IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, May 1996

INTERFACE SYNTHESIS IN HETEROGENEOUS SYSTEM-LEVEL
DSP DESIGN TOOLS

José Luis Pino, Michael C. Williamson and Edward A. Lee

Department of Electrical Engineering and Computer Science
University of California
Berkeley, CA 94720

{pino,cameron,eal}@EECS.Berkeley.EDU
http://ptolemy.eecs.berkeley.edu/~{pino,cameron,eal}

ABSTRACT Thus in previous approaches, there would have toNH& —1)

In this paper we describe a framework that constructslinks defined to linkN prototyping and simulation engines. In the
interfaces between simulation tools and real-time prototypingramework described in this paper, we need to have Nrlpks
hardware in a high-level DSP synthesis environment. A goal of thigefined.
work is to abstract the concept of the interface so that customized In typical high-level DSP synthesis environments there are
links are not required between each simulation and hardwardwo modes of execution. The first is in an interpretive environment
engine. To support a new engine, the DSP system designer mirswhich the high-level application specifications are run internally
define two pairs of communication primitives between the new todthus, interpreted) within the environment. We refer to this mode as
and host workstation. The interface construction mechanisniunning an application specification in simulation. For example, in
provides incremental compilation of subsystems in a systefitolemy, simulation domains include SDF-simulation, discrete-
specification into the high-level DSP synthesis environment. Wevent (DE), and process networks (PN). The second mode is a
illustrate this framework with practical examples that have beersynthesis environment in which custom application code is

constructed in Ptolemy. generated from the high-level application specification. Examples
of code generation domains in Ptolemy include C (CGC), Motorola
1. INTRODUCTION 56001 assembly (CG56) and VHDL. For purposes of this paper, we

In this paper we describe a framework for automatic interfacg " ssume that the_code generation domains and SDF-simulation
construction between prototyping and simulation enginesaII obey SDF semantics.
In this paper, we will first review the SDF model of

(hardware or software) in high-level DSP synthesis tools. The . : . L
. . . computation. Then we will describe the communication actors
techniques described here have been tested using the synchronﬂgseded to Support a new simulation or hardware engine in this
dataflow (SDF)[1] model of computation in Ptolemy[2] and can Ioefr mework V\lljiﬁ)tﬁ)the knowvlvedI eL:)f tlhese commzvnicationg;ctolrs W:a

extended to other models of computation. The framework described”, . S 9 . S
etail the interfaces that can be automatically generated. Finally, we

in this paper provides incremental compilation, interfaces to foreign . . ; 2
. . . - will review two examples that have been implemented within
simulators, and interfaces between code generation domains. Piolemy

These interfaces serve a similar purpose to discrete-event . .
purp There are two basic types of interfaces that can be

simulation backplanes found elsewhere [3, 4]. However, the(:onstr cted. The first type of interface constructs specialized links
interface mechanism that we are using is more restrictive. In o u) yp u P

f . X -
model, the application specification semantics are limited to aforﬁhetween the heterogeneous simulation and hardware engines. For

of dataflow known as SDF. Through use, SDF has proven to be aeﬁ(ample’ CGC can be mixed with CG56 and VHDL to produce

) S . - . programs that execute concurrently on a host workstation as a C
appropriate model for describing multirate signal processin : .
-) : . o - ompiled UNIX process, a DSP card and a VHDL simulator. To
applications. We will cover this model in more detail in section 2.

By limiting ourselves to SDF, we are able to statically schedule an'scq]t:tré?ﬁe déziesrfervirézléso?lmL:?téc;r;inin?wgari\;\rlgrgf irc])%;nnfj}liiat?c?np
then incrementally compile subsystems into monolithic actors>Y>e' 9 y P L
\Prlmmves for each tool which allow for communication between

Thus by limiting our semantics at the interface, we are able to ha . . s
o . . the engine and C running on the host. These new primitives become
a better optimized implementation. Furthermore, SDF allows us t0 .
art of a reusable library.

not only schedule the dataflow actors in an application but aIsB . .
y PP The second type of interface allows for the incremental

schedule all of the communication links needed between thgom ilation of code generation subsystems into the high-level DSP
various simulation and hardware engines, thus guaranteeing a P 9 Y 9

deadlock free execution. We are doing this at the expense of tﬁgntheas_ enwr_onment. For gxample,_ using this technique, a

. . compute-intensive subsystem in SDF-simulation can be retargeted
generality of the interface. .) - -

. . . . to CGC and compiled to become a single monolithic actor in SDF-

Previous work capable of integrating prototyping hardware

using dataflow in a high-level DSP synthesis tool includes [5-7]. InS|mulat|0n. In general, any collection of code generation domains

all of these papers, the subsystems are not incrementally compil\'\athln a code generation subsystem can be linked into the high-

(i.e., compiled into monolithic actors that can be added to theevel DSP synthesis tool in this manner. The new actor can then be
o dded to the designer’s actor library.

designer’s actor library) but rather are built from dedicated custorf o - . .
.) . . . Thus, this interface mechanism allows for easy incorporation
code for each pair of simulation/hardware engines to be linked.

of foreign simulators. For example, a VHDL subsystem can bt/ ¢
analyzed to synthesize a fast customized C interface to
commercial VHDL simulator. This in turn can be used inside of
another system that can also use a DSP card.

A fundamental problem is that dataflow systems canno
always be incrementally compiled. The problem lies in the fact the
dataflow systems lack the composition property. Thus subsysten
of dataflow actors in an application specification do not necessaril
have the same semantics as an individual actor (see [8] for MOFjgure 1. An interface constructed between three code
details). This problem only arises when incrementally compiling ¢generation domains. The interface constructed by the framework is
code generation subsystem into a monolithic actor. For the first tyymade up of communication pairs, each pair encircled by a dotted
of interface, we avoid introducing artificial boundaries between th(ﬁ”'pse' The first (sine) and last (xgraph) actors are to be run on the

. . - . ost workstation (CGC). The second block (analysis filter bank,
various SDF code generation domains by making use Cmade up of two polyphase FIR actors) is to be run on a DSP card

(NN
o~_b| ST T TTTTTT

multiprocessor SDF schedulers. (CG56). The third block (synthesis filter bank, made up of two
polyphase FIR actors) is to be run using a VHDL simulator. The C
2. DATAFLOW in the top left corner signifies that a synthesized C program is

managing the system at this level. In this case, a C program is
Dataflow is a natural representation for signal processinigenerated which downloads the DSP code and starts the VHDL

algorithms. One of its strengths is that it exposes parallelism bSimulator.

expressing only the actual data dependencies that exist in i - To build the various interfaces, we use send and receive actors
algorithm. Applications are specified by a dataflow graph in which . o)
9 P b y grap 1S has previously been described for multiprocessor SDF code

the nodes represent computational actors, and data tokens ﬂgeneration in [10]. These actors provide the synchronization
between them along the arcs of the graph. Ptolemy [2] is :) _provic Y S
etween the prototyping and simulation engines. This is

framework that supports dataflow programming (as well as other . . - .
. pp v prog g (accomplished by having blocking reads and writes over the

computational models, such as discrete-event). communication channels

There are several forms of dataflow defined in Ptolemy. In Bv using muli roce.ssor SDE scheduling techniques. we are
synchronous dataflow (SDF) [4], the number of tokens produced orbIe tg detgrminepthe static execution orger of gll ’rimitive
consumed in one firing of an actor is constant. This property makeasommunication operations, and within each processor thepexecution
it possible to determine execution order (schedule) and memor P S ' P

: S rder of all the communication actors within the subgraph. By
requirements at compile time. Thus these systems do not have t

€ . L : . .
overhead of run-time scheduling (in contrast to dynamic dataflow mbedding the communication operations into the execution order
and have very predictable run-time behavior. The production

ithin each process, we are able to guarantee non-deadlock
consumption property on the arcs also provides a natur%xecuuon' Furthermore, by implementing send and receive actors
representation of multirate signal processing actors [9].

at use blocking reads and writes over the common
communication link, we are able to synthesize a self-timed

implementation. The minimal communication link buffer size is
3. INTERFACE CONSTRUCTION easily derived from the maximal number of data tokens that

The interface between the various software and hardwargccumulate on the corresponding dataflow arc in one SDF schedule
engines is done through the C programming language. To enabjgration.

the framework to construct interfaces to a new tool (either hardware Tg construct the interface between two tools, send and receive
or software), C communication actors must be defined. actors are spliced into the designer’s application specification. As

In this section, we detail the communication actors needed tgtated earlier, for each new tool we require actors to communicate
construct the interface between different code generation domaif§ and from the CGC domain. Thus the C language and SDF
and the incremental compilation interface. semantics provide a common communication channel for all of the
3.1 Communications Actors simulation and hardware engines. A straightforward extension is to

. . L allow various tools to communicate directly if there exists a more
As in [6], we use send and receive communication actors t8

construct the interface among the various tools. The key differenceé)tlmal communication medium.
are that we provide an intermediate protocol using the G.2 Interfacing code generated subsystems
programming language, and that we avoid introducing artificial Figure 1 shows an example system depicting the first type of
boundaries between the various SDF code generation domains pierface supported. In this figure the interface is used to link three
making use of multiprocessor SDF schedulers. code generation domains. CGC provides the intermediate protocol
Using the C programming language as an intermediaty |ink the subsystems. Using the communication actors, a
protocol enables us to interfacél tools using only N specialized interface is constructed between the various simulation
communication actor pairs; versus having to define a total ofnd hardware engines (in this case, a DSP card, a VHDL simulator
N(N—1) custom interfaces. In sections 3.2 and 3.3 we describand a UNIX workstation). These communication actors are inserted
how to use C to interface between the various simulation angutomatically by using a multiprocessor SDF scheduler, with CGC
hardware engines. Then we detail how we use the samReling as a shared communication channel between the target

communication primitives to allow us to incorporate these externgProcessors.
engines into high-|eve| DSP Synthesis tools. A VHDL Simulation, with a fundamental execution model

SDF-Simulation /SDF-SimuIation)

C++ [

SDF SRS IR S 1 Ny p 50 BNy SDF

21 4:3 5.7 4.7

Figure 2. Ptolemy simulation domain and CGC subsystem
interface. In this example the CGC subsystem is constrained to
running on the same host machine as Ptolemy.

hat is di b d . f SDEg'gure 3. General Ptolemy simulation interface. The analysis
that is discrete-event, can be used to execute a portion of an SBiqq synthesis filter bank blocks are identical to those described in
dataflow system. However, to guarantee that we do not introducgigure 1.

deadlock, we must ensure that the communication execution
ordering determined by the multiprocessor SDF scheduler i8.3 Incremental compilation into the Ptolemy
followed in the synthesized VHDL implementation. simulation domains

In our framework, this is accomplished by restricting the The second type of interface that can be automatically
VHDL program to a single sequential thread of control. Individualegnstructed by the framework allows for the incremental
SDF actor firings in the sequential schedule are implemented withympilation of a code generation subsystem into a monolithic SDF-
sequential blocks of sequential statements in VHDL. No branchingjyiation actor. Thus the code generation subsystem boundary
into or out of such code blocks is allowed. The ability to completely, st obey SDF semantics. Special communication actors are

determine the schedule and data production/consumption activity §bliced at the subsystem boundary. This type of interface is shown
compile time allows the firing order and all data references ang, figure 2.

assignments to be determined before the VHDL code is generated. ¢ spliced-in stars allow for the generation of C++ code
The sequence of VHD_L statements matches t_he sequence Of BRich will be used to construct the monolithic SDF-simulation
SDF schedule. The variable references and assignments made in fagor. In particular, these actors generate the code for the input and
VHDL code are performed so as to preserve the identity of au)utput ports of the SDF-simulation actor, which is being
tokens transferred in a single SDF schedule iteration. Each tokgynstructed. These communication actors are provided in the
may have a unique variable identifier, or variable names may bgamework and can reused for all simulation and hardware engines
shared assuming that no token variable is overwritten until allhich have the primitive CGC communication actors required by
references to that variable have been completed. this framework.

The ANSVIEEE Std 1076-1993 version of the VHDL Figure 3 depicts how we can combine both types of interfaces
language [11] provides for the use of foreign subprograms Ogjiowing for a generalized incremental compilation facility which
architectures within a VHDL description. Such foreign subprogran];an make use of any number of simulation and hardware engines.
calls or component architectures may be used, where supported{ this example, a monolithic SDF-simulation actor is generated

C, to realize the send and receive actors in the dataflow graph whighich makes use of both a DSP card and a VHDL simulator.
handle interprocess communication through CGC. The required use

of separate entities for communication makes it more challenging 4. EXAMPLES
to implement the VHDL subsystem with a single thread of control. '
In one vendor's implementation of VHDL simulation, the VSS4.1 Incremental Compilation into Ptolemy

Expert package from Synopsys, the use of foreign component Figure 4 shows an example in which a CGC subsystem has
architectures is supported. The C-Language Interface (CLI) of VSBeen substituted in place of a compute-intensive SDF simulation

Expert [12] supports VHDL components which are entirelysypsystem, thus vyielding a 300% speedup. This example
implemented in C. Within such CLI components, calls to

communication routines realize the send and receive actions CD - 44.1 kHz

between the VHDL-simulated subsystem and the remaining code=

generated subsystem. The subsystem implemented in VHDL Polyphase filter bank

created by threading code blocks associated with each dataflow — V¥ | {"¥¥} — T¥t - Fit -

actor firing together in a single VHDL process, as described abovg.

This is similar to how dataflow is implemented with code S U 4 . = m =
generation in C or other languages with sequential statemept - DAT - 48 kHz
semantics. A single thread of control is enforced by sending ‘%‘D i}H@

wakeup signals to CLI components which perform communication =

operations, and using wait statements to suspend execution whijle |®&™ @

waiting for CLI component operations to complete. By combining Top level application specification

the sequential statement semantics of VHDL processes with VHD 0 50 . 150

components which perform the synchronization andFigure 4. CD (44.1 kHz) to DAT (48 kHz) sample rate
communication in the correct sequence, the dataflow semantics epnversion. The polyphase filter bank is incrementally compiled
the VHDL simulation subsystem are preserved and the correé’io(rjn C?Ct'ntt)%?‘ m.°n°||'th"|3 ?lmulatlﬁn SDF actor. The input (CD)
functional behavior is implemented in the VHDL simulation. and output () signals plots are shown.

Top level application specification

==
<ol
=

Synthesis VHDL:
gae_sij i :
. = |

o[l

s

(1]
(2]

v

(3]
Figure 5. An eight channel perfect reconstruction filter bank.
The subsystem is run on a DSP card installed in the workstation
and the Synopsys VSS Expert VHDL simulator. The top-level
description is run using the SDF simulation domain.]

implements CD to DAT sample rate conversion efficiently, through
a cascade of polyphase FIR filters. Here the CGC subsystem is
compiled into a monolithic SDF actor which can be added to the
designer’s block library for future use.

Note that this sample-rate conversion (44.1kHz to 48kHz) iéS]
non-trivial and exemplifies the power inherent to the SDF model of
computation. To code this sample rate conversion by hand without
using the SDF model of computation would be a difficult task. (6]

4.2 Hardware/simulation engines in simulation loop

Figure 5 shows a filter bank subsystem that runs on a S-56X
DSP board (using a Motorola 56001 DSP) and the Synopsys VSS
Expert VHDL simulator while the top-level application
specification executes using the SDF-simulation domain in
Ptolemy. A monolithic SDF-simulation block is synthesized for thel7]
code generation subsystem. The SDF block manages the DSP
board, properly downloading and initializing the subsystem
application code and the VHDL simulator. -

8

5. CONCLUSIONS

In this paper, we have introduced a framework which can
interface tools in a high-level DSP synthesis environment. To add a
new tool to the framework, the DSP system designer must onl
define two pairs of primitive communication actors. From this, wi I
can construct interfaces between external tools or between these
tools and the high-level DSP synthesis environment. The
interfacing techniques described in this paper can be adapted for
other high-level DSP synthesis environments currently availabl

_Synmih : ";1]
We plan on extending this work to include other models o
computation in addition to synchronous dataflow.

ACKNOWLEDGMENTS

This research is part of the Ptolemy project, which is
supported by the Advanced Research Projects Agency and the U[$2]
Air Force (under the RASSP program F33615-93-C-1317), the
Semiconductor Research Corporation (SRC) (project 95-DC-324-

(11]

016), the State of California MICRO program, and the following
companies: Bell Northern Research, Cadence, Dolby, Hitachi,
Lucky-Goldstar, Mentor Graphics, Mitsubishi, Motorola, NEC,

Philips, and Rockwell.

José Luis Pino is also supported by AT&T Bell Laboratories

as part of the Cooperative Research Fellowship Program.

REFERENCES

E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,
Proceedings of the IEEROI. 75, no. 9, pp. 1235-1245, 1987.
J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: A framework for simulating and prototyping
heterogeneous systeméiternational Journal of Computer
Simulation, special issue on Simulation Software
Developmentvol. 4, pp. 155-182, 1994.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim

D. Becker, R. K. Singh, and S. G. Tell, “An engineering
environment for hardware/software co-simulation.,”
Proceedings of the 29th ACM/IEEE Design Automation
Conference, Anaheim, CA, USA, pp. 129-134, 1992.

R. K. Gupta, C. N. Coelho, Jr., and G. De Micheli, “Synthesis
and simulation of digital systems containing interacting
hardware and software components,” Proceedings of the 29th
ACM/IEEE Design Automation Conference, Anaheim, CA,
USA, pp. 225-30, 1992.

M. Pankert, S. Ritz, and H. Meyr, “Integration of digital
signal processing hardware into a system level simulation
environment,” Proceedings of the European Simulation
Multiconference, York, U.K., pp. 147-151, 1992.

J. L. Pino, T. M. Parks, and E. A. Lee, “Automatic code
generation for heterogeneous multiprocessors,” Proceedings
of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, Adelaide, South Australia, vol. 2, pp.
445-448, 1994.
http://ptolemy.eecs.berkeley.edu/papers/autoMultiCodeGen
J. Reekie and M. Meyer, “The host-engine software
architecture for parallel digital signal processing,”
Proceedings of the Australian Workshop on Parallel and Real-
Time Systems, Melbourne, Australia, 1994.

J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A
Hierarchical Multiprocessor Scheduling Framework for
Synchronous Dataflow Graphs,” UC Berkeley UCB/ERL
M95/36, 1995.
http://ptolemy.eecs.berkeley.edu/papers/erl-95-36

J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Multirate signal processing in Ptolemy,” Proceedings of the
IEEE International Conference on Acoustics, Speech, and
Signal Processing, Toronto, Ont., Canada, vol. 2, pp. 1245-
1248, 1991.

0] J. L.Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software

synthesis for DSP using Ptolemyldurnal of VLSI Signal
Processingvol. 9, no. 1-2, pp. 7-21, 1995.
http://ptolemy.eecs.berkeley.edu/papers/jvsp_codegen
“IEEE Standard VHDL Language Reference Manual,” IEEE
ANSI/IEEE Std 1076-1993, 1994.

“VSS Expert Interfaces V3.2b,” Synopsys, Inc., 700 East
Middlefield Rd., Mountain View, CA 94043 Document Order
Number 1US01-10062, 1995.

	Abstract
	1. Introduction
	2. Dataflow
	3. Interface Construction
	3.1 Communications Actors
	3.2 Interfacing code generated subsystems
	3.3 Incremental compilation into the Ptolemy simul...

	4. Examples
	4.1 Incremental Compilation into Ptolemy
	4.2 Hardware/simulation engines in simulation loop...

	5. Conclusions
	Acknowledgments
	References

