
e

re
nt

lly
 as
 in
te-
is a
is

les
ola
 we
ation

f
rs

this
we
, we
in

be
nks
. For
ce
a C
To

SP
ion
n
ome

tal
SP

, a
ted
F-
ins
gh-
 be

ion

IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, May 1996
INTERFACE SYNTHESIS IN HETEROGENEOUS SYSTEM-LEVEL
DSP DESIGN TOOLS

José Luis Pino, Michael C. Williamson and Edward A. Lee

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

{pino,cameron,eal}@EECS.Berkeley.EDU
http://ptolemy.eecs.berkeley.edu/~{pino,cameron,eal}

ABSTRACT
In this paper we describe a framework that constructs

interfaces between simulation tools and real-time prototyping
hardware in a high-level DSP synthesis environment. A goal of this
work is to abstract the concept of the interface so that customized
links are not required between each simulation and hardware
engine. To support a new engine, the DSP system designer must
define two pairs of communication primitives between the new tool
and host workstation. The interface construction mechanism
provides incremental compilation of subsystems in a system
specification into the high-level DSP synthesis environment. We
illustrate this framework with practical examples that have been
constructed in Ptolemy.

1. INTRODUCTION
In this paper we describe a framework for automatic interface

construction between prototyping and simulation engines
(hardware or software) in high-level DSP synthesis tools. The
techniques described here have been tested using the synchronous
dataflow (SDF)[1] model of computation in Ptolemy[2] and can be
extended to other models of computation. The framework described
in this paper provides incremental compilation, interfaces to foreign
simulators, and interfaces between code generation domains.

These interfaces serve a similar purpose to discrete-event
simulation backplanes found elsewhere [3, 4]. However, the
interface mechanism that we are using is more restrictive. In our
model, the application specification semantics are limited to a form
of dataflow known as SDF. Through use, SDF has proven to be an
appropriate model for describing multirate signal processing
applications. We will cover this model in more detail in section 2.
By limiting ourselves to SDF, we are able to statically schedule and
then incrementally compile subsystems into monolithic actors.
Thus by limiting our semantics at the interface, we are able to have
a better optimized implementation. Furthermore, SDF allows us to
not only schedule the dataflow actors in an application but also
schedule all of the communication links needed between the
various simulation and hardware engines, thus guaranteeing a
deadlock free execution. We are doing this at the expense of the
generality of the interface.

Previous work capable of integrating prototyping hardware
using dataflow in a high-level DSP synthesis tool includes [5-7]. In
all of these papers, the subsystems are not incrementally compiled
(i.e., compiled into monolithic actors that can be added to the
designer’s actor library) but rather are built from dedicated custom
code for each pair of simulation/hardware engines to be linked.

Thus in previous approaches, there would have to be
links defined to linkN prototyping and simulation engines. In th
framework described in this paper, we need to have onlyN links
defined.

In typical high-level DSP synthesis environments there a
two modes of execution. The first is in an interpretive environme
in which the high-level application specifications are run interna
(thus, interpreted) within the environment. We refer to this mode
running an application specification in simulation. For example,
Ptolemy, simulation domains include SDF-simulation, discre
event (DE), and process networks (PN). The second mode
synthesis environment in which custom application code
generated from the high-level application specification. Examp
of code generation domains in Ptolemy include C (CGC), Motor
56001 assembly (CG56) and VHDL. For purposes of this paper,
can assume that the code generation domains and SDF-simul
all obey SDF semantics.

In this paper, we will first review the SDF model o
computation. Then we will describe the communication acto
needed to support a new simulation or hardware engine in
framework. With the knowledge of these communication actors,
detail the interfaces that can be automatically generated. Finally
will review two examples that have been implemented with
Ptolemy.

There are two basic types of interfaces that can
constructed. The first type of interface constructs specialized li
between the heterogeneous simulation and hardware engines
example, CGC can be mixed with CG56 and VHDL to produ
programs that execute concurrently on a host workstation as
compiled UNIX process, a DSP card and a VHDL simulator.
interface these various simulation and hardware engines, a D
system designer need only to define two pairs of communicat
primitives for each tool which allow for communication betwee
the engine and C running on the host. These new primitives bec
part of a reusable library.

The second type of interface allows for the incremen
compilation of code generation subsystems into the high-level D
synthesis environment. For example, using this technique
compute-intensive subsystem in SDF-simulation can be retarge
to CGC and compiled to become a single monolithic actor in SD
simulation. In general, any collection of code generation doma
within a code generation subsystem can be linked into the hi
level DSP synthesis tool in this manner. The new actor can then
added to the designer’s actor library.

Thus, this interface mechanism allows for easy incorporat

N N 1–()

tors
ode
ion
is

the

are
ve
tion

By
der
lock
tors
on
ed
is
at

dule

eive
 As
ate
DF
the
 to
re

 of
ree
col

 a
tion
ator
ted
C

rget

l

e
k is
ted
 the
k,
ard
o
 C
 is
 is
DL
of foreign simulators. For example, a VHDL subsystem can be
analyzed to synthesize a fast customized C interface to a
commercial VHDL simulator. This in turn can be used inside of
another system that can also use a DSP card.

A fundamental problem is that dataflow systems cannot
always be incrementally compiled. The problem lies in the fact that
dataflow systems lack the composition property. Thus subsystems
of dataflow actors in an application specification do not necessarily
have the same semantics as an individual actor (see [8] for more
details). This problem only arises when incrementally compiling a
code generation subsystem into a monolithic actor. For the first type
of interface, we avoid introducing artificial boundaries between the
various SDF code generation domains by making use of
multiprocessor SDF schedulers.

2. DATAFLOW
Dataflow is a natural representation for signal processing

algorithms. One of its strengths is that it exposes parallelism by
expressing only the actual data dependencies that exist in an
algorithm. Applications are specified by a dataflow graph in which
the nodes represent computational actors, and data tokens flow
between them along the arcs of the graph. Ptolemy [2] is a
framework that supports dataflow programming (as well as other
computational models, such as discrete-event).

There are several forms of dataflow defined in Ptolemy. In
synchronous dataflow (SDF) [4], the number of tokens produced or
consumed in one firing of an actor is constant. This property makes
it possible to determine execution order (schedule) and memory
requirements at compile time. Thus these systems do not have the
overhead of run-time scheduling (in contrast to dynamic dataflow)
and have very predictable run-time behavior. The production/
consumption property on the arcs also provides a natural
representation of multirate signal processing actors [9].

3. INTERFACE CONSTRUCTION
The interface between the various software and hardware

engines is done through the C programming language. To enable
the framework to construct interfaces to a new tool (either hardware
or software), C communication actors must be defined.

In this section, we detail the communication actors needed to
construct the interface between different code generation domains
and the incremental compilation interface.

3.1 Communications Actors
As in [6], we use send and receive communication actors to

construct the interface among the various tools. The key differences
are that we provide an intermediate protocol using the C
programming language, and that we avoid introducing artificial
boundaries between the various SDF code generation domains by
making use of multiprocessor SDF schedulers.

Using the C programming language as an intermediate
protocol enables us to interfaceN tools using only N
communication actor pairs; versus having to define a total of

 custom interfaces. In sections 3.2 and 3.3 we describe
how to use C to interface between the various simulation and
hardware engines. Then we detail how we use the same
communication primitives to allow us to incorporate these external
engines into high-level DSP synthesis tools.

To build the various interfaces, we use send and receive ac
as has previously been described for multiprocessor SDF c
generation in [10]. These actors provide the synchronizat
between the prototyping and simulation engines. This
accomplished by having blocking reads and writes over
communication channels.

By using multiprocessor SDF scheduling techniques, we
able to determine the static execution order of all primiti
communication operations, and within each processor the execu
order of all the communication actors within the subgraph.
embedding the communication operations into the execution or
within each process, we are able to guarantee non-dead
execution. Furthermore, by implementing send and receive ac
that use blocking reads and writes over the comm
communication link, we are able to synthesize a self-tim
implementation. The minimal communication link buffer size
easily derived from the maximal number of data tokens th
accumulate on the corresponding dataflow arc in one SDF sche
iteration.

To construct the interface between two tools, send and rec
actors are spliced into the designer’s application specification.
stated earlier, for each new tool we require actors to communic
to and from the CGC domain. Thus the C language and S
semantics provide a common communication channel for all of
simulation and hardware engines. A straightforward extension is
allow various tools to communicate directly if there exists a mo
optimal communication medium.

3.2 Interfacing code generated subsystems
Figure 1 shows an example system depicting the first type

interface supported. In this figure the interface is used to link th
code generation domains. CGC provides the intermediate proto
to link the subsystems. Using the communication actors,
specialized interface is constructed between the various simula
and hardware engines (in this case, a DSP card, a VHDL simul
and a UNIX workstation). These communication actors are inser
automatically by using a multiprocessor SDF scheduler, with CG
acting as a shared communication channel between the ta
processors.

A VHDL simulation, with a fundamental execution mode

N N 1–()

Figure 1. An interface constructed between three cod
generation domains. The interface constructed by the framewor
made up of communication pairs, each pair encircled by a dot
ellipse. The first (sine) and last (xgraph) actors are to be run on
host workstation (CGC). The second block (analysis filter ban
made up of two polyphase FIR actors) is to be run on a DSP c
(CG56). The third block (synthesis filter bank, made up of tw
polyphase FIR actors) is to be run using a VHDL simulator. The
in the top left corner signifies that a synthesized C program
managing the system at this level. In this case, a C program
generated which downloads the DSP code and starts the VH
simulator.

S-56XC
CS-56X

CS-56X

C VHDL
VHDL C

VHDL C

C

lly
al
F-
ary
are

own

de
n
 and
g
the
nes
by

ces
h
nes.
ed

has
tion
ple

 in

ed
)

that is discrete-event, can be used to execute a portion of an SDF
dataflow system. However, to guarantee that we do not introduce
deadlock, we must ensure that the communication execution
ordering determined by the multiprocessor SDF scheduler is
followed in the synthesized VHDL implementation.

In our framework, this is accomplished by restricting the
VHDL program to a single sequential thread of control. Individual
SDF actor firings in the sequential schedule are implemented with
sequential blocks of sequential statements in VHDL. No branching
into or out of such code blocks is allowed. The ability to completely
determine the schedule and data production/consumption activity at
compile time allows the firing order and all data references and
assignments to be determined before the VHDL code is generated.
The sequence of VHDL statements matches the sequence of the
SDF schedule. The variable references and assignments made in the
VHDL code are performed so as to preserve the identity of all
tokens transferred in a single SDF schedule iteration. Each token
may have a unique variable identifier, or variable names may be
shared assuming that no token variable is overwritten until all
references to that variable have been completed.

The ANSI/IEEE Std 1076-1993 version of the VHDL
language [11] provides for the use of foreign subprograms or
architectures within a VHDL description. Such foreign subprogram
calls or component architectures may be used, where supported in
C, to realize the send and receive actors in the dataflow graph which
handle interprocess communication through CGC. The required use
of separate entities for communication makes it more challenging
to implement the VHDL subsystem with a single thread of control.
In one vendor's implementation of VHDL simulation, the VSS
Expert package from Synopsys, the use of foreign component
architectures is supported. The C-Language Interface (CLI) of VSS
Expert [12] supports VHDL components which are entirely
implemented in C. Within such CLI components, calls to
communication routines realize the send and receive actions
between the VHDL-simulated subsystem and the remaining code-
generated subsystem. The subsystem implemented in VHDL is
created by threading code blocks associated with each dataflow
actor firing together in a single VHDL process, as described above.
This is similar to how dataflow is implemented with code
generation in C or other languages with sequential statement
semantics. A single thread of control is enforced by sending
wakeup signals to CLI components which perform communication
operations, and using wait statements to suspend execution while
waiting for CLI component operations to complete. By combining
the sequential statement semantics of VHDL processes with VHDL
components which perform the synchronization and
communication in the correct sequence, the dataflow semantics of
the VHDL simulation subsystem are preserved and the correct
functional behavior is implemented in the VHDL simulation.

3.3 Incremental compilation into the Ptolemy
simulation domains

The second type of interface that can be automatica
constructed by the framework allows for the increment
compilation of a code generation subsystem into a monolithic SD
simulation actor. Thus the code generation subsystem bound
must obey SDF semantics. Special communication actors
spliced at the subsystem boundary. This type of interface is sh
in figure 2.

The spliced-in stars allow for the generation of C++ co
which will be used to construct the monolithic SDF-simulatio
actor. In particular, these actors generate the code for the input
output ports of the SDF-simulation actor, which is bein
constructed. These communication actors are provided in
framework and can reused for all simulation and hardware engi
which have the primitive CGC communication actors required
this framework.

Figure 3 depicts how we can combine both types of interfa
allowing for a generalized incremental compilation facility whic
can make use of any number of simulation and hardware engi
In this example, a monolithic SDF-simulation actor is generat
which makes use of both a DSP card and a VHDL simulator.

4. EXAMPLES

4.1 Incremental Compilation into Ptolemy
Figure 4 shows an example in which a CGC subsystem

been substituted in place of a compute-intensive SDF simula
subsystem, thus yielding a 300% speedup. This exam

C++

SDF-Simulation

SDF

2:1 4:3 5:7 4:7

SDF

Figure 2. Ptolemy simulation domain and CGC subsystem
interface. In this example the CGC subsystem is constrained to
running on the same host machine as Ptolemy.

C C++

SDF-Simulation

Figure 3. General Ptolemy simulation interface. The analysis
and synthesis filter bank blocks are identical to those described
figure 1.

S-56XC
CS-56X

CS-56X

C VHDL
VHDL C

VHDL C

SDF

SDF

C

����
����
����
����

����
����
����

����
����
����
����

��
��
��
��
��

��
��
��
��
��

147

160

2:1 4:3 5:7 4:7

DAT - 48 kHz

0 50 100 150

CD - 44.1 kHz

0 50 100 150

Figure 4. CD (44.1 kHz) to DAT (48 kHz) sample rate
conversion. The polyphase filter bank is incrementally compil
from CGC into a monolithic simulation SDF actor. The input (CD
and output (DAT) signals plots are shown.

Polyphase filter bank

Top level application specification

g
hi,
,

s

,”

t,

e

g
”
n

is
g
9th
,

l
ion
n

e
ngs
ch,
pp.

n
e
”
al-

r
L

t,
e
nd
45-

e

E

st
r

implements CD to DAT sample rate conversion efficiently, through
a cascade of polyphase FIR filters. Here the CGC subsystem is
compiled into a monolithic SDF actor which can be added to the
designer’s block library for future use.

Note that this sample-rate conversion (44.1kHz to 48kHz) is
non-trivial and exemplifies the power inherent to the SDF model of
computation. To code this sample rate conversion by hand without
using the SDF model of computation would be a difficult task.

4.2 Hardware/simulation engines in simulation loop
Figure 5 shows a filter bank subsystem that runs on a S-56X

DSP board (using a Motorola 56001 DSP) and the Synopsys VSS
Expert VHDL simulator while the top-level application
specification executes using the SDF-simulation domain in
Ptolemy. A monolithic SDF-simulation block is synthesized for the
code generation subsystem. The SDF block manages the DSP
board, properly downloading and initializing the subsystem
application code and the VHDL simulator.

5. CONCLUSIONS
In this paper, we have introduced a framework which can

interface tools in a high-level DSP synthesis environment. To add a
new tool to the framework, the DSP system designer must only
define two pairs of primitive communication actors. From this, we
can construct interfaces between external tools or between these
tools and the high-level DSP synthesis environment. The
interfacing techniques described in this paper can be adapted for
other high-level DSP synthesis environments currently available.
We plan on extending this work to include other models of
computation in addition to synchronous dataflow.

ACKNOWLEDGMENTS
This research is part of the Ptolemy project, which is

supported by the Advanced Research Projects Agency and the U.S.
Air Force (under the RASSP program F33615-93-C-1317), the
Semiconductor Research Corporation (SRC) (project 95-DC-324-

016), the State of California MICRO program, and the followin
companies: Bell Northern Research, Cadence, Dolby, Hitac
Lucky-Goldstar, Mentor Graphics, Mitsubishi, Motorola, NEC
Philips, and Rockwell.

José Luis Pino is also supported by AT&T Bell Laboratorie
as part of the Cooperative Research Fellowship Program.

REFERENCES
[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow

Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.
[2] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmit

“Ptolemy: A framework for simulating and prototyping
heterogeneous systems,”International Journal of Computer
Simulat ion, specia l issue on Simulat ion Sof twar
Development, vol. 4, pp. 155-182, 1994.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim

[3] D. Becker, R. K. Singh, and S. G. Tell, “An engineerin
environment for hardware/software co-simulation.,
Proceedings of the 29th ACM/IEEE Design Automatio
Conference, Anaheim, CA, USA, pp. 129-134, 1992.

[4] R. K. Gupta, C. N. Coelho, Jr., and G. De Micheli, “Synthes
and simulation of digital systems containing interactin
hardware and software components,” Proceedings of the 2
ACM/IEEE Design Automation Conference, Anaheim, CA
USA, pp. 225-30, 1992.

[5] M. Pankert, S. Ritz, and H. Meyr, “Integration of digita
signal processing hardware into a system level simulat
environment,” Proceedings of the European Simulatio
Multiconference, York, U.K., pp. 147-151, 1992.

[6] J. L. Pino, T. M. Parks, and E. A. Lee, “Automatic cod
generation for heterogeneous multiprocessors,” Proceedi
of the IEEE International Conference on Acoustics, Spee
and Signal Processing, Adelaide, South Australia, vol. 2,
445-448, 1994.
http://ptolemy.eecs.berkeley.edu/papers/autoMultiCodeGe

[7] J. Reekie and M. Meyer, “The host-engine softwar
architecture for paral lel digital signal processing,
Proceedings of the Australian Workshop on Parallel and Re
Time Systems, Melbourne, Australia, 1994.

[8] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A
Hierarchical Multiprocessor Scheduling Framework fo
Synchronous Dataflow Graphs,” UC Berkeley UCB/ER
M95/36, 1995.
http://ptolemy.eecs.berkeley.edu/papers/erl-95-36

[9] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmit
“Multirate signal processing in Ptolemy,” Proceedings of th
IEEE International Conference on Acoustics, Speech, a
Signal Processing, Toronto, Ont., Canada, vol. 2, pp. 12
1248, 1991.

[10] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Softwar
synthesis for DSP using Ptolemy,”Journal of VLSI Signal
Processing, vol. 9, no. 1-2, pp. 7-21, 1995.
http://ptolemy.eecs.berkeley.edu/papers/jvsp_codegen

[11] “IEEE Standard VHDL Language Reference Manual,” IEE
ANSI/IEEE Std 1076-1993, 1994.

[12] “VSS Expert Interfaces V3.2b,” Synopsys, Inc., 700 Ea
Middlefield Rd., Mountain View, CA 94043 Document Orde
Number 1US01-10062, 1995.

Figure 5. An eight channel perfect reconstruction filter bank.
The subsystem is run on a DSP card installed in the workstation
and the Synopsys VSS Expert VHDL simulator. The top-level
description is run using the SDF simulation domain.

Analysis S-56X

Top level application specification

Synthesis VHDLC

	Abstract
	1. Introduction
	2. Dataflow
	3. Interface Construction
	3.1 Communications Actors
	3.2 Interfacing code generated subsystems
	3.3 Incremental compilation into the Ptolemy simul...

	4. Examples
	4.1 Incremental Compilation into Ptolemy
	4.2 Hardware/simulation engines in simulation loop...

	5. Conclusions
	Acknowledgments
	References

