources (STRINGARRAY) Default =
The default is the empty string. This parameter defines the spe-
cific resources that child targets have, separated by “;”. For
example, if the first processor has I/O capabilities, this would be
specified asSTDIO. Then, stars that requestSTDIO would be
scheduled onto the first processor.

relTimeScales (INTARRAY) Default =1
This defines the relative time scales of the processors corre-
sponding to child targets. This information is needed by the
scheduler in order to compute scheduling costs. The number of
entries here should be the same as the number of processors; if
not, then the last entry is used for the remaining processors. The
entries reflect the relative computing speeds of different proces-
sors, and are expressed as relative cycle times. For example, if
there is a DSP96000 (32Mhz) and a DSP56000 (20Mhz), the
relative cycle times are 1 and 1.6. The default is 1 (meaning that
all processors have the same computing speed).

ganttChart (INT) Default =YES
If this is YES, then the Gantt chart containing the generated
schedule is displayed.

logFile (STRING) Default =
This is the name of the file to which a log will be written of the
scheduling process. This is useful for debugging schedulers. If

The Almagest 13-5

Ptolemy Last updated: 11/6/97

no file name is specified, no log is generated.

amortizedComm (INT) Default =NO
If this is YES, the scheduler will try to reduce the communica-
tion overhead by sending multiple samples per send. This has
not really been implemented yet.

schedName(DL,HU,DC,HIER,CGDDF)
(STRING) Default =DL
Using theschedName parameter, a user can select which paral-
lel scheduling algorithm to use. There are three basic SDF par-
allel scheduling algorithms. The first two can be used for
heterogeneous processors, while the last can only be used for
homogeneous processors.

HU selects a scheduling algorithm based on the classical work
by T. C. Hu [Hu61]. This scheduler ignores the interprocessor
communication cost (IPC) during scheduling and thus may
result in unrealistic schedules. The next two scheduling algo-
rithms take into IPC.

DL selects Gil Sih's dynamic level scheduler [Sih93a] (default).

DC selects Gil Sih's declustering algorithm [Sih93b]. This
scheduler only supports homogeneous multiprocessor targets. It
is more expensive than theDL andHU schedulers, so should be
used only if theDL andHU schedulers produce poor schedules.

HIER selects a preliminary version of José Luis Pino’s hierar-
chical scheduler [Pin95]. With this scheduler, the user can spec-
ify a top-level parallel scheduler from the three listed above and
also specify uniprocessor schedulers for individual galaxies.
The default top-level scheduler isDL; to specify another use the
following syntax:HIER(HU) or HIER(DC) . To specify a uni-
processor scheduler for a galaxy, add a new galaxy string
parameter namedScheduler and set it to eitherCluster (loop-
ing level 1),Loop (looping level 2) orSDFScheduler (looping
level 0). See section 13.3.1 for more information on the unipro-
cessor schedulers.

CGDDF1 selects Soonhoi Ha’s dynamic construct scheduler
[Ha92]. A dynamic construct, clustered as a star instance, can
be assigned to multiple processors. In the future, we may want
to schedule a star exploiting data-parallelism. A star instance

1. Note that in Ptolemy0.6, the CGDDF scheduler is not compiled into the default binaries. See “Bugs
in pigi” on page A-34 for details.

13-6 CG Domain

U. C. Berkeley Department of EECS

that can be assigned to multiple processors is called a “macro”
actor.MACRO scheduler is expected to allow the macro actors.
For now, however,MACRO scheduler is not implemented.

13.2.4 SharedBus

This third target, also a multiprocessor target, models a shared-bus architecture. In this
case, the scheduler computes the cost of the schedule by imposing the constraint that more
than one send or receive cannot occur at the same time (since the communication bus is
shared).

13.3 Schedulers
Given a Universe of functional blocks to be scheduled and a Target describing the

topology and characteristics of the single- or multiple-processor system for which code is to
be generated, it is the responsibility of the Scheduler object to perform some or all of the fol-
lowing functions:

 • Determine which processor a given invocation of a given Block is executed on (for
multiprocessor systems).

 • Determine the order in which actors are to be executed on a processor.

 • Arrange the execution of actors into standard control structures, like nested loops.

If the program graph follows SDF semantics, all of the above steps are done statically
(i.e. at compile time). A dataflow graph with dynamic constructs uses the minimal runtime
decision making to determine the execution order of actors.

13.3.1 Single-Processor Schedulers

For targets consisting of a single processor, we provide three different scheduling tech-
niques. The user can select the most appropriate scheduler for a given application by setting
the loopingLevel target parameter.

In the first approach (loopingLevel = DEF), which is the default SDF scheduler, we
conceptually construct the acyclic precedence graph (APG) corresponding to the system, and
generate a schedule that is consistent with that precedence graph. Note that the precedence
graph is not physically constructed. There are many possible schedules for all but the most
trivial graphs; the schedule chosen takes resource costs, such as the necessity of flushing reg-
isters and the amount of buffering required, into account. The target then generates code by
executing the actors in the sequence defined by this schedule. This is a quick and efficient
approach when the SDF graph does not have large sample-rate changes. If there are large sam-
ple-rate changes, the size of the generated code can be huge because the codeblock for an
actor might occur many times (if the number of repetitions for the actor is greater than one); in
this case, it is better to use some form ofloop scheduling.

The second approach we callJoe’s scheduling. In this approach (loopingLevel =
CLUST), actors that have the same sample rate are merged (wherever this will not cause dead-
lock) and loops are introduced to match the sample rates. The result is a hierarchical cluster-
ing; within each cluster, the techniques described above can be used to generate a schedule.
The code then contains nested loop constructs together with sequences of code from the

The Almagest 13-7

Ptolemy Last updated: 11/6/97

actors.

Since the second approach is a heuristic solution, there are cases where some looping
possibilities go undetected. By setting theloopingLevel to SJS, we can choose the third
approach, calledSJS (Shuvra-Joe-Soonhoi) scheduling after the inventor’s first names. After
performing Joe’s scheduling at the front end, it attacks the remaining graph with an algorithm
that is guaranteed to find the maximum amount of looping available in the graph. That is, it
generates a single appearance schedule whenever one exists.

A fourth approach, obtained by settingloopingLevel to ACYLOOP, we choose a
scheduler that generates single appearance schedules optimized for buffer memory usage.
This scheduler was developed by Praveen Murthy and Shuvra ‘Bhattacharyya [Mur96]
[Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the universe is not
acyclic, it automatically resets theloopingLevel target parameter to SJS. Basically, for a given
SDF graph, there could be many different single appearance schedules. These are all opti-
mally compact in terms of schedule length (or program memory in inline code generation).
However, they will, in general, require differing amounts of buffering memory; the difference
in the buffer memory requirement of an arbitrary single appearance schedule versus a single
appearance schedule optimized for buffer memory usage can be dramatic. In code generation,
it is essential that the memory consumption be minimal, especially when generating code for
embedded DSP processors since these chips have very limited amounts of on-chip memory.
Note that acyclic SDF graphs always have single appearance schedules; hence, this scheduler
will always give single appearance schedules. If thefile target parameter is set, then a sum-
mary of internal scheduling steps will be written to that file. Essentially, two different heuris-
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one of
the two is selected. The generated file will contain the schedule generated by each algorithm,
the resulting buffer memory requirement, and a lower bound on the buffer memory require-
ment (called BMLB) over all possible single appearance schedules.

If the second, third, or fourth approaches are taken, the code size is drastically reduced
when there are large sample rate changes in the application. On the other hand, we sacrifice
some efficient buffer management schemes. For example, suppose that star A produces 5 sam-
ples to star B which consumes 1 sample at a time. If we take the first approach, we schedule
this graph as ABBBBB and assign a buffer of size 5 between star A and B. Since each invoca-
tion of star B knows the exact location in the allocated buffer from which to read its sample,
each B invocation can read the sample directly from the buffer. If we choose the second or
third approach, the scheduling result will be A5(B). Since the body of star B is included inside
a loop of factor 5, we have to use indirect addressing for star B to read a sample from the
buffer. Therefore, we need an additional buffer pointer for star B (memory overhead), and one
more level of memory access (run-time overhead) for indirect addressing.

13.3.2 Multiple-Processor Schedulers

The first step in multiprocessor scheduling, or parallel scheduling, is to translate a
given SDF graph to an acyclic precedence expanded graph (APEG). The APEG describes the
dependency between invocations of blocks in the SDF graph during execution of one iteration.
Refer to the SDF domain documentation for the meaning of one iteration. Hence, a block in a
multirate SDF graph may correspond to several APEG nodes. Parallel schedulers schedule the
APEG nodes onto processors. Unfortunately, the APEG may have a substantially greater (at

13-8 CG Domain

U. C. Berkeley Department of EECS

times exponential) number of nodes compared to the original SDF graph. For this a hierarchi-
cal scheduler is being developed that only partially expands the APEG [Pin95].

We have implemented three basic scheduling techniques that map SDF graphs onto
multiple-processors with various interconnection topologies: Hu’s level-based list scheduling,
Sih’s dynamic level scheduling [Sih93a], and Sih’s declustering scheduling [Sih93b]. The tar-
get architecture is described by its Target object. TheTarget class provides the scheduler
with the necessary information on the number of processors, interprocessor communication
etc., to enable both scheduling and code synthesis.

The hierarchical scheduler can use any one of the three basic parallel schedulers as the
top-level scheduler. The current implementation supports user-specified clustering at galaxy
boundaries. These galaxies are assumed to compose into valid SDF stars in which the SDF
parameters are derived from the internal schedule of the galaxy. During APEG expansion,
these compositions are opaque; thus, the entire galaxy is treated as a single SDF star. Using
hierarchical scheduling techniques, we have realized multiple orders of magnitude speedup in
scheduling time and multiple orders of magnitude reduction of memory usage. See [Pin95] for
more details.

The previous scheduling algorithms could schedule SDF graphs, theCGDDF scheduler
can also handle graphs with dynamic constructs. See section 13.5 for more details.

Whichever scheduler is used, we schedule communication nodes in the generated
code. For example, if we use Hu’s level-based list scheduler, we ignore communication over-
head when assigning stars to processors. Hence, the generated code is likely to contain more
communication code than with the other schedulers that do not ignore the IPC overhead.

There are other target parameters that direct the scheduling procedure. If the parameter
manualAssignment is set toYES, then the default parallel scheduler does not perform star
assignment. Instead, it checks the processor assignment of all stars (set using theprocId state
of CG and derived stars). By default, theprocId state is set to -1, which is an illegal assign-
ment since the child target is numbered from 0. If there is any star, except theFork star, that
has an illegalprocId state, an error is generated saying that manual scheduling has failed. Oth-
erwise, we invoke a list scheduler that determines the order of execution of blocks on each
processor based on the manual assignment. We do not support the case where a block might
require more than one processor. ThemanualAssignment target parameter automatically sets
theoneStarOneProc state toYES; this is discussed next.

If there are sample rate changes, a star in the program graph may be invoked multiple
times in each iteration. These invocations may be assigned to multiple processors by default.
We can prevent this by setting theoneStarOneProc state toYES. Then, all invocations of a star
are assigned to the same processor, regardless of whether they are parallelizable or not. The
advantage of doing this is the simplicity in code generation since we do not need to splice in
Spread/Collect stars, which will be discussed later. Also, it provides us another possible
scheduling option,adjustSchedule; this is described below. The main disadvantage of setting
oneStarOneProc to YES is the performance loss of not exploiting parallelism. It is most severe
if Sih’s declustering algorithm is used. Therefore, Sih’s declustering algorithm is not recom-
mended with this option.

In this paragraph, we describe a future scheduling option that this release does not sup-
port yet. Once automatic scheduling (withoneStarOneProc option set) is performed, the pro-

The Almagest 13-9

Ptolemy Last updated: 11/6/97

cessor assignment of each star is determined. After examining the assignment, the user may
want to override the scheduling decision manually. It can be done by setting theadjustSched-
ule parameter. If that parameter is set, after the automatic scheduling is performed, theprocId
state of each star is automatically updated with the assigned processor. The programmer can
override the scheduling decision by changing the value of theprocId state. TheadjustSchedule
parameter cannot beYES before any scheduling decision has been made previously. Again,
this option is not supported in this release.

Regardless of which scheduling options are chosen, the final stage of the scheduling is
to decide the execution order of stars including send/receive stars. This is done by a simple list
scheduling algorithm in each child target. The final scheduling results are displayed on a Gantt
chart.

The Gantt Chart Display

Demos that use targets derived fromCGMultiTarget can produce an interactive
Gantt chart display for viewing the parallel schedule.

The Gantt chart display involves a single window for displaying the Gantt chart, which
provides scroll bars and zoom buttons for controlling how much of the Gantt chart is shown in
the display canvas.

The display canvas represents each star schedule as a box drawn through the time
interval over which it is scheduled. If the name of a star can fit in its box, it is printed inside. A
vertical bar inside the canvas identifies stars which cannot be labeled. The names of the stars
which this bar passes through are printed alongside their respective processor numbers. The
bar can be moved horizontally by pressing the left mouse button while on the star to be identi-
fied. The stars which the bar passes through are identified by having their icons highlighted in
thevem window.

Here is a summary of commands that can be used while the Gantt chart display is
active:

To change the area of the Gantt chart inside the display canvas:

Use the scroll bars to move along the Gantt chart in the direction desired.

Click on the zoom buttons to increase or decrease the size of the Gantt chart.

To move the vertical bar to the mouse inside the display window:

Depress and drag the left mouse button inside the display window. The left and right
cursor keys move the bar by one time interval; shift-left and shift-right move the bar by ten
time intervals.

To exit the Gantt chart display program:

Type control-D inside the display window or click on the dismiss button.

The Gantt chart can also be run as a standalone program to display a schedule previ-
ously saved by the Gantt chart:

gantt schedule_filename

A number of limitations exists in the Gantt chart display widget. There are a fixed
(hard-coded) number of colors available for coloring processors and highlighting icons. The
print function does not work because the font chosen by the font manager is not guaranteed to

13-10 CG Domain

U. C. Berkeley Department of EECS

be Postscript convertible. The save function saves the schedule in the Ptolemy 0.5 format
which is different from the Ptolemy 0.6 format generated by the various domains.

13.4 Interfacing Issues
For the 0.6 release, we have developed a framework for interfacing code generation

targets with other targets (simulation or code generation). The concepts behind this new infra-
structure are detailed in [Pin96]. Currently, only a few of our code generation targets support
this new infrastructure including: CGCTarget (CGC Domain), S56XTarget (CG56 Domain),
SimVSSTarget (VHDL Domain).

The code generation targets that support this infrastructure can be mixed arbitrarily in
an application specification, and can also be embedded within simulation wormholes (i.e. a
CG domain galaxy embedded within a simulation-SDF galaxy).

This infrastructure requires that each target provide CGC communication stars that can
be targeted to the Ptolemy host workstation. The current implementation does not support spe-
cialized communication links between two individual code generation targets, but rather
builds the customized links from the communication primitives written in C. To learn how to
support a new target in this infrastructure, refer to theCode Generation chapter in thePro-
grammer’s Manual.

13.4.1 Interface Synthesis between Code Generation Targets

To interface multiple code generation targets, you must set the target parameter for the
top-level galaxy to CompileCGSubsystems. The target parameters for CompileCGSubsystems
are identical to those of the FullyConnected target, detailed in section 13.2.3. You must
declare each individual target in thechildType CompileCGSubsystems target parameter list.
The first of these child targets must be a CGC target whose code will be run on the Ptolemy
host workstation. The processor mapping of each star is user-specified by setting either the
procId star parameter or setting the domain for the current galaxy. The interconnect between
the stars to be mapped onto different targets can be totally arbitrary. A demonstration
(included in the release) which mixes targets in the VHDL, CG56 and CGC domains is shown
in figure 13-1.

13.4.2 Interface Synthesis between Code Generation and Simulation Domains

The interfacing of code generation targets with simulation targets is more restricted
than interfacing only code generation targets. Unlike the previous case, where the star inter-
connect could be arbitrary, we require that the simulation targets be used at a higher level in
the user-specification than all of the code generation targets. This restriction enables us to cre-
ate simulation SDF star wrappers for each of the code generation subsystems. This generated
star can then be added to the user star palette by creating an icon for it using the pigimake-star
command (See “Editing Icons” on page 2-34.).

The top-level galaxy for each code generation subsystem should have its target set to
either CompileCGSubsystems or CreateSDFStar. The CompileCGSubsystems target should
be used if more than one code generation target is used. ThechildType target parameter
(described in the previous section) should list the child targets to use. The first child target
listed must be the CreateSDFStar target. The CreateSDFStar is actually a CGC target that gen-

The Almagest 13-11

Ptolemy Last updated: 11/6/97

erates ptlang code for all of the communication between the various targets and Ptolemy.

If only CGC stars are being used in a code generated subsystem, we have no need for
the multiprocessor target CompileCGSubsystems, but rather can use the uniprocessor CGC
target CreateSDFStar.

13.5 Dynamic constructs in CG domain
All multiprocessor code generation domains included in previous releases assumed

that the dataflow graph is synchronous (or SDF)—that is, the number of tokens consumed and
produced by each star does not vary at run time. We also assumed that the relative execution
times of blocks was specified, and did not allow blocks with dynamic behavior, such as the
case construct, data-dependent iteration, and recursion. In simulation, however, data-depen-
dent behavior was supported by the DDF (Dynamic Dataflow) domain. The current release
allows data-dependent constructs in the code generation domains, by a new clustering tech-
nique and a new scheduler called the CGDDF scheduler1.

13.5.1 Dynamic constructs as a cluster

Dynamic construct are specified using predefined graph topologies. For example, anif-
then-else construct is represented as a galaxy that consists of two DDF stars,Case andEnd-
Case, and two SDF galaxies to represent the bodies of theTRUE or FALSE branches. The
dynamic constructs supported by the CGDDF scheduler arecase, for, do-while, andrecursion.
Thecase construct is a generalization of the more familiarif-then-else construct. The topology
of the galaxy is matched against a set of pre-determined topologies representing these
dynamic constructs.

1. In version 0.4 of Ptolemy, dynamic constructs were supported with a separate domain called the
CGDDF domain. We have since designed a mechanism for wormhole interfaces to support the
CGDDF domain inside the CG domain. By using clustering instead of wormholes, we were able to
clean up the code significantly in this release

DSP VHDL

Sparc

FIGURE 13-1: Eight channel perfect reconstruction filter bank demonstration using a DSP card, a
VHDL simulator and a UNIX workstation. The generated GUI for the application is
shown on the right.

13-12 CG Domain

U. C. Berkeley Department of EECS

Galaxy is a hierarchical block for structural representation of the program graph.
When an APEG is generated from an SDF graph for parallel scheduling, galaxies are flat-
tened. To handle a dynamic construct as a unit of parallel scheduling, we make a cluster,
called agalaxy cluster, for each dynamic construct. The programmer should indicate the gal-
axies to be clustered by creating a galaxy parameterasFunc and setting its value to YES. For
example, the galaxies associated with the TRUE and the FALSE branch of acase construct
will have theasFunc parameter as well as the galaxy of the construct itself.

13.5.2 Quasi-static scheduling of dynamic constructs

We treat each dynamic construct as a special SDF star and use a static scheduling algo-
rithm. This SDF star is special in the sense that it may need to be mapped onto more than one
processor, and the execution time on the assigned processor may vary at runtime (we assume
it is fixed when we compute the schedule). The scheduling results decide the assignment to
and ordering of blocks on the processors. At run time, we will not achieve the performance
expected from the compile time schedule, because the dynamic constructs behave differently
to the compile-time assumptions. The goal of the CGDDF scheduler is to minimize the
expected makespan of the program graph at run time.

The type of the dynamic construct and the scheduling information related to the
dynamic constructs are defined as galaxy parameters. We assume that the run-time behavior of
each dynamic construct is known or can be approximated with a certain probability distribu-
tion. For example, the number of iterations of afor or do-while construct is such a variable;
similarly, the depth of recursion is a variable of the recursion construct. The parameters to be
defined are as follows:

constructType (STRING) Default =
There is no default, the initial value is the value of the galaxy
parameter.
Type of the dynamic construct. Must be one ofcase , for ,
doWhile , or recur (case insensitive).

paramType (STRING) Default =geometric
Type of the distribution. Currently, we supportgeometric dis-
tribution, uniform distribution, and ageneral distribution
specified by a table.

paramGeo (FLOAT) Default =0.5
Geometric constant of a geometric distribution. Its value is
effective only if the geometric distribution is selected byparam-
Type. If constructType is case , this parameter indicates the
probability of branch 1 (the TRUE branch) being taken. If there
are more than two branches, useparamFile to specify the prob-
abilities of taking each branch.

paramMin (INT) default =1
Minimum value of the uniform distribution, effective only when
theuniform distribution is chosen.

paramMax (INT) default =10

The Almagest 13-13

Ptolemy Last updated: 11/6/97

Maximum value of the uniform distribution, effective only
when theuniform distribution is chosen.

paramFile (STRING) default =defParams
The name of a file that contains the information on the general
distribution. If the construct is acase construct, each line con-
tains the probability of taking a branch (numbered from 0). Oth-
erwise, each line contains the integer index value and the
probability for that index. The indices should be in increasing
order.

Based on the specified run-time behavior distribution, we determine the compile-time
profile of each dynamic construct. The profile consists of the number of processors assigned
to the construct and the (assumed) execution times of the construct on the assigned processors.
Suppose we have afor construct. If the loop body is scheduled on one processor, it takes 6
time units. With two processors, the loop body takes 3 and 4 time units respectively. More-
over, each iteration cycle can be paralleled if skewed by 1 time unit. Suppose there are four
processors: then, we have to determine how many processors to assign to the construct and
how many times the loop body will be scheduled at compile time. Should we assign two pro-
cessors to the loop body and parallelize two iteration cycles, thus taking all 4 processors? Or
should we assign one processor to the loop body and parallelize three iteration cycles, thus
taking 3 processors as a whole? The CGDDF scheduler uses a systematic approach based on
the distribution to answer these tricky scheduling problems [Ha92]. We can manually deter-
mine the number of assigned processors by defining afixedNum galaxy parameter. Note that
we still have to decide how to schedule the dynamic construct with the given number of pro-
cessors. The Gantt chart display will show the profile of the dynamic construct.

13.5.3 DDF-type Stars for dynamic constructs

A code generation domain should have DDF stars to support dynamic constructs with
the CGDDF scheduler. For example, theCase andEndCase stars are used in thecase, do-
while, andrecursion constructs, which differ from each other in the connection topology of
these DDF stars and SDF galaxies. Therefore, if the user wants to use one of the above three
dynamic constructs, there is no need to write a new DDF star. Like a DDF star, theCase star
has dynamic output portholes as shown in theCGCCase.pl file. For example:

 outmulti {
name { output }
type { =input }
num { 0 }

}

The for construct consists of anUpSample type star and aDownSample type star,
where UpSample and DownSample are not the star names but the types of the stars: if a star
produces more than it consumes, it is called an UpSample star. In the preprocessor file, we
define a methodreadTypeName , as shown below.

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "UpSample"; }

13-14 CG Domain

U. C. Berkeley Department of EECS

}

Examples of UpSample type stars areRepeater andDownCounter . These stars have
a data input and a control input. The number of output data tokens is the value of the integer
control input, and is thus data-dependent. Conversely, we can design a DownSample star that
has the following method:

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "DownSample"; }

}

Examples of DownSample type stars areLastOfN , andSumOfN. These stars have a
data input and a control input. The number of input tokens consumed per invocation is deter-
mined by the value of the control input.

As explained above, all customized DDF-type stars for dynamic constructs will be
either an UpSample type or a DownSample type. We do not expect that a casual user will need
to write new DDF stars if we provide some representative UpSample and DownSample stars
in the corresponding code generation domains. Currently, we have DDF stars in the CGC code
generation domain only.

13.6 Stars
As mentioned earlier, stars in the CG domain are used only to test and debug schedul-

ers. Thus the stars in the palette shown in figure 13-2 on page 13-15 act generate only com-
ments, and allow the user to model star parameters that are relevant to schedulers such as the
number of samples produced and consumed on each firing, and the execution time of the star.
By default, any star that is derived fromCGStar (the base class for all code generation stars),
including all the stars in the CG domain, have the stateprocId. This state is used during man-
ual partitioning to specify the processor that the star should be scheduled on. The default value
of the state is-1 which specifies to the scheduler that automatic partitioning should be used.
Processors are numbered 0,1,2,...; hence, if the state is set to1, then the star will be scheduled
on the second processor in the architecture. Note that the target parametermanualAssignment
should beYES for this to work; ifmanualAssignment is NO, then the value ofprocID will be
ignored (due to a bug in the current implementation). If the user wants to specify a processor
assignment for only a subset of the stars in the system, and do automatic assignment for the
remaining stars, then this is currently not possible. It can be done in a roundabout manner
using theresources parameter. This is done by defining aresources state in the star. The value
of this state is a number that specifies the processor on which this star should go on. The target
parameterresources is left empty. Then, the scheduler will interpret the value of theresources
state as the processor on which the star should be scheduled; stars that do not specify any
resources are mapped automatically by the scheduler.

The resources state just described is used mainly for specifying any special resources
that the star might require in the system. For example, an A/D converter star might require an
input port, and this port is accessible by only a subset of all the processors in the system; in
this case, we would like the A/D star to be scheduled on a processor that has access to the
input port. In order to specify this, theresources state in the star is defined and set to a string

The Almagest 13-15

Ptolemy Last updated: 11/6/97

containing the name of the resource (e.g.,input_port). Use commas to delimit multiple
resources (e.g.,input_port,output_port). The target parameterresources is specified
using the same resource names (e.g.,input_port) as explained in section 13.2.3 on page 13-
3. The scheduler will then schedule stars that request certain resources on processors that have
them. By default, stars do not have theresources state.

The following gives an overview of CG domain stars.

MultiIn Takes multiple inputs and produces one output.

MultiInOut Takes multiple inputs and produces multiple outputs.

MultiOut Takes one input and produces multiple outputs.

RateChange Consumesconsume samples and producesproduce samples.

Sink Swallows an input sample.

Source Generic code generator source star; produces a sample.

Switch This star requires a BDF scheduler. It switches input events to
one of two outputs, depending on the value of the control input.

Through Passes data through. The run time can be set to reflect computa-
tion time.

TestMultirate (five icons) TheTestMultirate stars parallel those in the
SDF domain. These stars are useful for testing schedulers. The
number of tokens produced and consumed can be specified for
each star, in addition to its execution time.

13.7 Demos
There are four demos in the CG domain, shown in figure 13-3; these are explained

SourceSink Through

MultiIn MultiOut RateChangeMultiOut Select

Switch

TestMultirate TestMultirate TestMultirate

output#1

output#2

TestMultirate TestMultirate

input#1

input#2

Experimental Domain
Included for Demonstration Only

These TestMultirate stars parallel those in the SDF domain and are useful
for testing schedulers. The number of tokens produced and consumed can be

specified for each star, in addition to its execution time.

FIGURE 13-2: The CG stars palette.

13-16 CG Domain

U. C. Berkeley Department of EECS

below.

pipeline This demo demonstrates a technique for generation of pipelined
schedules with Ptolemy's parallel schedulers, even though
Ptolemy's parallel schedulers attempt to minimizemakespan
(the time to compute one iteration of the schedule) rather than
maximize the throughput (the time for each iteration in the exe-
cution of a very large number of iterations). Toretime a graph,
we simply add delays on all feedforward arcs (arcs that are not
part of feedback loops). We must not add delays in feedback
loops as that will change the semantics. The effect of the added
delays is to cause the generation of a pipelined schedule. The
delays marked as “(conditional)” in the demo are parameterized
delays; the delay value is zero if the universe parameterretime
is set toNO, and is 100 if the universe parameter is set toYES.
The delay in the feedback loop is always one. Schedules are
generated in either case for a three-processor system with no
communication costs. If this were a real-life example, the pro-
grammer would next attempt to reduce the “100” values to the
minimum values that enable the retimed schedule to run; there
are other constraints that apply as well when there are parallel
paths, so that corresponding tokens arrive at the same star. If the
system will function correctly with zero values for initial values
at points where the retiming delays are added, the generated
schedule can be used directly. Otherwise, apreamble, or partial
schedule, can be prepended to provide initial values.

schedTest This is a simple multiprocessor code generation demo. By
changing the parameters in the RateChange star, you can make
the demo more interesting by observing how the scheduler man-
ages to parallelize multiple invocations of a star.

Sih-4-1 This demo allows the properties of the parallel scheduler to be
investigated, by providing a universe in which the run times of
stars, the number of processors, and the communication cost
between processors can be varied. The problem, as presented by
the default parameters, is to schedule a collection of dataflow
actors on three processors with a shared bus connecting them.
Executing the demo causes a Gantt chart display to appear,
showing the partitioning of the actors onto the three processors.
Clicking the left mouse button at various points in the schedule

Sih-4-1pipeline schedTest useless

FIGURE 13-3: Code Generation demonstrations

The Almagest 13-17

Ptolemy Last updated: 11/6/97

causes the associated stars to be highlighted in the universe pal-
ette. After exiting from the Gantt chart display, code is written
to a separate file for each processor (here the “code” is simply a
sequence of comments written by the dummy CG stars). It is
interesting to explore the effects of varying the communication
costs, the number of processors, and the communication topol-
ogy. To do so, execute theedit-target command (type 'T'). A
display of possible targets comes up. Of the available options,
only SharedBus andFullyConnected will use the parallel
scheduler, so select one of them and click on "Ok". Next, a dis-
play of target parameters will appear. The interesting ones to
vary arenprocs, the number of processors, andsendTime, the
communication cost. Try using two or four processors, for
example. Sometimes you will find that the scheduler will not
use all the processors. For example, if you make the communi-
cation cost very large, everything will be placed on one proces-
sor. If the communication cost is 1 (the default), and four
processors are provided, only three will be used.

useless This is a simple demo of the dummy stars provided in the CG
domain. Each star, when executed, adds code to the target. On
completion of execution for two iterations, the accumulated
code is displayed in a popup window, showing the sequence of
code produced by the three stars.

13-18 CG Domain

U. C. Berkeley Department of EECS

The Almagest 14-1

Ptolemy Last updated: 12/1/97

Chapter 14. CGC Domain

Authors: Joseph Buck
Soonhoi Ha
Christopher Hylands
Edward A. Lee
Thomas M. Parks

Other Contributors: Kennard White
Mary Stewart

14.1 Introduction
The CGC domain generates code for the C programming language. This domain sup-

ports both synchronous dataflow (SDF, see “SDF Domain” on page 5-1) and Boolean-con-
trolled dataflow (BDF, see “BDF Domain” on page 8-1) models of computation. The model
associated with a particular program graph is determined by which target is selected. The
bdf-CGC target supports the BDF model, while all other targets in the CGC domain support
only the SDF model. Code can be generated for both single-processor and multi-processor
computers. The targets that support single processors includedefault-CGC , Makefile_C ,
TclTk_Target , andbdf-CGC . The multi-processor targets areunixMulti_C andNOWam.

14.2 CGC Targets
The targets of the CGC domain generate C code from dataflow program graphs. Code

generation is controlled by thehost, directory, andfile parameters as described in “Targets” on
page 13-1. The command used to compile the code is determined by thecompileCommand,
compileOptions, andlinkOptions parameters. Compilation and execution are controlled by the
display?, compile?, andrun? parameters, also described in “Targets” on page 13-1. The other
parameters common to all CGC targets are listed below. Not all of these parameters are made
available to the user by every target, and some targets define additional parameters.

staticBuffering (INT) Default =TRUE
If TRUE, then attempt to use static, compile-time addressing of
data buffers between stars. Otherwise, generate code for
dynamic, run-time addressing.

funcName (STRING) Default =main
The name of the main function. The default value ofmain is
suitable for generating stand-alone programs. Choose another
name if you wish to use the generated code as a procedure that
is called from your own main program.

compileCommand (STRING) Default =cc
Command name of the compiler.

14-2 CGC Domain

U. C. Berkeley Department of EECS

compileOption (STRING) Default =
Options passed to the compiler. The default is the empty string.

linkOptions (STRING) Default =-lm
Options passed to the linker.

resources (STRING) Default =STDIO
List of abstract resources that the host computer has.

14.2.1 Single-Processor Targets

Thedefault-CGC target generatesC code for a single processor from a SDF program
graph. The parameters available to the user are shown in Table 14-1, “Parameters of the
default-CGC target,” on page 14-2. See “Targets” on page 13-1 and “CGC Targets” on
page 14-1 for detailed descriptions of these parameters.

compile? file Looping Level
compileCommand funcName resources
compileOptions host run?
directory linkOptions staticBuffering
display?

TABLE 14-1: Parameters of the default-CGC target

The Makefile_C target compiles CGC binaries with makefiles so that compile time
architecture and site dependencies can be handled. TheMakefile_C target generates a small
makefile that isrcp ’d over to the remote machine. The generated makefile is named after the
universe. If the universe is calledbigBang , then the makefile will be calledbigBang.mk . We
name the generated makefiles so that more than one makefile can exist in the users’ directory.

The generated makefile uses$PTOLEMY/lib/cgc/makefile_C.mk as a starting
point, and then appends lines to it. The generated makefile includes$PTOLEMY/mk/config-
$PTARCH.mk, which determines architecture and site dependencies, such as which compiler
to use, or where the X11 include files are. The user may modifymakefile_C.mk and add
site-dependent rules and variables there. If the user wants to have site dependent include files
on the remote machines, then they could addinclude $(ROOT)/mk/mysite.mk to
makefile_C.mk , and that file would be included on the remote machines at compile time.

On the remote machine, theMakefile_C target assumes:

 • $PTOLEMY and$PTARCH are set on the remote machine whenrsh ing.

 • $PTOLEMY/mk/config-$PTARCH.mk and any makefile files included by that file are
present.

 • A make binary is present. TheMakefile_C target does not assume GNUmake, so
the defaultmakefile_C.mk does not includemk/common.mk . The reason not to
assume GNUmake is that we are not sure what the user’s path is like when they log in.
The user can require that GNUmake be used by setting theskeletonMakefile target
parameter to the name of a makefile that requires GNUmake.

If the remote machine does not fulfill these constraints, then the user should use the

The Almagest 14-3

Ptolemy Last updated: 12/1/97

Default_C target.

skeletonMakefile (STRING) Default=
The default value of this target parameter is the empty string,
which means that we use $PTOLEMY/lib/cgc/
makefile_C.mk as our skeleton makefile. If this parameter is
not empty then the value of the parameter refers to the skeleton
makefile to be copied into the generated makefile.

appendToMakefile (INT) Default =1
This target parameter controls whether we append rules to the
generated makefile or just copy it over to the remote machine.
In the default situation,appendToMakefile is true and we
append our rules after copying$PTOLEMY/lib/cgc/
makefile_C.mk

The parent target of theMakefile_C target isdefault-CGC . If the parent target
parametercompileOptions is set, then we process any environment variables in that string, and
then add it to the end of the generated makefile as part ofOTHERCFLAGS=. In a similar fash-
ion, the parent target parameterlinkOptions ends up as part of the right-hand side of
LOADLIBES=.

The TclTk_Target target, which is derived from theMakefile_C target, must be
used when Tcl/Tk stars are present in the program graph. The initial default of one parameter
differs from that of the parent target.

skeletonMakefile (STRING) Default=$PTOLEMY/lib/cgc/TclTk_Target.mk
The TclTk_Target overrides this parent target parameter and
sets it to the name of a skeleton makefile to be copied into the
generated makefile.

The bdf-CGC target supports the BDF model of computation. It must be used when
BDF stars are present in the program graph. It can also be used with program graphs that con-
tain only SDF stars. Thebdf-CGC target has the same parameters as thedefault-CGC target
with the exception that theLooping Level parameter is absent. This is because a loop-generat-
ing algorithm is always used for scheduling. See “BDF Domain” on page 8-1 for details.

14.2.2 Multi-Processor Targets

Currently, the CGC domain supports two multi-processor targets:unixMulti_C and
NOWam. TheunixMulti_C target generates code for multiple networked workstations using a
shared bus configuration for scheduling purposes. Inter-processor communication is imple-
mented by splicing send/receive stars into the program graph. These communication stars use
the TCP/IP protocol. In addition to the target parameters described in “CGC Targets” on
page 14-1 and “Targets” on page 13-1, this target defines the user parameters listed below.
Table 14-2, “Parameters of the unixMulti_C target,” on page 14-4 gives the complete list of
parameters for theunixMulti_C target.

14-4 CGC Domain

U. C. Berkeley Department of EECS

adjustSchedule ignoreIPC overlapComm
amortizedComm inheritProcessors portNumber
childType logFile relTimeScales
compile? machineNames resources
directory manualAssignment run?
display? nameSuffix sendTime
file nprocs userCluster
ganttChart oneStarOneProc tabular

TABLE 14-2: Parameters of the unixMulti_C target

portNumber (INT) Default =7654
The starting TCP/IP port number used by send/receive stars.
The port number is incremented for each send/receive pair. It is
the responsibility of the user to ensure that the port number does
not conflict with any that may already be in use.

machineNames (STRING) Default =herschel
The host names of the workstations which form the multi-pro-
cessor. The names should be separated by a comma (‘, ’).

nameSuffix (STRING) Default =
The default is the empty string. The domain suffix for the work-
stations named inmachineNames. If left blank, which is the
default, then the workstations are assumed to be part of the local
domain. Otherwise, specify the proper domain name, including
a leading period. This string is appended to the names in
machineNames to form the fully qualified host names.

TheNOWam target uses Networks Of Workstations (NOW) active messages to commu-
nicate between machines. The NOW project is an effort to use many commodity workstations
to create a building-wide supercomputer. For more information about the NOW project, see
http://now.cs.berkeley.edu . Currently, theNOWam target is still experimental, and
only a proof of concept. TheNOWam target has the following target parameters:

machineName (STRING) Default =lucky, babbage
The host names of the workstations which form the multi-pro-
cessor. The names should be separated by a comma (‘, ’). The
NOWam target will not work on the local machines, the machines
named by this parameter must be remote machines. Note that
the default of this parameter differs from the default in the
UnixMulti_C target.

nameSuffix (STRING) Default =
The default is the empty string. See the description ofnameSuf-
fix in UnixMulti_C above.

14.2.3 Setting Parameters Using Command-line Arguments

The pragma facility allows users to identify any parameters that the user would like to

The Almagest 14-5

Ptolemy Last updated: 12/1/97

be able to change on the command line of the CGC binary. CGC command line arguments has
not been extensively tested yet. Currently, it is only supported for scalar parameters with
FLOAT andINT values. Also, it is only working for parameters of Stars at the top level, i.e. it
will not work with Galaxies’ and Universes’ parameters, or parameters of Stars in Galaxies.

To specify a parameter for setting via the command-line, place the cursor over the Star
and invoke theedit-pragmas command (‘a’). In the dialog box, enter the name of the parame-
ter to be made settable, follow by white space, then the name of the command-line option with
which to set the parameter. This parameter /option-name pair should be entered for each of the
required parameters, with pairs separated by white space.

Now, the generated program will take the new options each followed by a value with
which to set the corresponding parameters. If the command-line option is not specified for a
parameter, it will be initialized to its default value, which will be the value set by theedit-
params command (‘e’). In addition, if the ‘-h ’, ‘ -help ’ or ‘ -HELP’ option is specified, the
program will print the option-names corresponding to the settable parameters with their
default values.

14.3 An Overview of CGC Stars
Figure 14-1 shows the top-level palette of CGC stars. The stars are divided into cate-

gories: sources, sinks, arithmetic functions, nonlinear functions, control, Sun UltraSparc VIS-
conversion, signal processing, boolean-controlled dataflow, Tcl/Tk and higher-order function
(HOF) stars. Icons fordelay , bus , andBlackHole appear in most palettes for easy access.
Many of the stars in the CGC domain have equivalent counterparts in the SDF domain. See
“An overview of SDF stars” on page 5-4 for brief descriptions of these stars. Brief descrip-
tions of the stars unique to the CGC domain are given in the following sections.

14.3.1 Source Stars

Source stars have no inputs and produce data on their outputs. Figure 14-2 shows the
palette of CGC source stars. The following stars are equivalent to the SDF stars of the same

dsp.pal

control.pal

conversion.pal

bdf.pal

TclTcl
tcltk.pal

HOF
hof.pal

comm.pal

logic.pal

cgcvis.pal

Signal Sources

Signal Sinks

Arithmetic

Logic

Signal Processing

Nonlinear Functions

Conversion

CGC/BDF Stars

UltraSparc Visual Instruction Set

Higher Order Functions

Communications

Control Tcl/Tk Graphics

FIGURE 14-1: Top-level palette of stars in the CGC domain

14-6 CGC Domain

U. C. Berkeley Department of EECS

name (see “Source stars” on page 5-5):Const , IIDUniform , Ramp, Rect , singen , Wave-
Form, TclScript , TkSlider , RampFix , RectFix , RampInt , expgen . Stars that are
unique to the CGC domain are described briefly below.

StereoIn Reads Compact Disc format audio data from a file given by
fileName . The file can be the audio port/dev/audio, if
supported by the workstation. The data read is linear 16 bit
encoded and stereo (2 channel) format.

TkStereoIn Just likeStereoIn , except that a Tk slider is put in the master
control panel to control the volume.

MonoIn Reads mon o (1 channel) data with either linear16 or ulaw8
encoding from a file given byfileName . The file can be the
audio port/dev/audio , if supported by the workstation.

TkMonoIn Just likeMonoIn , except that a Tk slider is put in the master
control panel to control the volume.

SGImonoIn (SGI only) Average the stereo audio output of anSGIAudioIn
star into one mono output.

SGIAudioIn (SGI only) Get samples from the audio input port on an Silicon
Graphics workstation.

dtmfKeyPad Generate a Dual-Tone Modulated Frequency (DTMF) signal.

WaveForm

SGIAudioIn

TkImpulseTkEntry

TkSlider
TclTcl

TclScript
TclTcl

TclScript

RampFix RectFix

RampInt

expgen

Const

Const

singen

TkCheckButton TkRadioButtondtmfKeyPad

keyPress

freq1

freq2

StereoIn

left

right

TkStereoIn

left

right

MonoIn TkMonoIn SGImonoIn

Const

Specific to CGC

Fixed-Point Sources

Integer Sources

Complex Sources

FIGURE 14-2: Source stars in the CGC domain

The Almagest 14-7

Ptolemy Last updated: 12/1/97

TkCheckButton A simple Tk on/off input source.

TkEntry Output a constant signal with value determined by a Tk entry
box (default 0.0).

TkImpulse Output a specified value when a button is pushed. Optionally
synchronize by halting until the button is pushed.

TkRadioButton Graphical one-of-many input source.

14.3.2 Sink Stars

Sink stars have no outputs and consume data on their inputs. Figure 14-3 shows the
palette of CGC sink stars. The following stars are equivalent to the SDF stars of the same
name (see “Sink stars” on page 5-9):XMgraph , XYgraph , Xscope , TkBarGraph , TkPlot ,
TKXYPlot , TclScript , Printer. Stars that are unique to the CGC domain are described
briefly below.

StereoOut Writes Compact Disc audio format to a file given byfile-
Name. The file can be the audio port/dev/audio , if supported
by the workstation. The data written is linear 16 bit encoded and
stereo (2 channel) format.

Printer

XMgraph XYgraph Xscope

SGIAudioOut

XMgraph

TkPlotTkPlot TkXYPlot

X

Y

TkBarGraph

TclTcl
TclScript

TclTcl
TclScript

TkBarGraph

Printer

StereoOut

left

right

TkStereoOut

left

right

TkMonoOut MonoOut

SGImonoOut

To customize the number of inputs
of multi-input stars, use the Nop
stars, accessible through the icon
on the upper right.

Batch Plotting Facilities

Textual Displays

Interactive Plotting Facilities

Programmable Sinks

Sound (CGC-Specific)

FIGURE 14-3: Sink stars in the CGC domain

14-8 CGC Domain

U. C. Berkeley Department of EECS

TkStereoOut Just likeStereoOut except that Tk sliders are put in the master
control panel to control the volume and balance.

TkMonoOut Just likeMonoOut except that Tk sliders are put in the master
control panel to control the volume.

MonoOut Writes mono (1 channel) data with either linear16 or ulaw8
encoding to a file given byfileName . The file can be the audio
port /dev/audio , if supported by the workstation. If the
aheadlimit parameter is non-negative, then it specifies the maxi-
mum number of samples that the program is allowed to com-
pute ahead of real time.

SGIAudioOut (SGI Only) Put samples into an audio output port.

SGIMonoOut (SGI Only) A galaxy that takes a mono output and drives the
stereoSGIAudioOut star below.

14.3.3 Arithmetic Stars

Arithmetic stars perform simple functions such as addition and multiplication. Figure
14-4 shows the palette of CGC arithmetic stars. All of the stars are equivalent to the SDF stars
of the same name (see “Arithmetic stars” on page 5-12):Add, Gain , Integrator , Mpy, Sub.

14.3.4 Nonlinear Stars

Nonlinear stars perform simple functions. Figure 14-5 shows the palette of CGC non-
linear stars. The following stars are equivalent to the SDF stars of the same name (see “Non-
linear stars” on page 5-13):Abs, cexp , conj , Cos, Dirichlet , Exp, expjx , Floor ,

AddAdd Sub GainMpyMpy Integrator

AddFixAddFix SubFix MpyFixMpyFix GainFix

AddCxAddCx MpyCx MpyCx

AddInt GainIntAddInt DivByIntMpyInt MpyInt

pos

negSubCx

pos

negSubInt

Floating-point

Fixed-point

Integer

Complex

FIGURE 14-4: Arithmetic stars in the CGC domain

The Almagest 14-9

Ptolemy Last updated: 12/1/97

Limit , Log , MaxMin , Modulo , ModuloInt , OrderTwoInt , Reciprocal , Sgn, Sin ,
Sinc , Sqrt , powerEst , Quant , Table , TclScript . Stars that are unique to the CGC
domain are described briefly below.

Expr (Two icons) General expression evaluation. This star evaluates
the expression given by theexpr parameter and writes the result
on the output. The default expression, which is$ref(in#1) ,
simply copies the first input to the output.

fm Modulate a signal by frequency.

Thresh Compares input values to threshold. The output is0 if input <=
threshold, otherwise it is1.

xor Exclusive-OR two signals.

14.3.5 Control Stars

Control stars are used for routing data and other control functions. Figure 14-6 shows
the palette of CGC control stars. The following stars are equivalent to the SDF stars of the
same name (see “Conversion stars” on page 5-20):Fork , Chop, ChopVarOffset , Commu-
tator , DeMux, Distributor , DownSample, Mux, Repeat , UpSample . Stars that are

expjx

conj

powerEst

Table

ThreshExpr Expr

Cos

Exp Log

Quant

Reciprocal

Sin Sqrt

fm

PcwzLinear

Sgn

powerEstCx powerEst

TclTcl
TclScript

TclTcl
TclScript

xor

Modulo ModuloInt

TableInt TableCx

MaxMin

output

index

QuantIdx

output

stepNumber

Abs Dirichlet

Floor

cexp

Limit

OrderTwoInt

upper

lower

greater

lesser

Sinc

DB

AdaptLinQuant

input

inStep

amplitude

outStep

stepLevel

LinQuantIdx

amplitude

stepNumber

Quantizer

output

outIndex

Unique to CGC

Other Non-Linear Functions

Quantizers

Math Functions

FIGURE 14-5: Nonlinear stars in the CGC domain

14-10 CGC Domain

U. C. Berkeley Department of EECS

unique to the CGC domain are described briefly belowp.

Collect Takes multiple inputs and produces one output. This star does
not generate code. In multiprocessor code generation, it is auto-
matically attached to a porthole if it has multiple sources. Its
role is just opposite to that of theSpread star.

Copy ‘Copy’ stars are added if an input/output PortHole is a
host/embedded PortHole and the buffer size is greater than the
number of Particles transferred.

Delay Delay an input bydelay samples.

Sleep Suspend execution for an interval (in milliseconds). The input is
passed to the output when the process resumes.

Spread Takes one input and produces multiple outputs. This star does
not generate any code. In multiprocessor code generation, this
star is automatically attached to a porthole whose outputs are
passed to more than one destination (one ordinary block and
oneSend star, more than oneSend star, and so on.)

UpSample

Fork Fork Fork

DownSample

SpreadCollect SleepDelay

Fork
Bus
Fork

Commutator Commutator

DistributorDistributor

Chop
ChopVar
Offset Mux

control

Mux
controlcontrol

DeMux
control

DeMux

Repeat

Reverse
Trainer

train

decision

Copy

Multi-Rate Operations

Other Operations

Single-Rate Operations

CGC Specific

FIGURE 14-6: Control stars in the CGC domain

The Almagest 14-11

Ptolemy Last updated: 12/1/97

14.3.6 Logic Stars

Figure 14-7 shows the palette of CGC Logic stars.

14.3.7 Conversion Stars

Conversion stars are used to convert between complex and real numbers. Figure 14-8
shows the palette of CGC conversion stars. All of the stars are equivalent to the SDF stars of
the same name (see “Conversion stars” on page 5-20):CxToRect , PolarToRect , Rect-
ToCx, RectToPolar .

Test

upper

lower

Test

upper

lower

Test

upper

lower

Test

upper

lower

FIGURE 14-7: Logic stars in the CGC domain

CxToRect RectToCx RectToPolar PolarToRect

BitsToInt IntToBits

FixToCxFixToFloat

FloatToCxFloatToFix

CxToFix CxToFloat

FixToFix

FloatToInt

IntToFloatIntToFix

FixToInt

For explicit (vs. automatic) type conversion:

FIGURE 14-8: Type-conversion stars in the CGC domain

14-12 CGC Domain

U. C. Berkeley Department of EECS

14.3.8 Signal Processing Stars

Figure 14-9 shows the palette of CGC signal processing stars. The following stars are
equivalent to the SDF stars of the same name (see “Signal processing stars” on page 5-30):
DB, FIR , FIRFix , FFTCx, GAL, GGAL, Goertzel , LMS, LMSOscDet, LMSTkPlot. TheIIR ,
RaisedCosine andWindow CGC stars are not present in Ptolemy0.6. Stars that are unique
to the CGC domain are described briefly below.

GoertzelPower Second-order recursive computation of the power of the kth
coefficient of an N-point DFT using Goertzel’s algorithm. This
form is used in touchtone decoding.

ParametricEq A two-pole, two-zero parametric digital IIR filter (a biquad).

rms Calculate the Root Mean Squared of a signal.

14.3.9 Communications Stars

Figure 14-10 shows the communications stars in the CGC domain. The following stars

are equivalent to the SDF stars of the same name in the communications palette, (See “Com-
munication stars” on page 5-36):DeScrambler , Scrambler . The following stars are equiva-
lent to the SDF stars of the same name in the telecommunications palette, (see
“Telecommunications” on page 5-39):DTMFPostTest , GoertzelDetector , DTMFDe-

LMSTkPlot

rms

FFTCxFIR FIRFix

GAL GGAL Goertzel
Goertzel
Power

IIR LMS LMSOscDet

signalIn

error

signalOut

cosOmega

RaisedCosine Window

Biquad

ParametricEq

FIGURE 14-9: Signal processing stars in the CGC domain

ScramblerDeScrambler

|X[k1]|^2

|X[k2]|^2

f0Power

f1Power

Detector

Goertzel

ToneStrength

index

A1

A2

A3

A4

Amax

DTMF
Decoder
Bank

index

valid

freqPower

DTMFDecoder

key

valid

DTMFPostTest

input

valid

Telecommunications

Transmitter/Receiver Functions

FIGURE 14-10: Communications stars in the CGC domain

The Almagest 14-13

Ptolemy Last updated: 12/1/97

coderBand , DTMFDecoder, ToneStrength .

14.3.10 BDF Stars

BDF stars are used for conditionally routing data. Figure 14-11 shows the palette of
BDF stars in the CGC domain. These stars require the use of thebdf-CGC target (see “Single-
Processor Targets” on page 14-2). Unlike their simulation counterparts (see “An overview of
BDF stars” on page 8-2), these stars can only transfer single tokens in one firing.

Select This star requires a BDF scheduler. If the value on thecontrol
line is nonzero,trueInput is copied to the output; otherwise,
falseInput is.

Switch This star requires a BDF scheduler. Switchesinput events to
one of two outputs, depending on the value of thecontrol input.
If control is true, the value is written totrueOutput; otherwise it
is written tofalseOutput.

14.3.11 Tcl/Tk Stars

Tcl/Tk stars require the use of theTclTk_Target target. They can be used to provide
an interactive user interface with Tk widgets. Figure 14-12 shows the palette of Tcl/Tk stars
available in the CGC domain. Most of these stars are described in the sources, sinks and non-

Select

T

F Switch

T

F

FIGURE 14-11: BDF stars in the CGC domain

14-14 CGC Domain

U. C. Berkeley Department of EECS

linear palettes.

TkParametricEq Just likeParametricEq star, except that a Tk slider is put in
the master control panel to control the gain, bandwidth, and
center and cut-off frequencies.

14.3.12 Higher Order Function Stars

For information on the HOF stars, please see “An overview of the HOF stars” on
page 6-15.

14.3.13 UltraSparc VIS (Visual Instruction Set) Stars

These stars generate code that includes instructions for the UltraSparc’s Visual
Instruction Set (VIS). These stars only run on Sun UltraSparc workstations (see “UltraSparc
VIS Demos” on page 14-26 for more information about using CGCVIS demos.) All of these
stars process data in “quad-words”—64-bit words, each containing four, 16-bit signed inte-
gers. All of the stars exhibit some speed improvement over the equivalent stars written in
floating-point, although a substantial effort is needed in coding them to realize this perfor-
mance gain.

CGC VIS universes that create standalone applications, such as the 256fft demo,
should use the CGCMakefile_C target and set theskeletonMakefile target parameter to
$PTOLEMY/lib/cgc/makefile_VIS.mk . Universes that use CGC VIS stars and TclTk
stars should usemakefile_TclTk_VIS.mk . TheCGCVISSim target can be used to simulate

TkSliderTkEntry TkImpulse

TkSunSound

TclTcl
TclScript

TclTcl
TclScript

TclTcl
TclScript

LMSTkPlot TkBarGraph

TkXYPlot

X

Y

TclTcl
TclScript

TclTcl
TclScript

TkXYPlot

X

Y

TkPlot TkPlot

TkRadioButtonTkCheckButton

dtmfKeyPad

keyPress

freq1

freq2

FIGURE 14-12: Tcl/Tk stars in the CGC domain

The Almagest 14-15

Ptolemy Last updated: 12/1/97

VIS stars, but this target is very experimental.

VISAddSh Add the corresponding 16-bit fixed point numbers of two parti-
tioned float particles. Four signed 16-bit fixed point numbers of
a partitioned 64-bit float particle are added to those of another
64-bit float particle. The result is returned as a single 64-bit
float particle. There is no saturation arithmetic so that overflow
results in wrap around.

VISSubSh Subtract the corresponding 16-bit fixed point numbers of two-
partitioned float particles. Four signed 16-bit fixed point num-
bers of a partitioned 64-bit float particle are subtracted from
those of another 64-bit float particle. The result is returned as a
single 64-bit float particle. There is no saturation arithmetic so
that overflow results in wrap around.

VISMpyDblSh Multiply the corresponding 16-bit fixed point numbers of two-
partitioned float particles. Four signed 16-bit fixed point num-
bers of a partitioned 64-bit float particle are multiplied to those
of another 64-bit float particle. Each multiplication produces a
32-bit result. Each 32-bit result is then left-shifted to fit within

FIGURE 14-13: UltraSparc Visual Instruction Set

VISPackSh

VISAddSh

inA

inB

VISBiquad VISFFTCx

realIn

imagIn

realOut

imagOut

VISFIR

VISMpyDblSh

inA

inB

VISSubSh

inA

inB

VISUnpackSh

VISMpySh

inA

inB

VISStereoBiquad

VIS

VISStereoIn

left

right

VIS

VISStereoOut

left

right

VISInterleaveIn VISInterleaveOut

VIS

VISParametricEq

VIS
Tk

VISTkStereoIn

left

right

VIS
Tk

VISTkStereoOut

left

right

VIS
Tk

VISTkParametricEq

Arithmetic

Signal Processing

Conversion

TclTk

Audio

14-16 CGC Domain

U. C. Berkeley Department of EECS

a certain dynamic range and truncated to 16 bits. The final
result is four 16-bit fixed point numbers that are returned as a
single float particle.

VISMpySh Multiply the corresponding 16-bit fixed point numbers of two-
partitioned float particles. Four signed 16-bit fixed pointnum-
bers of a partitioned 64-bit float particle are multiplied to those
of another 64-bit float particle. Each multiplication produces a
32-bit result, which is then truncated to 16 bits. The final result
is four 16-bit fixed point numbers that are returned as a single
float particle.

VISBiquad An IIR biquad filter. In order to take advantage of the 16-bit
partitioned multiplies, the VIS biquad reformulates the filtering
operation to that of a matrix operation (Ax=y), whereVIS A is a
matrix calculated from the taps, x is an input vector, and y is an
output vector.The matrix A is first calculated by substituting the
biquad equation y[n] = -a*y[n-1]-b*y[n-2]+c*x[n]+d*x[n-
1]+e*x[n-2] into y[n-1], y[n-2], and y[n-3]. The matrix A is
then multiplied with the 16-bit partitioned input vector. The
final result is accumulated in four 16-bit fixed point numbers
which are concatenated into a single 64-bit float particle.

VISFIR A finite impulse response (FIR) filter. In order to take advan-
tage of the 16-bit partitioned multiplies, the VIS FIR reformu-
lates the filtering operation to that of a matrix operation (Ax=y),
where A is a tap matrix, x is an input vector, and y is an out-
putvector. The matrix A is first constructed from the filter taps.
Each row is filled by copying the filter taps, zero-padding so
that its length is a multiple of 4, and shifting to the right by one.
Four of these rows are used to build up matrix A. The matrix A
is then multiplied with the 16-bit partitioned input vector. This
is equivalent to taking four sum of products. The final result is
accumulated in four 16-bit fixed point numbers which are con-
catenated into a single 64-bit float particle.

VISFFTCx A radix-2 FFT of a complex input. The radix-2 decimation-in-
time decomposes the overall FFT operation into a series of
smaller FFT operations. The smallest operation is the “FFT
butterfly” which consists of a single addition and subtraction.
Graphically, the full decomposition can be viewed as N stages
of FFT butterflies with twiddle factors between each of the
stages. One standard implementation is to use three nested for
loops to calculate the FFT. The innermost loop calculates all
the butterflies and performs twiddle factor multiplcations within
a particular stage; the next outer loop calculates the twiddle fac-
tors; and the outermost loop steps through all the stages. In
order to take advantage of the 16-bit partitioned multiplications

The Almagest 14-17

Ptolemy Last updated: 12/1/97

and additions, the basic operation of the VIS FFT is actually
doing four “FFT butterflies” at once. The implementation is
similar to the standard three nested for loops, but the last two
stages are separated out. In order to avoid packing and unpack-
ing, the basic operation of the last two stages switches from four
to two to eventually just one “FFT butterfly”. After the FFT is
taken, the order of the sequence is bit-reversed.

VISParametricEq The user supplies the parameters such asBandwidth, Center
Frequency , and Gain. The digital biquad coefficients are
quickly calculated based on the procedure defined by Shpak.

VISPackSh Takes four float particles, casts them into four signed 16-bit-
fixed point numbers, and packs them into a single 64-bit float-
particle. The input float particles are first down cast into 16-bit
fixed point numbers. The location of the binary point of the
fixed point number can be placed anywhere by adjusting the
scale parameter. The fixed point numbers are then concatenated
to produce a 64-bit result. The order of the fixed point numbers
can be reversed so that the most current input either leads or
trails the pack, ie reverse equalsFALSE produces (x[n],x[n-
1],x[n-2],x[n-3]) and reverse equalsTRUE produces (x[n-3],x[n-
2],x[n-1],x[n]).

VISUnpackSh Takes a single 64-bit float particle, unpacks them into four 16-
bit fixed point numbers, and casts them into four float particles.
The input float particle is first separated into four 16-bit fixed
point numbers. Once again, the order of the fixed point num-
bers can be reversed. The fixed point numbers are then up cast
to float particles. The exponent value of each float particle can
be adjusted by the scaledown parameter.

VISStereoIn Reads Compact Disc audio format from a file given byfile-
Name. The file can be the audio port/dev/audio , if supported
by the workstation. The star readsblockSize 16-bit samples
at each invocation. Theblocksize should be a multiple of 4.

VISStereoOut Writes Compact Disc audio format to a file given byfileName.
The file can be the audio port/dev/audio , if supported by the
workstation. The star writesblockSize 16-bit samples at each
invocation. Theblocksize should be a multiple of 4.

VISInterleaveIn Reads Compact Disc audio format from a file given byfile-
Name. The file can be the audio port/dev/audio , if supported
by the workstation. The star readsblockSize 16-bit samples at
each invocation. Theblocksize should be a multiple of 4.

VISInterleaveOut Reads Compact Disc audio format from a file given byfile-
Name. The file can be the audio port/dev/audio , if supported
by the workstation. The star readsblockSize 16-bit samples at

14-18 CGC Domain

U. C. Berkeley Department of EECS

each invocation. Theblocksizeshould be a multiple of 4.

VISStereoBiquad A two-pole, two-zero IIR filter.

VISTkStereoIn Just like StereoIn, except that a Tk slider is put in the master-
control panel to control the volume.

VISTkStereoOut Just like StereoOut, except that a Tk slider is put in the master-
control panel to control the volume and balance.

VISTkParametricEq
Just like VISParametricEq, except that a Tk slider is put in the
master control panel to control the gain.

14.3.14 An Overview of CGC Demos

Figure 14-14 shows the top-level palette of CGC demos. The demos are divided into
categories: basic, multirate, signal processing, multi-processor, sound, Tcl/Tk, BDF,HOF and
SDF-CGC wormhole demos1.Many of the demos in the CGC domain have equivalent coun-
terparts in the SDF or BDF domains. See “An overview of SDF demonstrations” on page 5-
51, or “An overview of BDF demos” on page 8-3 for brief descriptions of these demos. Brief

1. In Ptolemy0.6, the SDF-CGC Wormhole icon is not present in the CGC demo palette. The SDF-CGC
Wormhole demos can be found in the Mixed Domain demo palette, located in the top level Ptolemy
palette at $PTOLEMY/demo/init.pal.

The Almagest 14-19

Ptolemy Last updated: 12/1/97

descriptions of the demos unique to the CGC domain are given in the sections that follow.

14.3.15 Basic Demos

Figure 14-15 shows the palette of basic demos that are available in the CGC domain.
The following demos are equivalent to the SDF demos of the same name (see “An overview of
SDF demonstrations” on page 5-51):butterfly , chaos , integrator , quantize . The
other demos in this palette are described briefly below.

basic.pal

multirate.pal

dsp.pal

sound.pal

TclTcl
init.pal

bdf.pal

cgc

test

Fixed-
point

Demosfix.pal

distributed.pal

worm.pal

Basic

Multirate

Signal Processing

Multi-Workstation Demos

Sound

Boolean Dataflow (BDF)

SDF-CGC Wormhole Demos

Fixed-Point Demos

Tcl/Tk Interactive Demos

Higher Order Functions

FIGURE 14-14: Top-level palette of demos in the CGC domain

nonlinearchaos integrator

quantize

butterfly chaoticBits

pseudoRandom

?
commandLine

FIGURE 14-15: Basic CGC demos

14-20 CGC Domain

U. C. Berkeley Department of EECS

chaoticBits Chaotic Markov map with quantizer to generate random bit
sequence.

nonlinear This simple system plots four nonlinear functions over the
range 1.0 to 1.99. The four functions are exponential, natural
logarithm, square root, and reciprocal.

commandline This demo is a slight modification of the nonlinear demo. It
uses the pragma mechanism to indicate the parameters that are
to be made settable from the command-line.

pseudoRandom Generate pseudo-random sequences.

14.3.16 Multirate Demos

Figure 14-16 shows the palette of multirate demos available in the CGC domain. The
following demos are equivalent to the SDF demos of the same name (see “An overview of
SDF demonstrations” on page 5-51):interp , filterBank . The other demos in this palette
are described briefly below.

upsample This simple up-sample demo tests static buffering. Each invoca-
tion of theXMgraph star reads its input from a fixed buffer loca-
tion since the buffer between theUpSample star and the
XMgraph star is static.

loop This demo demonstrates the code size reduction achieved with a
loop-generating scheduling algorithm.

14.3.17 Signal Processing Demos

Figure 14-17 shows the palette of signal processing demos that are available in the
CGC domain. The following demos are equivalent to the SDF demos of the same name (see
“An overview of SDF demonstrations” on page 5-51):adaptFilter , dft . The animat-

upsampleloopinterpfilterBank

FIGURE 14-16: CGC Multirate demos

The Almagest 14-21

Ptolemy Last updated: 12/1/97

edLMS demo is described in “Tcl/Tk Demos” on page 14-24.

DTMFCodec Generate and decode touch tones.

iirDemo Two equivalend implementations of IIR filtering. One of the
implementations uses theIIR star. This demo is not present in
Ptolemy0.6.

14.3.18 Multi-Processor Demos

Figure 14-18 shows the top-level palette of multi-processor demos available in the
CGC domain. Ptolemy contains two multi-processor targets,unixMulti_C andNOWam. The
demos in each target subpalette are the same. These demos would actually run faster on a sin-
gle processor, but they do serve as a ‘proof of concept’.

Figure 14-19 shows the palette of multi-processor demos that use theunixMulti_C
target to communicate between workstations.

adaptFilter_multi
This is a multi-processor version of theadaptFilter demo.
The graph is manually partitioned onto two networked worksta-
tions.

spread This system demonstrates theSpread and Collect stars. It

dftadaptFilter animatedLMS DTMFCodec

iirDemo

FIGURE 14-17: Signal processing demos in the CGC domain

multiproc.pal

NOW
NOWam.pal

FIGURE 14-18: Multi-processor demos in the CGC domain

spread
multiprocessor
adaptFilter

FIGURE 14-19: Multi-workstation CGC demos

14-22 CGC Domain

U. C. Berkeley Department of EECS

shows how multiple invocations of a star can be scheduled onto
more than one processor.

Figure 14-20 shows the demos that use theNOWam target to communicate between
workstations. The demos in this palette are the same as the demos in theUnixMulti_C pal-
ette above.

14.3.19 Fixed-Point Demos

Figure 14-21 shows the fixed-point demonstrations.

fixConversion Demonstrate fixed-point conversion and overflow effects.

fixFIR Demonstrate tap quantization effects on the transfer function of
FIR filters.

fixMpyTest Demonstrate retargeting of a SDF fixed-point multiply demo to
CGC.

14.3.20 Sound-Making Demos

Figure 14-22 shows the palette of sound demos available in the CGC domain. Your
workstation must be equipped with an audio device that can accept 16-bit linear or -law
encoded PCM data, for these demos to work.For information about how to use the audio capa-

NOW
adaptFilter

NOW
Spread

FIGURE 14-20: Networks of Workstations (NOW) CGC demos

fixConversion fixFIR fixMpyTest

Fixed-Point Demos for the CGC Domain
by Juergen Weiss, University of Stuttgart

Notes:
 - The fixed-point support in CGC is limited
 (no choice of overflow handling or rounding)
 - See $PTOLEMY/src/domains/cgc/contrib
 for documentation.

FIGURE 14-21: Fixed-point demos in the CGC domain

µ

The Almagest 14-23

Ptolemy Last updated: 12/1/97

bilities of a workstation, see “Sounds” on page 2-38.

alive (SGI Only) Processes audio in real time, with an effect similar
to the effects Peter Frampton used in the late 70’s rock album
‘Frampton Comes Alive’.

dtmf This demo generates the same dual-tone multi-frequency tones
you hear when you dial your telephone. The interface resembles
the keypad of a telephone.

fm This demo uses frequency modulation (FM) to synthesize a
tone on the workstation speaker. You can adjust the modulation
index, pitch, and volume in real time.

fmSpectral FM synthesis with a spectral display.

impulse This demo generates tones on the workstation speaker with
decaying amplitude envelopes using frequency modulation syn-
thesis. You can make tones by pushing a button. You can adjust
the pitch, modulation index, and volume in real time.

sound Generate a sound to play over the workstation speaker (or head-
phones).

soundHOF Produce a sound made by adding a fundamental and its harmon-
ics in amounts controlled by sliders.

synth This demo generates sinusoidal tones on the workstation

sound

tremolo

fm

impulse synth

dtmf

soundHOF

fmSpectralalive

FIGURE 14-22: Sound-making demos in the CGC domain

14-24 CGC Domain

U. C. Berkeley Department of EECS

speaker. You can control the pitch with a piano-like interface.

tremolo This demo produces a tremolo (amplitude modulation) effect on
the workstation speaker. You can adjust the pitch, modulation
frequency, and volume in real time.

14.3.21 Tcl/Tk Demos

These demos show off the capabilities of the Tcl/Tk stars, which must be used with the
TclTk_Target target. Graphical user interface widgets are used to control input parameters
and to produce animation. Many of these demos also produce sound on the workstation
speaker with theTkMonoOut star (see “Tcl/Tk Stars” on page 14-13). Due to the overhead of
processing Tk events, you must have a fast workstation (SPARCstation 10 or better) in order
to have continuous sound output. You may be able to get continuous sound output on slower
workstations if you avoid moving your mouse. Figure 14-23 shows the demos that are avail-
able. The following audio demos are documented in the previous section:dtmf , fm,
audioio,impulse , synth , tremolo .

animatedLMS This demo is a simplified version of the SDF demo of the same
name.

ball This demo exhibits sinusoidal motion with a ball moving back
and forth.

ballAsync This demo is the same as theball demo except that animation
is updated asynchronously.

noisySines Generate a number of sinusoids with controllable additive
noise.

scriptTest This demo shows the use of several kinds of Tk widgets for user

tremolo

fm

animatedLMS

impulse

synth

dtmf

TclTcl
scriptTest

ball ballAsync

universe xyplot

noisySines

FIGURE 14-23: Tcl/Tk demos in the CGC domain

The Almagest 14-25

Ptolemy Last updated: 12/1/97

input. Push buttons generate tones or noise, and sliders adjust
the frequency and volume in real time.

universe This demo shows the movements of the Sun, Venus, Earth, and
Mars in a Ptolemaic (Earth-centered) universe.

xyplot Demonstrate theTkXYPlot star.

14.3.22 BDF Demos

Figure 14-24 shows the palette of systems that demonstrate the use of BDF stars in the
CGC domain. Thetiming demo is equivalent to the BDF simulation demo of the same name.
The demosbdf-if andbdf-doWhile are equivalent to the BDF simulation demos named
ifThenElse andloop . See “An overview of BDF demos” on page 8-3 for short descriptions
of these demos.

14.3.23 Higher Order Function Demos

For information on the HOF demos, see “An overview of HOF demos” on page 6-18.

14.3.24 SDF-CGC Wormhole demos

Figure 14-25 shows that palette of systems that demonstrate the use of theCreateS-

DFStar CGC target, which allows cgc stars that are reloaded back into Ptolemy for use inside
the SDF domain. See “Interface Synthesis between Code Generation and Simulation
Domains” on page 13-10 for more information aboutCreateSDFStar . The SDF-CGC
Wormhole demos are found under the “Mixed Domain Demos” palette. The Mixed domain
Demos palette is in the top level palette that is first visible when pigi starts up.

CDtoDAT Convert two sine waves sampled at CD sample rate to DAT
sample rate. The outer galaxy is in the SDF domain, while the

bdf-if bdf-doWhile timing

FIGURE 14-24: BDF demos in the CGC domain

147

160

CDtoDAT wormTest fixCGC

FIGURE 14-25: SDF-CGC Wormhole demos.

14-26 CGC Domain

U. C. Berkeley Department of EECS

cd2dat galaxy is in the CGC domain.cd2dat uses theCre-
ateSDFStar target.

wormTest A simple test of theCreateSDFStar target.

fixCGC Another simple test of theCreateSDFStar target.

14.3.25 UltraSparc VIS Demos

Figure 14-26 show the palette of systems that demonstrate the use of the Sun Ultra-
Sparc Visual Instruction Set demos.

The Visual Instruction Set (VIS) demos only run on Sun UltraSparc workstations with
the Sun unbundled CC compiler. The VIS demos will not compile with the Gnu compilers.
Note that it is possible to generate VIS code if you don’t have the Sun CC compiler, you just
won’t be able to compile it. You must have the Sun Visual Instruction Set Development kit
installed, seehttp://www.sun.com/sparc/vis/vsdkfaq.html .

The VIS development kit and the CGC VIS stars require that following two environ-
ment variables be set:

setenv VSDKHOME /opt/SUNWvsdk
setenv INCASHOME /opt/SUNWincas

256fft Plots the real and imaginary parts of a FFT. Note that this demo
uses the CGCMakefile_C target and sets theskeletonMakefile
target parameter to a special CGC VIS makefile at$PTOLEMY/
lib/cgc/makefile_VIS.mk

visaudioio Reads in audio from line-in and plays back from line-out. This
demo uses themakefile_TclTk_VIS.mk file.

parametricEQ Parametric equalizer.

vistonecontrol Tone control using high, low and bandpass filters.

simtest VIS simulator test universe. This demo illustrates a use of the
CGCVISSim target. Note that this target is very experimental.

14.3.26 EECS20 demos

The Mixed domain demos palette also contains a palette of demos that were designed
for EECS20, “Introduction to Real-Time Systems”. These demos are used in a new lower-
division course at UC Berkeley. For more information about this course, seehttp://www-
inst.eecs.berkeley.edu/~ee20 . The demos in this palette are in the CGC and CG56
domains. Most of these demos run on any Sparcstation with audio output. A few of the demos

FIGURE 14-26: UltraSparc VIS demos in the CGC domain.

256fft visaudioio

Highpass

Bandpass

Lowpass

visparametricEq vistonecontrol simtest

The Almagest 14-27

Ptolemy Last updated: 12/1/97

require an S56X DSP card. At this time, these demos are not documented in this manual, see
the individual demos on-line for documentation.

14.3.27 Tycho Demos

These demos demonstrate the use of the TychoTarget to create customized Control
Panels. Graphical user interface widgets are used to control input and output parameters and
to produce animation. The demos make use of theTkStereoIn and TkStereoOut (see
“Tcl/Tk Stars” on page 14-13) to record and play sound on the workstation speaker, so these
demos will probably only work on a Sun Ultrasparc. For information about how to use the
audio capabilities of a workstation, see “Sounds” on page 2-38.

audioio This is a simple real time audio demonstration which illustrates
Ptolemy’s ability to support CD quality audio.

graphicEq This demo consists of 10 band-pass filters with center frequen-
cies spaced out by octaves. Using the customized control panel,
you can adjust the gain of each band-pass filter, the record and
play volumes and balance in real time.

parametricEq In this demo, there is a single band of parametric equalisation,
with control over the band frequency, band width, and band
gain. The frequency range is settable; in the future, it will also
be possible to select low-pass, band-pass, or high-pass filtering
as well.

tonecontrol The demo consists of one of each of the high, band and low-
pass filters. There is a single control panel, with control over the
band gain for each filter.

FIGURE 14-27: Tycho Target demos in the CGC domain

audioio graphicEq

Highpass

Bandpass

Lowpass

parametricEqtonecontrol

Tycho
Target
Docs

tychotarget

14-28 CGC Domain

U. C. Berkeley Department of EECS

Chapter 15. CG56 Domain

Authors: Joseph T. Buck
José Luis Pino

Other Contributors: Brian L. Evans
Chih-Tsung Huang
Christopher Hylands
Kennard White

15.1 Introduction
The CG56 domain generates assembly code for the Motorola 56000 series of digital

signal processors. The graphs that we can describe in this domain follow the synchronous
dataflow (SDF) model of computation. SDF allows us to schedule theBlocks and allocate all
the resources at compile time. Refer to chapter “SDF Domain” on page 5-1 for a detailed
description on the properties of SDF.

The Motorola 56000 series are fixed-point digital signal processors. The 56000 and
56001 processors have 24-bit data and instructions, and operate at a maximum clock rate of 40
MIPS. The 56100 processor has 16-bit data and instructions, operates at a maximum rate of 30
MIPS, and has analog/digital and digital/analog converters integrated on the chip. The 56301
has 24-bit data and instructions, operates at a maximum rate of 80 MIPS, and has several
built-in input/output interfaces. Although the processors have pipelines of different lengths,
the assembly code is backward compatible. The CG56 domain generates assembly code for
the 56000 processor and has been tested on the Motorola simulator and on a 56001 board.

Since the 56000 processors are fixed point, the floating point data type has no meaning
in the CG56 domain. Fixed-point values can take on the range [-1,1). The most positive value
is for the 56000 and 56300, and for the 56100. The domain defines a new
constantONE set to this maximum positive value. In this chapter, whenever data types are not
mentioned, fixed-point is meant. The complex data type means a pair of fixed-point numbers.
The complex data type is only partially supported in that it is not supported for stars that have
anytype inputs or outputs, except forfork stars. Integers are the same length as the fixed-
point representation. Matrix data types are not supported yet.

Some of the demos use the Motorola 56000 assembler and simulator. You do not need
to have a 56000 chip to run the simulator demos, the assemberl and simulator are available for
downloading from Motorola at http://www.mot.com/SPS/DSP/developers/
clas.html .

15.2 An overview of CG56 stars
The “open-palette” command in pigi (O) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. For the CG56 domain, the star
library is large enough that it has been divided into sub-palettes as was done with the SDF

1 2 23–– 1 2 15––

15-2 CG56 Domain

U. C. Berkeley Department of EECS

main palette.

The top-level palette is shown in figure 15-1. The palettes are Signal Sources, I/O,
Arithmetic, Nonlinear Functions, Logic, Control, Conversion, Signal Processing, and Higher
Order Functions. The stars on the Higher Order Functions (HOF) palette are used to help lay
out schematics graphically. The HOF stars are in the HOF domain, and not the CG56 domain.
The names of the others palettes are modeled after the SDF star palettes of the same name in
section 5.2 on page 5-4, except the I/O palette which contains target-specific I/O stars for the
Ariel S-56X DSP board and the Motorola 56001 simulator. Each palette is summarized in
more detail below. More information about each star can be obtained using the on-line “pro-
file” command (,), the on-line man command (M), or by looking in theStar Atlas volume of
The Almagest.

At the top of each palette, for convenience, are instances of the delay icon, the bus
icon, and the following star:

BlackHole Discard all inputs. This star is useful for discarding signals that
are not useful.

FIGURE 15-1: The palette of star palettes for the CG56 domain.

sources.pal

io.pal

dsp.palarithmetic.pal

nonlinear.pal

control.pal

conversion.pal

logic.pal

HOF
hof.pal

Signal Sources

Input/Output

Arithmetic

Nonlinear Functions Higher Order Functions

Logic

Conversion

Control

Signal Processing

The Almagest 15-3

Ptolemy Last updated: 10/8/97

15.2.1 Source stars

Source stars are stars with only outputs. They generate signals, and may represent
external inputs to the system, constant data, or synthesized stimuli. The palette of source stars
is shown in figure 15-2. Refer to 5.2.1 on page 5-5 for descriptions of the SDF equivalent

stars:Const , ConstCx , ConstInt , Ramp, RampInt , Rect , singen , andWaveForm.

Impulse Generate a single impulse of sizeimpulseSize(defaultONE).

IIDGaussian Generate a white Gaussian pseudo-random process with mean 0
and standard deviation 0.1. A Gaussian distribution is realized
by summingnoUniforms (default 16) number of uniform ran-
dom variables. According to the central limit theorem, the sum
of N random variables approaches a Gaussian distribution as N
approaches infinity.

IIDUniform Generate an i.i.d. uniformly distributed pseudo-random process.
Output is uniformly distributed between-range and range
(defaultONE).

Tone Generate a sine or cosine wave using a second order oscillator.
The wave will be ofamplitude (default 0.5),frequency(default
0.2), andcalcType(default “sin”)

15.2.2 I/O Stars

I/O stars are target specific stars that
allow input and output of stimuli to a target
architecture. Currently there are I/O stars for
both the Ariel S-56X DSP and the Motorola
56k simulator which are divided hierarchically
as shown in figure 15-3.

FIGURE 15-2: The palette of source stars for the CG56 domain.

Const
Impulse

WaveForm

Ramp

Rect

IIDUniformIIDGaussian

Tonesingen

Const
expgen

Const
RampInt

FIGURE 15-3: CG56 I/O Palette

s56xio.pal

simio.pal

Ariel S-56X DSP Board

Motorola 56K Simulator

15-4 CG56 Domain

U. C. Berkeley Department of EECS

Motorola 56000 Simulator I/O Stars

The palette of I/O stars for the
Motorola 56K simulator target is shown in
figure 15-4.

ReadFile Read fixed-point ASCII data from a file. The simulation can be
halted on end-of-file, or the file contents can be periodically
repeated, or the file contents can be padded with zeros.

IntReadFile Read integer ASCII data from a file. The simulation can be
halted on end-of-file, or the file contents can be periodically
repeated, or the file contents can be padded with zeros.

WriteFile Write data to a file. The simulator dumps the data presented at
the input of this star into a specified file.

Xgraph This star shares the same parameters as its SDF and CGC star
equivalents. However, with this star, you can only have one
input signal. See “pxgraph — The Plotting Program” on
page 20-1 to learn about plotting options.

Ariel S-56X DSP Board I/O Stars

The s56xio palette (figure 15-5) allows I/O to the Ariel S-56X DSP board. To use these
blocks, you will need access to a S-56X DSP board. These blocks are divided into three sub-
categories: generic S-56X, QDM S-56X and CGC-S56X. The QDM stars requires installing
qdm, a debugger for DSP systems which was developed by Phil Lapsley at U.C. Berkeley.
Qdm is currently available from Mike Peck1, the designer of the S-56X board.

Generic S-56X

adjustableGainGX Create an interactive adjustable gain usingHostSliderGX .

da Send the input to both input ports of the SSI star.

HostAOut Output data from the DSP to host via host port asynchronously.

HostSldrGX Generate an athena widget slider for interactive asynchronous
input over the host port.

MagnavoxIn Read data from a Magnavox CD player.

Magnavox Read data from and write data to a Magnavox CD player.

MagnavoxOut Write data to a Magnavox CD player.

PrPrtAD Read from the A/D in Ariel ProPort.

PrPrtADDA Read from the A/D and write to the D/A on the Ariel ProPort.To
use both the A/D and D/A on a ProPort you must use this star

1. Mike Peck, Berkeley Camera Engineering, mpeck@bcam.com (http://www.bcam.com)

FIGURE 15-4: Motorola Simulator I/O Palette

ReadFile IntReadFile XgraphWrite File

The Almagest 15-5

Ptolemy Last updated: 10/8/97

and not the separate A/D and D/A stars.

PrPrtDA Write to the D/A on the Ariel ProPort.

SSI A generic input/output star for the DSP56001 SSI port.

SSISkew Interface to the 56001 SSI’s port with timing-skew capability.

QDM S-56X

To use these stars you must have qdm installed and be using the uniprocessor s-56x
target. The target parametermonitor must be set toqdmterm_s56x -run .

HostButton (2 icons) Graphical two-valued input source. There are two
types of buttons: push-buttons and check-buttons. Both present
a single button to the user that may be “pressed” with the
mouse. The buttons differ in the semantics of the push. When
the pushbutton is pressed, theonVal state is output, otherwise
offVal.

HostMButton Graphical one-of-many input source. The star always outputs
one of a finite number of values: the output is controlled by the
user selecting one of several buttons. Exactly one button in the
group is on.

HostSldr Graphical host slider for asynchronous input source.

SwitchDelay This galaxy synchronously switches between the input value
and the value of the input delayed by TotalDelay (default 8000)
samples.

FIGURE 15-5: S-56X I/O Palette

MagnavoxIn

SSI

Magnavox

MagnavoxOut

Host
Pushbutton

Host
Checkbutton

Host
MButton SwitchDelay

xgraph

da

HostSldr

HostSldrGX

PrPrtAD PrPrtADDA PrPrtDA

PeekPokeSwitchDelay

checkButtonInt checkButton radioButton radioButton slider

s56xPlot

HostAOut

SSISkew

Generic S-56X I/O

QDM S-56X

CGC-S56X

15-6 CG56 Domain

U. C. Berkeley Department of EECS

adjustableGain A user adjustable gain, usesHostSlider .

CGC-S56X

checkButtonInt This galaxy creates a Tk checkbutton widget that produces the
givenonValue (default 1) when pressed andoffValue (default 0)
otherwise.

checkButton This galaxy creates a Tk checkbutton widget that produces the
givenonValue (default 1.0) when pressed andoffValue (default
0.0) otherwise.

radioButtonIn t This galaxy creates a Tk radiobutton widget that allows the user
to select from among a set of possible output values given by
pairs (default “One 1” “Two 2”).

radioButton This galaxy creates a Tk radiobutton widget that allows the user
to select from among a set of possible output values given by
pairs (default “One 1” “Two 2”)

slider This galaxy creates a Tk slider widget that produces the given
value indicated by the slider position which is between low
(default 0.0) and high (default 1.0) and initially set to value
(default 0.0).

adjustableGain This galaxy multiplies the input by a gain value taken from a Tk
slider position between low (default 0.0) and high (default 1.0),
which is initially set to value (default 0.0).

SwitchDelay This galaxy synchronously switches between the input value
and the value of the input delayed byTotalDelay (default 8000)
samples.

s56XPlot This galaxy plots the input interactively using TkPlot.

Xgraph This galaxy simply contains aCGCXgraph star for use in a
CG56 galaxy. The galaxy parameters are identical to those of
the enclosed star.

PeekPoke Nondeterminate communication link that splices in a peek/poke
pair. In this context, it provides a link between the S-56X
Motorola 56001 board and the workstation.

15.2.3 Arithmetic stars

The arithmetic stars that are available are shown in figure 15-6.

Add (2 icons) Output the sum of the inputs. Ifsaturation is set to
yes, the output will saturate.

Sub Outputs the “pos” input minus all of the “neg” inputs.

Mpy (2 icons) Outputs the product of all of the inputs.

Gain The output is set the input multiplied by again term. The gain

The Almagest 15-7

Ptolemy Last updated: 10/8/97

must be in [-1,1).

AddCx (2 icons) Output the complex sum of the inputs. Ifsaturation is
set to yes, the output will saturate.

SubCx Outputs the “pos” input minus all of the “neg” inputs.

MpyCx (2 icons) Outputs the product of all of the inputs.

AddInt (2 icons) Output the sum of the inputs. Ifsaturation is set to
yes, the output will saturate.

SubInt Outputs the “pos” input minus all of the “neg” inputs.

MpyInt (2 icons) Outputs the product of all of the inputs.

GainInt The output is set the input multiplied by an integergain term.

DivByInt This is an amplifier. The integer output is the integer input
divided by the integerdivisor (default 2). Truncated integer
division is used.

MpyRx Multiply any number of rectangular complex inputs, producing
an output.

MpyShift Multiply and shift.

Neg Output the negation of the input.

Shifter Scale by shifting leftleftShifts bits. Negative values ofleftShifts
implies right shifting.

15.2.4 Nonlinear stars

The nonlinear palette (figure 15-7) in the CG56 domain includes transcendental func-
tions, quantizers, table lookup stars, and miscellaneous nonlinear functions.

Abs Output the absolute value of the input.

ACos Output the inverse cosine of the input, which is in the range -1.0
to 1.0. The output, in the principle range of 0 toπ, is scaled
down byπ.

FIGURE 15-6: CG56 Arithmetic Palette

Add Sub Mpy Mpy Gain

NegMpyShift Shifter

Add

MpyCxAddCx AddCx MpyCx

AddInt AddInt MpyInt MpyInt GainInt DivByInt

pos

negSubCx

pos

neg
SubInt

MpyRx

Stars Unique to the CG56 Domain

15-8 CG56 Domain

U. C. Berkeley Department of EECS

ASin Output the inverse sine of the input, which is in the range -1.0 to
1.0. The output, in the principle range of to , is scaled
down byπ.

Cos Output the cosine, calculated the table lookup. The input range
is [-1,1] scaled byπ.

expjx Output the complex exponential of the input.

Intgrtr An integrator with leakage set byfeedbackGain. If there is an
overflow, the onOverflow parameter will designate a wrap
around, saturate or reset operation.

Limit Limits the input between the range of [bottom, top].

Log Outputs the base two logarithm.

MaxMin Output the maximal or minimal (MAX) sample out of the lastN
input samples. This can eithercompareMagnitude or take into
account the sign. IfoutputMagnitude is YES the magnitude of
the result is written to the output, otherwise the result itself is
written.

FIGURE 15-7: CG56 Nonlinear Palette

Sqrt

Reciprocal

Sgn Sin

CosACos ASin

LogLimit

Sqr

Abs

Pulse

VarQuasar

LookupTbl

MaxMin

Quant

Intgrtr

QntBtsInt QntBtsLin

expjx

Table TableInt

OrderTwoInt

upper

lower

greater

lesser

ModuloInt

QuantIdx

output

stepNumber

Xor

SincSgnInt

Expr

QuantRange

Skew

Stars Unique to the CG56 Domain

π
2
---–

π
2

The Almagest 15-9

Ptolemy Last updated: 10/8/97

ModuloInt Output the remainder after dividing the integer input by the
integermodulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two
integers.

Quant Quantizes the input to one of N+1 possible outputlevels using
N thresholds.

QuantIdx The star quantizes the input to one of N+1 possible outputlevels
using Nthresholds. It also outputs the index of the quantization
level used.

QuantRange Quantizes the input to one of N+1 possible outputlevels using
N thresholds.

Reciprocal Outputs the reciprocal toNf precision in terms of a fraction and
some left shifts.

Sgn Outputs the sign of the input.

SgnInt Outputs the sign of the integer input.

Sin Outputs the sine, calculated using a table lookup. The input
range is [-1,1) scaled byπ.

Sinc Outputs the sinc functions calculated as sin(x)/x.

Sqrt Outputs the square root of the input.

Table Implements a real-valued lookup table. Thevalues state con-
tains the values to output; its first element is element zero. An
error occurs if an out of bounds value is received.

TableInt Implements an integer-valued lookup table. Thevalues state
contains the values to output; its first element is element zero.
An error occurs if an out of bounds value is received.

Expr General expression evaluation.

LookupTbl The input accesses a lookup table. Theinterpolation parameter
determines the output for input values between table-entry
points. If interpolation is “linear” the star will interpolate
between table entries; ifinterpolation is set to “none”, it will
use the next lowest entry.

Pulse Generates a variable length pulse. A pulse begins when a non-
zero trigger is received. The pulse duration varies between 1
andmaxDuration as the control varies between [-1,1).

QntBtsInt Outputs the two’s complement number given by the topnoBits
of the input (for integer output).

QntBtsLin Outputs the two’s complement number given by the topnoBits
of the input, but an optionaloffset can be added to shift the out-
put levels up or down.

15-10 CG56 Domain

U. C. Berkeley Department of EECS

Skew Generic skewing star.

Sqr Outputs the square of the input.

VarQuasar A sequence of values(data) is repeated at the output with period
N (integer input), zero-padding or truncating the sequence to N
if necessary. A value of O for N yields an aperiodic sequence.

Xor Output the bit-wise exclusive-or of the inputs.

15.2.5 Logic stars

The Logic stars are discussed below:

Test (4 icons) Test to see if two inputs are equal, not equal, greater
than, and greater than or equal. For less than and less than or
equal, switch the order of the inputs.

And (3 icons) True if all inputs are non-zero.

Nand (2 icons) True if all inputs are not non-zero.

Or (2 icons) True if any input is non-zero.

Nor (2 icons) True if any input is zero.

Xor (2 icons) True if an odd number of inputs is non-zero.

Xnor (2 icons) True if an even number of inputs is not non-zero.

Not Logical inverter.

FIGURE 15-8: CG56 Logic Palette

Test

upper

lower

Test

upper

lower

Test

upper

lower

Test

upper

lower

input#1

input#2

The Almagest 15-11

Ptolemy Last updated: 10/8/97

15.2.6 Control stars

Control stars (figure 15-9) manipulate the flow of tokens. All of these stars are poly-
morphic; they operate on any data type. Refer to 5.2.6 on page 5-17 for descriptions of the
SDF equivalent stars:Fork , DownSample, Commutator , Distributor , Mux, Repeat,
Reverse , andUpSample.

ChopVarOffset This star has the same functionality as theChop star except now
theoffset parameter is determined at run time through a control
input.

Cut On each execution, this star reads a block ofnread samples
(default 128) and writesnwrite of these samples (default 64),
skipping the first offset samples (default 0). It is an error if
nwrite + offset > nread. If nwrite > nread, then the output con-
sists of overlapping windows, and henceoffset must be nega-
tive.

Delay A delay star of parametertotalDelay unit delays.

Pad On each execution, Pad reads a block ofnread samples and
writes a block ofnwrite samples. The firstoffset samples have
valuefill , the nextnread output samples have values taken from
the inputs, and the lastnwrite - nread - offset samples have
valuefill again.

Rotate The star reads in an input block of a certainlength and performs

FIGURE 15-9: CG56 Control Palette

DownSample

UpSampleRepeatDistributor Distributor

Commutator Commutator

WasteCyclesDelay VarDelay

Mux Mux

Rotate

Commutator

DistributorDistributor

Commutator

Mux
control

input

ChopVar
Offset

input

offsetCntrl

sampleNholdGal

DeMux DeMux DeMux

input

Chop

Specific to the CG56 Domain

Multirate Operations

Other Operations

15-12 CG56 Domain

U. C. Berkeley Department of EECS

a circular shift of the input. If therotation is positive, the input
is shifted to the left so that ouput[0] = input[rotation]. If the
rotation is negative, the input is shifted to the right so that out-
put[rotation] = input[0].

sampleNholdGalaxy
This sample-and-hold galaxy is more memory efficient than
using a downsample star for the same purpose.

VarDelay A variable delay that will vary between 0 andmaxDelay as the
control input varies between -1.0 and 1.0.

WasteCycles Stalls the flow of data forcyclesToWaste number of cycles.

15.2.7 Conversion stars

The palette in figure 15-10 shows stars for format conversions from fixed point to com-
plex fixed point. The complex data type is only partially implemented in CG56. Complex

ports can be connected only to complex ports. Anytype ports can only be connected to fixed
and integer ports

CxToRect Output the real part and imaginary part of the input of separate
output ports.

RectToCx Output a complex signal with real and imaginary part inputs.

BitsToInt Convert a stream of bits to an integer.

IntToBits Convert an integer into a stream of bits.

FixToCx Convert fixed-point numbers to complex fixed-point numbers.

FixToInt Convert fixed-point numbers to complex fixed-point numbers.

CxToFix Convert fixed-point numbers to complex fixed-point numbers.

FIGURE 15-10: CG56 Conversion Palette

CxToRect RectToCx BitsToInt IntToBits

IntToFix IntToCx

CxToInt CxToFix

FixToInt FixToCx

Complex data type formats: Other data type formats:

Explicit (vs. automatic) type conversion:

The Almagest 15-13

Ptolemy Last updated: 10/8/97

CxToInt Convert fixed-point numbers to complex fixed-point numbers.

IntToFix Convert fixed-point numbers to complex fixed-point numbers.

IntToCx Convert fixed-point numbers to complex fixed-point numbers.

15.2.8 Signal processing stars

The palette shown in figure 15-11 has icons for the library of signal processing func-
tions. The filter stars follow. TheGoertzel andIIR stars are identical to their SDF counter-
parts.

Allpass An allpass filter with one pole and one zero. The location of
these is given by the “polezero” input.

Biquad A two-pole, two-zero IIR filter (a biquad).

Comb A comb filter with a one-pole lowpass filter in the delay loop.

BiquadDSPlay A two-pole, two zero IIR filter (a biquad). This biquad is tai-
lored to use the coefficients from the DSPlay filter design tool.
If DSPlay gives the coefficients: A B C D E then define the
parameters as follows: a=A, b=B, c=C, d=-(D+1), e = -E. This

FIGURE 15-11: CG56 Signal processing Palette

Allpass FIR

LMS Ganged

RaisedCos

LMS

CombBiQuad DSPlayBQ

FFTCx Window

PostTest

input

valid

DTMF

GoertzelPower

Goertzel

|X[k1]|^2

|X[k2]|^2

f0Power

f1Power

Detector

Goertzel

index

A1

A2

A3

A4

Amax

Tone
Strength

DTMF
Decoder
Bank

index

valid

freqPower

DTMFDecoder

key

valid

LMSOscDet

input

error

output

cosOmega

lmsDualTone

error

cosOmega1

cosOmega2

lmsDTMFDecoderBank2

valid

lowFreqIndex

highFreqIndex
lms
DTMFDecoder

key

valid

IIR LMSRx

Communications

Filters

Spectral Estimation

H z()
1 n1z

1–
n2z

2–
+ +

1 d1z
1–

d2z
2–

+ +
--=

15-14 CG56 Domain

U. C. Berkeley Department of EECS

only works if a, b, c, d, and e, are in the range [-1,1). The default
coefficients implement a low pass filter.

FIR A finite impulse response (FIR) filter. Coefficients are specified
by thetaps parameter. The default coefficients give an 8th order,
linear-phase, lowpass filter. To read coefficients from a file,
replace the default coefficients with< filename , preferably
specifying a complete path. Polyphase multirate filtering is also
supported.

LMS An adaptive filter using the LMS adaptation algorithm. The ini-
tial coefficients are given by thecoefparameter. The default ini-
tial coefficients give an 8th order, linear phase lowpass filter. To
read default coefficients from a file, replace the default coeffi-
cients with< filename , preferably specifying a complete path.
This star supports decimation, but not interpolation.

LMSGanged A LMS filter were the coefficients from the adaptive filter are
used to run a FIR filter in parallel. The initial coefficients
default to a lowpass filter of order 8.

LMSRx A Complex LMS filter

RaisedCos An FIR filter with a magnitude frequency response shaped like
the standard raised cosine used in digital communications. See
theSDFRaisedCosine star for more information.

The spectral estimation stars follow. TheGoertzelDetector , GoertzelPower ,
andLMSOscDet are identical to their SDF counterparts.

FFTCx Compute the discrete-time Fourier transform of a complex input
using the fast Fourier transform (FFT) algorithm. The parame-
ter order (default 8) is the transform size. The parameterdirec-
tion (default 1) is 1 for forward, -1 for the inverse FFT.

Window Generate standard window functions or periodic repetitions of
standard window functions. The possible functions areRect-
angle , Bartlett , Hanning , Hamming, Blackman , Steep-
Blackman , andKaiser . One period of samples is produced on
each firing.

The communications stars are exactly like their SDF counterparts.

H z() a bz
1–

cz
2–

+ +

1 d 1+()z 1–
– ez

2–
–

--=

The Almagest 15-15

Ptolemy Last updated: 10/8/97

15.3 An overview of CG56 Demos
A set of CG56 demonstration programs have

been developed. A top-level palette, shown in figure
15-12, contains an icon for each demo palette. The
demos are grouped by the CG56 target on which they
are implemented. If you do not have the require com-
piler, simulator, or DSP card, then you can still run the
demos to see the generated code. To do this make sure
that therun andcompile target parameters are toNO.
By default, the generated code is written to
$HOME/PTOLEMY_SYSTEMS directory.

15.3.1 Basic/Test demos

The Basic/Test palette contains six demon-
strations (figure 15-13).

goertzelTest Test the Goertzel fil-
ters for computing
the discrete Fourier
transform.

iirTest Test the infinite
impulse response
(IIR) filters.

logicTest Test various comparison tests and Boolean functions.

miscIntOps Test integer arithmetic operations.

multiFork Test theAnyAsmFork star. AnAnyAsmFork star is one of a
group of stars that do produce any code at compile time.

testPostTest Test theDTMFPostTest star used in touchtone decoding.

FIGURE 15-12: The top-level demo
palette for the CG56

default.pal

Sim56.pal

s56x.pal

cgcs56x.pal

Basic/Test

Simulator

S-56X

CGC/S-56X

FIGURE 15-13: Basic Demo Palette

multiFork

logicTest

miscIntOps

goertzel
Test

test
PostTest

iirTest

15-16 CG56 Domain

U. C. Berkeley Department of EECS

15.3.2 Motorola Simulator Demos

The demos in palette figure 15-
14 will generate stand alone applica-
tions. These applications will consist of:
a shell script to control the simulator
and output display programs; a simula-
tor command file; and the assembled
code to run on the simulator. The simu-
lator can be run in either an interactive
mode or in the background by setting
the interactive target parameter.

chirp This sys-
tem uses
two integrators and a cosine to generate a chirp signal.

DTMFCodec Demonstration of touchtone detection using the discrete Fourier
transform implemented by using Goertzel filters.

lms A noise source is connected to an eighth-order least-mean
squares (LMS) adaptive filter with initial taps specifying a low-
pass filter. The taps adapt to a null filter (the impulse response is
an impulse) and the error signal is displayed.

lmsDTMFCodec Demonstration of touchtone detection using Normalized Direct
Frequency Estimation implemented by using Least-Mean
Squares (LMS) adaptive filters.

phoneLine A telephone channel simulator. A tone is passed through some
processing which implements various distortions on a telephone
channel. The parameters that are controllable are: noise, chan-
nel filter, second harmonic, third harmonic, frequency offset,
phase jitter frequency, and phase jitter amplitude.

sin A sine wave is generated by using two integrators in a feedback
loop.

transmitter A simple 4-level PAM transmitter

tune A tune is generate using FM synthesis of notes stored in a table.
The sounds produced are not particularly musically appealing,
partly because the modulation index is not variable and the
attack and decay profiles are too limited.

varDelay This is a simple application demonstrating variable delay with
linear interpolation.

15.3.3 S-56X Demos

The demos shown in figure 15-15 require an Ariel S-56X DSP board to be installed in

FIGURE 15-14: Motorola Simulator Demos

transmitter

chirp

sin

lms

tunephoneLine

varDelay

DTMFCodec DTMFCodec

lms

The Almagest 15-17

Ptolemy Last updated: 10/8/97

the workstation. In addition, all but the first demo requires QDM. These demos generate a

stand alone application consisting of: a shell script to download and run the assembled code; a
file specifying the asynchronous user I/O interface; and the assembled code.

ADPCM This demo implements a ADPCM coder and decoder. The user
at run time can vary the number of quantization bits, the quanti-
zation range, and a delay so that signal can be heard instanta-
neously or a second later. Requires an Ariel Proport and a
microphone.

amtx Amplitude Modulation Transmitter. The results of the transmit-
ter are displayed asynchronously at run time.

CD Volume A universe showing a implementing a volume control with
CG56HostSliderGX stars. Requires a modified CD player.

echoCanceling A system implementing a pair of echo cancellation filters. The
first echo cancellation filter cancels an artificial echo introduced
by an FIR filter. The second echo cancellation filter is used to
cancel the echoes produced by have one microphone next to
loud speaker. Another microphone is used for desired input,
such as speech. Requires an Ariel Proport and two micro-
phones.

recv-2psk 2-PSK Bandpass filter.

reverb This system implements a reverberation system using Comb fil-
ters. Requires an Ariel Proport and a microphone.

xmit-2psk 2-PSK transmitter.

15.3.4 CGC-S56X Demos

All of the demos in this palette use theCompileCGSubsystems target described in
section 13.4 on page 13-10.

Stand alone Application Demos

The first set demos generate stand alone applications consisting of two parts: a pro-
gram generate in C that implements the sub-graph that runs on the host, and a program gener-

FIGURE 15-15: Ariel S-56X DSP Board demos

CD Volume

reverb

amtxADPCM echoCanceling

recv-2psk xmit-2psk

15-18 CG56 Domain

U. C. Berkeley Department of EECS

ated in Motorola 56k assembly that is to be run on the S-56X. The C program initializes and
downloads the S-56X program automatically. The first two of the demos shown in figure 15-
16, lms , phoneLine , DTMFCodec andlmsDTMFCodec are identical to the simulator demos.

Modem The modem palette contain 3 phased shift keying modem
demos. These demos illustrate the use of peek/poke actors and
hierarchical scheduling. Requires an Ariel Proport and a micro-
phone.

dtmfSpectrum This demos implements a DTMF tone generator and displays
the resultant frequency spectrum.

synth A FM music synthesis demonstration. Requires an Ariel Pro-
port.

synthFFT A FM music synthesis demonstration showing the resultant fre-
quency spectrum. Requires an Ariel Proport.

PRfilterBank A perfect reconstruction filter bank.

ADPCM This demo implements a ADPCM coder and decoder. The user
at run time can vary the number of quantization bits, the quanti-
zation range, and a delay so that signal can be heard instanta-
neously or a second later. Requires an Ariel Proport and a
microphone.

Simulation SDF-Wormhole Demos

The simulation SDF wormhole demos create simulation SDF stars in ptlang and also a
load file for the S-56X card. Unlike the other CG56 demos, the applications produced here
will not run as stand alone applications. The wormhole allows the user to imbed a CG56 sys-

FIGURE 15-16: CGC S-56X demos

lms phoneline

synth synth/FFT

Modem

test

MultiTone DSP Worm PRfilterBank

test

dtmfSpectrum

init.pal

ADPCMPRfilterBank dtmfCodec

dtmfCodec

lms

Stand-alone Applications

Simulation-SDF Wormholes

CGC, S-56X & VHDL Demo Palette

The Almagest 15-19

Ptolemy Last updated: 10/8/97

tem running on a Ariel S-56X DSP board into a Ptolemy simulation.

MultiTone Generates three sine waves on the S-56X which are at different
rates relative to one another.

DSPWorm Demonstrates multirate I/O between Ptolemy and the S-56X
board.

PRfilterBank A perfect reconstruction filter bank.

CGC, S-56X & VHDL Demos

The demos in this palette all
implement some for of a perfect
reconstruction filter bank. One of the
examples generates a simulation SDF
star which makes use of a VHDL sim-
ulator, the S-56X DSP card and the
workstation.

15.4 Targets
Seven CG56 targets are

included in the Ptolemy distribution. To choose one of these targets, with your mouse cursor
in a schematic window, execute the Edit:edit-target command (or just type “T”). You will get a
list of the availableTarget s in the CG56 domain. Thedefault-CG56 target is the default
value. When you clickOK, the dialog box appears with the parameters of the target. You can
edit these, or accept the defaults. The next time you run the schematic, the selected target will
be used.

15.4.1 Default CG56 (default-CG56) target

The default target is used only for code generation. It has the following set of options:

host (STRING) Default =
The default is the empty string. Host machine to compile or
assemble code on. All code is written to and compiled and run
on the computer specified by this parameter. If a remote com-
puter is specified here thenrsh commands are used to place
files on that computer and to invoke the compiler. You should
verify that your .rhosts file is properly configured so thatrsh
will work.

directory (STRING) Default =$HOME/PTOLEMY_SYSTEMS
This is the directory to which all generated files will be written
to.

file (STRING) Default =
The default is the empty string. This represents the prefix for
file names for all generated files.

Looping Level Specifies if the loop scheduler should be used. Please refer to

ch4

filterBank2 filterBank4 filterBank8

Tk

filterBank8Tk

Stand-alone Applications

Simulation-SDF Wormholes

FIGURE 15-17: Combined CGC, CG56, VHDL demos

15-20 CG56 Domain

U. C. Berkeley Department of EECS

the section “default-CG” on page 13-2 for more details on this
option. Refer to “Default SDF target” on page 5-65 and “The
loop-SDF target” on page 5-67 for more details on loop sched-
uling.

display? (INT) Default =YES
If this flag is set toYES, then the generated code will be dis-
played on the screen.

compile? This is a dummy flag since the default target only generates
code.

run? This is a dummy flag since the default target only generates
code.

xMemMap (STRING) Default =0-4095
Valid x memory address locations. Default is0-4095 , which
means x:0 through x:4095 are valid memory addresses. Disjoint
segments of memory can be specified by separating the contigu-
ous ranges with spaces, e.g. “0-4095 5000-5500.”

yMemMap (STRING) Default =0-4095
Valid y memory address locations. Default is0-4095 , which
means y:0 through y:4095 are valid memory addresses.

subroutines? (INT) Default =-1
Setting this parameter to N makes the target attempt to generate
a subroutine instead of in-line code for a star if the number of
repetitions of that star is greater than N (use N=0 to generate
subroutines even for stars with just 1 repetition). Set “subrou-
tines?” to -1 (or any other negative integer) to disable the fea-
ture.

show memory usage?(INT) Default =NO
If YES, then the target will report the actual amount of program,
X data memory, and Y data memory used by the program in
words.

15.4.2 CG56 Simulator (sim-CG56) target

This target is used for generating DSP56000 assembly code, assembling it, and run-
ning it on a Motorola DSP56000 simulator. For this to work properly, the Motorola 56000
assembler (asm56000) and the simulator (sim56000) must be in the user path. Otherwise a run
on this target produces code only, and an error message will appear indicating the absence of
the required programs in the user path. Input and output files specified inReadFile and
WriteFile stars are passed on to the simulator by an automatically generateduni-
verse.cmd file, which is sourced by the simulator.

The options for this target are mostly the same as the ones fordefault-CG56 above,
except for the following:

compile? (INT) Default =YES

The Almagest 15-21

Ptolemy Last updated: 10/8/97

If this option is set toYES, then generated code is assembled
usingasm56000 program.

run? (INT) Default =YES
If YES, then the assembled code is run on the Motorola simula-
tor sim56000.

Interactive Sim. (INT) Default =YES
If YES the simulator is run interactively (in which case one can
add breakpoints, single step through code, etc.)

15.4.3 Ariel S-56X (S-56X) target

This target generates stand alone applications that will run on the Ariel S-56X DSP
board. An optional graphical debugger, QDM, is available from the board designer, Mike
Peck. This debugger is needed for some of the user I/O stars that are specific to this target.

The options for this target are mostly the same as the ones fordefault-CG56 , except
for the following:

monitor (STRING) Default =
The default is the empty string.This parameter specifies an
optional monitor of debugger for use with the S-56X target. If
the application has QDM stars, this parameter should be set to
qdmterm_s56x -run .

15.4.4 CG56 Subroutine (sub-CG56) target

This target is used to generate subroutines that can be called from hand-written 56000
code. The options are identical to those ofdefault-CG56 target.

15.4.5 Multiprocessor 56k Simulator (MultiSim-56000) target

This target generates code for a multiprocessor DSP system, where the processors
communicate via shared memory. Unfortunately the multiprocessor simulator is not available
outside of U.C. Berkeley.

The options for this target are mostly the same as the forCGMultiTarget , except for
the following:

sMemMap (STRING) Default =4096-4195
Specifies the shared memory map to use for the communication
stars.

15-22 CG56 Domain

U. C. Berkeley Department of EECS

Chapter 16. VHDL Domain

Authors: Michael C. Williamson

Other Contributors: Christopher Hylands
Edward A. Lee
José Luis Pino
William Tsu

16.1 Introduction
The VHDL domain generates code in the VHDL (VHSIC Hardware Description Lan-

guage) programming language. This domain supports the synchronous dataflow model of
computation. This is in contrast to the VHDLB domain, which supports the general discrete-
event model of computation of the full VHDL language.

Since the VHDL domain is based on the SDF model, it is independent of any notion of
time. The VHDL domain is intended for modeling systems at the functional block level, as in
DSP functions for filtering and transforms, or in digital logic functions, independent of imple-
mentation issues.

The VHDL domain replaces the VHDLF domain. It is not, however, meant to be used
in the same way as the VHDLF domain: the VHDL domain is for generating code from func-
tional block diagrams with SDF semantics, while the VHDLF domain was intended to con-
trast with the VHDLB domain. It supported structural code generation using VHDL blocks
with no execution delay or timing behavior, just functionality. The semantics for the VHDLF
domain were not strictly defined, and quite a lot depended on how the underlying VHDL code
blocks associated with each VHDLF star were written.

Within the VHDL domain, there are a number of differentTarget s to choose from.
The default target,default-VHDL , generates sequential VHDL code in a single process
within a single entity, following the execution order from the SDF scheduler. This code is suit-
able for efficient simulation, since it does not generate events on signals. TheSimVSS-VHDL
target is derived fromdefault-VHDL , and provides facilities for simulation using the Synop-
sys VSS VHDL simulator. Communication actors and facilities in theSimVSS-VHDL target
support code synthesis and co-simulation of heterogeneous CG systems under theCompi-
leCGSubsystems target developed by José Pino. There is also aSimMT-VHDL target for use
with the Model Technology VHDL simulator. Thestruct-VHDL target generates VHDL
code in which individual actor firings are encapsulated in separate entities connected by
VHDL signals. This target generates code which is intended for circuit synthesis. TheSynth-
VHDL target, derived fromstruct-VHDL , provides facilities for synthesizing circuit represen-
tations from the structural code using the Synopsys Design Analyzer toolset. Each of these
targets is discussed in more detail in the next section.

Because the VHDL domain uses SDF semantics, it supports retargeting from other
domains with SDF semantics (SDF, CGC, etc.) provided that the stars in the original graph are

16-2 VHDL Domain

U. C. Berkeley Department of EECS

available in the VHDL domain. As this experimental domain evolves, more options for VHDL
code generation from dataflow graphs will be provided. These options will include varying
degrees of user control and automation depending on the target and the optimization goals of
the code generation, particularly in VHDL circuit synthesis.

16.1.1 Setting Environment Variables

In order to have the Synopsys simulation target work correctly, you should make sure
that the following environment variables and paths are set correctly. TheSYNOPSYS and
SIM_ARCH shell environment variables are settable within the Synopsys simulation target,
SimVSS-VHDL, as target parameters by using edit-target (shift-t).

Also, you may need to permanently add the following lines to your .cshrc file and
uncomment the ones you wish to take effect:

For VHDL Synopsys demos, uncomment the following:
setenv SYNOPSYS /usr/tools/synopsys
setenv SIM_ARCH sparcOS5
You need the last one of these (.../sge/bin) to run vhdldbx
since vhdldbx looks for “msgsvr”:
set path = ($path $SYNOPSYS/$SIM_ARCH/syn/bin $SYNOPSYS/$SIM_ARCH/
sim/bin $SYNOPSYS/$SIM_ARCH/sge/bin)
You need this to run vhdlsim, and since vhdldbx calls vhdlsim, you
need this to run vhdldbx also:
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${SYNOPSYS}/${SIM_ARCH}/
sim/lib
#
For Motorola S56x card demos on the Sparc, you will need something
like:
setenv S56DSP /users/ptdesign/vendors/s56dsp
setenv QCKMON qckMon5
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${S56DSP}/lib

You will need to have a .synopsys_vss.setup file with the right library directive in it in
order to use the communication vhdl modules needed for the CompileCGSubsystems target.
This file in the root PTOLEMY directory has the correct directive defining the location of the
PTVHDLSIM library. Synopsys simulation only sees the file if it is in one of three places: the
current directory in which simulation is invoked, the configuration directory within the Synop-
sys installation tree, or the user’s home directory. Since working directories are frequently cre-
ated and destroyed, and since the Synopsys installation will vary from site to site, the user’s
home directory is the best place to put this file, but each user must do this if the root of their
personal Ptolemy tree is anything other than their home directory.

Here is the text in $PTOLEMY/.synopsys_vss.setup:
-- This is so communication code can be
-- compiled into the PTVHDLSIM library:
PTVHDLSIM: $PTOLEMY/obj.$PTARCH/utils/ptvhdlsim

NOTE: If you build your own tree and it includes your own$PTOLEMY/src/utils/
ptvhdlsim directory, then you will need to modify your .synopsys_vss.setup file to point to
this directory prior to building the new tree. During the build process, this file is needed so that

The Almagest 16-3

Ptolemy Last updated: 6/12/97

the ptvhdlsim executable can be correctly linked. If it is pointing to some other directory, then
you may experience problems linking ptvhdlsim.

16.2 VHDL Targets
The targets of the VHDL domain generate VHDL code from SDF graphs. The targets

differ from one another in the styles of VHDL code which they produce, or in the facilities
they provide for passing the generated code to VHDL simulation or circuit synthesis tools.
The graphs of VHDL actors in Ptolemy are meant to be retargetable in that one graph can be
used with multiple VHDL targets, depending on the circumstances. The available targets in
the VHDL domain are:default-VHDL , struct-VHDL , SimVSS-VHDL, SimMT-VHDL, and
Synth-VHDL . There is also support for usingSimVSS-VHDL as a child target ofCompi-
leCGSubsystems for heterogeneous code generation and co-simulation.

All of the VHDL targets share the following parameters, which are inherited from the
base classHLLTarget :

directory (STRING) Default =$HOME/PTOLEMY_SYSTEMS
The name of the directory into which generated code files and
supporting files are written. In derived targets, this is also the
directory in which compilation for simulation and synthesis are
performed.

Looping Level (INT) Default =0
The control for selecting the looping complexity of the SDF
scheduler which is used. Note that looping of code is not sup-
ported in the current implementation, except at the main itera-
tion loop on the outside. Therefore a looping level of zero
should be used with all loop schedulers or incorrect code may
result. In future releases, higher looping levels will be sup-
ported.

display? (INT) Default =TRUE
Option to display generated codefiles to the screen.

write schedule? (INT) Default =FALSE
Option to write the schedule to a file. The name of the file will
be<galaxy name>. sched.

16.2.1 The default-VHDL Target

The default-VHDL target generates VHDL code in a simple and straightforward
style which is designed to preserve the SDF scheduling order while incurring minimum
VHDL simulation overhead. The code is generated as a single VHDL entity containing a sin-
gle process of sequential statements. The sequential process reflects the order of execution
determined by the SDF scheduler. All data values are stored and communicated through inter-
nal variables so that the simulation overhead of VHDL signals and the VHDL discrete-event
scheduler can be avoided. No actual simulation is performed by thedefault-VHDL target. It
is left to derived targets to support VHDL simulation.

To generate the code, thedefault-VHDL target first invokes the SDF scheduler, and

16-4 VHDL Domain

U. C. Berkeley Department of EECS

then goes through the resulting schedule in order, firing each VHDL star in sequence. As each
VHDL star is fired, a block of VHDL sequential statements is generated.Porthole and
State references and values are resolved and any necessary VHDL variables are created and
placed in the list of declared variables. One VHDL star may be fired multiple times and each
firing will cause a new codeblock with new variables to be generated. The target manages the
communication of data from one VHDL star to the next through VHDL variables. The target
also manages state propagation from one firing to the next of the same VHDL star through
VHDL variables. State values and tokens remaining on arcs at the end of the schedule itera-
tion are also fed back through the correct variables so that the process can be looped repeat-
edly and function identically to the original SDF graph.

16.2.2 The struct-VHDL Target

Thestruct-VHDL target generates VHDL code in a structural style, in which firings
of VHDL stars are individually encapsulated in VHDL entities. The entities are connected to
one another through VHDL signals, and the flow of data and state from one firing entity to the
next enforces the precedence relationships inherent in the dataflow graph and the resulting
schedule. The overall structure of the completed code description parallels the precedence
directed acyclic graph (DAG).

The procedure used by thestruct-VHDL target to generate the code begins similarly
to that of thedefault-VHDL target. First, the SDF scheduler is invoked and a valid schedule
is computed. Then the schedule is run, and as each VHDL star is fired, the target generates an
individual VHDL entity for each firing while keeping track of input and output references to
portholes and states. The target manages the references so that it can correctly instantiate each
VHDL entity and create VHDL signals to map to the VHDL ports for carrying data and state
from one firing to the next. Only firings which have actual dependencies will be connected in
the VHDL code representation. In this way, the code generated represents the maximum par-
allelism in the graph computation outside the granularity level of an individual firing.

The current version of thestruct-VHDL target also generates registers for latching
the values of states and remaining tokens at the end of an iteration. It feeds back the outputs of
these registers to the correct inputs at the beginning of the graph so that the structure can be
“clocked” by an input clock signal common to all such registers. This clock, on a positive
transition, represents the tick of one completed iteration of the dataflow graph. This clock
becomes an input to the entire top-level VHDL entity, and will presumably be supplied by an
outside source or signal driver during simulation. Similarly, there is an input created for a con-
trol signal which selects between the initial values of states or initial tokens and the succeed-
ing values which are passed from one iteration to the next.

16.2.3 The SimVSS-VHDL Target

The SimVSS-VHDL target is derived from thedefault-VHDL target. It generates
code in the same single-entity, single-process, sequential style as thedefault-VHDL target,
but it also provides facilities for simulation using the Synopsys VSS VHDL simulator.
Depending on the target parameters set when running this target, following the code genera-
tion phase this target can compile, elaborate, and execute interactively or non-interactively the
design specified by the generated VHDL code.

Communication actors and facilities in theSimVSS-VHDL target support code synthe-

The Almagest 16-5

Ptolemy Last updated: 6/12/97

sis and co-simulation of heterogeneous CG systems under theCompileCGSubsystems tar-
get developed by José Pino. This allows a user to manually partition a graph using hierarchy
so that multiple codefiles of different code generation domains can be generated. They are
then executable if run on host machines which provide all the needed simulators and support-
ing hardware resources that the individual child targets require. The communication between
the different code generation subsystems is automatically generated and correct synchroniza-
tion and deadlock avoidance are guaranteed. This capability is demonstrated with VHDL in a
number of demos included through the main VHDL demo palette.

The additional parameters of theSimVSS-VHDL target are as follows:

$SYNOPSYS (STRING) Default =/usr/tools/synopsys
Value of theSYNOPSYS environment variable. It points to the
root of the Synopsys tools installation on the host machine.

$ARCH (STRING) Default =sparcOS5
Value of theARCH environment variable. It indicates which
architecture/operating system the Synopsys tools will be run on.

$SIM_ARCH (STRING) Default =sparcOS5
Value of the SIM_ARCH environment variable. It indicates
which architecture/operating system the Synopsys VSS simula-
tor will be run on.

analyze (INT) Default =TRUE
If TRUE then attempt to analyze the VHDL code using thegvan
tool, checking for syntax errors.

startup (INT) Default =TRUE
If TRUE then attempt to startup the VHDL simulator (vhdldbx
if interactive = TRUE, elseptvhdlsim).

simulate (INT) Default =TRUE
Currently unused. Ifinteractive = FALSE, simulation under
ptvhdlsim will begin automatically following startup.

report (INT) Default =TRUE
Currently unused.

interactive (INT) Default =FALSE
If TRUE then when simulating, runvhdldbx . Otherwise, run
ptvhdlsim .

16.2.4 The SimMT-VHDL Target

TheSimMT-VHDL target is derived from thedefault-VHDL target. It generates code
in the same single-entity, single-process, sequential style as thedefault-VHDL target, and
also provides facilities for simulation using the Model Technology VHDL simulator. Depend-
ing on the target parameters set when running this target, following the code generation phase
this target can compile, elaborate, and execute interactively or non-interactively the design
specified by the generated VHDL code.

The additional parameters of theSimMT-VHDL target are as follows:

16-6 VHDL Domain

U. C. Berkeley Department of EECS

analyze (INT) Default =TRUE
If TRUE then attempt to analyze the VHDL code using thevcom
tool, checking for syntax errors.

startup (INT) Default =TRUE
If TRUE then attempt to startup thevsim VHDL simulator

simulate (INT) Default =TRUE
Currently unused. Ifstartup = TRUE and interactive = FALSE,
simulation undervsim will begin automatically following star-
tup. If startup = TRUE andinteractive = TRUE, vsim will startup
but wait for user input.

report (INT) Default =TRUE
Currently unused.

interactive (INT) Default =FALSE
If TRUE, then when simulating, start upvsim and wait for user
input. If FALSE, then when simulating, runvsim in the back-
ground.

16.2.5 The Synth-VHDL Target

TheSynth-VHDL target is derived from thestruct-VHDL target. It generates code
in the same structural style as thestruct-VHDL target, but it also provides facilities for syn-
thesis and optimization using the Synopsys Design Analyzer toolset.

Not every design which can be specified as an SDF graph using the VHDL stars avail-
able in the main star palettes will be synthesizable. Some stars generate code which is not syn-
thesizable under the rules required by the Synopsys Design Analyzer.

There is conceptually more than one way to generate synthesizable VHDL for a given
dataflow graph. Just as the sequential VHDL of thedefault-VHDL target differs from the
structural VHDL of thestruct-VHDL target, so there are also multiple ways in which the
structural VHDL could be generated. Thestruct-VHDL target as is only generates one par-
ticular style. A programmer with some experience could modify this target or create a new or
derived target to generate the code in a different structural style to suit different needs. Future
releases of Ptolemy may include additional structural VHDL targets for synthesis and/or a
modified version of the ones included in the 0.7 release.

The additional parameters of theSynth-VHDL target are as follows:

analyze (INT) Default =TRUE
If TRUE then attempt to analyze the VHDL code using the
design_analyzer tool, checking for syntax errors.

elaborate (INT) Default =TRUE
If TRUE then attempt to elaborate the analyzed design into a
netlist form.

compile (INT) Default =TRUE
If TRUE then attempt to compile the elaborated design into an
optimized netlist.

The Almagest 16-7

Ptolemy Last updated: 6/12/97

report (INT) Default =TRUE
If TRUE then generate reports on the compile-optimized designs
for area and timing.

16.2.6 Cadence Leapfrog Ptolemy Interface

Xavier Warzee of Thomson-CSF and Michael C. Williamson created an interface for
the Cadence Leapfrog VHDL Simulator.

$PTOLEMY/src/domains/vhdl/targets contains the Cadence Leapfrog VHDL
Target. This target,SimLF-VHDL , allows simulation of generated VHDL code with the Leap-
frog simulator from Cadence. This target is analogous to theSimVSS-VHDL target, which sup-
ports simulation with the Synopsys VHDL System Simulator.

Setup

To use the Leapfrog you need to have the following setup. Locally, our Cadence instal-
lation is at/usr/eesww/cadence , so your.cshrc would contain:

setenv PATH /usr/eesww/cadence/9504/tools/leapfrog/bin:$PATH
setenv CDS_LIB /usr/eesww/cadence/9504/tools/leapfrog
setenv CDS_INST_DIR /usr/eesww/cadence/9504

You also need to set up some files.

In the directory where the VHDL code is generated, for example
~/PTOLEMY_SYSTEMS/VHDL, the following two files must be provided:

cds.lib contains
softinclude $CDS_VHDL/files/cds.lib
define leapfrog ./LEAPFROG
define alt_syn $CDS_INST_DIR/lib/alt_syn

hdl.var contains:

DEFINE WORK leapfrog include $CDS_VHDL/files/hdl.var

and the directory~/PTOLEMY_SYSTEMS/VHDL/LEAPFROG must exist

16.3 An Overview of VHDL Stars
The figure below shows the top-level palette of VHDL stars. The stars are divided into

categories: sources, sinks, arithmetic functions, nonlinear functions, control, conversion, sig-
nal processing, and higher order functions. The higher order function stars are the same ones
that are common to all domains and they are not particular to VHDL. Icons fordelay , bus ,
and BlackHole appear in most palettes for easy access. Most of the stars in the VHDL
domain have equivalent counterparts in the SDF domain. See “An overview of SDF stars” on

16-8 VHDL Domain

U. C. Berkeley Department of EECS

page 5-4 for brief descriptions of these stars.

FIGURE 16-1: Top-level palette of stars in the VHDL domain.

16.3.1 Source Stars

Source stars have no inputs and produce data on their outputs. The figure below shows
the palette of VHDL source stars. All of these are equivalent to the SDF stars of the same

HOF
hof.pal

sources.pal

sinks.pal

arithmetic.pal

nonlinear.pal

control.pal

conversion.pal

dsp.pal

VHDL Stars

Signal Sources

Signal Sinks

Arithmetic

Nonlinear Functions

Control

Conversion

Signal Processing

Higher Order Functions

The Almagest 16-9

Ptolemy Last updated: 6/12/97

name.

FIGURE 16-2: Source stars in the VHDL domain.

16.3.2 Sink Stars

Sink stars have no outputs and consume data on their inputs. The figure below shows
the palette of VHDL sink stars. All of these are equivalent to the SDF stars of the same name.

FIGURE 16-3: Sink stars in the VHDL domain.

16.3.3 Arithmetic Stars

Arithmetic stars perform simple functions such as addition and multiplication. The fig-
ure below shows the palette of VHDL arithmetic stars. All of the stars are equivalent to the

Const
Ramp

RampInt

singen

Const

Rect

Impulse

Const

WaveForm

expgen

Window

Floating-Point Sources

Integer Sources

Complex Sources

XYgraphXMgraphXMgraph

Batch Plotting Facilities

16-10 VHDL Domain

U. C. Berkeley Department of EECS

SDF stars of the same name.

FIGURE 16-4: Arithmetic stars in the VHDL domain.

16.3.4 Nonlinear Stars

Nonlinear stars perform simple functions. The figure below shows the palette of
VHDL nonlinear stars. All of these are equivalent to the SDF stars of the same name.

FIGURE 16-5: Nonlinear stars in the VHDL domain.

16.3.5 Control Stars

Control stars are used for routing data and other control functions. The figure below
shows the palette of VHDL control stars. All of these are equivalent to the SDF stars of the

Add Mpy Mpy GainAdd

AddIntAddInt MpyInt MpyInt GainInt

IntegratorAverageSub

SubInt

AddCxAddCx MpyCx MpyCx

Floating-point

Integer

Complex

Quant

Cos Sin Exp

expjx

Quantizers

Math Functions

The Almagest 16-11

Ptolemy Last updated: 6/12/97

same name.

FIGURE 16-6: Control stars in the VHDL domain.

16.3.6 Conversion Stars

Conversion stars are used to convert between different data types. The figure below
shows the palette of VHDL conversion stars. All of the stars are equivalent to the SDF stars of
the same name.

FIGURE 16-7: Type-conversion stars in the VHDL domain.

16.3.7 Signal Processing Stars

The figure below shows the palette of VHDL signal processing stars. All of the stars
are equivalent to the SDF stars of the same name (see “Signal processing stars” on page 5-30).

FIGURE 16-8: Signal processing stars in the VHDL domain.

Fork

DownSample UpSample Distributor

Fork

Single-Rate Operations

Multirate Operations

PolarToRect

magnitude

phase

x

y

RectToPolar

x

y

magnitude

phase

CxToFloat FloatToCx

RectToCx CxToRect

Complex data type formats

FIR FIRInt LMS

Filtering operations

16-12 VHDL Domain

U. C. Berkeley Department of EECS

16.4 An Overview of VHDL Demos
The figure below shows the top-level palette of VHDL demos. The demos are divided

into categories: code generation, simulation, synthesis, and cosimulation. Some of the demos
in the VHDL domain have equivalent counterparts in the SDF or CGC domains. See “An
overview of SDF demonstrations” on page 5-51 for brief descriptions of these demos. Brief
descriptions of the demos unique to the VHDL domain are given in the sections that follow.

FIGURE 16-9: Top-level palette of demos in the VHDL domain.

init.pal

codegen.pal

simulation.pal

synthesis.pal

VHDL Demos

VHSIC Hardware Description
Language (VHDL) for modeling
digital systems and subsystems

Simulation Demos

Code Generation Demos

Synthesis Demos

CGC, S-56X & VHDL Demos

The Almagest 16-13

Ptolemy Last updated: 6/12/97

16.4.1 Code Generation Demos

Figures below show demos that do nothing but generate code.

The sequential demos use thedefault-VHDL target. The structural demos use the
struct-VHDL target. They are essentially the same systems being run, but with two different
targets producing two different styles of VHDL code. These demos provide a direct compari-
son of these two basic styles of VHDL code generation.

16.4.2 Simulation Demos

FIGURE 16-12: Demos using the Synopsys VSS Simulator.

These demos use theSimVSS-VHDL target. Each one generates VHDL code which is
functionally equivalent to the SDF graph specification, and then the code is executed on the
Synopsys VSS Simulator. Graphical monitoring blocks provide output analysis of the results
of running these systems.

butterfly
complex
Exponential sinMod tbus

Demos Generating Sequential VHDL Code

FIGURE 16-10: Sequential Code Generation Demos.

butterfly
complex
Exponential sinMod tbus

Demos Generating Structural VHDL Code

FIGURE 16-11: Structural Code Generation Demos.

butterfly
complex
Exponential sinMod tbus ch8_aVHDL_sVHDL_dC

phased_array

16-14 VHDL Domain

U. C. Berkeley Department of EECS

16.4.3 Synthesis Demos

FIGURE 16-13: Demos using the Synopsys Design Analyzer for synthesis.

These demos use theSynth-VHDL target. Each one generates structural VHDL code
which is equivalent to the SDF specification. One difference is that the data types are con-
verted to simple 4-bit integers to speed up the synthesis process. Once the code is generated,
the netlist is synthesized through the Synopsys Design Analyzer. Following that, the netlist is
optimized and then control of the Design Analyzer is returned to the user for further explora-
tion and inspection.

16.4.4 Cosimulation Demos

FIGURE 16-14: Demos mixing simulation in VHDL, C, and Motorola DSP56000 code.

These demos use theCompileCGSubsystems target which uses the SimVSS-VHDL
target as a child target for the VHDL portions of the systems. The first three demos generate
stand-alone heterogeneous programs which run in C, Motorola DSP56000 assembly, and
VHDL. They produce analysis and synthesis filterbanks for perfect reconstruction using pro-
gressively more complex structures. The fourth demo also generates a Tcl/Tk user interface
for selecting one of three waveform inputs to the system. The fifth and final demo generates
the filterbank system, but instead of doing it as a standalone program, it incorporates the sys-
tem into a wormhole inside a top-level SDF system. This way the subsystem can be executed
in code which is potentially faster than SDF simulation, and it can be reused without having to
recompile the subsystem each time the top-level system is executed.

ramp rampFir

ch4

filterBank2 filterBank4 filterBank8

Tk

filterBank8Tk

Stand-alone Applications

Simulation-SDF Wormholes

Chapter 17. C50 Domain

Authors: Luis Gutierrez

17.1 Introduction
The C50 domain generates assembly code for the Texas Instruments TMS320C5x

series of digital signal processors. The graphs that we can describe in this domain follow the
synchronous dataflow (SDF) model of computation. SDF allows us to schedule theBlocks
and allocate all the resources at compile time. Refer to chapter “SDF Domain” on page 5-1 for
a detailed description on the properties of SDF.

The TMS320C5x series are fixed-point digital signal processors which have 16 bit
data and instructions and operate at a maximum rate of 50MIPS. The C50 domain has been
tested on the TMS320C50 DSP Starter Kit board.

Since the C5x processors are fixed point, the floating point data type has no meaning in
the C50 domain. Fixed-point values can take on the range [-1,1). The most positive value is

. The domain defines a new constantC50_ONE set to this maximum positive value. In
this chapter, whenever data types are not mentioned, fixed-point is meant. The complex data
type means a pair of fixed-point numbers. The complex data type is supported for stars that
haveanytype inputs or outputs. Integers are the same length as the fixed-point representa-
tion. Matrix data types are not supported yet.

17.2 An overview of C50 stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. For the C50 domain, the star
library is large enough that it has been divided into sub-palettes as was done with the SDF
main palette.

The top-level palette is shown in figure 17-1. The palettes are Signal Sources, I/O,
Arithmetic, Nonlinear Functions, Logic, Control, Conversion, Signal Processing, and Higher
Order Functions. The stars on the Higher Order Functions (HOF) palette are used to help lay
out schematics graphically. The HOF stars are in the HOF domain, and not the C50 domain.
Each palette is summarized in more detail below. More information about each star can be
obtained using the on-line “profile” command (“,”), the on-line “man” command (“M”), or by

1 2 15––

17-2 C50 Domain

U. C. Berkeley Department of EECS

looking in theStar Atlas volume ofThe Almagest.

At the top of each palette, for convenience, are instances of the delay icon, the bus
icon, and the following star:

BlackHole Discard all inputs. This star is useful for discarding signals that
are not useful.

17.2.1 Source stars

Source stars are stars with only outputs. They generate signals, and may represent
external inputs to the system, constant data, or synthesized stimuli. The palette of source stars

FIGURE 17-1: The palette of star palettes for the C50 domain.

sources.pal

io.pal

dsp.palarithmetic.pal

nonlinear.pal

control.pal

HOF
hof.pal

logic.pal

conversion.pal

Signal Sources

Input/Output

Arithmetic

Nonlinear Functions Higher Order Functions

Logic

Signal Processing

Conversion

Control

Code Generation for the Texas
Instruments TMS320C50 Stars

FIGURE 17-2: The palette of source stars for the C50 domain.

bus

Const
Impulse

WaveForm

Ramp RectIIDUniformIIDGaussian

Tone

Const Const
RampInt expgen

singen

Signal Sources

Complex sources

Fixed-point sources

Integer sources

The Almagest 17-3

Ptolemy Last updated: 6/12/97

is shown in figure 17-2. Refer to 5.2.1 on page 5-5 for descriptions of the SDF equivalent
stars:Const , ConstCx , ConstInt , Ramp, RampInt , Rect , singen , andWaveForm.

Impulse Generate a single impulse or an impulse train. The size is deter-
mined byimpulseSize(default ONE). Ifperiod (default is 0) is
positive an impulse train with this period is generated, other-
wise a single impulse is generated. Ifdelay (default 0) is posi-
tive the impulse (or impulse train) is delayed by this amount.

IIDUniform Generate an i.i.d. uniformly distributed pseudo-random process.
Output is uniformly distributed between-range and range
(default ONE).

IIDGaussian Generate a white Gaussian pseudo-random process with mean 0
and standard deviation 0.1. A Gaussian distribution is realized
by summingnoUniforms (default 16) number of uniform ran-
dom variables. According to the central limit theorem, the sum
of N random variables approaches a Gaussian distribution as N
approaches infinity.

Tone Generate a sine or cosine wave using a second order oscillator.
The wave will be ofamplitude (default 0.5),frequency(default
0.2), andcalcType(default “sin”)

17.2.2 I/O Stars

I/O stars are target specific stars that allow input and output of stimuli to a target archi-
tecture. Currently there are I/O stars only for the C50 DSK board so these stars should only be
used with the DSKC50 target. These stars are located on the TI 320C5x IO palette inside the
Input/Output palette.

AIn This is an interrupt driven star to receive samples from the A/D
converter in the Analog Interface Chip. The sample rate is
determined bysampleRate. The actual conversion rate is
285.7KHz/N where N is an integer from 4 to 64. This star sup-
ports an internal buffer to hold the received samples. The size of
this buffer can be set manually by changing theinterruptBuffer-
Size parameter. SettinginterruptBufferSize to a negative value
will set the size of the buffer equal to the number of times the
star is fired on each iteration of the universe.

AOut This is an interrupt driven star to send samples to the D/A con-
verter in the AIC chip. The parameters are identical to those of
theAIn star.

17-4 C50 Domain

U. C. Berkeley Department of EECS

17.2.3 Arithmetic stars

The arithmetic stars that are available are shown in figure 17-4.

Add (2 icons) Output the sum of the inputs. Ifsaturation is set to
yes, the output will saturate.

Sub Outputs the “pos” input minus all of the “neg” inputs.

Mpy (2 icons) Outputs the product of all of the inputs.

Gain The output is set the input multiplied by again term. The gain
must be in [-1,1).

AddCx (2 icons) Output the complex sum of the inputs. Ifsaturation is
set to yes, the output will saturate.

SubCx Outputs the “pos” input minus all of the “neg” inputs.

MpyCx (2 icons) Outputs the product of all of the inputs.

AddInt (2 icons) Output the sum of the inputs. Ifsaturation is set to
yes, the output will saturate.

SubInt Outputs the “pos” input minus all of the “neg” inputs.

AIn AOut

FIGURE 17-3: TI DSK 320C5x IO Palette

FIGURE 17-4: C50 Arithmetic Palette

Add Add GainMpy Mpy

MpyShift Neg

Sub

Shifter

GainIntAddIntAddInt MpyInt MpyInt

AddCxAddCx MpyCx MpyCx

SubInt

SubCx

DivByInt

Specific to the C50 Domain

Integer

Complex

Fixed-point

The Almagest 17-5

Ptolemy Last updated: 6/12/97

MpyInt (2 icons) Outputs the product of all of the inputs.

GainInt The output is set the input multiplied by an integergain term.

DivByInt This is an amplifier. The integer output is the integer input
divided by the integerdivisor (default 2). Truncated integer
division is used.

MpyShift Multiply and shift.

Neg Output the negation of the input.

Shifter Scale by shifting leftleftShifts bits. Negative values ofleftShifts
implies right shifting.

17.2.4 Nonlinear stars

The nonlinear palette (figure 17-5) in the C50 domain includes transcendental func-
tions, quantizers, table lookup stars, and miscellaneous nonlinear functions.

Abs Output the absolute value of the input.

ACos Output the inverse cosine of the input, which is in the range -1.0
to 1.0. The output, in the principle range of 0 toπ, is scaled

FIGURE 17-5: C50 Nonlinear Palette

Sgn

Sin

CosACos ASin

Limit

Sqr

Abs Integrator

Xor

QuantRange

TableInt

Quant QuantIdx

output

stepNumber

MaxMin

output

index

Table

SgnInt

OrderTwoInt

greater

lesser

Sqrt

ModuloInt

expjxSinc

Expr

Log

LookupTbl

QntBtsIntQntBtsLin

Reciprocal

SkewVarQuasar

Pulse

Specific to the C50 Domain

Quantizers

Math Functions

Other Non-Linear Functions

17-6 C50 Domain

U. C. Berkeley Department of EECS

down byπ.

ASin Output the inverse sine of the input, which is in the range -1.0 to
1.0. The output, in the principle range of to , is scaled
down byπ.

Cos Output the cosine, calculated the table lookup. The input range
is [-1,1] scaled byπ.

expjx Output the complex exponential of the input.

Intgrtr An integrator with leakage set byfeedbackGain. If there is an
overflow, the onOverflow parameter will designate a wrap
around, saturate or reset operation.

Limit Limits the input between the range of [bottom, top].

Log Outputs the base two logarithm.

MaxMin Output the maximal or minimal (MAX) sample out of the lastN
input samples. This can eithercompareMagnitude or take into
account the sign. IfoutputMagnitude is YES the magnitude of
the result is written to the output, otherwise the result itself is
written.

ModuloInt Output the remainder after dividing the integer input by the
integermodulo parameter.

OrderTwoInt Takes two inputs and outputs the greater and lesser of the two
integers.

Quant Quantizes the input to one of N+1 possible outputlevels using
N thresholds.

QuantIdx The star quantizes the input to one of N+1 possible outputlevels
using Nthresholds. It also outputs the index of the quantization
level used.

QuantRange Quantizes the input to one of N+1 possible outputlevels using
N thresholds.

Reciprocal Outputs the reciprocal toNf precision in terms of a fraction and
some left shifts.

Sgn Outputs the sign of the input.

SgnInt Outputs the sign of the integer input.

Sin Outputs the sine, calculated using a table lookup. The input
range is [-1,1) scaled byπ.

Sinc Outputs the sinc functions calculated as sin(x)/x.

Sqrt Outputs the square root of the input.

Table Implements a real-valued lookup table. Thevalues state con-
tains the values to output; its first element is element zero. An

π
2
---–

π
2

The Almagest 17-7

Ptolemy Last updated: 6/12/97

error occurs if an out of bounds value is received.

TableInt Implements an integer-valued lookup table. Thevalues state
contains the values to output; its first element is element zero.
An error occurs if an out of bounds value is received.

Expr General expression evaluation.

LookupTbl The input accesses a lookup table. Theinterpolation parameter
determines the output for input values between table-entry
points. If interpolation is “linear” the star will interpolate
between table entries; ifinterpolation is set to “none”, it will
use the next lowest entry.

Pulse Generates a variable length pulse. A pulse begins when a non-
zero trigger is received. The pulse duration varies between 1
andmaxDuration as the control varies between [-1,1).

QntBtsInt Outputs the two’s complement number given by the topnoBits
of the input (for integer output).

QntBtsLin Outputs the two’s complement number given by the topnoBits
of the input, but an optionaloffset can be added to shift the out-
put levels up or down.

Skew Generic skewing star.

Sqr Outputs the square of the input.

VarQuasar A sequence of values(data) is repeated at the output with period
N (integer input), zero-padding or truncating the sequence to N
if necessary. A value of O for N yields an aperiodic sequence.

Xor Output the bit-wise exclusive-or of the inputs.

17.2.5 Logic stars

The Logic stars are discussed below:

FIGURE 17-6: C50 Logic Palette

Test

upper

lower

Test

upper

lower

Test

upper

lower

Test

upper

lower

input#1

input#2

17-8 C50 Domain

U. C. Berkeley Department of EECS

Test (4 icons) Test to see if two inputs are equal, not equal, greater
than, and greater than or equal. For less than and less than or
equal, switch the order of the inputs.

And (3 icons) True if all inputs are non-zero.

Nand (2 icons) True if all inputs are not non-zero.

Or (2 icons) True if any input is non-zero.

Nor (2 icons) True if any input is zero.

Xor (2 icons) True if its inputs differ in value.

Xnor (2 icons) True if its inputs coincide in value.

Not Logical inverter.

17.2.6 Control stars

Control stars (figure 17-7) manipulate the flow of tokens. All of these stars are poly-
morphic; they operate on any data type. Refer to 5.2.6 on page 5-17 for descriptions of the
SDF equivalent stars:Fork, DownSample , Commutator, Distributor , Mux,
Repeat, Reverse, and UpSample.

ChopVarOffset This star has the same functionality as theChop star except now
theoffset parameter is determined at run time through a control
input.

Cut On each execution, this star reads a block ofnread samples
(default 128) and writesnwrite of these samples (default 64),

FIGURE 17-7: C50 Control Palette

Fork Fork Fork

Pad

Reverse

DownSample

UpSample

RepeatDistributor Distributor

Commutator Commutator

WasteCycles

Delay

Rotate

Commutator

Distributor

Chop

Commutator

Distributor

Mux Mux

Fork

DeMuxDeMux
ChopVar
Offset

offsetCntrl

sampleNholdGalVarDelay

Other Operations

Single-Rate Operations

Multirate Operations

The Almagest 17-9

Ptolemy Last updated: 6/12/97

skipping the first offset samples (default 0). It is an error if
nwrite + offset > nread. If nwrite > nread, then the output con-
sists of overlapping windows, and henceoffset must be nega-
tive.

Delay A delay star of parametertotalDelay unit delays.

Pad On each execution, Pad reads a block ofnread samples and
writes a block ofnwrite samples. The firstoffset samples have
valuefill , the nextnread output samples have values taken from
the inputs, and the lastnwrite - nread - offset samples have
valuefill again.

Rotate The star reads in an input block of a certainlength and performs
a circular shift of the input. If therotation is positive, the input
is shifted to the left so that ouput[0] = input[rotation]. If the
rotation is negative, the input is shifted to the right so that out-
put[rotation] = input[0].

sampleNholdGalaxy
This sample-and-hold galaxy is more memory efficient than
using a downsample star for the same purpose. This star is not
present in Ptolemy0.6.

VarDelay A variable delay that will vary between 0 andmaxDelay as the
control input varies between -1.0 and 1.0.

WasteCycles Stalls the flow of data forcyclesToWaste number of cycles.

17.2.7 Conversion stars

The palette in figure 17-8 shows stars for format conversions from fixed point to com-
plex fixed point.

CxToRect Output the real part and imaginary part of the input of separate
output ports.

RectToCx Output a complex signal with real and imaginary part inputs.

FIGURE 17-8: C50 Conversion Palette

CxToRect RectToCx BitsToInt IntToBits

IntToFix IntToCx

CxToIntCxToFixFixToIntFixToCx

Complex data type formats: Other data type formats:

Explicit (vs. automatic) type conversion:

17-10 C50 Domain

U. C. Berkeley Department of EECS

BitsToInt Convert a stream of bits to an integer.

IntToBits Convert an integer into a stream of bits.

FixToCx Convert fixed-point numbers to complex fixed-point numbers.

FixToInt Convert fixed-point numbers to integer numbers.

CxToFix Output the magnitude squared of the complex number.

CxToInt Output the magnitude squared of the complex number.

IntToFix Convert an integer input to a fixed point output.

IntToCx Convert an integer input to a complex output.

17.2.8 Signal processing stars

The palette shown in figure 17-9 has icons for the library of signal processing func-
tions. The filter stars follow. TheGoertzel andIIR stars are identical to their SDF counter-
parts.

Allpass An allpass filter with one pole and one zero. The location of
these is given by the “polezero” input.

Biquad A two-pole, two-zero IIR filter (a biquad).

FIGURE 17-9: C50 Signal processing Palette

Allpass CombBiQuad DSPlayBQ

Window

RaisedCosineGoertzel

FIR

IIR

PostTest

input

valid

DTMF

LMS

signalIn

error

GoertzelPower

LMSGanged

inputFIR

inputAdapt

error

outputFIR

outputAdapt

DTMF
Decoder
Bank

index

valid

freqPower

DTMFDecoder

key

valid

ToneStrength

index

A1

A2

A3

A4

Amax

|X[k1]|^2

|X[k2]|^2

f0Power

f1Power

Detector

Goertzel

LMSOscDet

signalIn

error

signalOut

cosOmega

lmsDualTone

error

cosOmega1

cosOmega2

lms
DTMF
Decoder
Bank

valid

lowFreqIndex

highFreqIndex

key

valid
lms
DTMFDecoder

FFTCx

Communications

Filters

Spectral Estimation

H z()
1 n1z

1–
n2z

2–
+ +

1 d1z
1–

d2z
2–

+ +
--=

The Almagest 17-11

Ptolemy Last updated: 6/12/97

Comb A comb filter with a one-pole lowpass filter in the delay loop.

BiquadDSPlay A two-pole, two zero IIR filter (a biquad). This biquad is tai-
lored to use the coefficients from the DSPlay filter design tool.
If DSPlay gives the coefficients: A B C D E then define the
parameters as follows: a=A, b=B, c=C, d=-(D+1), e = -E. This
only works if a, b, c, d, and e, are in the range [-1,1). The default
coefficients implement a low pass filter.

FIR A finite impulse response (FIR) filter. Coefficients are specified
by thetaps parameter. The default coefficients give an 8th order,
linear-phase, lowpass filter. To read coefficients from a file,
replace the default coefficients with< filename , preferably
specifying a complete path. Polyphase multirate filtering is not
yet supported.

LMS An adaptive filter using the LMS adaptation algorithm. The ini-
tial coefficients are given by thecoefparameter. The default ini-
tial coefficients give an 8th order, linear phase lowpass filter. To
read default coefficients from a file, replace the default coeffi-
cients with< filename , preferably specifying a complete path.
This star supports decimation, but not interpolation.

LMSGanged A LMS filter were the coefficients from the adaptive filter are
used to run a FIR filter in parallel. The initial coefficients
default to a lowpass filter of order 8.

RaisedCos An FIR filter with a magnitude frequency response shaped like
the standard raised cosine used in digital communications.See
theSDFRaisedCosine star for more information.

The spectral estimation stars follow. TheGoertzelDetector, GoertzelPower ,
andLMSOscDet are identical to their SDF counterparts.

FFTCx Compute the discrete-time Fourier transform of a complex input
using the fast Fourier transform (FFT) algorithm. The parame-
ter order (default 8) is the transform size. The parameterdirec-
tion (default 1) is 1 for forward, -1 for the inverse FFT.

Window Generate standard window functions or periodic repetitions of
standard window functions. The possible functions areRect-
angle , Bartlett , Hanning , Hamming, Blackman , Steep-
Blackman , andKaiser . One period of samples is produced on
each firing.

The communications stars are exactly like their SDF counterparts.

H z() a bz
1–

cz
2–

+ +

1 d 1+()z 1–
– ez

2–
–

--=

17-12 C50 Domain

U. C. Berkeley Department of EECS

17.3 An overview of C50 Demos
A set of C50 demonstration programs have been developed. The demos are meant to

be run on the C50DSK board. If you do not have the required DSK tools, then you can still run
the demos to see the generated code. To do this make sure that therun andcompile target
parameters are toNO. By default, the generated code is written to
$HOME/PTOLEMY_SYSTEMS/C50 directory.

17.3.1 Basic/Test demos

The Basic/Test palette contains 7 demonstrations.

goertzelTest Test the Goertzel filters for computing the discrete Fourier
transform.

firTest Test the finite impulse response (FIR) filters.

iirTest Test the infinite impulse response (IIR) filters.

logicTest Test various comparison tests and Boolean functions.

miscIntOps Test integer arithmetic operations.

multiFork Test theAnyAsmFork star. AnAnyAsmFork star is one of a
group of stars that do produce any code at compile time.

testPostTest Test theDTMFPostTest star used in touchtone decoding.

17.3.2 DSK 320C5x demos

The DSK 320C5x demo palette contains demonstrations meant to be run on the Texas
Instruments DSP Starter Kit board.

chirp This system uses two integrators and a cosine to generate a
chirp signal.

DTMFCodec Demonstration of touchtone detection using the discrete Fourier
transform implemented by using Goertzel filters.

lms A noise source is connected to an eighth-order least-mean
squares (LMS) adaptive filter with initial taps specifying a low-
pass filter. The taps adapt to a null filter (the impulse response is

FIGURE 17-10: Basic/Test Demo Palette

multiFork

logicTest miscIntOps

goertzel
Test

test
PostTest

iirTest firTest

The Almagest 17-13

Ptolemy Last updated: 6/12/97

an impulse) and the error signal is displayed.

lmsDTMFCodec Demonstration of touchtone detection using Normalized Direct
Frequency Estimation implemented by using Least-Mean
Squares (LMS) adaptive filters.

phoneLine A telephone channel simulator. A tone is passed through some
processing which implements various distortions on a telephone
channel. The parameters that are controllable are: noise, chan-
nel filter, second harmonic, third harmonic, frequency offset,
phase jitter frequency, and phase jitter amplitude.

sin A sine wave is generated by using two integrators in a feedback
loop.

transmitter A simple 4-level PAM transmitter

17.4 Targets
Three C50 targets are included in the Ptolemy distribution. To choose one of these tar-

gets, with your mouse cursor in a schematic window, execute the Edit:edit-target command
(or just type “T”). You will get a list of the availableTarget s in the C50 domain. The
default-C50 target is the default value. When you clickOK, the dialog box appears with the
parameters of the target. You can edit these, or accept the defaults. The next time you run the
schematic, the selected target will be used.

17.4.1 Default C50 (default-C50) target

The default target is used only for code generation. It has the following set of options:

host (STRING) Default =
The default is the empty string. Host machine to compile or
assemble code on. All code is written to and compiled and run
on the computer specified by this parameter. If a remote com-
puter is specified here thenrsh commands are used to place
files on that computer and to invoke the compiler. You should
verify that your .rhosts file is properly configured so thatrsh

FIGURE 17-11: DSK 320C5x Palette

transmitter

chirp

sin

lms phoneLine

DTMFCodec

DTMF Codec

LMS

17-14 C50 Domain

U. C. Berkeley Department of EECS

will work.

directory (STRING) Default =$HOME/PTOLEMY_SYSTEMS/C50
This is the directory to which all generated files will be written
to.

file (STRING) Default =
The default is the empty string. This represents the prefix for
file names for all generated files.

Looping Level Specifies if the loop scheduler should be used. Please refer to
the section “default-CG” on page 13-2 for more details on this
option. Refer to “Default SDF target” on page 5-65 and “The
loop-SDF target” on page 5-67 for more details on loop sched-
uling.

display? (INT) Default =YES
If this flag is set toYES, then the generated code will be dis-
played on the screen.

compile? This is a dummy flag since the default target only generates
code.

run? This is a dummy flag since the default target only generates
code.

bMemMap (STRING) Default =768-1279
Address range for C50 Dual Access RAM blocks. C50 Instruc-
tions that operate on data run faster if the data is stored in one of
the DARAM blocks. Disjoint segments of memory can be spec-
ified by separating the contiguous ranges with spaces, e.g. “768-
800 1200-1279.”

uMemMap (STRING) Default =2432-6848
Data address range in the C50 Single Access RAM block. This
can also specify a valid address range in external memory.

subroutines? (INT) Default =-1
Setting this parameter to N makes the target attempt to generate
a subroutine instead of in-line code for a star if the number of
repetitions of that star is greater than N (use N=0 to generate
subroutines even for stars with just 1 repetition). Setsubrou-
tines? to -1 (or any other negative integer) to disable the fea-
ture.

17.4.2 C50 Subroutine (sub-C50) target

This target is used to generate subroutines that can be called from hand-written C50
code. The options are identical to those ofdefault-C50 target.

17.4.3 C50 DSP Starter Kit (DSKC50) target

This target is used to generate C50 code to be run on Texas Instruments’ DSP Starter

The Almagest 17-15

Ptolemy Last updated: 6/12/97

Kit board. In addition to the regularfile. asm generated by the other targets, this target will
produce a second file (file DSK.asm) which is the same as the original file but with all lines
truncated to 80 characters. This is done because the TI DSK assembler will give false error
messages if lines in the input file exceed 80 characters. The options are identical to those of
default-C50 target with four exceptions:

compile? If this flag is set the target will issue the commandasmc50
file DSK.asm where file DSK.asm is the name of the file
containing the generated code. This should run the DSK assem-
bler and produce a filefile DSK.dsk . Note thatasmc50 can
be a shell script that invokes the user’s DSK assembler. Scripts
to use the TI DSK assembler and loader in Linux are presented
at the end of this section.

run? If this flag is set the target will issue the commandloadc50
file DSK.dsk which should loadfile DSK.dsk to the DSK
board. Note thatloadc50 can be a shell script that invokes the
user’s DSK loader.

bMemMap (STRING) Default =768-1270
Valid addresses on the Dual Access RAM block 1. The last 9
words in this (addresses 1271 - 1279) are reserved by the target
to store configuration information for the Analog Interface
Chip.

uMemMap (STRING) Default =2432-6847
Valid addresses on the Single Access RAM memory. Locations
6848 - 11263 are reserved to store the user’s program and loca-
tions 2048-2431 are reserved by the TI DSK debugger kernel.

The following scripts invoke the TI DSK assembler and loader from Linux through
dosemu (a DOS emulator). Note that before invoking the assembler and loader Ptolemy exe-
cutes a cd to thedirectory target parameter. Since you need to unmount the DOS partition to
run dosemu you can not havedirectory set to the DOS partition. One solution is to setdirec-
tory to your home directory and setfile to include the path to the directory where you want the
file written. For example, if your home directory is/ptuser , the dos partitiondosemu will
use is/dos/c and you want the output files written to/dos/c/dsk/src the you could set
directory to /users/ptdesign andfile to /dos/c/dsk/ filename wherefilename is
the name of the output file. These scripts are also included in$PTOLEMY/src/domains/
c50.

#!/bin/sh
Version: @(#)asmc501.604/07/97
Copyright (c) 1996-1997 The Regents of the University of California.
All Rights Reserved.
#
asmc50
script to assemble files with TI’s DSK assembler(dsk5a.exe)
Uses dosemu to run dsk5a.exe. The person running it must be root to
mount/unmount the dos partition.

17-16 C50 Domain

U. C. Berkeley Department of EECS

This script was tested on a machine running linux (red-hat 3.0.3
distribution) with dosemu-0.63.1.33 installed.
#
Written by Luis Gutierrez.
Converted from csh to sh by Brian L. Evans

User’s home directory.
homedir=/root

User’s dos partition.
dospartition=/dos/c

The root path of DOS drive where DSK files and DOS binaries are
stored.
dosroot=c:

The DOS directory(relative to dosroot)where the *.asm and *.dsk
files
are stored. Replace the \ in the DOS path with \\.
dsksrc=dsk\\src

The DOS directory(relative to dosroot) where the DSK
executables(dsk5a.exe, dsk5l.exe) are stored.
Replace the \ in the DOS path with \\.
dskbin=dsk

The file used to temporarily save autoexec.emu.
autoexecsave=autoexec.bak

cd $dospartition
mv autoexec.emu $autoexecsave

The text between the first xxxx and the second xxxx will be
piped to unix2dos and will end up in autoexec.emu.

unix2dos > $dospartition/autoexec.emu << xxxx
path $dosroot\\$dskbin;$dosroot\\dos
cd $dosroot\\$dsksrc
dsk5a.exe $1:t
exitemu
xxxx
cd $homedir

Unmount DOS partition to run dosemu
umount $dospartition
dos > /dev/null

Mount DOS partition after running dosemu
mount -t msdos /dev/sda1 $dospartition

Restore autoexec.emu
cd $dospartition
mv -f $dospartition/$autoexecsave $dospartition/autoexec.emu

The Almagest 17-17

Ptolemy Last updated: 6/12/97

The following script is used to load files.
#!/bin/csh
Version: @(#)loadc501.5 03/29/97
Copyright (c) 1996-1997 The Regents of the University of California.
All Rights Reserved.
#
loadc50
script to load files with TI’s DSK loader(dsk5l.exe)
Uses xdos to run dsk5l.exe. The person running it must be root to
mount/unmount the dos partition.
This script was tested on a machine running linux(red-hat 3.0.3
diistribution) with dosemu-0.63.1.33 installed.
Written by Luis Gutierrez.
#
Converted from csh to sh by Brian L. Evans

User’s home directory.
homedir=/root

User’s dos partition.
dospartition=/dos/c

The root path of DOS drive where DSK files and DOS binaries are
stored.
dosroot=c:

The DOS directory(relative to dosroot\)where the *.asm and *.dsk
files
are stored. Replace the \ in the DOS path with \\.
dsksrc=dsk\\src

The DOS directory(relative to dosroot) where the DSK
executables(dsk5a.exe, dsk5l.exe) are stored.
Replace the \ in the DOS path with \\.
dskbin=dsk

The file used to temporarily save autoexec.emu
autoexecsave=autoexec.bak

cd $dospartition
mv autoexec.emu $autoexecsave

The text between the first xxxx and the second xxxx will be
piped to unix2dos and will end up in autoexec.emu.

unix2dos > $dospartition/autoexec.emu << xxxx
path $dosroot\\$dskbin;$dosroot\\dos
cd $dosroot\\$dsksrc
dsk5l.exe $1:t
exitemu
xxxx
cd $homedir

Unmount DOS partition to run xdos

17-18 C50 Domain

U. C. Berkeley Department of EECS

umount $dospartition
xdos

After running xdos mount DOS partition
mount -t msdos /dev/sda1 $dospartition

Restore autoexec.emu
cd $dospartition
mv -f $dospartition/$autoexecsave $dospartition/autoexec.emu

Chapter 18. Creating Documentation

Authors: Joseph T. Buck
Christopher Hylands
Alan Kamas
Edward A. Lee

Other Contributors:
Phil Lapsley

18.1 Introduction
Since Ptolemy is by design an extensible system, the documentation must be also be

extensible. This chapter explains the document formatting conventions, scripts, and sample
documents that are distributed with Ptolemy. At this time, we use a combination of text pro-
cessing systems for documentation. Currently, the main systems we use are FrameMaker1 and
HTML, though older version of Ptolemy used troff, and some TeX components. A version of
this particular chapter is distributed as a sample document in$PTOLEMY/doc/samples/
documents.book 2. It is made using FrameMaker, and can be used as a template for generat-
ing new FrameMaker documents in the Ptolemy style.

For users who do not have access to FrameMaker, a compatible alternative document
formatting system based on troff is also provided. Currently, all documentation for stars, gal-
axies, and demo programs is based on HTML. All shell scripts and Makefiles are supplied
along with the documentation so that they can be modified if necessary..

18.2 Printing the manual
The simplest way to get a hard copy version of the manual is to have a double sided

bound copy sent to you. You may order the documentation set from:

EECS/ERL Industrial Liaison Program Office, Software Distribution
205 Cory Hall
University of California at Berkeley
Berkeley, CA 94720
phone: (510) 643-6687
fax: (510) 643-6694
email: ilpsoftware@eecs.berkeley.edu

If you would like to print out your own copy of the documentation, you will need a
postscript printer. All of the Ptolemy documentation is contained in a collection of postscript

1. FrameMaker is a registered trademark of the Frame Technology Corporation.
2. $PTOLEMY is an environment variable that is assumed to specify the installation directory for the

Ptolemy system.

18-2 Creating Documentation

U. C. Berkeley Department of EECS

files. These files have the “.ps’ suffix at the end of their file names. The files are found in the
Ptolemy distribution as follows:

$PTOLEMY/doc contains most of the documentation. Within$PTOLEMY/doc, the
directoryusers_man contains the Ptolemy user’s manual. The directoryprog_man contains
the programmer’s manual. Thebin directory contains scripts for building and printing troff
based documentation. Theheaders directory contains troff header files that are needed by
the scripts in thebin directory. Themain directory contains the makefiles needed to print out
troff based documents. Finally, the directory$PTOLEMY/doc/samples contains sample doc-
uments and templates to follow if you are planning to add new documentation.

Domains and their stars are documented where their source code resides. For instance,
the documentation for the SDF domain is in$PTOLEMY/src/domains/sdf/stars . The
format for this documentation, and methods for printing it are found in the section titled
“Using HTML to document stars” on page 18-5.

Each of the documentation directories mentioned above may have aREADME file that
explains which postscript files are which and explains how to print out the files. In any event,
you can print the section you are interested in by going to the documentation directory and
then printing out the postscript files found there.

18.3 Using FrameMaker
In the directory$PTOLEMY/doc/samples , the following files can be found:

title.doc : A sample cover page.

documents.doc : A sample document (very similar to this chapter).

documentsTOC.doc :The table of contents for the document.

documents.book : A book file that unites the above three documents.

These documents can be used as models or templates for creating new documents that are to
be inserted inThe Almagest or are to stand alone. Usedocuments.doc as a template for
most applications. It defines the paragraph and character styles visible in this chapter.

By convention, except for the sample document, we do not distribute the FrameMaker
files for the entireAlmagest. Instead, we distribute the PostScript1 code produced by Frame.
The makefiles used to print manual, therefore, simply assume that the PostScript files are up to
date. It is up to you to ensure this. You must also ensure that the index files corresponding to
the PostScript code are up to date. The section below explains how to generate these.

18.3.1 Index Entries

We use FrameMaker to generate the indexes for each manual. Different index markers
are used to denote different uses of the term bein indexed. For example, the definition of a star
gets a different FrameMaker marker than a simple reference to the star. In the index file the
page number of the definition will be in bold, the page number of the reference will be in a
regular font.

To use the Ptolemy group markers, the following X resources should be modified in

1. PostScript is a registered trademark of Adobe Systems Inc.

The Almagest 18-3

Ptolemy Last updated: 11/6/97

the file$FMHOME/fminit/usenglish/Maker.us :

Maker*marker.10: IndexReference
Maker*marker.11: IndexExamplle
Maker*marker.12: IndexDefinition
Maker*marker.13: IndexStarRef
Maker*marker.14: IndexStarEx
Maker*marker.15: IndexStarDef
Maker*marker.24: HTMLStart
Maker*marker.25: HTMLEnd

These resources cause the named index markers to appear in the list of markers.

To make an index entry in a FrameMaker document, select the text you wish to appear
in the index, and select the FrameMaker command Special-Marker (Esc-s-m). Then choose
one of the above six types of index entries, using the following guidelines:

IndexReference : Generic index entry

IndexExample : An example of the usage of a particular feature.

IndexDefinition : The definition of a term.

IndexStarRef : A generic reference to a star.

IndexStarEx : An example of the usage of a star. For example if the text that
describes the SDFbutterfly demo would have a index entry
that looks like:butterfly (SDF demo) .

IndexStarDef : The definition of a star. This entry is normally automatically
generated when a star is compiled, so you will probably not
encounter any occasion to use it directly. The text that defines
the SDFRamp star would have the marker text:
Ramp (SDF block)

Avoid index entries beginning with very generic words in the Ptolemy vocabulary, like
Ptolemy,star , galaxy , or domain . Of course, if you are writing some explanation of these
basic terms, then an index entry is appropriate. Before entering index entries for a star, look in
the documentation for similar stars to get an idea of the subject terms that have already been
used and might be related. Be sure to follow the same capitalization rules as the existing index
entries (i.e.Ramp (SDF block) , notRamp (SDF Block)).

Currently we use Quadralay’s WebWorks to convert Framemaker documents to html.
You can useHTMLStart to indicate text that should be present in the html output as a link.
Use aHTMLEnd on the end of the text of the text that represents the link. The text of the first
HTMLStart contains the filename or URL:

http://ptolemy.eecs.berkeley.edu

The HTMLEnd is placed at the end of the text you want underlined in the html ver-
sion.Here is a sample link tohttp://ptolemy.eecs.berkeley.edu .

The markers are not printed when the FrameMaker document is printed. WebMaker
converts the text delimited by the markers into HTML hypertext links.

When you print your document, you should generate the index file that will be used to
print the overall index. To do this, select File/Generate, and within the ensuing dialog box,

18-4 Creating Documentation

U. C. Berkeley Department of EECS

select List/List of Markers. In the dialog box that results from this, be sure all of the above
index markers are included, and then accept the default filename suffix “LOM”. The dialog
box should look like this:

When you click OK, you will get a new file with a list of markers in a format acceptable to the
Ptolemy index generation software. This file should be saved in “Text only” form. By conven-
tion, we name the index file using the document name with the suffix “.index”.

18.3.2 Special fonts and displays

 • By convention, Ptolemy documentation uses a special font for C++ class names. In the
FrameMaker template, the corresponding format is namedClass .

For a display entirely set in this font,
use the "Commands" paragraph format, as shown here.
You can use "meta-Return" to force carriage returns where
you want them without getting a new paragraph.

 • Note that if you use the Commands paragraph format, you should be sure to change
any slanted double quotes“ ” to straight quotes" , by typing Control-Shift-" . In gen-
eral, commands don’t have slanted double quotes, hence the need to convert them to
straight quotes.

 • Star and Target parameters, such as the SDFloopScheduler target parameter, are
always in italic, use the Emphasis font format.

 • The names of stars and demos should be in theClass format.

 • If a string is to be taken literally, it should be in theProgramCode character format.
An example would be that the default of theloopScheduler target parameter is1.
Strings such asYES, NO, TRUE and FALSE, that are used as values to parameters
should also be in theProgramCode format.

 • The first line of a dialog with a computer should use theCommands paragraph format.
Each successive line should use theCommandsCont paragraph format. The text the
computer would print should be in theProgramCode character format, the text the
user would type should be in theProgramUser character format.

 • If a string is only an example and to be substituted with a proper value, it should be in
ProgramVariable character format.

 • To include images of palettes in documents, see “Capturing a screen image” on
page 2-41.

The Almagest 18-5

Ptolemy Last updated: 11/6/97

18.4 Using HTML to document stars
Stars are currently documented in HTML. Theptlang program processes a.pl file

and produces.cc , .h and.html files in the same directory as the.pl file. The contents of
thehtmldoc section of the.pl file end up in the.html file. See the Programmer’s Manual
for details.

The Tycho on-line documentation includes a style guide in$PTOLEMY/tycho/doc/
documentation.html .

18-6 Creating Documentation

U. C. Berkeley Department of EECS

Chapter 19. Vem — The Graphical
Editor for Oct

Authors: David Harrison
Rick Spickelmier

Other Contributors: Bill Bush
Andrea Cassotto
Christopher Hylands
Edward A. Lee

19.1 Terminology
Vem is an interactive graphical editor for theoct design database. It was written by

David Harrison and Rick Spickelmier in the CAD group at UC Berkeley. It has been extended
by Andrea Cassotto and Bill Bush. An introduction to the terminology used in the system is
given in “The oct design database and its editor, vem” on page 2-21. In this chapter, we give
more detailed information aboutvem. Most users will not need this much detail; chapter 2 will
be enough.

Most of this chapter is extracted from standard documentation for theocttools dis-
tribution. No oct documentation is included. See “Customizing Vem” on page 19-23 for
other resources.

The fundamentaloct objects that we edit withvem are calledfacets. Facets are speci-
fied by three names separated by colons. This is usually written as “cell:view:facet”. The first
component is the cell name; it is used to name the design. Note that cell name may not contain
any spaces. Inpigi , the second component, called the view name, will always be “sche-
matic”.1 Third, is the “facet” component, which can either be “contents” or “interface”. The
former specifies a block diagram, while the latter defines an icon. This usage of the term
“facet” is different from our previous usage. Thus, “facet” can mean either theoct object
called a facet, or “contents” vs. “interface”. The intended meaning is usually clear from con-
text. In commands that depend on the facet (in the latter sense), if you do not specify it,vem
assumes that you mean the contents facet. Thus, “wave:schematic” refers to the facet with cell
name “wave”, view name “schematic”, and facet name “contents”.

Vem was originally written with VLSI designs in mind. Ptolemy is an attached tool,
invoked via a program calledpigiRpc . Vem was originally intended for IC design. As such
vem provides standard graphics editing capabilities for physical (mask-level), symbolic, and
schematic designs. Ptolemy uses schematic capabilities for applications and physical capabili-
ties for icons.

Vem may be started by simply typingvem, but this will not start Ptolemy. To start the

1. Other oct applications use other views such as “symbolic” or “physical.”

19-2 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

Ptolemy interactive graphical interface, simply execute the commandpigi in $PTOLEMY/
bin. This invokes a shell script that startsvem and the associatedpigiRpc process.Vem is
started in general with the following command line options:

vem [-F cell[:view[:facet]]] [-G WxH+X+Y] [-R [host,]path] \
[-display host:display] [name=value ...]

For example, the following script could be used to start Ptolemy on a Sun 4 workstation:

xrdb -m $PTOLEMY/lib/pigiXRes9
vem -G 600x150+0+0 -F init.pal:schematic \

-G 600x300+0+170 -R $PTOLEMY/bin.sun4/pigiRpc

The first line merges the X Windows resources defined in$PTOLEMY/lib/pigiXRes9 . The
next line startsvem and the associatedpigiRpc process. Thepigi script is simply a more
elaborate version of this that ensures the existence of theinit.pal facet and sets up the
user’s environment.

Vem looks at the value of theDISPLAY environment variable to determine what host
and display to use for output.Vem andpigi may be run in the background without affecting
the program operation.

The -F , -G, and-R command line options allow a user to specify a start-up window
configuration forvem. These three options are considered triplets that specify the initial cell,
position and size, and remote application respectively for a window. There is no limit to the
number of triplets that may be specified. The-F flag marks the start of each new triplet. The
corresponding-G and-R flags after the-F flag are optional. If the-G flag is omitted,vem will
not specify a location for the window and most window managers will interactively prompt
for the window location. If the-R flag is omitted, no remote application will be started in the
window. The-F flag can be omitted from the first triplet. In this case, the-G and -R flags
apply to the console window. For example, thepigi script above startsvem with its console
window at (0,0) with a size of 600 by 150, and one window looking at the cell “init.pal:sche-
matic” at (0,170) with a size of 600 by 300, running thepigiRpc remote application.

Vem is a highly customizable editor. Nearly all of the colors, font styles and fill pat-
ternsvem uses can be changed by the user. Normally, these parameters are read from the
user’s X resources (which are usually loaded when X is started from a file named~/.Xde-
faults , or something similar). However, one can set certain parameters on the command line
using the = (equal) command line option. A list of all configurable parameters can be found in
the document “Customizing Vem,” which is distributed with the standardocttools distribu-
tion. This document can also be found as$PTOLEMY/src/octtools/vem/doc/Vemcus-
tom.ps .

The console window echoes user input and outputs various help and status messages.
After starting, the console will display a prompt and wait for input. Ptolemy users rarely need
to use this window, and eventually, it will be eliminated.

If the init.pal facet does not exist in the directory in whichpigi is started, then it
will be created. A blank facet will appear. Convention in Ptolemy dictates that this facet
should be used to store icons representing complete applications, or universes, that are defined

The Almagest 19-3

Ptolemy Last updated: 11/6/97

in the directory. If such icons already exist in the init.pal facet, the applications can be exam-
ined using thepigi “look-inside” command.

New windows can be created usingopen-facet command (see table 2-2 on page 7). It
is also possible to open a window from thevem console using theopen-window command, but
this new window will not be attached topigiRpc (see the command reference below). This
means that you will not be able to issue thepigi commands in table 2-2 from these windows.

Each window has exactly one associated cell. Mouse action with the cursor positioned
inside a window cause operations to occur to the associated cell. Any number of windows can
be created with the same or different associated cells. More than one window may have the
same associated cell. In this case, all of the windows are attached to thesame cell. Thus, a
change to one of the windows may cause updates to other windows that look at the same cell.

Vem assumes a three-button mouse. The left button is used for entry of graphics infor-
mation. The middle button is used for the primary menu of commands. The right button is
used to modify graphics information entered using the left button.

Commands tovem are specified in post-fix form. The user builds an argument list first
and then selects a command. Commands can be selected in three ways: pop-up menus, single
keystrokes, or by typing in the command name. Pressing and releasing the middle button in a
graphics window causes avem menu to appear. The user can use the mouse to riffle through
the options until the desired choice is highlighted. The commands are summarized in table 2-3
on page 11. Pressing and releasing the mouse button activates the selected command. Pressing
and releasing the mouse outside the menu cancels the selection. Normally, pressing and
releasing the middle button causes avem menu to appear. Holding the shift key and clicking
the middle button causes thepigi menu to appear. Both menus are useful.

A number of common commands can be selected via a single keystroke. Key bindings
for various commands are shown next to the corresponding entry in thevem menu, are listed
in the command reference below, and can be queried interactively using thebindings com-
mand. Typing a colon (:) allows the user to type in the command name (or a user defined
alias) in the console window. The standard line editing keys can be used while typing the com-
mand name. This interface supports automatic command completion. Typing a tab will com-
plete the command if it is unique or offer a list of alternatives if it is not unique. The command
is selected by typing a carriage return.

There are five types of input tovem: points, boxes, lines, text, and objects. Points are
entered by pressing and releasing the left button of the mouse. Boxes are entered by pressing,
dragging, and releasing the left button. Lines are entered by pressing, dragging and releasing
the left button over a previously created point or line. Text is entered by typing the text
enclosed in double quotes. If entering a filename, typing aTab character will causevem to try
to complete the name if it is unique or offer a list of alternatives if it is not unique. Objects are
entered using theselect-objects andunselect-objects commands. The last item on an argument
list can be deleted using the standard character for delete. The last group of items can be
deleted using the word erase characterControl-W . The entire argument list can be deleted
using the standard kill-line character (usuallyControl-U).

Once entered, graphics arguments (points, boxes, and lines) can be modified in various
ways. For all arguments, a point can be moved by moving the cursor over the point and press-
ing, dragging, and releasing the right mouse button. New points can be added to a group of

19-4 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

lines by moving over a point in the segment, depressing, dragging, and releasing the left
mouse button. This will insert a new point after the point. It is also possible to interactively
move, rotate, and mirror object arguments (selected items). See the description of thetrans-
form command in the command reference below.

This version ofvem supports three basic editing styles: physical, symbolic, and sche-
matic. Physical editing involves the entry and editing of basic geometry and the creation of
interface terminals. This style is used inpigi to build icons. Symbolic editing involves the
placement of instances of leaf cells and the interconnection of these instances.Pigi does not
use symbolic editing. Schematic editing is an extension of symbolic where the primitive cells
are schematic symbols and wire width is insignificant. Schematic cells use used bypigi to
represent block diagrams.

Whenvem opens a new cell directly (i.e. not viapigiRpc), a dialog will appear ask-
ing for three property values: TECHNOLOGY, VIEWTYPE, and EDITSTYLE. The TECH-
NOLOGY and VIEWTYPE properties determine the location of the technology facet, which
specifies the colors and layers in the display. A standard technology facet has been designed
for Ptolemy, so the defaults that appear are almost always acceptable. Layer display and
design rule information is read from this facet. The EDITSTYLE property is used byvem to
determine the set of commands available for editing the cell. Currently, the legal editing styles
are PHYSICAL, SYMBOLIC, or SCHEMATIC.

19.2 Using Dialog Boxes
Some commands require information that cannot be expressed easily using post-fix

notation. Examples include destructive commands that require an explicit confirmation and
commands that require complex non-graphic information.Vem usesdialogboxes based on the
MIT Athena widgets to handle these situations. Dialog boxes are windows that resemble busi-
ness forms. These windows contain labeled fields for entering text, changing numerical val-
ues, and selecting options. This section describes how to use dialog boxes.

All dialog boxes invem have the same form. An example is shown on page 2-14, and
also in figures 19-1 on page 12 and 19-2 on page 14. At the top of all dialogs is a one line title
indicating the purpose for the dialog. The middle of the dialog (known as the body) contains
fields for displaying and editing information of various kinds. At the bottom of the dialog are
a number ofcontrolbuttons. Each control button represents a command. The arguments to the
command are the values of the fields displayed in the body. Thus, operating a dialog consists
of editing or changing fields in the body and then selecting a command by activating a control
button. Six kinds of fields may appear in the body of avem dialog: editable text, non-editable
text, enumerated value, numerical value, exclusive lists, and non-exclusive lists. A description
of each field type is given in the paragraphs that follow.

Editable text fields are used to enter and edit text. Visually, an edit text field consists of
a box containing a caret cursor, an optional scrollbar, and a label to the left of the box indicat-
ing the purpose for the field. Only one editable text field is active in any one dialog. The active
editable text field has a dark border. Typing text with the mouse positioned anywhere in the
dialog inserts text into the active editable text field. Most of the basic emacs editing com-
mands can be used to modify the text in the field, as shown in table 19-1.

The insert position in the field may also be changed by pressing the left mouse button

The Almagest 19-5

Ptolemy Last updated: 11/6/97

when the mouse cursor is over the desired position. Any editable text field can be made active
by clicking the left mouse button inside the editable area. Alternatively, one can use theTab
key to make the next text field active andMeta-Tab to make the previous field active. Edit-
able text fields that display large amounts of text have a scrollbar to the left of the text area.
Pressing the left and right mouse buttons when the mouse cursor is in a scrollbar will scroll
the text down and up respectively in proportion to the distance between the mouse cursor and
the top of the scrollbar. As an example, pressing the left mouse button near the bottom of the
scrollbar will scroll down the text almost one screen. Pressing and releasing the middle mouse
button scrolls the text to a relative position based on how far the mouse cursor is from the top
of the scrollbar. Holding down the middle mouse button will interactively scroll through the
text.

Non-editable text fields are used to display text messages. They consist of a box con-
taining text and an optional scrollbar. The scrollbar operates just like those used in editable
text fields.

Enumerated value fields are used to specify one value out of a small list of values.
They consist of a value displayed inside a box and a descriptive label to the left of the value.
The border of the value highlights as the mouse cursor moves over it. Depressing and holding
the left mouse button inside the value box causes a menu to appear that displays all possible
values. The choices will highlight as the mouse cursor moves over them. To select a new
value, release the mouse button when the desired choice is highlighted. The new value will
appear in the value box. One can leave the value unchanged by releasing the mouse button
outside the menu boundary.

A numerical value field is used to specify a magnitude between a predetermined mini-
mum and maximum. Visually, it consists of a box containing a numerical value, a horizontal
scrollbar to the right of the box for changing the value, and a label to the left describing the

Key Description

delete, control-h Delete previous character
control-a Move to beginning of line
control-b Move backward one character
control-d Delete next character
meta-d Delete next word
control-e Move to end of line
control-f Move forward one character
meta-i Include a file
control-k Kill (delete) to end of line
control-n Next line
control-p Previous line
control-s Search forward
control-v Next page
meta-v Previous page
control-y Yank deleted text

TABLE 19-1: Emacs-style text editing commands supported in vem dialog boxes.

19-6 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

value. The magnitude of the value is changed by operating the scrollbar. Pressing the left and
right buttons in the scrollbar decrement and increment the value by one unit. Pressing the mid-
dle button changes the value based on the distance between the mouse cursor and the left edge
of the scroll bar. The middle button may be pressed and held to interactively modify the value.
Most people use the middle button to set the value roughly then use the left and right buttons
to make the value precise.

Exclusive lists are used to choose one possible value out of a (possibly quite large) list
of values. These values are displayed in a box with a scrollbar on the left edge of the box.
Each value consists of a button box on the left and a descriptive label to the right. As the
mouse moves over a button box, it will highlight to indicate it can be activated. The button box
of the selected item will appear dark while all others will remain light. If there are too many
values to display in the box at one time, the scrollbar can be used to scroll through the possible
values. The scrollbar operates in the same way as described for editable text fields.

Non-exclusive lists are used to choose zero or more possible values from a (possibly
quite large) list of values (see figure 19-2 on page 14). A non-exclusive list resembles an
exclusive list both in appearance and operation. However, unlike an exclusive list, one can
choose any number of items in a non-exclusive list. Visually, the two lists are distinguished by
the appearance of the button boxes. Exclusive button boxes resemble radio buttons. Non-
exclusive button boxes resemble check marks. Pressing the left button in a non-exclusive but-
ton box causes the value to toggle (i.e., if it was selected it becomes unselected, if it was unse-
lected it becomes selected).

Control buttons cause the dialog to carry out some operation. They consist of a text
label surrounded by a box. Control buttons are activated in one of two ways: pressing and
releasing the left mouse button when the mouse cursor is positioned inside the button bound-
ary, and through keystrokes. Not all control buttons can be activated using keystrokes. Those
that can be activated in this fashion display the key in parentheses under the button label.
Although there are exceptions, most dialogs support the keyboard accelerators given in table
19-2.

Dialogs may be bothmoded and unmoded. Moded dialogs are those requiring a
response before processing can proceed.Vem uses these kinds of dialogs to ask for confirma-
tion before proceeding. On the other hand, unmoded dialogs remain active until explicitly dis-
missed by the user. Other commands may be invoked freely while unmoded dialogs are
visible. Most non-confirmation dialogs invem are unmoded.

Key Action

<return>, <meta-return>, <F1> OK
<delete>, <meta-delete>, <F2> Cancel
<Help>, <F3> Help
<F4> All
<F5> Clear

TABLE 19-2: Keyboard accelerators supported by most vem dialog boxes.

The Almagest 19-7

Ptolemy Last updated: 11/6/97

19.3 General Commands
Below is a reference for allvem commands. This section outlines general commands

available for editing all types of cells. Section 19.4 discusses options, section 19.5 describes
the general selection mechanism. and section 19.6 describes property and bag editing features.
The next three sections describe editing commands for physical, symbolic, and schematic
cells respectively. The summary includes the name of the command as it appears on a menu, if
it appears in the menu. The command name can be typed in as well. Place the mouse in the
window where you wish to execute the command, enter the command arguments (points,
objects, etc.), type a colon (:), and type the command name. The TAB character will automat-
ically complete command names. The phrase <no-name> implies it has no default menu or
command name binding.

The list below also shows the default keyboard binding for each command, if it has
one, and the syntax of the argument list passed to it. The symbol <*> implies the command
has no default key binding. In general, the commands used most often have key and menu
bindings. Less often used commands may have only command name bindings. See table 2-3
on page 11 for a concise summary.

Somevem commands are not documented here because they are dangerous or conflict
with the objectives ofpigi . Those commands will not appear in thevem menu, and have no
key binding, although all are still available by typing them in. Adventurous users may wish to
consult the standardocttools documentation before using them.

<no-name> Delete or Control-H
Any Argument List

This command deletes the last item of the last argument on the argument list. Thus, if
the last argument is 10 boxes, it will delete the last box entered and the argument list
will be modified to contain 9 boxes.

<no-name> Control-W Any Argument List

This command is similar to the one above, but deletes the entire last argument on the
argument list. Thus, if the last argument is 5 lines, it will delete all 5 lines and leave the
remaining arguments unchanged.

<no-name> Control-X or Control-U
Any Argument List

This command erases the entire argument list allowing the user to start over.

bindings Saves Arguments

This command asks the user for a command and displays all of its current key, menu,
and alias bindings. The command will display a prompt (vem bindings>) and the user
can specify a command using any of the four means of normally specifying commands
(via menu, single keystroke, type-in, or last command). The command also outputs a
one line description of the command for help purposes.

close-window Control-D No Arguments

Theclose-window command closes the window the cursor was in when the command
was invoked. This DOES NOT flush the contents of the window to disk. Even after all
windows looking at a facet are closed, the contents are not saved on disk. This must be
done using thesave-window or save-all commands.

19-8 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

deep-reread <*> [objs]

The deep-reread command is a specialized form of the re-read command. With no
arguments, it re-reads a facet and all of master facets of its subcells (instances). Both
the contents and interface facets of the instances are re-read. If a set of objects is spec-
ified, the command re-reads the master cells of the instances in the object set. Only the
master cells of the instances are re-read; cells are not re-read recursively when using
this form.

interrupt ^C No Arguments

This routine interrupts (deactivates) the window containing the cursor. No drawing
will be done in the window until a full redraw requested by the user (using pan, zoom,
or redraw-window) is done. The key binding for this command can also be used while
a window is drawing to immediately stop drawing in that window.

kill-buffer <*> "cell view {facet} {version}"

Thekill-buffer command flushes a facet out of memorywithout saving its contents. If
the string specification of the facet is missing, the facet is determined by the window
containing the cursor.All windows looking at this facet are destroyed. There are no
key or menu bindings for the command and it will ask the user for confirmation before
carrying out the command.

log-bindings <*> Saves Arguments

Thelog-bindings command writes out a description of all type-in, menu, and key bind-
ings for all commands in the editing style of the window containing the cursor. This
description is written to the log file for the session.

open-window o [box] or
"cell:{view:{facet:{version}}}"

Theopen-window command is primary way to create new graphics windows invem. It
takes a string specifying the cell to open. When specifying the cell portion of the
name, typing a TAB will attempt to complete the string as a file or offer alternatives if
the name is not unique. If this string is absent, it will duplicate the window containing
the cursor. Normally, the extent of the duplicated window is the same as the parent
window. However, if the user specifies a box, the duplicated window will be zoomed
to that extent (see zoom-in). The string specifying the cell contains four fields. The last
three are optional and default to “physical”, “contents”, and the null string respec-
tively. It is possible to specify your own defaults for these fields. Newly created win-
dows are always zoomed to contain all geometry in the cell. If the cell does not exist, it
will be created. When creating new cells,vem prompts the user for required cell prop-
erties. See the introduction for details. Most of the time, the defaults presented in this
dialog are acceptable and activating theOk button is sufficient to proceed.

palette P {"palette-name"}

Thepalette command opens a new window onto a previously created facet which con-
tains standard layers or instances for a given technology. This window can be used to
select layers for creating geometry or instances for instantiation. The command takes
one argument: the name of the palette. If omitted, it defaults to “layer”.

Palette cells are found using the function tapGetPalette (see tap(3)). For all standard

The Almagest 19-9

Ptolemy Last updated: 11/6/97

technologies and viewtypes, there is a “layer” palette. In the symbolic editing style,
there are also “mosfet” and “connector” palettes which display mosfets and connectors
respectively. In the schematic editing style, there are “device” and “gate” palettes
which contain device level and gate level schematic primitives. New palettes can be
added easily. See “Customizing Vem” for details.

pan p [Any Arguments] [point]

Thepan command centers the window containing the cursor around the last point on
the argument list. The window will be redrawn so that the argument list point is now
the center of the window. The point need not be in the same window as the cursor.
Thus, a user can point in a window showing a large portion of a cell and invoke the
command in a more detailed window for a magnifying glass effect. If the point is omit-
ted, the command assumes the cursor position is also the desired center point. This is
the fast way to pan in a single window.

pop-context) No Arguments

This command pops off an input context from the context stack and replaces the cur-
rent context with that context. See thepush-context command for details.

push-context (No Arguments

This command pushes the current argument list context onto the context stack and
gives the user a new context. This can be used to do other commands while preserving
entered arguments. Note that the current arguments remain displayed. The old context
can be restored using thepop-context command. Four context levels are supported in
the current version ofvem.

push-master <*> {"facet"}

Thepush-master command opens a new window on the master of the instance under
the mouse cursor. This command can be used all editing styles. If a facet name is sup-
plied, the command will use that facet name instead of “contents”. In Ptolemy, this
command is rarely needed. Theedit-icon command accomplishes the same objective.

recover-facet <*> No Arguments

Unless directed otherwise,vem saves all cells occasionally in case of a system crash or
some other unforeseen disaster. Whenever a new cell is opened,vem checks to see if
the last automatically saved version is more recent than the user saved version. If the
automatically saved version is more recent, a warning is produced and the user version
is loaded. One can use therecover-facet command to replace the cell with the more
recent automatically saved version. The command displays a dialog containing a list of
all of the saved versions. Generally, there are two possible alternative versions for a
cell. Theautosave version is written byvem automatically after a certain number of
changes to the cell. Thecrashsave version is written whenvem detects a serious error.
Note that the crashsave version may itself be corrupt since a serious error occurred just
before it was written. This command is destructive: it replaces the cell with the
selected alternate. One can use theCancel button to abort the recovery. Before using
the recover-facet command, it is often useful to view the alternate cells. This can be
done by specifying the version (either “autosave” or “crashsave”) as the last field in
the cell specification toopen-window.

19-10 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

re-read <*> No Arguments

There-read command flushes the facet associated with the window containing the cur-
sor out of memory and reads it back in from the disk. This can be used to see changes
to a cell that were done outsidevem or to revert back to the cell before changes were
made. This is a dangerous command andvem asks for confirmation before proceeding.

redraw-window Control-L [box]

This command redraws the contents of the window containing the cursor. It does not
effect the argument list (i.e. it can be done regardless of the argument list contents). If
a box is provided, only the portion of the window in the box is redrawn. If the window
is interrupted, this command will reactivate it. However, if the box form is used,vem
will only draw the specified area and leave the window deactivated. This can be used
to selectively draw portions of a deactivated window.

same-scale = [Any Arguments] [point]

This command changes the scale of the window containing the mouse to the same
scale as the window containing the last point on the argument list. It is commonly used
to compare the sizes of two facets.

save-window S [Any Arguments]

This command saves the contents of the facet associated with the window where the
command was invoked. It asks for confirmation and does not effect the argument list.

set-path-width w [box] [line] [point] or
["size string"]

This command sets the current path width for a given layer on a window-by-window
basis. It takes one argument which may be points, lines, boxes, or text. For points and
lines, the argument length must be two. The path width is set to the maximum Manhat-
tan distance between the points. For boxes, only one box is allowed and the new width
is the larger of the two dimensions. For text, the string should contain the path width in
lambda. If no width is specified, the path width will be set to the minimum layer width
as specified in the technology.

The layer for the path width command is determined by looking at the object under the
cursor. If there are objects on more than one layer under the cursor, a dialog will be
presented and the user should choose one of the listed layers and press “OK” to con-
tinue.

show-all f No Arguments

Theshow-all command causesvem to zoom the window containing the cursor so that
all of the cell is displayed in the window. The key binding is an abbreviation for “full”.
It does not effect the argument list.

switch-facet <*> ["cell view {facet {version}}"]
or [point]

This command replaces the facet in the window containing the mouse with a different
facet. The first form replaces the window’s facet with the named facet. The second
form replaces the window’s facet with the facet of the window containing the point.

The Almagest 19-11

Ptolemy Last updated: 11/6/97

toggle-grid g No Arguments

The toggle-grid command toggles the visibility of the grid in the window containing
the cursor.

version V No Arguments

This command outputs the current version ofvem to the console window.

where ? No Arguments

Thewhere command can be used to find out the position of the cursor in terms ofoct
units. It also displays a textual representation of the objects under the cursor. The com-
mand can be issued while building an argument list without effecting the list. Alterna-
tively, if the argument list includes an object set, the where command will print textual
descriptions of the selected items.

write-window W "cell:view" [any arguments]

Thewrite-window command saves the contents of the cell associated with the window
where the command was invoked under another name. This alternate name is specified
by the “cell:view” argument.

zoom-in z [Any Arguments] [box]

The zoom-in command zooms the window containing the mouse to the extent indi-
cated by the last box on the argument list. The box and the zoom window must be in
the same facet. However, the extent may be in a different window from the mouse
which can be used to achieve a magnifying glass effect. If the box is not provided, it
zooms in the window containing the mouse by a factor of two. If provided, the com-
mand removes the box from the argument list but leaves other arguments untouched.

zoom-out Z [Any Arguments] [box]

Thezoom-out command is the opposite of zoom-in. This command zooms the window
containing the mouse out far enough so that the OLD contents of the window are con-
tained in the extent of the box provided on the argument list. Thus, smaller boxes
zoom out farther than larger ones. If the box is omitted, the window containing the
mouse is zoomed out by a factor of two.

19.4 Options
The options commands below all post form windows which allow a user to change dis-

play parameters interactively. The default values for these parameters can be changed in your
~/.Xdefaults file. See the separate document “Customizing Vem” for details.

All of the options dialogs below areunmoded. This means that the user can do other
things while the dialog is posted. They will not go away until explicitly closed by the user.
Details on the operation of dialog boxes can be found in “Using Dialog Boxes” on page 19-4.

window-options <*> No Arguments

This command posts the dialog in figure 19-1, which presents a number of window
related options each of which can be modified by the user on a window-by-window
basis. Two kinds of options are presented in this dialog: flag options and value options.
Flag options have a check box on the left of the option and can be either on or off.
Pressing the left mouse button in the check box toggles the value of the option. Value

19-12 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

options display a numerical value in a box with a descriptive label to the left and a
scrollbar to the right for changing the value. At the bottom of the dialog are four con-
trol buttons:Ok, Dismiss, Apply, andHelp. Pressing the left mouse button inside the
Ok button saves any options you may have changed and closes the window. TheDis-
miss button does not save any options and closes the window. TheApply button saves
any changed options but does not close the window. TheHelp button will open a win-
dow containing a brief description of the dialog. Each of the options and their mean-
ings are given below:

“Visible Grid”
If set, a grid will be shown in the window.

“Dotted Grid”
If the grid is visible and this option is set, the grid will be drawn as dots
rather than lines.

“Manhattan Argument Entry”
If this option is set, entering line arguments and dragging option sets
will be restricted to Manhattan angles. This option is set by default in
the symbolic and schematic editing styles.

“Argument Gravity”
If set, all lines
entered using
the left button
whose endpoints
are near an actual
terminal will be
snapped to that terminal. This is especially useful when editing sche-
matic diagrams (vem automatically turns this option on when the edit
style is set to schematic). The .Xdefault parametervem.gravity specifies
the maximum distance between line endpoints and terminals for gravity
to have an effect (by default, 10 pixels).

“Show Instance Bounding Boxes”

FIGURE 19-1: The “window options” dialog box in vem.

The Almagest 19-13

Ptolemy Last updated: 11/6/97

If this option is set,vem will display bounding boxes around all
instances. The instance name will be displayed in the center of these
bounding boxes.

“Show Actual Terminals”
When viewing very large designs, drawing the highlighting around
actual terminals can be expensive. If this option is turned off,vem will
not draw highlighting around actual terminals.

“Expand Instances”
If on, the contents facet of instance masters will be displayed. Other-
wise, the interface facet will be displayed. This has the same effect as
thetoggle-expansion command.

“Visible Title Bar”
If this option is set,vem will display its own title bar above each graph-
ics window. If the option is turned off, the title bar will be turned off.

“Oct units per Lambda”
This parameter specifies the number ofoct units per lambda. The out-
put of the where command and the coordinate displays in the title bar
are displayed according to the value of this parameter. By default,vem
uses 20oct units per lambda.

“Snap”
All graphic input into the window will be snapped to multiples of this
parameter (given inoct units). By default,vem snaps to one lambda
(20 oct unit) intervals.

“Major Grid Spacing”
This parameter specifies the grid spacing of major grid lines inoct
units. If logarithmic grids are turned on, it specifies a multiplying factor
for major grid line spacing (see Log Grid Base below).

“Minor Grid Spacing”
This parameter specifies the grid spacing of minor grid lines inoct
units. If logarithmic grids are turned on, it specifies a multiplying factor
for minor grid line spacing (see Log Grid Base below).

“Log Grid Base”
If non-zero, this option selects a logarithmic grid. Normally, there are
two grids drawn at a fixed number ofoct units (major and minor grid
lines). In a logarithmic grid, grids are drawn at some constant (specified
by the Major Grid and Minor Grid parameters above) times the nearest
integral power of the grid base. For example, if the constant is two and
the base 10, grids will be drawn at 2, 20, 200, etc.

“Minimum Grid Threshold”
This parameter specifies the smallest allowable space (in pixels)
between grid lines beforevem stops drawing them.

19-14 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

“Log Grid Minimum Base”
This parameter specifies the smallest base to be used for drawing loga-
rithmic grids (see above).

“Solid Fill Threshold”
This parameter specifies the size (in pixels) before a shape is drawn
using solid fill rather than stipple fill. A large number specifies all
geometry should be drawn solid regardless of its size.

“Bounding Threshold”
Label text drawn in bounding boxes (e.g. instances or terminals) may or
may not be drawn depending on the size of the bounding box. This
parameter specifies how many times wider the text may be than the box
before the label is not drawn.

“Abstraction Threshold”
This parameter specifies the maximum size of a bounding box (in pix-
els) where it is acceptable to draw a filled box rather than an outline to
speed the drawing process.

“Interface Facet”
This string parameter specifies the name of the displayed interface
facet. This facet will be used to draw instances in unexpanded mode.

layer-display<*>No Arguments

This command posts the dialog shown in figure 19-2, which can be used to selectively
turn on or off the display of any layer. At the bottom of the dialog are six control but-
tons. TheOk, Dismiss, Apply, andHelp buttons work in the same way as described for
window-options. TheAll button automatically selects all of the layers displayed in the
body of the dialog. TheClear button automatically unselects all of the layers displayed
in the body of the dialog. Above the control buttons there is a list of all layers dis-

FIGURE 19-2: Layer display options in vem.

The Almagest 19-15

Ptolemy Last updated: 11/6/97

played in the window. The layers currently shown in the window have buttons to the
left of the layer name that have check marks. Those that are not shown have buttons to
the left of the layer name that appear empty. The state of a layer can be changed by
moving the cursor over the corresponding button and depressing the left mouse button.
Note that no window update will occur until eitherOk or Apply are pressed.

19.5 Selection
The selection commands described below are used to manipulate object arguments on

the argument list.

select-layer . [objs] [pnts] [lines] [boxes] "layer"

Theselect-layer command is similar to theselect-objects command but allows the user
to select only the geometries on a particular layer. This layer can be specified in two
ways: the layer name can be typed in as the last argument or the command will try to
determine the layer by looking at the geometry under the cursor when the command is
invoked. If the spot for the layer is ambiguous,vem will post a dialog presenting a
choice between the layers.

select-objects s [objs] [pnts] [lines] [boxes] "layer"

Theselect-objects command is used for placing collections of objects on the argument
list for further processing by other commands. It takes as arguments any number of
points, lines, or boxes. Points select items under the point, lines select objects which
cross the line, and boxes select objects inside the box. Ifselect-objects is not given any
point, line, or box arguments, it will try to select items under the cursor where the
command was invoked. These semantics are described in detail below.

For each point, the command adds zero or more of the objects under the point to the
list. If there is more than one object under the point, a dialog will be posted with but-
tons representing each of the objects under the point. Clicking the mouse in one of the
buttons highlights the object. Once the user has clicked on the desired objects, theOk
button is used to actually select the items.

For each line argument, the command adds all objects which intersect the line. This is
useful for schematic drawings where paths (wires) are zero width. Selection using
lines works best if the entered lines are Manhattan. Non-Manhattan lines may select
more objects than intended.

For each box, the command adds all objects completely contained in the box to the list.
Note that an object is considered contained if and only if itsboundingbox is com-
pletelyinside the given box. Theselect-objects command is incremental; i.e. it may be
called many times, each time adding to the selected set. All items selected are high-
lighted in thevem highlight color.

select-terms ^T [objs][points][lines][boxes]

This command selects all terminals (both actual and formal) whose implementations
intersect the objects found by examining the argument list. The semantics for specify-
ing the objects is identical to that described forselect-objects. The items on the argu-
ment list will be replaced with the set of terminals found by examining the items. This
command is useful for deleting formal terminals, specifying actual terminals for use

19-16 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

by edit-property or select-bag, or creating new symbolic formal terminals usingpro-
mote. As such,it is extremely dangerous in Ptolemy.

transform t [objs]

This command takes a selected set of objects built by selection commands and trans-
forms them. The objects remain on the selected set. It is important to note that the
actual objects in the database are not affected by this command. The transformation is
associated with the object set not with the objects themselves.

The command takes (up to) three arguments: a set of objects to work on, a text rotation
specification, and two points indicating a relative translation. The object set must be
supplied. The rotation specification is a list of keywords, enclosed in quotation marks,
separated by colons:

“mx” Mirror around the Y axis.

“my” Mirror around the X axis

“90” Rotate counter-clockwise 90 degrees.

“180” Rotate counter-clockwise 180 degrees.

“270” Rotate counter-clockwise 270 degrees.

If both a rotation and a translation are given, the rotation specification should come
first. If no rotation and translation are given, the command rotates the items 90 degrees
counter-clockwise.

Thetransform command is incremental. This means it can be applied many times with
each command having a relative effect on the current selected set. For example, invok-
ing transform without arguments twice is the same as invoking it once and specifying
the rotation string “180”.

Once the command completes, the highlighted form of the objects will reflect the
specified transformation. This can be used as a reference for further rotations or trans-
lations.

Translations are specified by two points. A relative translation is applied to the current
transformation based on the vector formed by the two points. It is also possible to
interactively specify the translation of a selected set. This is done by moving the cursor
to a reference point and pressing, dragging, and releasing the right mouse button.
While the right button is depressed, the selected objects will track the cursor motion.
This can be used to drag items around interactively.

After completing a transformation with transform, the objects are not actually changed
until a command that manipulates objects is invoked (e.g. move-objects, copy-objects,
etc.). See themove-objects andcopy-objects commands below for more information.

unselect-objects u [objs] [pnts] [lines] [boxes]

The unselect-objects command is used to remove items from a previously created
object argument (select-objects operation). Any number of points, lines, and boxes
may be specified. The semantics for mapping these arguments to objects is the same as
select-objects. For each point, zero or more items beneath the point that are part of the

The Almagest 19-17

Ptolemy Last updated: 11/6/97

selected set are removed. For each line, all items in the selected set intersecting the line
are removed from the set. For each box, all items completely contained in the box that
are part of the selected set are removed from the set.

It is important to note that this command is intended to be used to unselect small sets
of already selected objects. To unselect all items on the argument list, use control-W or
control-U.

19.6 Property and Bag editing
Theoct Data Manager supports two kinds of annotation: properties and bags. Proper-

ties are named objects which may have an arbitrary value and can be attached to any other
oct object. Properties are used bypigi to store parameters. Bags are named objects which
can contain any number of otheroct objects, and are not used bypigi . Bags are used to rep-
resent common collections of objects (instances for example) that can be accessed efficiently.
There are a number ofvem commands used to create, edit, and delete properties and bags.
However, since only one of these is useful inpigi , only one is documented here.

show-property <*> [objs]

The show-property command produces a list of all the properties associated with the
object under the cursor when the command was invoked (or all objects in the selected
set). If there are many objects under the cursor, the command will present a dialog
which lists each object. The user can select one by clicking the mouse in the check box
next to the object name. The object will be highlighted. When the right object is found,
the user can clickOk to show the properties attached to the object. If the cursor is not
over an object and nothing is in the selected set, the properties attached to the facet are
shown. The properties are shown in the form: xid: name (type) = value. Thexid is the
external identifier for the property and can be used in evaluated labels. The command
also echoes the type of the object each property is connected to.

19.7 Physical editing commands
The physical editing style invem is used bypigi for editing icons. The commands

described below are available in addition to the common commands described in the previous
section.

alter-geometry a [box] [lines] or [pnts]

This command replaces the box, path, or polygon under the cursor with the new speci-
fication supplied on the argument list. This can be used to “stretch” geometry or
change their composition. For example, to make a box slightly larger, enter the slightly
larger box onto the argument list, move the mouse over the old box, and invokealter-
geometry.

change-layer l [objs] or [pnts][lines][boxes] "layer"

Thechange-layer command detaches geometry from its current layer and attaches it to
a different layer. The geometry can be specified either as an object set constructed by
the selection commands, or directly by drawing points on them, drawing lines through
them, or drawing boxes around them. Normally, the target layer is determined by look-
ing at the geometry under the cursor when the command was invoked. However, if the

19-18 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

last argument to the command is text, it is interpreted as the name of the target layer.

copy-objects x [objs] {pnt pnt}

The copy-objects command copies a set of objects from one place to another. The
command takes an object argument that should contain a list of objects to be moved
(this is built with select-objects and unselect-objects). The command assumes the
object set has been transformed using thetransform command or interactively dragged
to a new location with the right mouse button. The command makes a copy of the
objects which are transformed according to this translation. For example, to copy
objects from one location to another, the user first selects the objects usingselect-
objects, then interactively drags the objects using the right button (transformation),
then invokes thecopy-objects command to make a copy at the new location. Since the
items remain selected, new copies can be made without reselecting the objects.

The optional second argument should be two points which specify the source and des-
tination points of the copy. This alternative can be used if the object set is too large for
interactive dragging or one wishes to copy objects from one facet into another. If the
copy is from one facet to another facet, terminals will not be copied and the objects
will be copied in a manner that preserves the position of the objects relative to the
source point. The default key binding for this command is short for “xerox”.

create-circle C [line] [pnts] "layer"

Sincevem does not have a circle argument type, a special circle drawing command has
been added. For most types of geometry, the user should usecreate-geometry. Circles
are specified in one of two ways. The first is a line followed by up to two points. The
line specifies a filled circle with the first point being the center and the second its outer
radius. If the first point is supplied, an arc is assumed with an angle formed by the sec-
ond point of the line, the center point and the newly specified point. The angle is mea-
sured counter-clockwise. If the last point is supplied, it specifies the inner radius of the
circle (otherwise the inner radius is zero). The second form takes two points and an
optional point. It specifies a circle where the inner and outer radius are the same. If the
last point is supplied, an arc with the same semantics as the first form is assumed.
Finally, the layer of the circle is determined from the cursor position or by a final text
argument specifying the layer directly.

create-geometry c [pnts] [lines] [boxes] [text] "layer"

The create-geometry command creates new geometry. It takes any number of points,
lines, boxes, or text and a layer specification. A points argument creates a closed poly-
gon. A line argument creates a multi-point path. Box arguments create boxes. Finally,
text arguments create labels. When creating labels, the point set after the label is inter-
preted as the target points for the label. All the geometry is created on the same layer.
This layer may be specified as the final text argument to the command or by invoking
the command over an object attached to a layer. If the layer is ambiguous, the com-
mand will present a choice of layers in a dialog box. The palette command can be used
to create a window which offers all possible layers for creating geometry.

create-instance <*> [pnt] {"master:view name"}

In most cases, the leaf cells designed with the physical editing style are not hierarchi-
cal. Instead, instances of the low-level cells are connected together using the symbolic

The Almagest 19-19

Ptolemy Last updated: 11/6/97

editing style. However, those who would like to usevem as a purely physical design
editor require instances in physical cells. This command places instances in the physi-
cal editing style.

The instance is placed relative to the point supplied to the command. The master of the
instance can be specified in two ways. In the first form, the user supplies a text argu-
ment which contains the cell, view, and instance names separated by spaces. The
instance name is optional. The second form determines the master of the instance by
looking at the instance under the cursor when the command is invoked. This instance
can be in the same cell or in another cell. A common practice is to build a cell of prim-
itives and use this cell as a menu for placing physical instances (see thepalette com-
mand).

create-terminal <*> ["term name"]

This command creates a new formal terminal named “term name”. The implementa-
tion of the terminal is determined by constructing a list of all geometries under the spot
where the command was invoked and choosing the smallest coincident boxes from this
list. This command is dangerous inpigi .

delete-objects D [objs] or [pnts] [boxes] "layer"

The delete command removes objects from a cell. The command has two forms. The
first takes an object argument constructed using selection commands and deletes all of
the items in this set. The second takes any number of point, line, and box arguments
and a layer specification. This form deletes all objects under the points, all objects
which intersect the lines, and all objects completely contained in the boxes that are
attached to the specified layer. The layer may also be specified by placing the cursor
over some other object attached to a layer when the command is invoked. If no layer is
specified, all of the geometry is deleted.

edit-label E [pnt] {"LAYER"} or [objs]

The edit-label command creates and edits labels. The command has two forms. The
first form creates a new label at the specified point on the given layer. If the layer is not
specified, it will be determined by looking at the object under the cursor. The second
form edits labels selected using theselect command.

Labels inoct are represented as a box where the text is drawn entirely inside the box
subject to justification and text height parameters. The edit-label command builds the
box automatically by examining the text height and text itself. Thus, the user can con-
trol the justification, text height, and the label text. These parameters are set using the
edit-label dialog box. This is a modeless dialog box that is posted when the user
invokes the edit-label command.

The edit-label dialog box, shown on page 14, consists of three check-box areas for
adjusting the label justification, and two type-in fields for adjusting the text height and
the text itself. The justifications are computed in relation to the point the user specified
when the label was first created. Thus, the horizontal justification specifies whether the
point should be to the left, center, or right of the text. Similarly, the vertical justifica-
tion specifies whether the point should be on the bottom, center, or top of the text.
Finally, the line justification specifies how the lines should be justified within the text
block when there is more than one line. The text height of the text is given inoct

19-20 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

units. Note that the X window system does not directly support fully scalable fonts.
Thus,vem uses a strategy where it will pick the closest font from a set of fonts that can
be specified as a start-up parameter (see the document “Customizing Vem” for details).
Finally, the last type in field can be used to enter the text for the label. The label can
have as many lines as necessary.

At the bottom of the dialog are four control buttons:Ok, Apply, Dismiss, andHelp. The
Ok button updates the value of the label and causes the dialog to close. TheApply but-
ton updates the value of the label (showing the effects in the graphics window) but
does not close the dialog. This allows the user to adjust the label several times if neces-
sary. TheDismiss button closes the dialog without updating the value of the label.
Finally, theHelp button displays some help about how to use the dialog.

move-objects m [objs] {pnt pnt}

The move-objects command moves a set of objects from one place to another. The
command takes an object argument that should contain a list of objects to be moved
(this is built with select-objectsand unselect-objects). The command assumes the
object set has been transformed using thetransform command or interactively dragged
to a new location using the right mouse button. The command moves the objects to a
new location based on this transformation. For example, to move objects from one
location to another, the user first selects the objects usingselect-objects, then interac-
tively drags the objects using the right button (transformation), then invokes themove-
objects command to actually move the items to the new location. The items remain
selected for further moves if necessary.

The optional second argument should be two points which specify the source and des-
tination points of the move. This alternative can be used if the object set is too large for
interactive dragging. Unlike thecopy-objects command, objects cannot be moved from
one facet to another.

19.8 Symbolic editing commands
The symbolic editing commands invem allow the user to editoct symbolic views.

Symbolic views are used to represent layout in a form suitable for compaction and simulation.
Since they are not used bypigi , they are not documented here.

19.9 Schematic editing commands
The schematic editing style is an extension of symbolic. In addition to the general,

selection, and options editing commands, the following commands are specific to the sche-
matic editing style:

delete-objects D [objs] or
[pnts, lines, boxes] ["layer"]

This command takes either an object list created with theselect-objects andunselect-
objects commands, or points, lines, and boxes with an optional layer-name. The resulting
objects are deleted from the cell.

The Almagest 19-21

Ptolemy Last updated: 11/6/97

select-major-net Control-N
pnts, lines, or boxes
["net name"]

This command finds the net associated with the object under the points, intersecting
the lines, or inside the boxes and highlights all objects on that net. If no points, boxes,
or lines are specified, the object under the cursor will be examined. Alternatively, if a
net name is provided, objects on the named net are highlighted. This command can be
used to check the connectivity of a symbolic cell. The command is incremental (i.e.
multiple nets can be selected).

move-objects m [objs] {pnt pnt}

The move-objects command in schematic editing mode is similar to the same com-
mand in physical editing mode above. One difference, however, is that the connectivity
of the items moved by this command is not changed. This means an instance moved
using this command also causes the segments attached to its terminals to move as well.
Moving objects between facets is not supported.

copy-objects x (See Below)

The copy-objects command copies a set of objects from one place to another. This
command has the same form asmove-objects (see above) except that the objects are
copied not moved. Likemove-objects, the objects copied remain on the argument list
for further move and copy operations. However, unlikemove-objects, the connections
to the objects in the selected set are not copied. Instead, the connectivity between the
selected items is copied along with the objects.

create c (See Below)

Thecreate command allows the user to add new objects to a schematic cell. Different
arguments given tocreate will produce different objects.

Formal Terminals — “terminal-name [type] [direction]” : create

Whencreate is given a single argument string, the name of a new formal terminal, a
formal terminal is created. The implementation of the formal terminal is taken to be
the actual terminal currently under the mouse (note: a connector terminal can also be
used for this purpose). Since terminals in schematic may be quite small, this routine
will try to find nearby terminals if it doesn’t find a terminal directly beneath the cursor.

Formal terminal names must be unique within the cell. If a formal terminal of the
given name already exists,vem will display a dialog box asking whether or not you
wish to replace the old terminal.

Two optional pieces of annotation can be placed on the terminal: type and direction.
The type can be one of SIGNAL, CLOCK, GROUND, SUPPLY, or TRISTATE. If not
provided, SIGNAL will be assumed. The direction can be one of IN, OUT, or INOUT.
If not specified, INOUT will be assumed. If either of these values are not provided in
the terminal name specification,vem will post a dialog box containing fields for enter-
ing both the terminal type and direction. Pressing the left mouse button in the value
area for these fields will cause a menu of the possible choices to appear. New values
can be selected by releasing the mouse button over the desired value. Once appropriate
values are selected, activating theOk button at the bottom of the dialog will save the

19-22 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

annotations. Activating theDismiss option will leave the annotations unspecified.
These annotations can be edited later using the edit-property command.

Instances — pnts [[master:view] [instance-name] : create

If the arguments tocreate are a number of points followed by an optional string,
instances will be created with their origins at those points. If the name of the master is
not specified textually, it will be inferred from the instance under the mouse.

The string argument has two parts: the instance specification and name. Both of these
fields are optional. Specifying a null string is considered to be the same as no string at
all. The instance specification is a master-view pair, such as “amp:schematic”. If this
field is left out, the master is inferred from the instance under the mouse. Otherwise,
an attempt is made to locate the instance by the master-view pair. If the name field is
given, the instance will be given the specified name.

NOTES: Newly created instances whose actual terminals intersect actual terminals of
other instances will be automatically connected. In this case, no path is required
between the terminals. Rotated and mirrored forms of instances can be created by
instantiating a new instance and using the transform and move-objects or transform
and copy-objects commands.

Paths — lines : create

This command creates new segments for connecting together instance actual termi-
nals. A new series of segments will be created on a predefined layer (WIRING). Con-
nector instances will be placed automatically at all jog points. The width of the new
path is always zero.

Normally, the schematic editing style has a feature turned on called “gravity”. When
you draw segments with gravity turned on,vem will try to connect the segments to a
nearby terminal if you miss a terminal by a small amount. This is useful when editing
a large cell.

edit-label E [pnt] {"layer"} or [objs]

The edit-label command creates and edits labels, and is identical to the version in
physical editing mode, documented above.

19.10 Remote application commands
The following commands apply only if a remote application, likepigi Rpc, is run-

ning.

kill-application <*> No Arguments

The kill-application command kills the remote application which has control of the
window where the command was invoked. This can be used to terminate runaway
remote applications. Note it has no standard menu or key bindings; it is a type-in com-
mand only. This command may not work on all machines.

rpc-any r "host pathname"

This command starts up a remote application which is not on the standard list of appli-
cations in thevem menu. “host” specifies the network location for the application and
“path” specifies the path to the executable on “host”. If the host specification is omit-

The Almagest 19-23

Ptolemy Last updated: 11/6/97

ted, the local machine is assumed.

rpc-reset <*> No Arguments

If an application terminates abnormally,vem may not recognize that the window no
longer has an application running in it. This command forcesvem to reset the state of
the window so that new applications can be run in it.

19.11 Customizing Vem
The oct manual would be required only by programmers wishing to modify

pigiRpc ; it is available from the Industrial Liaison Program office, Dept. of EECS, UC Ber-
keley, Berkeley CA 94720 (http://www.eecs.berkeley.edu/~ilp).

The Postscript fileVemcustom.ps can be found in theother.src tar file in the
Ptolemy distribution asptolemy/src/octtools/vem/doc/Vemcustom.ps . This file
describes some of the X resources that can be set invem.

If you are trying to modify the look and feel ofvem, see “X Resources” on page 2-54.
For a fairly complete list of X resources, you can also look at thedefaults.c and
defaults.h files in theptolemy/src/octtools/vem/main directory. These files can
be found in the Ptolemyother.src tar file. If you are having font problems with vem, see
“pigi fails to start and gives a message about not finding fonts” on page A-20.

19.12 Bugs
See also “Bugs in vem” on page A-33.

 • Opening a facet that is inconsistent (either out of date or one with conflicting termi-
nals) is not handled very gracefully.

 • Bounding boxes may not be drawn if there is no geometry in the cell.

 • The set path width command doesn’t work if you use a palette to specify the layer.

19-24 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

Chapter 20. pxgraph — The Plotting
Program

Authors: David Harrison

Other Contributors: Joseph T. Buck
Edward A. Lee

20.1 Introduction
Thepxgraph program draws a graph on an X display given data read from either data

files or from standard input if no files are specified. In Ptolemy, this program is invoked by
several stars in several domains, and by the plot command inpigi . The program is also avail-
able for stand-alone use, independent of Ptolemy.Pxgraph can display up to 64 independent
data sets using different colors and/or line styles for each set. It annotates the graph with a
title, axis labels, grid lines or tick marks, grid labels, and a legend. There are options to control
the appearance of most components of the graph.

Pxgraph is a slight variant ofxgraph , modified to handle unusual IEEE floating-
point numbers such as Inf and Nan, and to accept binary as well as ASCII input.

20.2 Invoking xgraph
The synopsis for stand-alone invocation ofpxgraph is

pxgraph [options] [=WxH+X+Y] [-display host:display.screen] [file ...]

The options are explained below. When invokingpxgraph through a Ptolemy star, or the plot
command, any of the options can be specified. Hence the full flexibility of the program is
available to the user.

20.3 Detailed description
The input format is similar to the Unix commandgraph(1G) but differs slightly. The

data consists of a number ofdata sets. Data sets are separated by a blank line. A new data set
is also assumed at the start of each input file. A data set consists of an ordered list of points of
the form<directive> X Y . The directive is eitherdraw or move and can be omitted. If the
directive isdraw , a line will be drawn between the previous point and the current point (if a
line graph is chosen). Specifying amove directive tellspxgraph not to draw a line between
the points. If the directive is omitted,draw is assumed for all points in a data set except the
first point wheremove is assumed. Themove directive is used most often to allow discontinu-
ous data in a data set. The name of a data set can be specified by enclosing the name in double
quotes on a line by itself in the body of the data set. The trailing double quote is optional.
Overall graphing options for the graph can be specified in data files by writing lines of the
form <option> : <value> . The option names are the same as those used for specifying X

20-2 pxgraph — The Plotting Program

U. C. Berkeley Department of EECS

resources (see below). The option and value must be separated by at least one space. An
example input file with three data sets is shown below. Note that set three is not named, set
two has discontinuous data, and the title of the graph is specified near the top of the file.

TitleText: Sample Data
0.5 7.8
1.0 6.2
"set one"
1.5 8.9
"set two"
-3.4 1.4e-3
-2.0 1.9e-2
move -1.0 2.0e-2
-0.65 2.2e-4

2.2 12.8
2.4 -3.3
2.6 -32.2
2.8 -10.3

After pxgraph has read the data, it will create a new window to graphically display the data.
The interface used to specify the size and location of this window depends on the window
manager currently in use. Refer to the reference manual of the window manager for details.

Once the window has been opened, all of the data sets will be displayed graphically
(subject to the options explained below) with a legend in the upper right corner of the screen.
To zoom in on a portion of the graph, depress a mouse button in the window and sweep out a
region. Pxgraph will then open a new window looking at just that portion of the graph.
Pxgraph also presents three control buttons in the upper left corner of each window:Close,
Hardcopy, andAbout. Windows are closed by depressing a mouse button while the mouse cur-
sor is inside theClose button. Typing EOF (control-D) in a window also closes that window.
Depressing a mouse button while the mouse cursor is in theHardcopy button causes a dialog
to appear asking about hardcopy (printout) options. These options are described below:

“Output Device” Specifies the type of the output device (e.g. “HPGL”, “Post-
script”, etc.). An output device is chosen by depressing the
mouse inside its name. The default values of other fields will
change when you select a different output device.

“Disposition” Specifies whether the output should go directly to a device or to
a file. Again, the default values of other fields will change when
you select a different disposition.

“File or Device Name”
If the disposition is “To Device”, this field specifies the device
name. A device name is the same as the name given for the -P
command of lpr(1). If the disposition is “To File”, this field
specifies the name of the output file.

“Maximum Dimension”

The Almagest 20-3

Ptolemy Last updated: 11/6/97

This specifies the maximum size of the plot on the hardcopy
device in centimeters.Pxgraph takes in account the aspect
ratio of the plot on the screen and will scale the plot so that the
longer side of the plot is no more than the value of this parame-
ter. If the device supports it, the plot may also be rotated on the
page based on the value of the maximum dimension.

“Include in Document”
If selected, this option causespxgraph to produce hardcopy
output that is suitable for inclusion in other larger documents.
As an example, when this option is selected the Postscript out-
put produced bypxgraph will have a bounding box suitable
for use with psfig.

“Title Font Family” This field specifies the name of a font to use when drawing the
graph title. Suitable defaults are initially chosen for any given
hardcopy device. The value of this field is hardware specific --
refer to the device reference manual for details.

“Title Font Size” This field specifies the desired size of the title fonts in points (1/
72 of an inch). If the device supports scalable fonts, the font
will be scaled to this size.

“Axis Font Family and Axis Font Size”
These fields are like“Title Font Family” and “Title Font Size”
except they specify values for the fontpxgraph uses to draw
axis labels, and legend descriptions.

“Control Buttons” After specifying the parameters for the plot, the “Ok” button
causespxgraph to produce a hardcopy. Pressing the “Cancel”
button will abort the hardcopy operation. Depressing theAbout
button causespxgraph to display a window containing the ver-
sion of the program and an electronic mailing address for the
author for comments and suggestions.

20.4 Options
Pxgraph accepts a large number of options most of which can be specified either on

the command line, in the user’s~/.Xdefaults or ~/.Xresources file, or in the data files
themselves. A list of these options is given below. The command line option is specified first
with its X default or data file name (if any) in parenthesis afterward. The format of the option
in the X defaults file is “program.option: value” where program is the program name
(pxgraph) and the option name is the one specified below. Option specifications in the data
file are similar to the X defaults file specification except the program name is omitted.

=WxH+X+Y (Geometry)
Specifies the initial size and location of thepxgraph window.

- <digit> <name> These options specify the data set name for the corresponding
data set. The digit should be in the range “0” to “63”. This name

20-4 pxgraph — The Plotting Program

U. C. Berkeley Department of EECS

will be used in the legend.

-bar (BarGraph) Specifies that vertical bars should be drawn from the data points
to a base point which can be specified with-brb . Usually, the
-nl flag is used with this option. The point itself is located at
the center of the bar.

-bb (BoundBox) Draw a bounding box around the data region. This is very use-
ful if you prefer to see tick marks rather than grid lines (see
-tk).

-bd <color> (Border)
This specifies the border color of thepxgraph window.

-bg <color> (Background)
Background color of thepxgraph window.

-binary This specifies that the input is a binary file rather than an ASCII
file.

-brb <base> (BarBase)
This specifies the base for a bar graph. By default, the base is
zero.

-brw <width> (BarWidth)
This specifies the width of bars in a bar graph. The amount is
specified in the user’s units. By default, a bar one pixel wide is
drawn.

-bw <size> (BorderSize)
Border width (in pixels) of thepxgraph window.

-db (Debug) Causespxgraph to run in synchronous mode and prints out the
values of all known defaults.

-fg <color> (Foreground)
Foreground color. This color is used to draw all text and the nor-
mal grid lines in the window.

-gw (GridSize) Width, in pixels, of normal grid lines.

-gs (GridStyle) Line style pattern of normal grid lines.

-lf <fontname> (LabelFont)
Label font. All axis labels and grid labels are drawn using this
font. A font name may be specified exactly (e.g.9x15 or -*-
courier-bold-r-normal-*-140-*) or in an abbreviated
form: <family> - <size> . The family is the family name (like
helvetica) and the size is the font size in points (like 12). The
default for this parameter ishelvetica-12 .

-lnx (LogX) Specifies a logarithmic X axis. Grid labels represent powers of
ten.

-lny (LogY) Specifies a logarithmic Y axis. Grid labels represent powers of

The Almagest 20-5

Ptolemy Last updated: 11/6/97

ten.

-lw <width> (LineWidth)
Specifies the width of the data lines in pixels. The default is
two.

-lx <xl,xh> (XLowLimit , XHighLimit)
This option limits the range of the X axis to the specified inter-
val. This (along with-ly) can be used to “zoom in” on a partic-
ularly interesting portion of a larger graph.

-ly <yl,yh> (YLowLimit , YHighLimit)
This option limits the range of the Y axis to the specified inter-
val.

-m (Markers) Mark each data point with a distinctive marker. There are eight
distinctive markers used bypxgraph . These markers are
assigned uniquely to each different line style on black and white
machines and varies with each color on color machines.

-M (StyleMarkers) Similar to -m but markers are assigned uniquely to each eight
consecutive data sets (this corresponds to each different line
style on color machines).

-nl (NoLines) Turn off drawing lines. When used with-m, -M, -p , or -P this
can be used to produce scatter plots. When used with-bar , it
can be used to produce standard bar graphs.

-p (PixelMarkers) Marks each data point with a small marker (pixel sized). This is
usually used with the -nl option for scatter plots.

-P (LargePixels) Similar to -p but marks each pixel with a large dot.

-rv (ReverseVideo)
Reverse video. On black and white displays, this will invert the
foreground and background colors. The behavior on color dis-
plays is undefined.

-t <string> (TitleText)
Title of the plot. This string is centered at the top of the graph.

-tf <fontname> (TitleFont)
Title font. This is the name of the font to use for the graph title.
A font name may be specified exactly (e.g.9x15 or -*-cou-
rier-bold-r-normal-*-140-*) or in an abbreviated form:
<family> - <size> . The family is the family name (like hel-
vetica) and the size is the font size in points (like 12). The
default for this parameter ishelvetica-12 .

-tk (Ticks) This option causespxgraph to draw tick marks rather than full
grid lines. The -bb option is also useful when viewing graphs
with tick marks only.

20-6 pxgraph — The Plotting Program

U. C. Berkeley Department of EECS

-x <unitname> (XUnitText)
This is the unit name for the X axis. Its default is “X”.

-y <unitname> (YUnitText)
This is the unit name for the Y axis. Its default is “Y”.

-zg <color> (ZeroColor)
This is the color used to draw the zero grid line.

-zw <width> (ZeroWidth)
This is the width of the zero grid line in pixels.

Some options can only be specified in the X defaults file or in the data files. These options are
described below:

<digit> .Color Specifies the color for a data set. Eight independent colors can
be specified. Thus, the digit should be between ‘0’ and ‘7’. If
there are more than eight data sets, the colors will repeat but
with a new line style (see below).

<digit> .Style Specifies the line style for a data set. A string of ones and zeros
specifies the pattern used for the line style. Eight independent
line styles can be specified. Thus, the digit should be between
‘0’ and ‘7’. If there are more than eight data sets, these styles
will be reused. On color workstations, one line style is used for
each of eight colors. Thus, 64 unique data sets can be displayed.

Device The default output form presented in the hardcopy dialog (i.e.
Postscript , HPGL, etc.).

Disposition The default setting of whether output goes directly to a device
or to a file. This must be one of the stringsTo File or To
Device .

FileOrDev The default file name or device string in the hardcopy dialog.

ZeroWidth Width, in pixels, of the zero grid line.

ZeroStyle Line style pattern of the zero grid line.

20.5 Bugs
See “Bugs in pxgraph” on page A-35 for a list ofpxgraph bugs.

The Almagest A-1

Ptolemy Last updated: 11/6/97

Appendix A. Installation and
Troubleshooting

Authors: Joseph T. Buck
Christopher Hylands
Alan Kamas

Other Contributors: Stephen Edwards
Edward A. Lee
Kennard White

A.1 Introduction
This appendix consists of three parts:

 • “Obtaining Ptolemy” on page A-1 discusses how to obtain Ptolemy.

 • “Ptolemy mailing lists and the Ptolemy newsgroup” on page A-2, discusses various
forums for discussion about Ptolemy.

 • “Installation” on page A-3 discusses how to install Ptolemy.

 • “Troubleshooting” on page A-15 discusses how to find and fix problems in Ptolemy.

 • “Known bugs” on page A-33 lists known problems in Ptolemy.

 • “Additional resources” on page A-40 discusses other resources.

A.2 Obtaining Ptolemy
Ptolemy binaries are currently available for the following architectures: HP running

HPUX10.20, Sun 4 (Sparc) running Solaris2.5.1, and Sun4 (Sparc) running SunOS4.1.3. In
addition, Ptolemy has been compiled on HPUX9.x, Linux Slackware 3.0, NetBSD_i386, IBM
RS/6000 AIX3.2.5, SGI Irix5.3, SGI Irix6.x and the DEC Alpha OSF1 V3.2 platforms. These
additional platforms are not supported in-house and thus these ports are not tested and may
not be complete.

Installing the full system requires about 150 Megabytes of disk space (more if you
optionally remake). The demonstration version of Ptolemy, “Ptiny,” only requires 12 Mega-
bytes of disk space. All versions requires at least 8 Megabytes of physical memory.

For the latest information on Ptolemy, get the Frequently Asked Questions list. Send
electronic mail toptolemy-hackers-request@ptolemy.eecs.berkeley.edu with
the message:get ptolemy-hackers.FAQ in the body (not the subject) of the message.

You may also send any questions on obtaining Ptolemy to the email address:
ptolemy@eecs.berkeley.edu . If you have questions about using or enhancing Ptolemy,
you should use the ptolemy-hackers mailing list. See “Ptolemy mailing lists and the Ptolemy

A-2 Troubleshooting

U. C. Berkeley Department of EECS

newsgroup” on page A-2 for details.

A.2.1 Access via the Internet

Ptolemy is availablewithout support via Internet FTP. Source code, executables, and
documentation are all available on the FTP site at
ftp://ptolemy.eecs.berkeley.edu .

This site contains the latest release of Ptolemy, patches to the current release, a Post-
script version of the Ptolemy manual, the demonstration version of Ptolemy, Ptolemy papers
and journal articles, as well as the archives for the mailing list.

To obtain Ptolemy via FTP:

a. FTP to Internet hostptolemy.eecs.berkeley.edu .

b. Login asanonymous ; give your full email address as the password.

c. Change to the/pub directory:cd pub

d. Follow the directions in theREADME file there.

There is an FTP mirror in Japan:
ftp://ftp.iij.ad.jp/pub/misc/ptolemy
The notation above means log intoftp.iij.ad.jp and then cd to/pub/misc/ptolemy .

There is also an FTP mirror in France at:
ftp://chinon.thomson-csf.fr/mirrors/ptolemy.eecs.berkeley.edu/

A.2.2 Access via the World Wide Web

There is a World Wide Web (WWW) page for Ptolemy:
http://ptolemy.eecs.berkeley.edu/
The Ptolemy WWW page contains information about Ptolemy, demonstrations of Ptolemy
programs, access to the Ptolemy FTP site, and a hypertext version of the Ptolemy Documenta-
tion.

There is a WWW mirror of our site in France at:
http://chinon.thomson-csf.fr/ptolemy

A.2.3 Obtaining documentation only

All of the manuals as well as a number of Ptolemy-related papers and journal articles
are available from the WWW site and from the FTP site in the /pub/ptolemy/papers
directory. These documents are all in the Postscript format and require a Postscript printer or
viewer. The paperoverview.ps.Z gives an overview of Ptolemy and would be of particular
interest to new users.

A.3 Ptolemy mailing lists and the Ptolemy newsgroup
There are two publically available mailing lists and a newsgroup that discuss Ptolemy.

A.3.1 Ptolemy mailing lists

The Ptolemy mailing lists are run by the Majordomo mailing list server. This server

The Almagest A-3

Ptolemy Last updated: 11/6/97

can automatically subscribe you to mailing lists and it can send you monthly archive files for
each of the lists. To find out more about our Majordomo server, send an email letter to:
majordomo@ptolemy.eecs.berkeley.edu with the wordhelp in the body of the letter.

There are two mailing lists for Ptolemy users:

ptolemy-hackers@ptolemy.eecs.berkeley.edu

ptolemy-interest@ptolemy.eecs.berkeley.edu

ptolemy-hackers

A forum for Ptolemy questions and issues. Users of the current release who
have a Ptolemy question, comment, or think they’ve found a bug should send
mail to ptolemy-hackers . Ptolemy users in companies and universities
around the world who are interested in discussing Ptolemy post and read from
theptolemy-hackers group.

To subscribe to theptolemy-hackers mailing list, send mail to:
ptolemy-hackers-request@ptolemy.eecs.berkeley.edu
with the wordsubscribe in the body of the message. To leave the mailing list
put the wordunsubscribe in the body of your message.

ptolemy-interest

A mailing list for Ptolemy announcements. Messages about new releases, bug
fixes, and other information of interest to all Ptolemy users is posted here.
Note: This is not a discussion group, and you cannot post to this mailing list.
Message volume is very light. All users of Ptolemy should belong to this group
in order to stay current with work being done on Ptolemy. Announcements sent
to ptolemy-interest are also sent toptolemy-hackers , so you need not
subscribe to both lists.

To subscribe to the ptolemy-interest mailing list, send mail to:
ptolemy-interest-request@ptolemy.eecs.berkeley.edu
with the wordsubscribe in the body (not the subject) of the message.

A.3.2 Ptolemy Newsgroup

There is a Ptolemy newsgroup:comp.soft-sys.ptolemy . Just like theptolemy-
hackers mailing list, thecomp.soft-sys.ptolemy newsgroup is a forum of the discus-
sion of Ptolemy questions, bug reports, additions, and applications. Note that all mail sent to
the ptolemy-hackers mailing list is automatically posted to thecomp.soft-
sys.ptolemy newsgroup as well. The name is chosen to correspond to similar newsgroups
for the Khoros and Matlab systems, which are also undercomp.soft-sys .oTroubleshooting

A.4 Installation
Ptolemy is a large software system that relies on a properly configured software envi-

ronment. This section will take you step by step through the installation of Ptolemy, including
all of the basic information required to get from an FTP archive or distribution tape to being

A-4 Troubleshooting

U. C. Berkeley Department of EECS

able to run the system. Note that this information may have changed after the manual was
printed. Thus, the most up-to-date instructions are included in$PTOLEMY/doc/html/
install .

Ptolemy is distributed in several forms:

 • The Ptolemy group provides Ptolemy and Gnu tools binaries for Solaris2.5.1,
SunOS4.1.3 and HPUX10.20. We use these three platforms for in-house development
and testing, so they are more stable than other platforms.

 • We also make binaries for other architectures available. These binaries have been con-
tributed by users and have not been tested in-house. You can find these binaries at
ftp://ptolemy.eecs.berkeley.edu/pub/ptolemy/contrib . The list of
contributed binaries varies, but usually includes Linux, AIX and DEC Alpha.

 • If your machine is not one of the three primary platforms, and we do not have contrib-
uted binaries for it, then you will have to do a compile from scratch. For more informa-
tion see “Rebuilding Ptolemy From Source” on page A-10.

A.4.1 Location of the Ptolemy installation

The Ptolemy system uses the environment variable$PTOLEMY to locate the Ptolemy
distribution. If you are rebuilding Ptolemy from sources without using any prebuilt Ptolemy
binaries, then you can set$PTOLEMY to any location. If you are using prebuilt binaries, then
there are a few issues concerning exactly to what value$PTOLEMY is set. The issues occur
because certain facilities, such as shared libraries, the Gnu compiler and Tcl/Tk save certain
pathnames at build time. If at run time, certain files cannot be found that were present at build
time, then there will be various failures.

The Ptolemy binaries that we distribute were built with$PTOLEMY equal to
/users/ptolemy . If you can create a symbolic link from/users/ptolemy to your
Ptolemy distribution, then you may find using the prebuilt binaries easier. If you cannot create
a link and are using prebuilt binaries, then be aware of the following points:

 • To use Ptolemy, you will need to set yourPTOLEMY environment variable to the loca-
tion of the distribution. For example, if your Ptolemy distribution was in/usr/
local/ptolemy , then under C shell (/bin/csh), you would type setenv
PTOLEMY /usr/local/ptolemy .

 • If you are using prebuilt binaries that were built with$PTOLEMY equal to/users/
ptolemy , but your Ptolemy distribution is not at/users/ptolemy , then you may
need to setLD_LIBRARY_PATH or SHLIB_PATH so that the binaries can find the
appropriate shared libraries at run time. Thepigi script will attempt to properly set
LD_LIBRARY_PATH if it is not already set, but thepigi script is easily fooled. See
$PTOLEMY/.cshrc for sample C shell commands that set the appropriate variable.
See also “pigi fails to start up, giving shared library messages” on page A-17, and
“Shared Libraries” on page D-1.

 • If you are compiling Ptolemy using the prebuilt Gnu binaries that we provide, and the
Ptolemy distribution is not at/users/ptolemy , then you will need to set some addi-
tional environment variables, see “Gnu Installation” on page A-7 for more informa-
tion.

The Almagest A-5

Ptolemy Last updated: 11/6/97

 • If you are using prebuilt binaries, and the Ptolemy distribution is not at/users/
ptolemy , then thetycho command may fail for you. For a workaround, see “tycho
fails to start up, giving TCL_LIBRARY messages” on page A-18.

A.4.2 Basic Ptolemy installation

First note the approximate disk space requirements for Ptolemy. The numbers below
are for the Solaris version of Ptolemy, but other distributions are similar:

 • Ptolemy frompt-0.7.src.tar.gz and pt-0.7.sol2.5.tar.gz : 135 Mega-
bytes

 • Gnu binaries for Solaris: 25 Megabytes

 • Ptolemy frompt-0.7.src.tar.gz andpt-0.7.sol2.5.tar.gz if you remake
(optional): approximately 168 Megabytes

 • Documentation Postscript Files (optional): approximately 30 Megabytes

 • Gnu Binary and Sources (optional): 66 Megabytes

 • Additional Sources (needed to port Ptolemy) (optional): 24 Megabytes

 • Complete rebuild frompt-0.7.src.tar.gz , pt-0.7.other.src.tar.gz and
pt-0.7.gnu.tar.gz : under Solaris 2.5.1: 400 Megabytes

Important Note: Although we distribute binaries, you must also install the source tree inpt-
0.7.src.tar.gz . Installing this src directory is not optional. Thesrc directory contains
the Ptolemy source code, but it also contains the icons and interpreted Tcl code used in the
user interface. If you absolutely must discard the source code, you can remove all files under
src with extensions.cc , .h , or .c . For more information, see “Freeing up Disk Space” on
page A-14.

A.4.3 The ptolemy user

The preferred way to install Ptolemy involves creating a fictitious user with the userid
ptolemy , together with a home directory for theptolemy user. Using the binaries is easier if
the ptolemy user’s home directory is/users/ptolemy . Once theptolemy user account
has been created, log in orsu to userptolemy . If you do not wish to create a user called
ptolemy , see below for an alternative.

A.4.4 Installation without creating a ptolemy user

The preferred installation technique, as indicated above, is to create a user called
ptolemy . The reason for this is that running Ptolemy requires an appropriate user configura-
tion. At minimum, the user’s path must be set up properly. Theptolemy user is also config-
ured to run an X window manager (twm) with suitable X resources that are known to work
well. In troubleshooting an installation, having theptolemy user properly configured can be
very valuable.

Ptolemy can be installed without creating a ptolemy user. If you do this,every Ptolemy
user must set aPTOLEMY environment variable to point to the root directory of Ptolemy. The
installation is the same as below, except that~ptolemy is replaced with$PTOLEMY.

A-6 Troubleshooting

U. C. Berkeley Department of EECS

A.4.5 Obtaining Ptolemy

Ptolemy is available via the Ptolemy Web site athttp://ptolemy.eecs.berke-
ley.edu . The Ptolemy releases can be found under theReleases link. The Ptolemy release
can also be found on the Ptolemy ftp site atftp://ptolemy.eecs.berkeley.edu/ fol-
low the instructions in theREADME file, and be sure to download in binary mode.

Untarring the distribution

Go to the directory where you either saved the downloaded*.tar.gz files. These files have
been compressed with the Gnugzip program, a compression program from the Free Soft-
ware Foundation. In order to uncompress the files, you need the programgzcat. Thegzcat
program is available via anonymous FTP fromftp://ptolemy.eecs.berkeley.edu/
pub/gnu . Now proceed as follows:

a. gzcat pt-0.7.doc.tar.gz | (cd ~ptolemy/..; tar xf -)

This uncompresses the documentation, changes directory to the parent of theptolemy user,
and then creates all of the documentation files.

b. gzcat pt-0.7.src.tar.gz | (cd ~ptolemy/..; tar xf -)

This uncompresses thesrc tar file and creates the source files. You must not skip this step.
Ptolemy depends on these files being present. Note that you may get a few warning messages
during this and the following step about the tar program not being able to create some directo-
ries because they already exist. This is expected (the same directory is mentioned in several of
the tar files), so you need not worry.

c. If you are running the SunOS4.1.3 version:
gzcat pt-0.7.sun4.tar.gz | (cd ~ptolemy/..; tar xf -)
(If you are running SunOS4.1.3/bin/tar , and you see messages about

 tar: read error: unexpected EOF
then see “EOF messages while using tar on Suns” on page A-23)
If you are running the HPUX 10.20 version:
gzcat pt-0.7.hppa.tar.gz | (cd ~ptolemy/..; tar xf -)
If you are running the Solaris2.5.1 version:
gzcat pt-0.7.sol2.5.tar.gz | (cd ~ptolemy/..; tar xf -)
If you are running another platform for which a binary has been provided:
gzcat pt-0.7. platform .tar.gz | \

(cd ~ptolemy/..; tar xf -)
This uncompresses the binaries and creates the executable files. Note that is possi-
ble to install binaries for multiple platforms on the same file system because differ-
ent directories are used for each set of binaries. Just execute whichever of the
above commands apply.

d. (Optional) If you are planning on porting Ptolemy, you will need the other sources
file:
gzcat pt-0.7.other.src.tar.gz| \

(cd ~ptolemy/..; tar xf -)
The other.src tar file includes sources to a subset ofOcttools (including
vem), Tcl/Tk andxv . If you wish to rebuild Ptolemy completely from source,

The Almagest A-7

Ptolemy Last updated: 11/6/97

then you will need this tar file. Alternatively, you may be able to use the Octtools
libraries from a binary tar file.
If you are planning on recompiling Ptolemy, but are really short on disk space, and
you already have Tcl/Tk (comes with most Linux installations) then you can
downloadpt-0.7.oct.src.tar.gz instead ofpt-0.7.other.src.tar.gz .
Note that this file has not been extensively tested. For more information, see
“Ptolemy and Tcl/Tk” on page A-13

e. (Optional) You no longer need the*.tar.gz files that your got from the FTP site
or the tape. Remember to delete these files to free up disk space.

f. (Optional) The X11 programxv is used by some of the image processing demos. If
you already have a version ofxv , or you don’t plan on doing any image processing,
you can also remove thexv binary in$PTOLEMY/bin.$PTARCH/xv .

A.4.6 Special considerations for use under OpenWindows

Ptolemy was developed using the X11R4 through X11R6 distributions from MIT.
Although Ptolemy runs fine under OpenWindows 2, there are problems with running the
Ptolemy graphical interface with OpenWindows version 3.0 under SunOS4.x. Some users
have had no problems at all, but others have had intermittent problems such as “bad match”
errors. We believe this may be a problem with the X-server supplied with the
OpenWindows 3.0, but the error is elusive and we have not yet tracked it down. These prob-
lems seem not to occur in OpenWindows 3.3 and later (OW3.3 was distributed with
Solaris2.3).

In order for all utilities included with this distribution to work under OpenWindows 2,
you must install the shared libraries for the Athena widgets (the freely redistributable widget
set from the MIT X11 distribution), which are provided with this distribution under the
$PTOLEMY/athena.sun4 directory. To install them, become root and copy all files in that
directory into/usr/openwin/lib (or, if you have installed OpenWindows in a non-stan-
dard place, into$OPENWINHOME/lib). If you do not wish to do this, you could leave them in
place and have every Ptolemy user change theirLD_LIBRARY_PATH environment variable to
search~ptolemy/athena.sun4 before /usr/openwin/lib . Consult the Unix manual
entry for theld program to learn more aboutLD_LIBRARY_PATH.

After installation, the$PTOLEMYdirectory will contain several scripts for starting up
X11R6 (Xrun), OpenWindows witholwm (Xrun.ow), or OpenWindows withtwm
(Xrun.ow.twm).

If only have OpenWindows, and not X11R5 or X11R6 and you plan on rebuilding
from source, you may need the libraries inathena.sun4 . athena.sun4 is part of thept-
0.7.sun4.tar.gz tar file.

A.4.7 Gnu Installation

If you are planning on extending Ptolemy by writing your own stars and you are using
prebuilt binaries, you will need to install the same compiler that was used to build the prebuilt
binaries. In particular, Ptolemy supports dynamic linking of newly defined stars.Dynamic
linking will not work, however, if the new stars are compiled with a different version of the
compiler than that used for the rest of the system. Thus, you must either use the same compiler

A-8 Troubleshooting

U. C. Berkeley Department of EECS

that we used for this distribution of Ptolemy or you must recompile the entire Ptolemy system.
Note that this is not a complete set of Gnu software.

It is also possible to build Ptolemy with other, non-Gnu C++ compilers, such as Sun-
Soft’s C++ compiler. We have built this release of Ptolemy with the following compilers:

sol2.5.cfront Sun CC, version 4.0 (native) for Solaris2.5.1

hppa.cfront HP-UX CC version 41

This release has also been built by others with SGI Delta-C++ for Irix5.3
(irix5.cfront).

We do not distribute these non-Gnu C++ binaries. If you choose to use a non-Gnu C++
compiler, you must completely rebuild Ptolemy. The libraries in the tar files were produced by
the Gnu C++ compiler and are not interoperable with code from other compilers. When you
completely rebuild Ptolemy, you must be sure to first remove all previously compiled object
files. Note that to compile Ptolemy with a non-Gnu C++ compiler, you will still need to use
Gnu make.

Ptolemy 0.7 was built with gcc-2.7.2.2 and libg++-2.7.2. Note that Ptolemy uses the
gcc and libg++ shared libraries, if you are using your own version of gcc and libg++, it must
have been configured with --enable-shared. For further information, see “Can I use my own
version of gcc and libg++?” on page A-28.

The Gnu compiler is dependent upon where it was built. The executable that we sup-
ply assumes that the compiler is installed in a directory called/users/ptolemy . If you do
not wish to rebuild the compiler, then you must either install Ptolemy in this directory, or cre-
ate a symbolic link from this directory to the actual directory in which Ptolemy is installed. If
you cannot install such a link, then you will still be able to run Ptolemy,but you may not be
able to dynamically link new stars or recompile Ptolemy.

Even if your Ptolemy installation in not in/users/ptolemy and even if you cannot
create a link from/users/ptolemy to the actual location of Ptolemy, you may still be able
to use this compiler by setting Gnu environment variables before using the compiler. We pro-
vide a script in$PTOLEMY/bin/g++-setup that sets these variables. If you will always be
using the prebuilt Gnu compiler shipped with Ptolemy with these variables, you may want to
edit your copies of$PTOLEMY/bin/pigiEnv.csh and$PTOLEMY/bin/ptcl and add the
following line:

source $PTOLEMY/bin/g++-setup

You should not set these variables if you are using a version of the Gnu compiler that
is different from the version that we are shipping. If you are using a different version of the
Gnu compiler, then you will probably need to do a complete rebuild for dynamic linking to
work. Please note that setting the environment variables does not work in all installations and
that creating a link is better. If you are running under SunOS4.1.x and are using the prebuilt
Gnu binaries, please see “Sun OS4 specific bugs” on page A-39. Here are the Gnu environ-
ment variables that worked for Solaris2.5.1:

setenv GCC_EXEC_PREFIX \

1. On the HP, type “what /usr/bin/CC” to see what version you are running.

The Almagest A-9

Ptolemy Last updated: 11/6/97

$PTOLEMY/gnu/$PTARCH/lib/gcc-lib/$PTARCH/2.7.2/
setenv C_INCLUDE_PATH $PTOLEMY/gnu/$PTARCH/lib/gcc-lib/$PTARCH
setenv CPLUS_INCLUDE_PATH \
$PTOLEMY/gnu/$PTARCH/lib/g++-include:\

$PTOLEMY/gnu/$PTARCH/$PTARCH/include
setenv LIBRARY_PATH $PTOLEMY/gnu/$PTARCH/lib

The above assumes that the environment variablePTOLEMY is set to the name of the actual
installation directory of Ptolemy, andPTARCH is set to the type of workstation (such assun4 ,
hppa , etc.).

To install the Ptolemy Gnu subset, proceed as follows:

a. Change to the directory that contains the files you downloaded via FTP or the Web.

You should now have apt-0.7.gnu. xxx .tar.gz file (wherexxx is an architecture sup-
ported by Ptolemy such assun4 , hppa , or sol2) in your current directory.

b. If you are running on a SunOS4.1.3 then:
gzcat pt-0.7.gnu.sun4.tar.gz| \

(cd ~ptolemy/..; tar xf -)
(If you are running SunOS4.1.3/bin/tar , and you see messages about

 tar: read error: unexpected EOF
then see “EOF messages while using tar on Suns” on page A-23)
If you are running on an HP workstation under HPUX10.20 then:
gzcat pt-0.7.gnu.hppa.tar.gz | \

(cd ~ptolemy/..; tar xf -)
If you are running the Solaris2.5.1 version:
gzcat pt-0.7.gnu.sol2.5.tar.gz | \

(cd ~ptolemy/..; tar xf -)
If you are running another platform for which we provide a tar file:
gzcat pt-0.7.gnu. platform .tar.gz | \

(cd ~ptolemy/..; tar xf -)
Note that these are single commands split over two lines for readability. Do not
type a space after the backslash at the end of the first line, just pressReturn .

c. There is also a Gnu tar file which contains the Gnu source code. You will save disk
space and Ptolemy will still run if you do not untar the Gnu source code. However,
if you plan to redistribute the Gnu tools (give them to anyone else) you must
include sources, according to the Gnu Public License. Therefore, it may be a good
idea to keep these source files around.
If you want to untar the Gnu source code:
gzcat pt-0.7.gnu.tar.gz | (cd ~ptolemy/..; tar xf -)

d. You no longer need the*gnu*.tar.gz files that your got from the FTP site or the
tape. You may delete these files to free up disk space.

A.4.8 Testing the Installation

Note that the following tests assume that you have created aptolemy user and
installed the system there. One advantage of such an installation, is that theptolemy user

A-10 Troubleshooting

U. C. Berkeley Department of EECS

already has a working.cshrc and.login file to make start-up easier.

To test Ptolemy, assuming you have set up aptolemy user:

a. login as ptolemy

If the X server is not already running, the.login script will attempt to start it. If your instal-
lation is different from ours, you may need to modify.login to work at your site (in particu-
lar, you may need a differentpath variable).

b. cd demo

c. pigi

Follow instructions in “Starting Ptolemy” on page 2-2.

If you have not set up aptolemy user, then set yourPTOLEMY environment variable to
point to the installation directory. If your Ptolemy distribution is at/users/myptolemy ,
under the C shell, you would type:

setenv PTOLEMY /users/myptolemy

If you use a shell other thancsh , consult your documentation on how to set environ-
ment variables. The next steps are to change to the Ptolemy directory and to start up Ptolemy:

cd $PTOLEMY
bin/pigi

Note that the ptolemy user provides a model of a user properly configured to run Ptolemy. All
the dot files (.cshrc , .login etc.) in the home directory are set up according to the tastes of
the Ptolemy authors and according the standard use of windowing software in the Ptolemy
development group.

A.4.9 Rebuilding Ptolemy From Source

If you wish to rebuild Ptolemy from source (this step is recommended if you plan to do
major development work, such as adding a new domain), it is simply a matter of editing the
appropriate configuration file and typingmake. This is explained in a bit more detail below.
Note that to rebuild completely from source, you need thept-0.7.other.srcs.tar.gz
tar overlay, as well as thept-0.7.src.tar.gz tar overlay. If you are having problems
rebuilding, you may want to look over “Ptolemy will not recompile” on page A-27.

To do a build of all of Ptolemy using the Gnu compiler from the distribution, first make
sure that either Ptolemy is installed in/users/ptolemy , or that there is a symbolic link from
/users/ptolemy to the installation directory. Alternatively, you can try setting the four
environment variables described in “Gnu Installation” on page A-7.

$PTOLEMY should point to the location of the installation so that the toplevel makefile
is at$PTOLEMY/makefile . $PTARCH should be set to the name of the architecture you are
running.$PTARCH is used to select a makefile from$PTOLEMY/mk/config-$PTARCH.mk .
The script$PTOLEMY/bin/ptarch will return the architecture of the machine on which it is
run.

Next make sure that$PTOLEMY/bin.$PTARCH and$PTOLEMY/bin are both in your
path ($PTOLEMY/bin.$PTARCH is where the compiler is installed.$PTOLEMY/bin is where
certain scripts used to build star lists are located).

The Almagest A-11

Ptolemy Last updated: 11/6/97

Then proceed as follows:

a. setenv PTOLEMY /users/ptolemy

b. setenv PTARCH ‘$PTOLEMY/bin/ptarch‘

c. set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

d. cd $PTOLEMY (or cd /users/ptolemy)

The toplevel makefile at$PTOLEMY/makefile can rebuild some or all of Ptolemy.

 • To rebuild the Gnu tools, Tcl/Tk,xv , Octtools and Ptolemy, typemake bootstrap .
This target requires the following files:pt-0.7.gnu.tar.gz , pt-
0.7.other.src.tar.gz andpt-0.7.src.tar.gz .

 • To rebuild Tcl/Tk,xv , Octtools and Ptolemy, typemake everything . This target
requires the following files: pt-0.7.other.src.tar.gz and pt-
0.7.src.tar.gz .

 • To rebuild just Octtools and Ptolemy, type
make install_octtools install .This target requires the following files:pt-
0.7.other.src.tar.gz and pt-0.7.src.tar.gz . (If you are short on disk
space, you may be able to downloadpt-0.7.octtools.tar.gz instead ofpt-
0.7.other.src.tar.gz).

 • To rebuild just Ptolemy, typemake install .This target requires the following files:
pt-0.7.src.tar.gz .

An easier approach is to log in as “ptolemy” (assuming you created such a user). The path and
environment variables are already set up for this user. Yet a third approach is to make use of
the setup for this user, as follows:

a. cd $PTOLEMY (or cd /users/ptolemy)

b. edit$PTOLEMY/.cshrc to definePTOLEMY correctly

c. source $PTOLEMY/.cshrc

d. make install

If you wish to customize your installation, you may have to edit the configuration files. These
files are in$PTOLEMY/mk. The configuration files are all namedconfig-$PTARCH.mk
where the$PTARCH is something likesun4 for a Sun Sparc system running SunOS4.1.3 or
hppa for an HP Precision Architecture machine. They are included by other makefiles and
define symbols specifying compiler flags, the directory where X include files are located, etc.

If you wish to rebuild using a non-Gnu C++ compiler rather thang++, useconfig-
sol2.5.cfront.mk as a starting point to produce your configuration file. This has been
tested with Sun CC version 4.0 with Solaris2.5.1. For other platforms, you may need to do
some tweaking. Seeconfig-hppa.cfront.mk for using HP CC version 4, andconfig-
irix5.cfront.mk for using SGI Irix CC. Note that the term “cfront” is historical, and that
not all of these compilers are actually cfront based. We use the term cfront to refer to non-Gnu
C++ compilers.

A-12 Troubleshooting

U. C. Berkeley Department of EECS

To rebuild the system, first adjust the configuration parameters in the appropriate con-
figuration file. For example, if you are using the Gnu tools on a Sun-4 running SunOS4.1.3,
then you will need to adjust theconfig-sun4.mk file.

Next, runmake. The Ptolemy source files include extensions found only in Gnumake,
which is included in the Gnu subset of the Ptolemy distribution. (Make sure that the Gnu tools
are installed correctly.) Sunmake will fail on certain makefiles that have Gnumake exten-
sions. See$PTOLEMY/src/gnu/README for a discussion of Gnumake compatibility.

You will get some warnings from the compiler, but the following warnings can safely
be ignored:

 • any warning aboutfile_id defined but not used.

 • any warning aboutSccsId defined but not used

 • variable might be clobbered bylongjmp or vfor ’
This warning may be a problem under heavy optimization. We will work to remove
these from future releases.

 • many warnings aboutcast discards const .

Details of how Ptolemy is built and the general layout

Below we describe some of the details of how Ptolemy is built from sources.

To build Ptolemy, you must have yourPTOLEMY andPTARCH environment variables
set.PTOLEMY is set to the location of the Ptolemy tree,PTARCH is set to the name of the
machine architecture (the script$PTOLEMY/bin/ptarch will return the architecture of the
machine on which it is run). The directory$PTOLEMY/mk contains master makefiles that are
included by other makefiles (The makefileinclude directive does this for us).$PTOLEMY/
mk/config-$PTARCH.mk refers to the makefile for the architecture$PTARCH. For instance,
$PTOLEMY/mk/config-sun4.mk is the makefile that contains the sun4 specific details.

When you change to the$PTOLEMY directory and typemake, $PTOLEMY/makefile
contains a rule that checks to see if the directory$PTOLEMY/obj.$PTARCH exists. If this
directory does not exist, then make runs the commandcsh -f MAKEARCH , whereMAKEARCH
is a C shell script at$PTOLEMY/MAKEARCH. MAKEARCH will create the necessary subdirecto-
ries under$PTOLEMY/obj.$PTARCH for $PTARCH if they do not exist.

We split up the sources and the object files into separate directories in part to make it
easier to support multiple architectures from one source tree. The directory$PTOLEMY/
obj.$PTARCH contains the platform-dependent object files for a particular architecture. The
platform-dependent binaries are installed into$PTOLEMY/bin.$PTARCH , and the libraries go
into $PTOLEMY/lib.$PTARCH . Octtools, Tcl/Tk, and Gnu tools have their own set of archi-
tecture-dependent directories. The Ptolemy Programmer’s Manual describes the directory tree
structure in more detail.

We are able to have separate object and source directories by using themake pro-
gram’sVPATH facility. Briefly, VPATH is a way of tellingmake to look in another directory for
a file if that file is not present in the current directory. For more information, see the Gnumake
documentation, in Gnu Info format files in$PTOLEMY/gnu/common/info/make-* .

The Almagest A-13

Ptolemy Last updated: 11/6/97

Ptolemy and Tcl/Tk

Ptolemy0.7 usesitcl2.2 , which is an object-oriented extension to tcl (Tool Com-
mand Language) and tk.itcl2.2 includes a modified version oftcl7.6 andtk4.2 . If you
haveitcl2.2 already installed, you may use your installed version. You will need to either
edit
$PTOLEMY/mk/config-default.mk or create the proper links in$PTOLEMY/tcltk .

In theory, it is possible to build Ptolemy0.7 withoutitcl2.2 . However, without
itcl2.2 , Tycho, the syntax manager and the Gantt chart facilities will not work. There may
be other features that fail to operate. We strongly encourage you to build withitcl2.2 .

In previous releases, the layout of the$PTOLEMY/tcltk directory was such that Tcl
and Tk were in separate directories so that upgrading Tcl and Tk could be done separately if
necessary. In Ptolemy 0.7, we are usingitcl2.2 , the Tcl and Tk are under the$PTOLEMY/
tcltk/itcl* directories. We have left separate$PTOLEMY/tcltk/tcl* and$PTOLEMY/
tcltk/tk* directories so that we can easily support separate Tcl and Tk releases in the
future.

 • $PTOLEMY/tcltk/itcl contains the architecture-independent Itcl directories
include , lib andman. For instance,tcl.h might be at~ptolemy/tcltk/itcl/
include/tcl.h .

 • $PTOLEMY/tcltk/itcl.$PTARCH contains the architecture-dependent Itcl directo-
ries bin and lib . For instance, on the sun4,libtcl.a might be at~ptolemy/
tcltk/itcl.sun4/lib/libtcl.a .

Notes for building on the sol2.5 platform (Sun4s running Solaris2.5.1)

Solaris2.5.1 is not shipped with a C compiler, and the Gnu tar file we ship does not
include absolutely everything necessary to build on a compilerless Solaris2.5.1 machine.
Notably, bison may be necessary to compile the Gnu C compiler and the Ptolemy program
ptlang . If, when you are building the Gnu C compiler,bison is called and you do not have
it, try using the Unixtouch command on the offending .c file. The tar files we distribute
includeptlang.c , which is generated fromptlang.y , so you should not needbison to
compile Ptolemy. You can get a fairly complete set of Gnu tools via anonymous FTP from
ftp://ftp.uu.net/systems/gnu/solaris2.3/ .

 • If you choose to compile Gnugcc with SunSoft’scc , be sure that you are not using
/usr/ucb/cc . Otherwise, you may see errors while compilinggcc/protoize.c :

"/usr/include/sys/ucontext.h", line 25: syntax error before or
at: stack_t

 The solution is to place/opt/SUNWspro/bin in your path before /usr/ucb.

 • You will need/usr/ccs/bin in your path to pick upar , lex andyacc .

 • If you are building gcc-2.7.2 under Solaris, you must have/bin in your path before
/usr/ucb . See$PTOLEMY/src/gnu/README for more information.

 • Undersol2.5.cfront , $OPENWINHOME must be defined to buildxv since xmkmf
relies on$OPENWINHOME. In the C shell, one would type:

A-14 Troubleshooting

U. C. Berkeley Department of EECS

setenv OPENWINHOME /usr/openwin

A.4.10 Freeing up Disk Space

If you are short on disk space, you can consider removing the following files

 • $PTOLEMY/src/domains/sdf/demo/ppimage (~1020 Kb). This file is used by
some of the image processing demos.

 • If you rebuild and reinstall Ptolemy from source, you may remove the$PTOLEMY/
obj.$PTARCH directory once you are done installing.

 • If you do not plan to rebuild Ptolemy from source, you can remove all the.cc , .c and
.h files in the$PTOLEMY/src directory. Note that the$PTOLEMY/src directory con-
tains the icons and interpreted Tcl code used in the user interface, so removing thesrc
directory completely will prevent pigi from running.

 • If you are very short on space, you may want to run Ptiny, a version of Ptolemy that
only contains most of the SDF and DE domains. Ptiny is available via anonymous FTP
from ptolemy.eecs.berkeley.edu . Note that Ptiny might be from an older
release than the current release of the main Ptolemy distribution.

A.4.11 Other useful software packages

Some parts of Ptolemy use other software packages. The packages below are all avail-
able on the internet. If you have internet FTP access, you can find lots of FAQs (Frequently
Asked Questions) via anonymous FTP atpit-manager.mit.edu in /pub/usenet/
news.answers .

 • The Utah Raster Toolkit (URT) is used by some of the Multimedia demos. Most of the
URT utilities work with images in RLE (run-length encoded) format, so most of its
utilities begin with the prefixrle such as isrletoppm . The original URT is available
via anonymous FTP fromftp.cs.utah.edu in /pub/urt-*. Note that the origi-
nal URT does not include configuration files for many modern platforms, including
Solaris2.5.1. We have made URT sources and binaries for Solaris2.5.1 available via
anonymous ftp fromptolemy.eecs.berkeley.edu in pub/misc/urt .

 • The following Gnu utilities are available via anonymous FTP from
prep.ai.mit.edu . See the file/pub/gnu/GETTING.GNU.SOFTWARE on that site.
For further information, write to:

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

Ptolemy uses the following Gnu software:

ghostscript - PostScript previewer. Note thatoct2ps can useghostscript to
generate Encapsulated PostScript (EPS).

gdb - needed forpigi -debug

gzip - Used to compress and uncompress files.

The Almagest A-15

Ptolemy Last updated: 11/6/97

A.5 Troubleshooting
This section lists common difficulties encountered when installing and
running Ptolemy. This list is, of course, by no means complete. If you
do not find your particular problem here, refer to the section “Addi-
tional resources” on page A-40.

 •“Problems with tar files” on page A-15

 •“Problems starting pigi” on page A-16

 •“Common problems while running pigi” on page A-19

 •“Window system problems” on page A-20

 • “Problems with the compiler” on page A-23

 • “Problems compiling files” on page A-25

 • “Generated code in CGC fails to compile” on page A-27

 • “Ptolemy will not recompile” on page A-27

 • “Dynamic linking fails” on page A-30

 • “Dynamic linking and makefiles” on page A-31

The most recent version of this section can be found on the bottom of the Ptolemy
home page athttp://ptolemy.eecs.berkeley.edu/papers/almagest/appen-
dixA.html . The same file should be available via anonymous ftp from
ptolemy.eecs.berkeley.edu as pub/ptolemy/ptolemy0.7/
TROUBLE_SHOOTING_0.7.

A.5.1 Problems with tar files

EOF messages while using tar on Suns

There is a bug in the SunOS 4.1.3 version of/bin/tar . Sometimes a command such
as:

gzcat pt-0.7.sun4.tar.gz | (cd ~ptolemy/..; tar xf -)
may produce error message such as:

tar: read error: unexpected EOF
when reading from a pipe if thetar in the command is Sun’s/bin/tar . One workaround is
to use GNU tar, another is to usegzcat anddd:

gzcat pt-0.7.sun4.tar.gz | dd conv=sync,block |
(cd ~ptolemy/..; tar xf -)

Another workaround is to uncompress the file first, and then run/bin/tar :

gzcat pt-0.7.sun4.tar.gz > pt-0.7.sun4.tar

cat pt-0.7.sun4.tar | (cd ~ptolemy/..; /bin/tar xf -)

A-16 Troubleshooting

U. C. Berkeley Department of EECS

A.5.2 Problems starting pigi

pigi: Command not found

Running thepigi command is the most common way of starting up Ptolemy. If you
get a message like:

ptolemy@kahn 2% pigi
pigi: Command not found
ptolemy@kahn 3%

then try the following:

 • Thepigi script is located at$PTOLEMY/bin/pigi . If that file is not present, then
you need to download the Ptolemy src file,pt0.7.src.tar.gz . This file is not
optional, it contains thepigi script and other files necessary to run Ptolemy.

 • Be sure that your path includes$PTOLEMY/bin . Undercsh , do:

set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

Mr. Ptolemy window does not come up

Ptolemy consists of two processes,vem andpigiRpc , that communicate via Remote
Procedure Calls (RPC).Vem is the first process that starts up, and it produces a vem console
window in the upper left corner of the screen and a green demo window just below it. When
pigiRpc starts up, you should see a window in the middle of your screen that has the Mr.
Ptolemy bitmap and a brief description of the binary you are running.

If the pigiRpc process fails to connect to thevem process, you won’t see the Mr.
Ptolemy bitmap, and the shift-middle-button menus will not be active. This problem seems to
be most common on Linux machines, in part because they are often not on a network. If you
are running under Linux and your installation is configured to use the network, then you may
need to rebuild Ptolemy from source. See “Linux specific bugs” on page A-38 for more infor-
mation.

If you are running on a machine that is not connected to a network, you will need to
provide some network support forpigi to start up.vem andpigiRpc communicate with
each other via RPCs, which require some intra-machine network support. One quick test is
that you should be able to ping yourself:

/usr/etc/ping ‘hostname‘

There are several workarounds to this. One is to add the name of your host to the loop-
back line in/etc/hosts (here we add the namemyhostname):

127.0.0.1 localhost myhostname

Under FreeBSD, you might have to add a fully qualified domain name. If you do not
have a fully qualified domain name, sendmail might have problems. An example/etc/
hosts entry would be:

127.0.0.1 localhost myhostname myhostname.mydomain

Another solution is to useroute to route packets to your host through the loopback
interface. Asroot , type:

route add ‘hostname‘ localhost 0

See theping , netstat androute commands for more information about network-

The Almagest A-17

Ptolemy Last updated: 11/6/97

ing.

If the Mr. Ptolemy image fails to come up, another thing to check is that Tycho has the
propertclIndex files. If you try to open a facet by typing ‘F’, and you get a message like:

invalid command name "::tycho::Oct::openFacet"
 while executing
"::tycho::Oct::openFacet"

then check to see if theTYCHO environment variable is mis-set. You should be able to run
Ptolemy with out setting$TYCHO, so if it is set, tryunsetenv TYCHO and then restarting.
Also, check to see that$PTOLEMY/tycho/typt/kernel/tclIndex exists. This file is
used bypigi to find the::tycho::Oct::openFacet command at runtime. If it does not
exist, create it by runningmake sources in that directory.

pigi fails to start when put in the background

A common problem occurs whenpigi is started in the background and the user has
the line

stty tostop

in their .login or .cshrc file. This command configures the terminal to halt any process
that is running in the background when it tries to write to the terminal. One fix is to runpigi
in the foreground. Another fix is to eliminate this command from your login files.

pigi fails to start up, giving shared library messages

On most platforms, Ptolemy is built using shared libraries. In Ptolemy 0.7, the
Solaris2.x, HP and possibly Linux platforms use shared libraries, SunOS4.x does not. See the
“Shared Library” appendix for more information about shared libraries.

At run time, if shared libraries cannot be found, you may see a message under HPUX-
10.x like:

/usr/lib/dld.sl: Can’t find path for shared library: libuprintf.sl

Under Solaris 2.x, you might see:
ld.so.1: /users/cxh/pt/bin.sol2/vem: fatal: librpcserver.so:
can’t open file: errno=2

The message that you see may vary but the problem is that the binary cannot find the
shared libraries to which it was linked. There are a few reasons this could be happening:

 • The shared libraries are not where the binary expects them to be. If you are running
from prebuilt binaries and your Ptolemy tree is not at/users/ptolemy , then this
may be the problem.

If you are running from prebuilt binaries and your Ptolemy distribution is not at
/users/ptolemy , then you may need to set an environment variable to indicate what
path should be searched for shared libraries. Under HPUX, the environment variable is
SHLIB_PATH; under Solaris, the environment variable isLD_LIBRARY_PATH. The
file $PTOLEMY/.cshrc should contain the proper commands to set the appropriate
environment variable, though you may need to uncomment some lines. For HPUX,
you could type the following command. (Do not type a space after the backslashes at
the end of lines, just pressReturn):

A-18 Troubleshooting

U. C. Berkeley Department of EECS

setenv SHLIB_PATH {$PTOLEMY}/lib.{$PTARCH}:\
{$PTOLEMY}/octtools/lib.{$PTARCH}:\
{$PTOLEMY}/gnu/{$PTARCH}:\
{$PTOLEMY}/tcltk/itcl.{$PTARCH}/lib/itcl

For Solaris, you could type the following command (all on one line):
setenv LD_LIBRARY_PATH {$PTOLEMY}/lib.{$PTARCH}:\

{$PTOLEMY}/octtools/lib.{$PTARCH}:\
{$PTOLEMY}/gnu/{$PTARCH}:\
{$PTOLEMY}/tcltk/itcl.{$PTARCH}/lib/itcl

It is best to place these commands in your~/.cshrc file. It is possible that you might
have to add other directories to the shared library path. For example, the Solaris2.x Ptolemy
binaries are compiled with/usr/openwin/lib as the location of the X windows libraries. If
your X windows libraries are in another directory, then you will need to add that directory to
the shared library path. See “Window system problems” on page A-20.

 • You do not have a library with that exact name. You may have an earlier or later ver-
sion. Recompiling Ptolemy from scratch is one solution. It may also be possible to set
up symbolic links to the proper libraries from a directory on the shared library path.

tycho fails to start up, giving TCL_LIBRARY messages

There are several ways to start uptycho , the Ptolemy syntax manager.$PTOLEMY/
bin/tycho is a link to a script that processes command line arguments and starts up the
appropriate binary. If you typetycho -pigi , tycho starts up with a binary that includes the
Ptolemy system. If you type justtycho , then tycho starts up with the genericitkwish
binary that is built from theitcl sources, which does not include any of the Ptolemy system.

If your Ptolemy distribution is not at/users/ptolemy , and you are running from
prebuilt binaries, then if you runtycho with the prebuilt genericitkwish binary, you may
see messages about:

application-specific initialization failed: can’t find /users/
ptolemy/tcltk/itcl/lib/tcl7.4/init.tcl; perhaps you need to install
Tcl or set your TCL_LIBRARY environment variable?

What’s happening here is theitkwish binary we ship has the/users/ptolemy
path hard-coded into it and the binary is not finding the libraries it needs. The reason this hap-
pens is that we wanttycho to be able to run outside of Ptolemy on machines that have only
genericitkwish installed from theitcl distribution. There are a few workarounds:

 • Create a link from/users/ptolemy to the Ptolemy distribution.

 • $PTOLEMY/bin/itkwish is a link to a that will attempt to set your environment
properly and then start the realitkwish . If you place$PTOLEMY/bin in your path
before $PTOLEMY/bin.$PTARCH , then you will be running theitkwish script
which might work for you.

 • Runtycho -ptiny instead. Thetycho script assumes that the Tcl installation is
located in$PTOLEMY/tcltk if it is called with the-ptiny , -ptrim or -pigi argu-
ments, so the script will do the right thing.

 • Set environment variables in a script and then callitkwish :

The Almagest A-19

Ptolemy Last updated: 11/6/97

#!/bin/sh
TCL_LIBRARY=$PTOLEMY/tcltk/itcl/lib/tcl
TK_LIBRARY=$PTOLEMY/tcltk/itcl/lib/tk
ITCL_LIBRARY=$PTOLEMY/tcltk/itcl/lib/itcl
ITK_LIBRARY=$PTOLEMY/tcltk/itcl/lib/itk
IWIDGETS_LIBRARY=$PTOLEMY/tcltk/itcl/lib/iwidgets2.0
export TCL_LIBRARY TK_LIBRARY ITCL_LIBRARY
export ITK_LIBRARY IWIDGETS_LIBRARY
exec $PTOLEMY/bin/tycho $*

For further information about troubleshooting Tycho, see the$PTOLEMY/tycho/
doc/troubleshooting.html .

A.5.3 Common problems while running pigi

pxgraph fails to come up or displays a blank window

If the pxgraph program is given exceptional numbers, such as the IEEE floating-point
Inf , -Inf , or NaN (“not a number”), then it will issue a cryptic error message “problems with
input data” and will fail to display a plot. The stars that usepxgraph are supposed to inter-
cept this and pop up an error message in a window. However, as of this writing, this does not
work on all platforms. On such platforms, the error message, unfortunately, goes to the stan-
dard output, which may be buried several layers deep in your windowing system. It is also
possible for the standard output to be lost, so that no error message appears. Thus, if you get
such apxgraph failure, look for instabilities in your Ptolemy schematic that would cause it to
produce such exceptional numbers.

Old flowgraphs do not work (facets are inconsistent)

A pigi schematic contains references to icons. These icons are referenced by their
location in the file system, typically using either an absolute path, a path relative to user’s
home directory, or a path relative to the environment variablePTOLEMY. If the master for any
of these icons is not in the expected place,vem will issue a warning, telling you the facet is
inconsistent, and there will be blank space in place of the icon in the schematic. To find out
what icon masters are missing, run the programmasters . Instructions for doing this are
given in “Copying and moving designs” on page 2-50. Invalid masters will be labeled
“ INVALID ”. You must replace the invalid reference with a reference to a valid master. The tcl
script $PTOLEMY/bin/ptfixtree can be useful for changing large numbers of facets.
$PTOLEMY/bin/ptfixtree.tcl file contains limited instructions on how to use it.

One typical scenario for users upgrading from an earlier version of Ptolemy is that
they will have references to~ptolemy in the directory tree. But the newer version may be
installed somewhere else. One solution is to use the masters program to replace references to
~ptolemy with $PTOLEMY.

Ptolemy simulations do not stop

In the SDF domain, it is possible to have multirate systems where a single iteration
fires a very large number of stars. This happens when the number of samples produced or con-
sumed by various connected stars in the system are mutually prime, or they have very large
least common multiples. If a simulation is taking an unreasonable amount of time, then look

A-20 Troubleshooting

U. C. Berkeley Department of EECS

for such mutually prime numbers (e.g, rates such as 53:97). Sometimes, in such circum-
stances, it can take a long time for the simulation to respond to pushing the “stop” button. It
should, however, eventually respond.

Multi-porthole galaxies fail

If a galaxy contains a input or output multi-porthole, and the icon of the galaxy is
namedFoo.input=2 , Foo.output=2 , etc., the galaxy will fail to compile. This is because
Ptolemy behaves as if anything ending ininput= X or output= X must be a star. Avoid using
names likeFoo.input=3 for galaxies.

Star is a compiled-in star and cannot be dynamically loaded

When you create a new universe (schematic), the domain assigned to the universe by
default is SDF. If you create stars in the palette that are from another domain and then try to
run the universe, you may get the error message

star ‘Poisson’ is a compiled-in star of domain DE. Cannot dynamically
load a compiled-in star class.

The solution is to change the domain of the universe by choosing edit-domain from the
pigi menu (the keyboard short cut is ‘d’).

A.5.4 Window system problems

Below we discuss various problems we’ve seen between Ptolemy and the X window
system.

Error: ld.so: libXext.so.4: not found

You have not installed the shared library needed by Ptolemy when it is used under
OpenWindows. See “Special considerations for use under OpenWindows” on page A-7.

pigi fails to start and gives a message about not finding fonts

The default fonts forvem are specified in the file$PTOLEMY/lib/pigiXRes9 , and
alsopigiXRes9.bw andpigiXRes9.cp . These files define a set of X window resources.
ThepigiXRes9.bw file is used ifpigi is started with the-bw option. The.pigiXRes9.cp
file is used inpigi is started with the-cp option. The definitions in these files can be overrid-
den by the user. For example, a user who prefers to use microscopic fonts could set the X
resource as follows:

Vem*font: *-times-medium-r-normal--*-120-*

If, however, the fonts defined in these files on not available on the system, then the Ptolemy
installer should change them in the files$PTOLEMY/lib/pigiXRes9* .

The fonts for Tk (and hence, the fonts for most of the dialog boxes) are specified in
$PTOLEMY/lib/tcl/ptkOptions.tcl . These may similarly require modifications at
some sites. In the worst case, if many standard fonts are not available, it may be necessary to
redefine the default fonts built into the Tk source code, and recompile Tk. You may find the
X11 programxlsfonts useful.

The Almagest A-21

Ptolemy Last updated: 11/6/97

Ptolemy startup window only has an OK button

If the Ptolemy startup window does not have the Mr. Ptolemy bitmap and the copyright
button, but instead the startup window is very small and has only an OK button, then you
probably have font problems, see the section above for details about fonts.

Emacs confuses .pl files with Prolog

The.pl extension used to define Ptolemy stars is the same extension used for the Pro-
log language. Some text editors, such as Emacs, have special modes for editing Prolog files.
These modes are inappropriate for editing Ptolemy files. You can add the following line to
your .emacs file in your home directory:

(setq auto-mode-alist (cons '("\\.pl$" . c++-mode) auto-mode-alist))

Problems with the colormap

Some applications, for example FrameMaker 5, allocate as many colors as they can
from the colormap when they start up. This may force applications that are started later (such
aspigi) to have access to a very restricted set of colors. If when you startpigi , the welcome
window appears in black and white, then you may have such a situation. If the situation is
worse, and there are not enough colors in the colormap forvem to start, then you may not even
get this far. One solution is simply to exit the offending application (e.g., FrameMaker or
Netscape), and restartpigi . A better solution is to configure the offending application to use
fewer slots in the colormap. We have found that for FrameMaker 5, the following X resources
(placed in your.Xdefaults file) usually solve the problem:

Maker.targetExactColors: 2
Maker.minimumExactColors: 0
Maker.targetColorCube: 4
Maker.minimumColorCube: 1

This still leaves FrameMaker with a very rich set of colors to use. You may need to replace the
2 or 4 with smaller numbers if you have other color-intensive applications running (such as
root window pictures of beaches in Tahiti).

The HP window system, VUE, may not display the correct colors when running
Ptolemy. If the Vem window appears with white text on a tan background, or if the Ptolemy
run window appears blue instead of tan, then VUE is getting the Ptolemy colors wrong.

The solution here is force VUE to use the regular Ptolemy X resources. Before starting
pigi , in an xterm, do the following line:
xrdb -load $PTOLEMY/.Xresources
Then runpigi .

The window manager crashes

The window managertwm sometimes crashes when you are running Ptolemy. We do
not know why. It seems to be an interaction with Tk. Our solution is to simply restart it. You
may wish to make sure your configuration does not log you out when the window manager
exits.

A-22 Troubleshooting

U. C. Berkeley Department of EECS

Problems with Sun Sparc5s with 24 bit TCX framebuffers

Some Sun Sparc5 machines have a 24 bit framebuffer called a TCX framebuffer. On
these machines,vem will fail to start with a message like:

A Serious X Error has occurred:
 BadValue (integer parameter out of range for operation)
 Request X_QueryColors (minor code 0)

Type ‘y’ to continue, ‘n’ to exit, ‘a’ to abort:

The problem here is that the root window is aTrueColor window, which causes
problems withvem. As a workaround, Arnaud LaPrevote suggests starting OpenWindows
with

openwin -server Xsun -dev /dev/fb defclass PseudoColor

It seems you can safely ignore the warning message about specified class or parameter
not available that occurs during startup. This bug does not occur on the 24 bit UltraSparc
framebuffer, so it seems that thevem bug is only tickled by the tcx frame buffer. For more
information, see http://ptolemy.eecs.berkeley.edu/ptolemy0.7/html/
sparc5tcx.html .

Problems with Mac X and Ptolemy

Some people have had difficulties running Ptolemy with Mac X. Tze-Wo Leung of
Bell Northern Research suggests the following setup for Mac X when using Ptolemy:

 • My hardware setup is: Mac IIci w/ 20 MBytes DRAM, 210 MB HD and 21” two-page
display/21gs Radius B&W monitor. The UNIX server is a HP 715 workstation.

 • The ‘Display:’ option in the ‘Edit Remote Command’ MUST be set to ‘(2) Color
Rootless’ mode.

 • Increasing the memory allocation of Mac X to 4 MBytes also helps. The memory size
can be increased by first exiting Mac X, then using the ‘Get Info’ option under the File
menu to pop-up the file info window where one can change the memory allocation.

 • In the control panel, the characteristics of the monitor are set to ‘Colors’ and ‘256’.

Problems with Exceed and Ptolemy

Under Hummingbird Exceed5.0, you may need to start up another X client before
startingpigi . If you get an error message like:

Error: UGetFullTechDir: cannot read .Xdefaults ‘vem.technology’:
UserMain: OpenPaletteInit() failed

then try starting up another X client such asxclock before starting uppigi .

Problems with XFree86

XFree86 3.1 has problems with thevem Edit-Label widget. If you see messages like
A Fatal Xt Toolkit Error has occurred:
Attempt to unmanage a child when parent is not Composite
Type ‘y’ to continue, ‘n’ to exit, ‘a’ to abort
(continuing may have unpredictable consequences):

then the solution is to upgrade to XFree86 3.2.

The Almagest A-23

Ptolemy Last updated: 11/6/97

A.5.5 Problems with the compiler

The first thing to try is compiling a ‘hello world’ program in C or C++. In C++, you
should probably try using the stream functions, below is a sample file:

#include <stream.h>
main() { cout << "Hello, Ptolemy.\n"; }

Try compiling the file withg++ -v and-H flags turned on.-v tells you what steps the
compiler is running, -H tells you what include files are being read in.

g++ -v -H hello.cc

Look at each step of the compilation, and pay particular attention to the assembler and
loader steps. You can use the-save-temps gcc option to save any temporary files created in
each step. Then, if necessary, you can try running each step by hand.

as vs. gas

gcc can use the native assembler or the GNU assembler. Often the GNU assembler is
installed as ‘as ’. Check your path to see which version you are getting.gcc can often be con-
figured at compiler build time to use the native assembler or the GNU assembler (gas), but
once the compiler is built, you are stuck with one or the other assemblers. The Ptolemy project
makes GNU binaries available. Most of the GNU binaries that we distribute use the native
assembler, that is, they don’t usegas . However, the hppa GNUgcc-2.7.2 binaries usegas .
We distribute agas binary with the hppa GNUgcc-2.7.2 binaries.

Collect

To pick up C++ constructors and destructors,g++ can use the native loader or a pro-
gram called ‘collect ’ (for more information, see Joe Buck’s g++ Frequently Asked Ques-
tions [FAQ] described below). We usually usecollect , because it works with the Pure Inc.
tools. The collector is usually located atgcc-lib/$PTARCH/COMPILER_VERSION/ld , e.g.
the gcc-2.7.2.2 sun4 collector might be at$PTOLEMY/gnu/sun4/lib/gcc-lib/sun4/
2.7.2.2/ld . Note thatg++ under Solaris2.x does not usecollect .

You can pass the collector arguments so that it will print out more information. Try

g++ -v -Wl,-debug hello.cc
or, if you are within Ptolemy:

make LINKER="g++ -v -Wl,-debug"

If you passcollect the -debug flag, you will get a lot of output. Part of the output will
include what binaries and paths collect is using. Below is part of the output thecollect -
debug generated by a working installation.

ld_file_name = /usr/bin/ld
c_file_name = /users/ptolemy/bin.sun4/gcc
nm_file_name = /usr/sww/bin/gnm
strip_file_name = /usr/tools/gnu/bin/gstrip
c_file = /usr/tmp/cca01064.c
o_file = /usr/tmp/cca01064.o
COLLECT_NAMES = /users/ptolemy/gnu/sun4/lib/gcc-lib/
sun4/2.7.2.2/ld
COLLECT_GCC_OPTIONS = -v -L../../lib.sun4 -static -L../../

A-24 Troubleshooting

U. C. Berkeley Department of EECS

octtools/lib.sun4 -L../../tcltk/tk.sun4/lib -L../../tcltk/
tcl.sun4/lib -L/usr/X11/lib -o pigiRpc
COLLECT_GCC = gcc

If you need to change the*_file_name values, try modifying your$path so that the new
program is in front of the program listed. For instance, if, undercsh , one wanted to use
/usr/local/bin/nm instead of/usr/sww/bin/gnm in nm_file_name above, one
would type:

set path=($PTOLEMY/bin.$PTARCH $PTOLEMY/bin /usr/local/bin
$path)

The collector will also respond to certain environment variables, see the source in the
gnu tar overlay at$PTOLEMY/src/gnu/src/gcc/collect2.c .

The collector creates a temporary file that has the constructors and destructors in it. To
get collect to save the temporary file, set the following environment variable:

setenv COLLECT_GCC_OPTIONS -save-temps

If the collector is getting an old version of GNUnm, then you could have problems.
Passing the collector the-debug flag might help here.

Error: Linker: no constructors in linked-in code!

If you see the above message while linking a new star, then you might be havingnm
problems. The above message seems to occur under Linux. Joe Buck says that the thing to do
is:

The incremental linker is searching the object file for a global symbol that has the form
of a constructor for a static or global object. It then calls that constructor. Ptolemy stars use
these constructors to “register” themselves on the list of known stars. You can then create
instances of your new star by using itsclone() method. If it can’t find the symbols, then the
new star’s code isn’t accessible.

The “nm” program is used to find the constructor symbols. Perhaps you have an older
version ofnm on your system? Find the.o file corresponding to your star and execute

/usr/bin/nm -g --no-cplus mystar.o | grep GLOBAL

(--no-cplus tells nm not to demangle the symbols). You should get some constructor
and destructor symbols.

Environment variables

Certain environment variables can control where the compiler looks for subprograms
and include files. These four variables are usually in the Ptolemy distribution so that users can
run the prebuilt compiler, even if the distribution is not at/users/ptolemy .

setenv GCC_EXEC_PREFIX $PTOLEMY/gnu/$PTARCH/lib/\
gcc-lib/$PTARCH/2.7.2.2/
setenv C_INCLUDE_PATH $PTOLEMY/gnu/$PTARCH/lib/gcc-lib/$PTARCH
setenv CPLUS_INCLUDE_PATH \
$PTOLEMY/gnu/$PTARCH/lib/g++-include:\
$PTOLEMY/gnu/$PTARCH/$PTARCH/include
setenv LIBRARY_PATH $PTOLEMY/gnu/$PTARCH/lib

The Almagest A-25

Ptolemy Last updated: 11/6/97

See thegcc info format file for a complete list of environment variables. Note that
GCC_EXEC_PREFIX must have a trailing slash, “/ ”. The above variables work for Solaris2.x,
if you are running SunOS4.1.3, see “Sun OS4 specific bugs” on page A-39. One symptom of
having improperly set environment variables is if you see messages about:

ptolemy/src/kernel/isa.h:44: conflicts with new declaration
with C linkage

Another symptom is if you have missingstrcmp() symbols at link time.

If, under gcc-2.7.2.2, you get warnings about ‘conflict with built in declaration’, and
your compiler is not installed where it was built, you may need to create a link in your gcc-lib.
We have also seen problems with functions that have variable numbers of arguments. If you
compile the file with the-v option, you can see what directoriesgcc is including. You could
try creating a link:

(cd $PTOLEMY/gnu/$PTARCH/lib/gcc-lib/$PTARCH/2.7.2.2; \
ln -s .. $PTARCH)

Using trace

The SunOS4.1trace command can be invaluable in determining what a program is
doing at run time. If you compile withgcc -v -save-temps then you can try running
trace on the various steps, and see each system call. Unfortunately, the filenames are trun-
cated, but often this is enough to see what is going on. Solaris has a similartruss command.

A.5.6 Problems compiling files

There are several ways to handle problems while compiling files. These problems are
often caused by strange interactions between.h files, and they occur while compiling a par-
ticular file or a set of files. Note that these problems are different than problems that occur dur-
ing link time, which we discuss in “Missing symbols while linking pigiRpc” on page A-29.

Using cpp to diagnose .h file problems

If you are having problems with include files, try modifying a hello world program
(see above) to include those files. Note that you could be getting unexpected substitutions
from the C preprocessorcpp , so looking at thecpp output can be useful in solving compiler
installations problems and include file problems

The gcc-E and-P options are very useful in wading through include file problems.
-E stops compilation after the C preprocessor runs, and outputs the resulting file.-P strips off
the line numbers from the output.

Try using the-E option, and look at the output file. Sometimes the problem will be
obvious. Note that if your compile arguments include-o filename.o , thenfilename.o
will havecpp text output, not the usual object file. Note further that in some compilers, the-c
option (create a.o file) will override the-E option. If -c does override-E , you will have to
grab the output of the make command and place it in a temporary file, say/tmp/doit , edit
/tmp/doit and remove the-c option and then typesh /tmp/doit . If -c does not over-
ride -E , and you are within Ptolemy, you can try using theOPTIMIZER makefile flag to pass
arguments to the compile. For instance:

A-26 Troubleshooting

U. C. Berkeley Department of EECS

make OPTIMIZER=-E Linker.o > Linker.e

Another approach is to runcpp and then re-run the compiler on thecpp output. In
gcc, the -P option strips out thecpp #line comments. You can use-E -P to generate a
new file that has all the cpp substitutions in it, and then try compiling the new file:

make OPTIMIZER=”-E -P” Linker.o > tst.cc

Edit tst.cc and remove the first line, which will have the gcc command in it. Make
tst.o :

make OPTIMIZER=”-v -H” tst.o

Using thegcc arguments-E -dM will tell you what symbols are defined bycpp at the
end of the compile. See thegcc man page or thegcc info format file for more information.

Narrowing the problem down.

If you are having strange problems compiling one file, you might want to try to find
the smallest file that causes the problem. This method can take time, but it is sometimes the
only way to find a solution. One way is to wrap code in#ifdef NEVER ... #endif and nar-
row the bug down to one function. Changing the#include declarations at the top, and fol-
lowing the include file change can also help here.

Using c++filt to demangle symbols

When a C++ file is compiled, the symbol names found inside a.o file or a library file
have been specially processed by the compiler. This special processing is called mangling.
The symbol names may look unusual, for example,makeNew__10KnownBlockPCcT1 is the
mangled version ofKnownBlock::makeNew(char const *, char const *) . You may
find it useful to be able to convert the mangled symbol names back to the human readable C++
symbol name. Under gcc-2.7.2.2, you can use thec++filt program to do the conversion:

cxh@brahe 9% echo “makeNew__10KnownBlockPCcT1” | c++filt
KnownBlock::makeNew(char const *, char const *)
cxh@brahe 10%

On platforms where we distribute the GNU compiler,c++filt can be found at
$PTOLEMY/bin.$PTARCH/c++filt .

Sources of information for compiler problems

$PTOLEMY/gnu/common/man/man1/gcc.1 contains the gcc man page. This file is
shipped with the prebuilt GNU binaries. You can try placing$PTOLEMY/gnu/common/man
in your MANPATH environment variable:

setenv MANPATH $PTOLEMY/gnu/common/man:$MANPATH

$PTOLEMY/gnu/common/info/gcc* contains the GNU Info format documenta-
tion. Use Emacs (M-x info) or a program such astkinfo to view the info pages (tkinfo is
available via anonymous FTP fromptolemy.eecs.berkeley.edu in pub/misc).

$PTOLEMY/src/gnu/g++FAQ.txt is Joe Buck’s g++ Frequently Asked Questions
document in text format, (g++FAQ and other FAQs are available via anonymous FTP from
rtfm.mit.edu in pub/usenet/news.answers).

The following FAQs might also help: c.faq hpux.faq solaris2.faq solaris2_porting.faq

The Almagest A-27

Ptolemy Last updated: 11/6/97

sun_sysadmin.faq.

A.5.7 Generated code in CGC fails to compile

The Makefile_C target uses the Ptolemy makefile structure to determine platform
dependencies in the C language Code Generation (CGC) domain compile command. If you
are having problems with platform dependencies, you may want to use theMakefile_C tar-
get. Some demos, such as the CGCcommandLine demo use theDefault-CGC target. The
Default-CGC target has the compiler name set as a target parameter, which is usually either
gcc or cc . Unfortunately, not all machines are shipped with a workingcc binary and not all
machines havegcc , so we cannot choose a default that will work in all circumstances. If you
do not have the compiler that is listed in the target parameter, you can do any of the following:

 • Type a ‘T’ while in the facet to bring up the Target Parameters window and change the
value ofcompilerCommand to a compiler that you have.

 • Create a link in$PTOLEMY/bin.$PTARCH for the compiler you don’t have. For
example, if you don’t havegcc , and yourcc is at/usr/ccs/bin/cc , you could do

cd $PTOLEMY/bin.$PTARCH; ln -s /usr/ccs/bin/cc gcc

 • Use theMakefile_C target instead of theDefault-CGC target. (Some demos still
use theDefault-CGC target so that we can continue to test that target).

The targets in CGC are configured by default with reasonable guesses about the com-
pile and link options that are required to compile the code. However, the actual options
required depend on your system configuration. For instance, your defaultcc compiler may not
have been configured to automatically find the X11 include files. You might, therefore, get an
error message theXlib.h cannot be found. You should find out where on your system
Xlib.h is installed, use the ‘T edit-target’ command to add a compile option of the form-
Lpath_name wherepath_name is the full path of the directory containing the file. ‘T edit-Tar-
get’ is on the shift-middle-button menu.

Certain compilers will change their behavior depending on the values of certain envi-
ronment variables:

 • The hppacc compiler will use theCCOPTS environment variable. If your X11 libraries
were at/usr/sww/X11R5/lib , then one could exitpigi , set the variable
setenv CCOPTS -L/usr/sww/X11R5/lib and restartpigi . Then when you com-
pile CGC demos with hppacc , you should be able to find the proper libraries. See the
hppacc man page for more information. Note that under HPUX10.x, the bundled C
compiler is not ANSI compliant so it may fail to compile some CGC Universes.

 • GNUgcc will also use certain environment variables. TheLIBRARY_PATH variable
may help:
setenv LIBRARY_PATH /usr/sww/X11R5/lib
See thegcc documentation for more information.

A.5.8 Ptolemy will not recompile

If Ptolemy fails to recompile, you may be using a substantially different version of the
GNU compiler. The system is most likely to build if you use the same tools that we used orig-

A-28 Troubleshooting

U. C. Berkeley Department of EECS

inally. The GNU tools we used are supplied with the Ptolemy distribution. We discuss com-
mon Ptolemy compilation problems below. For further information about recompiling
Ptolemy, see “Rebuilding Ptolemy From Source” on page A-10 and see Volume 3 of the
Ptolemy Almagest, “The Ptolemy Programmer’s Manual”.

Messages about “unexpected end of line seen” while running make

If you are running a version of make other than GNU make, you may see messages
like:

make: Fatal error in reader: ../../mk/stars.mk, line 52: Unex-
pected end of line seen

Ptolemy contains GNU make extensions, you must run GNU make to build Ptolemy, even if
you are not using the GNU compiler. GNU make binaries are available via anonymous FTP in
ptolemy.eecs.berkeley.edu . The Ptolemy binary tar files for hppa, sol2 and sun4 con-
tain GNU make binaries. You can get just the GNU make binary inpub/gnu/$PTARCH/
make.gz , wherePTARCH is one of hppa, sol2 or sun4, or you can get the GNU make binary,
along with the GNU compiler and other binaries inpub/gnu/ptolemy0.7 .

Apparently, older versions of GNU make, such as 3.71, can fail with a message like:
../../mk/stars.mk:113: *** commands commence before first target.
Stop.

If you get such a message, typemake -v to see what version of GNU make you are running.

Can I use my own version of Tcl/Tk?

Ptolemy 0.7 usesitcl2.2 , which is an extension to Tcl/Tk. If you haveitcl2.2
already installed, you may use your installed version. See “Ptolemy and Tcl/Tk” on page A-
13. Tycho will not work withitcl2.1 , you must useitcl2.2 . Tycho is necessary for view-
ing the contents of stars and other important features.

Can I use my own version of gcc and libg++?

Ptolemy 0.7 usesgcc-2.7.2.2 andlibg++-2.7.2 , see “Dynamic linking fails” on
page A-30 for information about Gnu versions and Dynamic linking.

To determine what version of gcc you are running, typegcc -v . To determine what
version of libg++ you are running look at the libg++ filename.

cxh@kahn 32% gcc -v
Reading specs from /users/ptolemy/gnu/sol2.5/lib/gcc-lib/
sparc-sun-solaris2.5.1/2.7.2.2/specs
gcc version 2.7.2.2
cxh@kahn 33% ls /users/ptolemy/gnu/sol2.5/lib/libg++.so*
/users/ptolemy/gnu/sol2.5/lib/libg++.so@
/users/ptolemy/gnu/sol2.5/lib/libg++.so.2.7.2*

Ptolemy is configured to use shared library versions oflibg++ and libstdc++ if
they are supported on your platform. To compile Ptolemy from scratch, you should be sure
that you have these libraries. Under Solaris, the libraries are namedlibg++.so and lib-
stdc++.so . Under HPUX10.x, these libraries are namedlibg++.sl andlibstdc++.sl .

The Almagest A-29

Ptolemy Last updated: 11/6/97

A common problem is that the proper version of gcc is installed, but only the static libraries
were built.

Under Solaris, you might see error messages like:
ld: fatal: relocations remain against allocatable but non-writable
The fix is to configuregcc andlibg++ with --enable-shared and build the shared librar-
ies or to download the prebuilt Gnu binaries. Seeftp://ptolemy.eecs.berkeley.edu/
pub/ptolemy/ptolemy0.7/html/g++shared.txt for more information.

Can’t find genStarList or genStarTable during recompilation

The solution is to include$PTOLEMY/bin in your path. We don’t include certain files
that are derived from other files. In the star directories,.cc and.h files are derived from.pl
files, and thedomainnamestars.cc file is generated from$PTOLEMY/bin/genStarTable , .

“CGCMakefileTarget.h: No such file or directory” while linking pigiRpc

If you are in $PTOLEMY/obj.$PTARCH/pigiRpc, and you typemake, and
$PTOLEMY/obj.$PTARCH/domains/cgc/targets/main/CGCMakefileTarget.o
does not exist, thenmake will try to create it. Unfortunately,make does not have the include
files right, soCGCMakefileTarget.h is not found. There is nothing particularly special
aboutCGCMakefileTarget.o. It is just first in the list of files on whichpigiRpc depends.

The workaround is to runmake from $PTOLEMY, rather than $PTOLEMY/
obj.$PTARCH.pigiRpc .

Eventually, we would like to fix this so that it is not necessary to build in other directo-
ries before building in$PTOLEMY/obj.$PTARCH/pigiRpc . The solution here would be to
move more.o files intolib.$PTARCH .

Missing symbols while linking pigiRpc

On the sun4 with libg++-2.5.2, if you compile pigiRpc with the g++-O option, then
you may have missing symbols while linkingpigiRpc . The workaround is to upgrade to a
newer version of libg++. If you are using prebuilt GNU binaries, then you may need to set
some environment variables (see “Environment variables” on page A-24).

If, at link time, you see messages about undefined symbols, and the undefined symbols
begin with_vt , then you probably have compiler version incompatibilities. In earlier releases
of libg++ , we have seen cases where the symbolvt$7istream$3ios is undefined. This
symbol should be present inlibg++.a , but it seems that if the compiler is not built with-O2 ,
then this symbol will not be present inlibg++.a . The workaround is to rebuild the library by
hand, with something like:

cd obj.$PTARCH/gnu

make CC=/users/ptolemy/gnu/sun4/bin/gcc CXX=/users/ptolemy/
gnu/sun4/bin/g++ CFLAGS=”-g -O2” CXXFLAGS=”-g -O2”

Note that you can find out what files have the undefined symbols by using the Unixnm
command. For example on Suns, the commandnm -o $PTOLEMY/lib.sun4/* | grep
MySymbol will find all the files that have symbols that contain the stringMySymbol . See

A-30 Troubleshooting

U. C. Berkeley Department of EECS

“Using c++filt to demangle symbols” on page A-26 for information about how to interpret
symbol names in a library.

If, at link time, you see messages about undefinedifstream symbols inlibp-
tolemy.a , then the problem could be that you are usinggcc-2.7.2 , but linking against
gcc-2.7.2.2 libraries. Brian Evans pointed out that fix is to remove thelibg++ andlib-
stdc++ libraries in$PTOLEMY/gnu/$PTARCH/lib and create symbolic links to your local
Gnu installation.

A.5.9 Dynamic linking fails

Ptolemy has the ability to load stars dynamically during run time. The stars are com-
piled into.o files and loaded with the Unix loader or with thedlopen() function. Dynamic
linking is tricky and dependent on the Unix loader. There are several reasons dynamic linking
can fail:

 • If you are upgrading from an earlier release be sure to remove all the .o files in the
directory where the source files for you star is located.

 • If you are using prebuilt Ptolemy binaries, be sure that you are using the prebuilt GNU
compiler that is also available with the Ptolemy binaries (Ptolemy0.7 was built with
gcc-2.7.2.2 /libg++-2.7.2) The alternative is to rebuild Ptolemy with your local
GNU compiler, but be aware that versions earlier thangcc-2.5.6 and libg++-
2.5.3 have bugs.gcc-2.4.x and libg++-2.4.x and earlier are known to have
serious bugs, so you may want to upgrade. For more information, see “Gnu Installa-
tion” on page A-7.

 • If you are using prebuilt Ptolemy binaries and have the prebuilt GNU compiler, be sure
that either the Ptolemy distribution is available as/users/ptolemy , or you are set-
ting the GNU environment variables in$PTOLEMY/bin/g++-setup . Again, see the
GNU Installation section.

 • If, at link time, you see messages about undefined symbols, then see the section above,
“Missing symbols while linking pigiRpc”.

 • Dynamic linking may not work on machines using a different release of the operating
system than that used to build the Ptolemy binaries. The solution is to rebuild Ptolemy
from source.

 • If you are having problems compiling the star from Ptolemy, try running the compile
by hand from the shell. Unfortunately, part of the compile command is not always vis-
ible in the vem window. To see the all of the compile command, try running a fewvem
commands, such as ‘i’ (look-inside) to flush the vem buffer. Once you have produced a
.o file, you can load the.o file into Ptolemy with the load-star command.

 • If you cannot compile your star from the shell, try compiling a simple c++ program to
verify that the compiler is working. Place the code below in a file calledhello.cc
and if you are using the GNU compiler, try compiling it withg++ -v . The-v option
will show the compiler steps.

#include <stream.h>
main(){ cout << "Hello, Ptolemy.\n";}

The Almagest A-31

Ptolemy Last updated: 11/6/97

 • If you are having problems with undefined symbols at load time, try compiling your
star with the same level of optimization as the binary was built with. We shippigiRpc
and ptcl binaries that have been compiled with-O2 , so you may want to compile
your star with-O2 .

 • If you are running under HPUX9.x, and you see messages like:

collect2: ld returned 1 exit status
/bin/ld: Invalid loader fixup needed

then you probably need to create amake.template file to load your stars. The prob-
lem here is that Ptolemy attempts to compile your star with default arguments, how-
ever, since HPUX9.x usesshl_load() style linking, you need special compiler
arguments, so you need a makefile See$PTOLEMY/mk/userstars.mk for more
information.

You may also need to upgrade your version of the GNU assembler namedgas . Ver-
sion 2.5.2 has been reported to have the problem, while version 2.6 seems to work fine.
Note thatgas is often namedas . If you compile your star with theg++ -v option,
then you will see which assembler the compiler is using. You can then call the assem-
bler with the--version flag to see what version the assembler is.

A.5.10 Dynamic linking and makefiles

You may find it easier to use amakefile to build .o files for incremental linking. As
part of the incremental linking process,pigi checks for the existence of aMakefile or
makefile in the directory where the star resides. If aMakefile or makefile exists, then
make XXXStarName.o is run, whereXXXStarName.o is the name of the.o file to be incre-
mentally loaded.

Another approach is to create amake.template file in the directory that contains
rules to convert the.pl file to a.o file. If the make.template file includes $PTOLEMY/
mk/userstars.mk , then most of the configuration is done. For example, to include a star
SDFSensorExcitation , with optimization set at-O2 , themake.template would contain:
ROOT = $(PTOLEMY)
VPATH = .
OPTIMIZATION=-O2
include $(ROOT)/mk/config-$(PTARCH).mk
INCL = -I$(ROOT)/src/domains/sdf/kernel -I$(KERNDIR)
PL_SRCS = SDFSensorExcitation.pl
DOMAIN = SDF
include $(ROOT)/mk/userstars.mk

Then, from a shell, the command to execute would bemake -f make.template depend
and then, from withinpigi , it would be possible to link in the star. See the contents ofuser-
stars.mk for complete instructions.

If you have a star that requires multiple.o files, Tom Parks points out thatld -r
might help. For example ifSDFWirelessChannel.o uses functions fromWireless.o , the

A-32 Troubleshooting

U. C. Berkeley Department of EECS

following commands might help:
ld -r SDFWirelessChannel.o Wireless.o
mv a.out SDFWirelessChannel.o

To load in multiple stars, you may find theptcl multilink command useful.

A.5.11 Path and/or environment variables not set in “debug” pigi

When running Ptolemy’s interactive graphical interface with the debug option

pigi -debug

the path may not be set correctly, or environment variables are not at their normal val-
ues. This is caused by the GNU debugger,gdb , overwriting values set by thepigi start-up
script. From thegdb manual:

Warning: GDB runs your program using the shell indicated by your
`SHELL’ environment variable if it exists (or `/bin/sh’ if not). If
your `SHELL’ variable names a shell that runs an initialization file-
-such as `.cshrc’ for C-shell, or `.bashrc’ for BASH--any variables
you set in that file affect your program. You may wish to move setting
of environment variables to files that are only run when you sign on,
such as `.login’ or `.profile’.

If your .cshrc file specifies a value for a variable, it will override anything in the pigi
start-up script. If this is the case, perhaps setting theSHELL environment variable to/bin/sh
before firing off the debugger will fix the problem.

1.5.12 DE Performance Issues

DE Performance can be an issue with large, long-running universes. Below we discuss
a few potential solutions.

Tom Lane pointed out that the Calendar Queue scheduler can be slower than the old
DE scheduler if your time stamps span a wide range. This is because the Calendar Queue
Scheduler tries to set up too many bins spanning the range. The old DE scheduler may work
faster, as it keeps a queue of current-scheduled events, which is often fairly short.

Tom Lane also pointed out:

If you have both a wide range of timestamps and a lot of future events in the
queue at once, you might find it would help to improve thePriorityQueue
code to provide a genuine priority queue (i.e., a heap, with O(log N) perfor-
mance) rather than a simple list like it is now. But you ought to profile first to
see if that’s really a time sink.

Also, you have to keep in mind that the overhead for selecting a next event and
firing a star is not trivial. It helps if your stars do a reasonable amount of useful
work per firing.

A few other points that may help you:

DE simulation can have certain inherently high cost, so using SDF or DE with SDF
functionality inside wormholes can greatly improve performance.

 • If you are running a long simulation, you should be sure that your machine is not pag-
ing or worse yet swapping, you should have plenty of memory. Usually 64Mb is

The Almagest A-33

Ptolemy Last updated: 11/6/97

enough, though 128Mb can help. Depending on what platform you are on, you may be
able to use the programtop (ftp://eecs.nwu.edu/pub/top). You might also find it useful
to useiostat to see if you are paging or swapping.

 • One way to gain a slight amount of speed is to avoid the GUI interface entirely by
using ptcl , which does not have Tk or Higher Order Function (HOF) stars. See
“Some hints on advanced uses of ptcl with pigi” on page 3-19 for details.

A.6 Known bugs
There are a number of known bugs that we have not had a chance to fix. You may find

useful information about architecture dependencies in$PTOLEMY/mk/config-
$PTARCH.mk for the particular architecture you are running under.

A.6.1 Bugs in vem

 • There is no interlock between commands started by Vem and commands started by
pigiRpc. If either process requests the other to perform some operation while the other
process is trying to request the first one to do something, they end up in a “deadly
embrace”. The usual result is that pigiRpc exits with a complaint about a protocol
error. (Fortunately, Vem continues to run, so you can at least save your schematics
before restarting.) Examples of the problem include trying to issue edit-parameters or
look-inside commands (which are invoked in a Vem window but require cooperation
from pigiRpc) while pigiRpc is compiling a facet or running a simulation with graphi-
cal animation turned on (which require Vem to react to requests from pigiRpc). The
simplest rule that will keep you out of trouble is “don’t do anything in Vem windows
while pigiRpc is busy”.

 • Deleting wires that are too long (i.e., end of wire is past the terminal, but near it) can
result invem dumping core.

 • Labels that end with a carriage return are neither displayed nor printed correctly.

 • Editing icons stimulates a memory leak invem that can make the process grow quite
big. After editing a few dozen icons, you may wish to exitvem and restart.

 • The “layer” command only works when editing icons, not when editing schematics.

 • The “copy-objects” command will copy from one window to another only when edit-
ing icons, not when editing schematics.

 • vem or pigiRpc may fail to start up on 4 bit (16 color) screens. At UC Berkeley, we
use 8 bit and 24 bit screens. Black and white (1 bit) support in vem is a little weak. If
you are on a black and white screen, you may need to modify$PTOLEMY/lib/
pigiXRes9 . (Note that$PTOLEMY/lib/pigiXRes9.bw is read when the-bw pigi
option is used to create black and white screen dumps from a color monitor.
pigiXRes9.bw has very little to do with running on a black and white screen).

 • If theVEMBINARY environment variable is set, thenbin/pigiEnv.csh will use the
contents of that variable as thevem binary. However, the binary must be namedvem,
or there will be minor problems with X resources, such as small fonts and incorrect
snap. Most users will never use theVEMBINARY environment variable. It is primarily

A-34 Troubleshooting

U. C. Berkeley Department of EECS

used to debugvem.

 • If your X server runs out of colors,vem may crash. One workaround is to not run color
hogs likeNetscape , or to limit the number of colorsNetscape can use.

 • Bug fixes tovem now mean thatvem is more picky about text label heights. Currently,
the range for text label heights is 0 to 80. If you select text and then use E, to edit the
label, you may see an error if your text height is greater than 80. One workaround is to
delete the text and reenter it with a height that is within the proper range. Another
workaround is to use an oldvem binary to edit the height and set it to within the range.

 • If you re-read a facet that has an open run window, you won’t be able to dismiss the
run window. The workaround is to open a new run window.

A.6.2 Bugs in pigi

 • It is possible to make more than one icon to represent a given star. For instance, the
icon And andAnd.input=2 refer to the same star, but the former can have any num-
ber of inputs, while the latter has exactly two inputs. As of this writing, this facility
does not work for galaxies. You should create only one icon for each galaxy.

 • $PTOLEMY/bin/pigi is a link to$PTOLEMY/bin/pigiEnv.csh which may add to
your path. Under certain circumstances, you may get the message ‘Warning: ridicu-
lously long PATH truncated’. To work around this problem, try shortening your path.
One trick is to use shorter pathnames in your path, perhaps using symbolic links.

 • If your X server runs out of colors,pigi may crash. One workaround is to not run
color hogs likeNetscape , or to limit the number of colorsNetscape can use.

 • The compile-SDF target fails if a galaxy has incrementally linked in stars. The prob-
lem is that the.h file for the incrementally linked in star cannot be found by compile-
SDF. As a workaround try editing the makefile in~/PTOLEMY_SYSTEMS and adding
the directory where the incrementally linked stars are. Then build the binary by hand.

 • The compile-SDF target cannot handle star parameters that use the Tcl Interpreter to
evaluate Tcl commands.

 • On some machines, the SDF Matlab demonstrations will appear to hang Ptolemy. This
is a known bug in the Matlab external interface library that requires that the Matlab
process be attached to a terminal. There are two workarounds: (1) run Ptolemy in the
foreground, or (2) manually control the Ptolemy interface to Matlab by using themat-
lab command inptcl (see 3.9.10 on page 3-16) via the Ptolemy console. In both
workarounds, the Matlab process will be attached to a terminal.

 • Ptolemy0.7 will not work with Matlab5 or Mathematica3. We are working on upgrad-
ing the interface. In the short term, you must use Matlab4 or Mathematica2.2.

 • The Networks Of Workstations active messages (NOWam) CGC target is slow, but it
does run under Solaris. However these demos will not work in an environment that
requires Kerberos forrsh -ing jobs.

 • To use the Dynamic Dataflow Code Generation (cgddf) CGC target, a file must be
recompiled. The changes toparScheduler.cc are a fairly radical shift in how

The Almagest A-35

Ptolemy Last updated: 11/6/97

Ptolemy handles disconnected graphs. These changes could break other parallel sched-
ulers. The script$PTOLEMY/bin/mkcgddf will build a pigiRpc.ptrim.debug
binary that contains thecgddf target. This script is basically untested, but should
work.

 • Mixed CGC/VHDL/TclTk demos leaveptvhdlsim running after exiting.

 • Tom Lane pointed out the following problem in 0.7:

An initializable delay attached to any multiporthole output will fail. For exam-
ple “Fork -> Printer”, if you use the double-arrowed form of the Fork icon and
put an initializable delay on the arc.

A.6.3 Bugs in tycho

Development oftycho is ongoing, so the version included in Ptolemy 0.7 is by no
means the final version. In particular, there are many more features to be implemented.

 • If you start up tycho with Ptolemy in the background (i.e,tycho -ptrim &), then
exiting from the Matlab console may hang. The workaround is to place yourtycho
process into the foreground. This is a known bug with Matlab.

 • See$PTOLEMY/tycho/doc/bugs.html for a more complete list of Tycho bugs.

A.6.4 Code generation bugs

 • The CGC multiratefilterbank and CGCchaoticBits demos bring up messages
about initializable delays.

 • If you try to run the CGC demos that generate sound, and you do not have a properly
configured audio device, or you do not have write permission to/dev/audio , then
you get a cryptic and uninformative error message, rather than something useful. The
CGC tremolo demo will probably only work on a Sun SPARCstation running
SunOS4.1.3 or Solaris2.x. The CGCalive demo will only work on an SGI.

 • The use of initializable delays and variable delays in the code generation domains may
result in incorrect code being generated. Variable delays are delays which depend upon
the value of a galaxy or universe parameter. The workaround is to use regular delays of
a constant value (i.e. “4”) in the code generation domains. Note that initializable and
variable delays work fine in the simulation domains.

For example, theCGC:multirate:filterbank demo produces initializable delay
warnings. The output from theCGC:multirate:filterbank demo is different than
the output from theSDF:multirate:filterbank demo in that the original and
reconstructed signals don’t overlap as much in the CGC version.

A.6.5 Bugs in pxgraph

 • If pxgraph is given exceptional numeric input, such as the IEEE floating pointInf ,
-Inf , or NaN, then it displays a blank window only.

 • If pxgraph is given an empty file to plot, all it does is send a message “problems with
input data” to the standard output.

A-36 Troubleshooting

U. C. Berkeley Department of EECS

 • There is no way to produce hardcopy without runningpxgraph interactively.

 • Specifying the colors for data sets using X resources does not work.

A.6.6 HPPA specific bugs

 • If you are rebuilding Ptolemy on the hppa, you must have X11 installed. Apparently,
HP ships machines without most of the X11 include files. The prebuilt binaries also
use libraries from X11R6. Seeftp://ptolemy.eecs.berkeley.edu/pub/
ptolemy/contrib/hpux .

 • If you are building the GNU tools under HPUX10.20, you will also need GNU sed,
which is downloadable from the Ptolemy ftp site inftp://ptolemy.eecs.berke-
ley.edu/pub/gnu/hppa and you may need to patch HPUX. See$PTOLEMY/src/
gnu/README for details.

 • If you are using the prebuilt binaries under HPUX10.20, then you will need to install
X11R6 shared libraries. Seeftp://ptolemy.eecs.berkeley.edu/pub/
ptolemy/ptolemy0.7/README.hpux

 • The CGC demoanimatedLMS demo dumps core upon start-up.

 • On the hppa, under the HP C++ compiler,Xhistogram may have rounding problems.

 • On the hppa, the CGCanimatedLMS demo requires editing of Target Parameters to
compile.

 • On the hppa, the CGCanimatedLMS demo gets an Arithmetic Exception and core
dumps.

 • On the hppa, the SDFanimatedLMS demo generates a “non-numeric value ”
error in Tcl if the step size is so large that the system is made to go unstable.

 • Compilation under older versions ofhppa.cfront may fail. The problem seems to
be with the+A ld command line argument. You must use the+A ld argument when
compilingpigiRpc andptcl , or incremental linking of new stars will fail. However,
use of the+A argument produces the warning:

CC: error: could not find __head symbol. You must use CC to
link. If your main is not in C++, a call to _main() is
required.(740)

Even if this warning is printed, a viable binary is still produced. The+A ld argument
is not necessary for other binaries, such asvem andpxgraph .

 • If you are running an older version of the HP Cfront compiler, you may need to add
-DPOSTFIX_OPT= to your c++ command line. Seeconfig-hppa.cfront.mk .

 • If you are having problems incrementally linking in stars, and you are getting mes-
sages like:
/bin/ld: (Warning) Inter-quadrant branch in XXX
whereXXX is the name of the.o file you are trying to link in,
then you may need to be compiling your stars with the proper level of optimization.

The Almagest A-37

Ptolemy Last updated: 11/6/97

See “Dynamic linking and makefiles” on page A-31 for more information.

 • If you have problems withld under HPUX, you should try patching your operating
system with a patch from HP. Tryhttp://europe-support.external.hp.com
if you are in Europe,http://us-support.external.hp.com if you are any-
where else.

 • If, under HPUX9.x, you get a message like:
ld: fatal: relocations remain against allocatable but non-writ-
able sections
Then you may need to apply a patch told .

 • To incrementally link new stars under HPUX9.x, you will probably need to supply a
make.template file. See “Dynamic linking fails” on page A-30.

 • Themultilink command seems to triggerInter-quadrant branch messages ,
and then hang pigi. We are not sure why.

 • HPUX10.x will build apigiRpc with the Process Network (PN) domain, but the
event loop is broken. The PN domain is not part of the default hppa build, so this prob-
lem will not affect most users.

 • If you are under HPUX10, then building the PN domain requires Distributed Comput-
ing Environment (DCE) threads. You will need to install the DCE development set of
the OS CDs. If you don’t have a/usr/include/pthread.h , then you probably
don’t have the DCE development set installed.

A.6.7 IBM AIX specific bugs

Xavier Warzee suggest the following for gcc and AIX.

To generategcc-2.7.2 under AIX3.2.5 withcc , you need the PTF U436313. The
PTF U432238 is suggested in the README.RS6000 file from thegcc-2.7.2 distribution,
but this PTF is superseded by the PTF U436313. This PTF allows you to upgrade the cc IBM
compiler from the release 1.3.0.0 (delivered with AIX 3.2.5) to the release 1.3.0.33 which
compiles gcc-2.3.6.

A.6.8 Silicon Graphics IRIX5 specific bugs

The Silicon Graphics port is not one of our main ports, so there are several serious
bugs:

 • Linking of a full sizepigiRpc binary can fail with a ‘GOT Overflow’ message. The
problem is thatpigiRpc has too many symbols. The Irixdso man page suggests
using shared libraries, butgcc-2.7.2 may not support C++ shared libraries under
Irix. The workaround is to runptrimRpc rather thanpigiRpc .

 • Installation of thexv man pages will fail. Irix does not havenroff andtbl .

 • To build the CGC demos, you may need to exitpigi , set the environment variable
SGI_CC to -cckr :
setenv SGI_CC -cckr
and restartpigi . See the sgicc man page for more information.

A-38 Troubleshooting

U. C. Berkeley Department of EECS

 • sdf:image:motionCompensation demo has some odd looking blocks in the
McompOutput.1 image. Some of the images from theirix5 run of this demo do not
look like images in the sun4 version of this demo.

A.6.9 Linux specific bugs

We do not have access to a Linux system onsite at UC Berkeley, so our support of
Linux is very limited. If you are having problems with prebuilt Linux binaries, you may want
to try rebuilding Ptolemy from scratch. You may also want to check the ptolemy-hackers
archives, located at the bottom of the Ptolemy home page athttp://ptolemy.eecs.ber-
keley.edu .

 • Linux uses GNUar , which seems to have problems if it is run on two files whose
names are not unique in the first 13 characters. We have renamed a number of stars to
workaround this problem. Themake checkjunk command will report the names of
files that are not unique in the first 13 characters. You should only have problems with
this if you are creating stars of your own and placing them in libraries.

 • If you are running the Linux version on a standalone machine, then please refer to sec-
tion “Mr. Ptolemy window does not come up” on page A-16.

 • Richard Nicholls <R.Nicholls@mmu.ac.uk> reports that theld with GNU binutils
2.5.2 does not support dynamic loading (See theTODO file distributed with the GNU
binutils source). One solution is to use an older version of GNUld . Another solu-
tion would be to usedlopen() style incremental linking, see$PTOLEMY/src/ker-
nel/Linker.sysdep.h .

A.6.10 Sun Solaris 2.4 specific bugs

 • If you are building gcc under Solaris, you must have/bin in your path before/usr/
ucb see$PTOLEMY/src/gnu/README .

 • If, while linking, you get a message like
unable to locate archive symbol table: Format error: archive
fmag
then you have probably run out of swap space. See the Solarisswap command for how
to add more swap withmkfile .

 • Under Solaris 2.5 with SunSoft CC 4.1,src/kernel/MatrixParticle.cc fails to
compile. The fix for this may require substantial reimplementation of the Ptolemy
Matrix class, so the changes did not make it into the 0.7 release.

 • The Utah Raster Toolkit does not come with a Solaris2.4 configuration file. We are
running SunOS binaries in-house. See “Other useful software packages” on page A-14
for more information.

 • The GNU make binary built for Solaris2.5 will not work with Solaris2.4. If you try to
run the Solaris2.5 GNU make binary under Solaris2.4, you will get an error message
like:
ld.so.1: make: fatal: relocation error: symbol not found: set-
linebuf: referenced in make

The Almagest A-39

Ptolemy Last updated: 11/6/97

A.6.11 Sun OS4 specific bugs

 • If you are using the prebuilt GNU binaries inpt-0.7.gnu.sun4.tar.gz , then you
may have problems if your Ptolemy distribution is not at /users/ptolemy, and you try
setting the GNU environment variables with the$PTOLEMY/bin/g++-setup
script . We are working towards a solution, but you might find the following vari-
ables will work for you:
unsetenv GCC_EXEC_PREFIX
unsetenv C_INCLUDE_PATH
unsetenv CPLUS_INCLUDE_PATH
setenv LIBRARY_PATH $PTOLEMY/gnu/$PTARCH/lib
setenv COMPILER_PATH $PTOLEMY/gnu/$PTARCH/lib/gcc-lib/$PTARCH/
2.7.2.2
setenv GCC_INCLUDE_DIR $PTOLEMY/gnu/$PTARCH/lib/gcc-lib
We are working on a solution for this.

 • Under SunOS4.x, we use the older BSDld style incremental linking because of prob-
lems with g++ shared libraries. This means that the SunOS4.x binaries must be linked
statically instead of dynamically, so the binaries are much larger than on platforms that
usedlopen() style incremental linking. It also means that only the symbols that are
used by stars present at link time are actually present in the binary. This can be a prob-
lem if your incrementally linked star uses a symbol fromlibg++.a that is not used by
a star present at link time. See Appendix D, “Shared Libraries” for more information.

A.6.12 DEC Alpha specific bugs

 • The DEC Alpha port is a new port that has had very little testing, so there are bound to
be 64bit vs. 32bit bugs

 • The CGC fixed-point demos give incorrect results. This is most likely due to the fact
that the DEC Alpha is 64 bits.

 • SDF/DDF Wormholes causeSIGFPE signals, which crashpigi . The DDF
ifThenElse demo uses such SDF/DDF Wormhole.

 • The full pigiRpc may fail to start with messages like:
/sbin/loader: Fatal Error: lazy_text_resolve: symbol malloc
should not have any relocation entry
The workaround is to do:
setenv LD_BIND_NOW yes
See the DEC Unixloader man page for more information aboutLD_BIND_NOW. You
may see similar error messages when you run the CGC fixed point demos.

 • Vem produces lots ofUnaligned Access messages. You can run
uac p noprint
to turn them off in the current shell.

A.6.13 GNU compiler bugs

 • If you write your own stars, then be aware thatgcc-2.7.2 may not choose the
expected cast. In particular,g++ has been known to cast everything toFix if the

A-40 Troubleshooting

U. C. Berkeley Department of EECS

explicit cast is omitted. The arithmetic is then performed using fixed-point computa-
tions. This will be dramatically slower than double or integer arithmetic, and may
yield unexpected results. It is best to explicitly cast states to the desired form. For more
information, see the ptlang chapter in the Ptolemy Programmers Manual.

 • If you already have GNU make installed, and the binary is calledgmake, then the
installation of the Ptolemy GNU tools may fail. The workaround is to create a link in
your path frommake to gmake.

A.7 Additional resources
The best, most complete source for information on Ptolemy is to be found in the

Ptolemy manual,The Almagest. The manual is included in every distribution and is available
in our WWW and FTP sites.

A second source is theptolemy-hackers@ptolemy.eecs.berkeley.edu mail-
ing list. This list provides a forum for Ptolemy questions and issues. Users of the current
release who have a Ptolemy question, comment, or think they’ve found a bug should send mail
to ptolemy-hackers . Archives of the mailing list are also available. See the “Ptolemy mail-
ing lists and the Ptolemy newsgroup” on page A-2.

A third source is the Ptolemy Usenet news groupcomp.soft-sys.ptolemy .

A fourth source on the latest information about Ptolemy is the Ptolemy World Wide
Web (WWW) server accessible by programs such as Netscape. The Universal Resource Loca-
tor (URL) for the Ptolemy WWW server ishttp://ptolemy.eecs.berkeley.edu . The
WWW pages contain on-line access to a quick tour of Ptolemy, a list of publications, a collec-
tion of technical papers, information on the members of the development team, and links to
WWW information on related tools. The WWW interface is a superset of our FTP server dis-
cussed below.

Another source is the Ptolemy FTP site. To access this, use anonymous FTP to
ptolemy.eecs.berkeley.edu. The directorypub/ptolemy/papers contains some of
the latest Ptolemy papers and articles.

A.8 Submitting a bug report
Ptolemy is offered without support, but we are nonetheless interested in hearing your

feedback with regard to bugs. A good bug report consists of the following elements:

 • What OS you are running under (e.g. SunOS4.1.3, Solaris2.5.1, HPUX-10.01).

 • What version of Ptolemy you are running. If you are not running the latest version,
you may want to upgrade and see if your bug has been fixed already.

 • Whether you are using prebuilt binaries, or if you compiled your binaries yourself.

 • If the problem is with the compiler, and you are using the Gnu compiler, you should
also state whether you are using the prebuilt compiler we provide, or your own ver-
sion. You should also try runninggcc -v to see what version of the compiler you are
running.

 • It is best for us if you can reproduce the bug in a small test case and send us your~/

The Almagest A-41

Ptolemy Last updated: 11/6/97

pigiLog.pt file, along with a detailed description of what you did and what hap-
pened.

 • The best place to mail a bug report is to send it to the Ptolemy-hackers mailing list at
ptolemy-hackers@ptolemy.eecs.berkeley.edu .

 • If the bug consists of a problem with facets, you might want to uuencoded these facets
and include them in your mail message. Note that there is a 40K size limit to mail to
Ptolemy-hackers, so if your mail message is large, then you may want to send it only
to ptolemy@ptolemy.eecs.berkeley.edu . To uuencode a facet and a galaxy:

tar -cf /tmp/facets.tar yourfacet yourgalaxy
uuencode /tmp/facets.tar facets.tar > facets.uu

 • Then include thefacets.uu file in a mail message. You may get some leverage out
of compressing thefacets.tar file before uuencoding it.

A-42 Troubleshooting

U. C. Berkeley Department of EECS

The Almagest A-43

Ptolemy Last updated: 11/6/97

Appendix A

A-44 Troubleshooting

U. C. Berkeley Department of EECS

Appendix B. Introduction to the X
Window System

Pigi uses the X window system, version 11 release 6 (X11R6). It will also run cor-
rectly under X11R4, X11R5 and under Sun OpenWindows. This appendix provides just
enough information about using X so that if you are not familiar with it you will nonetheless
be able to get started. Complete documentation, however would be helpful. Complete guides
to the X window system are available in many technical bookstores. If you are familiar with
X, and your user account is properly configured to run X11, you need not be concerned about
this appendix.Pigi will automatically load the resources it needs for operation. If you wish
to customize these resources, it may be useful to scan this section. Resources are explained
below.

B.1 A model user’s home directory
A strength (and weakness) of the X window system is that it is infinitely configurable.

Making reasonable use of it requires a number of files in the user’s home directory. Usually,
these files are hidden by giving them a name that begins with a period (.) , such as
.xinitrc . You can see these files by listing your directory contents with the-a option:

ls -a

Even if you are new to Unix systems, with a new account, your system administrator will have
put a number of such hidden files in your home directory when he or she sets up your account.
Hopefully, these files have been chosen to give you reasonable behavior immediately. If not,
however, this appendix can help you set up your account for running Ptolemy.

The home directory of your Ptolemy installation (either~ptolemy or $PTOLEMY) is
designed to serve as the home directory of a model user. We will refer to the directory by the
name$PTOLEMY. Here is a listing of the contents of this directory:

% ls -a
./ .cshrc .twmrc
../ .login .xsession
.Xdefaults .plan

This user is configured according to the tastes of the authors of Ptolemy. To configure your
own account to behave the same way, you can copy all the dot files (hidden files whose names
begin with a period) from the directory$PTOLEMY into your home directory. Unless you are a
new user, however, you will probably not want to overwrite features already defined in your
own dot files. In this case, you will need to extract the features you desire from the dot files in
$PTOLEMY and add them to your own. To make this easy to do, we explain below the salient
features of each of these files.

B.2 Running Pigi using Sun’s OpenWindows system
Pigi will run under Sun’s OpenWindows Version 2 or 3, assuming the Athena widgets

have been installed (see the installation instructions). We assume as a starting point that you

B-2

U. C. Berkeley Department of EECS

are already configured to run OpenWindows;do not attempt to use the.login and.cshrc
in the ptolemy account in this case. First, make sure that your .cshrc file includes$PTOLEMY/
bin in your path.

You will need to have theolwm window manager run in the mode where focus follows
the mouse (in this mode, your keystrokes go to whatever window your mouse points to); to do
this, find the line in your.xinitrc file that invokesolwm; add the option-follow to the
olwm command. If, for some reason, you must runolwm in the click-to-focus mode, you must
click the mouse in each window before pigi will accept keyboard commands in that window;
it is possible but annoying to use pigi this way. An alternative is to add the following line to
your .Xdefaults file:

OpenWindows.SetInput:followmouse

B.3 Starting X
There are two principal ways that X may be configured:

 • The X server may be running all the time. In this configuration, when no one is logged
in a single window together with a background appears. You don’t have to worry about
starting X. A daemon program calledxdm is responsible for logging you in.

 • The user may be responsible for starting X — in this case, when you log in you get a
bare workstation tube.

Our sample configuration attempts to support both to some degree. Ifxdm is running,
it will use the supplied.xsession file to set up windows. Ifxdm is not running, and the user
is on a bare Sun tube, thexinit program will execute, starting the X server; the.xinitrc
file is used in this case to configure windows. The supplied.xinitrc file reads:

xrdb $HOME/.Xresources
twm&
xterm -geometry 80x30+0-0 -fn 9x15 -name "bottom left" &
xclock -geometry 120x120-0+0 &
exec xterm -geometry +0+0 -fn 9x15 -name "login" -ls

The first line reads X resources from the file~/.Xresources . Then the window manager
calledtwm is started. The next three lines open windows using thexterm andxclock com-
mands. The.xsession file works pretty much the same way for xdm installations. The

The Almagest B-3

Ptolemy Last updated: 11/6/97

screen will look something like this after start up:

The function of the mouse buttons after the windows have opened is determined by the
$PTOLEMY/.twmrc file. This file is reasonably easy to interpret, even without any X experi-
ence, so you may wish to examine it and customize it. If your installation uses the X window
system in some way that differs from our default, then whoever installed Ptolemy should have
modified the.login file above to reflect this.

B.4 Manipulating Windows
If you already know how to use the X Window system and you are using your own

window manager configuration rather than the standard Ptolemy configuration, you may skip
this section. Assuming you use the file$PTOLEMY/.twmrc without modification, rather than
your own window manager, the basic window manipulations are explained below. Note that
there are often several different ways to accomplish the same objective. Feel free to experi-
ment with key and mouse button combinations in various parts of the screen. First, you must
identify the “meta” key on your keyboard. It may be labeled in any of various ways, including
“meta”, “left”, “right”, “alt”, a small diamond, or any of a number of other possibilities. It is
usually close to the shift and control keys. Most window manipulations require that you hold
down the meta key while depressing mouse buttons.

Iconifying windows.

Depressing the meta key, and clicking the left mouse button in any window will iconify it. The
window disappears, replaced by a symbol in the icon manager at the right of the screen. To get
the window back, place the cursor in the appropriate slot of the icon manager, and click the
left mouse button. An alternative iconifying mechanism is to click any mouse button on the
icon symbol at the left of the window header.

Moving windows.

Holding the meta key and dragging with the middle mouse button will move a window.
“Dragging” simply means to hold the mouse button while moving the mouse. Alternatively,

B-4

U. C. Berkeley Department of EECS

you can drag the left button in the middle of the window header.

Resizing windows.

The meta key and right mouse button can be used to resize a window. Place the mouse cursor
near a corner of a window, depress the meta key, and drag the right button. Without the meta
key, any button in the rightmost corner of the window header will resize the window.

Mnemonic.

The window header has an iconify icon at the left, a blue bar for moving the window in the
middle, and a resize symbol at the right. Correspondingly, without going to the window
header, but using the meta key, the left mouse button will iconify a window, the middle button
will move it, and the right button will resize it. Hence, the window header can be used as a
mnemonic to help remember which mouse button has which function when the meta key is
depressed.

Pick up and stuff.

In a text window, without the meta key, the mouse may be used to grab text and put it some-
where else, either in the same window, or in some other windows. This can be very useful to
avoid copying long sections of text. The left mouse button, when depressed and dragged,
highlights a region of text in a window, and stores the text. The right button can be used to
modify the extent of the highlighted region. The highlighted text is "picked up", stored for
future use. The middle button causes the highlighted text to be typed to whatever window has
the mouse cursor.

New windows.

A useful command, defined in$PTOLEMY/.cshrc , is “term”. Typing this in any window, fol-
lowed by a carriage return, opens a new terminal window with a reasonable size and color.
You may change the size and location in the usual way.

Removing windows.

Most windows, including all pigi windows, can be removed by typing control-D with the
mouse cursor in the window.

Resources.

A resource in X is a parameter that customizes the behavior of applications that run
under X. For instance, resources determine the foreground and background color of your win-
dows. Pigi requires that some resources be set. These resources are defined in the file
$PTOLEMY/lib/pigiXRes , and are automatically merged with whatever other resources
you may have defined. The merging occurs when you invoke the start-up script$PTOLEMY/
bin/pigi . In addition to these required resources, there are many optional resources. Some
of these are set in$PTOLEMY/.Xresources .

If you have not used the X window system before, you will probably not have a file
with the name.Xresources in your home directory, and can simply copy the one from
$PTOLEMY. This file defines some basic resources. If you already have a file with this name,
then you can probably use the one you have as is.

Appendix C. Filter design programs

C.1 Introduction
Pending the inclusion of more sophisticated filter design software with Ptolemy, this

distribution includes two C programs for this purpose. These design FIR filters using the
Parks-McClellan algorithm or the window method. The frequency sampling method can be
done directly using Ptolemy stars, as shown in the demos included with the SDF domain.

These programs can be invoked standalone or through the filter command in pigi. If
invoked throughpigi , then anxterm window will be opened and the program started.

Filter specifications can be entered by hand or loaded from a file. The first prompt
from the program is the name of the input command file. Simply typing return will result in
manual entry. To enter data from a file, the data should appear in the file in exactly the order
that it would appear if it were being entered by hand, with one question answered per line.
Unfortunately, these command files are rather difficult to read, and not too easy to create cor-
rectly. It is recommended to first do manual entry, then imitate the entries in a file. Data can be
entered in any reasonable numeric format.

Caveats

These are public domain Fortran programs that have been converted to C, provided for
convenience; they are not an integral part of Ptolemy. Incorrect formatting of data line can
lead to ungraceful exits (often with a core dump) or incorrect results. Either program can be
invoked through the Ptolemy graphical interface, in which case it is started in its own window,
in the background. Note that in this case the program always starts in the current working
directory ofpigi , probably your home directory.

C.2 optfir — equiripple FIR filter design
Optfir is a Fortran program performing classical FIR filter design using the Parks-

McClellan algorithm. There is nothing unusual about this program, so almost any DSP book
will give an adequate explanation of the algorithm as well as the meaning of its arguments.
Briefly, the program permits the design of bandpass filters, differentiators, hilbert transform-
ers, and half-band filters.

Bandpass filters include lowpass, highpass, bandstop, and multiband, where each band
can have a different gain (the "desired value"). A desired value of 0 specifies a stopband. The
weight associated with each band determines the ratio of ripple in each band; a higher weight
means less ripple.

The following example should serve to illustrate use of the program. Invoke the pro-
gram throughpigi by calling up “equiripple FIR” in the “Filter” menu. Alternatively, you
can start the program directly from any terminal window by typing the commandoptfir .
The questions posed by the program are indicated below. The text inCourier-Bold are your
response.

C-2

U. C. Berkeley Department of EECS

Enter name of input command file (press <Enter> for manual
entry, Sorry, no tilde-expansion. Give path relative to your
home or start-up directory):

<Return>

You can put your responses in a file to avoid having to type them each time you execute the
program. Here, I assume you are typing them interactively.

Enter filter type (1=Bandpass, 2=Differentiator, 3=Hilbert
transformer, 4=Half-band):

1

Lowpass, Highpass and Bandpass filters are all called Bandpass.

Enter filter length (enter 0 for estimate):
32

The number of taps. If you enter 0, the program figures out how many you need for your spec-
ification.

Enter sampling rate of filter:
1

Use 1Hz.

Enter number of filter bands:
2

There will be a passband and a stopband.

Enter lower band edge for band 1:
0

For a lowpass filter, this should be 0 for d.c.

Enter upper band edge for band 1:
0.1

Upper edge of the passband.

Enter desired value for band 1:
1

Specify unity gain in the passband.

Enter weight factor for band 1:
1

Using 1 here and 1 in the stopband will give ripples of the same size in both bands. You could
experiment with allowing more ripple in the passband by making this number smaller.

Enter lower band edge for band 2:
0.15

Lower edge of the stopband.

Enter upper band edge for band 2:
0.5

Since this is the Nyquist frequency, it specifies the top of the stopband.

Enter desired value for band 2:
0

Zero here defines this to be the stopband.

The Almagest C-3

Ptolemy Last updated: 11/6/97

Enter weight factor for band 2:
1

See comment above on weight.

Do you want x/sin(x) predistortion? (y/n):
n

Note that the program will design a filter that predistorts to compensate for the effect of the
zero-order hold in a D/A converter.

Enter name of coefficient output file (Sorry, no tilde-
expansion. Give path relative to your home directory):

filter_taps

The name of the file in which to store the impulse response of the design. The resulting file
can be used in an FIR star or a WaveForm star using the syntax< filename to read it. Note
that the file will be stored in your home directory.

 Executing ...

 Finite Impulse Response (FIR)
 Linear Phase Digital Filter Design
 Remez Exchange Algorithm

 Bandpass Filter
 Filter length = 32

 Impulse Response Coefficients:

 h(1) = 0.2199929E-02 = h(32)
 h(2) = -0.1615105E-01 = h(31)
 h(3) = -0.1167266E-01 = h(30)
 h(4) = -0.5506404E-02 = h(29)
 h(5) = 0.6444952E-02 = h(28)
 h(6) = 0.1864344E-01 = h(27)
 h(7) = 0.2227415E-01 = h(26)
 h(8) = 0.1105212E-01 = h(25)
 h(9) = -0.1328082E-01 = h(24)
 h(10) = -0.3894535E-01 = h(23)
 h(11) = -0.4806972E-01 = h(22)
 h(12) = -0.2521652E-01 = h(21)
 h(13) = 0.3334328E-01 = h(20)
 h(14) = 0.1151020E+00 = h(19)
 h(15) = 0.1945332E+00 = h(18)
 h(16) = 0.2434263E+00 = h(17)

 Lower band edge: 0.0000000 0.1500000
 Upper band edge: 0.1000000 0.5000000
 Desired value: 1.0000000 0.0000000
 Weight factor: 1.0000000 1.0000000

C-4

U. C. Berkeley Department of EECS

 Deviation: 0.0236464 0.0236464
 Deviation in dB: 0.4108557 -32.5247154

 Extremal frequencies:

 0.0000000 0.0312500 0.0625000 0.0878906 0.1000000
 0.1500000 0.1617188 0.1871094 0.2183594 0.2496094
 0.2828125 0.3160156 0.3492188 0.3824219 0.4156250
 0.4507813 0.4839844

In the above, we have designed a lowpass filter with 32 taps with the edge of the passband at
0.1 Hz and the edge of the stopband at 0.15.

C.3 wfir — window method FIR filter design
Wfir is a C program performing classical FIR filter design using the window method.

There is nothing unusual about this program, so almost any DSP book will give an adequate
explanation of the algorithm as well as the meaning of its arguments. Briefly, the program per-
mits the design of lowpass, highpass, bandpass, and bandstop filters using any of a number of
windows. The method is to first compute the impulse response of an ideal (brick wall) filter,
and then window it with the selected window to make the impulse response finite.

The window method can also be implemented directly using Ptolemy block diagrams.
See “FIR filter design” on page 5-78.

Appendix D. Shared Libraries

Authors: Christopher Hylands
Alain Girault

D.1 Introduction
Shared libraries are a facility that can provide many benefits to software but have a

slight cost of additional complications. In this appendix we discuss the pros and cons of
shared libraries. For further information about shared libraries, you should consult the pro-
grammer’s documentation that comes with your operating system, such as the Unixld man-
ual page.

D.1.1 Static Libraries

A static library file is a file that consists of an archive of object files (.o files) collected
into one file by thear program. Static libraries usually end with.a (i.e., libg++.a). At link
time, static libraries are searched for each global function or variable symbol. If the symbol is
found then the code for that symbol is copied into the binary. In addition, any other symbols
that were in the original.o file for the symbol in question are also copied into the binary. In
this way, if we need a symbol that is dependent on other functions in the.o file in which it is
defined, at link time we get the dependent functions. There are several important details about
linking, such as the order of libraries, that should be discussed in your system documentation.

D.1.2 Shared Libraries

Most modern operating systems have shared libraries that can be linked in at runtime.
SunOS4.x, Solaris2.x and HPUX all have shared libraries.

Shared libraries allow multiple programs to share a library on disk, rather than copying
code into a binary, resulting in smaller binaries. Also shared libraries allow a binary to access
all of the symbols in a shared library at runtime, even if a symbol was not needed at link time.

A shared library consists of an archive of object files (.o files) collected into one file
by either the compiler or the linker. Usually, to create a shared library, the.o files must be
compiled into Position Independent Code (PIC) by the compiler. The compiler usually has a
special option to produce PIC code, undergcc /g++, the -fPIC option produces PIC code.
Shared libraries have suffixes that are architecture dependent: under SunOS4.1 and Solaris,
shared libraries end with.so (i.e., libg++.so); under HPUX, shared libraries end with.sl
(i.e., libg++.sl).

In addition, shared libraries can also have versioning information included in the
name. Shared library versioning is architecture dependent, but a versioned shared library
name might look likelibg++.so.2.7.1 . Note that the version of a shared library can be
encoded in the shared library in theSONAME feature of that library. Usually, theSONAME of a
library is the same as the filename (i.e., theSONAME of /users/ptolemy/gnu/sol2/lib/
libg++.so.2.7.1 would be libg++.so.2.7.1). Interestingly, if you rename a shared

D-2

U. C. Berkeley Department of EECS

library without changing theSONAME and then link against the renamed shared library, then at
runtime the binary may report that it cannot find the proper library.

The constraint with shared libraries is that the binary be able to find the shared librar-
ies at run time. Exactly how this is done is architecture dependent, but in general the runtime
linker looks for special environment variable that contains pathnames for directories to be
searched. Under SunOS4.1.x and Solaris2.x, this environment variable is named
LD_LIBRARY_PATH. Under HPUX, the variable is namedSHLIB_PATH. A binary can also
have a list of pathnames to be searched encoded inside it. Usually this is called theRPATH. In
general, asking the user to set theLD_LIBRARY_PATH or SHLIB_PATH is frowned upon. It is
better if the binary has the properRPATH set at link time.

D.1.3 Differences between static and shared libraries: Unresolved symbols

A library consists of.o files archived together. A.o file inside a library might contain
symbols (functions, variables etc.) that are not used by your program.

At link time, a static library can have unresolved symbols in it, as long as you don’t
need the unresolved symbols, and you don’t need any symbol that is in a.o file that contains
an unresolved symbol. However, with shared libraries, you must resolve all the symbols at
link time, even if you don’t necessarily use the unresolved symbol.

As an example, say you have a program that uses a symbol from thepigi library
($PTOLEMY/lib.$PTARCH/libpigi.*), but does not use Octtools which is used by other
files that make up thepigi library

If you are linking with a static library, you can have some unresolved symbols in the
static library, as long as you don’t reference the unresolved symbols. So, in our example, you
could just link with the staticlibpigi.a .

If you are linking with a sharedlibpigi , you must resolve all the unresolved sym-
bols. So, if you need a symbol from thelibpigi library, then you must also include refer-
ences to the Octtools libraries that pigilib uses, even though you are not using Octtools. So
you would have to link inliboct.so andlibport.so and the other Octtools libraries.

One positive benefit of this is thatall the symbols in pigilib are available at run time,
which makes incremental linking much easier, especially if we have a shared g++ library.

D.1.4 Differences between static and shared libraries: Pulling in stars

If you are using static libraries, then for a symbol to be present in the binary, you must
explicitly reference that symbol at link time. When building Ptolemy with static libraries, each
star directory contains axxxstars.c file (wherexxx is the domain name, an example file is
$PTOLEMY/src/domains/sdf/stars/sdfstars.c) which gets compiled intoxxx-
stars.o . At link time, thexxxstars.o file is included in the link command and the linker
searcheslib xxxstars.a for the symbols defined inxxxstars.o , and pulls in the rest of the
star definition.

If you are using shared libraries, then all the symbols in thelib xxxstars file are
present at runtime, so you need not include thexxxstars.o file at link time.

The Almagest D-3

Ptolemy Last updated: 11/6/97

D.2 Shared library problems
 • Start up time of a binary that uses shared libraries is increased. We believe that some

of the increased startup time comes from running star constructors. We are working on
modifying Ptolemy so that startup time of binaries that use shared libraries is
decreased. See “Startup Time” below for more information.

 • The time necessary to start up a debugger is sometimes increased. When the debugger
starts up, it usually has to load all the shared libraries so that the debugger knows
where to find symbols.

 • Building is more complex. Unfortunately, shared libraries are very architecture depen-
dent. Also, the commands and command line arguments differ between architectures.
Finally, how different versions of the same shared library are handled, along with the
shared library naming conventions also vary between architectures.

 • You need to keep track of where the shared libraries are, either by usingRPATH at link
time or settingLD_LIBRARY_PATH or SHLIB_PATH. The problem is that if you are
building a C Code Generation (CGC) application that uses shared libraries, then at
runtime the user needs to either have the necessary shared libraries in their
LD_LIBRARY_PATH or SHLIB_PATH, or the binary needs to have theRPATH to the
shared libraries encoded into it. This can be done with an option of the linker. The var-
ious commands to do this are architecture dependent, andDefault-CGC target usu-
ally fails. TheMakefile_C target and theTclTk_Target which is derived from
Makefile_C is much more likely to work with shared libraries.

 • It could be the case that binaries that use shared libraries might use slightly more
memory.

D.2.1 Startup Time

In Ptolemy you can build apigiRpc that has only the domains you are interested in
with Jose Pino’smkPtolemyTree script in$PTOLEMY/bin , see the Programmer’s Manual
for more information. The startup time for a fullpigiRpc is greater than for a
pigiRpc.ptrim (SDF, DE, CGC and a few other small domains). If you use either
pigiRpc.ptrim or pigiRpc.ptiny (SDF and DE only), then the start up time is quite rea-
sonable. If you regularly use some of the other less common domains, then you can build spe-
cial pigiRpc with just your domains.

One reason that startup time is increased might be because Ptolemy constructs a lot of
objects and processes many lists of things like domains. We may be able to decrease startup
time by carefully managing the star constructors.

One way to speed things up might be to create a large shared library that has the
domains in which you are interested. Startup time might be faster if everything is in one file.
Currently we have about 80 different shared libraries.

Combining these libraries into a few big libraries for ptiny, ptrim and pigi binaries
might help. Of course, we could leave the 80 libraries and just add the new libraries. We have
not tried this, but it might be interesting.

D-4

U. C. Berkeley Department of EECS

D.3 Reasons to use shared libraries
 • All the symbols in a shared library are available at runtime. This is especially impor-

tant with incremental linking of stars. If you have a sharedlibg++ , then you can use
all the symbols inlibg++ in a star for which you did not use thelibg++ symbol at
link time. If you use static linking, then when you incrementally link, you only have
symbols that you used when you linked the binary. The same is true for symbols in the
Ptolemy kernel and the domain kernels.

 • You don’t need to write dummy functions to pull in code from a library.$PTOLEMY/
src/domains/sdf/stars/sdfstars.c is an automatically generated C file that
pulls in the stars fromlibsdfstars.a . If you use shared libraries, then you need not
have asdfstars.c file. Also, more than one person has been confused because they
added new file containing new functionality to the Ptolemy kernel, and then when they
tried to link in a star, the symbols they just wrote couldn’t be found. Usually this is
because they are not using the new symbols anywhere at link time, so the new symbols
are not being pulled into the binary. If the Ptolemy kernel is a shared library, then this
problem goes away, as the new symbols are present at incremental link time.

 • Smaller binary size on disk. Shared library binaries are smaller on disk, so it is possi-
ble to have many versions ofpigiRpc that include different domains, without using
up a lot of disk space. If you use shared libraries, apigiRpc is about 1.5Mb; if you
use static libraries, then apigiRpc is about 8Mb.

 • Link time is greatly decreased with shared libraries. Under Solaris with shared librar-
ies, it takes almost no time to link a binary. Under SunOS with static libraries it can
take 8 minutes to link. Using a tool like Pure Inc.’spurelink can help, but
purelink is expensive and is not available everywhere.

 • If you are running multiplepigi s on one machine, the memory usage should be
reduced because of all the pigi binaries are sharing libraries. In theory, if a binary is
built with static libraries, you should get some sharing of memory, but often the shared
libraries result in better memory usage. If you use shared libraries for X11 and Tcl/Tk,
then your memory usage should be lower.

 • Usingdlopen() to incrementally link in new stars is usually faster than the older
method of usingld -A . Eventually, we may be able to link in entire domains at run-
time usingdlopen() .

D.4 Architectural Dependencies
In this section, we discuss shared library architectural dependencies

Table 1: Commands to use to find out information about a binary or library

Architecture
Command(s) that prints what

libraries a binary needs
Library Path

Environment Variable

hppa chatr file SHLIB_PATH

irix5 elfdump -Dl file LD_LIBRARY_PATH

The Almagest D-5

Ptolemy Last updated: 11/6/97

D.4.1 Solaris

Under Solaris the/usr/ccs/bin/dump -Lv file will tell you more shared library
information about abinary. Under Solaris2, binaries compiled with shared libraries can have a
path compiled that is used to search for shared libraries. This path is called theRPATH. Theld
option-R is used to set this at compile time. Use/usr/ccs/bin/dump -Lv binary to view
theRPATH for binary. TheRPATH for a library can be set at the time of creation with the-L
flag:

g++ -shared -L/users/ptolemy/lib.$PTARCH -o librx.so *.o

or by passing the -R flag to the linker:
g++ -shared -Wl,-R,/users/ptolemy/lib.$PTARCH -o librx.so *.o

Constructors and Destructors between SunOS4.x and Solaris2

The Solaris2 SPARCompiler c++4.0 Answerbook says

On SunOS 5.x, all static constructors and destructors are called from the .init
and .fini sections respectively. All static constructors in a shared library linked
to an application will be called beforemain() is executed. This behavior is
slightly different from that on SunOS4.x where only the static constructors
from library modules used by the application are called.

D.4.2 SunOS

The SunOS4.x port of Ptolemy uses BSDld style linking, which willnot work with a
binary that is linked withany shared libraries. For incremental linking of stars to work, the ldd
command must returnstatically linked when run on a SunOS4.xpigiRpc or ptcl
binary.

ptolemy@mho 2% ldd ~ptolemy/bin.sun4/pigiRpc
/users/ptolemy/bin.sun4/pigiRpc: statically linked

D.4.3 HPUX

Under HPUX, shared libraries must be executable or they will not work. Also, for per-
formance reasons, it is best if the shared libraries are not writable.

Under HPUX, shared libraries have a.sl suffix, and HPUX uses theSHLIB_PATH
environment variable to search for libraries.

Under HPUX10, when you are building shared objects, you need to specify both-
fPIC and-shared . (-fpic -shared will also work). The reason is that the temporary files
that are generated by g++’s collect program need to be compiled with-fPIC or -fpic . Other
platforms don’t need both arguments present.

sol2 ldd file
/usr/ccs/bin/dump -Lv file

LD_LIBRARY_PATH

sun4 ldd file LD_LIBRARY_PATH

Architecture
Command(s) that prints what

libraries a binary needs
Library Path

Environment Variable

D-6

U. C. Berkeley Department of EECS

D.5 GateKeeper Error
If there are problems with shared libraries, then you may see
ERROR: GateKeeper error!

message when you exitpigi .

GateKeeper s are objects that are used to ensure atomic operations within the
Ptolemy kernel. The Ptolemy error handling routines useGateKeepers to ensure that the
error messages are not garbled by two errors trying to write to the screen at once.

Say we have two files that make up two different libraries, and both contain the line:
KeptGate gate;

With static libraries, the linker will resolve gate to one address and call the constructor
once. The destructor will also be called once.

With shared libraries, there are two instances of this variable, so the constructor and
the destructor get called twice.

The problem is that there are several different implementations of the error routines
depending on if we are running underpigi , ptcl or tycho . The static function
Error::error is defined in several places, and which definition we get depends on the order
of the libraries. (See $PTOLEMY/src/kernel/Error.[cc,h] , $PTOLEMY/src/pig-
ilib/XError.cc , $PTOLEMY/src/ptcl/ptclError.cc and $PTOLEMY/src/tycho/
tysh/TyError.cc). Each implementation defines a static instancegate of KeptGate .

You will see theERROR: GateKeeper error! message when you exit if there is
more than oneKeptGate gate , and the destructor is called twice forgate .

Under HPUX10.x, the error message is produced iflibptolemy is static and the
other lib (libpigi , libptcl , libtysh) is shared. Here the work around is to make the
other library static too.

The way to debugGateKeeper Error! problems is to set breakpoints in
Error::error , and then trigger an error and make sure that the right error routine in the
right file is being called. One quick way to trigger an error is to set the current domain to a
non-existent domain. Try typingdomain foo into apigi -console , ptcl or
tycho -ptiny prompt.

Appendix E. Glossary

$PTOLEMY The directory in which the Ptolemy software is installed.

actor An atomic (indivisible) function in a dataflow model of computation.

ATM (1) Asynchronous transfer mode network protocol. (2) A sub-domain of the
synchronous dataflow and discrete-event domains to provide the infrastructure
for simulating ATM networks.

auto-fork A fork star that is automatically inserted when a single output is connected to
more than one input.

base class A C++ object that is used to define common interfaces and common code for a
set of derived classes. An object may be a base class and a derived class
simultaneously.

BDF A domain using the Boolean-controlled dataflow model of computation. This
domain attempts to use compile-time scheduling, but will fall back to run-time
scheduling if necessary.

behavioral modeling
System modeling consisting of functional specification plus modeling of the
timing of an implementation (cf. functional modeling).

Block The base class defined in the kernel for stars, galaxies, universes, and targets.

block A star or a galaxy.

Boolean-controlled dataflow
A model of computation that includes synchronous dataflow, but adds actors
that may or may not produce or consume tokens on any given input or output.
Whether these actors produce or consume tokens depends on a Boolean signal.

code generation
The synthesis of a standalone implementation in some target language from a
network of Ptolemy blocks.

code generation domain
A domain that supports code generation, but not simulation.

CG A domain that defines many of the base classes and schedulers used in code
generation domains. It has no direct application by itself.

CG56 A domain that synthesizes assembly code for the family of Motorola
DSP56000 digital signal processors. It uses the synchronous dataflow model of
computation.

E-2

U. C. Berkeley Department of EECS

CG96 A domain that synthesizes assembly code for the family of Motorola
DSP96000 digital signal processors. It uses the synchronous dataflow model of
computation.

CGC A domain that synthesizes C code. It uses the synchronous dataflow or
Boolean-controlled dataflow model of computation.

CG-DDF A code generation domain that uses the dynamic dataflow model of
computation. This has not been maintained beyond version 0.4.1 of Ptolemy.

codesign The simultaneous design of the software and hardware composing a system.

communicating processes
A model of computation in which multiple processes execute concurrently and
communicate with one another by passing messages.

compile-time scheduling
A scheduling policy in which the order of execution of blocks is precomputed
when the execution is started. The execution of the blocks thus involves only
sequencing through this precomputed order one or more times (cf. run-time
scheduling).

contents facet
An oct facet that defines the physical appearance of a schematic.

CP A simulation domain using the communicating processes model of
computation. Each star forms a process that runs under the Sun lightweight
process library.

derived class A C++ object that is derived from some base class. It inherits all of the
members and methods of the base class.

dataflow A model of computation in which actors process streams of tokens. Each actor
has one or more firing rules. Actors that are enabled by a firing rule may fire in
any order.

DDF A simulation domain that uses the dynamic dataflow model of computation.

DE A simulation domain that uses the discrete-event model of computation. In the
DE domain, particles transmitted between blocks represent events that trigger
changes in system state. Events carry an associated timestamp, and are
processed in chronological order.

discrete event
A model of computation used to model systems that change state abruptly at
arbitrary points in time, such as queueing networks, communication networks,
and computer architectures. A block is enabled when an event at one of its
inputs is the “oldest” event in the system, in that its timestamp has the smallest
value. Once enabled, the block may be executed, and in the process may
produce more events.

domain A specific implementation of a model of computation.

The Almagest E-3

Ptolemy Last updated: 11/6/97

Domain The base class in the Ptolemy kernel from which all domains are derived.

drag The action of holding a mouse button while moving the mouse.

dynamic dataflow
A model of computation supporting any computable firing rule for actors. This
model of computation requires run-time scheduling.

event A particle generated by a block in a discrete-event model of computation. This
particle carries a timestamp.

event horizon
The interface between domains that manages the flow of particles from one
domain to another.

facet A schematic, palette, or icon as represented inoct . In pigi , a facet is exactly
that represented by onevem window.

FFT The Fast Fourier Transform is an efficient way to implement the discrete
Fourier transform in digital hardware.

firing A unit invocation of an actor in a dataflow model of computation.

firing rule A rule that specifies how many tokens are required on each input of a dataflow
actor for that actor to be enabled for firing.

fork star A star that reads one input particle and replicates it on any number of outputs.

functional modeling
System modeling that specifies input/output behavior without specifying
timing (cf. behavioral modeling).

galaxy A block that contains a network of other blocks.

Galaxy The class (derived from Block) in the Ptolemy kernel that represents a network
of other blocks.

Gantt chart A graphical display of a parallel schedule of tasks. In Ptolemy, the tasks are the
firings of stars and galaxies.

higher-order functions
Functional programming constructs that apply a function a determined number
of times to one or more streams of inputs. Examples of higher-order functions
from Lisp includemapcar andapply .

HOF A domain implementing higher-order functions that are expanded at compile-
time and incur no run-time overhead. HOF stars are typically embedded in
other domains, and provide graphical expression of parameterized parallel,
cascaded, and recursive structures.

homogeneous synchronous dataflow
A particular case of the synchronous dataflow model of computation, where
actors produce and consume exactly one token on each input and output.

E-4

U. C. Berkeley Department of EECS

icon A graphical object that represents a single block or palette.

interface facet
A facet that defines the physical appearance of an icon (cf. contents facet).

Itcl [incr Tcl], an object oriented extension to Tcl.

iteration A set of executions of blocks that constitutes one pass through the
precomputed order of a compile-time schedule.

kernel The set of classes defined in the directory$PTOLEMY/src/kernel .

layer In vem, a color with a given precedence. Colors with higher precedence will
obscure colors with lower precedence.

master In vem, the interface and contents facet referred to by an icon. The master is
represented by an absolute Unix path name pointing to the directory in which
the facet is stored.

masters A program for examining and changing the list of masters (see above) that
make up a schematic or palette.

MDSDF A simulation domain that uses a multidimensional extension to the
synchronous dataflow model of computation. Actors in MDSDF consume data
defined on rectangular grids, e.g. a subblock in an image.

member A C++ object that forms a portion of another object.

method A function defined to be part of an object in C++.

model of computation
A set of semantic rules defining the behavior of a network of blocks.

net A graphical connection between ports in vem.

object A data type in C++ consisting of members and methods. These members and
methods may be private, protected, or public. If they are private, they can only
be accessed by methods defined in the object. If they are protected, then they
can also be accessed by methods in derived classes. If they are public, then
they can be accessed by any C++ code.

oct A design database developed by the CAD Group at U. C. Berkeley. Oct is used
to store graphical representations of Ptolemy applications.

octtools A collection of CAD tools based on theoct database. Some programs from
the octtools distribution are used within Ptolemy.

palette A facet that contains a library of icons.

parameter The initial value of a state.

particle A datum (e.g. a floating-point value) communicated between blocks.

pepp The program that translates stars written in the Thor domain to C++.

The Almagest E-5

Ptolemy Last updated: 11/6/97

pigi The Ptolemy interactive graphical interface. Pigi is implemented as a shell
script that startsvem andpigiRpc .

pigiRpc The program that forms the core of the Ptolemy graphical user interface.
PigiRpc communicates withvem via a remote procedure call interface. It is
mainly responsible for handling Ptolemy-specific commands fromvem and
translatingoct representations of Ptolemy systems into a form executable by
the Ptolemy kernel.

Plasma A class in the Ptolemy kernel that serves as a repository for used particles of
any particular types. When new particles of the appropriate type are needed,
they are taken from the Plasma, if possible, thus avoiding memory allocation.

PN A simulation domain based on the process networks computational model.
Each star forms a process under this domain.

port An input or output of a star or galaxy.

PortHole The base class in the Ptolemy kernel for all ports.

ptcl A textual, interactive command interpreter for Ptolemy. As the name implies,
ptcl is based on Tcl.

ptlang (1) A schema language used to define stars in Ptolemy. (2) The program that
translates stars written in the ptlang language to C++.

ptplay A program to play sound on the workstation speaker.

PTOLEMY An environment variable with value equal to the name of the directory in which
the Ptolemy system is installed.

Ptolemy A design environment that supports simultaneous mixtures of different models
of computation. Ptolemy has been developed at the University of California at
Berkeley. The Ptolemy design environment is named after the second century
Greek astronomer, mathematician, and geographer.

pxgraph A plotting program used by several standard Ptolemy stars.

real time The actual time (cf. simulated time).

RTL Register-transfer level description of digital systems. This kind of description
is used by the Thor domain.

run-time scheduling
A scheduling policy in which the order of execution of the blocks is
determined “on-the-fly,” as they are executed (cf. compile-time scheduling).

Scheduler An object associated with a domain that determines the order of execution of
blocks within the domain. Domains may have multiple schedulers.

schematic A block diagram.

SDF A simulation domain using the synchronous dataflow model of computation.

E-6

U. C. Berkeley Department of EECS

Silage (1) A functional language developed by Paul Hilfinger at U. C. Berkeley for
specifying signal processing systems. It is used primarily as input for VLSI
synthesis tools. (2) A code generation domain in Ptolemy that synthesizes
Silage code and uses the synchronous dataflow model of computation.

simulated time
In a simulation domain, the real number representing time in the simulated
system (cf. real time).

simulation The execution of a system specification (a Ptolemy block diagram) from within
the Ptolemy process (i.e., without generating code and spawning a new process
to execute that code).

simulation domain
A domain that supports simulation, but not code generation.

snap In vem, an invisible grid defining the points at which graphical objects can
have endpoints or corners.

star An atomic (indivisible) unit of computation in a Ptolemy application. Every
Ptolemy simulation ultimately consists of executing the methods of the stars
used to define the simulation.

Star The base class in the Ptolemy kernel for all stars.

state A member of a block that stores data values from one invocation of the block
to the next.

State The base class in the Ptolemy kernel for all states.

stop time Within a timed domain, the time at which a simulation halts.

synchronous dataflow
A dataflow model of computation where the firing rules are particularly simple.
Every input of every actor requires a fixed, pre-specified number of tokens for
the actor to fire. Moreover, when the actor fires, a fixed, pre-specified number
of tokens is produced on each output. This model of computation is
particularly well-suited to compile-time scheduling.

target An object that manages the execution of a simulation or code generation
process. Thus, for example, in code generation, the target would be responsible
for compiling the generated code and spawning the process to execute that
code, if desired.

Target The base class in the kernel for all targets.

Tcl Tool command language, a textual, interpreted language developed by John
Ousterhout at U.C. Berkeley. Tcl is embedded in bothpigi andptcl .

Thor A register transfer level digital hardware simulator from Stanford University.
Thor is incorporated as a domain within Ptolemy.

The Almagest E-7

Ptolemy Last updated: 11/6/97

timestamp A real number associated with a particle in timed domains that indicates the
point in simulated time at which the particle is valid.

timed domain
A domain that models the evolution of a system in time.

Tk An X windows toolkit for Tcl. Tk is embedded inpigi , which uses it
extensively. The interactive sliders, buttons, and plotting capabilities ofpigi
are implemented in Tcl/Tk.

tkoct An experimental front-end to Ptolemy that replacesvem. It is a Tk interface to
schematics stored asoct facets. It executes universes by callingptcl to
evaluate theptcl description of the universe.

token A unit of data in a dataflow model of computation. Tokens are implemented as
particles in Ptolemy.

Tycho A graphical development environment for Ptolemy that is implemented in Itcl.

universe An entire Ptolemy application.

URT The Utah Raster Toolkit for image and video processing. It is used by the
image processing stars in the synchronous dataflow domain. The
multidimensional synchronous dataflow domain treats images as matrices and
does not use the Utah Raster Toolkit.

vem A graphical editor for objects stored underoct . The vem schematic capture
interface is part of the octtools distribution from U. C. Berkeley, and forms a
significant part ofpigi .

VHDL The VHSIC hardware description language, a standardized language for
specifying hardware designs at multiple levels of abstraction.

VHDLF A code generation domain for functional modeling of hardware. This domain
synthesizes a system description in VHDL.

VHDLB A code generation domain for behavioral modeling of hardware. This domain
synthesizes a system description in VHDL

wormhole A star in a particular domain that internally contains a galaxy in another
domain.

E-8

U. C. Berkeley Department of EECS

 References

[Bha93a] S. S. Bhattacharyya and E. A. Lee, “Looped Schedules for Dataflow Descrip-
tions of Multirate Signal Processing Algorithms,”Formal Methods in System
Design, No. 5, No. 3, December 1994 (Updated from Technical Report UCB/
ERL M93/37, EECS Dept., UC Berkeley, May 21, 1993).

[Bha93b] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “A Scheduling Frame-
work for Minimizing Memory Requirements of Multirate DSP Systems Repre-
sented as Dataflow Graphs,”VLSI Signal Processing VI, ed. by L. Eggermont,
P. Dewilde, E. Deprettre, and J. van Meerbergen, pp. 188-196, IEEE Special
Publications, New York, NY, 1993.

[Bha93c] S. S. Bhattacharyya, J. Buck, S. Ha, and E. A. Lee, “Generating Compact Code
from Dataflow Specifications of Multirate Signal Processing Algorithms,”
IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications,
vol. 42, no. 3, pp. 138-150, March 1995 (Updated from Technical Report M93/
36, EECS Dept., UC Berkeley, May 21, 1993).

[Bha94a] S. S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous Dataflow Graphs
for Efficient Looping,”J. of VLSI Signal Processing, vol. 6, December 1993.

[Bha94b] S. S. Bhattacharyya and E. A. Lee, “Memory Management for Dataflow Pro-
gramming of Multirate Signal Processing Algorithms,”IEEE Trans. on Signal
Processing, vol. 42, no. 5, May 1994 (Updated from Technical Report UCB/
ERL M92/128, EECS Dept., UC Berkeley, November 18, 1992).

[Bha96] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis from
Dataflow Graphs, Kluwer Academic Publishers, Norwell MA, 1996. (http:/
/ptolemy.eecs.berkeley.edu/papers/96/softSynthBook/)

[Bie90] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and E.A. Lee, “Gabriel:
A Design Environment for DSP,”IEEE Micro Magazine, October 1990, vol.
10, no. 5, pp. 28-45.

[Bla92] Nancy Blachman,Mathematica: A Practical Approach, Prentice-Hall, ISBN 0-
13-563826-7, 1992.

[Bol91] I. Bolsens, S. De Troch, L. Philips, B. Vanhoof,et al., “Assessment of the
Cathedral-II Silicon Compiler For Digital-Signal-Processing Applications,”
ESA Journal, vol. 15, no. 3-4, pp. 243-260, June 1991.

[Bro88] Randy Brown, “Calendar Queues: A Fast O(1) Priority Queue Implementation
for the Simulation Event Set Problem,”Communications of the ACM, vol. 31,
no. 10, October 1988.

[Buc91] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Process-
ing in Ptolemy,”Proc. of Int. Conf. on Acoustics, Speech, and Signal Process-

R-2

U. C. Berkeley Department of EECS

ing, Toronto, Canada, April 1991, vol. 2, pp. 1245-1248.

[Buc93a] J. Buck and E. A. Lee, “The Token Flow Model,”Advanced Topics in Dataflow
Computing and Multithreading, ed. L. Bic, G. Gao, and J. Gaudiot, IEEE Com-
puter Society Press, 1993.

[Buc93b] J. T. Buck and E. A. Lee, “Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model,”Proc. of Int. Conf. on Acous-
tics, Speech, and Signal Processing, Minneapolis, MN, April 1993, vol. I, pp.
429-432.

[Buc93c] J. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model, Ph. D. Dissertation, EECS Dept., UC Berkeley, Berke-
ley CA 94720, September 1993.

[Buc94] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework
for Simulating and Prototyping Heterogeneous Systems,”Int. Journal of Com-
puter Simulation, special issue on “Simulation Software Development,” Janu-
ary 1994.

[Cha97] W.-T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous Simulation -- Mixing
Discrete-Event Models with Dataflow,” invited paper, RASSP special issue of
the Journal on VLSI Signal Processing, January, 1997. (http://
ptolemy.eecs.berkeley.edu/papers/96/heterogeneity)

[Che94] M. J. Chen,Developing a Multidimensional Synchronous Dataflow Domain in
Ptolemy, MS Report, ERL Technical Report UCB/ERL No. 94/16, University
of California, Berkeley, CA 94720, May 6, 1994.

[Den75] J. B. Dennis,First Version Data Flow Procedure Language, Technical Memo
MAC TM61, May 1975, MIT Laboratory for Computer Science.

[Edw97] S. A. Edwards,The Specification and Execution of Heterogeneous Synchro-
nous Reactive Systems, Ph. D. Dissertation, ERL Technical Report UCB/ERL
M97/31, EECS Dept., University of California, Berkeley, 1997.(http://
ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/

[Eva93] B. L. Evans,A Knowledge-Based Environment for the Design and Analysis of
Multidimensional Multirate Signal Processing Algorithms,Ph. D. Dissertation,
School of Electrical Engineering, Georgia Institute of Technology, Atlanta,
GA, June 1993.

[Eva95] B. L. Evans, S. X. Gu, A. Kalavade, and E. A. Lee, “Symbolic Computation in
System Simulation and Design,” Invited Paper,Proc. of SPIE Int. Sym. on
Advanced Signal Processing Algorithms, Architectures, and Implementations,
July 9-16, 1995, San Diego, CA, pp. 396-407.

[Eva96] G. Arslan, B. L. Evans, F. A. Sakarya, and J. L. Pino, “Performance Evaluation
and Real-Time Implementation of Subspace, Adaptive, and DFT Algorithms
for Multi-Tone Detection,”Proc. Int. Conf. on Telecommunications,Istanbul,
Turkey, April 15-17, 1996.

The Almagest R-3

Ptolemy Last updated: 6/12/97

[Gen90] D. Genin, P. Hilfinger, J. Rabaey, C. Scheers,et al., “DSP Specification Using
the Silage Language,” Proc. of Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing, April 1990, vol. 2, pp. 1056-60.

[Ha91] Soonhoi Ha and E.A. Lee, “Compile-Time Scheduling and Assignment of
Dataflow Program Graphs with Data-Dependent Iteration,”IEEE Trans. on
Computers, vol. 40, no. 11, pp. 1225-1238, November 1991.

[Ha92] S. Ha,Compile-Time Scheduling of Dataflow Program Graphs with Dynamic
Constructs, Ph. D. Dissertation, EECS Dept., University of California, Berke-
ley, CA 94720, April 1992.

[Han96] Duane Hanselman and Bruce Littlefield,Mastering MATLAB, Prentice Hall,
ISBN 0-13-191594-0, 542 pages, 1996.

[Har86] D. Harrison, P. Moore, R. Spickelmier, and A. R. Newton, ‘‘Data Management
and Graphics Editing in the Berkeley Design Environment,’’Proc. of IEEE Int.
Conf. on Computer-Aided Design, November 1986, pp. 24-27.

[Has93] P. Haskell,Flexibility in the Interactions Between High-Speed Networks and
Communications Applications, Ph. D. dissertation, EECS Dept., UC Berkeley,
Berkeley CA 94720, October 1993.

[Hil85] P. Hilfinger, “A High-Level Language and Silicon Compiler for Digital Signal
Processing,”Proc. of Custom Integrated Circuits Conference, May 1985, pp.
213-216.

[Hoa78] C. Hoare, “Communicating Sequential Processes,”Communications of the
ACM, August 1978, vol. 21, no. 8, pp. 666-677.

[Hu61] T.C. Hu, “Parallel Sequencing and Assembly Line Problems,”Operations
Research, vol. 9, no. 6, 1961, p. 841-848.

[Hyl97] C. Hylands, E. A. Lee, and H. J. Reekie, “The Tycho User Interface System,’’
to be presented at the 5th Annual Tcl/Tk Workshop ‘97, Boston, Massachu-
setts, July, 1997. (http://ptolemy.eecs.berkeley.edu/papers/97/
tcltk-97/)

[Kah74] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,”
Info. Proc., Stockholm, Sweden, August 1974, pp. 471-475.

[Kah77] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Pro-
cesses,”Info. Proc., Toronto, Canada, August 1977, pp. 993-998.

[Kal91] A. Kalavade,Hardware/Software Codesign Using Ptolemy - A Case Study,
M.S. Report, Electronics Research Laboratory, University of California, Ber-
keley, CA 94720, December 1991.

[Kal93] A. Kalavade, and E.A. Lee, “A Hardware/Software Codesign Methodology for
DSP Applications,”IEEE Design and Test of Computers, vol. 10, no. 3, pp. 16-
28, September 1993.

R-4

U. C. Berkeley Department of EECS

[Kal94] A. Kalavade and E. A. Lee, “Manifestations of Heterogeneity in Hardware/
Software Codesign”,Proc. of Design Automation Conference, San Diego, CA,
June 1994.

[Kal96] Asawaree Kalavade,System Level Codesign of Mixed Hardware-Software Sys-
tems,Tech. Report, UCB/ERL 95/88, Ph.D. Dissertation, Dept. of EECS, Uni-
versity of California, Berkeley, CA 94720, September 1995.

[Kar66] R. M. Karp and R. E. Miller, “Properties of a Model for Parallel Computations:
Determinancy, Termination, Queueing,”SIAM Journal, vol. 14, pp. 1390-1411,
November 1966.

[Khi94] K. P. Khiar and E. A. Lee, “Modeling Radar Systems using Hierarchical Data-
flow,” Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing, Detroit,
MI, May 8-12, 1995, pp. 3259-3262.

[Lao94] A. Lao,Heterogeneous Cell-Relay Network Simulation and Performance Anal-
ysis with Ptolemy, M.S. Report, Electronics Research Laboratory, University of
California, Berkeley, CA 94720, February 1994.

[Lap91] P. D. Lapsley,Host Interface and Debugging of Dataflow DSP Systems, M.S.
Thesis, Electronics Research Laboratory, University of California, Berkeley,
CA 94720, December 1991.

[Lee87a] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing,”IEEE Trans. on Computers, vol.
36, no. 1, pp. 24-35, January 1987.

[Lee87b] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,”Proc. of the
IEEE., vol. 75, no. 9, pp. 1235-1245, September 1987.

[Lee89] E. A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya, “Gabriel: A
Design Environment for DSP,”IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. 37, no. 11, pp. 1751-1762, November 1989.

[Lee91a] E. A. Lee, “Consistency in Dataflow Graphs,”IEEE Trans. on Parallel and
Distributed Systems, vol. 2, no. 2, pp. 223-235, April 1991.

[Lee91b] E. A. Lee and J. C. Bier, “Architectures for Statically Scheduled Dataflow,”
reprinted inParallel Algorithms and Architectures for DSP Applications, ed.
M. A. Bayoumi, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991,
pp. 159-90.

[Lee92] E. A. Lee, “A Design Lab for Statistical Signal Processing,”Proc. of Int. Conf.
on Acoustics, Speech, and Signal Processing, March, 1992, vol. 4, pp. 81-84,
San Francisco, CA.

[Lee93a] E. A. Lee, “Multidimensional Streams Rooted in Dataflow,”Proc. IFIP Work-
ing Conference on Architectures and Compilation Techniques for Fine and
Medium-Grain Parallelism, January 1993, pp. 295-306, Orlando, FL.

[Lee93b] E. A. Lee, “Representing and Exploiting Data Parallelism Using Multidimen-

The Almagest R-5

Ptolemy Last updated: 6/12/97

sional Dataflow Diagrams,”Proc. of Int. Conf. on Acoustics, Speech, and Sig-
nal Processing, April 1993, vol. I, pp. 453-456, Minneapolis, MN.

[Lee94] E. A. Lee, “Computing and Signal Processing: An Experimental Multidisci-
plinary Course,”Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, vol. VI, pp. 45-48, Adelaide, Australia, April 1994.

[Lee95] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”Proc. of the IEEE,
vol. 83, no. 5, pp. 773-801, May 1995 (http://ptolemy.eecs.berke-
ley.edu/papers/processNets).

[Lee96] E. A. Lee and A. Sangiovanni-Vincentelli, “The Tagged Signal Model -- A
Preliminary Version of a Denotational Framework for Comparing Models of
Computation,” ERL Memorandum UCB/ERL M96/33, University of Califor-
nia, Berkeley, CA, 94720, June 4, 1996. (http://ptolemy.eecs.berke-
ley.edu/papers/96/denotational/).

[Mes84a] D. G. Messerschmitt, “A Tool for Structured Functional Simulation,”IEEE J.
on Selected Areas in Communications, vol. 2, no. 1, pp. 137-147, January,
1984.

[Mes84b] D. G. Messerschmitt, “Structured Interconnection of Simulation Programs,”
Proc. of Globecom, November 1984, vol. 2, pp. 808-811, Atlanta, Georgia.

[Mue93] F. Mueller, “A Library Implementation of POSIX Threads Under Unix,”
USENIX Conference, San Diego, CA, January 1993, pp. 29-41.

[Mue95] F. Mueller, “Pthreads Library Interface,” Tech. Rep., July, 1995, available by
ftp://ftp.cs.fsu.edu/pub/PART/publications/
pthreads_interface.ps.Z .

[Mur93] P. K. Murthy,Multiprocessor DSP Code Synthesis in Ptolemy, Memorandum
No. UCB/ERL M93/66, Electronics Research Laboratory, University of Cali-
fornia, Berkeley CA 94720, 1993.

[Mur94a] P. K. Murthy, S. Bhattacharyya, and E. A. Lee, “Minimizing Memory Require-
ments For Chain-Structured Synchronous Dataflow Programs,”Proc. of IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, vol. II, pp. 453-456,
Adelaide, Australia, April 1994.

[Mur94b] P. K. Murthy and E. A. Lee, “On the Optimal Blocking Factor for Blocked,
Non-Overlapped Schedules,”Proc. of the IEEE Asilomar Conference on Sig-
nals, Systems, and Computers, Pacific Grove, CA, November 1994.

[Mur96] P. K. Murthy, “Scheduling Techniques for Synchronous and Multidimensional
Synchronous Dataflow”, Ph.D. Dissertation, Tech. Memo UCB/ERL M96/79,
Dept. of EECS, Electronics Research Laboratory, Berkeley, Ca 94720, 1996.
(http://ptolemy.eecs.berkeley.edu/papers/96/murthyThesis/
).

[Not91] S. Note, W. Geurts, F. Catthoor, and H. De Man, “Cathedral-III: Architecture-

R-6

U. C. Berkeley Department of EECS

Driven High-Level Synthesis For High-Throughput DSP Applications,”Proc.
of the 28th ACM/IEEE Design Automation Conference, June 1991, pp. 597-
602.

[Ous90] J. K. Ousterhout, “Tcl: An Embeddable Command Language,”Proc. of
USENIX Conference, January 1990, pp. 133-146.

[Ous91] J. K. Ousterhout, “An X11 Toolkit Based on the Tcl Language,”Proc. of
USENIX Conference, January 1991, pp. 105-115.

[Ous94] J. K. Ousterhout,An Introduction to Tcl and Tk,Addison-Wesley Publishing,
Redwood City, CA, 1994, ISBN 0-201-63337-X.

[Par95] T. M. Parks,Bounded Scheduling of Process Networks, Technical Report UCB/
ERL 95/105, Ph.D. Dissertation, EECS Department, University of California,
Berkeley, CA, 94720-1770, December 1995. (http://ptolemy.eecs.berkeley.edu/
papers/parksThesis/).

[Pin93] J. Pino, S. Ha, E. Lee, and J. Buck, “Software Synthesis for DSP Using
Ptolemy,” invited paper in theJ. on VLSI Signal Processing, vol. 9, no. 1, pp. 7-
21, January 1995.

[Pin94] J. L. Pino, T. Parks, and E. A. Lee, “Automatic Code Generation for Heteroge-
neous Multiprocessors,”Proc. of Int. Conf. on Acoustics, Speech, and Signal
Processing, April 1994, vol. II, pp. 445-448, Adelaide, Australia.

[Pin95] J. L. Pino and E. A. Lee, “Hierarchical Static Scheduling of Dataflow Graphs
onto Multiple Processors,”Proc. of Int. Conf. on Acoustics, Speech, and Signal
Processing, May 1995, pp. 2643-2646, Detroit, MI.

[Pin95] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A Hierarchical Multiprocessor
Scheduling Framework for Synchronous Dataflow Graphs,” Proc. of the IEEE
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
October 29 - November 1, 1995.

[Pin96] J. L. Pino, T. Parks, and E. A. Lee, “Interface Synthesis in Heterogeneous Sys-
tem-Level DSP Design Tools,”Proc. of Int. Conf. on Acoustics, Speech, and
Signal Processing, May 1996, Atlanta, GA.

[Rab91] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping of Datapath-
Intensive Architectures,”IEEE Design and Test of Computers, vol. 8, no. 2, pp.
40-41, June 1991.

[Shi94] S.-I. Shih,Code Generation for VSP Software Tool in Ptolemy, MS Report,
Plan II, ERL Technical Report UCB/ERL M94/41, University of California,
Berkeley, CA 94720, May 25, 1994.

[Sih93a] G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic for Intercon-
nection-Constrained Heterogeneous Processor Architectures,”IEEE Trans. on
Parallel and Distributed Systems,vol. 4, no. 2, February 1993.

[Sih93b] G. C. Sih and E. A. Lee, “Declustering: A New Multiprocessor Scheduling

The Almagest R-7

Ptolemy Last updated: 6/12/97

Technique,”IEEE Trans. on Parallel and Distributed Systems,vol. 4, no. 6, pp.
625-637, June 1993.

[Sil91] Silage User’s and Reference Manual, Prepared by Mentor Graphics/EDC,
June, 1991.

[SS92] Sproc Signal Processor Databook, Star Semiconductor, 1992

[Sri93] S. Sriram and E. A. Lee, “Design and Implementation of an Ordered Memory
Access Architecture,”Proc. of Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing, April 1993, vol. I, pp. 345-348, Minneapolis, MN.

[Tho88] R. Alverson,et al., THOR user’s manual: Tutorial and commands, Technical
Report CSL-TR-88-348, Stanford University, January 1988.

[Vai92] P. P. Vaidyanathan, “Multirate Digital Filters, Filter Banks, Polyphase Net-
works, and Applications: A Tutorial,”Proc. of the IEEE, vol. 78, no. 1, pp. 56-
93, January 1990.

[Wal92] G. Walter,ATM, Speech Coding, and Cell Recovery, M.S. Report, EECS Dept.,
University of California, Berkeley, CA 94720, December 1992.

[Wel96] B. Welch,Practical Programming in Tcl and Tk, Prentice Hall, ISBN 0-13-
182007-9, 1995.

[Whi93] K. White, Xpole: An Interactive, Graphical Signal Analysis and Filter Design
Tool, Tech. Rep. M93/70, Electronics Research Laboratory, University of Cali-
fornia, Berkeley, CA 94720, May 1993.

[Wol91] S. Wolfram,Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley, ISBN 0-201-51502-4, 1991.

[Won92] Anthony Wong,A Library of DSP Blocks and Applications for the Motorola
DSP96000 Family, M.S. Report, Plan II, EECS Dept., UC Berkeley, CA
94720, May 1992.

R-8

U. C. Berkeley Department of EECS

The Almagest I-1

Ptolemy Last updated: 12/1/97

Index
Symbols
$PTOLEMY ..E-1
(...12-1
, ..12-1, 12-8
.cshrc...2-51
.cshrc file ..2-41
.emacs file.. A-21
.Xdefaults...2-2, 2-54
.Xdefaults file ...16-2
.xinitrc file ..2-2, B-2
.xsession file .. B-2
~ptolemy.. A-19

Numerics
256fft (CGC demo)...12-26
4BitDownCounter (DE demo)............................10-26

A
Abs (C50 block) ...15-5
Abs (CG56 block)...13-7
Abs (CGC block)..12-8
Abs_M (SDF block) ...5-26
accelerator...2-5
ACos (C50 block)...15-5
ACos (CG56 block)..13-7
actions associated with star firings3-15
actor ..5-1,E-1
actual parameters ..2-32
ACYLOOP, SDF Scheduler option... 5-65, 5-66, 5-68
ACYLOOP, SDF scheduler option11-7
adaptFilter (CGC demo)12-20, 12-21
adaptFilter (SDF demo)..5-55
adaptFilter_multi (CGC demo)...........................12-21
adaptive differential pulse code modulation (AD-

PCM)................................... 5-42, 5-58, 5-83
adaptive equalization ..5-82

training sequence...5-18
adaptive estimation...10-29
adaptive filtering..4-3, 5-55
adaptive quantization..10-29
Add (C50 block) ...15-4
Add (CG56 block) ..13-6
Add (CGC block) ...12-8
Add (SDF block) ..5-12
Add (SR block)...10-3
Add_M (SDF block)....................................5-25, 5-44
AddCx (C50 block) ..15-4
AddCx (CG56 block) ...13-7
AddInt (C50 block)...15-4
AddInt (CG56 block)..13-7
additive Gaussian white noise5-39, 5-55
AddMotionVecs (SDF block)...............................5-48

adjustableGain (CG56 CGC/S-56X galaxy)13-6
adjustableGain (CG56 QDM/S-56X Block)13-6
adjustableGainGX (CG56 S-56X block)..............13-4
adjustSchedule, target parameter.......................... 11-4
ADPCM (adaptive differential pulse code modula-

tion) .. 5-58
ADPCM (CG56 S-56X demo)13-17
ADPCM (CGC S-56X demo)13-18
ADPCM speech coding.. 5-83
ADPCMCoder (SDF block)5-42
ADPCMDecoder (SDF block)5-42
ADPCMFromBits (SDF block)............................5-42
ADPCMToBits (SDF block)................................5-42
AF program .. 2-38
aheadLimit parameter... 12-8
AIn (C50 block) ...15-3
Air Force .. 1-2
alias command...3-3, 3-6
alive (CGC demo) ..12-23
all pole filters.. 5-33
allowDynamic .. 8-2
Allpass (C50 block)..15-10
Allpass (CG56 block)...13-13
allPole (SDF demo)..5-55
all-pole filters ... 5-55
alter-geometry, VEM ... 16-17
AM Transmitter (CG56 S-56X demo)13-17
Ammicht, E. ... 1-10
amortizedComm, target parameter....................... 11-5
amplifier ... 5-12
amplitude modulation (AM)................................. 5-70
analysis-synthesis filter banks................................ 4-3
analytic (SDF demo) ..5-53
analytic signals ..5-53, 5-56
And (SR block)...10-3
animated displays ... 5-10
animatedLMS (CGC demo) 12-24
animatedLMS (SDF demo)5-55, 5-61
animatedLMSCx (SDF demo)5-55, 5-61
animation.. 3-11
animation command ... 3-3
annotated schedule ..4-4,8-1
annotations in facets ... 2-45
anytype Particle type .. 2-20
anytype Particle type (table)................................. 2-20
anytypeColor ..2-37
AOut (C50 block)...15-3
applicative language... 4-14
AR (auto-regressive) random process 5-81
AR (auto-regressive) random processes............... 5-57
Arbitrate (DE block)... 10-22
arbitrator (preemptive or nonpreemptive) 10-22
Ariel.. 1-11
Ariel S-56X stars, CG5613-4

I-2

U. C. Berkeley Department of EECS

arithmetic stars, C50 ..15-4
arithmetic stars, CG56..13-6
arithmetic stars, SDF..5-12
ARMA process... 5-81
Arnold, E. C. .. 4-13
ARPA... 1-2
array ... 2-19
array of sensors .. 6-19
ASCII descriptions of a Ptolemy universe........... 3-22
ASin (C50 block) ...15-6
ASin (CG56 block) ..13-8
assembly code synthesis.................................. 1-6, 4-7
asynchronous signal processing 4-4, 7-12
AT&T Bell Laboratories....................1-10, 1-11, 4-13
Athena widgets.. 2-2, 2-13
ATM.. 5-54, 5-58
audioio (CGC demo)..12-27
audiotool... 2-38
Autocor (SDF block)..........................5-36, 5-52, 5-86
autocorrelation5-52, 5-54, 5-86
autocorrelation (SDF block).................................5-34
autocorrelation method 5-57, 5-84
auto-forks .. 2-48, 3-6,E-1
auto-regressive (AR) random processes 5-57
Average (SDF block) 5-2,5-12
AvgSqrErr (SDF block)5-25
AWGN (SDF block) ..5-41
AWGNchannel (SDF block)5-39

B
background execution of pigi.............................. A-17
balance equations5-2, 7-3, 7-6
ball (CGC demo).. 12-24
ballAsync (CGC demo)...................................... 12-24
Banerjea, A................................... 1-9, 4-5, 10-1, 10-2
BarGraph (DE block) ... 10-11
Bartlett.. 5-7
base class..E-1
basebandEquivChannel (SDF block)5-39, 5-41
basic iteration ... 7-4
batch mode simulation ... 3-1
baud-rate timing recovery 7-12
BDF (boolean dataflow).................................4-4, E-1
BDF domain.. 7-1,8-1
bdf-CG, target ..11-3
bdf-CGC target.. 12-3, 12-13
bdf-doWhile (CGC demo) 12-25
bdf-if (CGC demo)... 12-25
bdfTiming (BDF demo) ...8-4
beamforming .. 6-19
Beep (DE block)... 10-12
behavioral modeling....................................... 4-7,E-1
Bell Labs .. 1-10
Bell Northern Research (BNR) 1-11

Berkeley CAD framework....................................2-21
Berkeley Camera Engineering.....................1-11, 13-4
Bhattacharyya, S...1-10
Bhattacharyya, S. S............................ 5-66, 5-67, 11-7
biased autocorrelation estimates...........................5-86
Bier, J..1-10
Bilung Lee ..5-44
Binary (SDF block) ..5-49
binaryCounter (DE demo)10-26
bindings ...2-25, 16-7
bindings command..2-11
biquad ...6-19
Biquad (C50 block) ..15-10
Biquad (CG56 block) ...13-13
Biquad (SDF block)...........................5-30, 5-73, 5-81
BISDN (broadband integrated services digital net-

work) ..10-21
bit reversed order..6-12
bit_reverse (HOF demo)..............................6-12, 6-20
Bitar, P...1-9, 10-1
bits (SDF block) ..5-8, 5-37
BitsToInt (C50 block)...15-10
BitsToInt (CG56 block)......................................13-12
BitsToInt (SDF block)..5-21
black and white monitors.............................2-42, 2-53
BlackHole (C50 block)...15-2
BlackHole (CG56 block)......................................13-2
BlackHole (CGC block)12-5, 14-7
BlackHole (DE block) ..10-8
BlackHole (SDF block) ..5-5
Blackman..5-7
Blackman window..5-57
BlendImage (SDF demo)......................................5-59
Block..E-1
block ..E-1
block (DE demo) ..10-30
block filtering ...5-33
blockage (DE demo)...10-26
BlockAllPole (SDF block)5-33
BlockAllPole (SDF star).......................................5-55
blockFFT (SDF star)...5-34
BlockFIR (SDF block) ...5-33
BlockLattice (SDF block)............................5-33, 5-85
blockname parameter..6-2
blockPredictor (SDF galaxy)................................5-33
BlockRLattice (SDF block).........................5-33, 5-85
blockVocoder (SDF galaxy).................................5-33
blockVox (SDF demo) ...5-58
Blosim...1-2
BNR..1-11
Boolean-controlled dataflow8-1, 12-1,E-1
Bowers, R. ..1-10
boxes..2-24, 16-3
broadband integrated services digital network (BIS-

The Almagest I-3

Ptolemy Last updated: 12/1/97

DN)...10-21
Brodersen, R. W. ..1-9
broken (SDF demo) ..5-53
Brown, D. W...4-13
Brown, R.. 1-9, 4-5, 10-2
Buck, J. ...12-1
Buck, J. T.1-9, 1-12, 2-1, 3-1, 4-1,4-4, 5-1, 5-66, 7-1,

8-1, 10-1, 11-1, 13-1, 15-1, 17-1, A-1
buffer sizes...7-8, 7-10
bug reports ..3-22, A-40
Burg (SDF block) 5-2,5-34, 5-85
burg (SDF block)..5-34
Burg's method for power spectrum estimation5-57, 5-

84
bus..6-3, 6-13
bus manipulation stars ..6-1
busconnect command3-3, 3-6
BusCreate (HOF block)..6-16
BusDeinterleave (HOF block)..............................6-15
Bush, B. ...1-10, 16-1
BusInterleave (HOF block)6-15
busManipulations (HOF demo)............................6-19
BusMerge (HOF block)..6-15
BusMerge (HOF star) ...6-20
BusMerge block..6-1
busses..5-53
busses (HOF demo) ..6-20
BusSplit (HOF block)........................6-13, 6-15, 6-16
BusToNum (SDF block).......................................5-21
butterfly (CGC demo)...12-19
butterfly (SDF demo) ...5-51
Butterworth filter ...5-30, 5-77
buttons (DE demo) ...10-30
buttons (SDF demo) ...5-61
bwDither (SDF demo) ..5-59

C
C code generation ..1-6, 12-1
C++ code generation ..5-67
C_INCLUDE_PATH environment variable 2-52,A-9
CAD frameworks..2-21
CAD group ...1-11
Cadence Leapfrog...14-7
calendar queue scheduling..................... 1-9, 4-5, 10-2
call-processing software4-13
cancelAction command3-3, 3-16
canonical direct form..5-76
cascadedBiquads (HOF demo)6-19
Case (DDF block)..7-9, 7-11
Case (DE star)...10-14
caseDemo (DE demo)...10-24
Cassotto, A. ... 1-10, 2-1, 16-1
Cathedral...4-14
CCITT Recommendation G.7115-21

cd command ..3-3, 3-14
CD Volume (CG56 S-56X demo)......................13-17
CDtoDAT (CGC demo)12-25
cell in vem .. 16-1
CellLoad (DE block) .. 10-19
cell-relay network...............................1-7, 4-13, 10-19
CellRoute (DE block)... 10-20
CellToImage (DE block).................................... 10-20
CellUnload (DE block)....................................... 10-19
cep (SDF demo) ...5-55
cepstrum ... 5-56
cexp (CGC galaxy)...12-8
CG domain ...11-1, E-1
CG56 (Code generation for the Motorola DSP 56000)

E-1
CG56 (Code generation for the Motorola DSP56000).

4-7
CG56 Simulator integer file input........................ 13-4
CG96 .. 4-14,E-2
CGC

EECS20, Introduction to Real-Time Systems. 12-
26

CGC (Code generation in C)..........................4-6, E-2
CGC domain...4-7, 12-1, 14-1
CG-DDF...E-2
Chain (HOF block)......................................6-11,6-17
Chain (HOF star) ..6-19
Chang, W.-T.1-9, 1-10, 2-1, 3-1, 6-1
change-layer, VEM .. 16-17
channel simulation.. 4-3
chaos... 4-3
chaos (CGC demo) ... 12-19
chaos (SDF demo)..5-56
chaoticBits (CGC demo)12-20
checkButton (CG56 CGC/S-56X block)..............13-6
checkButtonInt (CG56 CGC/S-56X block)13-6
Chen, M. J. ...1-9, 4-6, 5-1
childType, target parameter.................................. 11-4
chirp (C50 demo) ...15-12
chirp (CG56 simulator demo)13-16
chirpplay (SDF demo)..5-58
Chop (CGC block) ...12-9
Chop (SDF block) ...5-2,5-19
ChopVarOffset (C50 block)15-8
ChopVarOffset (CG56 block)13-11
ChopVarOffset (CGC block)12-9
ChopVarOffset (SDF block)5-19
circles (drawing)... 2-36
circuit synthesis4-7, 14-1, 14-2
circular convolution.. 5-80
Class font.. 15-4
clear-marks command2-7, 2-48, 2-50
click-to-focus..2-2
Clock (DE block)10-8,10-25

I-4

U. C. Berkeley Department of EECS

close-window command 2-11, 16-7
closing windows.................................... 2-4, 2-26, B-4
CLUST, SDF Scheduler option5-65, 5-66, 5-68
CLUST, SDF scheduler option 11-6
clustering... 7-5, 8-1
cntrastEnhance (SDF demo)5-60
code generation ..E-1

C++ ...5-67
domain...E-1
in C.. 12-1
Motorola DSP56000 13-1
TIC50 .. 15-1

codeDecode (SDF demo)5-55
codef (SDF block) ..5-47
code-generation.. 1-6
codei (SDF block)5-47, 5-48
coefficient quantization..5-76
Collect ..12-10
Collect (CGC block)12-10, 12-21
color .. 2-54, 2-55

changing.. 2-37
for data types... 2-37
palette..2-34
printers ...2-41, 2-53
problems with colormap A-21
window dump..2-43

ColorImage (SDF demo)......................................5-60
colormap.. A-21
Comb (C50 block)..15-11
Comb (CG56 block)...13-13
command completion... 16-3
commandline (CGC demo)12-20
command-line options.. 2-53
comments in parameters....................................... 2-16
Communicating Processes (CP) domain........ 1-7,E-2
communication network protocols......................... 4-5
communication networks 1-6, 4-5, 10-1, 10-27
communications demos, SDF5-54
communications stars, SDF..................................5-36
Commutator (C50 block)15-8
Commutator (CG56 block)13-11
Commutator (CGC block)....................................12-9
Commutator (SDF block)........... 5-2,5-18, 5-52, 6-10
Commutator (SDF star)..6-20
compact disc... 5-53
CompareMedian (SDF demo)..............................5-60
comparison (SDF demo)5-51
compile? ... 12-1
compile?, target parameter 11-3
CompileCGSubsystems 11-10, 13-17
CompileCGSubsystems target4-7, 14-1, 14-5
compileCommand parameter 12-1, 14-3
compile-facet command................................ 2-7, 3-19
compileOption parameter............................ 12-2, 14-3

compileOptions parameter....................................12-1
compile-SDF (SDF target)5-67
compile-time scheduling4-4,E-2
compiling Ptolemy... A-8
complex baseband envelope5-55
Complex data type (CG56).................................13-12
complex data type (CG56)...........................13-1, 15-1
complex LMS adaptive filter................................5-55
complex parameters..2-16
complex Particle type ...2-20
complex Particle type (table)................................2-20
complex signals ..5-53
complexColor ...2-37
complexExponential (SDF demo)5-52
computation graph ..5-1
computer architecture modeling10-1
CondGate (BDF block)...8-2
conditionals.. 4-4, 7-1, 7-11
conditionals (DE demo)......................................10-24
conj (CGC block) ...12-8
conj (SDF block) ..5-15
Conjugate_M (SDF block)5-24
connect command..3-3, 3-5
consistency

in dataflow..7-10, 8-1
in DDF...7-7
in SDF ...5-3

consistent graph, DDF..7-7
console window..2-53
console window for pigi3-19
Const (C50 block)...15-3
Const (CG56 block)..13-3
Const (CGC block)12-6, 14-9
Const (DE block)..10-9
Const (SDF block)...5-5, 5-73
Const (SR block) ..10-3
ConstCx (C50 block)..15-3
ConstCx (CG56 block) ...13-3
ConstCx (SDF block) ...5-8
constellation (SDF demo).....................................5-54
constellation display ...5-55
ConstFix (SDF block)...5-8
ConstInt (C50 block) ..15-3
ConstInt (CG56 block) ...13-3
ConstInt (SDF block) ...5-8
ConstThreshold (SDF block)................................5-49
consumption of tokens or particles.........................5-1
cont command ...3-3, 3-10
contents facet2-22, 2-34, 16-1,E-2
continuous-time random processes.....................10-28
Contrast (SDF block)..5-48
control stars, CG56....................................13-11, 15-8
control stars, SDF ...5-17
conversion stars, C50..15-9

The Almagest I-5

Ptolemy Last updated: 12/1/97

conversion stars, CG56.......................................13-12
conversion stars, SDF...5-20
convolution ..5-57, 5-73
Convolve (SDF block)..5-30
ConvolveCx (SDF block)5-31
Copy ...12-10
Copy (CGC block)..12-10
copying facets...2-50
copy-objects... A-33
copy-objects command................................2-11, 2-44
copy-objects, VEM..................................16-18, 16-21
Cos (C50 block)..15-6
Cos (CG56 block)...13-8
Cos (CGC block) ..12-8
Cos (SDF block) ...5-15
co-simulation 4-7, 14-1, 14-5
cosine (SDF galaxy) ...5-37
counter (up/down) ..10-23
CP (communicating processes) domain 1-7,4-13, E-2
CPLUS_INCLUDE_PATH environment variable...2-

52,A-9
create command...2-11, 2-26
create, VEM..16-21
create-circle, VEM ...16-18
create-geometry command2-36
create-geometry, VEM16-18
CreateSDFStar...11-10, 12-26
current domain..3-3
current galaxy ...3-2
current universe ..3-2
cursor ..2-31
curuniverse command............................ 3-2, 3-3, 3-19
Cut (C50 block) ..15-8
Cut (CG56 block) ...13-11
CxToFix (C50 block) ...15-10
CxToFix (CG56 block).......................................13-12
CxToFix (SDF block)...5-22
CxToFix_M (SDF block)5-23
CxToFloat (SDF block)..5-22
CxToFloat_M (SDF block)5-23
CxToInt (C50 block) ..15-10
CxToInt (CG56 block)13-13
CxToInt (SDF block)...................................5-22, 5-23
CxToRect (C50 block) ...15-9
CxToRect (CG56 block).....................................13-12
CxToRect (CGC block)......................................12-11
CxToRect (SDF block)................................5-20, 5-75

D
data-dependent flow of control...............................1-6
data-dependent iteration 4-4, 7-1, 8-4
dataflow ..1-6,E-2
dataflow, synchronous..12-1
dataIter (BDF demo)...8-4

DB (CGC block)... 12-12
DB (SDF block) ..5-16, 5-34
DCE... A-37
DctImage (SDF demo) ...5-60
DCTImageCodeInv (SDF block)5-46
DCTImageInv (SDF block)..................................5-46
DDF (dynamic dataflow)4-3, 7-1
DDF (dynamic dataflow) domain7-1, E-2

buffer size..7-8
inconsistencies ..7-7
wormhole .. 7-7

DDF domain... 1-6
DDF Schedulers ... 7-2
DDFClustSched.. 7-5
DDFClustSched class... 7-8
DDFSimpleSched class .. 7-4
DE...4-5
DE (discrete event) domain............1-6,4-5, 10-1,E-2

scheduler ... 10-1
within the SDF domain 10-5

debug control panel .. 2-13
debugging ..2-52, 2-53
decibels scale.. 5-34
decimation-in-time FFT 6-19
decimation-in-time FFT algorithm....................... 6-13
decision feedback equalizer 5-55
deep-reread, VEM .. 16-8
DEF, SDF Scheduler option...............5-65, 5-66, 5-68
DEF, SDF scheduler option 11-6
default-CG, target...11-2
default-CGC target ... 12-2
default-DDF target ... 7-8
default-VHDL target4-7, 14-1
deferrable star ... 7-4
defgalaxy command ..3-3, 3-8
delay ..5-17, 5-75
Delay (C50 block) ..15-9
Delay (CG56 block) ...13-11
Delay (CGC block)...12-10
Delay (DE block) ... 10-15
delay-free loop

in DE ... 10-4
in SDF ...5-4

delays.. 2-47
DE domain .. 10-4
in SDF ...5-4

delayTest (SDF demo) ...5-52
delayVsServer (DE demo) 10-26
delete-objects command..............................2-11, 2-27
delete-objects, VEM................................16-19, 16-20
delnode command ...3-3, 3-12
delstar command ...3-3, 3-11
deluniverse command......................................3-2, 3-3
demos ... 2-2

I-6

U. C. Berkeley Department of EECS

demoscript (SDF demo) 5-65
DeMux (CGC block)..12-9
DeMux (SDF block)....................................5-19, 5-52
derived class...E-2
DeScrambler (SDF block)....................................5-38
descriptor command.. 3-3, 3-9
design database ... 1-3, 2-21
DeSpreader (SDF block)5-38
determinacy.. 7-3
DeTroch, S. .. 1-10
dft (CGC demo) ... 12-20
DFT (discrete Fourier transform)......................... 5-79
DFT (discrete Fourier transform), two dimensional 6-

10
dft (SDF demo) ..5-56
dialog boxes ... 2-12
Diesta, R.. 1-10, 10-1
differential pulse code modulation.............. 5-46, 5-47
digital audio tape.. 5-53
digital circuit simulation 4-12
digital filtering.. 4-3
digital logic simulation... 5-21
digital signal processing demos, SDF5-55
digiWatch (FSM demo)11-4
Direct Adaptive Frequency Estimation Technique.. 5-

33
direct form II ... 5-31, 5-76
direct-form recursive filters 6-19
directory parameter .. 12-1
directory, target parameter 11-2
Dirichlet (CGC block)..12-8
Dirichlet (SDF block)...5-15
Discard (DE block) .. 10-12
disconnect command..................................... 3-3, 3-11
discrete event..E-2
Discrete event domain.. 10-1
discrete Fourier transform.................................... 5-56

two-dimensional.. 6-10
discrete-event ... 1-6

scheduler .. 1-9, 10-2
discrete-time Fourier transform (DTFT)..... 5-56, 5-70
display .. 2-54
DISPLAY environment variable................. 2-52, 16-2
display? .. 12-1
display?, target parameter 11-3
DisplayImage (SDF block)5-44
DisplayRGB (SDF block)5-45
displays (DE demo).. 10-30
display-schedule command 2-7, 8-3
DisplayVideo (SDF block)...................................5-45
distortion (DE demo) ... 10-29
distortionQ (DE demo)....................................... 10-29
Distributed Computing Environment.................. A-37
Distributor (C50 block) ..15-8

Distributor (CG56 block)13-11
Distributor (CGC block).......................................12-9
Distributor (SDF block)..............5-2,5-19, 5-52, 6-10
Dither (SDF block) ...5-48
DivByInt (C50 block)...15-5
DivByInt (CG56 block)..13-7
DivByInt (SDF block) ..5-13
documentation ...1-9, 15-1
domain1-6,2-4, 2-55, 4-1,E-2, E-3

command ...3-3
in pigi...2-55
in the interpreter ..3-18
SDF..5-1
timed and untimed...4-2

domains command...3-3, 3-4
doppler (SDF demo) ...5-56
do-while...8-1, 8-4
DownCounter (DDF block)....................................7-9
DownSample (C50 block)15-8
DownSample (CG56 block)13-11
DownSample (CGC block)...................................12-9
DownSample (SDF block) 5-2,5-19, 5-72
downSample (SDF demo)5-53
DPCMImage (SDF block)....................................5-46
DpcmImage (SDF demo)5-60
DPCMImageInv (SDF block)...............................5-47
drag ..2-24,2-24, E-3
drawing

boxes..2-24
circles ..2-36
lines ..2-24, 2-36
polygons ..2-36

DSP Station from Mentor Graphics4-14
DSP56000...13-1
DSP56k...4-7
DSP96k...4-14
DSPlayBQ (C50 block)15-11
DSPlayBQ (CG56 block)13-13
DSPWorm (CG56 S-56X in SDF Wormhole demo) ..

13-19
DTFT (discrete-time Fourier transform)5-70
DTFT (SDF block)5-35, 5-56, 5-79
dtft (SDF demo)..5-56
dtmf (CGC demo)...12-23
DTMFCodec (C50 demo)...................................15-12
DTMFCodec (CG56 CGC-S56X demo)13-18
DTMFCodec (CG56 simulator demo)................13-16
DTMFCodec (CGC demo)12-21
DTMFCodec (SDF demo)....................................5-54
DTMFDecoder (CGC block)..............................12-13
DTMFDecoder (SDF block)........................5-40, 5-41
DTMFDecoderBand (CGC block)12-12
DTMFDecoderBank (SDF block)5-40
DTMFGenerator (SDF block)5-6, 5-40

The Almagest I-7

Ptolemy Last updated: 12/1/97

dtmfKeyPad (CGC block)12-6
DTMFPostTest (CGC block)12-12
dtmfSpectrum (CGC S-56X demo)13-18
dynamic constructs ...7-1
dynamic dataflow1-6,7-1, E-3
dynamic flow of control in dataflow8-1
dynamic linking 1-11, 3-2, 3-14, A-7
dynamic scheduling in dataflow...........................7-11

E
echo canceling (CG56 S-56X demo)..................13-17
Eddins, S...1-9
EdgeDetect (SDF demo).......................................5-60
edit-comment command ...2-7
edit-domain command..2-7
edit-icon command ..2-7, 2-22
edit-label command 2-11, 2-36, 2-45
edit-label, VEM16-19, 16-22
editor (text) ...2-51
edit-params command . 2-7, 2-14, 2-15, 2-29, 2-32, 3-

20
edit-pragmas ...7-5
edit-pragmas command ..2-7
edit-seed command...2-7
edit-target command...2-7
Edwards, S.. 4-5, 10-1, A-1
EECS20 ..12-26
elliptic filter ..5-76
emacs 2-13, 2-52, 2-54, A-21
embedded systems..1-6
EndCase..7-6
EndCase (DDF block)7-9, 7-11
EndCase (DE star) ..10-14
EnvelopeGen (SR block)......................................10-5
environment variables2-41, 2-51

C_INCLUDE_PATH2-52, A-9
CPLUS_INCLUDE_PAT A-9
CPLUS_INCLUDE_PATH2-52
DISPLAY................................... 2-52, 2-54, 16-2
GCC_EXEC_PREFIX2-52, A-8
HOME ...2-52
ITCL_LIBRARY ..2-52
ITK_LIBRARY...2-52
IWIDGETS_LIBRARY................................2-52
LD_LIBRARY_PATH..................................2-52
LIBRARY_PATH.................................2-52, A-9
PATH ..2-53
path ..3-2
PIGIBW...2-51
PIGIRPC..2-51
PRINTER ...2-41, 2-53
PT_DEBUG ...2-52, 2-54
PT_DISPLAY ..2-6, 2-51
PTARCH ...2-52, A-9

PTMATLAB_REMOTE_HOST 2-52
PTOLEMY...........................2-1, 2-52, A-19, B-1
PTOLEMY_SYM_TABLE 2-52
PTPWD ... 2-52
QCKMON... 2-53
S56DSP ... 2-53
SHLIB_PATH... 2-53
SIM_ARCH .. 2-53
SYNOPSYS .. 2-53
TCL_LIBRARY.. 2-52
TK_LIBRARY.. 2-52
TYCHO... 2-52
USER .. 2-53

equiripple FIR command.. 2-7
equiripple FIR filter designC-1
eratosthenes (DDF demo)..............................7-10,9-6
errorDemo (DDF demo)....................................... 7-10
errors, finding the source...................................... 2-49
Ether (DE block) .. 10-22
EtherRec (DE block)10-22,10-28
EtherRecMes (DE block)10-22
EtherSend (DE block)10-22,10-28
Evans, B.1-9, 3-1, 4-1, 5-1, 5-48, 9-1, 10-1, 13-1
event ... 10-1,E-3
event horizon ..E-3
event path ... 10-4
event queue..4-5, 10-2
event-driven model of computation 4-5
event-driven simulation.. 4-12
EventHorizon in DDF ..7-12
excess bandwidth..5-79
exit command ..3-3, 3-15
exiting pigi.. 2-4
exit-pigi command.. 2-7
Exp (CGC block)..12-8
Exp (SDF block)..5-15, 5-73
expgen (CGC block)...12-6
expgen (SDF block)5-8, 5-73
expjx (C50 block)...15-6
expjx (CG56 block)..13-8
expjx (CGC block) ...12-8
expjx (SDF block) ..5-15
exponential (HOF demo)......................................6-20
exponential distribution.. 10-9
exponential sequences .. 5-73
Expr (CG56 block)13-9, 15-7
Expr (CGC Block)..12-9
expressions in parameter values........................... 2-15
eye (SDF demo) ...5-54
eye diagram display.. 5-55

F
facet ..2-4, 2-21, 16-1,E-3
facet number command .. 2-7

I-8

U. C. Berkeley Department of EECS

fast Fourier transform (FFT) algorithm .5-2, 5-35, 13-
14, 15-11

Fay, T. .. 5-51
feedback

around quantizer structure.................... 5-58, 5-83
systems.. 5-74

FFT...5-34, 6-13, 6-19
two dimensional .. 6-10

FFT (fast Fourier transform) 5-2, 5-36
fft (HOF demo) ..6-19
FFT (SDF block) ..5-56
fft2d (HOF demo) ..6-19
FFTCx (C50 block) ..15-11
FFTCx (CG56 block) ...13-14
FFTCx (CGC block) .. 12-12
FFTCx (SDF block)5-2,5-3, 5-35, 5-56, 5-70, 5-75, 5-

79, 6-10
fibonnacci (DDF demo) 7-11
FIFOQueue (DE block)........................... 10-16,10-27
file input .. 5-7, 10-10
file input for parameters.............................. 2-16, 2-19
file parameter ... 12-1
file, target parameter 11-3, 11-7
fileColor ...2-37
files in parameters .. 2-20
Filter (DE block) 10-23,10-28
filter banks.. 4-3
filter design ... 4-3, 5-56, C-1
filterBank (CGC demo)...................................... 12-20
filterBank (SDF demo)...5-53
filterBank-NonUniform (SDF demo)...................5-53
filterPrototype (SDF demo)5-64
find-name command .. 2-7
finite Fourier series approximation 6-19
FIR 2-18, 5-31,5-31, 5-31,5-31, 5-32, 5-55
FIR (C50 block) ...15-11
FIR (CG56 block) ..13-14
FIR (CGC block).. 12-12
FIR (finite impulse response filtering)................. 5-33
FIR (SDF block).......5-2,5-31, 5-53, 5-55, 5-72, 5-74
FIR filter design ... 5-78, C-1
FIR lattice filter ..5-86
FIRCx (SDF block)5-31, 5-53
FIRCx (SDF star) ... 5-2
FIRFix (CGC block) ..12-12
FIRFix (SDF block) ...5-31
firing of actors or stars 5-1,E-3
firing rule..E-3
firingsPerIteration pragma7-5, 7-11, 7-12
first-in first-out (FIFO) queue 10-16
fixCGC (CGC demo) ...12-26
fixColor ..2-37
fixConversion (CGC demo)12-22
fixConversion (SDF demo)..................................5-61

fixed-point parameters..2-16
fixFIR (CGC demo)..12-22
fixFIR (SDF demo)...5-61
fixIIRdf (SDF demo) ..5-61
fixMpyTest (CGC demo)12-22
fixMpyTest (SDF demo)5-61
FixToCx (C50 block) ...15-10
FixToCx (CG56 block).......................................13-12
FixToCx (SDF block)...5-22
FixToCx_M (SDF block)5-22
FixToFloat (SDF block)5-22
FixToFloat_M (SDF block)..................................5-22
FixToInt (SDF block) ...5-22
FixToInt_M (SDF block)5-22
FlipFlopJK (DE block)10-19
float Particle type..2-20
float Particle type (table)2-20
floatColor..2-37
FloatToCx (SDF block)..5-22
FloatToCx_M (SDF block)5-22
FloatToFix (SDF block)5-22
FloatToFix_M (SDF block)..................................5-22
FloatToInt (SDF block) ..5-22
FloatToInt_M (SDF block)...................................5-22
FloatVecData class ...10-14
Floor (CGC block)..12-8
Floor (SDF block)...5-15
FlushNet (DE demo)...10-27
FlushQueue (DE block)......................................10-16
fm (CGC demo)..12-23
fm (CGC galaxy) ..12-9
fmplay (SDF demo)..5-58
fmSpectral (CGC demo).....................................12-23
focus ...2-2
fonts .. 2-45, 2-54, A-20
foreach Tcl command...3-20
Fork (BDF block) ...8-2
Fork (C50 block) ..15-8
Fork (CG56 block)13-11, 15-8
Fork (CGC block)...12-9
Fork (DE block)..10-12
Fork (SDF block)...5-17, 5-75
forks

automatic ...3-6
star ..E-3

formal parameters...2-32
four_level (DE demo)...10-29
Fourier series ..6-19
Fourier transform...2-44, 5-56
fourierSeries (HOF demo)....................................6-19
FrameMaker2-41, 2-43, 15-1, 15-2, A-21
framework...2-21
Frampton, P. ...12-23
Fratt, M. ..1-10

The Almagest I-9

Ptolemy Last updated: 12/1/97

Free Software Foundation1-11
freqPhase (SDF block)5-39, 5-41, 5-52
freqPhaseOffset (SDF demo)5-52
freqsample (SDF demo)5-56
frequency domain convolution5-57
frequency domain filtering4-3
frequency offset ...5-39, 5-41
frequency response ...5-75
frequency sampling method5-56
frequency sampling method for filter design......... C-1
FSM (Finite State Machine) domain4-5
fullVQ (SDF demo)..5-60
fullVQCodebk (SDF demo)5-60
FullyConnected, target ...11-3
funcName parameter12-1, 14-3
functional block diagram.............................4-14, 14-1
functional language ..4-14
functional modeling..4-7,E-3
functional programming ...6-2

G
g++ compiler ... A-7
Gabriel ..1-2
Gain (C50 block) ..15-4
Gain (CG56 block)13-6, 13-7
Gain (CGC block)...12-8
Gain (SDF block) ...5-12
Gain_M (SDF block)..5-25
GainInt (C50 block)..15-5
GAL (CGC block) ..12-12
GAL (SDF block) ...5-31
Galaxy...2-4, E-3

creating ..2-30
define-params ..2-32
defining in ptcl ..3-8
parameters ...2-32
PortHole ..2-30
terminal..2-30
terminals ..2-38

Gantt chart ...E-3
Gantt chart and itcl .. A-13
Gantt chart display..11-9
ganttChart, target parameter11-4
gaussian (SDF demo) ...5-52
Gaussian noise ..5-81
Gaussian white noise5-6, 5-39, 5-55, 13-3, 15-3
GCC_EXEC_PREFIX environment variable.2-52,A-

8
gdb debugger ...2-52, 2-54
GenTarget (SDF block) ..5-42
geodesic size, DDF...7-8
GGAL (CGC block) ...12-12
GGAL (SDF block) ..5-31
Girault, A... D-1

GLA..5-34
GLA (SDF block)...5-34
Gnu tools .. 1-11
Goei, E. E. ...1-10, 2-1
Goertzel (CGC block) ..12-12
Goertzel (SDF block) ...5-31
GoertzelDetector (CGC block)...........................12-12
GoertzelDetector (SDF block)5-41
GoertzelPower (CGC block)12-12
GoertzelPower (SDF block)5-35
goertzelTest (C50 demo)....................................15-12
goertzelTest (CG56 demo)13-15
graphical interface .. 2-1
graphicEq (CGC demo)......................................12-27
graphing.. 17-1
Gray, P.. 1-9
grid ... 2-26
Grimwood, M. .. 1-10
group delay... 5-75
Gu, S... 1-9
Guntvedt, E... 1-10
Gutierrez, Luis.. 15-1
gzip .. A-6

H
Ha, S. 1-9, 4-1, 5-67, 7-1, 10-1, 11-1, 12-1
halt command ..3-3, 3-10
halting problem .. 7-3
Hamilton, E. ... 1-10
Hamming..5-7
Hamming window.. 5-57
Han, R... 10-1
HandShake (DE block)....................................... 10-22
handShakeQ (DE block)..................................... 10-23
Hanning ..5-7
Hanning window ...5-57,5-79
hardcopy ..2-40, 2-53
hardware systems ..1-6, 4-5
Harrison, D.1-10, 1-12, 2-1, 2-9, 16-1, 17-1
Haskell, P. 1-9, 5-1,5-44, 10-1
hdShotNoise (DE demo) 10-28
Heine, H. ...1-10, 2-1
help command ...3-3, 3-15
Henon map ... 5-56
Hermitian_M (SDF block)5-24
high-density shot noise....................................... 10-28
higher-order functions4-3, 6-1, 7-10
Hilbert (SDF block)..5-31
Hilbert transform.. 5-56
hilbertSplit (SDF block)5-38
histogram..5-10, 5-52, 10-11
Ho, W.-H. ... 1-10
HOF..E-3
HOF (higher-order functions)4-3

I-10

U. C. Berkeley Department of EECS

HOF Domain.. 6-1
HOME environment variable............................... 2-52
homogeneous synchronous dataflowE-3
host, target parameter ... 11-3
HostAOut (CG56 block)13-4
HostButton (CG56 QDM/S-56X block)13-5
HostMButton (CG56 QDM/S-56X block)...........13-5
HostSlider (CG56 QDM/S-56X block)................13-5
HostSliderGX (CG56 S-56X block)13-4
How, S.. 1-10
Huang, C.-T... 1-10, 13-1
Huang, W.-J. ... 1-10, 2-1
Hughes Network Systems 1-11
Hughes Research Laboratories............................. 1-11
Hylands, C.1-9, 1-10, 2-1, 3-1, 5-1, 6-1, 9-1, 10-1, 11-

1, 10-1, 11-1, 12-1, 13-1, 14-1, 15-1, 16-1, A-
1, D-1

Hyper.. 4-14

I
I/O stars, C50 ...15-3
I/O stars, CG56 ...13-3, 13-4
icons ...2-4, 2-29, 16-1,E-4

background..2-34
reflecting ... 2-45
rotating .. 2-45
shadow ..2-34

ideal low-pass filter .. 5-78
Identity_M (SDF block)...5-9
IEEE floating point numbers............................... A-35
IEEE floating-point numbers 17-1
IfGr (HOF block) ...6-17
if-then-else ...7-11, 8-1, 8-4
ifThenElse (BDF demo)..............................8-4, 12-25
ifThenElse (DDF demo)....................................... 7-10
IfThenElse (HOF block)6-17
IIDGaussian (CG56 block)13-3, 15-3
IIDGaussian (SDF block).......................................5-6
IIDUniform (C50 block)15-3
IIDUniform (CG56 block)13-3
IIDUniform (CGC block)............................12-6, 14-9
IIDUniform (SDF block)5-6, 5-82
IIDUniform(C50 Block)15-3
IIR ...5-31, 5-32
IIR (C50 block) .. 15-10
IIR (CG56 block) ... 13-13
IIR (CGC block)... 12-21
IIR (SDF block)5-31, 5-74, 5-76, 5-81
IIR lattice filters ... 5-33
iirDemo (CGC demo)...12-21
iirDemo (SDF demo) ...5-57
IIRFix (SDF block)5-31, 5-32
iirTest (C50 demo) ...15-12
iirTest (CG56 demo) ..13-15

image coding ..5-46
image prcessing demos, SDF5-59
image processing ..4-3
image processing stars, SDF.................................5-44
ImageToCell (DE block)10-19
IMEC ...1-10, 4-14
Impulse (C50 block) ...15-3
Impulse (CG56 block) ..13-3
Impulse (CGC block) ...14-9
impulse (CGC demo)..12-23
Impulse (DE block) ..10-8
Impulse (SDF block)5-6, 5-74
inconsistency

in dataflow...7-10
in DDF...7-7
in SDF ..5-3, 5-53

inconsistent facets.......................................2-50, A-19
incremental linking...3-2
index entries

in FrameMaker ..15-2
Inf ..A-19, A-35
init.pal facet ...2-23, 2-29
initDelays (SDF demo)...5-63
input_map parameter ..6-2
insanity (BDF demo) ..8-4
instance ...2-27
instance name ...3-20
intColor...2-37
integer Particle type (table)2-20
Integrator (C50 block) ..15-6
Integrator (CG56 block)13-8
Integrator (CGC block)...12-8
integrator (CGC demo).......................................12-19
Integrator (SDF block) ...5-13
integrator (SDF demo)..5-52
interface ..16-1
interface facet2-22, 2-27,2-34, E-4
interp (CGC demo) ...12-20
interp (demo) ..5-53
interp (SDF demo)..5-53
interpolation...5-2, 5-53
interrupt, VEM ...16-8
IntReadFile (CG56 block)13-4
IntToBits (C50 block)...15-10
IntToBits (CG56 block)......................................13-12
IntToBits (SDF block)..5-21
IntToCx (C50 block) ..15-10
IntToCx (CG56 block)13-13
IntToCx (SDF block)..5-22
IntToCx_M (SDF block)5-22
IntToFix (C50 block)..15-10
IntToFix (CG56 block).......................................13-13
IntToFix (SDF block) ...5-22
IntToFix_M (SDF block)5-22

The Almagest I-11

Ptolemy Last updated: 12/1/97

IntToFloat (SDF block) ..5-22
IntToFloat_M (SDF block)...................................5-22
IntToString (SR block) ...10-4
invalid masters... A-19
Inverse_M (SDF block)..5-25
ISSubSH (SDF block) ..5-29
Itcl...1-11,E-4
itcl .. A-13
ITCL_LIBRARY environment variable...............2-52
ItclCounter (SR block) ...10-4
ItclDatabase (SR block)..10-4
ItclDisplay (SR block)..10-4
ItclEditor (SR block) ..10-4
ItclIn (SR block) ...10-4
ItclInOut (SR block) ...10-4
ItclModeSelect (SR block)10-4
ItclOut (SR block) ..10-4
iteration.. 7-1, 7-3, 7-11,E-4

in DDF...7-7
ITK_LIBRARY environment variable.................2-52
IWIDGETS_LIBRARY environment variable2-52

J
Joes scheduling' ..11-6

K
Kahn process networks...4-4
Kahn, G...9-5
Kahn, J. M. ...1-9
Kahn74fig2 (PN demo) ..9-6
Kahn77fig3-opt (PN demo)....................................9-6
Kahn77fig4 (PN demo) ..9-6
Kahn77fig4-opt (PN demo)....................................9-6
Kaiser..5-7
Kalavade, A. .. 1-9, 4-1, 5-1
Kalman filtering...4-3, 5-5
Kalman_M (SDF block)5-63
Kamas, A.1-9, 1-10, 2-1, 5-1, 5-70, 6-1, 15-1, A-1
Karp & Miller ...7-12
Karp, R. M..5-1
Karplus-Strong algorithm.....................................5-58
kernel of Ptolemy ...2-21,E-4
key bindings..2-25
keyboardFocusPolicy ...2-2
Khazeni, A...1-9, 5-1
Khiar, K. ..5-42, 6-1
kill-application, VEM...16-22
kill-buffer, VEM...16-8
Knightly, E.1-9, 4-5, 10-1, 10-2
knownlist ..3-2
knownlist command...3-3, 3-9
KSchord (SDF demo) ...5-58
Kuroda, I..1-9, 1-10

L
labels

facets ... 2-45
icons .. 2-36
vem bug.. A-33

Lane, T. ..2-1, 6-1, 10-1
Lapsley, P. 1-9, 1-10, 2-1, 15-1
laser phase noise... 5-55
last-in first-out (LIFO) queue............................. 10-16
LastOfN (DDF block) .. 7-9
Lattice (SDF block).....................................5-32, 5-85
lattice (SDF demo) ...5-57
lattice filters..5-33, 5-57, 5-85
latticeDesign (SDF demo)....................................5-57
layer... A-33,E-4
layer palette ..2-34
layer-display command2-11, 2-43, 16-14
layers in Vem ..2-34, 2-45
lazy evaluation..7-7
LBTest (DE demo) ... 10-28
ld.so errors... A-20
LD_LIBRARY_PATH environment variable 2-52
LeakBucket (DE block)...................................... 10-13
Leapfrog, Cadence ... 14-7
Lee, B. .. 1-10, 4-5, 5-1, 11-1
Lee, E. A.1-9, 2-1, 3-1, 4-1, 4-6, 5-1, 5-70, 6-1, 7-1, 8-

1, 10-1, 11-1, 12-1, 14-1, 15-1, 16-1, 17-1, A-
1

Lee, J. ... 1-11
Lee, S...4-12, 4-13
Lee, S.-J.. 1-10
LevDur (SDF block)................... 5-2,5-35, 5-85, 5-86
levinsonDurbin (SDF demo)5-57
Levinson-Durbin algorithm...... 5-34, 5-35, 5-57, 5-84
Li, W... 1-10
LIBRARY_PATH environment variable.....2-52,A-9
libXext.so.4

not found .. A-20
lightweight process library 4-13
Limit (C50 block)...15-6
Limit (CG56 block)..13-8
Limit (CGC block) ...12-9
Limit (SDF block) ..5-15
line.. 2-24
linear distortion .. 5-39
linear phase filtering... 5-75
linear prediction....................................4-3, 5-34, 5-42
linearPrediction (SDF demo)5-57
lines .. 16-3
lines (drawing).. 2-36
link command..3-4, 3-14
linking new stars in ptcl3-2, 3-14
linkOptions parameter12-1, 12-2
Linnartz, J.-P. ... 1-9
LinQuantIdx (SDF block)5-13
Lisp..4-3, 6-1

I-12

U. C. Berkeley Department of EECS

listobjs command ... 3-4
LMS .. 5-32,5-33
LMS (C50 block) ...15-11
lms (C50 demo)..15-12
LMS (CG56 block) ..13-14
lms (CG56 CGC-S56X demo)13-18
lms (CG56 simulator demo)...............................13-16
LMS (CGC block).. 12-12
LMS (SDF block)...............................5-32, 5-55, 5-82
LMS adaptive filter .. 5-55
LMS adaptive filter, complex5-55
LMS adaptive filters... 5-42
LMSCx (SDF block) ..5-32
LMSCxTkPlot (SDF block)5-32
lmsDTMFCodec (C50 demo)15-13
lmsDTMFCodec (CG56 CGC-S56X demo)......13-18
lmsDTMFCodec (CG56 simulator demo)13-16
lmsDTMFCodec (SDF demo)..............................5-54
LmsDTMFDecoderBank (SDF block).................5-41
lmsDualTone (SDF block) 5-41,5-41
lmsFreqDetect (SDF demo)5-52
LMSGanged (C50 block)...................................15-11
LMSGanged (CG56 block)13-14
LMSLeak (SDF block)...5-32
LMSOscDet (SDF block).....................................5-33
LMSPlot (SDF block) ..5-32
LMSPlotCx (SDF block)5-33
LMSRx (CG56 block)..13-14
LMSTkPlot (CGC block)........................ 12-12, 14-11
LMSTkPlot (SDF block).............................5-33, 5-82
load command .. 3-13
load?, target parameter ... 11-3
load-star command... 2-7
load-star-perm command 2-7
Log (C50 block) ...15-6
Log (CG56 block) ..13-8
Log (CGC block) ...12-9
Log (SDF block) ...5-15, 5-73
log file pigiLog.pt .. 3-20
log-bindings, VEM... 16-8
logFile ... 7-9, 8-2
logFile, target parameter5-65, 5-66, 11-4
Logic (DE block) 10-18,10-24
logic (DE demo)... 10-24
Logic (SDF block) ...5-17
logic stars, C50...15-7
logic stars, CG56..13-10
logic stars, SDF..5-16
logicTest (C50 demo)...15-12
logicTest (CG56 demo)......................................13-15
Loh, J.. 1-10
look-inside command...................................... 2-5, 2-7
LookupTbl (CG56 block)............................13-9, 15-7
loop (BDF demo) ..8-4, 12-25

loop (CGC demo) ...12-20
loop (DDF demo) ...7-11
loop schedulers5-66, 5-66,5-66, 11-7
loopingLevel, target parameter.......... 11-2, 11-6, 11-7
loopScheduler, target parameter..................5-65, 5-66
loop-SDF ..5-67
loopTheLoop (BDF demo)8-4
LossyInput (DE block)10-13
lossySpeech (SDF demo)5-54, 5-58
lossySpeechPrevCell (SDF demo)5-54, 5-58
Lu, B. ..5-48

M
M56K Simulator file input13-4
machineNames parameter12-4
MacQueen, D. B. ..9-5
Magnavox (CG56 S-56X block)13-4
MagnavoxIn (CG56 S-56X block)13-4
main universe..3-19
make .. A-12
Makefile_C target...12-2
make-schem-icon command.......2-7, 2-29, 2-31, 2-38
make-star command.......................................2-7, 2-47
making icons...2-29
man command ...2-7, 2-10
manifest iteration ..8-4
manual, printing..15-1
manualAssignment, target parameter11-4, 11-14
Map (HOF block) ..6-2, 6-16
mapcar function in Lisp...................................4-3, 6-1
MapGr (HOF block) ...6-17
Markov ...5-51
master ..E-4
masters program2-50, A-19,E-4
matched filtering...5-54
Math Works, Inc...5-26
Mathematica ...2-18
mathematica command...3-4
Matlab..2-18, 5-26
Matlab (SDF block)..5-11
matlab command ..3-4
Matlab_M (SDF block)5-9, 5-27
MATLAB_SCRIPT_DIR environment variable..5-26
MatlabCx_M (SDF block).............................5-9, 5-27
Matrix (SDF block) ..5-9
matrix operations in SDF...............................5-2,5-23
MatrixParticle class ..6-9
MatrixTest1 (SDF block)5-62
MatrixTest2 (SDF block)5-63
MatrixTest3 (SDF block)5-63
maxBufferSize..7-8
maxBufferSize in DDF....................................7-7,7-8
maximal-length shift register................................5-54
maximum buffer size in DDF.................................7-8

The Almagest I-13

Ptolemy Last updated: 12/1/97

maximum entropy power spectrum estimation5-34
maximum entropy spectral estimation..................5-35
maximum entropy spectrum estimation5-34
MaxMin (C50 block)..15-6
MaxMin (CG56 block) ...13-8
MaxMin (CGC block) ..12-9
MaxMin (SDF block) ...5-15
MC_DCT (SDF demo) ...5-60
McLennan, M. ...1-10, 1-11
MDSDF domain ..4-6, 6-9
mean of a random process10-25
MeasureDelay (DE block).......................10-17,10-27
measureDelay (DE demo)10-27
MeasureInterval (DE star)10-17
MedianImage (SDF block)5-48
member ..E-4
memory leaks... A-33
Mentor Graphics..1-11, 4-14
menu

pigi.. 2-4, 2-7, 16-3
vem......................................2-9, 2-11, 2-35, 16-3

Merge (DE block)....................................10-13,10-25
merge (DE demo) ...10-25
Message class ..10-19, 10-21
message queue domain ...1-7
MessageParticle class ...6-9
Messerschmitt, D. G. 1-9, 2-1, 5-1
method ...E-4
microphone array..6-19
Midi (SR demo)..10-5
MIDIin (SR block) ...10-4
Mike Peck, Berkeley Camera Engineering13-21
Miller, R. E. ..5-1
minimum mean-square-error (MMSE).................7-12
minimum-phase polynomials5-56
miscIntOps (C50 demo)15-12
miscIntOps (CG56 demo)...................................13-15
MIT...2-2
Mitsubishi ...1-11
model of computation..............................4-1,4-2, E-4
Model Technology VHDL simulator4-7, 14-1
Modem (CGC S-56X demo)13-18
modem (SDF demo) ...5-54
modems...4-3
modulation...5-52, 5-70
Modulo (CGC block)..12-9
Modulo (SDF block)...5-15
modulo (SDF demo) ...5-52
ModuloInt (C50 block)...15-6
ModuloInt (CG56 block)......................................13-9
ModuloInt (CGC block)12-9
ModuloInt (SDF block) ..5-15
modulus8 (FSM demo)...11-3
MonoIn (CGC block) ...12-6

MonoOut (CGC block)...12-8
Motif window manager .. 2-2
MotionCmp (SDF block)5-47
MotionCmpInv (SDF block)5-47
MotionComp (SDF demo)5-60
Motorola 1-11, 4-7, 4-14, 13-1
Mountford, B. ... 1-11
move-objects command........ 2-11, 2-44, 16-20, 16-21
moving facets ... 2-50
moving objects ... 2-44
moving terminals.. 2-37
MPandBinary (SDF block)...................................5-49
MPNeuron (SDF block)5-49
MPxorBinary (SDF block)5-49
Mpy (C50 block) ..15-4
Mpy (CG56 block) ...13-6
Mpy (CGC block)... 12-8
Mpy (SDF block) ...5-12
Mpy (SDF) star...2-31
Mpy_M (SDF block)..5-25
MpyCx (C50 block) ...15-4
MpyCx (CG56 block)...13-7
MpyInt (C50 block)..15-5
MpyInt (CG56 block)...13-7
MpyRx (CG56 block)...13-7
MpyScalar_M (SDF block)..................................5-25
MpyShift (C50 block) ..15-5
MpyShift (CG56 block)13-7
MQ (message queue) domain........................1-7, 4-13
MRVQ (SDF demo) ...5-61
MRVQCodeBk (SDF demo)................................5-60
MRVQCoder (SDF block)5-34
MRVQmeanCB (SDF demo)5-60
MRVQshapeCB (SDF demo)...............................5-60
MuLaw (SDF block)5-21, 5-40
multidimensional data .. 6-9
multidimensional synchronous dataflow domain... 6-9
multiFork (C50 demo)..15-12
multiFork (CG56 demo).....................................13-15
MultiIn (CG block)...11-15
MultiInOut (CG block).......................................11-15
multilink command3-4, 3-14
multimedia systems.. 4-5
MultiOut (CG block)..11-15
Multiple (SDF block) ...5-17
multiple inputs.. 2-46
multiple outputs.. 2-46
multiple-processor schedulers11-7
MultiPortHole... 2-46
multiporthole .. 6-14
MultiPortHole class.. 3-6
MultiPortHoles ... 3-7
multiprojection ... 6-10
multirate (SDF demo)...5-53

I-14

U. C. Berkeley Department of EECS

multirate demos, SDF ..5-53
multirate filters...............................5-31, 13-14, 15-11
multirate signal processing.....................4-3, 5-2, 5-72
MultiTone (CG56 S-56X in SDF Wormhole demo) ...

13-19
Murthy, P. .. 1-10
Murthy, P. K.......................................5-66, 11-1, 11-7
MUSIC_M (SDF block).......................................5-36
Mux (C50 block) ..15-8
Mux (CG56 block) ...13-11
Mux (CGC block) ..12-9
Mux (SDF block) ..5-19, 5-52
Mux (SR block)..10-4
muxDeMux (SDF demo)5-52
mwm... 2-2

N
names of terminals ... 2-45
nameSuffix parameter .. 12-4
NaN ... A-19, A-35
National Science Foundation (NSF) 1-11
Naval Research Labs (NRL) 1-11
NEC.. 1-10
Neg (C50 block)...15-5
Neg (CG56 block) ..13-7
nested loops.. 8-4
net... 2-48,E-4
Netscape .. A-21
NetworkCell class .. 10-19
Networks Of Workstations (NOW) 12-4
Neuron (SDF block)...5-49
newstate command.. 3-4, 3-6
Newton, R. ... 1-11
newuniverse command.................................... 3-2, 3-4
Niehauss, D. ... 1-10
node command .. 3-4, 3-6
nodeconnect command.................................... 3-4, 3-6
noise ... 5-6, 5-39, 13-3, 15-3
noiseChannel (SDF block)5-39, 5-41
noisySines (CGC demo).....................................12-24
non-determinacy... 4-2
nonlinear... 5-55
nonlinear (CGC block).......................................12-20
nonlinear distortion 5-39, 5-55
nonlinear stars

C50..15-5
CG56...13-7
SDF ...5-13

nonLinearDistortion (SDF block)5-39, 5-41
Nop (HOF block) ..6-16, 6-17
normal distribution... 10-9
Not (BDF block) ..8-3
NOWam target ... 12-4
nprocs, target parameter 11-3

NRL ..1-11
NSF...1-11
Null (DE block) ..10-8
numOverlapped ..7-8
numports command ...3-4, 3-7
NumToBus (SDF block).......................................5-21
Nyquist frequency ..5-78

O
O’Reilly, M..1-10, 1-11
object ...E-4
Oct ..16-1,E-4
oct tools1-3, 1-11,2-4, 2-21, E-4
oct units ..2-34
oct2ptcl ...3-22
octmvlib program ...2-50
Office of Naval Technology (ONT)1-11
olwm window manager ..2-2
OneDoppler (SDF block)5-43
oneStarOneProc, target parameter........................11-4
ONT..1-11
Open Windows .. A-20
open-facet command 2-7, 2-23, 2-30
open-look window manager2-2
open-palette command......................... 2-7, 2-24, 2-30
open-window command 2-11,2-26, 16-8
OpenWindows ..2-2, B-1
optfir program...5-79, C-1
optimized mode, de ..10-7
options ..2-55
options command..2-7
OrderTwoInt (C50 block).....................................15-6
OrderTwoInt (CG56 block)..................................13-9
OrderTwoInt (CGC block)12-9
OrderTwoInt (SDF block)5-15
Ousterhout, J..1-11, 3-1
output_map parameter ..6-2
overlapAdd/FFT (SDF demo)5-57

P
Pack_M (SDF block)..5-24
packetColor...2-37
Packetize (DE block)..10-14
packet-switched network10-29
packet-switched networks4-5, 10-19
Pad (C50 block)..15-9
Pad (CG56 block) ...13-11
palette ..2-4, 2-22, E-4
palette command................................ 2-11,2-34, 16-8
pan command..................................... 2-11,2-26, 16-9
parallel architecture ..1-6
parallel schedulers ..11-7
parameter_map parameter6-2
parameters......................................2-14, 3-6, 6-2,E-4

actual ...2-32

The Almagest I-15

Ptolemy Last updated: 12/1/97

complex ...2-16
expression language2-15
expressions ..2-15
formal ..2-32
Galaxy ...2-32
Mathematica ..2-18
Matlab..2-18
setting ..2-15
string..2-19
Tcl..2-17

parametricEq...12-27
ParametricEq (CGC block).................................12-12
parametricEQ (CGC demo)................................12-26
parent target ..2-55
Parks, T...12-1
Parks, T. M.1-9, 4-1,4-4, 4-13, 5-1, 6-1, 7-1, 9-1, 10-1
Parks95fig3.11 (PN demo)9-7
Parks95fig3.5 (PN demo)9-7
Parks95fig4.1 (PN demo)9-7
Parks-McClellan algorithm2-18, 5-78, C-1
particle ...E-4
particle type ..2-20
PassGate (DE block)...10-13
PATH environment variable.................................2-53
path environment variable2-1, 3-2
Patterson, D. ...1-10
PattMatch (SDF block)...5-36
PCM (pulse code modulation)..............................5-84
PCMBitCoder (SDF block)5-21, 5-42
PCMBitDecoder (SDF block)5-21
PCMReadInt (SDF block)5-8
PCMVoiceRecover (DE block)..........................10-21
PcwzLinear (SDF block)5-16
Peck, M...13-4
PeekPoke (CG56 CGC/S-56X block)13-6
perfect reconstruction filter bank..........................5-53
perfectReconstruction (SDF demo)......................5-59
periodogram..5-84
periodogram (SDF block).....................................5-36
periodogram method for power spectrum estimation..

5-57
permlink command..3-4, 3-14
PGM format for images..5-44
phase jitter ... 5-39, 5-41, 5-55
phase noise..5-55
phase response ..5-75
phase unwrapping...5-36
phased array beamforming4-3
phased_array (HOF demo)6-19
phased_Array (SDF demo)...................................5-61
phasedArray (SDF demo).....................................5-57
phase-locked loops ...4-3
phaseShift (SDF block)5-32, 5-39, 5-56
phase-space plots ..5-56

Philips... 1-11
phoneLine (C50 demo).......................................15-13
phoneLine (CG56 CGC-S56X demo)13-18
phoneLine (CG56 simulator demo)....................13-16
physical editing style..2-34
physical mode in vem... 16-1
physical view of a facet ..2-34
picture (DDF demo) ... 7-11
pigi..1-3, 2-1, 2-4, E-5

command line options 2-53
exiting.. 2-4
starting... 2-53
using ptcl within pigi..................................... 3-19

pigi menu..2-4, 2-7, 16-3
PIGIBW environment variable............................. 2-51
pigiLog.pt file... 3-20
pigiRpc1-3, 2-4,2-4, 2-21, 2-54, 16-1, 16-2,E-5
PIGIRPC environment variable 2-51
pigiRpc.debug .. 2-54
pigiRpc.ptiny .. 2-54
pigiRpc.ptrim.. 2-54
pigiXRes9...2-54, A-20
Pino, J. .. 14-1
Pino, J. L...1-9, 11-1, 13-1
pipeline (CG demo)..11-16
pitcl...3-1
Plasma ..E-5
Play (SDF block)...2-40,5-11
Play, (SDF block)... 2-38
plldemo (SDF demo)..5-55
plot complex signal command................................ 2-7
plot DFT of a complex signal................................. 2-7
plot DFT of a signal command............................... 2-7
plot signal command .. 2-7
plots ...10-11, 17-1

phase-space ... 5-56
polar form.. 5-51
scatter plots ... 5-55
signal ... 2-44
waterfall .. 5-57

PN, process network...4-4
point in VEM.. 2-24
points in VEM .. 16-3
Poisson (DE block)... 10-8
poisson (HOF demo) ..6-20
Poisson counting process10-25, 10-26, 10-27
Poisson processes ... 6-20
PolarToRect (CGC block).................................. 12-11
PolarToRect (SDF block).....................................5-21
poles and zeros ... 5-74
pole-zero plot..5-76
polygons (drawing) .. 2-36
polymorphism... 2-20
polyphase FIR filters4-3, 5-53

I-16

U. C. Berkeley Department of EECS

polyphase multirate filters..............5-31, 13-14, 15-11
pop-context, VEM.. 16-9
port ...E-5
PortHole ...E-5

Galaxy... 2-30
type.. 2-20

portNumber parameter ... 12-4
POSIX threads..4-4
postscript ..2-40, 2-41, 2-42
PostTest (SDF block) ...5-40
power spectrum.. 5-34
power spectrum estimation 5-36, 5-57

autocorrelation method 5-57
Burg’s method... 5-57
periodogram method 5-57

powerEst (CGC block)...12-9
powerEst (SDF block).................................5-16, 5-82
powerEstCx (SDF block)5-16
powerEstLin (SDF block)5-16
powerSpectrum (SDF demo)5-57
pragma.. 7-5

firingsPerIteration7-5, 7-11, 7-12
pragma command... 3-4
pragmaDefaults commands.................................... 3-4
Pre (SR block) ..10-3
precision of fixed-point parameters 2-16
precision parameters .. 2-16
preinitialize... 6-1
preinitialize method.. 6-1
PRfilterBank (CGC S-56X demo)13-18, 13-19
print command3-4, 3-9, 3-19
Printer (CGC block) ...12-7
Printer (DE block) .. 10-11
Printer (SDF block) ..5-11
Printer (SR block) ..10-4
PRINTER environment variable................. 2-41, 2-53
print-facet command .. 2-7
printing facets... 2-41, A-33
printing the Ptolemy manual15-1
printing the screen.. 2-41
prioritized (DE demo) .. 10-28
priority (DE demo)... 10-27
PriorityCheck (DE block) 10-20
PriorityQueue (DE block) 10-16,10-27
problems with input data........................... A-19, A-35
processor-sharing server 10-27
procId ... 11-8
procId, CG star state... 11-14
production of tokens or particles............................ 5-1
profile command ... 2-7, 2-10
programmable DSP chips....................................... 1-6
programmer’s manual .. 1-9
Prolog .. A-21
ProPort A/D (CG56 S-56X block)13-4

PrPrt AD (CG56 S-56X block).............................13-4
PrPrtADDA (CG56 S-56X block)........................13-4
PrPrtDA (CG56 S-56X block)..............................13-5
pseudo random sequence......................................5-54
pseudoRandom (CGC demo)12-20
pseudoRandom (SDF demo)5-54
pseudo-random noise........................... 5-6, 13-3, 15-3
Psi (SDF block) ..5-43
PSServer (DE block) ..10-15
psServer (DE demo) ...10-27
PT_DEBUG environment variable..............2-52, 2-54
PT_DISPLAY environment variable2-6, 2-51
PTARCH environment variable2-52, A-9
ptcl ...1-3,3-1, E-5

within pigi ..3-19, 3-20
ptgdb..2-52, 2-54
ptkOptions.tcl .. A-20
ptlang ...E-5
PTMATLAB_REMOTE_HOST environment vari-

able ..2-52, 5-26
Ptolemy...2-4, E-5
PTOLEMY environment variable2-52, B-1,E-5
ptolemy user ...2-1, B-1
PTOLEMY_SYM_TABLE environment variable...2-

52
PTPWD environment variable2-52
Pulse (C50 block) ...15-7
Pulse (CG56 block) ..13-9
PulseComp (SDF block).......................................5-43
PulseGen (DE block)..10-8
pulses (SDF demo) ...5-54
push-context, VEM...16-9
push-master, VEM..16-9
pwd command ..3-4
pxgraph .. 2-9, 5-10,17-1, E-5

troubleshooting... A-19

Q
QAM (quadrature amplitude modulation)............5-55
qam (SDF demo) ..5-55
QAM16 (SDF block)..5-38
qam16Decode (SDF block)5-39
qam16Slicer (SDF block)5-39
QAM4 (SDF block)..5-38
qam4Slicer (SDF block)5-38
QAM4withDFE (SDF demo)5-55
qAndServer (DE demo)......................................10-27
QCKMON environment variable2-53
qdm (Graphical DSP Debugger) ...13-4, 13-17, 13-21
QntBitsInt (C50 block) ...15-7
QntBitsLin (CG56 block)15-7
quadrature amplitude modulation (QAM)...5-38, 5-55
Quant (C50 block) ..15-6
Quant (CG56 block) ...13-9

The Almagest I-17

Ptolemy Last updated: 12/1/97

Quant (CGC block)...12-9
Quant (SDF block) ...5-14
QuantBitsInt (CG56 block)13-9
QuantBitsLin (CG56 block)13-9
QuantIdx (C50 block)...15-6
QuantIdx (CG56 block)..13-9
QuantIdx (SDF block) ..5-14
quantization ...5-13,5-76
quantize (CGC demo)...12-19
quantize (SDF demo)..5-52
Quantizer (SDF block)5-14, 5-52
QuantRange (C50 block)......................................15-6
QuantRange (CG56 block)13-9
quasi-static schedule...8-1
queue...10-16
queue (DE demo)..10-27
QueueBase (DE block)10-17
queueing systems................................... 1-6, 4-5, 10-1

R
Rabaey, J...1-9
radar...6-11, 6-19
RadarAntenna (SDF block)5-42
RadarChainProcessing (HOF demo)6-19
RadarTargets (SDF block)....................................5-42
radioButton (CG56 CGC/S-56X block)13-6
radioButtonInt (CG56 CGC/S-56X block)...........13-6
raised cosine pulses ..5-54
RaisedCos (C50 block).......................................15-11
RaisedCos (CG56 block)....................................13-14
RaisedCosine (SDF block) ..5-31, 5-37, 5-71, 5-72, 5-

78, 6-3
RaisedCosineCx (SDF block)...............................5-38
Ramp (C50 block) ..15-3
Ramp (CG56 block) ...13-3
Ramp (CGC block)......................................12-6, 14-9
Ramp (DE block)..10-9
Ramp (SDF block)...5-6, 5-73
Ramp (SR demo) ..10-5
RampFix (CGC block) ...12-6
RampFix (SDF block) ..5-8
RampInt (C50 block)..15-3
RampInt (CG56 block) ...13-3
RampInt (CGC block) ..12-6
RampInt (SDF block) ...5-8
RanConst (SDF block) ...5-6
random delay ..10-25
random numbers ..2-7, 10-9
random signals..5-81
random walk ...7-11
RanGen (DE block) ..10-9
RankImage (SDF block).......................................5-48
rapid prototyping of application-specific signal pro-

cessors ..1-2

RASSP.. 1-2
rasterized format... 6-10
RateChange (CG block)11-15
rational Z transform.. 5-73
ReadFile (CG56 block) ..13-4
ReadFile (SDF block)...5-7
ReadImage (SDF block).......................................5-45
reading from a file .. 2-19
ReadPCM (SDF block) ..5-8
ReadRGB (SDF block)...5-46
ReadVar (SDF block)...5-7
real time.. 4-6,E-5
realTime (DE demo)... 10-25
rec2fsk (SDF block) ...5-39
rec2pam (SDF block) ...5-39
rec2psk (SDF block)...5-39
rec4pam (SDF block) ...5-39
Reciprocal (C50 block) ..15-6
Reciprocal (CG56 block)13-9
Reciprocal (CGC block).......................................12-9
Reciprocal (SDF block)..5-15
recompiling Ptolemy ... A-8
recover-facet, VEM.. 16-9
recspread (SDF block)..5-39
Rect (C50 block) ..15-3
Rect (CG56 block) ...13-3
Rect (CGC block)...12-6
Rect (SDF block)....................................5-7, 5-8, 5-71
RectCxDoppler (SDF block)................................5-42
RectFix (CGC block) ...12-6
RectFix (SDF block) ..5-8
RectToCx (C50 block) ...15-9
RectToCx (CG56 block)13-12
RectToCx (CGC block)...................................... 12-11
RectToCx (SDF block)...5-20
RectToPolar (CGC block).................................. 12-11
RectToPolar (SDF block)............................5-20, 5-75
recursion4-4, 6-12, 6-17, 7-1, 7-10, 7-11
recv-2psk (CG56 demo)13-17
redraw-window command.................................... 2-27
redraw-window, VEM.. 16-10
Reekie, J. .. 1-9
reflection coefficients... 5-33
reflexGame (FSM demo)11-4
registerAction command3-5, 3-15
register-transfer level simulation.......................... 4-12
relTimeScales, target parameter 11-4
removing windows ...B-4
renameuniv command3-2, 3-5
Repeat (C50 block)...15-8
Repeat (CG56 block)..13-11
Repeat (CGC block) ...12-9
repeat (DDF demo)... 7-11
Repeat (SDF block).....................................5-19, 5-73

I-18

U. C. Berkeley Department of EECS

Repeater (DDF block) 7-10, 7-11
repeater (DDF demo) ... 7-11
repetitions of actors in SDF 5-3
replacement block .. 6-1
requireStronglyConsistent...................................... 8-2
re-read command....................................... 2-11, 16-10
reset command .. 3-5, 3-11
resources....................................2-54, 15-2, A-20, B-4
resources parameter.. 12-2
resources, CG star state...................................... 11-14
resources, target parameter 11-4, 11-14
restructure... 7-8
restructure parameter in DDF 7-5
retargetting .. 4-7, 14-1
return in dialog boxes... 2-14
reverb (CG56 S-56X demo)...............................13-17
Reverse (C50 block)...15-8
Reverse (CG56 block)..13-11
Reverse (SDF block)5-17, 5-76
RGBToYUV (SDF block)5-46
RLattice (SDF block)5-32, 5-85
rms (CGC block) ..12-12
Rolodex (SR demo)..10-5
Rotate (C50 block) ...15-9
Rotate (CG56 block) ..13-11
roundRobin (DE demo)...................................... 10-28
router (DDF demo)... 7-11
Router (DE block) .. 10-13
router (DE demo) ... 10-25
rpc-any command... 2-11
rpc-any, VEM... 16-22
run command................2-7, 2-8, 2-28, 3-5, 3-10, 3-19
run control panel .. 2-12
run? parameter.. 12-1
run?, target parameter .. 11-3
run-all-demos command .. 2-7
RunLenImage (SDF block)5-47
RunLenImageInv (SDF block).............................5-47
run-time flow of control ... 4-4
run-time scheduling..8-1, E-5
runUntilDeadlock... 7-8

S
S56DSP environment variable 2-53
s56XPlot (CG56 CGC/S-56X block)13-6
same-scale command ... 2-11
same-scale, VEM ... 16-10
SampleMean (SDF block)....................................5-25
sampleNholdGalaxy (C50 block).........................15-9
sampleNholdGalaxy (CG56 block)....................13-12
Sampler (DE block)10-5, 10-13, 10-25
sampler (DE demo) .. 10-25
sample-rate conversion 4-3, 4-4, 5-2, 5-53
sampling ... 5-72

Sangiovani-Vincentelli, A.1-9
save-window command................... 2-11, 2-29, 16-10
saving facets ...2-41
sawtooth (HOF demo)6-19, 6-20
schedName, target parameter11-5
schedtime command ...3-5
schedule command ..3-5, 3-10
schedulePeriod.......................................5-67, 7-8, 8-2
schedulePeriod, target parameter..........................5-65
Scheduler ...E-5
schedulers ...8-1

CG ...11-6
SDF..5-66
static ..5-1

schematic ..2-4, E-5
schematic editing style ...2-34
schematic mode ..16-1
schematic view in vem ...16-1
scramble (HOF demo)6-19, 6-20
scramble (SDF demo)...5-52
scrambledCGC (HOF demo)................................6-21
Scrambler (SDF block)...5-38
screen dumps ..2-41
Scripted Runs..5-64
scripting language...3-20
scriptTest (CGC demo).......................................12-24
SDF..E-5

delays...5-4
domain...5-1
interations ..5-3
loop scheduler ...5-66
scheduler..5-66

SDF (synchronous dataflow)...........................4-3, 5-1
SDF domain....................................1-6, 4-7, 7-1, 14-1
SDF domain within the DE domain10-4
SDF model of computation4-7, 14-1
SDF semantics 4-7, 4-14, 14-1
SDF-CGC Wormhole ...12-25
SDFinDDF (DDF demo)7-11
second harmonic distortion..........................5-39, 5-41
seed command ...3-5, 3-13
seed for random numbers2-7
Select (BDF block) ...8-3
Select (CGC block)...12-13
Select (DDF star)..7-6
selection, VEM...16-15
select-major-net, VEM16-21
select-net command..2-11
select-objects command................... 2-11, 2-27, 16-15
select-terms, VEM..16-15
Self (DDF block) ..7-10
sendTime, target parameter11-3
sensor (SDF block) ...5-43
SeqATMCell class..10-21

The Almagest I-19

Ptolemy Last updated: 12/1/97

SeqATMSub (DE block)10-21
SeqATMZero (DE block)...................................10-22
SerialIn (SR block) ...10-4
Server (DE block)........................ 10-15,10-26, 10-27
servers

processor sharing...10-27
set-path-width, VEM ..16-10
setstate command................................... 3-5, 3-7, 3-20
SGIAudioIn (CGC block).....................................12-6
SGIAudioOut (CGC block)..................................12-8
SGImonoIn (CGC block)12-6
SGIMonoOut (CGC block)12-8
Sgn (C50 block)..15-6
Sgn (CG56 block)...13-9
Sgn (CGC block) ..12-9
Sgn (SDF block) ..5-15, 5-82
SgnInt (C50 block) ...15-6
SgnInt (CG56 block) ..13-9
SGVQ (SDF demo) ..5-60
SGVQCodebk (SDF block)..................................5-34
SGVQCodebk (SDF demo)..................................5-60
SGVQCoder (SDF block).....................................5-34
shared data structures10-22, 10-28
shared resource management..................................4-5
SharedBus, target..11-6
shave (DE demo) ..10-29
Shifter (C50 block) ...15-5
Shifter (CG56 block) ..13-7
SHLIB_PATH environment variable2-53
shot noise ..4-6
shotNoise (DE demo) ...10-28
show-all command........................... 2-11, 2-26, 16-10
show-name command.......................... 2-7, 2-10, 3-19
show-property command....................................16-17
Sigmoid (SDF block)..5-49
signal processing stars

C50 ..15-10
CG56 ...13-13
SDF..5-30

Signal Technology Inc. (STI)1-11
Sih, G..1-10
Sih-4-1 (CG demo) ...11-16
Silage ...1-6, 4-14,E-6
Silage domain ...4-14
Silage language...4-14
silence detection ...10-29
Silva, M. ...1-10
SIM_ARCH environment variable.......................2-53
SimMT-VHDL target4-7, 14-1
simtest (CGC demo) ...12-26
simulated time 4-2, 10-2, 10-4,E-6
simulation ..E-6
simulation domain ...E-6
simultaneous events..4-5

simultaneous events (DE domain)........................ 10-3
SimVSS .. 4-7
SimVSS-VHDL target..........................4-7, 14-1, 14-4
Sin (C50 block) ..15-6
Sin (CG56 block) ...13-9
Sin (CGC block)...12-9
Sin (SDF block)..5-15
Sinc (C50 block)...15-6
Sinc (CG56 block)..13-9
Sinc (CGC block) ...12-9
Sinc (SDF block)...5-16, 5-78
sine (C50 demo) ...15-13
sine (CG56 simulator demo)13-16
sinescript (SDF demo).. 5-65
singen (C50 block) ...15-3
singen (CG56 Galaxy)..13-3
singen (CGC block).....................................12-6, 14-9
singen (SDF block)...............................5-7, 5-71, 5-75
single appearance schedules................................. 5-66
single key accelerators ... 2-5
single-key accelerators ...2-25
singular value decomposition (SVD) 5-5
singular vectors .. 5-36
singular-value decomposition (SVD)..........5-25, 5-36
Sink (CG block) ...11-15
sink stars, SDF..5-9
sinMod (SDF demo).............................2-5, 3-19,5-52
sinWaves (SDF demo) ... 5-61
SJS scheduling....................................5-67,5-67, 11-7
SJS, SDF Scheduler option 5-68
SJS, SDF scheduler option 11-7
Skew (C50 block)...15-7
Skew (CG56 block)..13-10
Sleep (CGC block) ...12-10
slider (CG56 CGC/S-56X block)13-6
slider (DE demo) .. 10-30
SmithForm (SDF block)..............................5-24, 5-36
SMpyDblSh (SDF block)5-29
snap...2-26, 2-34, 2-37,E-6
sojourn time..10-27
Sony.. 1-11
sound .. 2-38
sound (CGC demo)...12-23
sound synthesis... 4-3
soundHOF (CGC demo).....................................12-23
soundHOF (HOF demo).......................................6-21
sound-making demos, SDF5-57
Source (CG block)..11-15
source code, finding ... 2-47
source command... 3-5
source stars

C50 ..15-2
CG56 ...13-3
SDF ...5-5

I-20

U. C. Berkeley Department of EECS

sources (DE demo)... 10-30
sox program.. 2-38
spectral estimation................................4-3, 5-35, 5-84

autocorrelation method 5-34
spectral line splitting .. 5-85
spectrum plot.. 2-44
Spectrum Signal Processing................................. 1-11
speech (SDF demo)..5-58
speech coding... 4-3
speech samples... 5-83
speechcode (DE demo) 10-29
SpheToCart ..5-43
Spickelmier, R......................................1-10, 2-1, 16-1
Spread (CGC block)................................12-10, 12-21
spread (CGC demo) ... 12-21
Spread (SDF block)..5-38
Sproc domain ... 4-13
Sqr (C50 block) ..15-7
Sqr (CG56 block) ...13-10
Sqrt (C50 block)...15-6
Sqrt (CG56 block) ..13-9
Sqrt (CGC block) ...12-9
Sqrt (SDF block) ..5-16
square (HOF demo).....................................6-19, 6-20
square-root raised cosine pulses........................... 5-54
SR (Synchronous Reactive) domain4-5
Src (HOF block)...6-17
SrcGr (HOF block)...6-17
Sriram, S... 1-10
SSI (CG56 S-56X block)13-5
SSISkew (CG56 S-56X block)13-5
Stack (DE block)10-16,10-26, 10-27
Stanford University .. 4-12
Star ...2-4, E-6
star ..E-6
star command .. 3-4, 3-5
Star Semiconductor 1-11, 4-13
starting pigi, the GUI 2-2, 2-53
State..2-14, E-6
state .. 3-6,E-6

intial value... 2-15
vs. parameter ... 2-15

statevalue command... 3-5
static scheduling, SDF..5-1
statically evaluated recursion 6-12, 6-17
staticBuffering parameter............................ 12-1, 14-3
Statistics (DE block) 10-23,10-25
statistics (DE demo) ... 10-25
steep Blackman window 5-57,5-79
SteepBlackman...5-7
steering ... 6-19
steering (SDF block) ..5-44
steering vector .. 6-19
StereoIn (CGC block) ..12-6

StereoOut(CGC block) ...12-7
Stewart, M. .. 1-9, 10-1, 12-1
stop time ...10-2,E-6
stoptime command..3-5
StopTimer (DE block)10-17, 10-26
streams..6-2
string array parameter...2-19
string parameter ...2-17, 2-19
stringColor..2-37
StringToInt (SR block) ...10-4
stripChart (DE demo) ...10-30
struct-VHDL target..4-7, 14-1
stty tostop... A-17
Sub (C50 block)..15-4
Sub (CG56 block)...13-6
Sub (CGC block) ..12-8
Sub (SDF block) ...5-12
Sub (SR block) ...10-4
Sub_M (SDF block) ...5-25
SubAntenna (SDF block)5-43
subbandcoding (SDF demo)5-59
SubCx (C50 block) ...15-4
SubCx (CG56 block) ..13-7
subdomain...4-4
SubInt (C50 block) ...15-4
SubInt (CG56 block) ..13-7
SubMx_M (SDF block)..5-25
SumImage (obsolete SDF block)..........................5-44
Sun lightweight process library4-13
SunVideo (SDF block) ...5-46
SVD_M...5-36
SVD_M (SDF block)...................................5-25, 5-36
SVD_MUSIC_1 (SDF block)...............................5-63
SVD_MUSIC_2 (SDF block)......................5-63, 5-64
Switch (BDF block)..8-3
Switch (CG block)..11-15
Switch (CGC block) ...12-13
Switch (DE block) ..10-26
switch (DE demo)...10-26
Switch4x4 (DE block) ..10-20
SwitchDelay (CG56 block)13-5
SwitchDelay (CG56 CGC/S-56X block)..............13-6
switch-facet, VEM..16-10
symbolic debugger..2-53
symbolic debugging..2-52
symbolic mode..16-1
Synchronize (DE block)10-18,10-25
synchronized mode, DE..10-6
synchronous dataflow.................... 1-6,5-1, 12-1,E-6
synchronous signal processing systems...........4-3, 5-1
Synopsys...1-11
Synopsys Design Analyzer............................4-7, 14-1
SYNOPSYS environment variable.......................2-53
Synopsys VSS VHDL simulator 4-7, 14-1, 14-4, 14-5

The Almagest I-21

Ptolemy Last updated: 12/1/97

synth (CGC demo)..12-23
synth (CGC S-56X demo)13-18
SynthControl (SR block)10-4
synthFFT (CGC S-56X demo)13-18
Synth-VHDL target4-7, 14-1
system palette ...2-30

T
Table (C50 block)...15-6
Table (CG56 block)..13-9
Table (CGC block) ...12-9
Table (SDF block) ..5-16
Table_M (SDF block)...5-25
TableCx (SDF block) ...5-16
TableInt (C50 block) ..15-7
TableInt (SDF block)..5-16
Tahiti.. A-21
Target... 4-2, 4-7, 14-1,E-6
target ..E-6
target command ...3-5, 3-12
target parameters ..3-12
target, code generation..11-1
targetparam command3-5, 3-12
targets ...3-12

default-DDF ..7-8
targets command..3-5, 3-12
tbus (SDF demo)...5-53
Tcl........................ 1-3, 1-10, 1-11,2-4, 2-18, 3-1,E-6

as a scripting language3-20
Tcl stars, SDF ...5-50
Tcl/Tk ...5-10
TCL_LIBRARY environment variable................2-52
TclScript (CGC block)12-6, 12-7, 12-9
TclScript (DE block)10-8, 10-11, 10-23
TclScript (SDF block)5-7, 5-11, 5-16
tclScript (SDF demo)..5-61
TclTk Target target...12-3
TclTk_Target target..12-24
telephone channel simulation5-39, 5-41
TelephoneChannel (SDF block)5-42
telephoneChannel (SDF block)5-39
telephoneChannelTest (SDF demo)5-55
terminals

moving...2-37
names...2-45
reorienting ...2-37

Test (DE block)10-18,10-24
Test (SDF block) ...5-17, 5-51
TestLevel (DE block) ...10-19
TestMultirate (CG block)11-15
testPacket (DE demo) ...10-26
testPostTest (C50 demo).....................................15-12
testPostTest (CG56 demo)..................................13-15
testServers (DE demo)..10-27

TeX..2-42, 15-1
Texas Instruments1-11, 15-1
text .. 16-3
text editor.. 2-51
text widget .. 2-13
The Math Works, Inc. .. 5-26
Thege, K. .. 1-9
ThermalNoise (SDF block)5-43
third ...5-39, 5-41
third harmonic distortion.............................5-39, 5-41
Thomson-CSF .. 5-26
Thor domain ..1-7,4-12, E-6
Thresh (CGC Block) ..12-9
threshold ... 7-12
threshtest (DDF demo) ... 7-12
Through (CG block) ...11-15
tightly interdependent subgraphs 5-67
time

DE domain .. 10-4
simulated ... 10-2

time stamp .. 10-1,E-7
timed domain.. 10-6,E-7
timed domains .. 4-2
Timeout (DE block)10-17,10-26
timeout (DE demo)... 10-26
TimeoutStar (DE block) 10-18
Timer (DE block)10-18,10-25
TimeStamp (DE star) ... 10-17
timeVarSpec (SDF demo)5-57
timing (DDF demo).. 7-12
timing (SDF demo)... 8-4
timing recovery ...4-4, 7-12
Tk ...1-11,2-4, 3-14,E-7
Tk options... 2-55
TK_LIBRARY environment variable.................. 2-52
TkBarGraph (CGC block)....................................12-7
TkBarGraph (DE block)..................................... 10-11
TkBarGraph (SDF block).....................................5-10
TkBreakPt (SDF block)...............................5-11, 5-18
TkButtons (DE block) ..10-9
TkButtons (SDF block) ..5-8
TkCheckButton (CGC block)......................12-6, 12-7
TkEntry (CGC block)...12-7
TkImageDisplay(SDF block)5-45
TkImpulse (CGC block).......................................12-7
TkMeter (DE star) .. 10-11
TkMeter (SDF block)5-11, 5-62
tkMeter (SDF demo) .. 5-62
TkMonoIn (CGC block).......................................12-6
TkMonoOut (CGC Block) 12-24
TkMonoOut (CGC block)12-8
tkoct ..E-7
TkParametricEq (CGC block)............................12-14
TkPlot (CGC block) ... 12-7

I-22

U. C. Berkeley Department of EECS

TkPlot (DE block) .. 10-11
TkPlot (SDF block) ..5-10
TKRadioButton (CGC block)12-7
TkRadioButton (CGC block)12-7
TkShowEvents (DE block) 10-12
TkShowValues (DE block) 10-12
TkShowValues (SDF block)5-10, 5-62
tkShowValues (SDF demo) 5-62
TkSlider (CGC Block) ...12-6
TkSlider (DE star) .. 10-9
TkSlider (SDF block)...5-8
TkStereoIn (CGC block)12-6
TKStereoIn(CGC block)12-6
TkStereoOut (CGC block)12-8
TkStripChart (DE block).................................... 10-12
TkText (DE star) .. 10-12
TkText (SDF block)5-11, 5-62
TkXYPlot (CGC block)12-7
TkXYPlot (DE block) .. 10-12
TkXYPlot (SDF block) ..5-10
TMS320C5x... 15-1
Toeplitz matrices................................5-24, 5-25, 5-36
Toeplitz_M (SDF block)5-24
toggle-grid command ... 2-11
toggle-grid, VEM... 16-11
token... 5-1,E-7
Tone (C50 block) ...15-3
Tone (CG56 block) ..13-3
tonecontrol (CGC demo)....................................12-27
ToneStrength (CGC block)12-13
ToneStrength (SDF block)5-40
topblocks command ... 3-5
Trainer (SDF block) ...5-18
transfer functions.. 5-73
transform command 2-11, 2-45
transform, VEM ... 16-16
transmitter (C50 demo)15-13
transmitter (CG56 simulator demo)13-16
transportation networks.. 4-5
Transpose (SDF block) ..5-18
Transpose_M (SDF block)...................................5-25
tremolo (CGC demo) ...12-24
troff... 15-1
True (BDF block)... 8-3
Tsu, W.. 14-1
tune (CG56 simulator demo)..............................13-16
twm window manager... A-21
two’s complement .. 5-77
two-dimensional FFT... 6-10
Tycho ...E-7
Tycho command... 2-7
TYCHO environment variable............................. 2-52
type conversion .. 5-80
types ... 2-20

U
UDCounter (DE block)............................10-23,10-26
unbiased autocorrelation estimates.......................5-86
undecidable...7-3
undo command ..2-11, 2-27
uniform distribution..10-9
uniform white noise............................. 5-6, 13-3, 15-3
unit step function ..5-74
United States Air Force ..1-2
Universe..2-4
universe...2-5, E-7
universe (CGC demo)...12-25
universe parameters ..2-32
universes

creating and deleting3-2
University of Colorado ...4-12
univlist command 3-2, 3-5, 3-19
unixMulti_C CGC target12-3
UnPacketize (DE block)10-14
UnPk_M (SDF block)...5-24
unresolvable type conflict.....................................5-80
unselect-objects command...........................2-11, 2-27
unselect-objects, VEM16-16
unstable fitlers ..5-56
untimed domains ..4-2
unvoiced speech..5-85
Unwrap (SDF block)5-36, 5-75, 5-81
upDownCount (DE demo)..................................10-26
UpSample (C50 block) ...15-8
UpSample (CG56 block)13-11
UpSample (CGC block)12-9
upsample (CGC demo)12-20
UpSample (SDF block) 5-2,5-19, 5-73
upSample (SDF demo) ...5-53
useless (CG demo)..11-17
useOldScheduler...7-8
USER environment variable.................................2-53
user iteration ...7-4
user.pal palette..2-29
Utah Raster Toolkit (URT)...................................5-45

V
VarDelay (C50 block) ..15-9
VarDelay (CG56 block)13-12
varDelay (CG56 simulator demo)13-16
VarDelay (DE block)..10-15
variance of a random process10-25
VarQuasar (C50 block)...15-7
VarQuasar (CG56 block)....................................13-10
VarServer (DE block)...10-16
VClock (DE demo)...10-28
vector processing in the SDF domain.....................5-2
Vector Quantization..5-60
vem1-11, 2-4,2-4, 2-21, 16-1,E-7

The Almagest I-23

Ptolemy Last updated: 12/1/97

arguments ..16-3
command arguments2-24
command line options16-2
making a box ...2-24
making a line ...2-24
menu ... 2-9, 2-11, 2-35
placing a point ...2-24
selecting objects ..2-24
text arguments ...2-24

vem menu ...16-3
Verilog..4-12
version command..2-7
version, VEM ...16-11
VHDL...1-6,E-7

codefile ..4-7
domain.. 4-7, 4-14, 14-1
star ...4-7

VHDL (VHSIC Hardware Description Language) ..4-
7, 4-14, 14-1

VHDLB ...E-7
domain.. 4-7, 4-14, 14-1

VHDLF..E-7
domain...4-14
star ..4-14, 14-1

VHSIC Hardware Description Language (VHDL) 4-7
vi ...2-51
video coding .. 4-3, 4-5, 5-46
video display...5-45
video processing demos, SDF5-59
videodpy (SDF block) ..5-45
videosrc (SDF block)..5-46
VirtClock (DE block) ...10-21
virtual clock algorithm10-21
virtual clock buffer service discipline10-28
VISAddsh (CGC block)12-15
VISAddSh (SDF block)..5-29
visaudioio (CGC demo)......................................12-26
VISBiquad ..12-16
VISBiquad (SDF block)5-29
VISFFTCx (CGC block)12-16
VISFFTCx (SDF block)5-29
VISFIR (CFC block) ..12-16
VISFIR (SDF block)...5-29
VISInterleaveIn (CGC block).............................12-17
VISInterleaveOut (CGC block)..........................12-17
VISMpyDBLsh (CGC block).............................12-15
VISMpyDblSh (SDF BLock)5-29
VISMpysh (CGC block).....................................12-16
VISPackSh (SDF block).......................................5-29
VISStereoBiquad (CGC block)12-18
VISStereoIn (CGC block)12-17
VISSTereoOut (CGC block)12-17
VISSubsh (CGC block)12-15
VISSubSh (SDF block) ..5-29

vistonecontrol (CGC demo)12-26
visual programming.. 6-2
VISUnpackSh (CGC block)12-17
VISUnPackSh (SDF block)..................................5-30
VISUnpackSh (SDF block)..................................5-30
voiced speech ... 5-85
vox (SDF demo) ...5-58
VQCoder (SDF block) ...5-34

W
waitNum, DDF method .. 7-6
waitPort .. 7-1
waitPort, DDF method ... 7-6
walking menu ...2-4, 2-9, 2-10
Walter, G. S. ...1-10, 5-1, 10-1
Warner, P.. 1-10
Warzee, X..5-26, 14-7
WasteCycles (C50 block).....................................15-9
WasteCycles (CG56 block)................................13-12
Waterfall (SDF block)..5-10
waterfall plot .. 5-57
WaveForm (C50 block)..15-3
WaveForm (CG56 block).....................................13-3
WaveForm (CGC block)12-6, 14-9
WaveForm (DE block) 10-10
WaveForm (SDF block)5-7, 5-83
WaveFormCx (SDF block)5-8
wavelet decomposition... 5-53
wfir program...C-4
When (SR block)..10-4
where command ... 2-11
where, VEM ... 16-11
where_defined parameter 6-2
white noise.........................5-6, 5-39, 5-55, 13-3, 15-3
White, K. 1-9, 1-10, 3-22, 5-70, 11-1, 12-1, 13-1, A-1
whitening filters.. 5-81
Wiener filtering .. 5-81
wildColors (HOF demo)..............................6-18, 6-20
wildColorsCGC (HOF demo)6-21
Williamson, M......................................1-10, 4-1, 14-1
Window (CG56 block)13-14, 15-11
Window (SDF block)5-7, 5-36, 5-78
window (SDF demo) ..5-57
window FIR command ... 2-7
window manager crashes A-21
window method for FIR filter design.....................C-1
Window System Problems A-20
window-options command 2-11
window-options, VEM....................................... 16-11
wireless (DE demo).. 10-28
wireless networks ... 4-5
Wolfram Research Inc.. 1-11
Wong, A. ...1-10, 1-11
workman program .. 2-38

I-24

U. C. Berkeley Department of EECS

worm (DE demo) ... 10-29
Wormhole...2-4

in pigi .. 2-55
in ptcl .. 3-9

wormhole .. 7-11, 10-4,E-7
DDF.. 7-7,7-12
forcing outputs in DE.................................. 10-17

wormholes in the interpreter 3-18
wormTest (CGC demo)......................................12-26
wrapup command.................................3-5, 3-10, 3-19
WriteFile (CG56 block) 13-4
WriteVar (SDF block)..5-11
write-window, VEM .. 16-11

X
X resources....................... 2-43, 2-54, 15-2, 16-2, B-4
X window dumps ... 2-53
X window resources................................... 2-54, A-20
X window system... 2-2, B-1
X11 include files ... A-27
X11R4 ..B-1
xgrabsc program... 2-42
Xgraph.. 1-12
Xgraph (CG56 CGC/S-56X block)......................13-6
Xgraph (CG56 Simulator Block)13-4
xgraph program... 2-9,17-1
Xhistogram (DE block) 10-11
Xhistogram (SDF block)5-10, 5-52
Xilinx ... 1-11
Xlib.h... A-27
XMgraph (CGC block) ..12-7
XMgraph (DE block) ... 10-11
XMGraph (SDF block) ..5-70
XMgraph (SDF block)3-19,5-10, 5-73
xmit2fsk (SDF block)...5-38
xmit2pam (SDF block)...5-38
xmit-2psk (CG56 demo)13-17
xmit2psk (SDF block) ..5-38
xmit2rec (SDF demo)...5-55
xmit4pam (SDF block)...5-38
xmit4rec (SDF demo)...5-55
xmitber (SDF demo)5-55, 5-65
xmitspread(SDF block) ..5-38
Xor (C50 block) ...15-7
Xor (CG56 block) ..13-10
xor (CGC galaxy)...12-9
xorBinary (SDF block)...5-49
xorSigmoid (SDF block)5-49
xpr .. 2-42
xrdb .. 2-54
Xscope (CGC block) ..12-7
Xscope (SDF block)...5-10
xwd... 2-42
XYgraph (CGC block) ...12-7

XYgraph (SDF block) ..5-10
xyplot (CGC demo) ..12-25
xyplot (DE demo) ...10-31
xyplot (SDF demo) ...5-62

Y
Yu, C...1-9
YUVToRGB (SDF block)....................................5-46

Z
Zhang, H. ...1-9, 10-2
ZigZagImage (SDF block)5-47
ZigZagImageInv (SDF block)5-47
Zimmerman, K. ..1-9
zoom-in command.......................................2-11,2-26
zoom-in, VEM..16-11
zoom-out command.....................................2-11,2-26
zoom-out, VEM..16-11

