UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
BERKELEY, CALIFORNIA 94720

Vol. 1 - Ptolemy 0.7 User’s Manual

Primary Authors

Shuvra Bhattacharyya, Joseph T. Buck, Wan-Teh Chang, Michael J. Chen, Brian L.
Evans, Edwin E. Goei, Soonhoi Ha, Paul Haskell, Chih-Tsung Huang, Wei-Jen Huang, Chris-
topher Hylands, Asawaree Kalavade, Alan Kamas, Allen Lao, Edward A. Lee, Seungjun Lee,
David G. Messerschmitt, Praveen Murthy, Thomas M. Parks, José Luis Pino, John Reekie,
Gilbert Sih, S. Sriram, Mary P. Stewart, Michael C. Williamson, Kennard White.

Other contributors

Raza Ahmed, Egbert Amicht (AT&T), Sunil Bhave, Anindo Banerjea, Neal Becker
(Comsat), Jeff Bier, Philip Bitar, Rachel Bowers, Andrea Cassotto, Gyorgy Csertan (T.U.
Budapest), Stefan De Troch (IMEC), Rolando Diesta, Martha Fratt, Mike Grimwood, Luis
Gutierrez, Eric Guntvedt, Erick Hamilton, Richard Han, David Harrison, Holly Heine, Wai-
Hung Ho, John Hoch, Sangjin Hong, Steve How, Alireza Khazeni, Ed Knightly, Christian
Kratzer (U. Stuttgart), Ichiro Kuroda (NEC), Tom Lane (Structured Software Systems, Inc.),
Phil Lapsley, Bilung Lee, Jonathan Lee, Wei-Yi Li, Yu Kee Lim, Brian Mountford, Douglas
Niehaus (Univ. of Kansas), Maureen O’Reilly, Sunil Samel (IMEC), Chris Scannel (NRL),
Sun-Inn Shih, Mario Jorge Silva, Rick Spickelmier, Eduardo N. Spring, Richard S. Stevens
(NRL), Richard Tobias (White Eagle Systems Technology, Inc.), Alberto Vignani (Fiat), Gre-
gory Walter, Xavier Warzee (Thomson), Anders Wass, Jiurgen Weiss (U. Stuttgart), Andria
Wong, Anthony Wong, Mei Xiao, Chris Yu (NRL).

Copyright © 1990-1997
The Regents of the University of California
All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees,
to use, copy, modify, and distribute the Ptolemy software and its documentation for any pur-
pose, provided that the above copyright notice and the following two paragraphs appear in all
copies of the software and documentation.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMEN-
TATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CAL-
IFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Ptolemy Last updated: 3/3/97

Current Sponsors

Various parts of the Ptolemy project have been supported by the Advanced Research Projects
Agency and the U.S. Air Force (under the RASSP program, contract F33615-93-C-1317), the
Semiconductor Research Corporation (SRC) (project 95-DC-324-016), the National Science
Foundation (MIP-9201605), the State of California MICRO program, and the following com-
panies: Bell Northern Research, Cadence, Dolby Laboratories, Hitachi, Mentor Graphics,
Mitsubishi, Motorola, NEC, Pacific Bell, Philips, and Rockwell.

The Ptolemy project is an ongoing research project focusing on design methodology for heter-
ogeneous systems. Additional support for further research is always welcome.

Trademarks

Sun Workstation, OpenWindows, SunOS, Sun-4, SPARC, and SPARCstation are trademarks
of Sun Microsystems, Inc.

Unix is a trademark of Unix Systems Laboratories, Inc.
PostScript is a trademark of Adobe Systems, Inc.

About the Cover

The image on the cover is from an engraving at the Granger Collection in New York. It depicts
Claudius Ptolemy, an astronomer from the second century A. D. Ptolemy codified the Greek
geocentric view of the universe, and rationalized the apparent retrograde motion of the planets
usingepicycles The Ptolemaic system remained the accepted wisdom until the Polish scholar
Copernicus proposed a heliocentric view in 1543.

The Almagest i

Contents

1. An Overview of Ptolemy

1.1 Introduction. 1-1
1.2 HiStOry . ..o 1-2
1.3 PtolemyKernel 1-3
1.4 Modelsof Computation 1-4
1.5 Dataflow Models of Computation 1-6
1.6 Discrete-Event Models of Computation 1-6
1.7 Synchronous Reactive Modeling 1-7
1.8 Finite State Machines. 1-7
1.9 Mixing Models of Computation 1-7
1.10 Code Generation.« 1-8
1.11 Conclusion 1-8
1.12 CurrentDirections i, 1-8
1.13 Organization of the documentation 1-9
1.14 Acknowledgments 1-9

Personnel 1-9
Support 1-11
Prior software 1-11

2. The Interactive Graphical Interface

2.1 IntroducCtion. o 2-1
Setup 2-1
2.2 Running the Ptolemydemos 2-2

Starting Ptolemy 2-2

Exploring the menus 2-4

Traversing the hierarchy 2-5

Running a Ptolemy application 2-6

Examining schematics more closely 2-9
Invoking on-line documentation for stars 2-10
More extensive exploration of the demos 2-11
What's new 2-12

2.3 Dialogboxes 2-12
Tk control panels 2-12
Athena widget dialog boxes 2-13

24 Parametersandstatesoii 2-14
A note on terminology 2-14
Changing or setting parameters 2-15
Reading Parameter Values From Files 2-16
Inserting Comments in Parameters 2-16

Ptolemy Last updated: 12/1/97

Using Tcl Expressions in Parameters 2-17

Using Matlab and Mathematica to Compute Parameters 2-18
Array parameters 2-19

String Parameters 2-19

25 Particletypes 2-20
2.6 The oct design database and its editor, vem. 2-21
27 CreatinQ UNiVEISES. . . . e 2-22

Opening working windows 2-23
Some basic vem commands 2-24
Building an example 2-26
28 Usinggalaxieso i 2-30
Creating a galaxy 2-30
Using a galaxy 2-31
Galaxy and universe parameters 2-32

29 Editinglcons. 2-34
2.10 Sounds 2-38
Workstation Audio Internet Resources 2-38
Solaris 2-38
HPUX 2-39

Playing Audio over the Network 2-39
Ptolemy Sounds 2-40

211 HardCopy.o 2-40

Printing oct facets 2-41
Capturing a screen image 2-41

2.12 Other useful information.......................... 2-44

Plotting signals and Fourier transforms 2-44
Moving objects 2-44

Copying objects 2-44

Labeling a design 2-45

Icon orientation 2-45

Finding the names of terminals 2-45
Multiple inputs and outputs 2-46
Using delays 2-47

Auto-forking 2-48

Dealing with errors 2-49

Copying and moving designs 2-50
Environment variables 2-51
Command-line options 2-53

2.13 X RESOUICES oo e e e 2-54
214 TKOPHONS. ...t 2-55
2.15 Multi-domain universes. 2-55

3. ptcl: The Ptolemy Interpreter
3.1 Introduction 3-1

U. C. Berkeley Department of EECS

The Almagest iii

3.2 Gettingstarted 3-2
3.3 Globalinformation 3-2
3.4 Commands for defining the simulation 3-2

Creating and deleting universes 3-2
Setting the domain 3-3
Creating instances of stars and galaxies 3-4
Connecting stars and galaxies 3-5
Netlist-style connections 3-6
Bus connections between MultiPortHoles 3-6
Connecting internal galaxy stars and galaxies to the outside 3-6
Defining parameters and states for a galaxy 3-6
Setting the value of states 3-7
Setting the number of ports to a star 3-7
Defining new galaxies 3-8
3.5 Showingthecurrentstatus......................... 3-9

Displaying the known classes 3-9
Displaying information on a the current galaxy or other class 3-9

3.6 Runningthe simulation 3-9

Creating a schedule 3-10
Running the simulation 3-10
Continuing a simulation 3-10
Wrapping up a simulation 3-10
Interrupting a simulation 3-10
Obtaining the stop time of the current run 3-10
Obtaining time information from the scheduler 3-11
Animating a simulation 3-11
3.7 Undoing whatyou havedone 3-11
Resetting the interpreter 3-11
Removing a star 3-11
Removing a connection 3-11
Removing a node 3-12
3.8 Targets. 3-12
What targets are available? 3-12
Changing the target 3-12
Changing target parameters 3-12
Pragmas 3-12
3.9 Miscellaneouscommandsoo.., 3-13
Loading commands from a file 3-13
Changing the seed of random number generation 3-13
Changing the current directory 3-14
Dynamically linking new stars 3-14
Top-level blocks 3-15
Examining states 3-15
Giving up 3-15

Ptolemy Last updated: 12/1/97

Getting help 3-15
Registering actions 3-15
The Interface to Matlab and Mathematica 3-16

3.10 Limitations of the interpreter 3-18
3.11 Awormholeexample........... 3-18
3.12 Some hints on advanced uses of ptcl with pigi 3-19

Ptcl as a simulation control language for pigi 3-19
The pigi log file pigiLog.pt 3-20

Using pigiLog.pt to build scripts 3-22

oct2ptcl 3-22

4. Introduction to Domains, Targets, and Foreign Tool Interfaces

4.1 IntroduCtion 4-1
4.2 Synchronous dataflow (SDF) 4-3
4.3 Higher-Order Functions (HOF) 4-3
4.4 Dynamic dataflow (DDF) 4-3
4.5 Boolean dataflow (BDF). 4-4
4.6 Process Network (PN) 4-4
4.7 Synchronous Reactive (SR) 4-5
4.8 Finite State Machine (FSM) 4-5
49 DiscreteEvent(DE) 4-5
4.10 Multidimensional Synchronous Dataflow (MDSDF) 4-6
411 Codegeneration (CG)couiiiiiiiiiiinn.. 4-6
4,12 CodegenerationinC(CGC) 4-6
4.13 Code generation for the Motorola DSP56000 (CG56) 4-7
4.14 Code generation in VHDL (VHDL, VHDLB) 4-7
4.15 Domains that have beenremoved 4-12

Circuit simulation (Thor) 4-12
Communicating processes (CP) 4-13
Message queueing (MQ) 4-13
Code generation for the Sproc multiprocessor DSP (Sproc) 4-13
Code generation for the Motorola DSP96000 (CG96) 4-14
Code generation in Silage (Silage) 4-14
Functional Code Generation in VHDL (VHDLF) 4-14
4.16 Interfacesto ForeignTools. 4-15
Specification and Layout 4-15
Parameter Calculation 4-16
Algorithm Prototyping and Visualization 4-16
Simulation 4-16
Synthesis 4-16

5. SDF Domain
51 Introduction 5-1

U. C. Berkeley Department of EECS

The Almagest v

Basic dataflow terminology 5-1
Balancing production and consumption of tokens 5-2
Iterations in SDF 5-3
Inconsistency 5-3
Delays 5-4
52 Anoverviewof SDFstars. 5-4

Source stars 5-5

Sink stars 5-9

Arithmetic stars 5-12
Nonlinear stars 5-13

Logic stars 5-16

Control stars 5-17
Conversion stars 5-20

Matrix stars 5-23

Matlab stars 5-26

UltraSparc Native DSP 5-28
Signal processing stars 5-30
Spectral analysis 5-34
Communication stars 5-36
Telecommunications 5-39
Spatial Array Processing 5-42
Image processing stars 5-44
Neural Networks 5-48

Higher Order Function stars 5-50
User Contributions 5-50

Tcl stars 5-50

5.3 An overview of SDF demonstrations 5-51

Basic demos 5-51

Multirate demos 5-53
Communications demos 5-54

Digital signal processing demos 5-55
Sound-making demos 5-57

Image and video processing demos 5-59
Fixed-point demos 5-61

Tcl/Tk demos 5-61

Matrix demos 5-62

MATLAB Demos 5-64

HOF Demos 5-64

Scripted Runs 5-64

5.4 Targets. 5-65

Default SDF target 5-65

The loop-SDF target 5-67
Compile-SDF target 5-67
SDF to PTCL target 5-69

55 EXEICISESo 5-70

Ptolemy Last updated: 12/1/97

Vi

Modulation 5-70

Sampling and multirate 5-72

Exponential sequences, transfer functions, and convolution 5-73
Linear phase filtering 5-75

Coefficient quantization 5-76

FIR filter design 5-78

The DFT (discrete Fourier transform) 5-79
Whitening filters 5-81

Wiener filtering 5-81

Adaptive equalization 5-82

ADPCM speech coding 5-83

Spectral estimation 5-84

Lattice filters 5-85

6. HOF Domain
6.1 Introduction 6-1
6.2 Usingthe HOFdomain............................. 6-2

The Map star and its variants 6-2
Managing multidimensional data 6-9
Other higher-order control structures 6-11
Statically evaluated recursion 6-12

Bus manipulation stars 6-13

6.3 AnoverviewoftheHOFstars...................... 6-15
Bus manipulation stars 6-15
Map-like stars 6-16
6.4 Anoverview of HOFdemos. 6-18
HOF demos in the SDF domain 6-18
HOF demos in the DE domain 6-20
HOF demos in the CGC domain 6-20
7. DDF Domain
7.1 Introduction 7-1
7.2 TheDDF Schedulers 7-2
The default scheduler 7-4
The clustering scheduler 7-5
The fast scheduler 7-6
7.3 Inconsistency inDDF. 7-7
7.4 Thedefault-DDF target. 7-8
7.5 Anoverviewof DDFstars, 7-9
7.6 Anoverviewof DDFdemos. 7-10
7.7 Mixing DDF with otherdomains 7-12
8. BDF Domain
8.1 Introduction 8-1

U. C. Berkeley

Department of EECS

The Almagest Vil

8.2 Thedefault-BDFtarget..............cvii.. 8-2

8.3 AnoverviewofBDFstars 8-2

8.4 Anoverviewof BDFdemos......................... 8-3
9. PN domain

9.1 Introduction. 9-1

9.2 Processnetworks. 9-1

Dataflow process networks 9-2
Scheduling dataflow process networks 9-3
Iterations in the PN domain 9-3

9.3 Threads e e 9-3
94 Anoverviewof PNstars. 9-4
95 Anoverviewof PNdemos 9-5

Examples from papers by Gilles Kahn and David B. MacQueen 9-5
Examples from the Ph.D. thesis of Thomas M. Parks 9-7

10. SR domain

10.1 Introduction. 10-1
10.2 SR CONCEPLS . ..o 10-1
10.3 SR compared to otherdomains. 10-1

10.4 ThesemanticSOf SR............. 10-1
105 Overviewof SRstars 10-3

General stars 10-3
Itcl stars 10-4
MIDI stars 10-4
10.6 Anoverviewof SRdemos 10-5
Use of the Yamaha CBX-K1XG as a midi keyboard controller 10-5

11. Finite State Machine Domain

11.1 Introduction. e 11-1
11.2 Graphical UserInterface 11-1
Edit a new STD file 11-1
Edit the Input/Output and Internal Events Names 11-1
Draw/Edit a State 11-1
Draw/Edit a Transition 11-2
Delete a State/Transition 11-2
Move/Reshape a State/Transition 11-2
Slave Processes of States 11-2
11.3 Working within Ptolemy 11-2
Make an Icon in Vem 11-2
Look Inside an FSM Galaxy 11-3
Compile an FSM Galaxy 11-3
11.4 An overview of FSM demonstrations 11-3

Ptolemy Last updated: 12/1/97

viii

11.5 Current Limitations 11-4

12. DE Domain
12.1 Introduction i 10-1
12.2 The DE targetanditsschedulers................... 10-1

Events and chronology 10-2
Event generators 10-2
Simultaneous events 10-3
Delay-free loops 10-4
Wormholes 10-4

DE Performance Issues 10-7

12.3 AnoverviewofstarsinDE 10-7

Source stars 10-8

Sink stars 10-10

Control stars 10-12

Conversion stars 10-14

Queues, servers, and delays 10-15
Timing stars 10-17

Logic stars 10-18

Networking stars 10-19
Miscellaneous stars 10-22

HOF Stars 10-24

12.4 Anoverviewof DEdemos. 10-24

Basic demos 10-24

Queues, servers, and delays 10-26
Networking demos 10-27
Miscellaneous demos 10-28
Wormhole demos 10-29

Tcl/Tk Demos 10-30

HOF Demos 10-31

13. CG Domain
13.1 Introduction 11-1
13.2 Targets 11-1
default-CG 11-2
bdf-CG 11-3

FullyConnected 11-3
SharedBus 11-6

13.3 Schedulers 11-6

Single-Processor Schedulers 11-6
Multiple-Processor Schedulers 11-7

13.4 Interfacing Issues. i 11-10

Interface Synthesis between Code Generation Targets 11-10
Interface Synthesis between Code Generation and Simulation Do-

U. C. Berkeley Department of EECS

The Almagest iX

mains 11-10
13.5 Dynamic constructsinCGdomain................. 11-11
Dynamic constructs as a cluster 11-11
Quasi-static scheduling of dynamic constructs 11-12
DDF-type Stars for dynamic constructs 11-13
13.6 StarS. 11-14
13.7 DEeMOS . . .o 11-15
14. CGC Domain
14.1 Introduction. 12-1
142 CGCTargetso e 12-1

Single-Processor Targets 12-2
Multi-Processor Targets 12-3
Setting Parameters Using Command-line Arguments 12-4

14.3 AnOverview of CGC Stars. i i 12-5

Source Stars 12-5

Sink Stars 12-7

Arithmetic Stars 12-8

Nonlinear Stars 12-8

Control Stars 12-9

Logic Stars 12-11

Conversion Stars 12-11

Signal Processing Stars 12-12
Communications Stars 12-12

BDF Stars 12-13

Tcl/Tk Stars 12-13

Higher Order Function Stars 12-14
UltraSparc VIS (Visual Instruction Set) Stars 12-14
An Overview of CGC Demos 12-18
Basic Demos 12-19

Multirate Demos 12-20

Signal Processing Demos 12-20
Multi-Processor Demos 12-21
Fixed-Point Demos 12-22
Sound-Making Demos 12-22
Tcl/Tk Demos 12-24

BDF Demos 12-25

Higher Order Function Demos 12-25
SDF-CGC Wormhole demos 12-25
UltraSparc VIS Demos 12-26
EECS20 demos 12-26

Tycho Demos 12-27

15. CG56 Domain
15.1 Introduction. i 13-1

Ptolemy Last updated: 12/1/97

15.2 Anoverviewof CGh6Starscuvu.n.. 13-1

Source stars 13-3

I/O Stars 13-3

Arithmetic stars 13-6
Nonlinear stars 13-7

Logic stars 13-10

Control stars 13-11
Conversion stars 13-12
Signal processing stars 13-13

15.3 Anoverview of CG56Demos 13-15

Basic/Test demos 13-15
Motorola Simulator Demos 13-16
S-56X Demos 13-16

CGC-S56X Demos 13-17

154 Targets 13-19

Default CG56 (default-CG56) target 13-19

CG56 Simulator (sim-CG56) target 13-20

Ariel S-56X (S-56X) target 13-21

CG56 Subroutine (sub-CG56) target 13-21

Multiprocessor 56k Simulator (MultiSim-56000) target 13-21

16. VHDL Domain

16.1

Introduction 14-1
Setting Environment Variables 14-2

16.2 VHDL Targetso i 14-3

The default-VHDL Target 14-3

The struct-VHDL Target 14-4

The SimVSS-VHDL Target 14-4

The SimMT-VHDL Target 14-5

The Synth-VHDL Target 14-6

Cadence Leapfrog Ptolemy Interface 14-7

16.3 AnOverviewof VHDL Stars 14-7

Source Stars 14-8

Sink Stars 14-9

Arithmetic Stars 14-9
Nonlinear Stars 14-10

Control Stars 14-10
Conversion Stars 14-11
Signal Processing Stars 14-11

16.4 An Overviewof VHDLDemos..................... 14-12

U. C. Berkeley

Code Generation Demos 14-13
Simulation Demos 14-13
Synthesis Demos 14-14
Cosimulation Demos 14-14

Department of EECS

The Almagest

17. C50 Domain

17.1 Introduction. 15-1
17.2 AnoverviewofCh0stars............... ..., 15-1
Source stars 15-2
I/O Stars 15-3
Arithmetic stars 15-4
Nonlinear stars 15-5
Logic stars 15-7
Control stars 15-8
Conversion stars 15-9
Signal processing stars 15-10
17.3 Anoverviewof C50Demos 15-12
Basic/Test demos 15-12
DSK 320C5x demos 15-12
17.4 Targets. e 15-13
Default C50 (default-C50) target 15-13
C50 Subroutine (sub-C50) target 15-14
C50 DSP Starter Kit (DSKC50) target 15-14
18. Creating Documentation
18.1 Introduction. 15-1
18.2 Printingthemanual 15-1
18.3 Using FrameMaker 15-2
Index Entries 15-2
Special fonts and displays 15-4
18.4 Using HTML to documentstars. 15-5
19. Vem — The Graphical Editor for Oct
19.1 Terminology 16-1
19.2 UsingDialogBoxesc ... 16-4
19.3 GeneralCommands 16-7
19.4 OPplioNS ...t 16-11
195 Selection 16-15
19.6 PropertyandBagediting. 16-17
19.7 Physical editingcommands. 16-17
19.8 Symbolic editingcommands. 16-20
19.9 Schematic editingcommands. 16-20
19.10 Remote applicationcommands. 16-22
19.11 CustomizingVem 16-23
10.12 BUGS. . . oot 16-23
20. pxgraph — The Plotting Program
20.1 IntroducCtion.ttt 17-1

Xi

Ptolemy Last updated: 12/1/97

Xii

20.2 Invokingxgraph 17-1

20.3 Detailed description. 17-1

20.4 OPtiONS 17-3

205 BUGS ... 17-6
Appendix A. Installation and Troubleshooting

Al Introduction A-1

A2 ObtainingPtolemy A-1

Access via the Internet A-2
Access via the World Wide Web A-2
Obtaining documentation only A-2

A.3 Ptolemy mailing lists and the Ptolemy newsgroup. A-2
Ptolemy mailing lists A-2
Ptolemy Newsgroup A-3

A4 Installation A-3

Location of the Ptolemy installation A-4
Basic Ptolemy installation A-5
The ptolemy user A-5
Installation without creating a ptolemy user A-5
Obtaining Ptolemy A-6
Special considerations for use under OpenWindows A-7
Gnu Installation A-7
Testing the Installation A-9
Rebuilding Ptolemy From Source A-10
Freeing up Disk Space A-14
Other useful software packages A-14
A5 Troubleshooting. A-15

Problems with tar files A-15
Problems starting pigi A-16
Common problems while running pigi A-19
Window system problems A-20
Problems with the compiler A-23
Problems compiling files A-25
Generated code in CGC fails to compile A-27
Ptolemy will not recompile A-27
Dynamic linking fails A-30
Dynamic linking and makefiles A-31
Path and/or environment variables not set in “debug” pigi A-32
DE Performance Issues A-32
A6 Knownbugs A-33
Bugs in vem A-33
Bugs in pigi A-34
Bugs in tycho A-35
Code generation bugs A-35

U. C. Berkeley Department of EECS

The Almagest Xiii

Bugs in pxgraph A-35

HPPA specific bugs A-36

IBM AIX specific bugs A-37

Silicon Graphics IRIX5 specific bugs A-37
Linux specific bugs A-38

Sun Solaris 2.4 specific bugs A-38

Sun 0S4 specific bugs A-39

DEC Alpha specific bugs A-39

GNU compiler bugs A-39

A.7 Additional resources A-40

A.8 Submittingabugreport......... A-40
Appendix B. Introduction to the X Window System

B.1 A modelusershomedirectory...................... B-1

B.2 Running Pigi using Sun’s OpenWindows system. B-1

B.3 Starting X. B-2

B.4 Manipulating Windows., B-3
Appendix C. Filter design programs

C.1 Introduction. i C-1

C.2 optfir — equiripple FIR filterdesign C-1

C.3 wfir— window method FIR filter design. C-4

Appendix D. Shared Libraries

D.1 Introduction. D-1

Static Libraries D-1
Shared Libraries D-1
Differences between static and shared libraries: Unresolved symbols

D-2
Differences between static and shared libraries: Pulling in stars D-2
D.2 Sharedlibrary problems. D-3
Startup Time D-3
D.3 Reasonstousesharedlibraries..................... D-4
D.4 Architectural Dependencies D-4
Solaris D-5
SunOS D-5
HPUX D-5
D.5 GateKeeperErmor i D-6
Appendix E. Glossary
References
Index

Ptolemy Last updated: 12/1/97

Xiv

U. C. Berkeley Department of EECS

Chapter 1. An Overview of Ptolemy

1.1 Introduction

The core of Ptolemy is a compact software infrastructure upon which specialized
design environments (calledbmaing can be built. The software infrastructure, called
Ptolemy kernelis made up of a family of C++ class definitions. Domains are defined by creat-
ing new C++ classes derived from the base classes in the kernel.

Domains can operate in either of two modes:

* Simulation — A scheduler invokes code segments in an order appropriate to the model
of computation.

« Code generation — Code segments in an arbitrary language are stitched together to
produce one or more programs that implement the specified function.

The use of an object-oriented software technology permits a domain to interact with
one another without knowledge of the features or semantics of the other domain. Thus, using a
variety of domains, a team of designers can model each subsystem of a complex, heteroge-
neous system in a natural and efficient manner. These different subsystems can be nested to
form a tree of subsystems. This hierarchical composition is key in specifying, simulating, and
synthesizing complex, heterogeneous systems.

By supporting heterogeneity, Ptolemy provides a research laboratory to test and
explore design methodologies that support multiple design styles and implementation technol-
ogies. A simple example is simulating the effects of transmitting compressed video and audio
over an asynchronous transfer mode (ATM) network. The network will delay, drop, and reor-
der packets based on the congestion. Compression and decompression, however, work on the
video and audio data, and the time associated with the data is not relevant to the signal pro-
cessing. The simulation in this case is heterogeneous: the network processes discrete events
(packets) with a notion of time, whereas the signal processing processes data independent of
time. Other examples of heterogeneous systems include integrated control and signal process-
ing architectures, mixed analog/digital simulation, and hardware/software codesign.

In short, Ptolemy is a flexible foundation upon which to build prototyping environ-
ments. The Ptolemy 0.7 release contains, for example, dataflow-oriented graphical program-
ming for signal processing [Lee87a,b][Buc91][Buc93a,b,c], a multi-threaded process
networks modeling environment [Par95], a synchronous/reactive programming framework
[Edw97], discrete-event modeling of communication networks [Wal92][Hal93][Cha97], and
synthesis environments for embedded software [Bha93a,b,c][Bha94a,b][Pin95]. We have also
developed prototyping environments that are not released with Ptolemy 0.7, such as design
assistants for hardware/software codesign [Kal93]. The Ptolemy system is fundamentally
extensible, as we release all of the source code. Users can create new component models, new
design process managers, and even entirely new programming environments.

1-2 An Overview of Ptolemy

1.2 History

Ptolemy is a third-generation software environment that started in January of 1990. It
is an outgrowth of two previous generations of design environments, Blosim [Mes84a,b] and
Gabriel [Lee89][Bie90], that were aimed at digital signal processing (DSP). Both environ-
ments use dataflow semantics with block-diagram syntax for the description of algorithms. To
broaden the applicability beyond DSP, the Ptolemy kernel does not build in dataflow seman-
tics, but instead provides support for a wide variety of computational models, such as data-
flow, discrete-event processing, communicating sequential processes, computational models
based on shared data structures, and finite-state machines. For these computational models,
the Ptolemy kernel provides a mixture of compile-time and run-time scheduling techniques.
Unlike Blosim or Gabriel, then, the Ptolemy kernel provides infrastructure that is extensible to
new computational models without re-implementation of the system.

Since 1990, we have had seven major releases of Ptolemy, numbered 0.1 through 0.7.
The zero indicates that Ptolemy is research software and not a commercial product. Between
annual major releases, we put out one or two incremental releases. Our goal is to test our algo-
rithms and methodologies in Ptolemy and to transfer them as quickly as possible to the public
through freely distributable releases. Because of the critical mass of users of Ptolemy world-
wide, a news group callecbmp.soft-sys.ptolemy was formed in 1994. The Ptolemy
Web sitehttp://ptolemy.eecs.berkeley.edu/ went on-line in May of 1994.

The flexibility of Ptolemy is particularly important for enabling research in design
methodology. In September of 1993, the Ptolemy project became part of the technology base
portion of the RASSP project (rapid prototyping of application-specific signal processors),
organized and sponsored by Advanced Research Projects Agency (ARPA) and the United
States Air Force. The Ptolemy part of the RASSP project was to research system-level design
methodology for embedded signal processors. Our project aimed to develop formal models
for such heterogeneous systems, a software environment for the design of such systems, and
synthesis technologies for implementation of such systems. In the latter category, we have
been concentrating on problems not already well addressed elsewhere, such as the synthesis of
embedded software and the partitioning and scheduling of heterogeneous parallel systems. In
1997 the project became part of the DARPA Composite CAD program, and has shifted its
focus towards more aggressively heterogeneous systems, including for example microelectro-
mechanical components, and distributed adaptive signal processing systems.

We have transferred many of our research ideas to computer-aided design tool vendors
such as Cadence, Hewlett Packard, and Synopsys. Cadence’s Signal Processing Workshop
(SPW) includes their version of our synchronous dataflow (SDF) domain and multirate data-
flow schedulers. Cadence’s Convergence environment (released in October, 1995) is
Cadence’s implementation of our ideas for heterogeneous simulation. Cadence has used Con-
vergence to allow SPW and Bones (a discrete-event simulator) to cooperate in a simulation,
just as the Ptolemy kernel has allowed the SDF domain and the Discrete-Event (DE) domain
since 1990. Berkeley Design Technology has a similar cosimulation environment for SPW
and Bones, but their implementation is based on the Ptolemy kernel. In June of 1997, Hewlett
Packard announced plans to release a Ptolemy-based dataflow modeling environment that is
integrated with their highly regarded analog, RF, and microwave circuit simulation software.

U. C. Berkeley Department of EECS

The Almagest 1-3

1.3 Ptolemy Kernel

The overall organization of the latest release of the Ptolemy system is shown in figure
1-1. A typical use of Ptolemy involves starting two Uttfxprocesses, as shown in figure 1-
1(a), by runningigi (Ptolemy interactive graphical interface). The first process contains the
vem user interface and theet design database [Har86], and the other process contains the
Ptolemy kernel. An alternative is to run Ptolemy without the graphical user interface, as a sin-
gle process, as shown in figure 1-1(b). In this case, the textual interpreter is based on the Tool
Command Language, Tcl [Ous90][Ous94], and is calledbtdll for Ptolemy Tcl. It is pos-
sible to design other user interfaces for the system. We are releasing a preliminary version of a
third interface called Tycho. In its current form, Tycho is best suited for language-sensitive
editing and consoles for tools such as Matlab and Mathematica.

The executable program&iRpc orptcl can be configured to include any subset of
the available domains. The most recent picture of the domains that Berkeley has developed is
shown in figure 1-2. Many different styles of design are represented by these domains. More
are constantly being developed both at U.C. Berkeley and elsewhere, to experiment with or
support alternative styles.

The Ptolemy kernel provides the most extensive support for domains where a design is
represented as a network of blocks, as shown in figure 1-3. A base class in the kernel, called
Block , represents an object in this network. Base classes are also provided for interconnect-
ing blocks PortHole) as well as for carrying data between blosksddesic) and manag-
ing garbage collection efficientlyPkasma). Not all domains use these classes, but most
current ones do, and hence can very effectively use this infrastructure.

Figure 1-3 shows some of the representative methods defined in these base classes. For
example, note thénitialize , run , andwrapup methods in the cla®lock . These pro-
vide an interface to whatever functionality the block provides, representing for example func-
tions performed before, during, and after (respectively) the execution of the system.

Blocks can be hierarchical, as shown in figure 1-4. The lowest level of the hierarchy, as
far as Ptolemy is concerned, is derived from a kernel base classStaledA hierarchical
block is aGalaxy , and a top-level system representationtimigerse

(@) PIGIRPC (with TK) (b)
VEM PTCL (with Tcl) PTCL (with Tcl)
cor DOMAINS DOMAINS
RPC
KERNEL KERNEL
GRAPHICAL USER
INTERFACE

FIGURE 1-1: The overall organization of Ptolemy version 0.7, showing two possible execution styles:
(a) graphical interface and (b) textual interface.

Ptolemy Last updated: 6/18/97

1-4 An Overview of Ptolemy

1.4 Models of Computation

The Ptolemy kernel does not define any model of computation. In particular, although
the Berkeley team has done quite a bit of work with dataflow domains in Ptolemy, every effort
has been made to keep dataflow semantics out of the kernel. Thus, for example, a network of
blocks could just as easily represent a finite-state machine, where each block represents a
state. It is up to a particular domain to define the semantics of a computational model.

Suppose we wish to define a new domain, cailed We would define a set of C++

BDF DDF) PN) process networks

dynamic dataflow
Boolean dataflow
synchronous dataflow

multidimensional SDF

PTOLEMY
KERNEL

discrete-event

Code generation domains

synchronous reactive
inite state machine

FIGURE 1-2: Domains available with Ptolemy 0.7

\ CG /

Block Geodesic

* initialize() * initialize()

e run() * setSourcePort()
« wrapup() « setDestPort()

Geodesic

PortHole Particle Particle

* initialize() * type()

* receiveData() * print()

« sendData() « initialize()
* type()

FIGURE 1-3: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.

U. C. Berkeley Department of EECS

The Almagest 1-5

classes derived from kernel base classes to support this domain. These classes might be called
XXXStar , XXXUniverse , etc., as shown in figure 1-4.

The semantics of a domain are defined by classes that manage the execution of a spec-
ification. These classes could invoke a simulator, or could generate code, or could invoke a
sophisticated compiler. The base class mechanisms to support this are shown in figure 1-5. A
Target is the top-level manager of the execution. Similar Bloak , it has methods called
setup , run , andwrapup . To define a simulation domain callg®X for example, one would
define at least one object derived from Target that runs the simulation. As suggested by figure
1-5, a Target can be quite sophisticated. It can, for example, partition a simulation for parallel
execution, handing off the partitions to other Targets compatible with the domain.

A Target will typically perform its function via a Scheduler. The Scheduler defines the
operational semantics of a domain by controlling the order of execution of functional mod-
ules. Sometimes, schedulers can be specialized. For instance, a subset of the dataflow model
of computation called synchronous dataflow (SDF) allows all scheduling to be done at com-

XXXUniverse

Examples of Derived Classes

» class Star:: Block

¢ class XXXStar:: Star

« class Galaxy:: Block

* class Universe:: Galaxy, Runnable
» class XXXUniverse:: Universe

FIGURE 1-4: A complete Ptolemy application (a Universe) consists of a network of Blocks.
Blocks may be Stars (atomic) or Galaxies (composite). The “XXX" prefix symbol-
izes a particular domain (or model of computation).

Target:: Block

« initialize() / w \
» setup()
e run()

) Wrapup() Target

galaxy
scheduler
children

Caeneauer D)| Caonectuer
(& %

FIGURE 1-5: A Target, derived from Block, manages a simulation or synthesis execution. It c:
invoke it's own Scheduler on a Galaxy, which can in turn invoke Schedulers
sub-Targets.

Ptolemy Last updated: 6/18/97

1-6 An Overview of Ptolemy

pile time. The Ptolemy kernel supports such specialization by allowing nested domains, as
shown in figure 1-6. For example, the SDF domain (see figure 1-2) is a subdomain of the BDF
domain. Thus, a scheduler in the BDF domain can handle all stars in the SDF domain, but a
scheduler in the SDF domain may not be able to handle stars in the BDF domain. A domain
may have more than one scheduler and more than one target.

1.5 Dataflow Models of Computation

One of the most mature domains included in the current system is the synchronous
dataflow (SDF) domain [Lee87a,b], which is similar to that used in Gabriel. This domain is
used for signal processing and communications algorithm development, and has particularly
good support for multirate algorithms [Buc91]. It has been used at Berkeley for instruction, at
both the graduate and undergraduate level [Lee92]. A dynamic dataflow (DDF) domain
extends SDF by allowing data-dependent flow of control, as in Blosim. Boolean dataflow
(BDF) [Buc93a,b,c] has a compile-time scheduler for dynamic dataflow graphs [Lee91a].

Several code-generation domains use dataflow semantics [Pin92][Mur93]. These
domains are capable of synthesis of C code, assembly code for certain programmable DSPs
[Won92], VHDL, and Silage [Kal93]. A significant part of the research that led to the develop-
ment of these domains has been concerned with synthesizing code that is efficient enough for
embedded systems [Bha93a,b,c][Bha94a,b][Buc93b,c]. A large amount of effort has also been
put into the automatic parallelization of the code [Ha91][Ha92][Sih93a,b], and on parallel
architectures that take advantage of it [Lee91b][Sri93].

A generalization of dataflow, called Kahn process networks [Kah74], has been realized
by Tom Parks in the PN domain [Par95].

1.6 Discrete-Event Models of Computation

A number of simulation domains with discrete-event semantics has been developed for
Ptolemy, but only the DE domain is released with Ptolemy 0.7. The DE domain is a generic
discrete-event modeling environment, useful for simulating queueing systems, communica-
tion networks, and hardware systems. The discrete-event domains no longer released with

XXXDomain

YYYDomain

FIGURE 1-6: A Domain (XXX) consists of a set of Stars, Targets and Schedulers that
support a particular model of computation. A sub-Domain (YYY) may sup-
port a more specialized model of computation.

U. C. Berkeley Department of EECS

The Almagest 1-7

Ptolemy 0.7 are Thor [Tho88] for modeling circuits at the register-transfer level [Kal93], com-
municating processes (CP) for modeling large-scale systems at a high level of abstraction, and
message queue (MQ) for modeling a centralized network controller in a large-scale cell-relay
network simulations [La094].

1.7 Synchronous Reactive Modeling

The software analogy of synchronous digital circuits has been realized by Stephen
Edwards in the SR domain [Edw97]. This model of computation is better suited than dataflow
to control-intensive applications, and is more efficient than DE.

1.8 Finite State Machines

Another approach to designing control-intensive applications is to mix the new FSM
domain with dataflow, DE, or (in future releases) SR. The FSM domain is still very new and
has many limitations, but we believe that for the long term, it provides one of the most excit-
ing developments in the Ptolemy software.

1.9 Mixing Models of Computation

Large systems often mix hardware, software, and communication subsystems. The
hardware subsystems may include pre-fabricated components, such as custom logic, proces-
sors with varying degrees of programmaubility, systolic arrays, and multiprocessor subsystems.
Tools supporting each of these components are different, possibly using dataflow principles,
regular iterative algorithms, communicating sequential processes, control/dataflow hybrids,
functional languages, finite-state machines, and discrete-event system theory and simulation.

In Ptolemy, domains can be mixed and even nested. Thus, a system-level description
can contain multiple subsystems that are designed or specified using different styles. The ker-
nel support for this is shown in figure 1-7. An object ca&XWormhole in theXXXdomain
is derived fromxXXXStar , so that from the outside it looks just like a primitive in XX

XXXUniverse

/ XXXDomain
XXXWormhole

YYYDomain

EventHorizon

Particles

XXXfromUniversal YYYtoUniversal

XXXtoUniversal ‘

_)

FIGURE 1-7: The universal EventHorizon provides an interface between the external and
internal domains.

YYYfromUniversal Particles

Ptolemy Last updated: 6/18/97

1-8 An Overview of Ptolemy

domain. Thus, the schedulers and targets oK¥¥domain can handle it just as they would

any other primitive block. However, inside, hidden fromx&x domain, is another complete
subsystem defined in another domain, &y That domain gets invoked through Hetup |,

run , andwrapup methods oXXXWormhole. Thus, in a broad sense, the wormhole is poly-
morphic. The wormhole mechanism allows domains to be nested many levels deep, e.g. one
could have a DE domain within an SDF domain within a BDF domain. The FSM domain is
designed to always be used in combination with other domains.

1.10 Code Generation

Domains in figure 1-2 are divided into two classes: simulation and code generation. In
simulation domains, a scheduler invokes the run methods of the blocks in a system specifica-
tion, and those methods perform a function associated with the design. In code generation
domains, the scheduler also invokes the run methods of the blocks, but these run methods syn-
thesize code in some language. That is, they generate code to perform some function, rather
than performing the function directly. The Target then is responsible for generating the con-
necting code between blocks (if any is needed). This mechanism is very simple, and language
independent. We have released code generators for C, Motorola 56000 assembly, and VHDL
languages, as show in figure 1-2.

An alternative mechanism that is supported but less exploited in current Ptolemy
domains is for the target to analyze the network of blocks in a system specification and gener-
ate a single monolithic implementation. This is what we call compilation. In this case, the
primitive blocks Gtar s) must have functionality that is recognized by the target. In the previ-
ous code generation mechanisms, the functionality of the blocks is arbitrary and can be
defined by the end user.

1.11 Conclusion

In summary, the key idea in the Ptolemy project is to mix models of computation,
implementation languages, and design styles, rather than trying to develop one, all-encom-
passing technique. The rationale is that specialized design techniques are (1) more useful to
the system-level designer, and (2) more amenable to high-quality high-level synthesis of hard-
ware and software. The Ptolemy kernel demonstrates one way to mix tools that have funda-
mentally different semantics, and provides a laboratory for experimenting with such mixtures.

1.12 Current Directions

Since early 1995, a significant part of the Ptolemy project personnel have been pursu-
ing models of computations for control-intensive computation, particularly in combination
with compute-intensive subsystems, and mapping computation onto distributed architectures.
The two primary models for control-intensive computation are finite state machines and a syn-
chronous/reactive systems.

In late 1996, we shifted the focus of the project towards the design of distributed, net-
work-aware, adaptive applications. We expect that future releases of our software will be net-
work-savvy, including transparent HTTP support and mutable and migratable computations.
Fundamental work in the semantics of models of computation will of course continue to fuel
experiments with new domains and code generation techniques.

U. C. Berkeley Department of EECS

The Almagest 1-9

1.13 Organization of the documentation

The Ptolemy documentation is divided into three volumes. This volume, the first, is a
user’s manual. It is sufficient for users who do not plan to extend the system by adding code. It
includes brief documentation of the most commonly used domains, and brief summaries of
stars, galaxies, and demonstration programs that are distributed with the system.

The second volume is a programmer’s manual. It includes chapters on writing new
stars, writing targets, defining customized user interfaces by writing new Tcl/Tk code, and
defining new domains. The third volume is the kernel manual. It details every C++ class
defined in the Ptolemy kernel. It also gives full documentation for the classes supporting code
generation. These classes provide the utilities used to build application-specific environments.

1.14 Acknowledgments

Ptolemy is a team effort in every sense. Here we acknowledge the key contributions,
and apologize for inadvertent omissions.

1.14.1 Personnel

The overall coordinators are Prof. Edward A. Lee and Prof. David G. Messerschmitt of
the EECS department at U. C. Berkeley, although there has also been involvement by the
groups of Profs. Rabaey, Brodersen, Linnartz, Kahn, Sangiovanni, and Gray. Professional
staff support has included Brian Evans, Alan Kamas, Christopher Hylands, John Reekie, Mary
Stewart, Kirk Thege, and Kevin Zimmerman. Software organization and project management
has been handled by Joseph Buck, Brian Evans, Alan Kamas, Christopher Hylands, Phil Laps-
ley, José Pino, John Reekie, and Kennard White.

Joseph Buck has been responsible for key management of the development of the ker-
nel, and hence has impacted every aspect of Ptolemy. He also coordinated many of the contri-
butions, and wrote the BDF domain, the interpretgcl (), and the originalptlang
preprocessor. He also designed the memory allocation system used by assembly language
code generation domains. Special thanks to Synopsys for allowing Joe to work on the 0.5
release after joining the company. Special thanks to Joe for his work on the 0.6 release.

Other key contributors to the kernel include Soonhoi Ha and Ichiro Kuroda. Soonhoi
Ha also wrote the DDF, DE, and CGC domains, including many of the basic stars and the
basic domain interface, and also made extensive contributions to the CG domain, the kernel,
and parallel schedulers of all types. Anindo Banerjea and Ed Knightly wrote the DE Sched-
uler that is based on the calendar queue mechanism developed by Randy Brown. This was
based on code written by Hui Zhang. Other significant contributions to the kernel have been
made by Wan-Teh Chang, Mike Chen, Paul Haskell, Asawaree Kalavade, Alireza Khazeni,
Tom Parks, José Pino, and Kennard White. Mike Chen wrote the matrix classes and the matrix
particles, based in part on a prototype supplied by Chris Yu (from the Naval Research Labora-
tories). Mike Chen also developed the MDSDF domain. Joe Buck, Asawaree Kalavade, Alan
Kamas, and Alireza Khazeni wrote the fixed-point particle class. Paul Haskell created the
image particle classes and developed many of the image and video signal processing demos.
Philip Bitar had impact on the design of the DE domain and on the visual style used in the
graphical interface. Brian Evans developed the interfaces to MATLAB and Mathematica, with
help from Steve Eddins at The MathWorks and Steve Gu, respectively.

Ptolemy Last updated: 6/18/97

1-10 An Overview of Ptolemy

All code generation domains are based on a secondary kernel implemented as the CG
domain. Its principal creators are Joe Buck, Soonhoi Ha, Tom Parks, and José Pino. Kennard
White made major extensions to the ptlang preprocessor to support code generation domains.

José Pino has been primarily responsible for assembly code generation domains, and
Tom Parks for the C code generation domain, although extensive contributions have been
made by Joe Buck, Soonhoi Ha, Christopher Hylands, Praveen Murthy, S. Sriram, and Ken-
nard White. Chih-Tsung Huang, with help from José Pino, ported many of the assembly code
generation stars from Gabriel. Many people had contributed to the Gabriel stars, including Jeff
Bier, Martha Fratt, Wai Ho, Steve How, Phil Lapsley, Maureen O’Reilly, and Anthony Wong.
Brian Evans and Luis Gutierrez have enhanced the Motorola 56000 stars, demonstrations, and
targets, and S. Sriram has done the same for the Motorola 96000 stars. Patrick Warner wrote
the C code generation target for the Network Of Workstations distributed operating system by
Prof. Patterson’s group at U.C. Berkeley.

Shuvra Bhattacharyya and Joe Buck wrote the loop scheduling mechanism, and Bhat-
tacharyya contributed the Gantt chart display tool. The parallel schedulers were written by
Gilbert Sih and Soonhoi Ha, with significant contributions from Joe Buck, Tom Parks, José
Pino, and Kennard White. Praveen Murthy wrote the Sproc domain, used to generate parallel
assembly code for the Sproc multiprocessor DSP, and Kennard White wrote the CM-5 target,
used to generate parallel code for the connection machine from Thinking Machines, Inc.

Seungjun Lee and Tom Parks wrote the CP domain. Mike Williamson wrote the
VHDL domains. Ichiro Kuroda from NEC contributed to the state handling mechanism.

The graphical user interface was written by Edwin Goei, based orrthprogram,
written by David Harrison and Rick Spickelmier. It has been extensively modified by Alan
Kamas who has been responsible for the incorporation of Tcl/Tk into Ptolemy. The GUI has
been enhanced by Wan-Teh Chang, Wei-Jen Huang, Mario Silva and Kennard White. Andrea
Cassotto and Bill Bush have provided modifications and improvemeviésto

Christopher Hylands, Edward Lee, and John Reekie are the primary architects of the
Tycho interface [Hyl97]. Tycho, named after the astronomer Tycho Brahe, is written in [Incr
Tcl], an object-oriented extension of Tcl by Michael J. McLennan at AT&T Bell Labs. Signif-
icant development of Tycho has been contributed by Kevin Chang, Joel King, and Cliff Cordi-
ero. Wan-Teh Chang and Bilung Lee have developed graphical editors for finite state
machines. Code by Joseph Buck, Alan Kamas, and Douglas Niehaus originally written for
pigi have been reused in the Tycho kernel. Some contributions to Tycho were made by Brian
Evans.

Several people have had a major impact on the development of Ptolemy through their
major efforts on its predecessor, Gabriel. Phil Lapsley has had incalculable impact on the
directory structure, project management, documentation, and code generation efforts in
Ptolemy. The first version of the graphical interface was written by Holly Heine.

Many people have had an impact on the current release by contributing stars and/or
demo programs. These include, in addition to all the people mentioned above, Egbert
Ammicht (from AT&T Bell Labs), Rachel Bowers, Stefan DeTroch (from IMEC), Rolando
Diesta, Erick Hamilton, Wei-Yi Li, John Loh, and Gregory Walter. Others had an indirect
impact by contributing stars or demo programs to the predecessor program, Gabriel. These
include Jeff Bier, Martha Fratt, Eric Guntvedt, Mike Grimwood, Wai-Hung Ho, Steve How,

U. C. Berkeley Department of EECS

The Almagest 1-11

Jonathan Lee, Brian Mountford, Maureen O’Reilly, Andria Wong, and Anthony Wong.

Ptolemy is very much an ongoing project, with current efforts expected to be included
in future releases. Participants will be acknowledged when their work is included in a release.

1.14.2 Support

The Ptolemy project is currently supported by the Defense Advanced Research
Projects Agency (DARPA), the State of California MICRO program, and the following com-
panies: The Alta Group of Cadence Design Systems, Dolby Laboratories, Hewlett Packard,
Hitachi, Hughes Space and Communications, LG Electronics, Lockheed Martin ATL, NEC,
Philips, Rockwell, and the Semiconductor Research Corporation.

Funding at earlier stages of the project was also provided by the National Science
Foundation (NSF), the Office of Naval Technology (ONT), via the Naval Research Labs
(NRL), AT&T, Bell Northern Research (BNR), Hughes Network Systems, Hughes Research
Laboratories, Mentor Graphics, Mitsubishi, Motorola, Sony, and Star Semiconductor.

In-kind contributions have been made by Ariel, Berkeley Camera Engineering, Phil-
ips, Spectrum Signal Processing, Synopsys, Signhal Technology Inc. (STI), Texas Instruments,
Wolfram Research, Inc., and Xilinx.

Other sponsors have contributed indirectly by supporting Gabriel, the predecessor.

1.14.3 Prior software

At every opportunity, we have built upon prior software, much of which we have been
permitted to redistribute together with our Ptolemy distribution. We wish to gratefully
acknowledge the following contributions:

 Theoct tools, written by the CAD group at U.C. Berkeley, under the direction of
Prof. Richard Newton, provide both the design databeisgHar86] and the graphi-
cal editorvem [Har86] foroct . The flexibility ofoct , which makes minimal assump-
tions about the data stored in the database, and the extensibildyn,ofhrough its
rpc interface, have allowed us to use this software in ways unexpected by the authors.

* Tcl/Tk, architected by Prof. John Ousterhout of U.C. Berkeley, has improved the user
interface in Ptolemy. The textual command-line Tcl interface [Ous90][Ous94] is the
basis for the Ptolemy interpretgcl , and the graphics toolkit Tk [Ous94] is the basis
for interactive graphics. Tcl serves a scripting language to control Ptolemy runs, and as
an interpreter to compute parameters. Since Tcl is a scripting language, casual users
have been able to extend Ptolemy’s interface. Tcl is robust and lightweight.

* [Incr Tcl], an object-oriented extension of Tcl written by Michael J. McLennan at
AT&T Bell Labs is used in Tycho.

« The Gnu tools, from the Free Software Foundation, have been instrumental in
Ptolemy’s development. The ability to distribute the compiler used in the development
of Ptolemy has been critical to the success of our dynamic linking mechanism. It
enables us to distribute a compiled executable together with the compiler that gener-
ated it. Thus, users lacking the skill or patience to recompile the Ptolemy system can
nonetheless take advantage of dynamic linking of new functional blocks. They can use
the same version of the compiler used to generate the executable, even if that version

Ptolemy Last updated: 6/18/97

1-12 An Overview of Ptolemy

of the compiler is not the one installed by default on their own system.

e Xgraph, written by David Harrison, of the CAD group at U. C. Berkeley, has provided
the principal data display and presentation mechanism. Joe Buck modified this pro-
gram only slightly, to accept binary input in addition to ASCII. Its flexibility and well
conceived design have permitted us to use it for almost all data display. Only recently
have we augmented it with Tk-based animated displays.

U. C. Berkeley Department of EECS

Chapter 2. The Interactive Graphical
Interface

Authors: Joseph T. Buck
Edwin E. Goei
Wei-Jen Huang
Alan Kamas
Edward A. Lee

Other Contributors: Andrea Cassotto
Wan-Teh Chang
Michael J. Chen
Brian L. Evans
David Harrison
Holly Heine
Christopher Hylands
Tom Lane
Phil Lapsley
David G. Messerschmitt
Rick Spickelmier
Matthew Tavis

2.1 Introduction

The Ptolemy interactive graphical interfageg{) is a design editor for Ptolemy
applications. It is based on tools from the Berkeley CAD frameworigin, Ptolemy appli-
cations are constructed graphically, by connecting icons. Hierarchy is used to manage com-
plexity, to abstract subsystem designs, and to mix domains (models of computation).

2.1.1 Setup
Ptolemy uses several environment variables (see page 2-51). In order for Ptolemy to
run properly, the following two environment variables must be set in.ysiuec file:
* PTOLEMYs the full path name of the Ptolemy installation, and
e PTARCHS the type of computer on which you are running Ptolemy.
Example settings for ashrc file follow, along with how to update your path vari-
able:

setenv PTOLEMY ~ptolemy
setenv PTARCH ‘$PTOLEMY/bin/ptarch’
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

When Ptolemy was installed, a fictitious user nanpealémy ' may have been cre-
ated whose home directory is the Ptolemy installation. If Ptolemy has been installed without

2-2 The Interactive Graphical Interface

creating aptolemy ’ user, then use the appropriate path name of the Ptolemy installation for
the value of the PTOLEMY environment variable, such a#isr/eesww/share/

ptolemy0.7 , for example. Once you make the appropriate changes tocgotr file, you

will need to reevaluate the file:

source ~/.cshrc

In the documentation, we will generally refer to the home directory of the Ptolemy
installation as$sPTOLEMYbut sometimes we forget and uggolemy .

Pigi requires the MIT X Window System. If you are not familiar with this system, see
the appendix, “Introduction to the X Window System” on page B-1. Some X window manag-
ers are configured to require that you click in a window before the “focus” moves to that win-
dow. This means that the window will not respond to input just because you have placed the
mouse cursor inside it. You must first click a mouse button in the window. While it is possible
to usepigi with this configuration, it is extremely unpleasant. In fact, it will be rather
unpleasant to usny modern program that makes use of the window system. You will want to
change the mode of the window manager so that the focus follows the mouse. The precise
mechanism for doing this depends on the window manager. For the Motif window manager,
mwmthe appropriate line in th&defaults file is:

Mwm*keyboardFocusPolicy: pointer
For the open-look window managelywm, the line is:
OpenWindows.Setlnput: followmouse

Alternatively, you can invokelwm with the optionfollow . Typically, the window manager
is started in a file calledinitrc in your home directory.

If you are running Sun’s OpenWindows, you may find that the Athena widgets have
not been installedpigi will not run without them. See the installation instructions in the
appendix. For more information on usipigi with OpenWindows, see “Introduction to the
X Window System” on page B-1.

2.2 Running the Ptolemy demos

A good way to start is by running a few of the Ptolemy demos. Any user can do this,
although average users are not permitted to change the demos. If you feel compelled to change
a demo, you can copy it to your own directory by usimg (see the section below, “Copy-
ing objects” on page 2-44). You can modify the copied version.

2.2.1 Starting Ptolemy
In any terminal window, change to the master demo directory:
cd $PTOLEMY/demo
Start the Ptolemy graphical interface:
pigi &
You should get three windowsvam console window at the upper left of your screen, a pal-
ette with icons of demonstrations below that, and a message window identifying the version of

Ptolemy, as shown in figure 2-1. The borders on your windows may look different, since they
are determined by the window manager that you use. If you have problems starting pigi, see

U. C. Berkeley Department of EECS

The Almagest 2-3

“Problems starting pigi” on page A-16. A complete list of options that you can specify on the
command line is given in the section “Command-line options” on page 2-53. For example, if
you are only interested in running the instructional/demonstration version, which only con-
tains the Synchronous Dataflow and Discrete-Event Domains, then evaluate

Reading cell init.pal:schematic:contents../users/ptolemy/lib/pigiRpcShell
ahn:0.0 kahn eecs.berkeley.edu 35050 inet 12 34 16909060
fusers/ptolemy/lib/pigi RpcShell running on host kahn eecs.berkeley.edu

Top-Level Demo Directory

Toget the Pholery menu: hold the shift key, and click ,
the micldle mouse button, To peruse the demos: use the Cuuick What's
look-inside cammand on the Window menu. Tour Mew

Simulation domains

Synchronous Boolean Diynarmic Process
Dataflow Dataflow Dataflow Metwork
223 lL @ Lo
— —
Mixed Finite Wultidirmensional
Discrete Dorrain State Synchronous Synchronous
Event Dermos Waching Dataflow Rea ctive
me{lr\i\ema pEHimeE N
T-Je £ o Jxes
DE e S DSDF R

Code generation domains

Texas

Code Motarola Instruments Behavioral Rerrgetihle
Generation C Code 56000 TMS320C50 YHOL Y¥HDL
P euEae 13 erimanta EXDEI’IITEI“H‘ lﬁerln‘ema =
& - opl =22
G GC (G56 IC50 OLB
—

Welcome 1o Plolemy

emyiore I T g i pe WEh Al Do nes Doz e oesed Mo o2 111758
FOT 1567

Execxiil Ll N ML
s Pl el N i

Limight @ 12901907 Fageril 2l B U efersd§ ol Dalfores
ALY gl el
b T R et i s L
T I T LT T T s e

Iniraduction to Flokemy

[iy e

FIGURE 2-1: If you start pigi in the directory $PTOLEMY, once the system is started you will see
these three windows. The upper left window is the vem console window. Below that is
a palette of icons representing demo directories. To the right is the Ptolemy welcome

window.

Ptolemy Last updated: 11/6/97

2-4 The Interactive Graphical Interface

pigi -ptiny &
Once you get all three windows, you have started two processes: the graphical editor,
vem, and a process nampiiRpc that contains thpigi code and the Ptolemy kernel. The
vem window prints the textual commands corresponding to your selections with the mouse.
Watching thevem window is useful in diagnosing mistakes, such as drawing a box when you
meant to draw a line. Theem console window also displays debugging messages, as well as
the error and warning messages that appear in popup windows.

Clicking any mouse button in the welcome window (the one with the picture of Mr.
Ptolemy) will dismiss it. Clicking the left mouse button on the “more information” button will
display copyright information. The remaining windows can be moved and resized using what-
ever mechanism your window manager supports. The windows can be closed by typing a con-
trol-d with the mouse cursor inside the window. Closing tbm console window will
terminate the entire program.

For reference, a summary of the pertinent terms is given in table 2-1 on page 2-4.
These will be discussed in more detail as we go.

The palette window contains icons. Five different types of icons are upegl inas
shown in figure 2-2. The ones in the palette window are of the first type; they represent other
palettes. If you have a color monitor, the outline on these icons is purple.

2.2.2 Exploring the menus

Place the mouse cursor on the icon labeled “SDF”. Getighe command menu by
holding the shift key and clicking the middle mouse button. This style of menu is called a
“walking menu.” Make sure you hold the shift button. The resulting command menu is shown

Category Term Definition
Programs | Ptolemy The entire design environment
pigi The Ptolemy graphical interface, including bptiRpc andvem
vem A graphical editor for oct, upon whigdigi is built
pigiRpc A process (with remote procedure calls) attacheatto by pigi
Design oct The design manager and database
database |[facet A design object (a schematic or a palette)
schematic | A block diagram
palette A facet that contains a library of icons rather than a schematic
[Ptolemy | Star Cowest level block in Ptolemy, with functionality defined in C++
objects Galaxy A block made up of connected sub-blocks, with inputs and/or outputs
Universe An outermost block representing a complete system that the user can runj
Domain An object defining the model of computation, which defines the behavior of a net-
work of blocks. In code generation, a domain also corresponds to single tafget
language.
Wormhole | A galaxy that does not have the same domain on the outside as the insidqg.
TCIITK Tl An interpreted language built in g
Tk An X window toolkit attached to Tcl
TABLE 2-1: Summary of terms defining software components.

U. C. Berkeley Department of EECS

The Almagest 2-5

below:
pigiRpcShell@host pigiRpcShell@host
Edit il Edit W
Window O O open-palette
Exec O Exec F open-facet
Extend O Extend | edit-icon
Filter O Filter
Utilities O Utilities y Tycho
Other O Other]

The names displayed in the left main menu are only headers. To see the individual commands
under each header, you must move the mouse to the arrows at the right of the menu. The sub-
menu that appears on the right contains commands. Clicking any mouse button with a com-
mand highlighted as shown on the right will execute that command. To remove the menu
without executing any command, simply click a mouse button anywhere outside the menu.

2.2.3 Traversing the hierarchy

Go to the “Window” sub-menu, and execute ltiek-insidecommand, as shown above
on the right. A new palette will open, containing icons representing further palettes. Look
inside the first of these, labeled “Basic”. The icons inside contain application programs, called
“universes” in Ptolemy. The two palettes you have just opened are shown in figure 2-3. They
are both explained in further detail in “An overview of SDF demonstrations” on page 5-51.

Note in the Ptolemy menu that tlemk-insidedirective has an “i” next to it. This is a
“single key accelerator.” Without using the walking menu, you can look inside any icon by
simply placing the mouse cursor and hitting the “i” key on the keyboard. The single-key accel-
erators are extremely useful. In time, you will find that you use the menu only for commands
that have no accelerator, or for which you cannot remember the accelerator. The Ptolemy
commands obtained through the above menu are summarized in table 2-2. The few commands
you will need immediately are shaded in table 2-2.

Look inside the first demo on the third row, labelsitiMod ”. You will see the sche-

onooo A g ’ the next
8o Y — > — icon goes
> here
palette universe a ' star
purple border black border green border blue border

FIGURE 2-2: Five different types of icons are used in pigi. From left to right, the icons represent pal-
ettes (windows containing more icons), universes (windows containing Ptolemy appli-
cations), galaxies (functional blocks defined using other functional blocks), and stars
(elementary or atomic functional blocks). The last icon on the right is the cursor, mark-
ing the position into which the next icon will be placed. On a color monitor, the borders
of the icons have the indicated colors. The designs inside the icons and their shape
are the default. They may be customized.

Ptolemy Last updated: 11/6/97

2-6 The Interactive Graphical Interface

matic shown in figure 2-4. Try looking inside any of the icons in this schematic. If you look
inside the icon labeled “modulator”, you will see the lower schematic in figure 2-4. If you
look inside the icon labeled “XMgraph”, this time, instead of graphics, you will see text that
defines the functionality of the block. The syntax of this text is explained in the programmer’s
manual, volume 3 of the Almagest. You can change the editor used to display the text by set-
ting an environment variabRT_DISPLAY (see “Environment variables” on page 2-51).

2.2.4 Running a Ptolemy application

To run thesinMod system using the walking menu, place the mouse cursor anywhere
in the window containing theinMod schematic, i.e., your cursor should be in the window

SDF Demos

Synchronous dataflow (SDF) is used
to model signal processing systems
with deterministic control flow.

Basic

Multirate

[E—
[multirate.
I;X Communications

Basic demos illustrating
simple uses of Ptolemy and
the use of certain stars

5 > = e

butterfl chaoticNoise comparison Exponential delayTest

/\/\ AAA Modulo
fre
ImsFregDetert eOffset aussian integrator

L s L e

muxDeMux uantize scramble tbus

FIGURE 2-3: The “SDF” and “basic” palettes. The SDF palette contains icons representing other
palettes containing a variety of demos in the synchronous dataflow domain. The
“basic” palette is one such palette of demos. The icons here represent universes.
These palettes are explained in more detail in “An overview of SDF demonstrations”
on page 5-51

U. C. Berkeley Department of EECS

The Almagest

Menu Heading Command Key Description
pigi Edit edit-params e change parameters of a star, galaxy, or universe

edit-domain d change the domain of a universe or galaxy
edit-target T specify a target to manage the execution
edit-comment ; add comment to a universe or descriptor to a gplaxy
edit-pragmas a specify attributes of blocks
edit-seed # set the random number seed
find-name highlight a block with a specified name
clear-marks clear all icon highlighting

Window | open-palette @) open one of the standard palettes of blocks
open-facet F open an arbitrary palette, universe, or galaxy
edit-icon I modify the physical appearance of an icon
look-inside i look inside an icon for its definition
Tycho y invoke the Tycho language-sensitive editor

Exec run R run a universe
run-all-demos testing command - run everything in a palette
compile-facet testing command - translate oct to Ptolemy
display-schedule show the most recent static schedule, if any

Extend make-schem-icon @ make an icon to represent a facet
make-star * dynamically link a new star and make an icon
load-star L dynamically link a star that already has an icon
load-star-perm K link a star so that derived stars can link dynamjcally

Filter equiripple FIR < invoke a provisional filter design utility
window FIR > invoke another provisional filter design utility

Utilities | plot signal ~ plot a signal read from a file
plot Cx signal - plot a complex signal read from a file
DFT A plot the DFT of a signal read from a file
DFT of Cx signal | _ plot the DFT of a complex signal read from a fife

Other facet number H testing command - display the Tcl facet handlg
man M open a manual page corresponding to a star
profile , display a brief summary of the functionality of a
print-facet cntr-R print a facet or generate a PostScript file
show-name n display the name of an icon and its master
options change various esoteric options
version display the version of Ptolemy that is running
exit-pigi quit Ptolemy without exiting vem

TABLE 2-2: A summary of the Ptolemy commands in the pigi menu, which is obtained by holding

Ptolemy

2-7

tar

the shift button and clicking the middle mouse button. The single-key accelerators for
commands that have them are shown. The commands that are most useful for
exploring the Ptolemy demos are shaded.

Last updated: 11/6/97

2-8 The Interactive Graphical Interface

that contains the following schematic:

Modulation of a sine wave
by another sine wave

Y

singen ulator qullq ©

Again holding the shift key, click the middle mouse button. Go to the “Exec” sub-menu, and
select “run” by clicking any button. Notice that typing an “R” would have had the same effect.

sinMod universe

Modulation of a sine wave
by another sine wave

sinq | ulator)&@3
>=

Mpy

Y

singen modulator galaxy

FIGURE 2-4: One of the synchronous dataflow demos. This Ptolemy application modulates a sine
wave with another sine wave. The upper diagram is the top level. The lower is the con-
tents of the “modulator” subsystem.

U. C. Berkeley Department of EECS

The Almagest 2-9

The following control panel pops up:

Caniimi uaed e simsds
i Scept _; Desug

Wam B wep: [401] |

(__;Ej;;;:::__T [T g re—] Auunrqzzu-p]

If you click the left mouse button on the “GO” button (or hit “return”), Ptolemy will run this
application through 400 iterations. When the run is finished, a graph appears, as shown in fig-
ure 2-5. Try resizing and moving this display. Experiment ingkigaph window by draw-

ing boxes; to draw a box, just drag any mouse button. This causes a new window to open with
a display of only the area that your box enclosed. Although the new window covers the old, if
you move it out of the way, you can see both at once. Any of the now numerous open windows
can be closed with a control-d.

2.2.5 Examining schematics more closely

Place the mouse cursor in any schematic or palette window, and click the middle
mouse button without holding the shift key. Meen command menu, which is different from
the pigi command menu, appears. This menu is the same style of “walking menu” as the

v Fard g A mdulitor dema

AL
BAD
LEl—1 : i —1 - -]

o o A PR |
- TR

40

280 F 1 | L

JAn

=500 ¥ 1 1 | 1)
M
fuan 50000 10040 (L] F SS0a0 0 ix A0 4ixl.i1

FIGURE 2-5: The graph generated by the “sinMod” application in figure 2-4. The graph is displayed
by a program called “pxgraph,” based on xgraph by David Harrison.

Ptolemy Last updated: 11/6/97

2-10 The Interactive Graphical Interface

pigi menu, and is shown below:

schematic schematic
System il System W
Display O p pan
Options 0 Options e
Undo 0 Undo 7 T
Edit [Edit f show-all
Selection 0 Selection cEreaeEE
Application [Application ‘=

Thevem menu is used for manipulating the graphical description of an application. The com-
mands obtained through this menu are summarized in table 2-3, and explained in full detail in
Chapter 19.

A few additional window manipulations will prove useful almost immediately. In any
of the vem windows, you can closely examine any part of the window by drawing a box
enclosing the area of interest and typing an “0”. Like pxgraph window, this causes a
newwindow to open, showing only the enclosed area. Upllgeaph windows, typing the
“0” is necessary. In addition, you can enlarge a window using your window manager manipu-
lation, and type an “f” to fill the window with the schematic. You can also zoom-in (or mag-
nify) by typing a “z”, and zoom-out by typing a “Z” (see table 2-3 on page 2-11). These and
othervem commands are referenced again later, and documented completely in chapter 19.

2.2.6 Invoking on-line documentation for stars

You may wish to understand exactly how tirtMod example works. There are sev-
eral clues to the functionality of the stars. After a while, the icons themselves will be all you
will need. At this point, you can get several levels of detail about them. First, you will want to
know the name of each star. If you have closeditidod window, open it again. Notice the
names that appear on each of the icons. In more complicated schematics, when the icons are
much smaller, the names will not show. You can zoom-in on a region of the window to see the
names. Alternatively, you can place the mouse on any icon and issue the “show-name” com-
mand (in the “Other” menu), or type “n”.

Find thesingen block at the left of theinMod schematic. To understand its func-
tion, place the mouse cursor on it, and execute the Other:profile command. Here “Other”
refers to the command category and “profile” to the command in the submenu (you may also
type “)”). This command invokes a window that summarizes the behavior of the block, as

shown below:
= [=0 =]

Galaxy: singen (SDF)
Generate a sine wawe with frequency “frequency” (relative to the given “sample_rate”)
and phase given by “phase_in_radians’ according to the formnula

sin{ 2*PI*(frequency/sample_rate)*n + phase_in_radians)

where n is the sample index. Therefore, "frequency” and "sample_rate” should have the
same units, e.g. radfsample, Hz, etc.
Outputs:
out: FLOAT
Settable states:
sample_rate (FLOAT): default — 2*PI
freguency (FLOAT): default — PI/S0
phase_in_radians (FLOAT): default — 0.0

I OK <Rets |

For some blocks, further information can be obtained with the Othek:ffidt) command,

U. C. Berkeley Department of EECS

The Almagest 2-11

which displays a formatted manual page. Try it onxikigraph block at the right of the sche-
matic. The ultimate documentation for any block is, of course, its source code. Bior the
gen block, the source is another schematic. Use the “look-inside” command (using the
accelerator key “i”) to see it. Recall that you can also look at the source code of the lowest

level blocks (calledtarg by looking inside them.

2.2.7 More extensive exploration of the demos

You can safely explore other demos in the palette by the same mechanigmt-The

Menu Heading Command Key Description
vem none no command name cntr-h remove the last argument (point, box, etc.)
del remove the last argument (point, box, etc.)
cntr-u remove all arguments from the argument list
cntr-1 (control lower case L) redraw the window
System open-window o] open a new view into a facet
close-window cntr-d | close a window
where ? find the position of the cursor in oct units
palette P open the color palette for editing icons
save-window S save a facet
bindings b display key bindings (single key accelerators)
re-read restore a facet to the last saved version
Display pan p move the view to be centered at a given spot
zoom-in z zoom in for a closer view of a facet
zoom-out Z zoom out
show-all f rescale the schematic to fit the window
same-scale = used to get two windows to use the same scale
Options window-options adjust snap, grid spacing, etc.
layer-display selectively display colors
toggle-grid g turn on or off the grid display
Undo undo U undo any number of previous changes
Edit create [create a line, icon, name, etc.
delete-objects D remove selected objects from an icon drawing
edit-label E modify a label in a schematic
Selection select-objects s add an object to the argument list for a command
select-net cntr-N | select a wire (net) connecting blocks
unselect-objects u remove an object from the argument list
transform t rotate or reflect an object
move-objects m move an object in a schematic
copy-objects X copy one or more objects in a schematic
delete-objects D delete objects from a schematic
Application | rpc-any r start a vem application (pigiRpc is one)
TABLE 2-3: A summary of the Ptolemy commands in the vem menu, which is obtained by clicking

the middle mouse button without holding the shift button. The single-key accelerators
for commands that have them are shown. The commands that are most useful for
exploring the Ptolemy demos are shaded. More complete documentation can be
found in chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1.

1. The man command uses Tycho to display the HTML format star documentation that
is automatically generated by th#gang program.

Ptolemy Last updated: 11/6/97

2-12 The Interactive Graphical Interface

terfly ~ demo at the upper left of the “basic” palette in figure 2-3 is particularly worthwhile.
The demos in this and other palettes are briefly summarized in “An overview of SDF demon-
strations” on page 5-51.

Theinit.pal palette in figure 2-1 contains icons leading to a top-level demo direc-
tory for each domain distributed with Ptolemy. Some of these are labeled “experimental”.
These domains largely reflect research in progress and should be viewed as concept demon-
strations only. The mature domains have no such label, although even these domains contain
some experimental work. A quick tour of the basic capabilities can be had by looking inside
the icon labeled “quick tour” in the start-up palette shown in figure 2-1. Each time you
encounter a universe, run it.

2.2.8 What's new

For readers familiar with previous versions of Ptolemy, you may wish to take a tour of
the new features only. The “What’s New” icon in thiepal palette in figure 2-1 leads to
such a tour. Look inside it and you will see an icon for each of the last several releases. Open
any one and explore the icons therein. Each time you encounter a universe, feel free to run it.

2.3 Dialog boxes

As you explore the demos, you will frequently encounter dialog boxes and control
panels. For example, the run command opens a control panel like the one shown above that,
among other things, allows you to specify how long the simulation should run. Most of the
control panels that you will encounter have been designed using an X window toolkit called
Tk, and every effort has been made to follow the Motif design style. Hopefully, this will look
familiar to most people.

2.3.1 Tk control panels

Most of the items in a control panel are self-explanatory. Consider the run control
panel shown on page 2-9. The button with the double relief (the GO button) is the default but-
ton. Hitting the return key has the same effect at clicking the mouse on this button. A different
type of button is the “check button”, labeled “Debug”. Clicking on this button expands the
control panel, as shown below, giving the user options that are sometimes useful in debugging
a complex application.

Cimnirnd panel {or wnbisd
Scrigh W Delug
when 1o stop: 400
(=0} <Habume FALSL «lpucer ANONT 4 o mps
BT LANLY LN | Tofiad Famiatiod
| Graphicel Srmrmoilian
. . | Thewas s Py
DIEMIES

The “Animation” buttons show (textually or graphically) which blocks are running at any

U. C. Berkeley Department of EECS

The Almagest 2-13

given time. Graphical animation will dramatically slow down a simulation, so it is not advised
except for occasional use. It is often useful in combination witlsTiEP button, which will
fire stars one a time.

The EARLY ENDbutton terminates the simulation as of the point currently reached, but
then it runs thevrapup methods of the stars, just as if the simulation had ended normally.
Thus, it is an invasive alteration of the behavior of the simulation. The results displayed dur-
ing wrapup may be subtly or wildly different from the results that would have been obtained
if the simulation had been allowed to proceed to its scheduled end time. Some of the demos
will in fact deliver incorrect, or at least unexpected, results if stopped early.

The EARLY ENDbutton differs from thABORTbutton in that th&ARLY ENDbutton
calls thewrapup methods ABORTdoes not. Thus, for example, signal plots that normally
appear at the end of a simulation will not appear WVABDRTIs used.

Clicking on theDebug button a second time will reduce the control panel to its previ-
ous form.

Many control panels have text widgets. In the control panel above, for example, the
box labeled “When to stop” is a text widget. To change the number, you must use Emacs-like
editing control characters. These are summarized in table 2-4. In addition, using the mouse,
you can position the cursor anywhere in the text to begin editing by clicking the left button.
For example, to enter a new number for “when to stop”, position the cursor in the number box
and type control-k followed by the new number. You can then push the GO button (or type
return) to run the application the specified number of iterations.

Many control panels have more than one text widget. The current field is the one with
the cursor, and anything you type will go into it. To change the current field to a different one,
move the mouse or use the “Tab” key to move to the next one.

2.3.2 Athena widget dialog boxes

Although we have been working hard to eliminate them, a few old-style dialog boxes
based on the Athena widgets from MIT still survive in the system. You will recognize these
immediately because they are much uglier and more difficult to work with than the Tk-based

Key Description
Delete, control-h Delete previous character.
control-a Move to beginning of line
control-b Move backward one character
control-d Delete next character
control-e Move to end of line
control-f Move forward one character
control-k Kill (delete) to end of line

TABLE 2-4: Summary of key bindings for Emacs-style text editing.

Ptolemy Last updated: 11/6/97

2-14 The Interactive Graphical Interface

widgets. Here is an example:

Labed Editor

Tezet Hedght (Jambida) odulation of & sinewave
Huriguntal Justification another sinewave

Wertlcal Justification

Line Justification

The text widgets in these dialog boxes also use Emacs-style commands. However, do not type
return; this adds a second line to the dialog entry, which for most commands is confusing at
best. If you accidentally type return, you can backspace sufficiently to get back to one line.
Meta-return is the standard way to invoke the “OK” button in these widgets.

2.4 Parameters and states

To see the parameter values of a star or galaxy, execute the Edit:edit-params command,
which has the accelerator key “e”. Tsiagen star in thesinMod application has the fol-
lowing parameter screen:

Edit Galmey Parameters
Sianghd rana: Z'Pi
Traguancy: P00
phass_in_rdians; nn
0K | Pty | Clirisi] Careal

Notice that thdrequencyparameter is given as an expression, “PI/100” (Pl represents the con-
stantrm). This section describes the expression language for specifying parameter values.

The parameter screen can be kept open while you experiment with different values of
the parameters. Try changing the value “P1/100” to “P1/200". Click “Apply” in the parameter
window, and then “GQO” in the run control panel. How does this change the display? Clicking
“Cancel” in the parameter window will restore the parameter values to the last saved values
and dismiss the parameter window. Clicking “Close” will dismiss the parameter window with-
out restoring the parameter values.

2.4.1 A note on terminology

A State is a data-structure associated with a star and is used to remember data values
from one invocation to the next. For example, the gain of an automatic gain control is a state.
A state need not be dynamic since its value may not change during the course of a simulation.
Technically, gparameteris the initial value of a statigi is responsible for defining param-
eter values and storing them in the design database.

U. C. Berkeley Department of EECS

The Almagest 2-15

2.4.2 Changing or setting parameters

Theedit-paramsommand irpigi permits the user to set the initial value of a settable
state of any star (lowest level block) and to define and set parameters for a galaxy (composite
block) or universe (complete application).

Passing parameters through the hierarchy

Star parameters may be linked to the parameters of the galaxy or universe that contains
the star. The syntax for linking the values of the star parameters to values of galaxy or universe
parameters is simple. Consider againsih®od application shown in figure 2-4. The param-
eter screen for th@odulator block is shown below:

| Edit Galmoy Parameters "

This block, however, is a galaxy, not a star. If you look inside (as has been done in figure 2-4),
and edit the parameters of tsiegen block insidemodulator , you will see

Edit Galmoy Parameters
Seminph AN 2Pl
Ireguancy: Ir"ll:l I
piasn_in_radans; nn
oK | Pty | s J Careil

Notice now that the value of tHeequencyparameter is a symbolic expression, “freq”. This
refers to the galaxy parameter “freq”. Thus, parameter values can be passed down through the
hierarchy. These symbolic references can appear in expressions, which we discuss next.

Parameter expressions

Parameter values set througibi can be arithmetic expressions. This is particularly
useful for propagating values down from a universe parameter to star parameters somewhere
down in the hierarchy. An example of a valid parameter expression is:

Pl/(2*order)

whereorder is a parameter defined in the galaxy or universe. The basic arithmetic operators
are addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (). These
operators work on integers and floating-point numbers. Currently all intermediate expressions
are converted to the type of the parameter being computed. Hence, it is necessary to be very
careful when, for example, using floating-point values to compute an integer parameter. In an
integer parameter specification, all intermediate expressions will be converted to integers.

Ptolemy Last updated: 11/6/97

2-16 The Interactive Graphical Interface

Complex-valued parameters
When defining complex values, the basic syntax is
(real, imag)
wherereal andimag evaluate to integers or floats.

Fixed-point parameters

Fixed-point parameters may be assigned a precision directly. To do this, the parameter
is given in the syntax ¥alueg precision”, wherevalueis an ordinary number anptecisionis
given by either of two syntaxes:

e Syntax I As a string like “3.2”, or more generallyn:r’, wherem is the number of
integer bits (to the left of the binary point) am& the number of fractional bits (to the
right of the binary point). Thus lengthnstn.

e Syntax 2 A string like “24/32” which means 24 fraction bits from a total length of 32.
This format is often more convenient because the word length often remains constant
while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at least one.

Thus, for example, a fixed-point parameter might be defined as “(0.8, 2/4).” This
means that a 4-bit word will be used with two fraction bits. Since the value “0.8” cannot be
represented precisely in this precision, the actual value of the parameter will be rounded to
“0.75".

A fixed-point parameter can also be given a value without a precision. In this case, the
default precision is used. This has a total word length of 24 bits with the number of integer bits
set as required to store the value. For example, the number 1.0 creates a fixed-point object
with precision 2.22, and a value like 0.5 would create one with precision 1.23.

The precision of internal computations in a star is typically given by a parameter of
typeprecision . A precision parameter has a value specified using either of the two syntaxes
above.

2.4.3 Reading Parameter Values From Files

The values of most parameter types can be read from a file. This syntax for this is to
use the symbaot as in the following example:

< filename

First, any parameters appearing in filname in the form of{parameter} are
replaced with their values. Then, any references to environment variables or home directories
are substituted to generate a complete path name. Finally, the contents of the file are then read
and spliced into the parameter expression and reparsed. File inputs can be very useful for
array parameters which may require a large amount of data. Other expression may come
before or after thefilename syntax (any white space that appears aftextbkaracter is
ignored).

2.4.4 Inserting Comments in Parameters
Comments are also supported for non-string parameters. A comment is specified with

U. C. Berkeley Department of EECS

The Almagest 2-17

the# symbol. Everything after the until the end of the line is discarded when the parameter
is evaluated. Comments are especially useful in combination with files as they can help
remind the user of which galaxy or star parameter the file was written.

For example, a comment could be added tdrdwuencyparameter above:
freq # This is set to the Galaxy parameter

Comments are not supported for the String parameter or String Array parameter types.
In fact, when the image processing stars use String states to represent a filenactearthe
ter is used to denote the frame number of the image being processed.

2.4.5 Using Tcl Expressions in Parameters

Arbitrary Tcl expressions can be embedded in a parameter expression by preceding the
expression with thecharacter as in the following example:

I "expression”

First, parameters in the form dparameter} appearing in the expression are
replaced by their values. Then, the string is sent to the pigiRpc Tcl interpreter for evaluation.
Finally, the result is spliced into the parameter expression and reparsed. The pigiRpc Tcl inter-
preter is the same interpreter that appears as a windowpighens started by usingigi -
console .

This facility is general and supports both numeric and symbolic computing of expres-
sions. Through Tcl, one can access all of its math functions, which generally behave as the
ANSI C functions of the same namabs, acos, asin , atan , atan2 , ceil , cos, cosh,
double , exp, floor ,fmod, hypot ,int ,log ,logl0 , pow, round , sin , sinh ,sqrt ,tan ,
andtanh . So, a parameter expression could be

I "expr sqrt(2.0 / {BitDuration})"

for the amplitude of the oscillators in a binary frequency shift keying system, in which
BitDuration is a parameter. Thexpr command is a Tcl command that treats its arguments
as a single mathematical expression that must evaluate to a number.

The Tcl mechanism can be used to return symbolic expressions:
I'"join 2*gainl”
Becauseagainl is not surrounded by curly braces, its value is not substituted before

passing the expression to the Tcl interpreter. The Tcl interpreter will Ztaiml which is
then evaluated by the parameter parser.

Note that whitespace betweerand" is permitted in numeric parameters, but not in
string parameters: to get a Tcl call to be recognized in a string parameter you must write:

I"list /users/ptolemy/myfile"

There are several Tcl commands embeddauigiRpc that help support parameter
calculations. They ardistApplyExpression , max, min, range , rangeApplyExpres-
sion , andsign . For example,

I'"min [max 1 2 3] [sign -2]"

first evaluates tanin 3 -1 and then tel . The procedureange returns a consecu-
tive sequence of numbers:

Ptolemy Last updated: 11/6/97

2-18 The Interactive Graphical Interface

I "range 0 5"
returns0 1 2 3 4 5 . The rangeApplyExpression procedure generates a
sequence of values by applying a consecutive sequence of numbers to a Tcl expression that is
a function ofi . For example, you can generate the taps of an FIR filter that is a sampled sinu-
soid by using
I "rangeApplyExpression { cos(2*{P1}*$i/5) } 0 4"
generates one period of sinusoidal function and returns
1.0 0.309042 -0.808986 -0.809064 0.308916

The listApplyExpression is similar torangeApplyExpression except that it
only takes two arguments: the second argument is a list of numbers to substituile tioe
expression. The command

I "listApplyExpression { cos(2*{P1}*$i/5) } [range 0 4]"
is equivalent to the previous example of thxeyeApplyExpression function.

If you are running Tycho TcIShell from withiigi or pigi -console , you can
receive help on the new Tcl proceduisi#®\pplyExpression , max, min , range , range-
ApplyExpression , andsign , by typing

help sign

at the prompt. To start Tycho from withpigi , type ay while the mouse is ovenam facet
or palette.

The Tycho TclShell and thggiRpc console includes the Ptolemy interprefeci()
which defines the help mechanism. Help is available on all of the commands we have added to
the Tcl language.

2.4.6 Using Matlab and Mathematica to Compute Parameters

Since Tcl can be used to compute parameters as described in the previous section,
Ptolemy’s Tcl interface to Matlab [Han96] and Mathematica [Wol91][Bla92] can be used to
compute parameters. This allows even more expressiveness, but the drawback is that demon-
strations relying on Matlab and Mathematica will only work at sites that have Matlab and
Mathematica installed. For example, we can use Matlab to design an 32-order FIR half-band
filter using the Parks-McClellan optimal equiripple FIR filter design algorithm:

I "matlab getpairs c {c=remez(32,[00.4 0.6 1], [1 1 0 O])}"
Similarly, we can use Mathematica to derive formulas to be used as parameters:
I "mathematica get c {c=Integrate[A x, {x, 0, 1}]}"
This command returns the symbolic expressid which is reparsed by Ptolemy.
Matlab and Mathematica can be used to keep track of how parameter values are computed.

Mathematica can also be used to return symbolic expressions that can be used in conjunction
with higher-order functions to define scalable systems [Eva95].

The Ptolemy interface to Matlab and Mathematica can also be accessed from the
pigiRpc console window, and the Tycho editor offers console windows that mimic the Matlab
and Mathematica teletype (tty) interfaces. More information about the options of the Tcl com-
mandsmatlab andmathematica can be found by using the help facility described above.

U. C. Berkeley Department of EECS

The Almagest 2-19

2.4.7 Array parameters

When defining arrays of integers, floats, complex numbers, fixed-point numbers, or
strings, the basic syntax is a simple list separated by spaces. For example,

12345

defines an integer array with five elements. The elements can be expressions if they are sur-
rounded by parentheses:

12 PI (2*PI)
Repetition can be indicated using the following syntax:
value[n]

wheren evaluates to an integer. An array or portion of an array can be input from a file using
the symbok as in the following example:

12 < filename 3 4

Here the first two elements of the array will be 1 and 2, the next elements will be read from file
flename, and the last two elements will be 3 and 4. This latter capability can be used in
combination with th&vaveForm star to read a signal from a file.

2.4.8 String Parameters

There is a bit of complication when one wishes to set a string parameter or string array
parameter equal to the value of a galaxy or universe parameter. This is because a distinction
must be made between a sequence of characters that give the name of a symbol and a
sequence of characters to be interpreted literally. The syntax to use is explained in the exam-
ple:

This string has the word {word} taken from another parameter

Here{word} represents the value of a string universe or galaxy parameter. This capability is
especially useful for constructing labels for output plots. When using string states to specify
options for a Unix command, as in the options parametégrizpoh stars, you can use either
double quotes or single quotes to include white space within a single word:

-0 'original signal’ -1 'estimated signal’
String arrays have a few more special restrictions. Each word (separated by white

space) is a separate entry in the array. To include white space in an element of the array, use
quotation marks. Thus, the following string array

first "the second element"” third
has three elements in it. The string array

repeat[10]
has ten separate copies of the string “repeat” in 10 separate entries in the array. Curly braces
are used to substitute in values from galaxy parameters. Thus, in

{paramname}

paramname must be the name of either a string array or a scalar-valued parameter (an integer,
float or complex array, for example, is not permitted). If it is a string array, then each element
of paramname becomes an element of the parameter. If it is some other kind of parameter the
value becomes a single element of the string array.

Ptolemy Last updated: 11/6/97

2-20 The Interactive Graphical Interface

To use one of ,], {, or} literally, quote them with double quotes. To turn off the spe-
cial meaning of a double quote, precede it with a backslast8imilarly, use\ to get a sin-
gle backslash.

String array values may also be read from files using #ambol. For details on how
to use file references, see section 2.4.3 above. Note that for string arrays, the flename can be a
literal string such as

< $PTOLEMY/data/filename
as well as a string that refers to parameters such as
< $PTOLEMY/{data_dir}/data_file

in which case the value of the paramelata_dirwould be substituted. Ptolemy does not per-
form expansion of filenames suchfies{1,2} into filel file2 as a Unix shell might
do.

2.5 Particle types

The packets of data that pass from one star to another in Ptolemy area#ilgds
So far, all particles have simply been floating-point numbers representing samples of signals.
However, several other data types are supported. Each star icon has a stem for each porthole.
In pigi , if you are using a color monitor, the color of the stem indicates the type of data that
the porthole consumes or produces, as summarized in table 2-5. A blue stem on an input or
output of a star icon indicates type “float”, a purple stem indicates type “fix” for fix-point par-
ticles, a white stem indicates type “complex”, an orange stem indicates type “int” for integer
particles, a green stem indicates “message”, a black stem indicates type “string”, a yellow
stem indicates type “file”, and a red stem indicates “anytype”. The “message” type is a user-
defined data type (see the programmer’s manual). A star that operates on “anytype” particles
is said to bgolymorphic Polymorphic stars operate on multiple types of data. For example, a
Printer ~ star can produce a textual representation of any type of particle. In addition, stars

Type name Stem Color Description
ANYTYPE red any data type is accepted
FLOAT blue floating-point scalars
FLOAT _MATRIX_ENV blue (thick) floating-point matrices
COMPLEX white complex scalars
COMPLEX_MATRIX_ENV white (thick) complex matrix
INT orange integer scalar
INT_MATRIX_ENV orange (thick) | integer matrix
FIX violet fixed-point scalar
FIX_MATRIX_ENV violet (thick) fixed-point matrices
MESSAGE green user-defined data type
STRING black string
FILE yellow filename

TABLE 2-5: Data types supported by the Ptolemy kernel.

The Almagest 2-21

which input or output Matrix type particles have stems which are extra thick with colors corre-
sponding to the four main types, float, int, complex, and fix.

Ptolemy usually makes conversions between numeric particle types automatically. The
float to complex conversion does the obvious thing, putting the float value into the real part of
the complex number and setting the imaginary part to zero. The complex to float conversion
computes the magnitude of the complex number. Int to float is easy enough. Float to int
rounds to the nearest integer.

TheXscope star, and some other stars that generate output, accept “anytype” of input.
HoweverXscope isn’'t completely polymorphic, because it converts all inputs to float inter-
nally. So for a complex input, the magnitude will be plotted. If you want to plot both the real
and imaginary parts you should use @wenplexReal conversion star first.

In some situations automatic type conversions cannot be made. A common difficulty
involves several outputs of different types feedingeage star. Ptolemy must assign a spe-
cific type to theMerge star’s output, but in this case it will be unable to decide which type to
use, so it will complain that it “can’t determine DataType” for the output. The solution is to
insert one or more type conversion stars, so that all the values arrivingvetrgieestar have
the same type. (The type conversion stars can be found in the “conversion” palette of the
appropriate domain. It will be explained below how to find this.)

There are no automatic conversions between matrix particles and scalar particles; in
fact the matrix particle types do not support automatic type conversion at all. Conversion stars
need to be explicitly inserted between two stars that work on different Matrix types.

Some domains are more restrictive about particle type conversions than others.
Assignment of types to ANYTYPE portholes and resolution of type conflicts is discussed fur-
ther in section 4.6 of the Ptolemy Programmer’s Manual, and in the Ptolemy Kernel Manual.

2.6 The oct design database and its editor, vem

With the experience gained so far, it may be helpful to explain more clearly the soft-
ware architecture of the systeRigi is built on top of existing CAD tools that are part of the
Berkeley CAD framework. An important component of this framewondcis, which serves
as the design databagzt keeps track of block connections, parameter values, hierarchy, and
file structure, and hence moderates all accesses to designs stored on disk. The organization is
shown in figure 2-6Vemis an interactive graphical editor foct . Vemprovides one of many
ways to examine and edit designs storeadty. This chapter gives just enough information
aboutvem to use it with Ptolemy in simple ways. More complete documentation is contained
in chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1.

In pigi , the Ptolemy kernel runs in a separate Unix process, cpidgitpc |,
attached toem. Users edit designs usingm, store their designs usiogt , and execute their
application through the link to the Ptolemy kernel. The two Unix processes are shown in the
shaded boxes in figure 2-6. The user interacts with both processes but only the user interface
of thepigiRpc process has been upgraded to use Tcl/Tk, as explained above. With this soft-
ware architecture in mind, we can now define terms that we have been using informally.

Oct objects (which are stored on disk) are called facetmcAtis the fundamental
unit that a user edits wittem. As an analogy, we can think of a facet as a text file in a com-

Ptolemy Last updated: 11/6/97

2-22 The Interactive Graphical Interface

puter system andem as a text editor, such as or emacs. However, instead of calling sys-

tem routines to access the data stored in a text filevilikdoes,vem callsoct routines to

access the data stored in a facet. Thuas, manages all data accesses to facets. Facets may
define a universe or a galaxy, for example. Thus, figure 2-4 on page 2-8 shows a facet that
defines a universe and a second one that defines a galaxy.

Facets may also define the physical appearance and formal terminals of icons that rep-
resent stars, galaxies, universes, and wormholes, e.g., the physical appearance of each icon in
figure 2-4 is defined in another facet calledittterface facetA schematic that uses icons, by
contrast, is called eontents facefThe “edit-icon” command (“I") will open the facet defining
an icon. Instructions for modifying the appearance of an icon are given in “Editing Icons” on
page 2-34.

A facet may also containpalette which is simply a collection of disconnected icons.
Palettes are directories of stars, galaxies, and universes in a library. Thus, for example, figure
2-3 on page 2-6 shows two palettes, both of which contain sets of icons. Note that facet
names, like file names in Unix, should not contain spaces.

2.7 Creating universes

If you are following this chapter sequentially, then you still have Ptolemy running
from previous sections. To see how Ptolemy will behave when started in your own directory,
exit pigi . Do this by typing a control-d character in tlegn console window. A dialog box
may appear with a menu of facets thatn thinks have been changed. Since all of these
belong to the user “ptolemy”, you do not want to save them. If it appears, do not select any of
them. Just click “OK”. A a warning window may then appear telling you that closing the con-
sole window will terminate the program. Just click “Yes”.

In this section, we will show how to create your own universes with a simple example
that is very similar to theinMod demo explored above. First, be sure you are in a directory
where you have write permission, like your home directory.

X window system

Tcl/Tk :Jer?c?atgu o Athena widgets

calls

oct
oct

Ptolemy kernel

vem

Ptolemy domains

pigiRpc

FIGURE 2-6: The software architecture of the Ptolemy design environment running under pigi, the
graphical interface. The user interacts with two Unix processes, pigiRpc and vem.

U. C. Berkeley Department of EECS

The Almagest 2-23

+« Create a new work area:

mkdir example
cd example

» Startpigi
pigi
You will see the message:
creating initial facet "init.pal”
Wait until the welcome window with the picture of Ptolemy appears. We are now ready to
learn about the basics of usivgm.

2.7.1 Opening working windows
Now we are ready to create a simple universe. Let’s create a simulation that generates
a sine wave and displays it.

« Open a new facet: The facet that is already open, catagdl ”, is special
becausepigi always opens a facet by this name in the directory in which it starts.
Convention in Ptolemy dictates thatit.pal " should be used to store icons repre-
senting complete applications, so instead of using this facet, we will create a new one.

- Place the cursor in window labeled “init.pal:schematic”.

- Select thepen-facecommand from the “Windowpigi menu (shift-middle-
button). Alternatively, type an “F”. You will get a directory browser that looks

like this:
| E e — [|
Ugrens Fasul:
[intonl |
|'I|I|:ai' N

S P Nl g eng Sipt R ey npe

0K «Fmle Dancel E 50 |

- Replace the name “init.pal” in the text widget with “wave” and click the “OK”
button (or hit the return key). A quick way to delete the “init.pal” is using con-
trol-u. A new blank window will appear.

Ptolemy Last updated: 11/6/97

2-24 The Interactive Graphical Interface

* Open a palette:

Place the cursor in either blank window.

Select theopen-palettecommand from the “Windowpigi menu. Alterna-
tively, type an “O”.

- Pigi will present a palette menu. Select the “sdf’ palette by clicking the left
button in the box next to “SPTOLEMY/src/domains/sdf/icons/main.pal” (the
first entry) and then click on “OK”.

- The palette that opens is shown on the left of figure 2-7. This palette shows the
basic categories of synchronous dataflow stars that are available. There are too
many stars to put in just one palette. You can use the Window:look-inside (“i")
command to open any of the palettes. At this point you should look inside the
“Signal Sources”, “Nonlinear Functions”, and “Signal Sinks”. Arrange these
palettes on the screen so that you can see the blank window labeled “wave”.
The stars and palettes are summarized in “An overview of SDF stars” on
page 5-4.

2.7.2 Some basic vem commands

At this time, it is worth exploring some basiem commands for manipulating win-
dow displaysVemuses post-fix commands. This means that the user enters the arguments to a
command before the command name itself. Arguments appeanianth@nsole window as
the user enters them. Note that although the text of what the user enters is displayed in the
console window, the cursor should be in one of the facet windows.

There are several types of arguments. Each argument type is entered in a different way.
All graphics arguments are created with the left mouse button. The five types of arguments are
listed below:

Point: Position the cursor, click the left mouse button.

Box: Position the cursor, draghe left mouse button.

Line: Make a point, position the cursor on the point, and drag the left mouse button.
Object: Useselect-objectandunselect-objectsommands (explained later).

Text: Enclose text in double quotes.

Arguments can be removed from the command line by typing the delete key, backspace key,
or “control-u”, which deletes all the current arguments. There are three ways to enter com-
mands:

Menus: Click the middle-button fovem commands, shift-middle-but-

1. “Drag” means to press down on a mouse button, move the mouse while holding it down, and then
release the button.

U. C. Berkeley Department of EECS

The Almagest

2-25

ton forpigi commands. Menus are of the “walking” variety, as
explained before.

Key bindings: Commands can be bound to single keys and activated by just

pressing the key. Key bindings are also called “single-key accel-
erators”, and are case sensitive. The key bindings are summa-
rized in table 2-2 on page 2-7 and table 2-3 on page 2-11.

Synchronous Dataflow (SDF) Stars

I SSSSSSS . Signal Sources 1% Signal Processing
@%@ Signal Sinks % Spectral Analysis

04 Signal Sources we L

Floating-Point Sources
I 23R
45608 2
7 8B3C — > —> —> —
% 04D
— . .
DTMFGenerator Impulse |lIDGaussian |1IDUniform Ramp
R Réct singen Window
—>
o —
(WaveForm
TCI — TCl > % I [(nteractive)
TclScript TclScript [TkSlider [TkButtons TkButtons

Fixed-Point Sources

I-‘
Loonst [~ | M~ | [Leons]~ | LA |

RampFix RectFix expgen

=

t
: Pm : E . m

bits Rampint RectCx

Matrix Sources:

e e e o | -
B

Matrix IntMatrix CxMatrix FixMatrix Matlab_M MatlabCx_M
! 1 0 1 0 ! 1 0 I O
1 |- 1 = —
0 1 1 0 1 1
Identity M Idenmvlnt M IdentityCx_M Idenlltvle M

FIGURE 2-7:

Ptolemy

The master palette for the stars in the SDF domain (left) and one of the sub-palettes
(right). The subpalette shows “sources” (signal generators). The palettes are
explained in more detail in “An overview of SDF stars” on page 5-4.

Last updated: 11/6/97

2-26 The Interactive Graphical Interface

Type-in: Type a colon followed by the command name. This is rarely
used by Ptolemy users, lugm experts use it occasionally.

Let's try a few examples, some of which should be familiar by now. Place the cursor in one of
the palette windows (containing library stars) and:

* Type “shift-Z” (capital Z) fozoom-out This makes everything smaller.

* Type “z” (lower-case z) foroom-in This makes everything bigger. If you zoom in
sufficiently, labels will appear below each icon giving the name of thevstaidoes
not display these labels if they would be too small.

* Try “p” for pan Pan moves the spot under the cursor to the center of the window.

* Thevem pancommand can also take as an argument a point which will indicate the
new center of the window. Recall that the argument must be entered first. Place a point
somewhere in the palette window by clicking the left button, and type “p”. The loca-
tion of your point became the center of the window.

* Thevem open-windowcommand can take a box as an argument. Draw a box in the
palette window by dragging the left mouse button and then type “0”, or firaptre
windowcommand in theem menu.

* Try placing points in the new window. Notice that they also appear in the original pal-
ette window. Also notice that you are only permitted to place points at certain loca-
tions. Vemhas an implicitgrid to which pointssnap The default snap resolution is
suitable for making Ptolemy universes.

* You can get rid of your point (or any argument list) by typing “control-u”. You can
delete arguments one-at-a-time by typing “control-h”. Try placing several points and
then deleting them one by one.

* You can close the new window (or areyn window) with “control-d”.

* A particularly useful command at this timesisow-all or “f". This rescales and
recenters the display so that everything in the facet is visible. Try this command in the
palette window that you have been working with.

* You can also resize a window, using whatever X Window bindings you have installed,
and then type “f” to rescale the display to fill the window.

2.7.3 Building an example

* Create an instance of the star calledamig. This star is at the upper right of the
sources palette. Its icon has an orange triangle. To do this:

- Put the cursor in the window “wave:schematic”.
- Create a point anywhere in the window by clicking the left button.

- Move the cursor over th&amg icon in the palette and press the “c” key. This
is a key binding that executes thanm “create” command.

U. C. Berkeley Department of EECS

The Almagest

2-27

You have just created amstance of the ‘Ramg icon. The actual data that
describes how theRamg icon should be drawn is stored in another facet (an
“interface facet”). Annstanceof the ‘Ramg icon points to this facet.

« Delete and select instances: Sometimes in the process of editing your schematic, you
may need to delete objects. As an example, let’s create aRathpmstance and then
delete it.

Create anothétampinstance next to the first one: place a point near the origi-
nal Ramp place the cursor over ttiampicon in the palette and press “c”.
Actually, you don’t have to use the icon in the palette — you could also put the
cursor over the already existiRgmpicon to achieve the same effect.

Place the cursor over the nBampicon and executselect-objectdy typing

“s”. This creates an object argument on\ibm command line. This is neces-
sary because theem delete-objectscommand takes arguments of type
“object”. Theselect-objectsommand takes point, box, and/or line arguments
and turns the items underneath them into object argumentsuidsdect-
objectscommand (“u”) does the reversesglect-objects

Executedelete-objectdy typing “D” (upper-case!). This deletes the objects
we selected previously.

You could also have deleted the newly created Ramp witlmthecommand
(“U"). This is an infinite undo, so you can backtrack through all changes you
have made since starting tkhem session by repeatedly executing the undo
command.

Occasionally when you use the select and unselect commands, the objects are
not redrawn correctly. When this happens, usevéheredraw-windowcom-
mand, “control-I" (lower case L), to redraw.

* Create the remaining instances in our example:

Create an instance of th&irf ” icon to the right of the RampSin ” is in the
“nonlinear” palette, where icons are arranged alphabetically by name. Make
sure it does not overlap with the Ramp icon. If it overlaps, you can delete it and
create a new one.

Create anXMgraph” instance to the right of thgin icon. “XMgraph” is the
first icon in the first row of the “sinks” palette.

We now have three iconsRamp aSin , and arXMgraph . Your facet should look something

Ptolemy

Last updated: 11/6/97

2-28 The Interactive Graphical Interface

like this:

A~}

Ramp Sin ﬁ/]q

Next, we will connect them together.
» Connect th&output to theSin input using the following steps:

- With the mouse cursor in the “wave” window, type “f" to show all. This will
rescale your system, and make it easier to make connections.

- Draw a line between the output of tkk@nmpand the input of th&in : put the
cursor over th&kampoutput, double-click on the left mouse button, drag the
cursor to theSin input, and then let up on the mouse button. If the two termi-
nals are not on a horizontal line, you can bend the line by momentarily releas-
ing the mouse button while dragging it.

- Type “c” (forcreatg to create a wire. Notice that tbeeatecommand creates
wires or instances depending on the type of arguments it is called with.

- If you need to delete a wire, you can draw a box around it (click and drag with
the mouse), select it (press “s”), and then delete it (“D”).

« Connect th8in output to theXMgraph input in a similar way.
* Run the universe: We now have a complete universe that we can simulate.

- Execute theun command from theigi “Exec” menu, or type an “R”.

- Enter “100” for “When to stop”. Do this by typing “control-u” to remove the
default entry in the text widget and typing 100. This specifies that the system
should be run through 100 “iterations”. What constitutes an iteration is
explained in chapter 5, “SDF Domain” on page 5-1. For this simple system, it
is just the number of samples processed.

- Clicking on the GO button or typing a return character will run the system.

A new window with a graph of a rough sine wave should appear. The system generates the
sine wave by taking the sine of a sequence of increasing numbers generatedamypisiar.

The execution of thEMgraph star created this new window to show the output of our simula-
tion. To remove this window, click on the “Close” button or press “control-d” in it.

* Save the facet by typing “S” (upper-case) with the cursor in the “wave” window. This

U. C. Berkeley Department of EECS

The Almagest 2-29

executes theem save-windowcommand. It is wise to periodically save your work in
case the editor or computer system fails unexpectedly.

Change parameters: If we look at the output, the sine wave appears jagged. This is

because thRampstar has a set of default parameters which cause it to generate output

values with an increment that is too large. We can change the parameters of as follows:
- Place the cursor over tRampicon and executedit-paramsn thepigi menu

(or type “e”). A dialog box will appear that shows the current parameters.

Replace the value sfepwith “P1/50”. (You can use “control-u” to erase the
old value.) Finally, click the “OK” button to store the new parameters. This is

an example of Ptolemy’s parameter expression syntax, explained above.

Run the simulation again using 100 iterations. This time the output should look like
one cycle of a reasonably smooth sine wave.

e Usesave-windowagain to save the new parameters.
To be able to conveniently access this example again, you should create an icon for it. We will
do this with thepigi command “Extend:make-schem-icon”, or “@”.
Place the mouse cursor in the “wave” facet window, and hit the “@” key. A dialog box
appears asking for the name of the palette in which you would like to put the icon. By
convention, we put universe icons in palettes called “init.pal”. So replace the default

entry (which should be “./user.pal”) with “init.pal”. When the icon is made, find the
“init.pal” window that first opened when you started the system, and type “f” to show

all. It should look like this:

>< the next
% % icon goes
here

wave

Looking inside this icon (“i”) will get you your “wave” facet. The second item in the
palette is a marker indicating where the next icon that you create will go. Henceforth,
anytime you starpigi in this same directory, the first window you will see will be

this “init.pal” window.
* Our example is now complete. To exit:

- Close all pxgraph windows with “control-d”.

Type “control-d” in thevem console window. If nothing needed to be saved,

the program exits immediately. Otherwise, a dialog box appears asking you to
choose buffers to be saved. Unfortunately, as of this writing, some of the buff-
ers listed may have already been saved and do not need to be saved again. The
program is overly cautious. To indicate which of the listed buffers you wish to

Ptolemy Last updated: 11/6/97

2-30 The Interactive Graphical Interface

save, click on the box to the left of each name. Then click on the “OK” button.

- Afinal warning appears telling you that closing the console window will termi-
nate the program. Click on “Yes”.

2.8 Using galaxies
In this section we will explain how to create galaxies. Galaxies allow you to use hierar-

chy to partition your design into more manageable pieces and to re-use designs as components
in other designs.

2.8.1 Creating a galaxy
Use the schematic we created in the last example to make a sine wave generator galaxy.

» Instead of modifying our previous example, we will make a copy of it. In your “exam-
ple” directory, type:
cp -r wave singen
The recursive copygp -r , is necessary becaus& stores data using a hierarchical directory

structure. Of course, if the facghgen exists already, you must remove it with -r first
before copying.

e Startpigi
* Useopen-palettgor “O”) to open the “$PTOLEMY/lib/colors/ptolemy/system” pal-

ette (the last one in the list of palettes). The system palette contains input and output
ports which can be instantiated into schematics just like stars. The contents of the pal-

ette are shown below:

* Useopen-face(or “F”) to open the “singen” you created usiregp “r ”. You can use
the file browser shown on page 2-23; just double click on the name “singen” in the
lower window of the browser.

* Inthe “singen” window, delete tb@igraph star and the wire attached to it. The easi-
est way to do this is draw a box (click-drag) around the star and its input wire, press
“s” to select these objects, and then press “D” to delete them. (You may want to
enlarge your window to make it easier to work.)

* Place an output port where tgraph star used to be and connect it to the output of
the Sin star. The output port is the icon in the system palette with an arrowhead (an
input port, by contrast, has a fish tail), as shown above.

Name the output port “out”:

- Position the cursor over the black box on the new output port.

U. C. Berkeley Department of EECS

The Almagest 2-31

- Type “out” as a text argument, including quotation marks.

- Type “c” forcreate Again, note that thereatecommand has a different action
than before. It names input or output terminals when given a text argument.

We now have a galaxy. The fact that a schematic has input or output ports distinguishes it as a
galaxy. This galaxy that you just created is similar to the “singen” galaxy in the “Signal
Sources” palette. Find it, and look inside, to make the comparison.

2.8.2 Using a galaxy

We have just created a galaxy that we would like to use in another design. In order to
do this, we need to create an icon for this galaxy that we will then instantiate in our other
design.

« Create an icon:

Place cursor in “singen:schematic” window.

Executemake-schem-icom thepigi “Extend” menu (*@”).

- The dialog box should contain:
Palette: ./user.pal
This specifies the name of the palette that will contain your icon. By conven-
tion, we usually put galaxy icons in the palette called “user.pal” in the current
directory. Hence, this is the default name.

- Since you had already created an icon for the “wave” universe, and that icon
was copied by youep -r , vem asks whether it is OK to overwrite the icon.
Click “"OK”. Wait until make-schem-icois done.Veminforms you that it is
done with a message in them console window, which may be buried by now.

* Open the palette calledser.pal " usingopen-palett“O”). The newly created gal-
axy icon should appear in this palette along with the same special icon we saw before,
called acursor. A cursor distinguishes a palette from other types of facets and it
determines where the next icon will be placed.

» At this point, we have an icon for our sine wave generator galaxy. It is this icon facet
that is instantiated in theuSer.pal " palette. We can now use our sine generator gal-
axy simply by instantiating our icon into another schematic.

* Useopen-faceto create a new facet with the nameotjulation

* Inthe “modulation” window, create a universe that takes two “singen” galaxies, multi-
plies their outputs together, and then plots the result uskigraph”. The
“XMgraph” star can be found again in the “Signal Sinks” subpalette of the SDF pal-
ette. The multiplier star, calledpy, is in the “Arithmetic” subpalette.

Hint: If you place the icons so that their terminals fall on top of one another, then a connection

Ptolemy Last updated: 11/6/97

2-32 The Interactive Graphical Interface

gets made without having to draw a wire.

* Now run the universe with “when to stop” set to 100. The output should appear as a
squared sine wave, which is just a sine wave of twice the frequency shifted up by 1/2.

So far, we have created a galaxy and used it in another universe. But we could also have used
our galaxy within another galaxy. In this way, large systems can be broken up into smaller
more manageable pieces.

2.8.3 Galaxy and universe parameters

One of the problems with the “singen” galaxy that we just created is that it generates
sine waves with a fixed frequency. We would like to make the frequency of the generator
parameterizable. That way, we could set the two “singen” galaxies in our “modulation” uni-
verse to two different frequencies.

To make a galaxy parameterizable, we créatmal parameters in the galaxy and
then link the formal parameters to taetual parametersof the instances contained in the
galaxy. The terms, “formal” and “actual” parameters, are analogous to formal and actual
parameters in any procedural programming language. An example will make this clear.

e Create formal parameters:

- Place the cursor in the “singen” window but away from any instance, i.e., in the
grey background of the facet.

- Executeedit-params(“e”). An empty parameter window will appear, looking
like this:

Edit Parameters

| Cancel | Add parameter | Remove parameter |

To add parameters to the galaxy, click on the “Add parameter” button. A win-
dow appears looking like this:

Enter the nanse, type and vale below. |

Pil

ak Cadvcid
|

Fill in the dialog as follows:

U. C. Berkeley Department of EECS

The Almagest 2-33

name: freq
type: float
value: PI/50

The value will be thelefaultvalue. Then click on “OK”. Recall that you can
use “tab” to move from one field to the next of the dialog box and “Return”
instead of “OK”. Hence, the dialog can be managed from the keyboard without
requiring the mouse.

We just created a new formal parameter called “freq” with a default value of “P1/50".
Additional parameters may be added or old ones changed. The default value of a formal
parameter can always be changed by execetilitgparamsin the background of the galaxy.
Executing edit-params on the icon representing the galaxy changes the parameter values only
for the instance represented by the icon. It overrides the default value specified in the back-
ground of the galaxy definition. The possible types for parameters are listed in table 2-6. The
syntax for specifying values for parameters is described above in “Changing or setting param-
eters” on page 2-15. Exactly the same procedure can be used to attach formal parameters to a
universe. This allows you to parameterize a complete Ptolemy application.

* Link formal parameters to actual parameters:
- Place the cursor over tRampicon in thesingen window.

- Executeedit-paramsand fill in the dialog as follows:
step: freq
value: 0.0
This allows thdreq parameter of a singen instance to control the increment of
the internal ramp star, thus controlling the output frequency.

« Change the frequency of one of $irmen instances to “PI/5” by usingdit-params
Thissingen will be ten times the frequency of the other.

* Run the universe with an iteration of 100. The output should show the product of two
sine waves with different frequencies. Don't forget to save the facets we just created. It

Type name Description Example
float floating-point number 0.2/PI
int integer 10
complex pair specified as (real-part, imag-part) (1.0, 2.0)
string string this is a string
floatarray array of floating-point numbers 0.0 [10]1.00.0[10]
intarray array of integers 1234567
complexarray array of complex numbers (0.1, 0.2) (0.3, 0.4) (0.5, 0.6)
stringarray array of strings this string array “has five” elements
file filename /tmp/input.test

TABLE 2-6: Parameter types supported in Ptolemy

Ptolemy Last updated: 11/6/97

2-34 The Interactive Graphical Interface

would also be a good idea to create an icomfmfulation and put it ininit.pal

2.9 Editing Icons

Pigi automatically generates icons for stars and galaxies, respectively, when you
invoke themake-staror make-schem-icooommand from the Extend merRigi puts the
new icon in a user-specified palette, which by default is user.pal in the directory in which you
startedpigi . More or less anyem manipulations can be performed on this icon, but some
guidelines should be followed. These icons have a generic symbol, shown in figure 2-2 on
page 2-5. To change it, place the cursor over the icon and execatkttloon (‘") command
in thepigi menu! A new window containing the icon facet will appear.

Recall from section 2.6 on page 2-21 that icons are storadeinfiace facetand that
the icons that appear contents facetare really instances of icons. These instances merely
refer to the actual icon facet. Tldit-iconcommand opens a window into the actual icon.
Any changes made in this window will affect the appearance of all instances referring to the
icon.

Recall also that icon facets store a different kind of data from other facets. Icon facets
contain information that tellgem how to draw objects. Hence, a different set of commands
must be used to edit icons. Whenever you edit an w@an,switches to a different mode
called “physical editing style.” In this mode, we create objects such as lines, boxes, and poly-
gons. This is in contrast to “schematic editing style” which we used before to create instances
and connect them together with wires. Physical editing style shares many commands with
schematic editing style. For exampdelect-objectss active in both modes. A list of useful
physical editing style commands and their key bindings is given in table 2-7.

The commands that create geometry expect a layer argument. The layer of an object
determines its color and its fill pattern. To specify a layer, place the cursor over an object
attached to the desired layer before executing a command. You can open a palette of layers
with thepalette(*P”) command. The palette is shown in figure 2-8.

The layer palette contains several columns of solid and outline colors, with the name
of the color at the top of the column. Colors at the top of each icon will be layered on top of
colors below them in the columns. A set of special layers are arranged at the bottom of the pal-
ette. The layers for icon stems are explained below. The layers for icon bodies define the icon
background and optional icon shadow.

A few simple notes will help greatly. First note that when the icon window is opened,
the snap is automatically set to &t units”. This is because the default snap for schematic
windows, normally 25 units, is far too coarse for most icon editing functions. A reasonable
compromise is 5 units, unless you are going to try to create a very elaborate icon, in which
case 1 unit is probably what you want. Meen Options:window-options command allows
you to change the snap.

When editing an icon, theem menu is slightly different than when you are editing a
schematic. Irvem terminology, this is because you are working with ghgsical viewof a
facet. The commands are shown in table 2-7. Most icons can be created by experimenting with
the following operations:

1. You must have write permission on the facet to change the icon.

U. C. Berkeley Department of EECS

The Almagest 2-35

Select the default symbol within the icon that Ptolemy created when it created the icon

Menu Heading Command Key Description
vem none no command name cntr-h remove the last argument (point, box, etc.)
del remove the last argument (point, box, etc.)
cntr-u| remove all arguments from the argument list
cntr-l | (control lower case L) redraw the window
System open-window 0 open a new view into a facet
close-window cntr-d close a window
where ? find the position of the cursor in oct units
palette P open the color palette for editing icons
save-window S save a facet
bindings b display key bindings (single key accelerators)
re-read restore a facet to the last saved version
Display pan p move the view to be centered at a given spot
zoom-in z zoom in for a closer view of a facet
zoom-out Z zoom out
show-all f rescale the schematic to fit the window
same-scale = used to get two windows to use the same scalg
Options window-options adjust snap, grid spacing, etc.
layer-display selectively display colors
toggle-grid g turn on or off the grid display
Undo undo U undo any number of previous changes
Edit create-geometry |c create a line, box, circle, etc.
alter-geometry a replace an object with one on the argument list
change-layer I change the color of an object
set-path-width w change the width of lines
create-circle C draw a filled or empty circle
edit-label E specify or modify a label
delete-physical |D remove the specified object
Selection | select-objects S add an object to the argument list for a commjand
unselect-objects | u remove an object from the argument list
move-physical m move an object
copy-physical X copy one or more objects in a schematic
transform t rotate or reflect an object
select-terms cntr-t | select terminals
delete-physical D delete objects
Application| rpc-any r start a vem application (pigiRpc is one)

TABLE 2-7: A summary of the Ptolemy commands in the vem menu in icon editing mode. These
commands are obtained by clicking the middle mouse button without holding the shift
button when your mouse cursor is in an icon window. The single-key accelerators for
commands that have them are shown. More complete documentation can be found in
chapter 19, “WYem — The Graphical Editor for Oct” on page 19-1. The command that

differ significantly from those in table 2-3 are shaded.

Ptolemy Last updated: 11/6/97

2-36

The Interactive Graphical Interface

(a star, galaxy, cluster of galaxies, or palette symbol, as shown in figure 2-2 on page 2-
5). You can do this by drawing a box (drag the left mouse button) and typing “s” (or
using Selection:select-objects in the menu). You can unselect with “u” or control-u.
An alternative selection method is to place a point and type “s”. This usually provokes
a dialog box to resolve ambiguities. Delete whatever parts of the icon you don’t want
using “D” or Selection:delete-objects. WARNING: Do not delete terminals! If you
accidentally delete a terminal, the easiest action is begin again from scratch, asking
pigi to create a new icon.

Bring up thezem color palette by typing “P” (or System:palette in the menu). You will
get the window shown in figure 2-8.

Draw a line by clicking the left button to place a point, and pushing and dragging the
mouse button from the same point. Then move the mouse to desired color in the color
palette and type “c” (or Edit:create-geometry from the menu). A line may consist of
multiple line segments by just repeatedly pushing and dragging the mouse button.

To create filled polygons, place points at the vertices, then type “c” on the appropriate
solid color in the palette.

To create a circle, place a point at the center, a point on periphery, and type “C” on the
appropriate color. To create a filled circle, use a line segment instead of a pair of
points.

Objects can be moved by selecting them, dragging the mouse (using the right button)
to produce an image of the object in the desired place, and typing “m”.

You may change (or delete) the label thgit automatically puts at the bottom of the
icon. To change it, select it and type “E” (Edit:edit-label in the menu). The resulting

W %w radzlid rediudine wiseSaid videudine brownSclid BrowrOuline HackSdid — HackOuline
— Pemll Eeal Sesl Eaal B
" Eemll Eenl Sesl Eaal Bes
N O B O e .
iwﬁdud fwm
|
N [
-
-]
Il BN B
fearSy myppetilor pakeCoor isCelor stingDelor
|
iccriteado

FIGURE 2-8: The palette of colors and layers that can be used to create icons. This palette is

invoked by the “palette” vem command (“P”). Each color has a column of boxes. The
higher the box you use, the closer to the front an object will be. The colors at the bot-
tom are special, in that they are associated with particular data types.

U. C. Berkeley Department of EECS

The Almagest 2-37

dialog box is self explanatory. The standard Emacs-like editing commands apply.

« BE SURE TO SAVE YOUR ICON. This can be done by typing “S” (System:save-
window in thevem menu). You can close your window with control-d. Note tleat
buffers the data in the window. You can close it and reopen it without saving it, as long
as the session has not been interrupted.

By convention, the data types supported by a terminal are indicated by the color of the stem
that connects the terminal to the body of the icon. The following colors are currently in use:
ANYTYPE: red

FLOAT: blue
INT: brown
FIX: purple

COMPLEX: white
PACKET: green

FILE: yellow

STRING: black
The color is currently set automatically by the icon generator by using layers defined specifi-
cally for this purpose, calleanytypeColor , floatColor , intColor , fixColor , com-

plexColor , packetColor , stringColor andfileColor . These colors are shown at the
bottom of the color palette in figure 2-8.

You can change the color of an object manually, if you wish. To do this, select the
object, type “"xxxx", where xxxx is replaced by the color name (the quotation marks are nec-
essary), and then type the single character “I’ (an el — or Edit:change-layer in the menu). Be
sure not to change the color of a terminal! Again, be sure to save the window.

One final editing operation is a little trickier: moving termingigi places terminals
rather arbitrarily, since it knows nothing of their function. You may wish to have a smaller
icon than the default, in which case you have to move the input terminals closer to the output
terminals. Or may wish to change the order of the terminals, or you may want to have termi-
nals on the top or bottom of the icon rather than right or left. All of these can be done, but the
following cautions must be observed:

* Do not move terminals of icons that have already been used in applications. Unfortu-
nately, if you do this, the block will become disconnected in all applications where it is
used. If you are tempted to move terminals in a commonly used block, consider the
tedium of finding all applications (belonging to all users) and reconnecting the block.
ONLY MOVE TERMINALS ON BRAND NEW ICONS.

* You must respect the default snap of 25 for schematic windows, and move terminals to
a point that falls on a multiple of 25 units. Otherwise, connecting to the terminal will
be very difficult. Normally, when the icon window opens, the grid lines are 10 units
apart. So you can place terminals any multiple of 2.5 grid lines away from the center.

* To orient terminals so they are aiming up or down, select the terminal, type “t” (or
Selection:transform in the menu), then type “m” to move it. Repeatedly typing “t” will
continue to transform (rotate) the terminal.

A little more detail on thect internals may be useful if you explore the files that are created
by these operations. For make-schem-icon, if the schematic isxale¢den the icon itself is

Ptolemy Last updated: 11/6/97

2-38 The Interactive Graphical Interface

stored in %xx¥'schematic/interface;”. The semicolon is part of the filename (this creates some
interesting challenges when manipulating this file in Unix, since the Unix shell interprets the
semicolon as a command delimiter). The standard stars that are normally part of the Ptolemy
distribution are stored iINSPTOLEMY/src/domains/ don?, wheredomis the domain name

such asdf orde. The icons for the stars are stored in a subdirectory dedlesl , the icons

for demo systems in a subdirectory caliecho, and the source code for the stars are stored in

a subdirectory callestars . Feel free to explore these directories.

Changing the number of terminals in galaxy icons

Whenever the contents of a galaxy are changed so that the new definition has different
I/O ports, the icon must be updated as well. You can do this by calbkg-schem-icoagain
to replace the old icon with a new oiemwill not allow you to overwrite the old icon if you
have instances of the old icon in any open window (regardless of whether the window is icon-
ified). Hence, you must either close those windows with “control-d” or delete the offending
icon before replacing it with a new icon. Note that changing number of terminals will also
change their layout, so that connections in existing schematics may no longer be valid.

2.10 Sounds

On some workstations (currently only SGI Indigos, HP 700s and HP 800s and Sun
SparcStations,), Ptolemy can play sounds over the workstation speaker. Below we discuss var-
ious details about playing sounds on various workstations.

2.10.1 Workstation Audio Internet Resources
Below we list several workstation audio resources on the Internet.

ftp://ftp.cwi.nl/pub/audio
Home of the audio file format FAQ.

http://orbit.cs.engr.latech.edu/AF
The AF program is an audio server similar to the X server
which allows remote machine to play audio on the local
machine. The user starts the AF program in the background and
then uses thaplay program to play sounds. AF is not directly
supported by Ptolemy, but is nonetheless useful.

http://www.spies.com/Sox/
Thesox program converts files between various formats.

ftp://ftp.hyperion.com/WorkMan
The workman program can play audio CDs on Sun SparcSta-

tions.
2.10.2 Solaris
Sun workstations running Solaris2.x can play 8kHz mu law sounds directly through
/dev/audio . The Solaris2.¥usr/openwin/bin/audiotool program can be used to

control the record and play volume and the input and output sources. In Ptolemy 0.7 and later,
the SDF Play star writes the appropriaie file header.

U. C. Berkeley Department of EECS

The Almagest 2-39

Most Sun workstations can only play 8 bit u-law audio at 8khz. Sun UltraSparcs can
play a range of audio formats: 8 bit u-law, 8 bit A-law and 16 bit linear. UltraSparcs can also
play a range of sample rates, including CD (44.1khz) and DAT (48khz).

The Solarigusr/demo/SOUND contains sample sounds and programs./&ee
demo/SOUND/bin/soundtool for a graphical sound program with a slightly different inter-
face. For further information about audio on Sun workstations, see the man pages in
demo/SOUND/man and the man pages fandioamd , audiocs , dbri , sbpro , audio , and
cdio .

SparcStation CD-ROM

Theworkman program can play audio CD'’s via the Sun SparcStation CD-ROM drive.
workman can be configured to use the Solaisigt program so that when an audio CD is
inserted into the drive it is automatically played. Only the Sparc5 and a few obscure Sparc10s
can get audio from the CD directly.Most other Sparcs can use a mini jump plug from the head-
phone jack on the CD-ROM to the line in on the back of the machine. You can then use
audiotool to control the inputs and outputs. Look undervibieme menu button for the
proper controls. It may take a few minutes to adjust the levels appropriatelyoiimean
program can be used as an audio source with the CGC Tycho demos (see “Tycho Demos” on
page 14-27) to demonstrate the various audio effects.

2.10.3 HPUX

Under HPUX10.x, théopt/audio/bin/audio_editor program can play sounds.
Under HPXU9.x, uséusr/audio/bin/audio_editor .

2.10.4 Playing Audio over the Network

If you use Ptolemy to create audio files, then you may want to share them with others
over the network.There are several ways to play audio over the network, we discuss them
below.

Via the Web

Audio files can be placed on HTML pages and played by many HTML browsers over
the network. There are many proprietary commercial server packages that allow users to listen
to audio via their browser, we do not cover those packages here, instead we discuss two com-
mon formats.au and.wav . In general, SparcStations can directly play oaly files and
Windows and Macintosh machines can play bath and.wav files. If you use Ptolemy to
generate aau file, the file must have a proper header. The 8@k star will generate that
header for you.

Under Solaris, you can use thglaygizmo and AudioFileaplay programs to play
audio files via a browser. To set this up, place the following inntlaécap file in your
home directory and restart your browser.

audio/*; xplaygizmo -p -q /usr/sww/AF/bin/aplay; stream-buffer-

size=2000

On the Macintosh to play theu files under Netscape, you may need to install a
sound program. If you are using the “Berkeley Internet Kit”, then you probably already have
installed a prograrSoundApp that can play the Sun audio files. However, Netscape may not

Ptolemy Last updated: 11/6/97

2-40 The Interactive Graphical Interface

be configured to use it. You can change this by seleGémngral Preferences from the
Options menu, and selecting thaelpers page within that. UndeULAW audio , you
should set the file type tdLAWand the application program SoundApp.

Java
Java can playau files over the net, but again, these files must have a proper header.

AF

The AudioFile programhF is a audio server that allows a user to listen to a sound gen-
erated on a remote machine. See the link above for more information.

2.10.5 Ptolemy Sounds

You can try playing sounds with the universe you just created. Replag&ihneph
star inwaveform window with an instance of thi@day star (second row of the sinks palette,
right of center, with a stylized loudspeaker as an icon). Edit the parametersPtdythstar
entering 16000 for thgain parameter. (To see details aboutPteey star, execute the “pro-
file” command in the “Other” menu, or type a comma (“,”) with the mouse oRlége icon).
The SPARCstation’s speaker is driven by a codec that operates at an 8 kHz sample rate. So
running this universe for 40000 samples will produce about 5 seconds of sound. The sound
produced by the current parameters is not particularly attractive. Experiment with different

parameter values. Try PI/1000 in place of the P1/50.

An interesting variant of this system modulates a chirp instead of a pure sinusoid with
a low frequency sinusoid. A chirp is a sinusoid that sweeps over a frequency range. You could
replace one of yousinegen instances with something that generates a chirp, and again
experiment with parameters.

A chirp can be created with three starRaap anintegrator and aSin , connected
in series. Thestep parameter of th&®amp should be very small, such as 0.0001. With this
value, you will hear some aliasing if you create five seconds of sounthtéiator isin
the “arithmetic” palette, furthest on the right, and its default parameter values are fine for this
purpose. Use the “profile” command (“,”) to read about it. Note that a fourth sTansa
(second star in “sources” palette) is needed to sentdugator resetinput to zero.

In the SDF domain, sound output is collected into a file, and then played out in real
time. Another alternative, available in the CGC domain, is to generate the output in real-time.
Since the CGC stars have not been optimized for real-time performance, only simple signals
can be generated at this time.

This is a good time to try out your own examples. In general, when you create new gal-
axies and universes that depend on each other, it is a good idea to keep them together in one
directory. For example, all of the facets we have created so far are in the “example” directory.
You can use the extensive Ptolemy demos as models.

2.11 Hardcopy

There are several options for printing graphs and schematics developed under Ptolemy.
The first option generates a PostSérigescription and routes it to a printer or file. The second
uses the screen capture capability of the X Window system.

U. C. Berkeley Department of EECS

The Almagest 2-41

2.11.1 Printing oct facets

A block diagram undepigi is stored as anct facet. To print it to a PostScript
printer, first save the facet. Do this by moving the mouse to the facet and press the “S” key to
save. The facet must be saved. Then, keeping the mouse in the facet, invoke the “print facet”
command from the “Otheiigi menu. You will get a dialog box that looks like this:

el Faced

#* Porinel o Laeliceps o Lager of B ban
imd, Beighl (inches): |5

[EFEN T e L

Wertical afisnl: [-3

Hire o Ll ol T =1.1'%

& Print Inbei Exml prink Labni
Black & While * Tolar
Privier;
T fils by ;

S ool ol i e S O oy i B Bl

Pasioegl - EREI

PRINT | CAHCEL

Most entries are self-explanatory. The default printer is determined by your environment vari-
able PRINTER, which you can set by putting the following line in your .cshrc file:
setenv PRINTER printername

You will have to restanpigi for this change to be registered.

If you select the option “To file only”, then PostScript code suitable for importing into
other applications will be generated. The image will be positioned at the lower left of the
page. The facets displayed in this document were generated this way and imported into
FrameMaker. See chapter 18, “Creating Documentation” on page 18-1 for more information.

The “EPSI” option will create Encapsulated Postscript output. Note that you need to
have GNU ghostscript installed to generate EPSI. See “Other useful software packages” on
page A-14 for further information about GNU ghostscript.

2.11.2 Capturing a screen image

Under the X window system and compatible systems, there are facilities for capturing
screen images. These can be used directly with Ptolemy. However, colors that work well on
the screen are not always ideal for hardcopy. For this reason, two sets of alternative colors
have been devised for use with black and white printers, these color sets are selected at startup
with the pigi command line optiofbw or -cp . For black and white printers, use thev
command line option when starting Ptolemy, as in:

1. PostScript is a registered trademark of Adobe Systems Inc.

Ptolemy Last updated: 11/6/97

2-42 The Interactive Graphical Interface

pigi -bw
The screen capture command can be used effectively. For example, under the X Window sys-
tem, the following command will print a window on a black and white PostScript printer:

xwd | xpr -width 4 -portrait -device ps -gray 4 | Ipr
If you wish to grab the window manager frame, then you can use:

xwd -frame > myfile.xwd

Other alternatives include a program cablgdabsc or some equivalent that may be avail-
able on your windowing system. A simple use of this is to generate an encapsulated PostScript
image using the following command

xgrabsc -eps -page 4x2 -0 mySchematic.ps
where “mySchematic.ps” is the name of the file into which you would like to store the EPS
image. Then with the left mouse button, draw a box around the desired portion of the screen.
This command will then save an encapsulated PostScript file four inches by two inches called
mySchematic.ps. This file can then be used an a wide variety of document processing systems.
To grab an entire window, including whatever borders your window manager provides, use the
xgrabsc -click option.

Importing an image as PostScript

For example, to include this PostScript in a TeX document, include the command
\include{psfig}

in the TeX file and use the commands
\begin{figure}
\centerlinef{
\psfig{figure=mySchematic.ps,width=4in,height=2in}}
\caption{Ptolemy Schematic}
\end{figure}
To display the PostScript as a figure within a FrameMaker document.

The “print-facet” command can optionally generate a PostScript file suitable for inclu-
sion in a FrameMaker document. Once you have generated this file, the preferred way to
include it is as follows. First, create an anchored frame by using the "Anchored Frame" menu
choice under the "Special” menu. The anchored frame will contain two disconnected text col-
umns, one for the figure, the other for the figure paragraph that describes the figure. Create the
first disconnected text column using the graphics tools. Then, put in the texttinokide
line. For example, the text box might contain the following line:

#include /users/ptolemy/doc/users_man/figures/butterfly.ps

Unfortunately, the file must be specified using an absolute path, unless you always start
FrameMaker from the same directory. With the cursor in the newly created text column, issue
the command “Customize Text Frame” from the “Customize Layout” submenu in the “For-
mat” menu, and select “PostScript code.” When you print the document, you will get the fol-

U. C. Berkeley Department of EECS

The Almagest 2-43
lowing graphic:

The Butterfly Curve
(T. Fay, American Mathematical
Monthly, 96(5), 1989)

—HEM > @X @—H.g.'::

Exp |Add ')
P

e

o >

Cos Gain

G[>+
— 1> 2w)X

|Sin Mpy

]

The graphic will be anchored at the lower left of the text column you created.

The second disconnected text column is created in a similar fashion with the Graphics
tool, but text is entered into the text column rather than the include directive.

It is possible, instead of using thiaclude line as above, to directly import the Post-
Script file into FrameMaker. However, this makes the text document very large, and the
FrameMaker process appears to grow in size uncontrollably. Unfortunately, as of this writing,
it does not appear possible to convert these PostScript files to encapsulated PostScript, which
would have the advantage of displaying a semblance of the image.

Importing an Image as a X bitmap (XBM)

FrameMaker and some other text processing systems can import and print ordinary
color X window dumps. To have these displayed in color on the screen, the following lines
may need to appear in your X resources file:

Maker.colorimages: True
Maker.colorDocs: True

One can use various programs, such as the FrameMaker 3.1fmtibtgr and the Poskan-
zer Bitmap (PBM) tools to reduce a color window dump to a black and white window dump.
This will save space and avoid any dithered imitations of color. However, faiico®r
applies a threshold based on color intensity to the image, some foreground colors may get
mapped to white instead of black. To prevent this, usecthe(cp stands for color printer)
command line option when startip@i , as in

pigi -cp
Then color window dumps can be converted to black and white window dumps using the fol-
lowing FrameMaker 3.1 command:

fmcolor -i 90 filein fileout

A useful hint when using such a document editor is to turn off the labgis inbefore cap-

turing the image, and then to use the document editor itself to annotate the image. The fonts
then will be printer fonts rather than screen fonts. To turn off the labels, executentbem-

mand “layer-display” under theem “Options” menu.

Ptolemy Last updated: 11/6/97

2-44 The Interactive Graphical Interface

2.12 Other useful information

In this section we cover additional information which may be useful. More advanced
topics will be covered in following chapters.

2.12.1 Plotting signals and Fourier transforms

The Ptolemy menu has a submenu cdllétities that invokes some useful, frequently
used, predefined universes. For example, the “plot-signal” (“~") command will plot a signal.
The signal can be read from a file or specified using the syntax for specifying the value of a
floatarray parameter ipigi . For example, if the value of tisggnal parameter is:

1[10] -1 [10]
then the “plot-signal” command will plot ten points with value 1.0 and ten points with value
-1.0. Theoptionsparameter can accept any options understood by the pxgraph program (see
the pxgraph section of tlidmagesk To plot a signal stored in a file, simply use the following
syntax for thesignal parameter:

< filename

You may need to specify the full path name for the file.

Another usefultilities command iDFT (“*”), which reads a signal just as above and
plots the magnitude and phase of the discrete-time Fourier transform of the signal. These are
plotted as a function of frequency normalized to the sampling rate,from 11 to . The sam-
pling frequency is assumed to Bex . A simple phase unwrapping algorithm is used to give
more meaningful phase plots. A radix-2 FFT is used, so the order (the number of points) of the
fast Fourier transform must be a power of two. That is, the user actually specifies
log,(order) . The order can be longer than the signal, in which case, zero-padding will
occur.

2.12.2 Moving objects

Sometimes you may want to move objects around within your schematic. Wsenthe
commandmnove-objectg“m”) in the Selectionrmenu to do this. You can move objects as fol-
lows:

» Select the objects that you want to move.
e Using the right mouse button, drag the objects to the desired location.
* Executenove-objects'm”.

2.12.3 Copying objects

You can create a new instance of any object in a facet by placing a point where you
want the new instance, moving the mouse to the object you wish to copy, and executing “cre-
ate” (“c”). However, this does not copy the parameter values. If you wish to create a new
instance of a star or galaxy that has exactly the same parameter values as an existing instance,
you should use theopy-objectg“x”) command in thezem “Selection” menu. To do this, first
select the object or objects you wish to copy. Then place a point in the center of the object.
Then place a second point in the location where you would like the new object, and type “X”.
The new object starts life selected, so you can immediately move it, or type “control-u” to
unselect it. As of this writingsgem unfortunately does not allow you to copy objects from one

U. C. Berkeley Department of EECS

The Almagest 2-45

facet to another.

2.12.4 Labeling a design

It is often useful to annotate a block diagram with titles and commentsemhedit-
label (“‘E”) command in the “Edit” menu will do this. It takes two arguments: a point specify-
ing the position of the label, and the name tafyer, which determines the color of the label.
Place a point where you would like the label, and then type a layer name, such as “blackSolid”
(with the quotation marks). Then type “E”. An Athena widget dialog box like that on page 2-
14 will appear, offering various options. Type the text for your label in the “Label” box. It can
contain carriage returns to get more than one line of text. To select a text height (font size) you
can move the slider to the right of the “Text Height” box. The middle button moves the slider
by large amounts, and the left and right buttons are used for fine tuning. The initial default is
40, in releases earlier than Ptolemy 0.6, the default was 100, which was too big for all but the
loudest titles. Sizes 60 and 40 work well with the overall scaling of Ptolemy facets. You can
also change the justification by clicking the left button to the right of each justification box. A
pop-up menu lists the options. The colors recommended for labels are:

blackSolid
blueSolid
brownSolid
greenSolid
orangeSolid
redSolid
violetSolid
whiteSolid
yellowSolid

2.12.5 Icon orientation

Most Ptolemy icons have inputs coming in from the left and outputs going out to the
right. To get better looking diagrams, you may sometimes wish to reorient the icons. This can
be done with theem command “transform” (“t"). Select the icon you wish to transform and
type “t” as many times as necessary to get the desired orientation. Each time, you get a 90
degree rotation. Then execute the move-object “m” to commit the change. Notice that a 180
degree rotation results in an upside down icon. To avoid this, reflect the icon rather than rotat-
ing it. To reflect it in the vertical direction (exchanging what's on top for what's on the bot-
tom), select the object, type “my” (include the quotation marks), type “t” to transform, and
“m” to move. To reflect along the horizontal direction, use “mx” instead of “my”. In sum-
mary:

To reflect an object horizontally, select it, and type:
"mx"tm
To reflect it vertically, type:

llmyu t m

2.12.6 Finding the names of terminals

Some stars have several terminals, each with a different function. The documentation
may refer to these terminals only by name. Unfortunately, the name of a terminal is not nor-

Ptolemy Last updated: 11/6/97

2-46 The Interactive Graphical Interface

mally visible when an icon is viewed with normal scaling. However, zooming in will eventu-
ally reveal the name. The easiest way to do this is to draw a box around the terminal and open
a new window with the “0” command. Then you can zoom in if necessary. Future versions of
Ptolemy will hopefully have a better mechanism.

2.12.7 Multiple inputs and outputs

Ptolemy supports star definitions that do not specify how many inputs or outputs there
are. TheAdd andFork stars are defined this way, for instance. Consider the following two
icons, found in the “arithmetic” palette of the SDF domain:

=
R

i

i |

X
N

Add

Add

They both represent exactly the same star, as you can verify with the “look-inside” command.
The icon on the right, however, has a peculiar double arrow at its input. This is a “multiple
input” terminal that allows you to connect any number of signals to it. All the signals will be
added. The icon on the left has two ordinary input terminals. It can add only two signals. Why
have both kinds?

Sometimes, multiple input terminals are not convenient. A rather technical reason is
given below, in the section “Auto-forking” on page 2-48. A more mundane reason is simply
that schematics often look better with two-input adders.

There are three ways to work with a star that has a multiple-input or multiple-output
connection (technically, a “multiporthole”).

First, you can just draw multiple connections to or from the double-arrow porthole
icon. This is easy, but it has some limitations. You can’t control what order the connections
will actually be made in. That doesn’'t matter for A&dd star, but for some star types it's
important to know which connection corresponds to which element of the multiporthole.
Also, the connected portholes can’t be connected to any other stars, nor can you use delay
icons, because=m will get confused (see “Auto-forking” on page 2-48).

Second, you can attach a “bus create” or “bus break out” icon to the multiporthole ter-
minal, choosing one that provides the right number of terminals for your schematic. (These
icons are available in the “Higher order functions” section of the domain’s palette.) This
solves both of the problems with multiple connections to a single terminal. It may not make
for a very pretty schematic, however.

Third, you can make a custom icon for the star that replaces the double-arrow terminal
with the right number of simple terminals. This is what the two-iralet icon actually
is.This method takes the most work but may be worth it to make the nicest-looking schematic.

Let's go through an example of how to create a star icon that has multiple input termi-
nals based on an existing Ptolemy star that supports multiple inputs. Suppose you need an icon
for an adder with eight inputs. As of this writing, unfortunately, you need to have write per-
mission in the directory in which Ptolemy icons are stored to create this new icon. Alterna-
tively, you can create your own version of the star in your own directory (see the
programmer’s manual). If you have write permission in the directory where the icons are

U. C. Berkeley Department of EECS

The Almagest 2-47

stored, then you can create a new icon with eight inputs as follows.

In any facet, execute thggi command “Extend:make-star” (“*”). A dialog box
appears. Enter “Add.input=8” for the star name, “SDF” for the domain, and “$PTOLEMY/src/
domains/sdf/stars” for the star src directory (assuming this is where the source code is stored).
Note that “input” is the name of the particular multiple input that we want to specify. If you do
not know where the source code is stored, then just look-inside (“i”) an existing instance of
the star. Thevem console window and the header of the editing window that open both tell
where the star source code is. A second dialog box appears asking you where you would like
the icon put. Accept the default, “./user.pal”. Then open user.pal using “O” to see the new
eight-input adder icon. You may edit this icon, as explained in “Editing Icons” on page 2-34.

2.12.8 Using delays

In several domains, delays can be placed on arcs. A delay is not a star, but rather is a
property of the arc connecting two stars. The interpretation of the delay in the dataflow
domains (SDF, DDF, BDF, and most code generation domains) is as an initial particle on the
arc. An initial particle for the scalar data types is one whose value is zero. When the arc passes
particles containing “message” type data, a delay on the arc will create an “empty” message.
Most often, the destination star of the arc must be able to interpret such “empty” messages
explicitly in context of the user-defined type because a “zero” might have different meanings
depending on the type. Any feedback loop in the SDF domain must have a delay, or the com-
putation in the loop would not be able to begin.

To use these delayspigi , the user places a delay icon on top of the wire connecting
two instances. The delay icon is a white diamond with a green border in the SDF and system
palettes. You can specify the number of delays by execatitgparamswith the cursor on
top of the delay icon.

Other domains (besides dataflow) also use delays, but the meaning can be quite differ-
ent. See the appropriate chapter describing the domain.

A new feature added to Ptolemy releases greater than 0.5 is the support of initializable
delays for simulation domains. These delays use a different icon from the old white diamond
with green borders. The new delays use an icon that is a green diamond with a white border
and has an “I” in the middle of the diamond to signify that it is initializable. We have kept
around the old delays for backward compatibility, but the syntax for the two is quite different
and the user should probably use just one type to prevent confusion.

The syntax for the new delays is that the arguments to the delay are the initial value
themselves. There is no value in the argument that signifies the number of delay particles.
Instead, a count of the number of values in the delay arguments is the number of delay parti-
cles that will be added to the buffer of the arc corresponding to the delay. These arguments are
specified as a string and are parsed according to the data type associated to the arc. For exam-
ple, an initializable delay with parameter “1 0 1” on an arc passing float particles will have a
buffer with three initial particles. The three particles will have the values 1.0, 0.0, and 1.0
respectively. If the arc was working on complex particles instead, an error would be given
since complex humbers must be specified using a pair of numbers. A proper argument list for
the delay in that case would be “(1,0) (0,0) (1,1)". The shorthand for declaring multiple values
in the argument list is valid, just as in the arraystate case. For example, an argument list of “2

Ptolemy Last updated: 11/6/97

2-48 The Interactive Graphical Interface

[5]” would specify five initial particles with value 2.

Initializable delays also work on arcs which handle matrix particles. The argument
string in this case is parsed differently than above. The first two values in the last specify the
number of rows and columns in the initial matrix, respectively. For example, an initializable
delay with parameter “1 2 3 [2]” on an arc passing integer matrices would place one matrix
with dimension one row by two columns, whose entries all have the value three, in the buffer
for that arc. For the case where multiple initial matrices are desired, simply give enough
entries in the delay argument string to fill multiple numbers of initial matrices of the given
size. For example, an initializable delay with parameter “1 2 3 3 4 4 5 5” on an arc passing
integer matrices would create three matrices, all of dimension one row by two columns, such
that the first initial matrix on the buffer has all entries equal to three, the second has all entries
equal to four, and the last matrix has all entries equal to five.

2.12.9 Auto-forking

In pigi , a single output can be connected to any number of inputs, as one would
expect. The interpretation in most domains is that the one output is broadcast to all the inputs.
There are several point-to-point connections, therefore, represented by the net.

However, there are restrictions. To understand these restrictions, it is worth explaining
that vem stores connectivity information in the form of netlists, simply listing all terminals
that are connected together. If a delay appears somewhere on a net, and that net has more than
one point-to-point connection, then it is not easy to determine for which connection(s) the
delay is intended. Consequently, at the time of this writing, delays are disallowed on nets with
more than one connection. If you attempt to put a delay on such a net, then when you try to
run the system, an error message will be issued, and the offending net will be highlighted. To
get rid of the highlighting, execute tpgi command “Edit:clear-marks”. To fix the prob-
lem, delete the offending net, and replace it with one or fadke stars and a set of point-to-
point connections. An incorrect and correct example are shown below:

Incorrect Correct

>-@ﬂj -

This example also illustrates the use of a delay on a feedback loop. The delay is required here,
assuming we are in the SDF domain, because without it, deadlock would ensue. This is due to
the fact that théork star cannot fire until thedd star does, but thedd star cannot fire until

thefork star produces its output.

A second restriction is that forks must be explicit when connected directly to input or

U. C. Berkeley Department of EECS

The Almagest 2-49

output terminals of a galaxy. An incorrect and correct example are shown below:

Incorrect Correct

T T
>>>ﬁ%>>

Gain

Gain

There is also a more subtle restriction. Suppose two outputs are connected to a single
multiple-input terminal. Then neither of these outputs can also be connected to some other
input terminal. If they are, Ptolemy will issue the error message “multiple output ports found
on the same node.” The reason this happens is sivgieknows nothing about multiple
inputs, so it sees a net with more than one output and more than one input. Ptolemy is not
given enough information to reconcile this and figure out which outputs should be connected
to which inputs. To avoid this problem, it is again necessary to use explicit fork stars, as
shown below:

Incorrect Correct

) ol D

>l >

ain Gain

Gain

Another solution, which may look nicer than inserting an explicit fork star, is to
replace the multiple-input terminal with several simple terminals. You can do that by inserting
a “bus create” icon or by using a different icon for the multiple-input star, as was explained in
“Multiple inputs and outputs” on page 2-46.

All of the above restrictions may be eliminated in future versions.

2.12.10 Dealing with errors

Ptolemy is composed of several components, as shown in figure 2-6 on page 2-22.
When errors occur, it helps to know which component detected the error so that it can be cor-
rected.

When errors occur inem, vem prints the error in the console window. For example, if
you enter a point argument and exeatrgatewhen the cursor is not over an instance, then
vem displays the message “Can’t find any instance under spot.” Usuatigrrors are easy to
fix. In this caseyem expects the user to specify the instance to be created.

Ptolemy Last updated: 11/6/97

2-50 The Interactive Graphical Interface

Errors in thepigiRpc process can occur when any of thigi commands are
invoked. The error messages, in this case, are displayed in a popup window, which is much
more helpful. Error messages may also be displayed in the xterm window inpighichvas
started. In additiorpigi often highlights in red the object in the schematic associated with
the error. When this happens, you can executelda-markscommand to clear the high-
lighting. If such an error occurs and the reason for the error is not obvious, try deleting the
indicated objects and redrawing them.

2.12.11 Copying and moving designs

In one of our examples, we usgd-r to make a copy of a facet. In general, however,
copying entire designs this way does not work. For it to work in the general case, you must
also change some data in the facets that you copy. In particular, each facet has pointers to the
icons it uses. If you move a galaxy, for example, then any pointer to the icon for that galaxy
becomes invalid (or “inconsistent” gt terminology).

A utility program callednasters has been provided for this purpose. This replaces
the program from thecttools distribution, callecbctmvlib , that was used with earlier
versions of Ptolemy.

Palettes, star icons, galaxies, and universes are stored dacets. Special care is
required when moving or copyiragt facets. First, as emphasized before, evetyfacet is
stored as a directory tree, so a copy shoulccpse . Next, keep in mind that there may be
pointers to the moved object in other facets. If you know where all these pointers might be,
then moving facets is easy. If you do not know where all the pointers are, then your only prac-
tical choice is to leave a symbolic link in place of the old location pointing to the new.

Moving facets

Suppose you have developed a fantastic new galaxy céplealCentaur , and you
wish to install it in a directory that is available for general use. Since you have developed the
galaxy, you know where it is used. The galaxy icon itself is stored in two facets:

alphaCentaur/schematic/contents;
alphaCentaur/schematic/interface;

The first of these stores the schematic, the second stores the icon. The peculiar semicolon at
the end is actually part of the file name. First move the icon:

mv alphaCentaur destinationDirectory

This moves the entire directory tree. You must now change all references to the icon so that
they reflect the new location. Suppose you have a test universe alahediest . This
should be modified by running theasters program as follows:

% masters alphaTest
Running masters on wave
Pathname to replace (? for a listing):

User input is shown in bold type; program output is shown in regular (not bold) type. Enter a
guestion mark to get a list of all icons referenced in the facet:

U. C. Berkeley Department of EECS

The Almagest 2-51

Pathname to replace (? for a listing): ?
Pathnames currently found in the facet:
~yourname/oldDirectory/alphaCentaur
$PTOLEMY/src/domains/sdf/icons/Ramp
$PTOLEMY/src/domains/sdf/icons/Sin
$PTOLEMY/src/domains/sdf/icons/XMgraph
Pathname to replace (? for help):

The last three items are pointers to official Ptolemy icons. There is no need to change these.
You should now enter the string you need to replace and the replacement value:

Pathname to replace (? for help): ~yourname/oldDirectory
New pathname: ~yourname/destinationDirectory

Next, usemasters the same way to modify any palettes that reference the moved icon. For
instance, the “user.pal” palette in the directory in which you develafpbdCentaur is a

likely candidate. If you miss a referenoet will issue an error message when it tries to open
the offending palette, indicating that it is inconsistent.

2.12.12 Environment variables

The following environment variables can be set to customize certain behavior. These should
be set (normally) in the userisshrc file.

PIGIBW This variable tells Ptolemy to display all of its windows in black and
white.
PIGIRPC Specifies an alternative executable file for Ptolemy. Ptolemy is an

extensible, modifiable system. Many users will wish to create their own
versions to incorporate their own extensions. Details on how to write
extensions are given in the programmer’s manual, volume 3 of the
Almagest. Once you (or someone else) has created a customized ver-
sion, you can invoke it by specifying the precise name of the executable
(complete with its full path, or path relative to an environment variable
or user's name). The default executabl@HFOLEMY/bin.$PTARCH/

pigiRpc . An alternative specification might be:

setenv PIGIRPC ~myname/Ptolemy/bin.sol2.5/pigiRpc

PT_DISPLAY Determines the text editor used to display text files. This determines
how text files will be displayed to the user. The value of this variable is
aprintf format string with onéssin it. That%sis replaced with the
name of the file to be viewed. In the default, BTe DISPLAY variable
is not set, and the Tycho editor is used.For example, to view files in a
new xterm window with thei editor, put the following line in your
.cshrc file

Ptolemy Last updated: 11/6/97

2-52 The Interactive Graphical Interface

setenv PT_DISPLAY "xterm -e vi %s"
and source the file before startipigi

PTARCH This variable specifies the computer architecture you are using such as
sol2.5 . The architecture setting is returned by $iRg§OLEMY/bin/
ptarch script.

PT_DEBUG If set, this specifies the script to execute when starting pigi in debug
mode (using thedebug option). An example of a suitable script is
ptgdb , located in$PTOLEMY/bin . This script invokegdb, the Gnu
debugger, insidemacs.

PTMATLAB_REMOTE_HOST
This variable, if set, specifies the name of a remote machine on which
to run Matlab if Ptolemy ever invokes Matlab.

PTOLEMY This variable points to the root directory of where Ptolemy is installed.

PTOLEMY_SYM_TABLE
This variable is an internal symbol that is used during dynamic linking.

PTPWD This variable gives the command to print the current working directory,
which is usually pwd.

TYCHO This variable points to the root directory of where Tycho is installed.

Ptolemy is based on Tcl and [incr Tcl]. These packages set the following environment
variables: TCL_LIBRARY, TK LIBRARY, ITCL_LIBRARY, ITK LIBRARY, and
IWIDGETS_LIBRARY. See$PTOLEMY/bin/ptsetup.csh

Below we discuss a few Unix system environment variables that affect how Ptolemy
functions.

DISPLAY Specifies what X11 Display Ptolemy should start up on. If you are
unfamiliar with $DISPLAY, then see “Introduction to the X Window
System” on page B-1.

GCC_EXEC_PREFIX
C_INCLUDE_PATH
CPLUS_ INCLUDE_PATH
LIBRARY_ PATH
These variables are used by the Gnu compilers to find components of
the compilers, see “Gnu Installation” on page A-7.

HOME This variable points to the root directory of the user’'s account. This
variable must be set farcish and the software that usislsh
(ptcl andtycho) to work properly.

LD_LIBRARY_PATH
This variable is used by the run time linker to find shared libraries. If
you are using prebuilt binaries, and your Ptolemy installation is not at

U. C. Berkeley Department of EECS

The Almagest 2-53

lusers/ptolemy , then you may need to set this variable, see “pigi
fails to start up, giving shared library messages” on page A-17. See also
your Unixld man page, and “Shared Libraries” on page D-1.

PATH This variable contains a list of directories of executable programs. The
order of the directories listed is very important. SSETOLEMY/
.cshrc for guidelines on the proper order.

PRINTER Determines the default printer used for hardcopy output. This is used to
determine the default printer when printingm facets. If you use the
provided makefile to print Ptolemy documentation, then this environ-
ment variable will determine the printer used $RTOLEMY/.cshrc
the pertinent line reads:

setenv PRINTER Iw
You should replackv with whatever printer name you are using.

SHLIB_PATH Hewlett-Packard systems use SHLIB_PATH instead of
LD _LIBRARY_PATH to find shared |libraries. See the
LD_LIBRARY_PATHdescription above for details.

USER This variable gives the name of the user running Ptolemy. This variable
is set by every shell. In yowshrc file, add the following line:
if (! $?USER) setenv USER $LOGNAME

Many of Ptolemy’'s domains rely on additional environment variables. The CG56
domain relies or856DSP to indicate the path name where the tools for the S56X Motorola
56000 board are installed a@CKMONo indicate the path name where the QCK Monitor
tools are installed. The VHDL domain relies 8¥iNOPSYSo indicate the root directory for
the installation of Synopsys tools aBtM_ARCHto be set to the computer architecture you
are using for the Synopsys tools.

2.12.13 Command-line options

The pigi program is actually ash script, located irSPTOLEMY/bin . That script
starts two processegm andpigiRpc . The usage is

pigi[options][facet-name]

The optional facet name specifiegean facet that should be opened upon starting the system.
The command-line options are:

-bw Use black and white, even on a color monitor. This is useful for generating
readable hardcopy from X Window dumps.

-cp Fine tune the colors to improve the quality of hardcopy made on a color printer
from X Window dumps.

-console Open a command console through which the user can issue Tcl commands.

-debug Invoke Ptolemy running undeidb, a symbolic debugger. If a version of the
pigiRpc executable with debug symbols can be found, the script will it. If

Ptolemy Last updated: 11/6/97

2-54 The Interactive Graphical Interface

$PIGIRPC is set then that binary is used$HIGIRPC is not set, then the pro-
gram first looks for
$PTOLEMY/bin.$PTARCH/pigiRpc.debug
If that is not found, then the program looks for
$PTOLEMY/0obj.$PTARCH/pigiRpc/pigiRpc.debug
If that is not found, then
$PTOLEMY/bin.$PTARCH/pigiRpc
is used. If theT_DEBUGnvironment variable is set, then its value is the name
of a script used to invoke the debugger. For example, the ptuiibt , located
in SPTOLEMY/bin , invokesgdb underemacs.

-ptiny Invoke the smallest version of Ptolemy, if it can be found. The executable that
is used is calledigiRpc.ptiny . This version contains only the SDF and DE
domains, but without the image processing stars and the user-contributed stars.

-ptrim Invoke an intermediate-sized version of Ptolemy, if it can be found. The exe-
cutable used is callgggiRpc.ptrim . This version contains only SDF, BDF,
DDF, DE, and CGC domains, but without the parallel targets.

-display display-name
Specify an alternative display to use. If this option is missing, theDIte
PLAY environment variable is used.

-help print out the usage information

-rpc ptolemy-executable
Specify an alternative Ptolemy executable to use. The defs@MTGLEMY/
bin.$PTARCH/pigiRpc

-xres X-resource-filename
Specify an X resource file to merge before running Ptolemy. The standard X
programxrdb is used with themerge option.

2.13 X Resources

A large number of X window resources can be set by a user to customize various
aspects of the user interface. The best way to explore these is to examinesthBOLEMY/
lib/pigiXRes9 for the defaults. These defaults can typically be overridden in the
user’s.Xdefaults file, and incorporated into the X environment using the progtam For
example,

Vem*font: *-times-medium-r-normal--*-120-*
changes the font in them console window, menus, dialog boxes, etc., to something smaller
than the default. Also,

Vem*background: antiqueWhite

changes the background in them console window and dialog boxes to the color “antique-
White.”

U. C. Berkeley Department of EECS

The Almagest 2-55

2.14 Tk options

In Tycho, many of the user interface features are controlled through the preferences
manager, which is available under the Tyefetp menu. In the older non-Tycho Tk windows,
a number of user interface options are specified through Tk options rather than directly
through X resources. These are defined in th&RIBOLEMY/lib/tcl/ptkOptions.tcl
One way to override these is to start pigi with a console window:

pigi -console
and in the console window, change the options. For example, the command
option add Pigi*background gray98

changes the dialog box backgrounds to a very light gray. This option was used to create the X
window dumps used in this manual.

2.15 Multi-domain universes

The domain of a facet is set using fiigi “Edit:edit-domain” or “d” command. This
command causes a checklist to appear listing all domains currently linked into the system. All
examples in the SDF Demo palette are one-domain applications, using only SDF. Several
examples of multi-domain applications can be found in the DDF and DE Demo palettes. It is
instructive to explore these applications, using the edit-domain command at all levels of the
hierarchy to see what domains are used. In addition, the section “Wormholes” on page 12-4 in
the DE chapter contains a useful discussion on mixing the DE domain with other domains in
Ptolemy.

Recall that avormhole in Ptolemy is a block that has a different domain on the out-
side than on the inside. figi , wormholes look exactly like galaxies -- in fact, they are both
just facets with ports. The only difference is that the domain is different on the inside than on
the outside. Thus, whether a particular facet compiles into a plain galaxy or a wormhole
depends on whether it is referenced from an outer facet of the same domain or a different
domain. You get a wormhole if the domains are different.

To build multi-domain applications, it is necessary to understand the models of com-
putation in each domain, to ensure that application will behave consistently at the domain
boundaries. For this, it is necessary to refer to the domain chapters in this user's manual.

In some domains, it is possible to select one of several targets, which manage the exe-
cution of the domain in different ways. The target for a facet is set usipipihe'Edit:edit-
target” or “T” command. This command causes a checklist to appear listing all targets avail-
able for the current domain. If a target is selected (rather than pushing “Cancel”), another dia-
log box appears containing whatever parameters the selected target may have. Both the
current target selection and the parameters for it are recorded with the facet when you execute
“save-window”.

If “edit-target” is executed in a galaxy facet (not a universe facet), then it offers a
choice labele&parent> in addition to the target(s) for the facet’'s domain. This choice sim-
ply means “use the outer facet’s target selection and target parameters”. If you select this
choice, then no target parameter dialog box appears.

The<parent> target choice is extremely important, because . If you choose anything
other thar<parent> , then your galaxy will always be compiled into a wormhole, so that it

Ptolemy Last updated: 11/6/97

2-56 The Interactive Graphical Interface

can have a separate target from the outer galaxy or universe. A wormhole will be created even
if you have in fact selected the same domain, same target and same target parameters as in the
outer facet --pigi doesn’t check. Thus, if you accidentally set the target choice to something
besidescparent> , you'll end up with wormholes rather than plain galaxies. This can cause
unexpected behavior, because the semantics of an XXX-in-XXX wormhole aren’t necessarily
the same as just embedding a galaxy into another galaxy. (DE domain, in particular, has some
oddities with DE-in-DE wormholes as of this writing.) Even if the semantics are unaffected, a
wormhole will be slower than a plain galaxy. So be careful to<paeent> in galaxies,

unless you really intend to create a wormhole having a different target. In most cases, you
only want to make specific target selections in universe facets.

U. C. Berkeley Department of EECS

Chapter 3. ptcl: The Ptolemy
Interpreter

Authors: Joseph T. Buck
Wan-Teh Chang
Edward A. Lee

Other Contributors: Brian L. Evans
Christopher Hylands

3.1 Introduction

There are two ways to use Ptolemy: asrd@rpreterand agraphical user interface.
The Ptolemy Tcl interpreteatcl conveniently operates on dumb terminals and other envi-
ronments where graphical user interfaces may not be available, and is described in this chap-
ter. The Ptolemy graphical user interfgigi is described in chapter 2. Wheigi is run
with the-console option, a ptcl window will appear. This combination allows the user to
interact with Ptolemy using both graphical and textual commands. Invekihg , the
Ptolemy syntax manager also brings up a ptcl interpreter window. To imydie@ from
pigi , move the mouse over a facet and type a

In Ptolemy 0.7, théysh binary contains a prototype of a new interface to the kernel
called pitcl. If you startycho with the-pigi , -ptrim , or-ptiny options, then you will be
running pitcl, not ptcl. Pitcl is not backward compatible with ptcl, and the pitcl interface is
bound to change over time. See the Tycho documentati®mYiGHO/typt/doc/inter-
nals/pticl.html for further information.

The Ptolemy interpreteptcl , accepts input commands from the keyboard, or from a
file, or some combination thereof. It allows the user to set up a new simulation by creating
instances of blocks (stars, galaxies, or wormholes), connecting them together, setting the ini-
tial values of internal parameters and states, running the simulation, restarting it, etc. It allows
simulations to be run in batch mode. We have used batch mode simulation to run regression
tests that compare runs from different versions of Ptolemy.

Ptcl is based on John Ousterhout’s Tcl (tool command language), which is an exten-
sible interpreted language. All the commands of Tcl are availalgelin. This interface is
more convenient than the graphical interface when large complex universes are being created
automatically by some other program. Some users also find it more convenient when using a
symbolic debugger to debug a new piece of code linked to Ptolemy.

Ptcl extends the Tcl interpreter language by adding new commands. The underlying
grammar and control structure of Tcl are not altered. Commands in Tcl have a simple syntax:
a verb followed by arguments. This document will not explain Tcl; please refer to the manual
entry at$PTOLEMY/tcltk/itcl/html/tcl7.6/Tcl.n.html which is included with the
Ptolemy distribution. Two other excellent references on Tcl are books by Ousterhout [Ous94]

3-2 ptcl: The Ptolemy Interpreter

and Welch [Wel95]. This chapter describes only the extensions to Tcl matt by

3.2 Getting started

Follow the instructions in the section “Setup” on page 2-1. Now pyge to invoke
the Ptolemy interpreter. It is also possible to specify a file of interpreter commands as a com-
mand line argument. See “Loading commands from a file” on page 3-13.

3.3 Global information

The interpreter has known listcontaining all the classes of stars and galaxies it cur-
rently knows about. New stars can be added to the known list at run time only by using the
incremental linking facility, but this has restrictions (seelithte command below). You can
also make your own copy of the interpreter with your own stars linked in. Galaxies, however,
are easy to add to the known list (seedéfgalaxy command below).

The interpreter also hascarrent galaxy Normally, this is the most recently defined
universe, or the most recent universe specified witluhaiverse ~ command. During the
execution of alefgalaxy = command, which defines a galaxy, the current galaxy is set to be
the galaxy being defined. After the closing curly brace otigigalaxy command, the cur-
rent galaxy is reset to the previous current universe.

3.4 Commands for defining the simulation

This section describes commands to build simulations and add stars, galaxies, states,
and the connections among them. The commands are summarized in tables 3-1, 3-2 and 3-3.

3.4.1 Creating and deleting universes

The command
univlist

will return the list of names of universes that currently exist. The command
newuniverse ? name? ?dom?

creates a new, empty universe nameabe (default “main”) and makes it the current universe
with domaindom (default current domain). If there was previously a universe with this name,

it is deleted. Whatever universe was previously the current universe is not affected, unless it
was namedhame. To remove a universe, simply issue the command:

deluniverse ? name?

If no argument is given, this will delete the current universe. After this, the current universe
will be “main.” To find out what the current universe is, issue the command:

curuniverse
With no arguments, this returns the name of the current universe. With one argument, as in:
curuniverse name

it will make the current universe name equal to that argument. A universe can be renamed
using either syntax below:

renameuniv.newname

U. C. Berkeley Department of EECS

The Almagest

renameuniv
With one argumentgnameuniv

oldname newname
renames the current universentavname. With two argu-

3-3

ments, it renames the universe naroleidame to newname. Note that any existing universe
namedhewnameis deleted.

3.4.2 Setting the domain

Ptolemy supports multiple simulation domains. Before creating a simulation environ-
ment and running it, it is necessary to establish the domain. The interpretecinasna
domainwhich is initially the default domai8DF The command

domain domain-name

changes the current domain; it is only legal when the current galaxy is empty. The argument
must be the name of a known domain. The command

command arguments description
alias galport bl pl Connect a galaxy port to a block port.
animation ?0n | off? Enable or disable printing of star names as they fire 311
busconnect bl pl b2 p2 w Form a bus connection of widtihbetween two multi- | 3-6
?delay? portholes.
cancelAc- action_handle Cancel an action previously registered usegjsterAc-| 3-15
tion tion.
cd directory Change the current directory to the one given. 3-14
connect bl pl b2 p2 ?delay?| Form a connection between two portholes. 3-5
cont ?num? Continue executing the current universantimes 3-10
(default: 1).
curuniverse ?name? Print or set the name of the current universe. 3-2
defgalaxy name{ body} Define a new galaxy class. 3-8
delnode name Delete the named node from the current galaxy. 3-12
delstar name Delete the named star from the current galaxy. 3-11
deluniverse ?name? Delete the current or named universe. 3-2
descriptor ?block? Return the descriptor dock (default: current galaxy)| 3-9
disconnect bl pl Remove the connection going to the specified port. 3-11
domain ?name? Set the domain, or print the name of the current domain. 3B
domains List the known domains. 3-3
exit Exit ptcl. 3-15
halt Request that the current simulation stop. 3-1b
help ?command? Print a short description @bmmandor help orhelpif |3-15
the argument is omitted.
knownlist ?domain? List the known blocks aoflomain(default: current 3-9
domain).
TABLE 3-1: First third of the summary of ptcl commands. Arguments are in italic; literals are in

Courier ; optional arguments are enclosed in question marks. A block name is indi-
cated by bl or b2 and a port name by plor p2

Ptolemy Last updated: 11/6/97

3-4 ptcl: The Ptolemy Interpreter

domain

returns the current domain. It is possible to create wormholes—interfaces between domains—
by including adomain command inside a galaxy definition. The command

domains
lists the domains that are currently linked into the interpreter.

3.4.3 Creating instances of stars and galaxies

The first step in any simulation is to define the blocks (stars and galaxies) to be used in
the simulation. The command

star name class

creates a new instance of a star or galaxy of class names ithame, and inserts it into the
current galaxy. Any states in the star (or galaxy) are created with their default values. While it
is not enforced, the normal naming convention is thate begin with a lower case letter and
class begin with an upper case letter (this makes it easy to distinguish instances of a class

command arguments description
link
listobjs class ?name? List states, ports, or multiports in the named block (defag
current galaxy).

matlab command ?arg1l? Manage a Matlab process and evaluate Matlab commands. 3{L6
?arg2?

mathematica |command ?argl?| Manage a Mathematica process and evaluate commands. 3{16
?arg2?

multilink linker_args code.pLink arbitrary code into the interpreter. 3-14

newstate name type value | Define a state for the current galaxy with a default valye. 3-6

newuniverse |?name? ?domainfCreate a new empty universe (defaults: “main” and the 8t2-
rent domain).

node name Create a node for use bpdeconnect. 3-6
nodeconnect |bl pl node Connect a porthole to a specified node. 3-6
?delay?

numports bl pl number Force a multiporthole to have a given number of portholes. 3-7

permlink linker_args code.oLink arbitrary code into the interpreter permanently. 3-14

pragma bl b2 name value Set pragmaameto valuefor blockb2 in parentol. 3-12

pragmaDe- target print default values of the pragmas for the target 3-11

faults

print ?b1? print a description of block1 (or the current galaxy) 3-9
TABLE 3-2: Second third of the summary of ptcl commands. Arguments are in italic; literals

are in Courier ; optional arguments are enclosed in question marks. A block name
is indicated by b1 or b2 and a port name by p1or p2

U. C. Berkeley Department of EECS

The Almagest 3-5

from the class itself).

3.4.4 Connecting stars and galaxies

The next step is to connect the blocks so that they can pass data among themselves
using theconnect command. This forms a connection between two stars (or galaxies) by
connecting their portholes. A porthole is specified by giving the star (or galaxy) name fol-
lowed by the port name within the star. The first porthole must be an output porthole and the

second must be an input porthole. For example:
connect mystar output yourstar input
The connect command accepts an optional integer delay parameter. For example:

connect mystar output yourstar input 1

This specifies one delay on the connection. The delay parameter makes sense only for

command

arguments

description

registerAc- pre | post
tion command stars fire.
renameuniv ?oldname? Rename a universe (default: current universe). 3-2
newname
reset ?name? Empty a universe (default: “main”). 3-11
run ?num? Run the current universeimtimes (default: 1). 3-10
schedtime ?actual? Print the normalized (default) or unnormalized curredwl1
scheduler time.
schedule Generate and print a schedule (only valid for some 3-10
domains).
seed number Change or print the random number seed. 3-1B
setstate bl state_name valueChange the state of a blockvalue 3-7
source filename Read commands from the specified file. 3-13
star name class Create a named instance of a star from the given glass. 34
stoptime Return the stop time of the current run. 3-10
statevalue b1l name Print the current or initial value of statamein block | 3-15
?current | b1l.
initial?
target ?newtarget? Change or display the name of the current target. 3-1p
targetparam name ?value? Change or display the value of a target state. 3-1p
targets ?domain? List targets usable witlomain(default: current 3-12
domain).
topblocks ?block_or_classnamList top-level blocks of the named block (default: cuB-15
e? rent galaxy).
univlist List the names of all defined universes. 3-2
wrapup Invoke the wrapup method of all the blocks. 3-10
TABLE 3-3: Final third of the summary of ptcl commands. Arguments are in italic; literals are in

Courier

cated by bl or b2 and a port name by plor p2

Ptolemy

Last updated: 11/6/97

; optional arguments are enclosed in question marks. A block name is indi-

3-6 ptcl: The Ptolemy Interpreter

domains that support it. The delay argument may be an integer expression with variables
referring to galaxy parameters as well.
One or both of the portholes may really b#&atiPortHole . If so, the effect of

doing the connect is to create a new porthole withirmiiéPortHole and connect to that
(see also theumports command).

3.4.5 Netlist-style connections

As an alternative to issuing connect commands (which specify point-to-point connec-
tions) you may specify connections in a netlist style. This syntax is used to connect an output
to more than one input, for example (this is calatb-forking. Two commands are provided
for this purpose. Theode command creates a node:

node nodename
Thenodeconnect command connects a porthole to a node:
nodeconnect starname portname nodename ?delay?

Any number of portholes may be connected to a node, but only one of them can be an output
node.

3.4.6 Bus connections between MultiPortHoles

A pair of multiportholes can be connected with a bus connection, which means that
each multiporthole ha portholes and they all connect in parallel to the corresponding port
in the other multiporthole. The syntax for creating such connections is

busconnect srcstar srcport dststar dstport width ?delay?

Herewidth is an expression specifying the width of the bus (how many portholes in the mul-
tiportholes); anddelay is an optional expression giving the delay on each connection. The
other arguments are identical to those ofcilvenect command.

3.4.7 Connecting internal galaxy stars and galaxies to the outside

When you define a new galaxy there are typically external connections to that galaxy
that need to be connected through to internal blocksallde command is used to add a
porthole to the current galaxy, and associate it with an input or output porthole of one of the
contained stars within the galaxy. An example is:

alias galaxyin mystar starin

This also works iktarin is aMultiPortHole (the galaxy will then appear to have a multi-
porthole as well).

3.4.8 Defining parameters and states for a galaxy

A stateis a piece of data that is assigned to a galaxy and can be used to affect its
behavior. Typically the value of a state is coupled to the state of blocks within the galaxy,
allowing you to customize the behavior of blocks within the galayarameteris the initial
value of a state. Theewstate command adds a state to the current galaxy. The form of the
command is

newstate state-name state-class default-value

Thestate-name argument is the name to be given to the state sfEne-class argument

U. C. Berkeley Department of EECS

The Almagest 3-7

is the type of state. All standard types are supported (see table 2-6 on page 2-33). The
default-value argument is the default value to be given to the state if the user of the galaxy
does not change it (using thetstate = command described below). Thefault-value
specifies the initial value of the state, and can be an arbitrary expression involving constant
values and other state names; this expression is evaluated when the simulation starts. The fol-
lowing state names are predefin&&S NQ TRUE FALSE, Pl . YESandTRUEhave value 1;
NOandFALSE have value ORI has the value 3.14159... Some examples are:

newstate count int 3

newstate level float 1.0

newstate title string "This is a title"

newstate myfreq float galaxyfreq

newstate angularFreq float "2*PI*freq"

The full syntax of state initial value strings depends on the type of state, and is explained in
“Parameters and states” on page 2-14.

3.4.9 Setting the value of states

Thesetstate command is used to change the value of a.statan be used in three
contexts:

* Change the value of a state for a star within the current galaxy.
« Change the value of a state for a galaxy within the current galaxy.
* Change the value of a state within the current galaxy.

The latter would normally be used when you want to perform multiple simulations using dif-
ferent parameter values. The syntaxsieistate is:

setstate block-name state-name value
Here,

* block-name is either the name of a star or a galaxy that is inside the current galaxy,
and it is the block for which the value of the state is to be changed. It can #&l®o be
which says to change a state belonging to the current galaxy itself.

e state-name is the name of a state which you wish to change.

* value isthe new value for the state. The syntaxdue is the same as described in
thenewstate command. However, the expression fafue may refer to the name
of one or more states in the current galaxy or an ancestor of the current galaxy.

An example of the use sktstate is given in the section describidgfgalaxy below.

3.4.10 Setting the number of ports to a star

Some stars in Ptolemy are defined with an unspecified number of multiple ports. The
number of connections is defined by the user of the star rather than the star itselinThe
ports command applies to stars that contain sMchiPortHole s; it causes a specified
number ofPortHole s to be created within thaultiPortHole . The syntax is

numports star portname n
wherestar is the name of a star within the current galagytname is the name of Mul-

Ptolemy Last updated: 11/6/97

3-8 ptcl: The Ptolemy Interpreter

tiPortHole in the star, and is an integer, representing the numbefPatHole s to be cre-

ated. After the portholes are created, they may be referred to by appendigerei is an

integer, to the multiporthole name, and enclosing the resulting name in quotes. The main rea-
son for using this command is to allow the portholes to be connected in random order. Here is
an example:

star summer Add

numports summer input 2

alias gallnput summer "input#1"
connect foo output summer "input#2"

3.4.11 Defining new galaxies

Thedefgalaxy command allows the user to define a new class of galaxy. The syntax
is
defgalaxy class-name {
command
command

}

Hereclass-name is the name of the galaxy type you are creating. While it is not required,
we suggest that you have the name begin with a capital letter in accordance with our standard
naming convention — class names begin with capital letterscdmmandlines may be any
of the commands described abovestar , connect , busconnect , node, nodeconnect |,
numports , newstate , setstate , oralias . The defined class is added to the known list,
and you can then create instances of it and add them to other galaxies. An example is:
reset
domain SDF
defgalaxy SinGen {
domain SDF
The frequency of the sine wave is a galaxy parameter
newstate freq float "0.05"
Create a star instance of class "Ramp" named "ramp"
star ramp Ramp
The ramp advances by 2*pi each sample
setstate ramp step "6.283185307179586"
Multiply the ramp by a value, setting the frequency
star gain Gain
The multiplier is set to "freq"
setstate gain gain "freq"
Finally the sine generator
star sin Sin
connect ramp output gain input
connect gain output sin input
The output of "sin" becomes the galaxy output
alias output sin output

}

In this example, note the use of states to allow the frequency of the sine wave generator to be
changed. For example, we could now run the sine generator, changing its frequency to “0.02”,

U. C. Berkeley Department of EECS

The Almagest 3-9

with the interpreter input:
star generator SinGen
setstate generator freq "0.02"
star printer Printer
connect generator output printer input
run 100

You may include aomain command within @efgalaxy command. If the inside domain is
different from the outside domain, this creates an object knownasrahole , which is an
interface between two domains. An example of this appears in a later section.

3.5 Showing the current status
The following commands display information about the current state of the interpreter.

3.5.1 Displaying the known classes

The knownlist ~command returns a list of the classes of stars and galaxies on the
known list that are usable in the current domain. The syntax is

knownlist

It is also possible to ask for a list of objects available in other domains; the command
knownlist DE

displays objects available in tbé& (discrete event) domain.

3.5.2 Displaying information on a the current galaxy or other class

If invoked without an argument, tlpgint command displays information on the cur-
rent galaxy. If invoked with an argument, the argument is either the name of a star (or galaxy)
contained in the current galaxy, or the name of a class on the known list, and information is
shown about that star (or galaxy). The syntax is
print
print star-name
print star-class

The command
descriptor ? name?

will print a short description of a block in the current galaxy or on the known list, or of the
current galaxy ihameis omitted. The commands

listobjs states ? name?
listobjs ports ? name?
listobjs multiports ? name?

will list the names of the states, ports, or multiportholes associated with the named star or gal-
axy.

3.6 Running the simulation

Once a simulation has been constructed using the commands previously described
(also see theource command in “Loading commands from a file” on page 3-13), use the

Ptolemy Last updated: 11/6/97

3-10 ptcl: The Ptolemy Interpreter

commands in this section to run the simulation.

3.6.1 Creating a schedule

Theschedule command generates and returns the schedule (the order in which stars
are invoked). For domains such as DE, this command returns a not-implemented message
(since there is no “compile time” DE schedule as there is for SDF). The syntax is:

schedule

3.6.2 Running the simulation

Therun command generates the schedule and rumstiines, wheren is the argu-
ment (the argument may be omitted; its default value is 1). For the DE interpreter, this com-
mand runs the simulation fartime units, andh may be a floating point number (default 1.0).
If this command is repeated, the simulation is started from the beginning. If animation is
enabled, the full name of each star will be printed to the standard output when the star fires.
The syntax is:

run
run n

3.6.3 Continuing a simulation

Thecont command continues the simulation foadditional steps, or time units. If
the argument is omitted, the default value of the argument is the value of the last argument
given to arun orcont command (1.0 if no argument was ever given). The syntax is

cont
cont n

3.6.4 Wrapping up a simulation

Thewrapup command calls the wrapup method of the current target (which, as a rule,
will call thewrapup method of each star), signaling the end of the simulation run. The syntax
is

wrapup

3.6.5 Interrupting a simulation
The command
halt

requests a halt of the currently executing simulation. Note that the halt does not occur immedi-
ately. This merely registers the request with the scheduler. This is especially useful within Tcl
stars.

3.6.6 Obtaining the stop time of the current run
The command
stoptime

returns the time until which the current simulation will run. Tcl/Tk stars can use this com-
mand in their setup or go methods to find out the stop time of the current run.

U. C. Berkeley Department of EECS

The Almagest 3-11

3.6.7 Obtaining time information from the scheduler
The command
schedtime

returns the current time from the top-level scheduler of the current universe. If the target has a
parameter named “schedulePeriod”, then the returned time is divided by this value. The com-
mand

schedtime actual
returns the scheduler time without dividing by “schedulePeriod.”

In SDF,schedtime actual should return the number of iterations. In SDF, “sched-
ulePeriod” is usually set to 0, since in SDF has no notion of time, and to a timed domain, such
as DE, SDF universes appear to fire instantaneously.

3.6.8 Animating a simulation

Theanimation command can be used to display on the standard output the name of
each star as it runs. The syntax

animation on
enables animation, while
animation off
disables it. The syntax
animation
simply tells you whether animation is enabled or disabled.

3.7 Undoing what you have done

The commands in this section remove part or all of the structure you have built with
previous commands.

3.7.1 Resetting the interpreter

Thereset command replaces the universain or a named universe by an empty
universe. Anydefgalaxy definitions you have made are still remembered. The syntax is

reset
reset universe_name

3.7.2 Removing a star
Thedelstar command removes the named star from the current galaxy. The syntax
is
delstar name
wherenameis the name of the star.

3.7.3 Removing a connection

Thedisconnect command reverses the effect of a previcarshect or nodecon-
nect command. The syntax is

Ptolemy Last updated: 11/6/97

3-12 ptcl: The Ptolemy Interpreter

disconnect Sstarname portname

wherestarname andportname , taken together, specify one of the two connected portholes.
Note that you can disconnect by specifying either end of a porthole for a point-to-point con-
nection.

3.7.4 Removing a node
Thedelnode command removes a node from the current galaxy. Syntax:
delnode node

3.8 Targets

Ptolemy uses a structure callethegetto control the execution of a simulation, or, in
code generation, to control code generation, compilation, and execution. There is always a tar-
get; by default (if you issue no target commands), your target will have thedegnk-
XXX wherexXXis replaced by the name of the current domain. Alternative targets for simula-
tion can be used to specify different behavior (for example, to use a different scheduler or to
analyze a schematic rather than running a simulation). For code generation, the target contains
information about the target of compilation, and has methods for downloading code and start-
ing execution.

3.8.1 What targets are available?

The command
targets

returns the list of targets available for the current domain. The command
targets domain

returns the list of targets available ttomain

3.8.2 Changing the target
The command
target

displays the target for the current universe or current galaxy, together with its parameters.
Specifying an argument, e.g.

target new-target-name
changes the target tew-target-name

3.8.3 Changing target parameters

Target parameters may be queried or changed wittatipetparam command. The syntax
is

targetparam param-name ? new-value ?

3.8.4 Pragmas

Ptolemy can use target pragmas as a generalization of the attribute mechanism to
inform the target of the user’s wishes. The Dynamic Dataflow (DDF) domain uses pragmas to

U. C. Berkeley Department of EECS

The Almagest 3-13

specify the number of firings of a star required in one iteration. The C Code Generation
(CGC) domain uses pragmas to identify any parameters that the user would like to change on
the command line. See “Setting Parameters Using Command-line Arguments” on page 14-4.

pragma bl b2 name value

Set pragmaameto value for blockb2 in parentbl.
pragmaDefaults target

Print the default values of the pragmas for the target.

3.9 Miscellaneous commands
This section describes the remaining interpreter commands.

3.9.1 Loading commands from a file

For complicated simulations it is best to store your interpreter commands—at least
those defining the simulation connectivity—in a file rather than typing them into the inter-
preter directly. This way you can run your favorite editor in one window and run the inter-
preter from another window, easily modifying the simulation and also keeping a permanent
record. Two exceptions to this are changing stageng thesetstate command and running
and continuing the simulation usingn andcont —this is normally done interactively with
the interpreter.

Thesource command reads interpreter commands from the named file, until the end
of the file or a syntax error occurs. The “#” character indicates that the rest of the line is a
comment. By convention, files meant to be read by the load command end in “.pt”. Example:

source "testfile.pt"

The tilde notation for users’ home directories is allowed; for example, if your installation of
Ptolemy was made by creating a usetemy (see “Setup” on page 2-1), try

source "$PTOLEMY/demol/ptcl/sdf/basic/butterfly.pt"

It is also possible to specify a file to be loaded by the interpreter on the command line. If,
when you start the interpreter you type

ptcl myCommands.pt

the interpreter will load the named file, execute its commands, and then quit. No command
prompt will appear. Theource command is actually built into Tcl itself, but it is described
here nevertheless, for convenience.

3.9.2 Changing the seed of random number generation

Theseed command changes the seed of the random number generation. The default
value is 1. The syntax is

seed n
wheren is an unsigned integer.

Ptolemy Last updated: 11/6/97

3-14 ptcl: The Ptolemy Interpreter

3.9.3 Changing the current directory
Thecd command changes the current directory. For example,

cd "$PTOLEMY/demo/ptcl/sdf/basic”
source "butterfly.pt"

will load the same file as the example in the previous section. Again, we have assumed that
your installation contains a usptolemy (see “Setup” on page 2-1). To see what the inter-
preter’s current directory is, you can type

pwd

3.9.4 Dynamically linking new stars

The interpreter has the ability to extend itself by linking in outside object files; the
object files in question must define single stars (they will have the right format if they are pro-
duced from preprocessor input). Unligigi , the graphical interface, the interpreter will not
automatically run the preprocessor and compiler; it expects to be given object files that have
already been compiled. The syntax is

link object-file-name

Any star object files that are linked in this way must only call routines that are already stati-
cally or permanently linked into the interpreter. For that reason, it is possible that a star that
can be linked intpigi might not be linkable into the interpreter, although this is rare. Specif-
ically, pigi contains Tk, an X window toolkit based on Tcl, wintel does not. Hence, any

star that uses Tk is excluded frqual

Building object files for linking into Ptolemy can be tricky since the command line
arguments to produce the object file depend on the operating system, the compiler and
whether or not shared libraries are usgITOLEMY/mk/userstars.mk includes rules to
build the proper object file for a star. See “Dynamic linking fails” on page A-30. for hints
about fixing incremental linking problems.

It is also possible to link in several object files at once, or pull in functions from librar-
ies by use of thenultilink command. The syntax is

multilink optl opt2 opt3 ...

where the options may be the names of object files, linker options such as “-L” or “I”
switches, etc. These arguments are supplied to the Unix linker along with whatever options
are needed to completely specify the incremental link.

When the above linker commands are used, the linked code has temporary status; sym-
bols for it are not entered into the symbol table (meaning that the code cannot be linked
against by future incremental links), and it can be replaced; for example, an error in the loaded
modules could be corrected and he or multilink command could be repeated. There
is an alternative linking command that specifies that the new code is to be considered “perma-
nent”; it causes a new symbol table to be produced for use in future links (See the ptlang
derivedFrom item in the Ptolemy Programmers Manual for more information). Such code
cannot be replaced, but it can be linked against by future incremental link commands. The
syntax is

permlink optl opt2 opt3 ...
where the options are the same as fonthkilink command.

U. C. Berkeley Department of EECS

The Almagest 3-15

3.9.5 Top-level blocks
The command
topblocks
returns the list of top-level blocks in the current galaxy or universe. With an argument,
topblocks block
it returns the list of top-level blocks in the named block.

3.9.6 Examining states
Thestatevalue command takes the form
statevalue block state

and returns the current value of the stége within the blockblock . The command takes
an optional third argument, which may be eitlvarrent” to specify that the current value
should be returned (the default), mitial” to specify that the initial value (the parameter
value) should be returned.

3.9.7 Giving up
Theexit command exits the interpreter. The syntax is
exit

3.9.8 Getting help

Thehelp command implements a simple help system describing the commands avail-
able and their syntax. It does not provide help with the standard Tcl functions. The syntax is
help topic

or
help ?

for a list of topics. If the argument is omitted, a short "help on help" is printed.

3.9.9 Registering actions

It is possible to associate a Tcl action with the firing of any starrédisterAc-
tion command does this. The syntax is

registerAction pre tcl_command
registerAction post tcl_command

The first argument specifies whether the action should occur before or after the firing of a star.
The second argument is a string giving the first part of a tcl command. Before this command is
invoked, the name of the star that triggered the action will be appended as an argument. For
example:

registerAction pre puts

will result in the name of a star being printed on the standard output before it is fired. A typical
“action” resulting from this command would be

puts universe_name.galaxy_name.star_name

The value returned negisterAction is an “action_handle”, which must be used to can-
cel the action usingancelAction . The syntax is

Ptolemy Last updated: 11/6/97

3-16 ptcl: The Ptolemy Interpreter

set action_handle
cancelAction

[registerAction pre
action_handle

tcl_command |

3.9.10 The Interface to Matlab and Mathematica

Ptcl can control Matlab [Han96] and Mathematica [Wol92] processes by means of the
matlab andmathematica commands. The commands have a similar syntax:
matlab command ?argl? ?arg2?
mathematica command ?argl? ?arg2?

Thematlab command controls the interaction with a shared Matlab process. The pos-
sible commands and arguments are:

command arguments description

end terminate a session with Matlab

eval script evaluate a Matlab script and print the result

get name script evaluate a Matlab script and get the named Matlab matrix gs Tcl
lists of numbers

getpairs name script evaluate a Matlab script and get the named Matlab matrix ps
ordered pairs of numbers

send script evaluate a Matlab script and suppress the output

set name rows cols real imag set the named Matlab matrix with real and imaginary valugs

start start a new Matlab session

status return the status of the Tcl/Matlab connection (0 means con-
nected, -1 means not initialized, and 1 means error)

unset name unset the named Matlab matrix

Themathematica command controls the interaction with a shared Mathematica pro-
cess. The possible commands and arguments are

command arguments description

end terminate a session with Mathematica

eval script evaluate a Mathematica script and print the result

get name script evaluate a Mathematica script and get the named Mathemftica
variable as a Tcl string

send script evaluate a Mathematica script and suppress the output

start start a new Mathematica session

status return the status of the Tcl/Mathematica connection (0 megns
connected, -1 means not initialized, and 1 means error)

To initiate a connection to a Matlab and Mathematica process, use

matlab start
mathematica start

To generate a simple plot of a straight line in Matlab and Mathematica, use

matlab send { plot([0 1 2 3])}
mathematica send { Plot[x, {x, 0, 3}]}

Thesend command suppresses the output normally returned by interacting with the
program using the command interface. Bral command, on the other hand, returns the

U. C. Berkeley Department of EECS

The Almagest 3-17

dialog with the console interface:

mathematica eval { Plot[x, {x, 0, 3}] }
-Graphics-

To terminate the connection, use

matlab end
mathematica end

One can work with matrices as Tcl lists or in Matlab format. To create a new Matlab
matrix x that has two rows and three columns:

matlabsetx23"123456""111111"
We can retrieve this Matlab matrix in the same format:

matlab get x
23{1.02.03.04.05.06.0}{1.01.01.01.01.01.0}

We can also retrieve the matrix elements as a Tcl list of complex numbers in an ordered-pair
format:

matlab getpairs x
(2.0,1.0) (2.0,1.0) (3.0,1.0) (4.0,1.0) (5.0,1.0) (6.0,1.0)

Now, matrices can be manipulated in both Tcl and Matlab.

Javier Contreras contributed the following example that creates a Tcl list, sends it to MAT-
LAB as a 2x2 matrix, calculates the inverse in MATLAB and retrieves it back to Tcl as list

and/or pairs.
ptcl> matlab start
ptcl>setal
1
ptcl>set b 2
2
ptcl>setc 3
3
ptcl>setd 4
4
ptcl> set e [expr "{$a $b $c $d}"]
1234
ptcl> set f [expr "{$a $b $c $d}"]
1234
ptcl> matlab set matrix $b $b $e $f
ptcl> matlab eval {matrix(1,1)}
>>
ans =

1.0000 + 1.0000i

ptcl> set inv_matrix [matlab get inverse {inverse = inv(matrix)}]
22{1.00.50.75-0.25} {1.0 -0.5 -0.75 0.25}

ptcl> set inv_matrix [matlab getpairs inverse {inverse =
inv(matrix)}]

(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)

ptcl> set new $inv_matrix

Ptolemy Last updated: 11/6/97

3-18 ptcl: The Ptolemy Interpreter

(-1.0,1.0) (0.5,-0.5) (0.75,-0.75) (-0.25,0.25)
ptcl> lindex $new 0

(-1.0,1.0)

ptcl> matlab unset matrix

ptcl> matlab eval {matrix(1,1)}

ptcl> matlab end

For other examples of the use of the matlab and mathematica Ptcl commands, see
“Using Matlab and Mathematica to Compute Parameters” on page 2-18. These commands
support the Matlab and Mathematica consoles in Tycho.

3.10 Limitations of the interpreter

There should be many more commands returning information on the simulation, to
permit better exploitation of the full power of the Tcl language.

3.11 A wormhole example

Here is an example of a simulation that contains both an SDF portion and a DE por-
tion. In this example, a Poisson process where particles have value 0.0 is sent into an SDF
wormhole, where Gaussian noise is added to the samples. This demo shows how easy it is to
use the SDF stars to perform computation on DE particles. The overall delay of the SDF
wormhole is zero, so the result is simply Poisson arrivals of Gaussian noise samples.

A Wormhole has armouterdomain and amner domain. The outer domain is deter-
mined by the current domain at the time the user startiefhelaxy command to create the
wormhole. The inner domain is determined bydbmain command that appears inside the
galaxy definition.

reset
create the wormhole
domain DE
defgalaxy wormBody {
domain SDF
star add Add; numports add input 2
star lIDGaussianl [IDGaussian
alias out add output
alias in add "input#1"
connect lIDGaussianl output add "input#2"
}
Creating the main universe.
domain DE
star wormBody1 wormBody
star Poissonl Poisson; star graf XMgraph
numports graf input 2
setstate graf title "Noisy Poisson Process"
setstate graf options "-P -0 original -1 noisy"
node nodel
nodeconnect Poissonl output nodel
nodeconnect wormBody1 in nodel
nodeconnect graf "input#1" nodel

U. C. Berkeley Department of EECS

The Almagest 3-19

connect wormBody1l out graf "input#2"
run 40
wrapup

3.12 Some hints on advanced uses of ptcl with pigi

Although we have not had time to pursue it aggressively in this release, flexible control
of Ptolemy simulations (e.g. executing a simulation many times with different parameter set-
tings) is now possible. This can be done by upialy andpigi together.

Warning: This mechanism is still under development, so please note that what is described in
this section is likely to change.

3.12.1 Ptcl as a simulation control language for pigi

If you startpigi with the-console option, then a console window will appear that
will acceptptcl commands. To experiment with this, open $iMod demo in the SDF
basic demo palette, and execute pigg commandcompile-facet (in the Exec sub-
menu). This command reads the oct facet from disk, and constructs the Ptolemy data struc-
tures to represent it in memory. In your console window, you should see the prompt:

pigi>
Note what happens if you ask for the name of the current universe:

pigi> curuniverse

sinMod

pigi>
By compiling the facet, you have created a universe caifddbd , and made it the current
universe. If you just startqagi , then this is one of only two universes in existence:

pigi> univlist

main sinMod

pigi>
The universemain is the default, empty universe that Ptolemy starts with. To verify the con-
tents of thesinMod universe, use therint command:

pigi> print

GALAXY: sinMod

Descriptor: An interpreted galaxy
Contained blocks: singen2 modulatorl XMgraph.input=11

pigi>

You can execute this universe from the console window:
pigi> run 400
pigi> wrapup

Notice that you will not see any output until you invoke the wrapup command, since the
XMgraph star creates the output plot in its wrapup method.

So far, you have not done anything you could not have done more directlypigsing
However, you can change the value of parametersgtam. To do this, you must first deter-
mine the name of the instance of the star or galaxy with the parameter you want to control.
Place the mouse over thiagen icon in thesinMod galaxy, and issue the pigfiow-name

Ptolemy Last updated: 11/6/97

3-20 ptcl: The Ptolemy Interpreter

(‘n”) command. Most likely, the name will lngen2 , although it could be different on suc-
cessive runs. This is an instance hame generated automatically byNotice that it is the
name shown by the print command above. Also, useditparams (‘e’) command over
thesingen icon to determine thaingen2 has a parameter namgequency with value
P1/100 . Now try the following commands:

pigi> setstate singen2 frequency PI/50
pigi> run 400
pigi> wrapup
Notice that the frequency of the modulating sinusoid is now twice as high as before.

Much more interestingly, you can now construct a series of runs using Tcl as a script-
ing language:
pigi> foreachi{0.250.50.751 1.25 1.5} {
pigi? setstate singen2 frequency $i*PI1/100
pigi? setstate XMgraph.input=11 title \
pigi? "message frequency = [expr 0.01*$i]*PI"

pigi? run 400
pigi? wrapup
pigi? }

pigi>

This will invoke six runs, each with a different frequency parameter fositigen galaxy
singen2 . Theforeach command is a standard Tcl command. Notice that in the third and
fourth lines, we have also set the title parameter ofXtflgraph star. This is advisable
because otherwise it might be very difficult to tell which result corresponded to which run.
Notice that the name of tbeéMgraph instance is XMgraph.input=11 . It is a more compli-
cated name because the icon is specialized to have only a single input port.

Using the full power of the Tcl language, the above mechanism can become extremely
powerful. To use its full power, however, you will most likely want to construct your Tcl
scripts in files. These files can even include the universe definition, as explained below, so you
can create scripts that can be run updegr only, independent dfigi

3.12.2 The pigi log file pigiLog.pt

In eachpigi session, a log file namexdbiLog.pt is generated in the user’s home
directory. Every time an oct facet that represents a Ptolemy galaxy or universe is compiled, for
example when running a simulation, the equivafgat commands building the galaxy or
universe are logged in pigiLog.pt. For example, if you followed the above procedure, opening
the sinMod demo and issuing theompile-facet command, youpigiLog.pt file will
contain something like the following:

reset

domain SDF

defgalaxy singen {
domain SDF
newstate sample_rate FLOAT "2*P|"
newstate frequency FLOAT "P1/50"
newstate phase_in_radians float 0.0
star Rampl Ramp

U. C. Berkeley Department of EECS

The Almagest 3-21

setstate Rampl step "2*PI*frequency/sample_rate"
setstate Rampl value phase_in_radians
star Sinl Sin
connect Rampl output Sinl input
alias out Sinl output
}
defgalaxy modulator {
domain SDF
newstate freq FLOAT 0.062832
star "Mpy.input=21" Mpy
numports "Mpy.input=21" input 2
star singenl singen
setstate singenl sample_rate "2*P|"
setstate singenl frequency freq
setstate singenl phase_in_radians 0.0
alias in "Mpy.input=21" "input#1"
alias out "Mpy.input=21" output
connect singenl out "Mpy.input=21" "input#2"
}
newuniverse sinMod SDF
target default-SDF
targetparam logFile
targetparam loopScheduler NO
targetparam schedulePeriod 10000.0
star singen2 singen
setstate singen2 sample_rate "2*PI"
setstate singen2 frequency "P1/100"
setstate singen2 phase_in_radians 0.0
star modulatorl modulator
setstate modulator freq "0.2*P1"
star "XMgraph.input=11" XMgraph
numports "XMgraph.input=11" input 1
setstate "XMgraph.input=11" title "A modulator demo"
setstate "XMgraph.input=11" saveFile ""
setstate "XMgraph.input=11" options "=800x400+0+0 -0 x"
setstate "XMgraph.input=11" ignore 0
setstate "XMgraph.input=11" xUnits 1.0
setstate "XMgraph.input=11" xInit 0.0
connect singen2 out modulatorl in
connect modulatorl out "XMgraph.input=11" "input#1"

This is aptcl definition of a universe that is equivalent to the oct facet. In normal usage, you
may need to edit this file considerably to extract the portions you need, because all the galax-
ies and universes compiled irpigi session are logged in the same log file. Also, as of this
writing, the file does not necessarily get flushed after your compile-facet command completes,
so the last few lines may not appear until more lines are written to the file, or ypigiexit

Note thatpigi compiles the sub-galaxies recursively before compiling the top-level
universe. Therefore, thgcl definitions are generated and logged in this recursive order. For

Ptolemy Last updated: 11/6/97

3-22 ptcl: The Ptolemy Interpreter

instance, in the pigiLog.pt shown abowg;l definitions of thesingen andmodulator
galaxies appear before that of tsieMod universe. Also, if a galaxy has been compiled
before, and thus is on the knownlist, ptsl definition will not be generated and logged
again when it is used in another universe.

One use of thetcl definitions obtained from pigiLog.pt is to submit bug reports. It is
the best way to describe in ASCII text the Ptolemy universe that causes problems.

3.12.3 Using pigiLog.pt to build scripts

If you restartpigi , run thesinMod demo in the SDF basic demo palette once, then
quit pigi , then yourmigiLog.pt file will be as above. Make a copy mfjiLog.pt and
name it, saysinMod.pl

To run this simulation with different message waveform frequencies, you may do the
following in ptcl , analogous to the above commandgidgn :

build the sinMod universe
source sinMod.pl
foreachi{0.250.50.751 1.25 1.5} {
set parameter values
setstate singen2 frequency $i*P1/100
setstate XMgraph.input=11 title \
"message frequency = [expr 0.01*$i]*PI"
execute it
run 400
wrapup
}
The combination optcl andpigi is very powerful. The above are just some hints on how
they can be used together.

3.12.4 oct2ptcl

Kennard White’s programct2ptcl can be used to convert Ptolemy facets to ptcl
code.Oct2ptcl is not part of the default distribution, and it is not built automatically. You
can find theoct2ptcl sources in the other.src tar filepitolemy/src/octtools/tkoct/
oct2ptcl . oct2ptcl is not formally part of Ptolemy, but some developers may find it use-
ful.

U. C. Berkeley Department of EECS

Chapter 4. Introduction to Domains,
Targets, and Foreign Tool Interfaces

Authors: Joseph T. Buck
Brian L. Evans
Soonhoi Ha
Asawaree Kalavade
Edward A. Lee
Thomas M. Parks

Michael C. Williamson

Other Contributors: The entire Ptolemy team

4.1 Introduction

The Ptolemy software architecture is described in Chapter 1 and shown in Figure 1-2.
The Ptolemy kernel provides a basic set of C++ classes and functions used by the rest of
Ptolemy, but it does not implement any particular model of computation. Instead, a model of
computation is defined by a domain. A domain defines the semantics of the model, but not
how the computations are performed. The computations can be performed using one or more
implementation languages, such as C++, C, MATLAB, and VHDL. A target coordinates the
scheduling and implementation of algorithms described in a particular domain. As part of the
coordination, a target may provide an interface to software (compiler, assembler, simulator,
etc.) or hardware. A typical domain supports many different types of schedulers and many dif-
ferent implementation technologies, which is possible by having many different targets. Over
twenty domains have been developed for Ptolemy, and 14 are released in Ptolemy 0.7; of
these, nine support multiple targets.

In Ptolemy, a complex system is specified as a hierarchical composition (nested tree
structure) of simpler subsystems. Each subsystem is modeled by a domain. A subsystem (also
called a galaxy) can internally use a different domain than that of its parent or children. In
mixing domains, the key is to ensure that at the interface, the child galaxy obeys the semantics
of the parent domain. This interface is called a wormhole. Ptolemy does not yet make the
wormhole mechanism foolproof. Any domain can be used at the top level.

As shown in Figure 1-2, Ptolemy consists of dataflow, discrete-event, and control-ori-
ented families of domains. The Synchronous Dataflow (SDF) and Discrete-Event (DE)
domains are the most mature. In terms of semantics, the Discrete-Event domains are the fur-
thest from the dataflow domains in the 0.7 distribution. Other domains with semantics very
different from dataflow, are the Finite State Machine (FSM) and Synchronous/Reactive (SR)
domains.

Domains perform either simulation or code generation. Simulation domains are inter-

4-2 Introduction to Domains, Targets, and Foreign Tool

preters that run an executable specification of a system on the local workstation. Code genera-
tion domains translate the specification into some language such as C or VHDL and then

optionally manage the execution of that generated code. In 0.6 and later, code generation
domains can be mixed with each other and with simulation domains. Thanks to José Pino for

developing hierarchical scheduling to support this capability.

The model of computation is tisemanticof the network of blocks. It defines what is
meant by an interconnection of blocks, and how the interconnection will behave when exe-
cuted. The domain determines the model of computation, but in the case of code generation
domains, it also determines the target language. So for example, the CGC (Code Generation in
C), C50 (Code Generation for the Texas Instruments TMS320C50) and the CG56 (Code Gen-
eration for the Motorola DSP56000) domains all use the synchronous dataflow model of com-
putation (the same as the SDF domain). The CGC domain also supports features of the
Boolean dataflow (BDF) domain, which supports a measure of run-time scheduling in a very
efficient way.

Simulation domains can be either timed or untimed. Untimed domains carry no notion
of time in their semantic model. Instead of chronology, they deal only with the order of parti-
cles or actions. Timed domains have a notiosimiulated timewhere each particle or action
is modeled as occurring at some particular point in this simulated time. Particles and actions
are processed chronologically. Timed and untimed domains can be mixed. From the perspec-
tive of a timed domain, actions in an untimed domain will appear to be instantaneous. More-
over, timed domains can exist at several levels of the hierarchy, or in parallel at a given level of
the hierarchy, separated by untimed domains, and their chronologies will be synchronized.
That is, the notion of simulated time in Ptolemy is a global notion. When particles and actions
are processed chronologically in each timed domain that is present, then they will be pro-
cessed chronologically globally.

In this chapter, we also introduce fharget class. The basic role of this class is in
managing design flow. In a simulation domain, the target selects the scheduler to use (there
can be several schedulers in a single domain) and starts and stops a simulation. In a code gen-
eration domain, the target also selects the scheduler, but then also generates the code, com-
piles it, and runs it on a suitable platform. Targets can be defined hierarchically; for example,

a multiprocessor target may consist of several, possibly heterogeneous execution platforms,
each specified itself as a target. In this example, the top level target might handle the partition-
ing and interprocessor communication, and the lower level targets might handle the code gen-
eration, compilation, and execution. Targets play a much bigger role in code generation

domains than in simulation domains.

Ptolemy users often prematurely set out to make a new domain. While it is the intent
of Ptolemy to support such experimentation, this task should be undertaken with some trepi-
dation. Although any software engineer can create a domain that will work, defining a useful
and correct model of computation is a much harder task. It is very easy, for example, to define
a non-determinate model of computation. This means that the behavior of an application will
depend on implementation details in the scheduler that are not explicitly known to the user. As
a consequence, a user make a small, seemingly innocuous change in an application, and unex-
pectedly get radically different behavior. At Berkeley, many more domains have been built
than are currently distributed. Sometimes, domains have been discarded because of unex-
pected subtleties in the model of computation. In other cases, domains have been built on top

U. C. Berkeley Department of EECS

The Almagest 4-3

of third-party software or hardware that has become obsolete.

A prerequisite for creating any new domain is understanding the existing domains in
Ptolemy. Frequently, one of these domains will meet your needs with simpler extensions, like
a new target or a family of stars. If, for example, you are unhappy with the performance of a
scheduler, it may make more sense to define a new scheduler (and a target to support it) within
an existing domain, rather than creating a new domain.

This chapter gives a brief introduction to the simulation and code generation domains
released in Ptolemy 0.7. It also highlights the domains that were present in earlier versions of
Ptolemy but are no longer released. This chapter ends with an overview of the interfaces to
foreign tools, such as simulators, interpreters, and compilers.

4.2 Synchronous dataflow (SDF)

The SDF domain in Ptolemy is the oldest, most mature domain. Much of its basic
capability was ported from Gabriel, the predecessor system [Bie90][Lee89], although it has
been extended considerably. SDF is a special case of the dataflow model of computation
developed by Dennis [Den75]. The specialization of the model of computation is to those
dataflow graphs where the flow of control is completely predictable at compile time. It is a
good match for synchronous signal processing systems, those with sample rates that are ratio-
nal multiples of one another.

The SDF domain is suitable for fixed and adaptive digital filtering, in the time or fre-
guency domains. It naturally supports multirate applications, and its rich star library includes
polyphase real and complex FIR filters. Applications with examples in the demo library
include speech coding, sample-rate conversion, analysis-synthesis filter banks, modems,
phase-locked loops, channel simulation, linear prediction, chaos, filter design, Kalman filter-
ing, phased array beamforming, spectral estimation, sound synthesis, image processing, and
video coding. The SDF domain has been used for a number of years at Berkeley for instruc-
tion in signal processing, at both the graduate and undergraduate level. The exercises that are
assigned to the students are included in the SDF chapter.

4.3 Higher-Order Functions (HOF)

A function ishigher-orderif it takes a function as an argument and/or returns a func-
tion. A classic example imapcarin Lisp, which takes two arguments, a function and a list. Its
behavior is to apply the function to each element of the list and to return a list of the results.
The HOF domain implements a similar function, in the form of a star cslidgdthat can
apply any other star (or galaxy) to the sequence(s) at its inputs. Many other useful higher-
order functions are also provided by this domain.

The HOF domain provides a collection of stars designed to be usable in all other
Ptolemy domains. It is intended to be included as a subdomain by all other domains.

4.4 Dynamic dataflow (DDF)

The predictable control flow of SDF allows for efficient scheduling, but limits the
range of applications. In particular, data-dependent flow of control is only allowed within the
confines of a star. To support broader applications, the DDF domain uses dynamic (run-time)

Ptolemy Last updated: 6/18/97

4-4 Introduction to Domains, Targets, and Foreign Tool

scheduling. For long runs, involving many iterations, this is more expensive than the static

scheduling that is possible with SDF. But in exchange for this additional cost, we get a model

of computation that is as versatile as that of conventional programming languages. It supports
conditionals, data-dependent iteration, and true recursion.

Although the DDF domain is, in principle, a fully general programming environment,

it is nonetheless better suited to some applications than others. We have found that signal pro-
cessing applications with a limited amount of run-time control are a good match. Examples
include systems with multiple modes of operation, such as modems (which have start-up
sequences and often implement multiple standards), signal coding algorithms (which often
offer a range of compression schemes), and asynchronous signal processing applications, such
as timing recovery and arbitrary sample-rate conversion. The demos provided with the domain
show how to realize conditionals, iteration, and recursion.

The SDF domain is a subdomain of DDF, which means that SDF stars can be used in
DDF systems. For greater efficiency on long runs, the two domains can also be mixed using
the Ptolemy hierarchy. A galaxy within a DDF system can be SDF, meaning that it will use an
SDF scheduler. Conversely, a galaxy within an SDF system can be DDF.

4.5 Boolean dataflow (BDF)

Boolean dataflow was developed by Joe Buck as part of his Ph.D. thesis research
[Buc93c]. Like DDF, it supports run-time flow of control. Unlike DDF, it attempts to construct
a compile-time schedule. Thus it achieves the efficiency of SDF with the generality of DDF. It
currently supports a somewhat more limited range of stars than DDF, and does not support
recursion, but the model of computation is, in principle, equally general. Its applications are
the same as those of DDF.

The basic mechanism used in BDF is to construeinamotated scheduley which we
mean a static schedule where each firing in the schedule is annotated with the Boolean condi-
tions under which it occurs. Thus, any sequence of firings can depend on a sequence of Bool-
ean values computed during the execution. Executing the annotated schedule involves much
less overhead than executing a dynamic dataflow schedule.

4.6 Process Network (PN)

The process network domain, created by Thomas M. Parks and documented in his
Ph.D. thesis [Par95], implements Kahn process networks, a generalization of dataflow where
processes replace actors. It has some of the flavor of the recently removed CP domain, in that
it implements concurrent processes, but unlike the CP domain, it is determinate and has no
model of time. The PN domain is implemented using POSIX threads. In principle, PN sys-
tems can run in parallel on multiprocessor workstations with appropriate OS support for
threads.

The SDF, BDF and DDF domains are subdomains of PN, which means that these stars
can be used directly in PN systems. When stars from these domains are used in a PN system,
each dataflow actor becomes a dataflow process [Lee95]. For greater efficiency, dataflow
domains can be mixed with PN using the Ptolemy hierarchy. A galaxy within a PN system can
be SDF, BDF, or DDF, using a scheduler appropriate for that domain. The galaxy as a whole
becomes a single process in the PN system.

U. C. Berkeley Department of EECS

The Almagest 4-5

4.7 Synchronous Reactive (SR)

The Synchronous Reactive domain, created by Stephen Edwards and documented in
his Ph.D. thesis [Edw97], is a new and very experimental domain. The Synchronous Reactive
domain is a statically-scheduled simulation domain in Ptolemy designed for concurrent, con-
trol-dominated systems. To allow precise control over timing, it adopts the synchronous
model of time, which is logically equivalent to assuming that computation is instantaneous

SR is similar to existing Ptolemy domains, but differs from them in important ways.
Like Synchronous Dataflow (SDF), it is statically scheduled and deterministic, but it does not
have buffered communication or multi-rate behavior. SR is better for control-dominated sys-
tems that need control over when things happen relative to each other; SDF is better for data-
dominated systems, especially those with multi-rate behavior.

SR also resembles the Discrete Event (DE) domain. Like DE, its communication chan-
nels transmit events, but unlike DE, it is deterministic, statically scheduled, and allows zero-
delay feedback loops. DE is better foodelingthe behavior of systems (i.e., to better under-
stand their behavior), whereas SR is bettespacifyinga system’s behavior (i.e., as a way to
actually build it).

4.8 Finite State Machine (FSM)

The Finite State Machine domain, created by Bilung Lee, is a new and very experi-
mental domain. The finite state machine (FSM) has been one of the most popular models for
describing control-oriented systems, e.g., real-time process controllers. The FSM domain uses
Tycho graphical user interface for the specification of FSM blocks. Currently FSM can inter-
operate with SDF and DE domains.

4.9 Discrete Event (DE)

The DE domain is a relatively mature domain using an event-driven model of compu-
tation. In this domain, particles carry time stamps, and represent events that occur at arbitrary
points in simulated time. Events are processed in chronological order. Two schedulers are
available. The default scheduler is based on the “calendar queue” mechanism developed by
Randy Brown and was written by Anindo Banerjea and Ed Knightly. Since this scheduler is
relatively new, the older and simpler but less efficient scheduler is also provided.

DE schedulers maintain an event queue, which is a list of events sorted chronologi-
cally by time stamp. The scheduler selects the next event on the list, and determines which star
should be fired to process the event. The difference between the efficient calendar queue
scheduler and the naive simple scheduler is in the efficiency with which this queue is updated
and accessed. Considerable effort was put into consistent and predictable handling of simulta-
neous events.

The DE domain is suitable for high-level modeling of communications networks,
gueueing systems, hardware systems, and transportation networks. The demos included with
the domain include a variety of queueing systems, shared resource management, communica-
tion network protocols, packet-switched networks, wireless networks, and multimedia sys-
tems. The latter class of applications take advantage of the ability that Ptolemy has to mix
domains by modeling speech and video encoding algorithms using the SDF domain and a

Ptolemy Last updated: 6/18/97

4-6 Introduction to Domains, Targets, and Foreign Tool

packet switched network using the DE domain. There are also some more specialized uses of
the DE domain, such as modeling shot noise and synchronizing a simulation to a real-time
clock.

4.10 Multidimensional Synchronous Dataflow (MDSDF)

The MDSDF domain was developed by Mike Chen and is still very experimental. This
domain is an extension of the Synchronous Dataflow model to multidimensional streams and
is based on the work of Edward Lee [Lee93b]. MDSDF provides the ability to express a
greater variety of dataflow schedules in a graphically compact way. It also allows nested reset-
table loops and delays. Additionally, MDSDF has the potential for revealing data parallelism
in algorithms. The current implementation of the MDSDF domain only allows two dimen-
sional streams, although we hope that many of the ideas used in the development of the
domain can be generalized to higher dimensions.

For a full discussion of the MDSDF domain in Ptolemy, see [Che94].

4.11 Code generation (CG)

The CG domain is the base from which all other code generation domains (such as

CGC and CG56) are derived. This domain supports a general dataflow model equivalent to the
BDF and SDF models. The stars in this domain do little more than generate comments when
fired, but they can serve to demonstrate and test the features of scheduling algorithms. In this
domain, you can build test systems, view the generated code (comments) for multiple proces-
sors, and display a Gantt chart for parallel schedules. In derived domains, real code is gener-
ated, compiled, downloaded and executed, all under control of the selected target. In Ptolemy
0.7, one serious weakness of the code generation domains is that they only support scalar data
types (complex, floating-point, integer, and fixed-point) on the input and output ports.

4.12 Code generation in C (CGC)

The CGC domain uses Boolean-controlled dataflow semantics, adasass target
language. We have made every effort to name stars and their parameters consistently so that it
is easy to move from one domain to another. With a little effort, one could create CGC ver-
sions of all SDF stars. If this were accomplished, then retargeting from one domain to another
would be a simple matter of changing domains and targets and running the system again.

The generated code is statically scheduled, and the memory used to buffer data
between stars is statically allocated. Moreover, for many of the stars, the code that is generated
depends on the values of the parameters. One way to think of this is that the parameters of the
star are evaluated at code generation time, so no run-time overhead is incurred from the added
flexibility of parameterizing the star.

There are several targets to choose from in the CGC domairbdH¥&SC target
supports the boolean-controlled dataflow model of computation. It must be used whenever
stars with BDF semantics are present in a program grapldefdgt-CGC target supports
the SDF model of computation, so it can be used when the program graph contains only stars
with SDF semantics. TheclTk_Target target also supports SDF, and must be used when-
ever Tcl/Tk stars are present in the program graph.uhbxulti C target supports SDF
and partitions the program graph for execution on multiple workstations on a network.

U. C. Berkeley Department of EECS

The Almagest 4-7

4.13 Code generation for the Motorola DSP56000 (CG56)

This domain synthesizes assembly code for the Motorola DSP56000 family. The code
generation techniques that are used are described in [Pin93]. They are derived from techniques
used in Gabriel [Bie90]. We have used this domain to generate real-time implementations of
various modem standards, touchtone generators, and touchtone decoders [Eva96], on an Ariel
S-56X 560001 board.

4.14 Code generation in VHDL (VHDL, VHDLB)

This pair of domains is for generating code in VHDL (VHSIC Hardware Description
Language). The VHDL domain supports functional models using the SDF model of computa-
tion, while VHDLB supports behavioral models using the native VHDL discrete event model
of computation. Since the VHDL domain is based on the SDF model, it is independent of any
notion of time. The VHDLB domain supports time delays and time-dependent behavior of
blocks. The VHDL domain is intended for modeling systems at the functional block level, as
in DSP functions for filtering and transforms, or in digital logic functions, independent of
implementation issues. The VHDLB domain is intended for modeling the behavior of compo-
nents and their interactions in system designs at all levels of abstraction.

Within the VHDL domain there are a number of differéatget s to choose from.
The default targetgdefault-VHDL , generates sequential VHDL code in a single process
within a single entity, following the execution order from the SDF scheduler. This code is suit-
able for efficient simulation, since it does not generate events on signaBimM&S-VHDL
target is derived frordefault-VHDL and it provides facilities for simulation using the Syn-
opsys VSS VHDL simulator. Communication actors and facilities irsiin®SS-VHDL target
support code synthesis and co-simulation of heterogeneous CG systems ur@enghe
leCGSubsystems target developed by José Luis Pino. There is alStin#T-VHDL target
for use with the Model Technology VHDL simulator. Teeuct-VHDL target generates
VHDL code where individual actor firings are encapsulated in separate entities connected by
VHDL signals. This target generates code which is intended for circuit synthesiynthe
VHDLtarget, derived fromtruct-VHDL , provides facilities for synthesizing circuit represen-
tations from the structural code using the Synopsys Design Analyzer toolset. Because the
VHDL domain uses SDF semantics, it supports retargeting from other domains with SDF
semantics (SDF, CGC, etc.) provided that the stars in the original graph are available in the
VHDL domain. As this experimental domain evolves, more options for VHDL code genera-
tion from dataflow graphs will be provided. These options will include varying degrees of user
control and automation depending on the target and the optimization goals of the code genera-
tion, particularly in VHDL circuit synthesis.

Unlike the VHDL domain, the older and less-developed VHDLB domain is much sim-
pler in its operation. When a universe in the VHDLB domain is run, the graph is traversed and
a codefile is generated in a pop-up window and in a subdirectory which reflects the topology
and hierarchy of the graph. The generated VHDL code will reference VHDL entities which
are expected to be included in other files. There is a VHDL codefile $PT@LEMY/src/
domains/vhdlb/lib directory for each VHDL star in the main star palettes of the
$PTOLEMY/src/domains/vhdlb/icons directory. Adding a new star is a matter of writ-
ing VHDL code for the entity and adding a star file in the stars subdirectory of the VHDLB

Ptolemy Last updated: 6/18/97

4-8 Introduction to Domains, Targets, and Foreign Tool

domain which reflects the inputs, outputs, and parameters of that star. The existing stars
should serve as examples for how new stars can be written.

Table 4-1 below summarizes the various domains

Domain Description

¢ Oldest and most mature domain; it is a sub-domain of
DDF, BDF, and PN.

* Special case of data flow model of computation
developed by Dennis.

* Flow is completely predictable at compile time thus
allows for efficient scheduling.

Synchronous Data Flow (SDF) « Allows for static scheduling.

* Good match for synchronous signal processing systems
with sample rates that are rational multiples of one
another.

e Supports multi-rate applications and has a rich star
library.

< Range of applications is limited.

* Versatile model of computation as it supports
conditionals, data-dependent iteration, and true
recursion.

e More general than SDF.

e Uses dynamic (run-time) scheduling which is more
expensive than static scheduling.

* Good match for signal processing applications with a
limited amount of run-time control.

Dynamic Data Flow (DDF)

* Relatively new domain which supports run-time flow of
control.

e Attempts to construct a compile-time schedule to try
Boolean Data Flow (BDF) and achieve efficiency of SDF with generality of DDF.
* More limited than DDF.

* Constructs an annotated schedule: execution of a task is
annotated with a boolean condition.

e Very new to Ptolemy and still experimental.

Realizes data flow control by integer control data and
port statuses. It is an extension to BDF.

e Scheduling is static and conditional like BDF.
* |t has user-defined evaluation functions.

Integer and State Controlled Data Flow :
(STDF)

« Relatively mature domain which uses an event-driven
model of computation.

Discrete Event (DE) < Particles carry time-stamps which represent events that
occur at arbitrary points in simulated time.

» Events are processed in chronological order.

e Very new to Ptolemy and still experimental.

e Good match for control-oriented systems like real-time
Finite State Machine (FSM) process controllers.

e Uses a directed node-and-arc graph called a state
transition diagram (STD) to describe the FSM.

U. C. Berkeley Department of EECS

The Almagest

4-9

Domain

Description

Higher Order Functions (HOF)

Implements behavior of functions that may take a
function as an argument and return a function.

HOF collection of stars may be used in all other
domains.

Intended to be included only as a sub-domain by other
domains.

Process Network (PN)

Relatively new domain that implements Kahn process
networks which is a generalization of data flow —
processes replace actors.

Implements concurrent processes but without a model
of time.

Uses POSIX threads.
SDF, BDF, and DDF are sub-domains of PN.

Multidimensional Synchronous Data
Flow (MDSDF)

Relatively new and experimental.
Extends SDF to multidimensional streams.

Provides ability to express a greater variety of dataflow
schedules in a graphically compact way.

Currently only implements a two-dimensional stream.

Synchronous/Reactive (SR)

Very new to Ptolemy and still experimental.

Implements model of computation based on model of
time used in Esterel.

Good match for specifying discrete reactive controllers.

Code Generation (CG)

Base domain from which all code generation domains
are derived.

Supports a dataflow model that is equivalent to BDF
and SDF semantics.

This domain only generates comments, allows viewing
of the generated comments, and displays a Gantt Chart
for parallel schedules.

Can only support scalar data types on the input and
output ports.

All derived domains obey SDF semantics.
Useful for testing and debugging schedulers.

Targets include bdf-CGC which supports BDF, default-
CGC which supports SDF semantics, TclTk_Target
which supports SDF and must be used when Tcl/Tk
stars are present, and unixMulti_C which supports SDF
semantics and partitions the graph for multiple
workstations on a network.

Code Generation in C (CGC)

Uses data flow semantics and generates C code.

Generated C code is statically scheduled and memory
used to buffer data between stars is statically allocated.

Code Generation for the Motorola DSP
56000 (CG56)

Synthesizes assembly code for the Motorola DSP56000
family.

Ptolemy

Last updated: 6/18/97

4-10 Introduction to Domains, Targets, and Foreign Tool

Domain Description

* Relatively new and experimental
e Generates VHDL code.

¢ VHDL domain supports SDF semantics whereas
o VHDLB supports behavioral models using native
Code Generation in VHDL (VHDL, VHDL discrete event model of computation.

VHDLB) e Many targets to choose from.

e VHDL domain is good for modeling systems at
functional block level whereas VHDLB is good for
modeling behavior of components and their
interactions at all levels of abstraction.

TABLE 4-1: Summary of the various Ptolemy domains.

U. C. Berkeley Department of EECS

The Almagest 4-11

The table below summarizes the various schedulers

Scheduler Name Features

e Performed at compile time.

e Many possible schedules but schedule is chosen based on a
heuristic that minimizes resource costs and amount of buffering
required.

* No looping employed so if there are large sample rate changes,
size of generated code is large.

Default SDF Scheduler

* Performed at compile time.

e Sample rates are merged wherever deadlock does not occur.
Joe’s Scheduler e Loops introduced to match the sample rates.

¢ Results in hierarchical clustering.

e Heuristic solution so some looping possibilities are undetected.

* Performed at compile time.

SJS (Shuvra-Joe-Soonhoi) « Uses Joe’s Scheduler at front end and then uses an algorithm on
Scheduler the remaining graph to find the maximum amount of looping
available.

* Performed at compile time.

< Constructs a single appearance schedule that minimizes amount
of buffering required.

* Only intended for acyclic dataflow graphs.

Acyclic Loop Scheduler

TABLE 4-2: Summary of Uniprocessor schedulers

Ptolemy Last updated: 6/18/97

4-12 Introduction to Domains, Targets, and Foreign Tool

Table 4-3 below summarizes the multiprocessor schedulers.

Scheduler Name Features

e Performed at compile time.
¢ Most widely used.

Hu's Level-based List Scheduler® Tasks assigned priorities and placed in a list in order of
decreasing priority.
« Ignores communication costs when assigning functional blocks
to processors.

« Performed at compile-time.
¢ Assumes that communication and computation can be
Sih’s Dynamic Level Scheduler overlapped.
« Accounts for interprocessor communication overheads and
interconnection topology.

« Performed at compile-time.

* Addresses trade-off between exploiting parallelism and
interprocessor communication overheads.

Analyzes a schedule and finds the most promising placements of
APEG nodes.

* Not single pass but takes an iterative approach.

Sih’s Declustering Scheduler

« Performed at compile time.
e Partially expands the APEG.

e Can use any of the above parallel schedulers as a top-level
Pino’s Hierarchical Scheduler scheduler.

e Supports user-specified clustering.

* Realizes multiple orders of magnitude speedup in scheduling
time and reduction in memory usage.

TABLE 4-3: Summary of multiprocessor schedulers.

4.15 Domains that have been removed

This section highlights the experimental domains that were removed from the Ptolemy
distribution. If any users are interested in resurrecting these domains, then please send e-mail
to ptolemy@ptolemy.eecs.berkeley.edu

4.15.1 Circuit simulation (Thor)

Like DE, the Thor domain was event-driven. However, it was specialized to register-
transfer level simulation of digital circuits. It was based on the Thor simulator developed at
Stanford, which in turn was based on a simulation kernel developed at the University of Colo-
rado. The domain was written by Suengjun Lee. Its capabilities were similar to a variety of
commercial circuit simulators. The Thor domain was based on very old circuit simulation
technology. Contemporary equivalents include VHDL and Verilog simulators. The VHDL
domains thus replace Thor, at least in part, although currently the star library is not as rich.

U. C. Berkeley Department of EECS

The Almagest 4-13

4.15.2 Communicating processes (CP)

The CP domain, developed by Suengjun Lee and based on thread classes developed by
Thomas M. Parks, modeled multiple simultaneous processes with independent flow of con-
trol. It was based on the Sun lightweight process library. Because of this dependence on pro-
prietary code, it was only available on Sun workstations. CP was a timed domain. Processes
communicated by exchanging particles with time stamps. The particles are processed in chro-
nological order, in that the process with the oldest time stamps at its inputs is activated. From
the perspective of the star writer, the star is always running, presumably in an infinite loop,
responding to input events and producing output events. Because of this model, the domain
was well suited to high-level modeling of distributed systems. Each component in the system
would be represented as a program that appears to run as an autonomous agent, concurrently
with other components of the system.

The CP domain is probably the most useful of the domains that have been removed.
The problem is that it is based on the Sun lightweight process library, which Sun Microsys-
tems is no longer supporting. The Lightweight Processes library does not run on recent
releases of the Solaris operating systems. We took a stab at porting the domain to use Posix
threads, the modern replacement, but this task overwhelmed the resources we had available.
We would be very interested in volunteers interested in pursuing this.

4.15.3 Message queueing (MQ)

The MQ domain was based on an object-oriented approach for software development
developed by E. C. Arnold and D. W. Brown at AT&T Bell Laboratories. The run-time envi-
ronment viewed components as addressable objects capable of receiving messages, sending
messages, and maintaining an individual state managed solely by the component’s methods.
Each message contained sufficient information for its destination object to perform appropri-
ate updating of internal data structures and to produce other messages.

By applying this model in Ptolemy, stars would pass message particles to one another.
Connections between pairs of stars are bidirectional so that client-server relationships can be
established over these links. From the name of this domain, it can be understood that mes-
sages sent from a particular star to another were always processed in sequence. However, the
execution order of stars in the system is arbitrary, and a star, when fired, steps through its port-
holes in an arbitrary fashion as well, processing the first incoming message arriving at each
port, should one exist.

The MQ domain was well-suited to the development of call-processing software. Its
use in the modeling of system control was illustrated in a sophisticated cell-relay network
simulation. This large-scale, heterogeneous demo used the SDF domain to specify space-divi-
sion packet switching fabrics, the DE domain to model “timed” network subsystems, and the
MQ domain to describe a centralized network controller.

Although it introduced a number of interesting features, this domain did not find wide
usage, so it has been removed.

4.15.4 Code generation for the Sproc multiprocessor DSP (Sproc)

The Sproc multiprocessor DSP used to be made by Star Semiconductor [Mur93], how-
ever, neither the processor nor the company now exist, so this domain has been removed.

Ptolemy Last updated: 6/18/97

4-14 Introduction to Domains, Targets, and Foreign Tool

4.15.5 Code generation for the Motorola DSP96000 (CG96)

This domain is similar to CG56, except that the synthesized language is assembly code
for the Motorola DSP96000 (floating-point) family. This processor is no longer being devel-
oped or improved by Motorola, so we have removed this domain.

4.15.6 Code generation in Silage (Silage)

This was a code generation domain for the Silage language. Silage is an applicative
functional textual language that was developed to describe fixed-point digital signal process-
ing (DSP) algorithms, which are well-suited for hardware implementation. Silage descriptions
serve as the input specification for some high-level synthesis tools (e.g. Hyper from U.C. Ber-
keley, Cathedral from IMEC, and the DSP Station from Mentor Graphics). Asawaree Kala-
vade used the Ptolemy interface to Hyper to estimate costs of hardware implementations in
hardware/software codesign experiments [Kal93,Kal94,Kal96]. Berkeley, however, is moving
away from Silage, and there appears to be little future for it, so we have removed this domain.

4.15.7 Functional Code Generation in VHDL (VHDLF)

The VHDLF domain was originally intended to contrast with the VHDLB domain. It
supported structural code generation using VHDL blocks with no execution delay or timing
behavior, just functionality. The semantics for the VHDLF domain were not strictly defined,
and the scheduling depended on how the underlying VHDL code blocks associated with each
VHDLF star were written. The VHDLF domain has been replaced by the VHDL domain. The
VHDL domain is not meant to be used in the same way as the VHDLF domain, however. The
VHDL domain is for generating code from functional block diagrams with SDF semantics.

U. C. Berkeley Department of EECS

The Almagest 4-15

4.16 Interfaces to Foreign Tools

The Ptolemy design environment is a collection of dozens of collaborating tools with
interfaces to dozens of others, as shown in Figure 4-4. Within Ptolemy there are many differ-
ent domains, schedulers, and targets, each of which is a tool in its own right. Those tools are
derived from a common framework provided by the Ptolemy kernel. Other tools, such as an
expression evaluator for parameter expressions and filter design programs, are also embedded.

Not every Ptolemy interface is listed in Figure 4-4. We have written several targets and
domains that we have not released to the public. For example, we are developing a CGC target
for the UltraSparc Visual Instruction Set. We have developed but never released code genera-
tion domains for the AT&T DSP 3 multiprocessor system and the Philips Video Signal Pro-
cessor system [Shi94]. We have eliminated several domains, as listed in Section 4.15, such as
a code generation for the Sproc multiprocessor DSP system [Mur93].

This rest of this section focuses on Ptolemy interfaces to foreign tools that are not
included in the Ptolemy release. These foreign tools are standalone programs, such as compil-
ers, assemblers, interpreters, and simulators.

4.16.1 Specification and Layout

Defining systems, subsystems, blocks, and connections can be expressed graphically
using pigi (see Chapter 2) and textually using ptcl (see Chapter 3). Graphical descriptions can
be converted to textual specifications. The two interfaces can work together. By running pigi
with the -console option, one can evaluate ptcl commands in the pigi console. The pigi run-

Rdeasa with Ptdemy System Design Not Reease with Ptdemy
oct/vem Specification and Layout Emacs, vi, xedit
higher-order functions
ptcl
Tycho
expression evaluator Parameter Calculation MATLAB
Tcl Mathematica
simulation domains Algorithm Prototyping MATLAB
filter designer Utah Raster Toolkit

Esterel
Tcl/Tk, Itcl/Tk Display and Visualization = MATLAB
pxgraph, xv soundtool, audiotool
simulation domains Simulation sim56000, sim96000
multirate schedulers Synopsys VSS
run-time schedulers Model Technology VSIM
wormholes IPUS, ArrayOL domains
code generation domains Synthesis asm56000, Ariel S-56X card
gcc, g++, gmake commercial C/C++ compilers
parallel schedulers Synopsys Design Analyzer

hierarchical scheduler

TABLE 4-4; Ptolemy interfaces to various tools.

Ptolemy Last updated: 6/18/97

4-16 Introduction to Domains, Targets, and Foreign Tool

control panel allows control of runs by ptcl scripts. Blocks exists that execute ptcl scripts.

Schematic entry is implemented by vem, and schematics are databased in oct. Scalable
systems can be specified graphically using higher-order functions. Tycho provides a language-
sensitive editor and an evolving framework for future graphical user interfaces.

4.16.2 Parameter Calculation

Parameter calculation maps system parameters into parameters in the subsystems,
blocks, and connections. The calculation is controlled by an expression evaluator, which sup-
ports calls to ptcl. Because ptcl has interfaces to MATLAB and Mathematica, MATLAB and
Mathematica expressions can be embedded in parameter specifications.

4.16.3 Algorithm Prototyping and Visualization

A designer can develop domain-specific algorithms in Ptolemy, such as for speech
coding. For filter design, one can use MATLAB or Ptolemy’s filter design programs. A variety
of Unix and X windows utilities are used for display and visualization of data.

4.16.4 Simulation

Ptolemy provides the ability to simulate complex systems. The key is the notion of a
wormhole that allows a designer to mix domain-specific algorithms together to cosimulate the
functionality or behavior of the system. wormholes & hierarchical scheduling

4.16.5 Synthesis

Ptolemy provides mature abilities to synthesis dataflow systems. From dataflow
graphs, Ptolemy can generate C, C++, Motorola 56000 assembly code, and VHDL for unipro-
cessor and multi-processor systems.

Ptolemy provides the ability to synthesis complex systems. The key is the notion of
hierarchical scheduling that allows multiple implementation technologies to cosimulate. Mix-
ing this with wormholes allows simulation domains to participate in cosimulation. This com-
binations allows a complex system to be simulated at a variety of levels of detail.

U. C. Berkeley Department of EECS

Chapter 5. SDF Domain

Authors: Shuvra Bhattacharyya
Joseph T. Buck
Michael J. Chen
Brian L. Evans
Soonhoi Ha
Paul Haskell
Christopher Hylands
Alan Kamas
Alireza Khazeni
Bilung Lee
Edward A. Lee
David G. Messerschmitt

Other Contributors: Asawaree Kalavade
Thomas M. Parks
Gregory S. Walter

5.1 Introduction

Synchronous dataflow (SDF) is a data-driven, statically scheduled domain in Ptolemy.
It is a direct implementation of the techniques given in [Lee87a] and [Lee87Db]. “Data-driven”
means that the availability &farticle s at the inputs of a star enables it. Stars without any
inputs are always enabled. “Statically scheduled” means that the firing order of the stars is
determined once, during the start-up phase. The firing order will be periodic. The SDF domain
is one of the most mature in Ptolemy, having a large library of stars and demo programs. Itis a
simulation domain, but the model of computation is the same as that used in most of the code
generation domains. A number of different schedulers, including parallel schedulers, have
been developed for this model of computation.

5.1.1 Basic dataflow terminology

SDF is a special case of the dataflow model introduced by Dennis [Den75]. It is equiv-
alent to thecomputation graphmodel of Karp and Miller [Kar66]. In the terminology of the
dataflow literature, stars are calkectors An invocation of thgo() method of a star is called
afiring. Particles are callekens In a digital signal processing system, a sequence of tokens
might represent a sequence of samples of a speech signal or a sequence of frames in a video
sequence.

When an actor fires, it consumes some number of tokens from its input arcs, and pro-
duces some number of output tokens. In synchronous dataflow, these numbers remain constant
throughout the execution of the system. It is for this reason that this model of computation is
suitable for synchronous signal processing systems, but not for asynchronous systems. The
fact that the firing pattern is determined statically is both a strength and a weakness of this

5-2 SDF Domain

domain. It means that long runs can be very efficient, a fact that is heavily exploited in the
code generation domains. But it also means that data-dependent flow of control is not allowed.
This would require dynamically changing firing patterns. The Dynamic Dataflow (DDF) and
Boolean Dataflow (BDF) domains were developed to support this, as described in chapters 7
and 8, respectively.

5.1.2 Balancing production and consumption of tokens

Each porthole of each SDF star has an attribute that specifies the number of particles
consumed (for input ports) or the number of particles produced (for output ports). When you
connect two portholes with an arc, the number of particles produced on the arc by the source
star may not be the same as the number of particles consumed from that arc by the destination
star. To maintain a balanced system, the scheduler must fire the source and destination stars
with different frequency.

Consider a simple connection between three stars, as shown in figure 5-1. The symbols
adjacent to the portholes, suchMg,; , represent the number of particles consumed or pro-
duced by that porthole when the star fires. For many signal processing stars, these numbers are
simply one, indicating that only a single token is consumed or produced when the star fires.
But there are three basic circumstances in which these numbers differ from one:

» Vector processing in the SDF domain can be accomplished by consuming and produc-
ing multiple tokens on a single firing. For example, a star that computes a fast Fourier
transform (FFT) will typically consume and produze samples when it fires, where
M is some integer. Examples of vector processing stars that work this wegTane
Average , Burg, andLevDur . This behavior is quite different from the matrix stars,
which operate on particles where each individual particle represents a matrix.

* In multirate signal processing systems, a star may consume samples and produce
N, thus achieving a sampling rate conversiorNéfM . For example;Itheand
FIRCx stars optionally perform such a sampling rate conversion, and with an appropri-
ate choice of filter coefficients, can interpolate between samples. Other stars that per-
form sample rate conversion includpSample , DownSample , andChop.

* Multiple signals can be merged using stars su€loasnutator or a single signal can
be split into subsignals at a lower sample rate usinditebutor star.

To be able to handle these circumstances, the scheduler first associates a simple balance equa-
tion with each connection in the graph. For the graph in figure 5-1, the balance equations are

raNas = reNeg

raNaz = rgNg;

FIGURE 5-1: A simple connection of SDF stars, used to illustrate the use of balance equations in
constructing a schedule.

U. C. Berkeley Department of EECS

The Almagest 5-3

rgNg2 = rcNea
This is a set of three simultaneous equations in three unknowns. The unknpwns, , , and
rc are therepetitionsof each actor that are required to maintain balance on each arc. The first
task of the scheduler is to find the smallest non-zero integer solution for these repetitions. It is
proven in [Lee87a] that such a solution exists and is unique for every SDF graph that is “con-
sistent,” as defined below.

5.1.3 lIterations in SDF

When running an SDF system under the graphical user interface, you will have the
opportunity to specify “when to stop.” Since the SDF domain has no notion of time, this is not
given in units of time. Instead, it is given in units of SDF iterations. At each SDF iteration,
each star is fired the minimum number of times to satisfy the balance equations.

Suppose for example that star B in figure 5-1 iSRENCx star with its parameters set
so that it will consume 128 samples and produce 128 samples. Suppose further that star A pro-
duces exactly one sample on each output, and star C consumes one sample from each input. In
summary,
Nag = Nazg = Ngg = Nep =1
The balance equations become

'a = Tc
ra = 128g
128rg = 1.
The smallest integer solution is

Hence, each iteration of the system includes one firing dfRMEx star and 128 firings each
of stars A and B.

5.1.4 Inconsistency

It is not always possible to solve the balance equations. Suppose that in figure 5-1 we
have

Nag = Nazg = Ngg = Negp =Ny =1
Ng, = 2.
In this case, the balance equations have no non-zero solution. The problem with this system is
that there is no sequence of firings that can be repeated indefinitely with bounded memory. If
we fire A,B,C in sequence, a single token will be left over on the arc between B and C. If we
repeat this sequence, two tokens will be left over. Such a system is saiddortsstentand

is flagged as an error. The SDF scheduler will refuse to run it. If you must run such a system,
change the domain of your graph to the DDF domain.

Ptolemy Last updated: 11/6/97

5-4

SDF Domain

5.1.5 Delays

Delays are indicated in Pigi by small green diamonds that are placed on an arc. Most
of the standard palettes of stars have the delay icon at the upper left. The delay has a single
parameter, the number of samples of delay to be introduced. In the SDF domain, a delay with
parameter equal to one is simply an initial particle on an arc. This initial particle may enable a
star, assuming that the destination star for the delay arc requires one patrticle in order to fire.
To avoid deadlock, all feedback loops much have delays. The SDF scheduler will flag an error
if it finds a loop with no delays. For most particle types, the initial value of a delay will be
zero. For particles which hold matrices, the initial value is an empty Envelope, which must be
checked for by stars which work on matrix inputs. Initializable delays allow the user to give
values to the initial particles placed in the buffer. Please refer to 2.12.8 on page 2-47 for details
on how to use initializable delays.

5.2 An overview of SDF stars

The “open-palette” command in pigi (“O”) will open a checkbox window that you can
use to open the standard palettes in all of the installed domains. For the SDF domain, the star
library is large enough that it has been divided into sub-palettes. The top-level palette is shown
in figure 5-2

Synchronous Dataflow (SDF) Stars

Signal Sources

Signal Sinks

N
i i O[O
Arithmetic oo

Nonlinear Functions

Logic

Control

~ Conversion
Matrix Functions

Matlab Functions

UltraSparc Native DSP

FIGURE 5-2:

Signal Processing

Spectral Analysis
Communications
Telecommunications

Spatial Array Processing
Image and Video Processing
Neural Networks

Design Flow Management
Higher Order Functions

o
test /'

User Contributions

The top-level palette for accessing the library of SDF stars.

The “sources” palette contains signal generators of various types. The “sinks” palette
contains various stars that display signals in different ways or write the value of signal sam-
ples to files. The “arithmetic” palette contains basic adders, subtracters, multipliers, and

U. C. Berkeley

Department of EECS

The Almagest 5-5

amplifiers, for all the standard scalar data types (floating point, complex, fixed-point, and inte-
ger). The “nonlinear” palette contains stars that compute transcendental functions, such as
logarithm, cosine, sine, and exponential functions, as well as quantizer and table lookup stars.
The “logic” palette contains stars that perform Boolean and comparison operations, such as
and, or, and greater than. The “control” palette contains stars that manipulate the flow of
tokens, such as commutators and distributors, downsamplers and upsamplers, and forks. The
“conversion” palette contains stars that explicitly accomplish type conversion. The “matrix”
palette contains matrix operators such as matrix addition and multiplication. More complex
stars that use matrix operations internally can be found in other palettes, such as the singular
value decomposition and Kalman filters in the “dsp” palette. The “matlab” palette contains
stars that communicate with a Matlab process and thus have access to all of the functionality
of Matlab. The “vis” palette contains stars that use the Sun UltraSparc Visual Instruction
Set.The “dsp” palette contains various signal processing functions such as fixed and adaptive
filters of various types. The “spectral’ palette contains spectral estimation functions. The
“communications” palette contains stars that are specific to digital communications functions,
such as pulse shapers, speech coders, and QAM encoders. The “telecommunications” palette
contains touchtone generators and decoders, channel models, and PCM coders. The “spatial
array palette” contains models of sensors, Doppler effects, and beamformers. The “image”
palette contains stars for image and video signal processing. The “neural” palette contains
neural network stars. The “dfm” palette contains design flow management stars that use
strings and files as datatypes. The “hof” palette contains the Higher Order Functions available
in the SDF domain. The HOF stars in this palette are explained in detail in the HOF domain
chapter. The “user” palette contains user contributed stars.

Each palette is summarized in more detail below. In the listing, whenever data types
are not mentioned, double-precision floating point is used. Not all data types are represented
in all stars. Type conversions, automatic or explicit, can be used to complete the collection.

The parameters of a star are shown in italics. More information about each star can be

obtained using the on-lingofile = command ("), or the on-lineman command (f).

At the top of each palette, for convenience, are instances of the two delay icons, the
bus icon, and the following star:

BlackHole Discard all inputs. This star is useful for discarding signals that
are not useful.

The delay and bus icons are created on top of an arc to define its properties and are not stars.

5.2.1 Source stars

Source stars are stars with no inputs. They generate signals, and may represent exter-
nal inputs to the system, constant data, or synthesized stimuli. In the dataflow model of com-
putation, they are always enabled, and hence can be fired at any time. In the synchronous
dataflow model, the frequency with which they are fired, relative to other stars in the system,
is determined by the solution to the balance equations. The palette of source stars is shown in
figure 5-3, and the stars are summarized below, in the order they appear in the palette.

Floating-point sources

Const Output a constant signal with value given byltwelparameter

Ptolemy Last updated: 11/6/97

5-6

DTMFGenerator

Impulse

IIDGaussian

IIDUniform

Ramp

RanConst

SDF Domain

(default 0.0).

Create a dual-tone modulated-frequency signal, such as the tone
generated by a touchtone telephone.

Generate a single impulse or an impulse train. Each impulse has
an amplituddevel (default 1.0). Ifperiod (default 0) is equal to

0, then only a single impulse is generated; othervwisepd
specifies the period of the impulse train.

Generate an identically independently distributed white Gauss-
ian pseudo-random process witlean(default 0) andrariance
(default 1).

Generate an identically independently distributed uniformly
distributed pseudo-random process. Output is uniformly distrib-
uted betweetower (default 0) andipper(default 1).

Generate a ramp signal, startinyalue (default 0.0) and incre-
menting by step sizetep(default 1.0) on each firing.

Generate an random number with a uniform(u), exponential(e),
or normal(n) distribution, as determined by ttlistribution

Floating-Point Sources

I 23nAa N
H568®
7 B30 —> > > > L
* 04D
L)
DTMFGenerator Impulse [IDGaussian |IDUniform Ramp
m g—’ ~ e >
- .
R Réct singen \Window
—>
o
WaveForm
TCl g TCl ~ [- I~ I (nteractive)
TclScript TclScript TkSlider TkButtons TkButtons

Fixed-Point Sources

L const|~

I.‘
I %EWF&M%

. 7.% .
RampFix RectFix expgen

=

bits

Rampint F’m chtcx

Matrix Sources:

e

Matrix

[J [J_’ Matlab ™ | Matlab [~
CxMatrix FixMatrix Matlab_M MatlabCx_M

[

IntMatrix ‘

[1 J
1
0 1

Identity M

1 1

0‘ 0

[1&'[11}
0 1 0 1

IdentityCx_M IdentityFix_M

1
110
0 1

Identitylnt_M

FIGURE 5-3: The palette of source stars for the SDF domain.

U. C. Berkeley

Department of EECS

The Almagest

ReadFile

ReadVar

Rect

singen

WaveForm

haltAtEnd

5-7

parameter. This star is new in Ptolemy 0.7.

Read ASCII data from a file. The simulation can be halted on
end-of-file, or the file contents can be periodically repeated, or
the file contents can be padded with zeros.

Output the value of a double-precision floating point variable
from a shared memory. Use theteVar star to write values
into the shared memory.

WARNING: This star may produce unpredictable results, since
the results will depend on the precendences in the block dia-
gram in which it appears as well as the scheduler used.

Generate a rectangular pulsehafight (default 1.0) andvidth
(default 8). If period is greater than zero, then the pulse is
repeated with the given period.

Generate a sine wave wifilrequency (relative to the given
sample_rate and phase given bphase_in_radiansThis is
implemented as a galaxy according to the formula

sin(2rtnfrequency sample_rater phase_in_radian$
where n is the sample index. Therefofeequency and
sample_ratanust have the same units, e.g. rad/sample, Hz, etc.

Output a waveform as specified by the array stalige (default

“1 -1"). You can get periodic signals with any period, and can
halt a simulation at the end of the given waveform. The follow-
ing table summarizes the capabilities:

NO

NO

NO
YES

periodic period operation
YES 0 The period is the length of the waveform
YES N>0 The period is N
NO anything | Output the waveform once, then zeros
anything anything | Stop after outputting the waveform once

Window

TclScript

Ptolemy

The first line of the table gives the default settings. This star
may be used to read a file by simply settrafueto something

of the form< filename , preferably specifying a complete
path.

Generate standard window functions or periodic repetitions of
standard window functions. The possible functions Reet-

angle , Bartlett , Hanning , Hamming, Blackman , Kaiser

and SteepBlackman . One period of samples is produced at
each firing.

(Two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

Last updated: 11/6/97

TkSlider

TkButtons

Fixed-point sources

ConstFix
RampFix
RectFix

Complex sources

ConstCx

WaveFormCx

expgen

RectCx

bits
Ramplint
PCMReadint

Constint

U. C. Berkeley

SDF Domain

Output a value determined by an interactive on-screen scale
slider.

This star outputs the value 0.0 on all outputs unless the corre-
sponding button is pushed. When the button is pushed, the out-
put takes the value given by the paramegsdue If synchronous

is YES then outputs are produced only when some button is
pushed. l.e., the star waits for a button to be pushed before its
go method returns. lallow_simultaneous_evenis YES then

the buttons pushed are registered only when the button labeled
“PUSH TO PRODUCE OUTPUTS” is pushed. Note thayih-
chronousis NQ this star is nondeterminate.

Constant source for fixed-point values.
Ramp for fixed-point values.

Generate a fixed-point rectangular pulséeijht(default 1.0).
and width (default 8). Ifperiod is greater than zero, then the
pulse is repeated with the given period. The precisidremjht
can be specified in bits.

Constant source for complex values.

Output a complex waveform as specified by the array state
value (default “(1,0) (-1,0)”). Note that “(a,b)” means a + b j.
The parameters work the same way as intheeForm star.

Generate a complex exponential with the given frequency (rela-
tive to thesample_ratgarameter).

Generate a rectangular pulsehgfight (default 1.0) andvidth
(default 8). If period is greater than zero, then the pulse is
repeated with the given period.Integer sources

Produce “0” with probabilityprobOfZerq else produce “1”.
Ramp for integer values.

Read a binary-law encoded PCM file. Return one sample on
each firing. The file format that is read is the same as the one
written by thePlay star. The simulation can be halted on end-
of-file, or the file contents can be periodically repeated, or the
file contents can be padded with zeros. This star is new in
Ptolemy 0.7.

Constant source for integer values.

Department of EECS

The Almagest

Matrix Sources

The Matrix
matrix data types.

Matrix

Matlab_M

MatlabCx_M
Identity_M

5.2.2 Sink stars

The stars in the palette of figure 5-4 are those with no outputs. They display signals in various
ways, or write them to files.

and Identity

5-9

stars each have four different icons for the different

(four icons) Produce a matrix with floating-point entries. The
entries are read from the array paraméteatMatrixContents

in rasterized order: i.e., forM x N matrix, the first row is filled
from left to right using the fird\l values from the array.

Evaluate a Matlab function if inputs are given or evaluate a
Matlab command if no inputs are given. Any Matlab script can
be evaluated, provided that the current machine has a license to
run Matlab. See “Matlab stars” on page 5-26.

Complex version of the above star.

(four icons) Output a floating-point identity matrix.

Batch Plotting Facilities

Interactive Graphics Facilities

Xhistogram

Waterfall

123 |

Tk
ShowValues

ShowValues

123 |

Tk

yXeeee | L X eeee

)] - @ IR

TRPlot—© TRPlot—© >—Tk‘XY‘PI8t ° »—Tk‘XY‘PISt °
>—I|I||II »”III“I — e

TkBarGraph TkBarGraph TkMeter TkMeter
Programmable Interactive Sinks
"1 Tcl| 7 Tcl | 7| Matab

TclScript TclScript MatlabCx_M
Textual Display

PrF Pri TkText TkText

FIGURE 5-4: Sink stars in the SDF domain.

Ptolemy

X x x l
STTE | FTTR |
TkShow TkShow
Booleans Booleans
Sound Halt
Play TkBreakPt

Other

Write
Var

Last updated: 11/6/97

5-10

Batch Plotting Facilities

SDF Domain

The first six stars in this palette are all based optheaph program. This program
has many options, summarized in “pxgraph — The Plotting Program” on page 20-1. The dif-
ferences between stars often amount to little more than the choice of default options. Some,
however, preprocess the signal in useful ways before passing itdxgtaph program. The
first allows only one input signal, the second allows any number (notice the double arrow on

the input port).
XMgraph
XYgraph

Xscope

Xhistogram

Waterfall

(two icons) Generate a generic multi-signal plot.

Generate aX-Y plot with thepxgraph program. TheX data is
on “xInput” and theY data is on “input”.

Generate a multi-trace plot with thegraph program. Succes-
sive traces are overlaid on one another.

Generate a histogram with thegraph program. The parame-
ter binWidthdetermines the bin width.

Plot a series of traces in the style of a waterfall plot. This is a
type of three-dimensional plot used to show the evolution of
signals or spectra. Optionally, each plot can be made opaque, so
that lines that would appear behind the plot are eliminated.

Interactive Graphics Facilities

These stars are multiple configurations of only six stars. These stars all use the Tk toolkit
associated with the Tcl language to create interactive, animated displays on the screen.

TkPlot

TkXYPlot

TkShowValues

TkBarGraph

U. C. Berkeley

(two icons) Plot “Y” input(s) vs. time with dynamic updating.
Two styles are currently supportedot causes individual
points to be plotted, whereasnnect causes connected lines
to be plotted. Drawing a box in the plot will reset the plot area
to that outlined by the box. There are also buttons for zooming
in and out, and for resizing the box to just fit the data in view.

(two icons) Plot “Y” input(s) vs. “X” input(s) with dynamic
updating. Two styles are currently supporiat: causes points

to be plotted, whereasonnect causes connected lines to be
plotted. Drawing a box in the plot will reset the plot area to that
outlined by the box. There are also buttons for zooming in and
out, and for resizing the box to just fit the data in view.

(two icons) Display the values of the inputs in textual form. The
print method of the input particles is used, so any data type can
be handled, although the space allocated on the screen may
need to be adjusted.

(two icons) Dynamically display the value of any number of
input signals in bar-chart form. The first 12 input signals will be
assigned distinct colors. After that, the colors are repeated. The
colors can be controlled using X resources.

Department of EECS

The Almagest

TkMeter

TkShowBooleans

5-11

(two icons) Dynamically display the value of any number of
input signals on a set of bar meters.

(two icons) Display input Booleans using color to highlight
their value.

Programmable Interactive Sinks

TclScript
MatlabCx_M
Sound
Play
Halt
TkBreakPt

Textual Display

Printer

TkText

Other
WriteVar

Ptolemy

(two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

Evaluate a Matlab function if inputs are given or evaluate a
Matlab command if no inputs are given.

Play an input stream on the workstation speaker. This star
works best on Suns, but can work on SGI Indigos and HP 700s
and 800s. On HPs, you may need other publicly available soft-
ware for this star to work. Thgain parameter (default 1.0) mul-
tiplies the input stream before it jslaw compressed and
written. The inputs should be in the range of -32000.0 to
32000.0. The file is played at a fixed sampling rate of 8000 sam-
ples per second. When the wrapup method is called, a file of 8-
bit p-law samples is handed to a program napigdy which
plays the file. Theptplay program must be in your path.
See“Sounds” on page 2-38 for more information.

A conditional break point. Each time this star executes, it evalu-
ates its conditional expression. If the expression evaluates to
true, it causes the run to pause.

(two icons) Print out one sample from each input port per line.
ThefileNameparameter specifies the file to be written; the spe-
cial names:stdout> and<cout> which specify the standard
output stream, as well astderr> and<cerr> which specify

the standard error stream, are also supported.

(two icons) Display the values of the inputs in a separate win-
dow, keeping a specified number of past values in view. The
print method of the input particles is used, so any data type can
be handled.

Write the value of the input to a double-precision floating-point

Last updated: 11/6/97

5-12 SDF Domain

variable in shared memory. Use teadVar star to read values
from the shared memory.

WARNING: This star may produce unpredictable results, since
the results will depend on the precedences in the block diagram
in which it appears, as well as the scheduler (target) used.

5.2.3 Arithmetic stars

In principle, it should be possible to overload the basic arithmetic operators so that, for
example, a singlédd star could handle any data type. Our decision, however, was in favor of
more explicit typing, in which there is @ald star for each particle type supported in the ker-
nel. As before, when there is no data type suffix in the name of the star, the data type sup-
ported is double-precision floating point.

Many of the stars in this palette have more than one icon, as indicated in figure 5-5.
Each such icon has a different configuration of ports. This is done for visual clarity in sche-
matics. A port with a double arrowhead can accept any number of input signals. Each four
rows of the palette contains equivalent stars for floating-point, complex, fixed-point, and inte-
ger arithmetic, respectively. Listed by the roots of the names of the stars, they are:

Add (two icons) Output the sum of the inputs.

Sub Output the “pos” input minus all “neg” inputs.

Mpy (two icons) Output the product of the inputs.

Gain This is an amplifier; the output is the input multiplied by the

gain (default 1.0).
The floating-point and complex-valued scalar data types also have the following star:

Average Average some number of input samples or blocks of input sam-

Integrator

Floating-point:

PSR

Add

Xl

> > >
Gain

Add Average

Complex: —
AddCx, AddCx SubCx, MpyCx MpyCx GainCx AVA
Fi/xgg-pomﬁ’\ N AN A
BNUASE N VARSNCYARE e YAave Y adk D>
AddFiy AddFix SubFig MpyFi MpyFix GainFix
Integer:
. X/y
Addint, AddInt Sublint 4 Mpylint, Mpylint GainlInt DivByInt
FIGURE 5-5: The arithmetic palette in the SDF domain. Note that several of the stars have more

than one icon, each with a different configuration of ports.

U. C. Berkeley Department of EECS

The Almagest

5-13

ples. Blocks of successive input samples are treated as vectors.

The floating-point type has one additional arithmetic star:

Integrator

This is an integrator with leakage, limits, and reset. With the
default parameters, input samples are simply accumulated, and
the running sum is the output. To prevent any resetting in the
middle of a run, connect @onst source with value 0 to the
“reset” input. Otherwise, whenever a non-zero is received on
this input, the accumulated sum is reset to the current input (i.e.
no feedback).

Limits are controlled by thieop andbottomparameters. lfop <
bottom no limiting is performed (this is the default). Otherwise,
the output is kept betwedyottomandtop. If saturate= YES
saturation is performed. Haturate= NQ wrap-around is per-
formed (this is the default). Limiting is performed before out-
put.

Leakage is controlled by tHeedbackGairparameter (default
1.0). The output is the data input plieedbackGainx state
wherestateis the previous output.

The integer type has the following star:

5.2.4 Nonlinear stars

DivByInt

This is an amplifier. The integer “output” is the integer “input”
divided by the integedivisor (default 1). Truncated integer
division is used.

The nonlinear palette (figure 5-6) in the SDF domain includes transcendental func-
tions, quantizers, table lookup stars, and miscellaneous nonlinear functions.

Quantizers

Ptolemy

AdaptLinQuant

LinQuantldx

Quantize the input to one of l@ifs possible output levels. The
high and low output levels are anti-symmetrically arranged
around zero and their magnitudes are determined Hyit$2"
1)*inStep”/2. The steps between levels are uniformly spaced at
the step size given by the “inStep” input value. The linear quan-
tizer can be made adaptive by feeding back past information
such as quantization level, quantization value, and step size into
the current step size.

Quantize the input to the number of levels given byl¢lels
parameter. The quantization levels are uniformly spaced
betweenlow andhigh inclusive. Rounding down is performed,
so that output level will equaligh only if the input level equals

or exceedsigh. If the input is belowow, then the quantized
output will equallow. The quantized value is output to the
“amplitude” port, while the index of the quantization level is

Last updated: 11/6/97

5-14

SDF Domain

output to the “stepNumber” port.

Quant Quantize the input value to one Nf-1 possible output levels
using N thresholds. For an input less than or equal to the n-th
threshold, but larger than all previous thresholds, the output will
be the n-th level. If the input is greater than all thresholds, the
output is theN+1-th level. If level is specified, there must be
one more level than thresholds; the default value for level is O,
1, 2, ...N. This star is much slower thamQuantldx , so if
possible, that one should be used instead.

Quantldx Quantize the input value to one Nf1 possible output levels
usingN thresholds, and output both the quantized result and the
guantization level. See tliguant star for more information.

Quantizer This star quantizes the input value to the nearest output value in
the given codebook. The nearest value is found by a full search
of the codebook, so the star will be significantly slower than
eitherQuant or LinQuantldx . The absolute value of the dif-
ference is used as a distance measure.

> a%’f > I :7 o >
sij-AR S NEN AN,
Quant LinQuantldx Quant Quantldx Quantizer
Math Functions
X
>— . > O >— ..‘ > >— >
Abs conj Cos Dirichlet
Exp Floor Limit
>— é %J’*)FXMDDY*)- X MOD Y > ' >gea‘e.r>— —>
3 |index lone < s
MaxMin | Modulotnt OrderTwolnt Reciprocal
Sgn Sinc Sart

Other Non-Linear Functions

4B

.._ > > > > -.—.— >
PcwzLinear powerEst powerEstCx powerEstLin

ﬂ" 1 Tel|[” 7 Tel [~

Tablelnt TclScript TclScript

FIGURE 5-6: Palette of nonlinear stars for the SDF domain.

U. C. Berkeley

Department of EECS

The Almagest

Math Functions

Ptolemy

Abs

cexp

conj

Cos

Dirichlet

Exp

expjx

Floor
Log

Limit

MaxMin

Modulo

Modulolnt

OrderTwolnt

Reciprocal

Sgn

Sin

5-15

Compute the absolute value of its input.

Compute the complex exponential function of its complex
input. See alsexpjx .

Compute the conjugate of its complex input.

Compute the cosine of its input, assumed to be an angle in radi-
ans.

Compute the normalized Dirichlet kernel (also called the
aliased sinc function):
_ Sin(Nx/2)

IN) = Nsinxi2)
The value of the normalized Dirichlet kernelxat O is always
1, and the normalized Dirichlet kernel oscillates betwegn
and +1. The normalized Dirichlet kernel is periodixiwith a
period of either &#whenN is odd or 4twhenN is even.

Compute the real exponential function of its real input.

Compute the complex exponential function of its real input. See
alsocexp .

Output the greatest integer less than or equal to its input.
Output the natural logarithm of its input.

The output of this star is the value of the input limited to the
range betweehottomandtop inclusive.

Finds maximum or minimum, value or magnitude, of a fixed
number of data values on its input. If you want to use this star to
operate over multiple data streams, then precede this star with a
Commutator and set the parametdraccordingly.

The output is equal to the remainder after dividing the input by
themoduloparameter.

The output is equal to the integer remainder after dividing the
integer input by the integenoduloparameter.

Takes two inputs and outputs the greater and lesser of the two
integers.

Output the reciprocal of its input, with an optional magnitude
limit. If the magnitude limit is greater than zero, and the input
value is zero, then the output will equal the magnitude limit.

Compute the signum of its input. The outputls Note that 0.0
maps into 1.

Computes the sine of its input, assumed to be an angle in radi-
ans.

Last updated: 11/6/97

5-16

Sinc

Sqrt

Other Nonlinear Functions
DB

PcwzLinear

powerEst

powerEstCx

powerEstLin

Table

TableCx
Tablelnt
TclScript

5.2.5 Logic stars

SDF Domain

Computes the sinc of its input given in radians. The sinc func-
tion is defined as sir)/x, with value 1.0 wher = 0.

Computes the square root of its input.

Convert input to a decibels (dB) scale. Zero and negative values
are assigned the valuain (default -100). ThanputlsPower
parameter should be set to YES if the input signal is a power
measurement (vs. an amplitude measurement).

This star implements a piecewise linear mapping from the list of
(x,y) pairs, which specify the breakpoints in the function. The
sequence of x values must be increasing. The function imple-
mented by the star can be represented by drawing straight lines
between the (x,y) pairs, in sequence. The default mapping is the
‘tent’ map, in which inputs between -1.0 and 0.0 are linearly
mapped into the range -1.0 to 1.0. Inputs between 0.0 and 1.0
are mapped into the same range, but with the opposite slope, 1.0
to -1.0. If the input is outside the range specified in the “x” val-
ues of the breakpoints, then the appropriate extreme value will
be used for the output. Thus, for the default map, if the input is -
2.0, the output will be -1.0. If the input is +2.0, the output will
again be -1.0.

Estimate the power in decibels (dB) by filtering the square of
the input using a first-order filter with the time constant given as
a number of sample periods.

Like powerEst , but for complex inputs.

Same apowerEst , but the output is on a linear scale instead of
decibels (dB).

This star implements a real-valued lookup table indexed by an
integer-valued input. The input must lie between 0 BAL,
inclusive, where\ is the size of the table. Thaluesparameter
specifies the table. Its first element is indexed by a zero-valued
input. An error occurs if the input value is out-of-bounds.

Table lookup for complex values.
Table lookup for integer values.

(two icons) Invoke a Tcl script that can optionally define a pro-
cedure that is invoked every time the star fires. That procedure
can read the star’s inputs and update the value of the outputs.

The logic palette shown in figure 5-7 is made up of only three stars. Each star has mul-
tiple icons representing a variety of configurations.

U. C. Berkeley

Department of EECS

The Almagest

I

»

> —
lower
>

Test Test

v O0C
Slvlw

VOU L

5-17

X

Test Test Multiple

B
B

FIGURE 5-7: Logic stars in the SDF palette.

Test

Multiple
Logic

5.2.6 Control stars

(four icons) Compare two inputs. The test condition can be any
of {EQ NE GT GEor {==!= > >=}, resulting in equals, not
equals, greater than, or greater than or equals. The four icons
represent these possibilities.

If crossingsOnlys TRUE then the output is non-zero only when
the outcome of the test changes froRUEto FALSE or FALSE
to TRUE In this case, the first output is alwayRBUE

(one icon) Output a 1 if top input is a multiple of bottom input.

(19 icons) This star applies a logical operation to any number of
inputs. The inputs are integers interpreted as Booleans, where
zero is aFALSE and nonzero is @RUE The logical operations
supported areNOT ANDQ NAND OR NOR XOR XNOR, with any
number of inputs.

Control stars (figure 5-8) manipulate the flow of tokens. All of these stars are polymor-
phic; they operate on any data type. From left to right, top to bottom, they are:

Single-Rate Operations
Fork

Reverse

Ptolemy

(five icons) Copy input particles to each output. Note that a fork

is automatically inserted in a schematic when a single output is
sent to more than one input. However, when a delay is needed
on one of the connections, then an explicit fork star must be

used.

On each execution, read a blockNoBamples (default 64) and
write them out backwards.

Last updated: 11/6/97

5-18 SDF Domain

Transpose Transpose a rasterized matrix (one that is read as a sequence of
particles, row by row, and written in the same form). The num-
ber of particles produced and consumed equals the product of
samplesinaRowndnumberOfRows

TkBreakPt A conditional break point. Each time this star executes, it evalu-
ates its conditional expression. If the expression evaluates to
true, it causes the run to pause.

Trainer Pass the value of theain input to the output for the firstain-
Lengthsamples, then pass tHecisioninput to the output. This
star is designed for use with adaptive equalizers that require a
training sequence at start-up, but it can be used whenever one
sequence is used during a start-up phase, and another sequence
after that.

Multirate Operations

Commutator (four icons) Synchronously combimeinput streams (wherd
is the number of inputs) into one output stream. The star con-
sumesB input particles from each input (wheBes theblock-
Sizg, and producesl x B particles on the output. The fifSt
particles on the output come from the first input, the Bepdr-
ticles from the next input, etc.

Single-Rate Operations

GOl -G @ 6
:.;'\oa

Fork Fork Fork Fork Fork

e

Reverse Transpose TkBreakPt Trainer

Multirate Operations

> O > O Q o 0]
\o — >— o\o — >— g\o > »—| g\o > >— >
>~ o >— > o
Commutator Commutator Commutator Commutator DownSample
o |5 o | o [o
o o
>— >— O t—> »>— > >— > >— > >—
() o
T = e = - E O Ry
Distributor Distributor Distributor Distributor Repe UpSartiple
Other Operations
o output#l o o o
— <ﬁ\ input input \ \
- N output#2
ChopVar o > o > o [¢]
Chop Offset DeMux DeMux Mux Mux

 control | control

FIGURE 5-8: Control stars for the SDF domain.

U. C. Berkeley Department of EECS

The Almagest

DownSample

Distributor

Repeat
UpSample

Other Operations

Ptolemy

Chop

ChopVarOffset

DeMux

Mux

5-19

Decimate by a givefactor (default 2). Thephasetells which
sample of the ladiactor samples to output. iphase= 0 (by
default), the most recent sample is the output, whitdhase=
factor -1 the oldest sample is the output. Note thtadisehas
the opposite sense of thhaseparameter in thBpSample star,
but the same sense as fiseparameter in thEIR star.

(four icons) Synchronously split one input stream Mtoutput
streams, wherl is the number of outputs. The star consuhhes
x B input particles, wher® is the blockSizeparameter, and
sends the firdB particles to the first output, the nd&particles
to the next output, etc.

Repeat each input sample a specified number of times.

Upsample by a given factor (default 2), giving inserted samples
the valudfill (default 0.0). Th@phaseparameter (default 0) tells
where to put the sample in an output bloclphfaseof O says to
output the input sample first, followed by the inserted samples.
The maximumphaseis equal tofactor - 1. Although théfill
parameter is a floating-point number, if the input is of some
other type, such as complex, then thie particle will be
obtained by castinfill to the appropriate type.

On each execution, this star reads a bloakrefdparticles and
writes them to the output with the given offset. The number of
particles written is given bgwrite. The output block contains
all or part of the input block, depending offisetand nwrite.

The offsetspecifies where in the output block the first (oldest)
particle in the input block will lie. Ibffsetis positive, then the
first offsetoutput particles will be either particles consumed on
previous firings (ifuse_past_inputparameter i¥ES), or zero
(otherwise). Ifoffsetis negative, then the firsffsetinput parti-
cles will be discarded.

This star has the same functionality as@hep star except the
offsetparameter is determined at run time by a control input.

(two icons) Demultiplex one input onto any number of output
streams. The star consuntegarticles from the input, whei

is theblockSize TheseB particles are copied to exactly one out-
put, determined by the “control” input. The other outputs get a
zero of the appropriate type.

Integers from O througlN — 1 are accepted at the “control”
input, whereN is the number of outputs. If “control” is outside
this range, all outputs get zeros.

(two icons) Multiplex any number of inputs onto one output

Last updated: 11/6/97

5-20 SDF Domain

stream B particles are consumed on each input, wiBei®the
blockSize But only one of these blocks of particles is copied to
the output. The one copied is determined by the “control” input.
Integers from O througN — 1 are accepted at the “control”
input, whereN is the number of inputs. If “control” is outside
this range, an error is signaled.

5.2.7 Conversion stars
The palette in figure 5-9 shows a collection of stars for format conversions of various

types. The first two rows contain stars with functions that are fundamentally different from the

automatic type conversion performed by Ptolemy. From left to right, top to bottom, they are:

Complex data type formats
CxToRect

RectToCx

Convert a complex input to real and imaginary parts.
Convert real and imaginary inputs to a complex output.
RectToPolar Convert real and imaginary inputs into magnitude and phase

Complex data type formats:

> >— >—| U 1 —
CRIR(me o

> >— >— Br—> 4]
PolarToRect

CxToRect RectToCx RectToPolar

!

Other data type formats:

‘ ‘ @
>— > > > > —>
PCM PCM
BitCoder MuLaw BitDecoder B us . N um
S N To | To
us um
oy A NL.. To . To Num Bus
Num Bus

BitsTolnt IntToBits BusToNum NumToBus

Explicit (vs. automatic) scalar and matrix data type conversion:

IntToFix IntToFloat IntToCx

>— —> >—
FixTolnt FixToFloat FixToCx S I
FDﬁ calar
FloatTolnt FloatToFix FloatToCx
CxTolnt CxToFix CxToFloat
IntToFix_M IntToFloat_M IntToCx_|
— — —
FixTolnt_M FixToFloat_M FixToCx_| M t .
)_’ > — atrix
FloatTolnt_M FloatToFix_M >—) FloatToCx_M
CxTolnt_M CxToFix_M CxToFloat_M
FIGURE 5-9: Type conversion stars for the SDF domain.
U. C. Berkeley Department of EECS

The Almagest 5-21

form. The phase output is in the rangeto 1t

PolarToRect Convert magnitude and phase to rectangular form.

Other data type formats

PCMBitCoder Encode voice samples for a 64 kbps bit stream using CCITT
Recommendation G.711. The input is one 8 kHz sample of
voice data and the output is the eight-bit codeword (the low-
order 8 bits of an integer) representing the quantized samples.

MuLaw This star encodes its input into an 8 bit representation using the
nonlinear companding-law. It is similar toPCMBitCoder , but
it does the conversion in a single star, rather than a galaxy.

PCMBitDecoder Decode 8-bit PCM codewords that were encoded uBTig-
BitCoder

BitsTolnt The integer input sequence is interpreted as a bit stream in
which any non-zero value is a “1” bit. This star consurnigits
successive bits from the input, packs them into an integer, and
outputs the resulting integer. The first received bit becomes the
most significant bit of the output. iBitsis larger than the inte-
ger wordsize, then the first bits received will be losnBitsis
smaller than the wordsize minus one, then the output integer
will always be non-negative.

IntToBits Read the least significanBits bits from an integer input, and
output the bits as integers serially on the output, most signifi-
cant bit first.

BusToNum (two icons) This star accepts a number of input bit streams,
where this number should not exceed the word size of an inte-
ger. Each bit stream has integer particles with values 0, 3, or
anything else. These are interpreted as binary 0, tri-state, or 1,
respectively. When the star fires, it reads one input bit from each
input. If any of the input bits is tri-stated, the output will be the
previous output (or the initial value of theaviousparameter if
the firing is the first one). Otherwise, the bits are assembled into
an integer word, assuming two's complement encoding, and
sign extended. The resulting signed integer is sent to the output.
This star is particularly useful for interfacing to digital logic
simulation domains.

NumToBus (two icons) This star accepts an integer and outputs the low-
order bits that make up the integer on a number of outputs, one
bit per output. The number of outputs should not exceed the
word size of an integer. This star is particularly useful for inter-
facing to digital logic simulation domains.

Automatic type conversion, as implemented in Ptolemy 0.7, has limitations. If a given output

Ptolemy Last updated: 11/6/97

5-22 SDF Domain

port has more than one destination, then all destinations must have the same type input. This is
true even if an explicitork star is used. Explicit type conversions are needed to get around
this limitation. For this reason, the palette in figure 5-9 also contains a set of type conversions
that behave exactly the same way the automatic type conversions behave.

IntToFix Convert an integer input to a fixed-point output.
IntToFloat Convert an integer input to a floating-point output.
IntToCx Convert an integer input to a complex output.
FixTolnt Convert a fixed-point input to an integer output.
FixToFloat Convert a fixed-point input to a floating-point output.
FixToCx Convert a fixed-point input to a complex output.
FloatTolnt Convert a floating-point input to an integer output.
FloatToFix Convert a floating-point input to a fixed-point output.
FloatToCx Convert a floating-point input to a complex output.
CxTolnt Convert a complex input to an integer output.
CxToFix Convert a complex input to a fixed-point output.
CxToFloat Convert a complex input to a floating-point output.

Matrix Conversion Stars

The following type conversions construct a new matrix of the destination type by converting
each element of the old matrix as it is copied to the new on€&ixhitrix types, the preci-

sion is specified as a parameter of the conversion star. The actual conversions are implemented
using the cast conversion in the underlying class, except for the conversiong-ixvidne

trix type which are more complex because they involve possible changes in precision and
require a rounding option. The stars provided are:

IntToFix_M Convert an integer input matrix to a fixed-point output matrix.

IntToFloat_M Convert an integer input matrix to a floating-point output
matrix.

IntToCx_M Convert an integer input matrix to a complex output matrix.

FixTolnt_M Convert a fixed-point input matrix to an integer output matrix.

FixToFloat_M Convert a fixed-point input matrix to a floating-point output
matrix.

FixToCx_M Convert a fixed-point input matrix to a complex output matrix.

FloatTolnt_M Convert a floating-point input matrix to an integer output
matrix.

FloatToFix_M Convert a floating-point input matrix to a fixed-point output
matrix.

FloatToCx_M Convert a floating-point input matrix to a complex output

U. C. Berkeley Department of EECS

The Almagest 5-23

matrix.
CxTolnt_M Convert a complex input matrix to an integer output matrix.
CxToFix_M Convert a complex input matrix to a fixed-point output matrix.
CxToFloat_M Convert a complex input matrix to a floating-point output

matrix.

5.2.8 Matrix stars

The stars in the matrix palette (figure 5-10) operate on particles that represent matrices
with floating-point, fixed-point, complex, or integer entries. Most of the work is done in the
underlying matrix classe§joatMatrix ~, ComplexMatrix , FixMatrix , andIntMatrix
These classes are treated as ordinary particles. In Pigi, matrix types are indicated with thick
terminal stems, where the color of the terminal stem corresponds to the data type of the matrix
elements.

The Matrix conversion stars are in the conversion palette, see “Matrix Conversion
Stars” on page 5-22 for more information.

Matrix-Vector Conversions

—.010 %}e)—ﬁ‘:‘g} b - b T T s T — ’ﬂ]_)
MxCom_M MxDecom_M Pack_M PackCx_M PackFix_M