
Chapter 19. Vem — The Graphical
Editor for Oct

Authors: David Harrison
Rick Spickelmier

Other Contributors: Bill Bush
Andrea Cassotto
Christopher Hylands
Edward A. Lee

19.1 Terminology
Vem is an interactive graphical editor for theoct design database. It was written by

David Harrison and Rick Spickelmier in the CAD group at UC Berkeley. It has been extended
by Andrea Cassotto and Bill Bush. An introduction to the terminology used in the system is
given in “The oct design database and its editor, vem” on page 2-21. In this chapter, we give
more detailed information aboutvem. Most users will not need this much detail; chapter 2 will
be enough.

Most of this chapter is extracted from standard documentation for theocttools dis-
tribution. No oct documentation is included. See “Customizing Vem” on page 19-23 for
other resources.

The fundamentaloct objects that we edit withvem are calledfacets. Facets are speci-
fied by three names separated by colons. This is usually written as “cell:view:facet”. The first
component is the cell name; it is used to name the design. Note that cell name may not contain
any spaces. Inpigi , the second component, called the view name, will always be “sche-
matic”.1 Third, is the “facet” component, which can either be “contents” or “interface”. The
former specifies a block diagram, while the latter defines an icon. This usage of the term
“facet” is different from our previous usage. Thus, “facet” can mean either theoct object
called a facet, or “contents” vs. “interface”. The intended meaning is usually clear from con-
text. In commands that depend on the facet (in the latter sense), if you do not specify it,vem
assumes that you mean the contents facet. Thus, “wave:schematic” refers to the facet with cell
name “wave”, view name “schematic”, and facet name “contents”.

Vem was originally written with VLSI designs in mind. Ptolemy is an attached tool,
invoked via a program calledpigiRpc . Vem was originally intended for IC design. As such
vem provides standard graphics editing capabilities for physical (mask-level), symbolic, and
schematic designs. Ptolemy uses schematic capabilities for applications and physical capabili-
ties for icons.

Vem may be started by simply typingvem, but this will not start Ptolemy. To start the

1. Other oct applications use other views such as “symbolic” or “physical.”

19-2 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

Ptolemy interactive graphical interface, simply execute the commandpigi in $PTOLEMY/
bin. This invokes a shell script that startsvem and the associatedpigiRpc process.Vem is
started in general with the following command line options:

vem [-F cell[:view[:facet]]] [-G WxH+X+Y] [-R [host,]path] \
[-display host:display] [name=value ...]

For example, the following script could be used to start Ptolemy on a Sun 4 workstation:

xrdb -m $PTOLEMY/lib/pigiXRes9
vem -G 600x150+0+0 -F init.pal:schematic \

-G 600x300+0+170 -R $PTOLEMY/bin.sun4/pigiRpc

The first line merges the X Windows resources defined in$PTOLEMY/lib/pigiXRes9 . The
next line startsvem and the associatedpigiRpc process. Thepigi script is simply a more
elaborate version of this that ensures the existence of theinit.pal facet and sets up the
user’s environment.

Vem looks at the value of theDISPLAY environment variable to determine what host
and display to use for output.Vem andpigi may be run in the background without affecting
the program operation.

The -F , -G, and-R command line options allow a user to specify a start-up window
configuration forvem. These three options are considered triplets that specify the initial cell,
position and size, and remote application respectively for a window. There is no limit to the
number of triplets that may be specified. The-F flag marks the start of each new triplet. The
corresponding-G and-R flags after the-F flag are optional. If the-G flag is omitted,vem will
not specify a location for the window and most window managers will interactively prompt
for the window location. If the-R flag is omitted, no remote application will be started in the
window. The-F flag can be omitted from the first triplet. In this case, the-G and -R flags
apply to the console window. For example, thepigi script above startsvem with its console
window at (0,0) with a size of 600 by 150, and one window looking at the cell “init.pal:sche-
matic” at (0,170) with a size of 600 by 300, running thepigiRpc remote application.

Vem is a highly customizable editor. Nearly all of the colors, font styles and fill pat-
ternsvem uses can be changed by the user. Normally, these parameters are read from the
user’s X resources (which are usually loaded when X is started from a file named~/.Xde-
faults , or something similar). However, one can set certain parameters on the command line
using the = (equal) command line option. A list of all configurable parameters can be found in
the document “Customizing Vem,” which is distributed with the standardocttools distribu-
tion. This document can also be found as$PTOLEMY/src/octtools/vem/doc/Vemcus-
tom.ps .

The console window echoes user input and outputs various help and status messages.
After starting, the console will display a prompt and wait for input. Ptolemy users rarely need
to use this window, and eventually, it will be eliminated.

If the init.pal facet does not exist in the directory in whichpigi is started, then it
will be created. A blank facet will appear. Convention in Ptolemy dictates that this facet
should be used to store icons representing complete applications, or universes, that are defined

The Almagest 19-3

Ptolemy Last updated: 12/1/97

in the directory. If such icons already exist in the init.pal facet, the applications can be exam-
ined using thepigi “look-inside” command.

New windows can be created usingopen-facet command (see table 2-2 on page 7). It
is also possible to open a window from thevem console using theopen-window command, but
this new window will not be attached topigiRpc (see the command reference below). This
means that you will not be able to issue thepigi commands in table 2-2 from these windows.

Each window has exactly one associated cell. Mouse action with the cursor positioned
inside a window cause operations to occur to the associated cell. Any number of windows can
be created with the same or different associated cells. More than one window may have the
same associated cell. In this case, all of the windows are attached to thesame cell. Thus, a
change to one of the windows may cause updates to other windows that look at the same cell.

Vem assumes a three-button mouse. The left button is used for entry of graphics infor-
mation. The middle button is used for the primary menu of commands. The right button is
used to modify graphics information entered using the left button.

Commands tovem are specified in post-fix form. The user builds an argument list first
and then selects a command. Commands can be selected in three ways: pop-up menus, single
keystrokes, or by typing in the command name. Pressing and releasing the middle button in a
graphics window causes avem menu to appear. The user can use the mouse to riffle through
the options until the desired choice is highlighted. The commands are summarized in table 2-3
on page 11. Pressing and releasing the mouse button activates the selected command. Pressing
and releasing the mouse outside the menu cancels the selection. Normally, pressing and
releasing the middle button causes avem menu to appear. Holding the shift key and clicking
the middle button causes thepigi menu to appear. Both menus are useful.

A number of common commands can be selected via a single keystroke. Key bindings
for various commands are shown next to the corresponding entry in thevem menu, are listed
in the command reference below, and can be queried interactively using thebindings com-
mand. Typing a colon (:) allows the user to type in the command name (or a user defined
alias) in the console window. The standard line editing keys can be used while typing the com-
mand name. This interface supports automatic command completion. Typing a tab will com-
plete the command if it is unique or offer a list of alternatives if it is not unique. The command
is selected by typing a carriage return.

There are five types of input tovem: points, boxes, lines, text, and objects. Points are
entered by pressing and releasing the left button of the mouse. Boxes are entered by pressing,
dragging, and releasing the left button. Lines are entered by pressing, dragging and releasing
the left button over a previously created point or line. Text is entered by typing the text
enclosed in double quotes. If entering a filename, typing aTab character will causevem to try
to complete the name if it is unique or offer a list of alternatives if it is not unique. Objects are
entered using theselect-objects andunselect-objects commands. The last item on an argument
list can be deleted using the standard character for delete. The last group of items can be
deleted using the word erase characterControl-W . The entire argument list can be deleted
using the standard kill-line character (usuallyControl-U).

Once entered, graphics arguments (points, boxes, and lines) can be modified in various
ways. For all arguments, a point can be moved by moving the cursor over the point and press-
ing, dragging, and releasing the right mouse button. New points can be added to a group of

19-4 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

lines by moving over a point in the segment, depressing, dragging, and releasing the left
mouse button. This will insert a new point after the point. It is also possible to interactively
move, rotate, and mirror object arguments (selected items). See the description of thetrans-
form command in the command reference below.

This version ofvem supports three basic editing styles: physical, symbolic, and sche-
matic. Physical editing involves the entry and editing of basic geometry and the creation of
interface terminals. This style is used inpigi to build icons. Symbolic editing involves the
placement of instances of leaf cells and the interconnection of these instances.Pigi does not
use symbolic editing. Schematic editing is an extension of symbolic where the primitive cells
are schematic symbols and wire width is insignificant. Schematic cells use used bypigi to
represent block diagrams.

Whenvem opens a new cell directly (i.e. not viapigiRpc), a dialog will appear ask-
ing for three property values: TECHNOLOGY, VIEWTYPE, and EDITSTYLE. The TECH-
NOLOGY and VIEWTYPE properties determine the location of the technology facet, which
specifies the colors and layers in the display. A standard technology facet has been designed
for Ptolemy, so the defaults that appear are almost always acceptable. Layer display and
design rule information is read from this facet. The EDITSTYLE property is used byvem to
determine the set of commands available for editing the cell. Currently, the legal editing styles
are PHYSICAL, SYMBOLIC, or SCHEMATIC.

19.2 Using Dialog Boxes
Some commands require information that cannot be expressed easily using post-fix

notation. Examples include destructive commands that require an explicit confirmation and
commands that require complex non-graphic information.Vem usesdialogboxes based on the
MIT Athena widgets to handle these situations. Dialog boxes are windows that resemble busi-
ness forms. These windows contain labeled fields for entering text, changing numerical val-
ues, and selecting options. This section describes how to use dialog boxes.

All dialog boxes invem have the same form. An example is shown on page 2-14, and
also in figures 19-1 on page 12 and 19-2 on page 14. At the top of all dialogs is a one line title
indicating the purpose for the dialog. The middle of the dialog (known as the body) contains
fields for displaying and editing information of various kinds. At the bottom of the dialog are
a number ofcontrolbuttons. Each control button represents a command. The arguments to the
command are the values of the fields displayed in the body. Thus, operating a dialog consists
of editing or changing fields in the body and then selecting a command by activating a control
button. Six kinds of fields may appear in the body of avem dialog: editable text, non-editable
text, enumerated value, numerical value, exclusive lists, and non-exclusive lists. A description
of each field type is given in the paragraphs that follow.

Editable text fields are used to enter and edit text. Visually, an edit text field consists of
a box containing a caret cursor, an optional scrollbar, and a label to the left of the box indicat-
ing the purpose for the field. Only one editable text field is active in any one dialog. The active
editable text field has a dark border. Typing text with the mouse positioned anywhere in the
dialog inserts text into the active editable text field. Most of the basic emacs editing com-
mands can be used to modify the text in the field, as shown in table 19-1.

The insert position in the field may also be changed by pressing the left mouse button

The Almagest 19-5

Ptolemy Last updated: 12/1/97

when the mouse cursor is over the desired position. Any editable text field can be made active
by clicking the left mouse button inside the editable area. Alternatively, one can use theTab
key to make the next text field active andMeta-Tab to make the previous field active. Edit-
able text fields that display large amounts of text have a scrollbar to the left of the text area.
Pressing the left and right mouse buttons when the mouse cursor is in a scrollbar will scroll
the text down and up respectively in proportion to the distance between the mouse cursor and
the top of the scrollbar. As an example, pressing the left mouse button near the bottom of the
scrollbar will scroll down the text almost one screen. Pressing and releasing the middle mouse
button scrolls the text to a relative position based on how far the mouse cursor is from the top
of the scrollbar. Holding down the middle mouse button will interactively scroll through the
text.

Non-editable text fields are used to display text messages. They consist of a box con-
taining text and an optional scrollbar. The scrollbar operates just like those used in editable
text fields.

Enumerated value fields are used to specify one value out of a small list of values.
They consist of a value displayed inside a box and a descriptive label to the left of the value.
The border of the value highlights as the mouse cursor moves over it. Depressing and holding
the left mouse button inside the value box causes a menu to appear that displays all possible
values. The choices will highlight as the mouse cursor moves over them. To select a new
value, release the mouse button when the desired choice is highlighted. The new value will
appear in the value box. One can leave the value unchanged by releasing the mouse button
outside the menu boundary.

A numerical value field is used to specify a magnitude between a predetermined mini-
mum and maximum. Visually, it consists of a box containing a numerical value, a horizontal
scrollbar to the right of the box for changing the value, and a label to the left describing the

Key Description

delete, control-h Delete previous character
control-a Move to beginning of line
control-b Move backward one character
control-d Delete next character
meta-d Delete next word
control-e Move to end of line
control-f Move forward one character
meta-i Include a file
control-k Kill (delete) to end of line
control-n Next line
control-p Previous line
control-s Search forward
control-v Next page
meta-v Previous page
control-y Yank deleted text

TABLE 19-1: Emacs-style text editing commands supported in vem dialog boxes.

19-6 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

value. The magnitude of the value is changed by operating the scrollbar. Pressing the left and
right buttons in the scrollbar decrement and increment the value by one unit. Pressing the mid-
dle button changes the value based on the distance between the mouse cursor and the left edge
of the scroll bar. The middle button may be pressed and held to interactively modify the value.
Most people use the middle button to set the value roughly then use the left and right buttons
to make the value precise.

Exclusive lists are used to choose one possible value out of a (possibly quite large) list
of values. These values are displayed in a box with a scrollbar on the left edge of the box.
Each value consists of a button box on the left and a descriptive label to the right. As the
mouse moves over a button box, it will highlight to indicate it can be activated. The button box
of the selected item will appear dark while all others will remain light. If there are too many
values to display in the box at one time, the scrollbar can be used to scroll through the possible
values. The scrollbar operates in the same way as described for editable text fields.

Non-exclusive lists are used to choose zero or more possible values from a (possibly
quite large) list of values (see figure 19-2 on page 14). A non-exclusive list resembles an
exclusive list both in appearance and operation. However, unlike an exclusive list, one can
choose any number of items in a non-exclusive list. Visually, the two lists are distinguished by
the appearance of the button boxes. Exclusive button boxes resemble radio buttons. Non-
exclusive button boxes resemble check marks. Pressing the left button in a non-exclusive but-
ton box causes the value to toggle (i.e., if it was selected it becomes unselected, if it was unse-
lected it becomes selected).

Control buttons cause the dialog to carry out some operation. They consist of a text
label surrounded by a box. Control buttons are activated in one of two ways: pressing and
releasing the left mouse button when the mouse cursor is positioned inside the button bound-
ary, and through keystrokes. Not all control buttons can be activated using keystrokes. Those
that can be activated in this fashion display the key in parentheses under the button label.
Although there are exceptions, most dialogs support the keyboard accelerators given in table
19-2.

Dialogs may be bothmoded and unmoded. Moded dialogs are those requiring a
response before processing can proceed.Vem uses these kinds of dialogs to ask for confirma-
tion before proceeding. On the other hand, unmoded dialogs remain active until explicitly dis-
missed by the user. Other commands may be invoked freely while unmoded dialogs are
visible. Most non-confirmation dialogs invem are unmoded.

Key Action

<return>, <meta-return>, <F1> OK
<delete>, <meta-delete>, <F2> Cancel
<Help>, <F3> Help
<F4> All
<F5> Clear

TABLE 19-2: Keyboard accelerators supported by most vem dialog boxes.

The Almagest 19-7

Ptolemy Last updated: 12/1/97

19.3 General Commands
Below is a reference for allvem commands. This section outlines general commands

available for editing all types of cells. Section 19.4 discusses options, section 19.5 describes
the general selection mechanism. and section 19.6 describes property and bag editing features.
The next three sections describe editing commands for physical, symbolic, and schematic
cells respectively. The summary includes the name of the command as it appears on a menu, if
it appears in the menu. The command name can be typed in as well. Place the mouse in the
window where you wish to execute the command, enter the command arguments (points,
objects, etc.), type a colon (:), and type the command name. The TAB character will automat-
ically complete command names. The phrase <no-name> implies it has no default menu or
command name binding.

The list below also shows the default keyboard binding for each command, if it has
one, and the syntax of the argument list passed to it. The symbol <*> implies the command
has no default key binding. In general, the commands used most often have key and menu
bindings. Less often used commands may have only command name bindings. See table 2-3
on page 11 for a concise summary.

Somevem commands are not documented here because they are dangerous or conflict
with the objectives ofpigi . Those commands will not appear in thevem menu, and have no
key binding, although all are still available by typing them in. Adventurous users may wish to
consult the standardocttools documentation before using them.

<no-name> Delete or Control-H
Any Argument List

This command deletes the last item of the last argument on the argument list. Thus, if
the last argument is 10 boxes, it will delete the last box entered and the argument list
will be modified to contain 9 boxes.

<no-name> Control-W Any Argument List

This command is similar to the one above, but deletes the entire last argument on the
argument list. Thus, if the last argument is 5 lines, it will delete all 5 lines and leave the
remaining arguments unchanged.

<no-name> Control-X or Control-U
Any Argument List

This command erases the entire argument list allowing the user to start over.

bindings Saves Arguments

This command asks the user for a command and displays all of its current key, menu,
and alias bindings. The command will display a prompt (vem bindings>) and the user
can specify a command using any of the four means of normally specifying commands
(via menu, single keystroke, type-in, or last command). The command also outputs a
one line description of the command for help purposes.

close-window Control-D No Arguments

Theclose-window command closes the window the cursor was in when the command
was invoked. This DOES NOT flush the contents of the window to disk. Even after all
windows looking at a facet are closed, the contents are not saved on disk. This must be
done using thesave-window or save-all commands.

19-8 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

deep-reread <*> [objs]

The deep-reread command is a specialized form of the re-read command. With no
arguments, it re-reads a facet and all of master facets of its subcells (instances). Both
the contents and interface facets of the instances are re-read. If a set of objects is spec-
ified, the command re-reads the master cells of the instances in the object set. Only the
master cells of the instances are re-read; cells are not re-read recursively when using
this form.

interrupt ^C No Arguments

This routine interrupts (deactivates) the window containing the cursor. No drawing
will be done in the window until a full redraw requested by the user (using pan, zoom,
or redraw-window) is done. The key binding for this command can also be used while
a window is drawing to immediately stop drawing in that window.

kill-buffer <*> "cell view {facet} {version}"

Thekill-buffer command flushes a facet out of memorywithout saving its contents. If
the string specification of the facet is missing, the facet is determined by the window
containing the cursor.All windows looking at this facet are destroyed. There are no
key or menu bindings for the command and it will ask the user for confirmation before
carrying out the command.

log-bindings <*> Saves Arguments

Thelog-bindings command writes out a description of all type-in, menu, and key bind-
ings for all commands in the editing style of the window containing the cursor. This
description is written to the log file for the session.

open-window o [box] or
"cell:{view:{facet:{version}}}"

Theopen-window command is primary way to create new graphics windows invem. It
takes a string specifying the cell to open. When specifying the cell portion of the
name, typing a TAB will attempt to complete the string as a file or offer alternatives if
the name is not unique. If this string is absent, it will duplicate the window containing
the cursor. Normally, the extent of the duplicated window is the same as the parent
window. However, if the user specifies a box, the duplicated window will be zoomed
to that extent (see zoom-in). The string specifying the cell contains four fields. The last
three are optional and default to “physical”, “contents”, and the null string respec-
tively. It is possible to specify your own defaults for these fields. Newly created win-
dows are always zoomed to contain all geometry in the cell. If the cell does not exist, it
will be created. When creating new cells,vem prompts the user for required cell prop-
erties. See the introduction for details. Most of the time, the defaults presented in this
dialog are acceptable and activating theOk button is sufficient to proceed.

palette P {"palette-name"}

Thepalette command opens a new window onto a previously created facet which con-
tains standard layers or instances for a given technology. This window can be used to
select layers for creating geometry or instances for instantiation. The command takes
one argument: the name of the palette. If omitted, it defaults to “layer”.

Palette cells are found using the function tapGetPalette (see tap(3)). For all standard

The Almagest 19-9

Ptolemy Last updated: 12/1/97

technologies and viewtypes, there is a “layer” palette. In the symbolic editing style,
there are also “mosfet” and “connector” palettes which display mosfets and connectors
respectively. In the schematic editing style, there are “device” and “gate” palettes
which contain device level and gate level schematic primitives. New palettes can be
added easily. See “Customizing Vem” for details.

pan p [Any Arguments] [point]

Thepan command centers the window containing the cursor around the last point on
the argument list. The window will be redrawn so that the argument list point is now
the center of the window. The point need not be in the same window as the cursor.
Thus, a user can point in a window showing a large portion of a cell and invoke the
command in a more detailed window for a magnifying glass effect. If the point is omit-
ted, the command assumes the cursor position is also the desired center point. This is
the fast way to pan in a single window.

pop-context) No Arguments

This command pops off an input context from the context stack and replaces the cur-
rent context with that context. See thepush-context command for details.

push-context (No Arguments

This command pushes the current argument list context onto the context stack and
gives the user a new context. This can be used to do other commands while preserving
entered arguments. Note that the current arguments remain displayed. The old context
can be restored using thepop-context command. Four context levels are supported in
the current version ofvem.

push-master <*> {"facet"}

Thepush-master command opens a new window on the master of the instance under
the mouse cursor. This command can be used all editing styles. If a facet name is sup-
plied, the command will use that facet name instead of “contents”. In Ptolemy, this
command is rarely needed. Theedit-icon command accomplishes the same objective.

recover-facet <*> No Arguments

Unless directed otherwise,vem saves all cells occasionally in case of a system crash or
some other unforeseen disaster. Whenever a new cell is opened,vem checks to see if
the last automatically saved version is more recent than the user saved version. If the
automatically saved version is more recent, a warning is produced and the user version
is loaded. One can use therecover-facet command to replace the cell with the more
recent automatically saved version. The command displays a dialog containing a list of
all of the saved versions. Generally, there are two possible alternative versions for a
cell. Theautosave version is written byvem automatically after a certain number of
changes to the cell. Thecrashsave version is written whenvem detects a serious error.
Note that the crashsave version may itself be corrupt since a serious error occurred just
before it was written. This command is destructive: it replaces the cell with the
selected alternate. One can use theCancel button to abort the recovery. Before using
the recover-facet command, it is often useful to view the alternate cells. This can be
done by specifying the version (either “autosave” or “crashsave”) as the last field in
the cell specification toopen-window.

19-10 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

re-read <*> No Arguments

There-read command flushes the facet associated with the window containing the cur-
sor out of memory and reads it back in from the disk. This can be used to see changes
to a cell that were done outsidevem or to revert back to the cell before changes were
made. This is a dangerous command andvem asks for confirmation before proceeding.

redraw-window Control-L [box]

This command redraws the contents of the window containing the cursor. It does not
effect the argument list (i.e. it can be done regardless of the argument list contents). If
a box is provided, only the portion of the window in the box is redrawn. If the window
is interrupted, this command will reactivate it. However, if the box form is used,vem
will only draw the specified area and leave the window deactivated. This can be used
to selectively draw portions of a deactivated window.

same-scale = [Any Arguments] [point]

This command changes the scale of the window containing the mouse to the same
scale as the window containing the last point on the argument list. It is commonly used
to compare the sizes of two facets.

save-window S [Any Arguments]

This command saves the contents of the facet associated with the window where the
command was invoked. It asks for confirmation and does not effect the argument list.

set-path-width w [box] [line] [point] or
["size string"]

This command sets the current path width for a given layer on a window-by-window
basis. It takes one argument which may be points, lines, boxes, or text. For points and
lines, the argument length must be two. The path width is set to the maximum Manhat-
tan distance between the points. For boxes, only one box is allowed and the new width
is the larger of the two dimensions. For text, the string should contain the path width in
lambda. If no width is specified, the path width will be set to the minimum layer width
as specified in the technology.

The layer for the path width command is determined by looking at the object under the
cursor. If there are objects on more than one layer under the cursor, a dialog will be
presented and the user should choose one of the listed layers and press “OK” to con-
tinue.

show-all f No Arguments

Theshow-all command causesvem to zoom the window containing the cursor so that
all of the cell is displayed in the window. The key binding is an abbreviation for “full”.
It does not effect the argument list.

switch-facet <*> ["cell view {facet {version}}"]
or [point]

This command replaces the facet in the window containing the mouse with a different
facet. The first form replaces the window’s facet with the named facet. The second
form replaces the window’s facet with the facet of the window containing the point.

The Almagest 19-11

Ptolemy Last updated: 12/1/97

toggle-grid g No Arguments

The toggle-grid command toggles the visibility of the grid in the window containing
the cursor.

version V No Arguments

This command outputs the current version ofvem to the console window.

where ? No Arguments

Thewhere command can be used to find out the position of the cursor in terms ofoct
units. It also displays a textual representation of the objects under the cursor. The com-
mand can be issued while building an argument list without effecting the list. Alterna-
tively, if the argument list includes an object set, the where command will print textual
descriptions of the selected items.

write-window W "cell:view" [any arguments]

Thewrite-window command saves the contents of the cell associated with the window
where the command was invoked under another name. This alternate name is specified
by the “cell:view” argument.

zoom-in z [Any Arguments] [box]

The zoom-in command zooms the window containing the mouse to the extent indi-
cated by the last box on the argument list. The box and the zoom window must be in
the same facet. However, the extent may be in a different window from the mouse
which can be used to achieve a magnifying glass effect. If the box is not provided, it
zooms in the window containing the mouse by a factor of two. If provided, the com-
mand removes the box from the argument list but leaves other arguments untouched.

zoom-out Z [Any Arguments] [box]

Thezoom-out command is the opposite of zoom-in. This command zooms the window
containing the mouse out far enough so that the OLD contents of the window are con-
tained in the extent of the box provided on the argument list. Thus, smaller boxes
zoom out farther than larger ones. If the box is omitted, the window containing the
mouse is zoomed out by a factor of two.

19.4 Options
The options commands below all post form windows which allow a user to change dis-

play parameters interactively. The default values for these parameters can be changed in your
~/.Xdefaults file. See the separate document “Customizing Vem” for details.

All of the options dialogs below areunmoded. This means that the user can do other
things while the dialog is posted. They will not go away until explicitly closed by the user.
Details on the operation of dialog boxes can be found in “Using Dialog Boxes” on page 19-4.

window-options <*> No Arguments

This command posts the dialog in figure 19-1, which presents a number of window
related options each of which can be modified by the user on a window-by-window
basis. Two kinds of options are presented in this dialog: flag options and value options.
Flag options have a check box on the left of the option and can be either on or off.
Pressing the left mouse button in the check box toggles the value of the option. Value

19-12 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

options display a numerical value in a box with a descriptive label to the left and a
scrollbar to the right for changing the value. At the bottom of the dialog are four con-
trol buttons:Ok, Dismiss, Apply, andHelp. Pressing the left mouse button inside the
Ok button saves any options you may have changed and closes the window. TheDis-
miss button does not save any options and closes the window. TheApply button saves
any changed options but does not close the window. TheHelp button will open a win-
dow containing a brief description of the dialog. Each of the options and their mean-
ings are given below:

“Visible Grid”
If set, a grid will be shown in the window.

“Dotted Grid”
If the grid is visible and this option is set, the grid will be drawn as dots
rather than lines.

“Manhattan Argument Entry”
If this option is set, entering line arguments and dragging option sets
will be restricted to Manhattan angles. This option is set by default in
the symbolic and schematic editing styles.

“Argument Gravity”
If set, all lines
entered using
the left button
whose endpoints
are near an actual
terminal will be
snapped to that terminal. This is especially useful when editing sche-
matic diagrams (vem automatically turns this option on when the edit
style is set to schematic). The .Xdefault parametervem.gravity specifies
the maximum distance between line endpoints and terminals for gravity
to have an effect (by default, 10 pixels).

“Show Instance Bounding Boxes”

FIGURE 19-1: The “window options” dialog box in vem.

The Almagest 19-13

Ptolemy Last updated: 12/1/97

If this option is set,vem will display bounding boxes around all
instances. The instance name will be displayed in the center of these
bounding boxes.

“Show Actual Terminals”
When viewing very large designs, drawing the highlighting around
actual terminals can be expensive. If this option is turned off,vem will
not draw highlighting around actual terminals.

“Expand Instances”
If on, the contents facet of instance masters will be displayed. Other-
wise, the interface facet will be displayed. This has the same effect as
thetoggle-expansion command.

“Visible Title Bar”
If this option is set,vem will display its own title bar above each graph-
ics window. If the option is turned off, the title bar will be turned off.

“Oct units per Lambda”
This parameter specifies the number ofoct units per lambda. The out-
put of the where command and the coordinate displays in the title bar
are displayed according to the value of this parameter. By default,vem
uses 20oct units per lambda.

“Snap”
All graphic input into the window will be snapped to multiples of this
parameter (given inoct units). By default,vem snaps to one lambda
(20 oct unit) intervals.

“Major Grid Spacing”
This parameter specifies the grid spacing of major grid lines inoct
units. If logarithmic grids are turned on, it specifies a multiplying factor
for major grid line spacing (see Log Grid Base below).

“Minor Grid Spacing”
This parameter specifies the grid spacing of minor grid lines inoct
units. If logarithmic grids are turned on, it specifies a multiplying factor
for minor grid line spacing (see Log Grid Base below).

“Log Grid Base”
If non-zero, this option selects a logarithmic grid. Normally, there are
two grids drawn at a fixed number ofoct units (major and minor grid
lines). In a logarithmic grid, grids are drawn at some constant (specified
by the Major Grid and Minor Grid parameters above) times the nearest
integral power of the grid base. For example, if the constant is two and
the base 10, grids will be drawn at 2, 20, 200, etc.

“Minimum Grid Threshold”
This parameter specifies the smallest allowable space (in pixels)
between grid lines beforevem stops drawing them.

19-14 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

“Log Grid Minimum Base”
This parameter specifies the smallest base to be used for drawing loga-
rithmic grids (see above).

“Solid Fill Threshold”
This parameter specifies the size (in pixels) before a shape is drawn
using solid fill rather than stipple fill. A large number specifies all
geometry should be drawn solid regardless of its size.

“Bounding Threshold”
Label text drawn in bounding boxes (e.g. instances or terminals) may or
may not be drawn depending on the size of the bounding box. This
parameter specifies how many times wider the text may be than the box
before the label is not drawn.

“Abstraction Threshold”
This parameter specifies the maximum size of a bounding box (in pix-
els) where it is acceptable to draw a filled box rather than an outline to
speed the drawing process.

“Interface Facet”
This string parameter specifies the name of the displayed interface
facet. This facet will be used to draw instances in unexpanded mode.

layer-display<*>No Arguments

This command posts the dialog shown in figure 19-2, which can be used to selectively
turn on or off the display of any layer. At the bottom of the dialog are six control but-
tons. TheOk, Dismiss, Apply, andHelp buttons work in the same way as described for
window-options. TheAll button automatically selects all of the layers displayed in the
body of the dialog. TheClear button automatically unselects all of the layers displayed
in the body of the dialog. Above the control buttons there is a list of all layers dis-

FIGURE 19-2: Layer display options in vem.

The Almagest 19-15

Ptolemy Last updated: 12/1/97

played in the window. The layers currently shown in the window have buttons to the
left of the layer name that have check marks. Those that are not shown have buttons to
the left of the layer name that appear empty. The state of a layer can be changed by
moving the cursor over the corresponding button and depressing the left mouse button.
Note that no window update will occur until eitherOk or Apply are pressed.

19.5 Selection
The selection commands described below are used to manipulate object arguments on

the argument list.

select-layer . [objs] [pnts] [lines] [boxes] "layer"

Theselect-layer command is similar to theselect-objects command but allows the user
to select only the geometries on a particular layer. This layer can be specified in two
ways: the layer name can be typed in as the last argument or the command will try to
determine the layer by looking at the geometry under the cursor when the command is
invoked. If the spot for the layer is ambiguous,vem will post a dialog presenting a
choice between the layers.

select-objects s [objs] [pnts] [lines] [boxes] "layer"

Theselect-objects command is used for placing collections of objects on the argument
list for further processing by other commands. It takes as arguments any number of
points, lines, or boxes. Points select items under the point, lines select objects which
cross the line, and boxes select objects inside the box. Ifselect-objects is not given any
point, line, or box arguments, it will try to select items under the cursor where the
command was invoked. These semantics are described in detail below.

For each point, the command adds zero or more of the objects under the point to the
list. If there is more than one object under the point, a dialog will be posted with but-
tons representing each of the objects under the point. Clicking the mouse in one of the
buttons highlights the object. Once the user has clicked on the desired objects, theOk
button is used to actually select the items.

For each line argument, the command adds all objects which intersect the line. This is
useful for schematic drawings where paths (wires) are zero width. Selection using
lines works best if the entered lines are Manhattan. Non-Manhattan lines may select
more objects than intended.

For each box, the command adds all objects completely contained in the box to the list.
Note that an object is considered contained if and only if itsboundingbox is com-
pletelyinside the given box. Theselect-objects command is incremental; i.e. it may be
called many times, each time adding to the selected set. All items selected are high-
lighted in thevem highlight color.

select-terms ^T [objs][points][lines][boxes]

This command selects all terminals (both actual and formal) whose implementations
intersect the objects found by examining the argument list. The semantics for specify-
ing the objects is identical to that described forselect-objects. The items on the argu-
ment list will be replaced with the set of terminals found by examining the items. This
command is useful for deleting formal terminals, specifying actual terminals for use

19-16 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

by edit-property or select-bag, or creating new symbolic formal terminals usingpro-
mote. As such,it is extremely dangerous in Ptolemy.

transform t [objs]

This command takes a selected set of objects built by selection commands and trans-
forms them. The objects remain on the selected set. It is important to note that the
actual objects in the database are not affected by this command. The transformation is
associated with the object set not with the objects themselves.

The command takes (up to) three arguments: a set of objects to work on, a text rotation
specification, and two points indicating a relative translation. The object set must be
supplied. The rotation specification is a list of keywords, enclosed in quotation marks,
separated by colons:

“mx” Mirror around the Y axis.

“my” Mirror around the X axis

“90” Rotate counter-clockwise 90 degrees.

“180” Rotate counter-clockwise 180 degrees.

“270” Rotate counter-clockwise 270 degrees.

If both a rotation and a translation are given, the rotation specification should come
first. If no rotation and translation are given, the command rotates the items 90 degrees
counter-clockwise.

Thetransform command is incremental. This means it can be applied many times with
each command having a relative effect on the current selected set. For example, invok-
ing transform without arguments twice is the same as invoking it once and specifying
the rotation string “180”.

Once the command completes, the highlighted form of the objects will reflect the
specified transformation. This can be used as a reference for further rotations or trans-
lations.

Translations are specified by two points. A relative translation is applied to the current
transformation based on the vector formed by the two points. It is also possible to
interactively specify the translation of a selected set. This is done by moving the cursor
to a reference point and pressing, dragging, and releasing the right mouse button.
While the right button is depressed, the selected objects will track the cursor motion.
This can be used to drag items around interactively.

After completing a transformation with transform, the objects are not actually changed
until a command that manipulates objects is invoked (e.g. move-objects, copy-objects,
etc.). See themove-objects andcopy-objects commands below for more information.

unselect-objects u [objs] [pnts] [lines] [boxes]

The unselect-objects command is used to remove items from a previously created
object argument (select-objects operation). Any number of points, lines, and boxes
may be specified. The semantics for mapping these arguments to objects is the same as
select-objects. For each point, zero or more items beneath the point that are part of the

The Almagest 19-17

Ptolemy Last updated: 12/1/97

selected set are removed. For each line, all items in the selected set intersecting the line
are removed from the set. For each box, all items completely contained in the box that
are part of the selected set are removed from the set.

It is important to note that this command is intended to be used to unselect small sets
of already selected objects. To unselect all items on the argument list, use control-W or
control-U.

19.6 Property and Bag editing
Theoct Data Manager supports two kinds of annotation: properties and bags. Proper-

ties are named objects which may have an arbitrary value and can be attached to any other
oct object. Properties are used bypigi to store parameters. Bags are named objects which
can contain any number of otheroct objects, and are not used bypigi . Bags are used to rep-
resent common collections of objects (instances for example) that can be accessed efficiently.
There are a number ofvem commands used to create, edit, and delete properties and bags.
However, since only one of these is useful inpigi , only one is documented here.

show-property <*> [objs]

The show-property command produces a list of all the properties associated with the
object under the cursor when the command was invoked (or all objects in the selected
set). If there are many objects under the cursor, the command will present a dialog
which lists each object. The user can select one by clicking the mouse in the check box
next to the object name. The object will be highlighted. When the right object is found,
the user can clickOk to show the properties attached to the object. If the cursor is not
over an object and nothing is in the selected set, the properties attached to the facet are
shown. The properties are shown in the form: xid: name (type) = value. Thexid is the
external identifier for the property and can be used in evaluated labels. The command
also echoes the type of the object each property is connected to.

19.7 Physical editing commands
The physical editing style invem is used bypigi for editing icons. The commands

described below are available in addition to the common commands described in the previous
section.

alter-geometry a [box] [lines] or [pnts]

This command replaces the box, path, or polygon under the cursor with the new speci-
fication supplied on the argument list. This can be used to “stretch” geometry or
change their composition. For example, to make a box slightly larger, enter the slightly
larger box onto the argument list, move the mouse over the old box, and invokealter-
geometry.

change-layer l [objs] or [pnts][lines][boxes] "layer"

Thechange-layer command detaches geometry from its current layer and attaches it to
a different layer. The geometry can be specified either as an object set constructed by
the selection commands, or directly by drawing points on them, drawing lines through
them, or drawing boxes around them. Normally, the target layer is determined by look-
ing at the geometry under the cursor when the command was invoked. However, if the

19-18 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

last argument to the command is text, it is interpreted as the name of the target layer.

copy-objects x [objs] {pnt pnt}

The copy-objects command copies a set of objects from one place to another. The
command takes an object argument that should contain a list of objects to be moved
(this is built with select-objects and unselect-objects). The command assumes the
object set has been transformed using thetransform command or interactively dragged
to a new location with the right mouse button. The command makes a copy of the
objects which are transformed according to this translation. For example, to copy
objects from one location to another, the user first selects the objects usingselect-
objects, then interactively drags the objects using the right button (transformation),
then invokes thecopy-objects command to make a copy at the new location. Since the
items remain selected, new copies can be made without reselecting the objects.

The optional second argument should be two points which specify the source and des-
tination points of the copy. This alternative can be used if the object set is too large for
interactive dragging or one wishes to copy objects from one facet into another. If the
copy is from one facet to another facet, terminals will not be copied and the objects
will be copied in a manner that preserves the position of the objects relative to the
source point. The default key binding for this command is short for “xerox”.

create-circle C [line] [pnts] "layer"

Sincevem does not have a circle argument type, a special circle drawing command has
been added. For most types of geometry, the user should usecreate-geometry. Circles
are specified in one of two ways. The first is a line followed by up to two points. The
line specifies a filled circle with the first point being the center and the second its outer
radius. If the first point is supplied, an arc is assumed with an angle formed by the sec-
ond point of the line, the center point and the newly specified point. The angle is mea-
sured counter-clockwise. If the last point is supplied, it specifies the inner radius of the
circle (otherwise the inner radius is zero). The second form takes two points and an
optional point. It specifies a circle where the inner and outer radius are the same. If the
last point is supplied, an arc with the same semantics as the first form is assumed.
Finally, the layer of the circle is determined from the cursor position or by a final text
argument specifying the layer directly.

create-geometry c [pnts] [lines] [boxes] [text] "layer"

The create-geometry command creates new geometry. It takes any number of points,
lines, boxes, or text and a layer specification. A points argument creates a closed poly-
gon. A line argument creates a multi-point path. Box arguments create boxes. Finally,
text arguments create labels. When creating labels, the point set after the label is inter-
preted as the target points for the label. All the geometry is created on the same layer.
This layer may be specified as the final text argument to the command or by invoking
the command over an object attached to a layer. If the layer is ambiguous, the com-
mand will present a choice of layers in a dialog box. The palette command can be used
to create a window which offers all possible layers for creating geometry.

create-instance <*> [pnt] {"master:view name"}

In most cases, the leaf cells designed with the physical editing style are not hierarchi-
cal. Instead, instances of the low-level cells are connected together using the symbolic

The Almagest 19-19

Ptolemy Last updated: 12/1/97

editing style. However, those who would like to usevem as a purely physical design
editor require instances in physical cells. This command places instances in the physi-
cal editing style.

The instance is placed relative to the point supplied to the command. The master of the
instance can be specified in two ways. In the first form, the user supplies a text argu-
ment which contains the cell, view, and instance names separated by spaces. The
instance name is optional. The second form determines the master of the instance by
looking at the instance under the cursor when the command is invoked. This instance
can be in the same cell or in another cell. A common practice is to build a cell of prim-
itives and use this cell as a menu for placing physical instances (see thepalette com-
mand).

create-terminal <*> ["term name"]

This command creates a new formal terminal named “term name”. The implementa-
tion of the terminal is determined by constructing a list of all geometries under the spot
where the command was invoked and choosing the smallest coincident boxes from this
list. This command is dangerous inpigi .

delete-objects D [objs] or [pnts] [boxes] "layer"

The delete command removes objects from a cell. The command has two forms. The
first takes an object argument constructed using selection commands and deletes all of
the items in this set. The second takes any number of point, line, and box arguments
and a layer specification. This form deletes all objects under the points, all objects
which intersect the lines, and all objects completely contained in the boxes that are
attached to the specified layer. The layer may also be specified by placing the cursor
over some other object attached to a layer when the command is invoked. If no layer is
specified, all of the geometry is deleted.

edit-label E [pnt] {"LAYER"} or [objs]

The edit-label command creates and edits labels. The command has two forms. The
first form creates a new label at the specified point on the given layer. If the layer is not
specified, it will be determined by looking at the object under the cursor. The second
form edits labels selected using theselect command.

Labels inoct are represented as a box where the text is drawn entirely inside the box
subject to justification and text height parameters. The edit-label command builds the
box automatically by examining the text height and text itself. Thus, the user can con-
trol the justification, text height, and the label text. These parameters are set using the
edit-label dialog box. This is a modeless dialog box that is posted when the user
invokes the edit-label command.

The edit-label dialog box, shown on page 14, consists of three check-box areas for
adjusting the label justification, and two type-in fields for adjusting the text height and
the text itself. The justifications are computed in relation to the point the user specified
when the label was first created. Thus, the horizontal justification specifies whether the
point should be to the left, center, or right of the text. Similarly, the vertical justifica-
tion specifies whether the point should be on the bottom, center, or top of the text.
Finally, the line justification specifies how the lines should be justified within the text
block when there is more than one line. The text height of the text is given inoct

19-20 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

units. Note that the X window system does not directly support fully scalable fonts.
Thus,vem uses a strategy where it will pick the closest font from a set of fonts that can
be specified as a start-up parameter (see the document “Customizing Vem” for details).
Finally, the last type in field can be used to enter the text for the label. The label can
have as many lines as necessary.

At the bottom of the dialog are four control buttons:Ok, Apply, Dismiss, andHelp. The
Ok button updates the value of the label and causes the dialog to close. TheApply but-
ton updates the value of the label (showing the effects in the graphics window) but
does not close the dialog. This allows the user to adjust the label several times if neces-
sary. TheDismiss button closes the dialog without updating the value of the label.
Finally, theHelp button displays some help about how to use the dialog.

move-objects m [objs] {pnt pnt}

The move-objects command moves a set of objects from one place to another. The
command takes an object argument that should contain a list of objects to be moved
(this is built with select-objectsand unselect-objects). The command assumes the
object set has been transformed using thetransform command or interactively dragged
to a new location using the right mouse button. The command moves the objects to a
new location based on this transformation. For example, to move objects from one
location to another, the user first selects the objects usingselect-objects, then interac-
tively drags the objects using the right button (transformation), then invokes themove-
objects command to actually move the items to the new location. The items remain
selected for further moves if necessary.

The optional second argument should be two points which specify the source and des-
tination points of the move. This alternative can be used if the object set is too large for
interactive dragging. Unlike thecopy-objects command, objects cannot be moved from
one facet to another.

19.8 Symbolic editing commands
The symbolic editing commands invem allow the user to editoct symbolic views.

Symbolic views are used to represent layout in a form suitable for compaction and simulation.
Since they are not used bypigi , they are not documented here.

19.9 Schematic editing commands
The schematic editing style is an extension of symbolic. In addition to the general,

selection, and options editing commands, the following commands are specific to the sche-
matic editing style:

delete-objects D [objs] or
[pnts, lines, boxes] ["layer"]

This command takes either an object list created with theselect-objects andunselect-
objects commands, or points, lines, and boxes with an optional layer-name. The resulting
objects are deleted from the cell.

The Almagest 19-21

Ptolemy Last updated: 12/1/97

select-major-net Control-N
pnts, lines, or boxes
["net name"]

This command finds the net associated with the object under the points, intersecting
the lines, or inside the boxes and highlights all objects on that net. If no points, boxes,
or lines are specified, the object under the cursor will be examined. Alternatively, if a
net name is provided, objects on the named net are highlighted. This command can be
used to check the connectivity of a symbolic cell. The command is incremental (i.e.
multiple nets can be selected).

move-objects m [objs] {pnt pnt}

The move-objects command in schematic editing mode is similar to the same com-
mand in physical editing mode above. One difference, however, is that the connectivity
of the items moved by this command is not changed. This means an instance moved
using this command also causes the segments attached to its terminals to move as well.
Moving objects between facets is not supported.

copy-objects x (See Below)

The copy-objects command copies a set of objects from one place to another. This
command has the same form asmove-objects (see above) except that the objects are
copied not moved. Likemove-objects, the objects copied remain on the argument list
for further move and copy operations. However, unlikemove-objects, the connections
to the objects in the selected set are not copied. Instead, the connectivity between the
selected items is copied along with the objects.

create c (See Below)

Thecreate command allows the user to add new objects to a schematic cell. Different
arguments given tocreate will produce different objects.

Formal Terminals — “terminal-name [type] [direction]” : create

Whencreate is given a single argument string, the name of a new formal terminal, a
formal terminal is created. The implementation of the formal terminal is taken to be
the actual terminal currently under the mouse (note: a connector terminal can also be
used for this purpose). Since terminals in schematic may be quite small, this routine
will try to find nearby terminals if it doesn’t find a terminal directly beneath the cursor.

Formal terminal names must be unique within the cell. If a formal terminal of the
given name already exists,vem will display a dialog box asking whether or not you
wish to replace the old terminal.

Two optional pieces of annotation can be placed on the terminal: type and direction.
The type can be one of SIGNAL, CLOCK, GROUND, SUPPLY, or TRISTATE. If not
provided, SIGNAL will be assumed. The direction can be one of IN, OUT, or INOUT.
If not specified, INOUT will be assumed. If either of these values are not provided in
the terminal name specification,vem will post a dialog box containing fields for enter-
ing both the terminal type and direction. Pressing the left mouse button in the value
area for these fields will cause a menu of the possible choices to appear. New values
can be selected by releasing the mouse button over the desired value. Once appropriate
values are selected, activating theOk button at the bottom of the dialog will save the

19-22 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

annotations. Activating theDismiss option will leave the annotations unspecified.
These annotations can be edited later using the edit-property command.

Instances — pnts [[master:view] [instance-name] : create

If the arguments tocreate are a number of points followed by an optional string,
instances will be created with their origins at those points. If the name of the master is
not specified textually, it will be inferred from the instance under the mouse.

The string argument has two parts: the instance specification and name. Both of these
fields are optional. Specifying a null string is considered to be the same as no string at
all. The instance specification is a master-view pair, such as “amp:schematic”. If this
field is left out, the master is inferred from the instance under the mouse. Otherwise,
an attempt is made to locate the instance by the master-view pair. If the name field is
given, the instance will be given the specified name.

NOTES: Newly created instances whose actual terminals intersect actual terminals of
other instances will be automatically connected. In this case, no path is required
between the terminals. Rotated and mirrored forms of instances can be created by
instantiating a new instance and using the transform and move-objects or transform
and copy-objects commands.

Paths — lines : create

This command creates new segments for connecting together instance actual termi-
nals. A new series of segments will be created on a predefined layer (WIRING). Con-
nector instances will be placed automatically at all jog points. The width of the new
path is always zero.

Normally, the schematic editing style has a feature turned on called “gravity”. When
you draw segments with gravity turned on,vem will try to connect the segments to a
nearby terminal if you miss a terminal by a small amount. This is useful when editing
a large cell.

edit-label E [pnt] {"layer"} or [objs]

The edit-label command creates and edits labels, and is identical to the version in
physical editing mode, documented above.

19.10 Remote application commands
The following commands apply only if a remote application, likepigi Rpc, is run-

ning.

kill-application <*> No Arguments

The kill-application command kills the remote application which has control of the
window where the command was invoked. This can be used to terminate runaway
remote applications. Note it has no standard menu or key bindings; it is a type-in com-
mand only. This command may not work on all machines.

rpc-any r "host pathname"

This command starts up a remote application which is not on the standard list of appli-
cations in thevem menu. “host” specifies the network location for the application and
“path” specifies the path to the executable on “host”. If the host specification is omit-

The Almagest 19-23

Ptolemy Last updated: 12/1/97

ted, the local machine is assumed.

rpc-reset <*> No Arguments

If an application terminates abnormally,vem may not recognize that the window no
longer has an application running in it. This command forcesvem to reset the state of
the window so that new applications can be run in it.

19.11 Customizing Vem
The oct manual would be required only by programmers wishing to modify

pigiRpc ; it is available from the Industrial Liaison Program office, Dept. of EECS, UC Ber-
keley, Berkeley CA 94720 (http://www.eecs.berkeley.edu/~ilp).

The Postscript fileVemcustom.ps can be found in theother.src tar file in the
Ptolemy distribution asptolemy/src/octtools/vem/doc/Vemcustom.ps . This file
describes some of the X resources that can be set invem.

If you are trying to modify the look and feel ofvem, see “X Resources” on page 2-54.
For a fairly complete list of X resources, you can also look at thedefaults.c and
defaults.h files in theptolemy/src/octtools/vem/main directory. These files can
be found in the Ptolemyother.src tar file. If you are having font problems with vem, see
“pigi fails to start and gives a message about not finding fonts” on page A-20.

19.12 Bugs
See also “Bugs in vem” on page A-33.

 • Opening a facet that is inconsistent (either out of date or one with conflicting termi-
nals) is not handled very gracefully.

 • Bounding boxes may not be drawn if there is no geometry in the cell.

 • The set path width command doesn’t work if you use a palette to specify the layer.

19-24 Vem — The Graphical Editor for Oct

U. C. Berkeley Department of EECS

