
Software Synthesis for DSP Using Ptolemy

José Luis Pino, Soonhoi Ha, Edward A. Lee, and Joseph T. Buck

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Abstract

Ptolemy is an environment for simulation, prototyping,
and software synthesis for heterogeneous systems. It
uses modern object-oriented software technology (in
C++) to model each subsystem in a natural and efficient
manner, and to integrate these subsystems into a whole.
The objectives of Ptolemy encompass practically all
aspects of designing signal processing and communica-
tions systems, ranging from algorithms and communica-
tion strategies, through simulation, hardware and
software design, parallel computing, and generation of
real-time prototypes. In this paper we will introduce the
software synthesis aspects of the Ptolemy system. The
environment presented here is both modular and exten-
sible. Ptolemy allows the user to choose among various
single- or multiple-processor schedulers.

1.0 Introduction
Practical signal processing systems today are

rarely implemented without software or firmware, even
at the ASIC level. Programmable DSPs, in particular,
form the heart of many implementations. An aggressive
new implementation technology is to use one or more
“DSP cores” together with custom circuitry. DSP cores
are programmable architectures sold as silicon macro
blocks rather than as separate components. They are
used as large macrocells in application-specific ICs.
Such ASICs are customized to contain precisely the
memory and peripherals required by an application, and
can also include arbitrary custom logic, configurable
logic, or analog circuitry.

The first major market for DSP cores is digital
cellular telephony. DSP vendors have developed spe-
cialized versions of their commodity DSPs that support
both the GSM standard (for Europe) and the IS-54 stan-
dard (for the U.S.). For example, the Ericsson HotLine
GH197 is a GSM hand-held telephone that uses an
ADSP-2102 from Analog Devices. The Motorola
DSP56156 is a DSP with carefully chosen peripherals
and memory capacity to support the European GSM

standard. The Motorola DSP56166 is a variant capable
of implementing the VSELP speech coder in the U.S.
and Japanese digital cellular standards.

So far, however, the customized core-based
ASICs for this application are being designed by the
DSP vendor, and not by the producer of the telephone
equipment. This approach is viable because the func-
tionality of the ASIC is specified by an international
standard, and the market is expected to be very large.
However, more proprietary designs cannot proceed in
this manner. The design process will more closely
resemble that of board-level products using commodity
DSPs. Such designs, of course, are mixed hardware and
software designs. Our approach to code generation is
carefully architected to support such heterogeneous
designs.

Any complete system design methodology,
therefore, must include software synthesis for program-
mable devices. Mainstream design tool vendors for sig-
nal processing, such as those provided by Comdisco
Systems, Mentor Graphics, and CADIS, have recog-
nized this. They have all recently added software syn-
thesis for DSPs to their tools (see for example [1] and
[2]). Looking forward, future tools should also include
high-level software synthesis for real-time control as
well as coupling to high-level hardware synthesis tools.
Since the design styles for these capabilities are likely to
be radically different from one another, the ideal meth-
odology must cleanly support heterogeneity. This paper
will concentrate on code generation for DSP, but will
describe a software architecture capable of adapting to
such heterogeneous design problems.

A number of design styles can be used to
develop signal processing software. One option, of
course, is to rely on traditional high-level languages,
notably C or Ada. Unfortunately, for many intensive sig-
nal processing applications, compilers for these lan-
guages are still unable to achieve the code efficiency
demanded by designers. Twelve years after the appear-
ance of programmable DSPs, most designers still prefer
to program them in assembly language. The difficulty
appears to be both in the languages themselves, which

Journal of VLSI Signal Processing, 9, 7-21 (1995) © 1995 Kluwer Academic Publishers, Boston.
Received November 23, 1992. Revised May 10, 1993.

Introduction

2 Software Synthesis for DSP Using Ptolemy

are not sufficiently specific to signal processing, and in
the processor architectures, which include features that
compilers cannot easily support such as esoteric
addressing modes (for example, bit reversed addressing
for FFTs and hardware support for circular buffers).
Numeric C [3] offers an interesting alternative by modi-
fying the syntax of C to expose to the compiler much of
the information it needs. Silage, an applicative language
developed by Hilfinger at U. C. Berkeley, provides
another alternative. The simple declarative semantics of
the language makes very efficient code generation real-
istically possible [4]. The Mentor/EDC DSPStation uses
Silage for its underlying semantics.

We are pursuing a third alternative, embodied
previously in the Gabriel system [5], and more recently
implemented in the Ptolemy system [6]. In this method-
ology, hand written assembly code segments define
functional operators on data streams. Code generation
consists of two phases, scheduling and synthesis. In the
scheduling phase, the functional operators are possibly
partitioned for parallel execution, and for each target
processor, a sequence of operator invocation is deter-
mined. In the synthesis phase, the hand-written assem-
bly code segments (or alternatively, higher-level
language code segments or a mixture of both) are
stitched together. This methodology has recently been
commercialized in the Comdisco DPC system [1] and
will be commercialized in the CADIS Descartes [7] sys-
tems. The techniques we describe here are complemen-
tary to those in DPC and Descartes, and could, in

principle, be used in combination. In particular, we
focus on management of data passed between functional
blocks when synchronous dataflow (SDF) [8] and
dynamic dataflow semantics are used. DPC, by contrast,
does not use dataflow semantics.

1.1 Overview of Ptolemy
Ptolemy relies heavily on the methodology of

object-oriented programming (OOP) to support hetero-
geneity. The basic unit of modularity in Ptolemy is the

Block1, illustrated in figure 1. A Block contains a mod-
ule of code (the “go()” method) that is invoked at run-
time, typically examining data present at its input Port-
holes and generating data on its output Portholes.
Depending on the model of computation, however, the
functionality of the go() method can be very different; it
may spawn processes, for example, or synthesize
assembly code for a target processor. In code generation
applications, which are the concern of this paper, the
go() method always synthesizes code in some target lan-
guage. Its invocation is directed by a Scheduler (another
modular object). A Scheduler determines the operational
semantics of a network of Blocks. A third type of object,
a Target, describes the specific features of a target for
code generation. Blocks, Schedulers, and Targets can be

1. When we capitalize a modular element, then it represents
an object type. In object-oriented programming, objects
encapsulate both data, the state of the object, and functions
operating on that state, called methods.

Figure 1. Block objects in code generation applications of Ptolemy synthesize code in
some target language. PortHoles and Geodesics provide methods for
managing the exchange of data between blocks.

PortHole PortHole

Block
• initialize()
• start()
• go()
• wrapup()
• clone()

PortHole
• initialize()
• receiveData()
• sendData()

PortHole PortHole

Geodesic

Plasma

Geodesic
• initialize()
• numInit()
• setSourcePort()
• setDestPort()

Particle
• type()
• print()
• operator << ()
• clone()

Particle

Block Block

Introduction

Software Synthesis for DSP Using Ptolemy 3

designed by end users, lending generality while encour-
aging modularity. The hope is that Blocks will be well
documented and stored in standard libraries; thus ren-
dering them modular, reusable software components.
The user-interface view of the system is an intercon-
nected block diagram.

A conventional way to manage the complexity of
a large system is to introduce a hierarchy in the descrip-
tion, as shown in figure 2. The lowest level (atomic)
objects in Ptolemy are of type Star, derived from Block.
A Star that generates code in some target language
belongs to a domain, as explained below. The Stars in
domain named “XXX” are of type XXXStar, derived
from Star. A Galaxy, also derived from Block, contains
other Blocks internally. A Galaxy may contain internally
both Galaxies and Stars. A Galaxy may exist only as a
descriptive tool, in that a Scheduler may ignore the hier-
archy, viewing the entire network of blocks as flat. All
our dataflow schedulers do this to maximize the visible
concurrency. Alternatively, a Scheduler may make use
of the hierarchy to minimize scheduling complexity or
to structure synthesized code in a readable way. A third
possibility we also exploit is for the scheduler to cluster
the graph, creating a new hierarchy that reflects the nat-
ural looping structure of the code [9]. A Universe, which
contains a complete Ptolemy application, is a type of
Galaxy. It is multiply derived from both Galaxy and
class Runnable. The latter class contains methods for
execution of simulation or synthesis of code.

In this paper, we will concentrate on only two
models of computation, dynamic and synchronous data-
flow. These are the models of computation for which we
have best developed the code synthesis technology. We
will first define these models of computation. Then we
will introduce the modular element in Ptolemy, known
as the domain, which encapsulates a single model of
computation. Afterwards, we will introduce the code
generation framework of Ptolemy, which allows defini-
tion of target architectures (both single and multiple-
processor) and the various interchangeable schedulers.
After a target architecture and domain are defined, we
can then describe the atomic unit of an algorithm in
Ptolemy, the Star, and the use of code blocks (in the tar-
get language) for code generation. Next, the various
abstractions of interprocessor communication available
in Ptolemy will be described: send/receive, spread/col-
lect, and the wormhole interface. We will then summa-
rize the code generation procedure. Finally, we will
compare Ptolemy to other code generation environ-
ments.

Although this paper focuses on the current
Ptolemy code generation domains, Ptolemy incorporates
a rich set of simulation domains. Some of the domains
currently defined are discrete event (DE), communica-
tion processes (CP), multi-threaded data flow (MTDF)
and Thor (which will be described below). The Domain
and the mechanism for co-existence of Domains are the
primary abstractions that distinguish Ptolemy from oth-

Figure 2. A complete Ptolemy application (a Universe) consists of a network of Blocks. Blocks may be Stars
(atomic) or Galaxies (composite). The “XXX” prefix symbolizes a particular domain (or model of
computation).

Examples of Derived Classes
• class Star:: Block
• class XXXStar:: Star
• class Galaxy:: Block
• class Universe:: Galaxy, Runnable
• class XXXUniverse:: Universe

XXXStar Galaxy XXXStar XXXStar

XXXStar

Galaxy XXXStar

XXXStar

XXXUniverse

Introduction

4 Software Synthesis for DSP Using Ptolemy

erwise comparable systems. For a description of the
Ptolemy platform refer to [6].

1.1.1 DDF
Dynamic dataflow (DDF) is a data-driven model

of computation originally proposed by Dennis [10].
Although frequently applied to design parallel architec-
tures, it is also suitable as a programming model [11],
and is particularly well-suited to signal processing that
includes asynchronous operations. An equivalent model
is embodied in the predecessor system Blosim [12, 13].
In DDF, Stars are enabled by data at their input Port-
Holes. That data may or may not be consumed by the
Star when it fires, and the Star may or may not produce
data on its outputs. More than one Star may be fired at
one time if the Target supports this parallelism. We have
used this domain to experiment with static scheduling of
programs with run-time dynamics [14, 15].

1.1.2 SDF
Synchronous dataflow (SDF) [8] is a sub-

Domain of DDF. SDF Stars consume and generate a
static and known number of data tokens on each invoca-
tion. Since this is clearly a special case of DDF, any Star
or Target that works under the SDF model will also
work under the DDF model. However, an SDF Sched-
uler can take advantage of this static information to con-
struct a schedule that can be used repeatedly. Such a
Scheduler will not always work with DDF Stars. SDF is
an appropriate model for multirate signal processing
systems with rationally-related sampling rates through-
out [15], and is the model used exclusively in Ptolemy’s
predecessor system Gabriel [5]. The advantages of SDF

are ease of programming, since the availability of data
tokens is static and does not need to be checked; a
greater degree of setup-time syntax checking, since
sample-rate inconsistencies are easily detected by the
system; run-time efficiency, since the ordering of Block
invocation is statically determined at setup-time rather
dynamically at run-time; and automatic parallel sched-
uling [16-18].

1.1.3 The token flow model (BDF)
We are also exploring a third possibility, called

the token flow model or boolean-controlled dataflow,
which extends the SDF model to permit data movement
to depend on the values of certain Boolean tokens in the
system. The intent is to preserve the compile-time
scheduling properties of SDF but permit data-dependent
execution. This work is very new (see [19]) and will not
be discussed further in this paper.

1.2 Code Generation Domains
A Domain in Ptolemy consists of a set of Blocks

and Targets, and associated Schedulers that conform to a
common computational model. By “computational
model” we mean the operational semantics governing
how Blocks interact with one another. Furthermore, all
Blocks and Targets of a code generation Domain target
the same language; for example, Blocks that generate
code for the Motorola 56000 using the SDF model of

computation form their own domain1. A Scheduler will
exploit knowledge of these semantics to order the exe-
cution of the Blocks. SDF and DDF are domains related
to one another as illustrated in figure 3. Stars and Targets
are shown within each domain. The inner Domain

Figure 3. A Domain (XXX) consists of a set of Stars, Targets and Schedulers that
support a particular model of computation. A sub-Domain (YYY) may
support a more specialized model of computation.

Scheduler

SDFDomain

Scheduler

SDFStar
DDFStar

SDFStar

Target

Target

Target

DDFDomain

DDFStar
SDFStar

Scheduler

Code Generation with Ptolemy

Software Synthesis for DSP Using Ptolemy 5

(SDF) in figure 3 is an illustration of a sub-Domain,
which implements a more specialized model of compu-
tation than the outer Domain (DDF). Hence all its Stars
and Targets can also be used with the outer Domain.
Schedulers can be associated with more than one
Domain, but a Scheduler for a sub-Domain is not neces-
sarily valid within the outer Domain.

For code generation, Domains are further subdi-
vided according to the language synthesized. Hence, an
SDF domain synthesizing C code is a domain that we
call CGC (code generation in C). An SDF domain syn-
thesizing assembly code for the Motorola DSP56000
family is called the CG56 domain. We have also devel-
oped SDF domains that synthesize assembly code for
the Motorola DSP96000 family (CG96) and the Sproc
multiprocessor DSP from Star Semiconductor. Finally, a
Silage code generation domain is being used to couple
to hardware synthesis tools developed at Berkeley [2].

As a simple example of how Blocks, Schedulers,
and Targets can be mixed and matched, consider a set of
Blocks that generate assembly language code for Motor-
ola DSP56000 family processors. We might choose to
use any of several Targets; examples of Targets that
have been implemented include one that runs the assem-
bled code on a simulator on the workstation, one that
describes an S-bus card with a single 56000 processor
on a workstation, and one that describes a set of four
interconnected processors on a single card. It is also
possible to define targets that have not been built. In
these cases the generated code runs on functional simu-
lations of the processors in the Thor domain in Ptolemy
[20]. Most targets have parameters that select what
scheduler is to be used; we have several single- and
multiple-processor Schedulers that use different algo-
rithms for determining partitioning and order of execu-
tion of stars. These schedulers have no processor-
specific information; they “ask” the Target to determine
communication costs and “ask” the Block to determine
execution time, resources needed, etc.

1. This definition of a Domain is different from the previous
definition used in Ptolemy. When Ptolemy was solely a simu-
lation environment, two distinct Domains would not share the
same model of computation. Now, two distinct Domains can
share the same model of computation as long as they target
two distinct languages.

2.0 Code Generation with Ptolemy

2.1 General Framework
To use Ptolemy to implement an algorithm, the

problem is represented as a hierarchical dataflow graph.
Two interfaces are provided: a graphical interface based
on VEM, the graphic editor that is part of U.C. Berke-
ley’s Octtools CAD system [21], and a text interface
based on Ousterhout’s extensible interpreter language
Tcl [22]. The user builds graphs hierarchically out of
existing blocks, and may also link in user-written blocks
by using Ptolemy’s incremental linking facility. A spe-
cial preprocessor makes user-written atomic blocks
(stars) easier to produce.

While this paper focuses on code generation
facilities, a key feature of Ptolemy is its ability to inter-
face different models of computation. For example,
code on a DSP board can interact with a discrete-event
or logic simulation running on a workstation. Similarly,
a register-transfer-level simulation of hardware (com-
plete with programmable DSPs modeled functionally)
can execute generated code and process signals synthe-
sized in another Ptolemy domain. This gives Ptolemy
most of its power when applied to hardware-software
codesign. The interfacing mechanism that permits one
model of computation, or domain, to interface cleanly
with another is called a wormhole, after the theoretical
cosmological phenomenon widely used in science fic-
tion writing that may connect widely separated regions
of space, or even different universes. This mechanism is
described in [6, 20], and is explained in the context of
code generation in section 2.5.3.

2.2 Targets
In Ptolemy, a Target class defines those features

of an architecture pertinent to code generation. Each
domain, which synthesizes a specific language such as C
or Motorola 56000 assembly, has a simple target that
will generate code and optionally compile or assemble
the code. More elaborate Target definitions are derived
from these. The more elaborate targets generate and run
code on specific hardware platforms or on simulated
hardware. Some examples that have been implemented

are an S-56X1 target and the CM5 from Thinking
Machines. The latter is an example of a multiprocessor
C language target. To define multiprocessor targets, the

1. The S-56X is an S-bus card designed by Berkeley Camera
Engineering and marketed by Ariel. It contains a Motorola
DSP 56000 and a Xilinx FPGA.

Code Generation with Ptolemy

6 Software Synthesis for DSP Using Ptolemy

concept of Parent-Child target relationships is used. For
example, the CM5 target contains an arbitrary number
of C child targets. For our specific configuration of the
CM5 at Berkeley, there are 128 child targets.

2.2.1 Single-Processor Targets
For any given code generation galaxy, a Target

must be specified. The Target defines how the generated
code will be collected, specifies and allocates resources
such as memory, and defines code necessary for proper
initialization of the platform. The Target will also spec-
ify how to compile and run the generated code. Option-
ally, it may also define wormholes (covered in section
2.5.3).

 The derivation tree for all currently defined sin-
gle-processor targets is shown in figure 4. At the top of
the tree is the generic code generation target (CG). All
code common to all code generation targets resides in
the CG target. Methods defined here include virtual

methods1 to generate, display, compile and run the code,
and a method to call these methods based on target or
user specified parameters. The Assembly language tar-
get adds methods for the allocation of physical memory
and interrupt handling. The higher level language target
(HLL) contains methods to define and initialize vari-
ables, arrays, and include files.

The object-oriented design of Ptolemy code gen-
eration makes target specification easy. For a typical tar-

1. In C++, a virtual method in a class is a method that can be
optionally overloaded in derived classes in such a way that the
appropriate function is selected at run time.

get, the target writer must overload the compile and run
methods. If the target is an assembly language target, the
writer must also specify the memory. Multiple inherit-

ance2 can also be used to define similar targets. For
example, as is shown in figure 1, both of the Motorola
simulator targets are derived from a common Motorola
simulator target for either the Sim56 or Sim96 target.

2.2.2 Multiple-Processor Targets
 Targets representing multiple processors are also

derived from the CG target class. The base class for all
homogeneous multiple-processor targets is called Multi-
Target; a MultiTarget has a sequence of child Target
objects to represent each of the individual processors.
The decomposition of function is done in such a way
that classes derived from MultiTarget represent the
topology of the multi-processor network (communica-
tion costs between processors, schedules for use of com-
munication facilities, etc.), and single-processor child
targets can represent arbitrary types of processors. The
resource allocation problem is divided between the par-
ent target, representing the shared resources, and the
child targets, representing the resources that are local to
each processor.

We have implemented, or are in the process of
implementing, both “abstract” and “concrete” multi-
processor targets. For example, we have classes named
CGFullConnect and CGSharedBus that represent sets of
homogenous single-processor targets of arbitrary type,

2. In C++, multiple inheritance means that a class has two or
more parent classes.

Figure 4. Inheritance Tree for Single Processor Targets

CG

Assembly HLL

Sproc

56000 96000

Silage CMotorola

MotorolaSim

Sim56S-56X Sim96

VxWorks

Code Generation with Ptolemy

Software Synthesis for DSP Using Ptolemy 7

connected in either a fully connected or shared-bus
topology, with parametrized communication costs. We
are also working on models for actual multiple-proces-
sor systems such as the CM-5, the AT&T DSP-3, the
ordered transaction architecture [23], the Ariel Hydra
board, and the Spectrum VASP.

The design of Ptolemy is also intended to sup-
port heterogenous multi-processor targets. For such tar-
gets, certain actors must be assigned to certain targets,
and the cost of a given actor is in general a function of
which child target it is assigned to. We have developed
parallel schedulers that address this problem [17].

2.3 Schedulers
Given a Universe of functional blocks to be

scheduled and a Target describing the topology and
characteristics of the single- or multiple-processor sys-
tem for which code is generated, it is the responsibility
of the Scheduler object to perform some or all of the fol-
lowing functions:

• Determine which processor a given invocation of a
given Block is executed on (for multiprocessor sys-
tems);

• Determine the order in which actors are to be exe-
cuted on a processor;

• Arrange the execution of actors into standard control
structures, like nested loops.

Not all schedulers perform all these functions
(for example, we permit manual assignments of actors
to processors if that is desired).

A key idea in Ptolemy is that there is no single
parallel scheduler that is expected to handle all situa-
tions. Users can write schedulers and can use them in
conjunction with schedulers we have written. As with
the rest of Ptolemy, schedulers are written following
object-oriented design principals. Thus a user would
never have to write a scheduler from ground up, and in
fact the user is free to derive the new scheduler from
even our most advanced schedulers. We have designed a
suite of specialized schedulers that can be mixed and
matched for specific applications. After the scheduling
is performed, each processing element is assigned a set
of blocks to be executed in a scheduler-determined
order.

2.3.1 Single-processor schedulers
For targets consisting of a single processor, we

provide two basic scheduling techniques. In the first
approach, we simulate the execution of the graph on a
dynamic dataflow scheduler and record the order in

which the actors fire. To generate a periodic schedule,
we first compute the number of firing of each actor in
one iteration of the execution, which determines the
number of appearances of the actor in the final sched-
uled list. An actor is called runnable when all input sam-
ples are available on its input arcs. If there is more than
one actor runnable at the same time, the scheduler
chooses one based on a certain criterion. The simplest
strategy is to choose one randomly.There are many pos-
sible schedules for all but the most trivial graphs; the
schedule chosen takes resource costs into account, such
as the necessity of flushing registers and the amount of
buffering required, into account (see [8] for detailed dis-
cussion of SDF scheduling). The Target then generates
code by executing the actors in the sequence defined by
this schedule. This is a quick and efficient approach
unless there are large sample rate changes, in which case
it corresponds to completely unrolling all loops. This
scheduler is similar to one used in Gabriel [5].

The second approach we call “loop scheduling”.
In this approach, actors that have the same sample rate
are merged (wherever this will not cause deadlock) and
loops are introduced to match the sample rates. The
result is a hierarchical clustering; within each cluster,
the techniques described above can be used to generate
a schedule. The code then contains nested loop con-
structs together with sequences of code from the actors.
The loop scheduling techniques used in Ptolemy are
described in [9]; generalization of loop scheduling to
include dynamic actors is discussed in [19].

2.3.2 Parallel scheduling
We have implemented three scheduling tech-

niques that map SDF graphs onto multiple-processors
with various interconnection topologies: Hu’s level-
based list scheduling, Sih’s dynamic level scheduling
[17], and Sih’s declustering scheduling [18]. The target
architecture is described by its Target object, a kind of
MultiTarget. The Target class provides the scheduler
with the necessary information on interprocessor com-
munication to enable both scheduling and code synthe-
sis. Targets also have parameters that allow the user to
select the type of schedule, and (where appropriate) to
experiment with the effect of altering the topology or the
communication costs.

The scheduling techniques implemented in
Ptolemy are retargettable in that they do not assume any
limited set of interconnection topologies. When a sched-
uler incurs a requirement of interprocessor communica-
tion between processors, it instructs the target object to

Code Generation with Ptolemy

8 Software Synthesis for DSP Using Ptolemy

schedule the hardware resources for communication and
compute the communication cost. The scheduler uses
this information to decide whether the incurred commu-
nication cost is low enough to merit exploiting the paral-
lelism. For example, in the OMA target [24], which has
a shared-bus and shared-memory architecture, the
requests for the shared bus from all processing elements
are determined at compile-time. Taking advantage of the
communication compile-time information, we can
reduce the run time communication costs.

The multiple-processor scheduler produces a list
of single processor schedules, copying them to the child
targets. Given these single-processor schedules, the
same schemes as discussed above are re-used to gener-
ate the code for each child processor target. Currently,
we are targeting the Sproc from Star Semiconductor, the
CM5 from Thinking Machines, the DSP-3 from AT&T,
and various parallel machines using the Motorola 56000
and 96000 DSPs.

2.3.3 Extending beyond the SDF model:
dynamic constructs
We have applied the idea of mixed-domain

scheduling to support dynamic constructs for code gen-
eration. Here a dynamic construct is a data-dependent
construct such as if-then-else, do-while, or recursion.
Ptolemy defines a new domain called CGDDF for these
dynamic constructs. By putting this new domain inside
an “SDF Wormhole”, the whole application can be
scheduled statically. The dynamic constructs inside the
SDF Wormhole change the run time execution profile
from the scheduled one. We have developed a technique
that schedules dataflow graphs with run-time decision
making, aiming to minimize the cost of run-time deci-
sions [14]. We will define a specific Target class for this
dynamic construct domain and generate suitable control
code for the target architecture corresponding to the
dynamic constructs.

2.4 Stars
Ptolemy has two basic types of stars: simulation

stars and code generation stars. For purposes of this
paper, discussion will be limited to code generation
stars.

The derivation tree for all currently defined
abstract star classes is shown in figure 5. By an abstract
star class, we mean that the classes are never used to
generate target language code directly. Instead, these
classes define macro function expansion and functional
interfaces to target specified code streams. The leaf

nodes1 of the tree are used as parents for user definable
code generation stars. All methods that are common to
all code generation stars reside in base code generation
star class (CGStar). Similarly, all code common to
assembly code generation stars is found in the assembly
language star (AsmStar), and all code common to higher
level languages is defined in HLLStar.

Of special interest is the class AnyAsmStar. Stars
derived from AnyAsmStar can be utilized in any assem-
bly code generation domain. These stars do not produce
code; their purpose is to manipulate the input and/or
output buffers connected to these stars. Currently, there
are two AnyAsmStars: BlackHole and Fork. We also
plan to implement the actors Spread and Collect
(described in section 2.5.2) as AnyAsm stars. A Black-
Hole star is a data sink that discards its input data. Other
code generation stars can check if any of their outputs
are connected to a BlackHole, and then conditionally
generate code based on this fact. Also, all input buffers
to BlackHoles are mapped into one single memory loca-
tion, so even if stars do not check to see if a BlackHole
is connected to one of its outputs, minimal buffer mem-
ory is utilized. The other type of AnyAsmStar that exists
is the Fork star. A Fork star splits the data path into two
or more paths; however, all data paths can share a single

1. For example, in figure 5, the leaf nodes are: Sproc, 56000,
96000, AnyAsm, Silage, and C.

Figure 5. Inheritance Tree for Code Generation Stars

CG

Assembly HLL

Sproc 56000 96000 Silage CAnyAsm

Code Generation with Ptolemy

Software Synthesis for DSP Using Ptolemy 9

buffer. A series of connected Fork stars with inter-
spersed delays can be collapsed and maintained at the
output buffer where the first Fork was connected. As can
be seen, AnyAsmStars are defined where no target lan-
guage specific code needs to be generated. Instead, wise
buffer management can lead to a general solution appli-
cable to all code generation domains.

For each of the leaf nodes in figure 5, there exist
predefined star libraries. However, for most users’
needs, these libraries will be insufficient. As a result,
special attention has been given to make star writing in
Ptolemy, like Gabriel, easy and systematic [25]. Unlike
Gabriel and other code generators previously men-
tioned, Ptolemy is object oriented, thus allowing users
to easily re-use code. For example, the C code genera-
tion domain has the family of stars fixed lattice filter,
adaptive lattice filter, and a vocoder. Here the vocoder
star was derived (in the sense of C++ derived classes)
from the adaptive lattice filter, in turn derived from the
fixed lattice. Karjalainen in [26] states that object ori-
ented programming environments are well suited for
DSP programming methodology.

A typical user-defined code generation star will
consist of portholes, states, code blocks, a start()
method, an initCode() method, a go() method, a wra-
pup() method, and an execTime() method. Portholes,
states and code blocks are all data members of a star.
Portholes specify the inputs and outputs of the star and
their types. States define user settable parameters or
internal memory states required in the generated code.
Code blocks are a pseudo code specification of the target
language. By pseudo code, we mean that the code block
is made up of the target language and star macro func-
tions. These macro functions can be defined at any level
of the inheritance tree. Macro functions include parame-
ter value substitution, unique symbol generation with
multiple scopes, and state reference substitution.

Start(), initCode(), go(), wrapup(), and exec-
Time() make up the virtual methods of a star. Users are
free to write additional methods that are called from one
of five methods listed. The differentiating trait between
start(), initCode(), go(), and wrapup() methods is when
the method is called. The start() method is called before

the schedule is generated and before any memory is
allocated. It is responsible for setting up information
that will affect scheduling and memory allocation, such
as the number of values that are read from a particular
porthole or the size of an array state. The initCode()
method is called before the schedule is generated and
after the memory is allocated; code generated by init-
Code() appears before the main loop.

The next method to be called is the go() method.
This method is called directly from the scheduler. Hence
the code generated in the go() method makes up the
main loop code. Finally, the wrapup() method is called
after the schedule has been completed, allowing the star
to place code after the main loop code. For example, a
typical use of this method in assembly code generation
would be to define subroutines after the main loop code.
The final virtual method that star writers may overload
is execTime(). This method returns a number that indi-
cates the approximate time to complete one firing of the
star. This information is essential for the parallel sched-
ulers.

Stars are typically written not in C++ directly,
but rather for a preprocessor called ptlang. This prepro-
cessor generates the “standard boilerplate” necessary to
properly initialize states and portholes, create code
blocks in a more natural manner, and to register the star
with the system so that instances of it may be created by
specifying the class name. It also generates documenta-
tion for the star.

2.5 Interprocessor Communication

2.5.1 Send/Receive
When the target architecture is a multiple proces-

sor system, the programmer selects a parallel scheduler
that best fits best the target and the application. The par-
allel scheduler determines which actors to assign to
which processing elements, as well as when to execute
them in each processing element. As an example, con-
sider the simple case in figure 6, where all blocks are

Figure 7. Scheduling result for the example in figure 6

proc. 1

proc. 2

A

B snd

rcv + C

Code Generation with Ptolemy

10 Software Synthesis for DSP Using Ptolemy

homogeneous (producing and consuming a single
token).

Suppose that the scheduler generates the sched-
ule as shown in the Gantt chart in figure 7. By assigning
star B and star A to different processors, the parallel
scheduler introduces interprocessor communication
between processor 2 and processor 1. The cost of the
communication overhead is dependent on the target.
Based on the information that is specified in the target
definition, the scheduler schedules the communication
resources and reserves the time-slots in the generated
schedule.

The next step is to generate code for each proces-
sor. For processor 2, code for star B and the “send” star
should be generated sequentially. To generate code,
however, it is not sufficient to concatenate the code of
star B and the code of the “send” star. We first have to
allocate the memory and registers appropriately in the
processors. Since each processor is also a target, it can
allocate the hardware resources suitably for the gener-
ated code, given a certain galaxy. Thus, sub-universes
are generated for the individual processors after the par-
allel scheduling is performed, as shown in figure 8. Note
that the “send” and “receive” stars are automatically
inserted by the Ptolemy kernel when creating the sub-
universes. The multiple-processor target class is respon-
sible for defining “send” and “receive” stars.

Once the generated code is loaded, processors
run autonomously. The synchronization protocol

Figure 6. A simple example for illustrating the send/
receive mechanism

A

B

C

Figure 8. Sub-universes created for processing
elements based on the scheduling result in
figure 7.

A

rcv

Cproc. 1:

Bproc. 2: snd

between processors is hardwired into the “send” and
“receive” stars. One common approach in shared-mem-
ory architectures is the use of semaphores. Thus a typi-
cal synchronization protocol used is to have the send
star set a flag signaling the completion of the data trans-
fer; the receive star would then wait for the proper
semaphores to be set. When the semaphores are set, the
receive star will read the data and clear the semaphores.
In a message passing architecture, the send star may
form a message header to specify the source and desti-
nation processors. In this case, the receive star would
decode the message by examining the message header.
The routing path from the source to the destination pro-
cessor is determined at the compile-time as explained in
section 2.3.2. Any specific routing algorithm and routing
mechanism are not assumed in Ptolemy, but rather
should be provided by the target class.

2.5.2 Spread/Collect
In the example of figure 6, we assume that the

graph is homogeneous: no sample rate change occurs in
the blocks. In such homogeneous applications, each star
is naturally assigned to one processor. However, many
signal processing applications are multirate, allowing us
to split the invocations of a star across multiple proces-
sors. Furthermore, operations on blocks of samples,
such as an FFT, or operations on vectors make an SDF
graph non-homogeneous. Consider the simple multirate
application in figure 9, where block A generates two
tokens and block B consumes three tokens. One itera-
tion of this universe consists of three invocations of
block A and two invocations of block B. The precedence
relation among these invocations can be described with
the acyclic precedence graph (APG) as shown in figure

Figure 9. A multirate example for illustrating
the spread/collect mechanism.

A B
2 3

Figure 10. Acyclic precedence graph of the example in
figure 9.

A1

A2

A3

B1

B2

2

2

1

1

2

2

1

1

Code Generation with Ptolemy

Software Synthesis for DSP Using Ptolemy 11

10. We assume that there is no data dependency between
invocations of block, and assume the same for block B.
In the figure, A1 represents the first invocation of A, A2
represents the second, etc. The APG graph represents
the communication pattern between the invocations.

In a target architecture with two processors, a
valid schedule for the APEG graph is shown in figure
11. According to the schedule, the target would splice
the appropriate send and receive stars into the graph. As
can be seen in the APEG, B1 receives data from not only
A1 but also A2. Also note that A2 has been assigned to
the other processor. Since block B1 consumes 3 tokens
(figure 10), we need a special block to collect tokens
from sources A1 and A2 for the input to B1, and to pre-
serve the appropriate order. This special block is called a
Collect star. The sub-universe created for processor 1 is
illustrated in figure 12-(a). The Collect star gathers the

outputs from both block A and the receive star.
On the other hand, two invocations of block A

are assigned to second processor. Among the four output
tokens generated from block A in this processor, the first

Figure 12. Sub-universes created for processing
elements based on the schedule of figure
11. Special blocks, Spread and Collect, are

A

rcv

Bproc. 1:

proc. 2:

Collect

2

1

2

1

3 3

A
snd

B

Spread
4

1
2

1

3 3

(a)

(b)

output token is routed to processor 1 and the rest are fed
into block B. This behavior can be expressed by intro-
ducing another special block, called a Spread star, as
shown in figure 12-(b). Note that the sample rate is
changed between block A and the Spread star, causing
block A to be executed twice. The Spread star directs the
first output token of block A to the input buffer of the
“send” star; the remaining three tokens are directed to
the input buffer of block B.

If memory is used to communicate between
blocks, then in most cases it is possible for the Collect
and Spread to be implemented simply by overlaying
memory buffers; in such cases no code is required to
implement these blocks. The AnyAsm pseudo-domain
described in section 2.4 provides facilities for actors that
work by this kind of buffer address manipulation.

It is worth emphasizing that the sub-universe
does not express the execution order of the blocks,
which is already determined by the parallel scheduler.
For example, in figure 12-(b), the execution order of this
block is not A, A, Spread, “send”, and B, as might be
expected if an SDF scheduling were to be performed
with the sub-universe. The order is A, “send”, A, and B
according to the schedule in figure 11. The sub-uni-
verses are created only for the allocation of memory and
other resources before generating the code.

2.5.3 Wormholes
A significant feature of Ptolemy is the capability

of intermixing different domains or targets by worm-
holes. Suppose a code-generation domain lies in the
SDF domain, where part of the application is to be run
in simulation mode on the user’s workstation and the
remainder of the application is to be downloaded to a
DSP target system. When we schedule the actors that
are to run in the outside SDF-simulation domain at com-
pile-time, we generate, download, and run the code for
the target architecture in the inside code-generation
domain. For the purposes of this section, we will say
“SDF domain” to refer to actors that are run in simula-
tion mode, and “code generation domain” for actors for
which code is generated.

Figure 11. Scheduling result for the example in figure 9.

proc. 1

proc. 2

A1

A2 snd

rcv B1

A3 B2

Summary of Code Generation Procedure

12 Software Synthesis for DSP Using Ptolemy

 In the example of figure 13-(a), a DSP target
system is coded to estimate a power spectrum of a cer-
tain signal. At run-time, the estimated spectrum infor-
mation is transferred to the host computer to be
displayed on the screen. Thus, the host computer moni-
tors the DSP system. In the next example in figure 13-
(b), a DSP system performs a complicated filtering oper-
ation with a signal passed from the host computer, and
sends the filtered result back to the host computer. In
this case, the DSP hardware serves as a hardware accel-
erator for number crunching. By the wormhole mecha-
nism in Ptolemy, as demonstrated in the above
examples, we are able to make the host computer inter-
act with the DSP system. In Ptolemy, a wormhole is an
entity that, from the outside, obeys the semantics of one
domain (in this case, it works like an SDF simulation
actor), but on the inside, contains actors for another
domain entirely.

Data communication between the host computer
and the DSP target architecture is achieved in the worm-
hole boundary. In the SDF domain, data is transferred to
the input porthole of the wormhole. The input porthole
of a wormhole consists of two parts: one is visible from
the outside SDF domain and the other is visible in the
inside code-generation domain. The latter part of the
porthole is designed in a target-specific manner, so that
it sends the incoming data to the target architecture. In
the output porthole of the wormhole, the inner part cor-
responding to the inside code-generation domain
receives the data from the DSP hardware, which is
transferred to the outer part visible from the outside

Figure 13. Examples of Host-to-DSP interaction
using wormholes.

SDF wormhole display

SDF wormhole

A B

spectrum
estimate

Filter

(a)

(b)

SDF domain. In summary, for each target architecture,
we can optionally design target specific wormholes to
communicate data with the Ptolemy simulation environ-
ment; all that is needed to create this capability for a
new Target is to write a pair of routines for transferring
data that use a standard interface.

3.0 Summary of Code Generation
Procedure
In this section we will review how the various

modules of the Ptolemy platform interact to generate
code for a target application. The code generation proce-
dure is detailed in figure 14. First, the setup() method is
called for all blocks relevant to particular application.
This allows the schedulers, target modules, and stars to
initialize internal variables. Next, the schedule pass is
done. The scheduler returns a list that details the firing
order of the blocks in a particular application. Based on
this schedule, the resources can be allocated. In the case
of assembly code, the memory is allocated as well.
Note, the resource allocation stage must follow the
scheduling stage so that the buffer lengths are known.
Now we are ready to generate the initialization code for
the given application. At this point, the initCode()
method of all the blocks are fired. Finally, we are ready
to generate the main loop code.

First we initialize the main loop. Notice that the
code generation algorithm forks into two different paths,
one signifying that the code currently being generated is
intended for a target on the inside of a wormhole, and
the other for applications not running inside a worm-
hole. If we are inside of a wormhole, we generate code
to read the data from the Ptolemy Universal construct.
Then we generate the main loop code and finally gener-
ate code to write the data into the Ptolemy construct.
The wormhole code is written is a way which automati-
cally synchronizes the DSP system and the host work-
station. If we are not inside a wormhole, we simply
generate the main loop code. Finally, we close the main
loop and then fire the wrapup() methods of all of the
blocks relevant to a particular application.

4.0 Conclusions
 In this paper, we have introduced the code gen-

eration aspects of Ptolemy. It has been demonstrated
that this platform provides an extensible signal process-
ing code generation environment. Given the object-ori-
ented design, Ptolemy allows the user to easily define
new targets, stars, and schedulers. Once new blocks are
defined they are easily incorporated into the Ptolemy

Future Work

Software Synthesis for DSP Using Ptolemy 13

environment, promoting code reuse. The ptlang prepro-
cessor makes target and star writing systematic, espe-
cially for those unfamiliar with C++ or the Ptolemy
kernel.

Comparing Ptolemy to the other DSP code gen-
eration platforms such Comdisco DPC [1], Mentor DSP
Station, and Descartes [7], is difficult since we have
addressed somewhat orthogonal issues. Some of these
other code generators will do better in terms of effi-
ciency for most SDF assembly language dataflow
graphs. The reason for this lies in the fact that we have
not implemented register allocation. We will be incorpo-
rating register allocation in the near future (see section
5.0). We can, however, compare Ptolemy to the other
code generators in terms of features.

The major differences concern the handling of
multirate signal processing. To implement a multirate
graph, the Comdisco system uses “hold” signals on
blocks. This introduces run-time conditional branching
whenever the hold pins are connected. Unfortunately,
the conditional branching is required even if the control
flow is totally predictable at compile time. The Mentor
DSP Station is built on top of the Silage language,
which has only a limited mechanism for expressing
multirate systems. Silage contains upsample and down-
sample operators; however, it is impossible to write a
polyphase multirate FIR filter block. To efficiently
implement a multirate FIR filter (getting a polyphase
implementation), Silage relies on dead-code elimination
by the compiler. It is not clear how effective today’s
compilers would be in eliminating this dead-code. In
Ptolemy, a polyphase FIR filter would simply be defined
as a star, thus producing no dead-code.

Significant features distinguishing Ptolemy are
the modularity gained from its objected oriented design
and its support for heterogenous architectures. We
already support many scheduling algorithms. It is sim-
ple to test new scheduling heuristics and contrast those
results with the supported schedulers. Also, we are not
constrained to one particular scheduler for a signal pro-
cessing application. Thus, a user is able to choose differ-
ent schedulers for the various child-targets or domains
in a single DSP application. For all other systems that
we are aware of, a single scheduler is an integral part of
the system.

The parallel schedulers are of particular interest.
Here we are able to split, under special circumstances,
the various invocations of a star instance over multiple
processors. To do this we have defined Spread, Collect,
Send and Receive stars. A great deal of support is pro-
vided for heterogeneous targets. For example, when a

heterogeneous target specification is designed, previ-
ously defined targets can be used as the basic building
blocks to more complex systems. The building block
targets, in turn, can be either single-processor or multi-
ple-processor targets.

5.0 Future Work
Although code generation is beginning to mature

in Ptolemy, it is by no means finished. We have only
begun to explore buffer management techniques to use
memory more efficiently, Currently, in the assembly lan-
guage domains, all stars must communicate through
memory, not registers. Hence, the more fine-grained a
star is, the more penalty it suffers. For example, a simple
add star must first read in its two inputs from memory
and then write its output to memory. Even though a sim-
ple operation like add might take one cycle on a DSP,
the add could potentially take four or more cycles.
Future versions of Ptolemy will use registers to
exchange data, as done in [1]. Because there are no data-
dependent decisions in the SDF domain, it is possible in
principle to do more efficient register allocation than can
be done for more conventional high-level languages
(although since the problem of optimal register alloca-
tion, like so many others in this area, has combinatorial
complexity, heuristics still must be used).

Work is in progress to extend our code genera-
tion techniques to support more general models of com-
putation, such as the token flow model [19] and dynamic
constructs [14].

Future Work

14 Software Synthesis for DSP Using Ptolemy

Setup()

Schedule

Allocate Resources

Generate Initialization Code

Generate Wormhole Input Code

Inside

Wormhole?

Generate Wormhole Output Code

Fire go() of each block in schedule Fire go() of each block in schedule

Initialize Main Loop

End Main Loop

Wrapup()

T F

Figure 14. Code Generation Procedure

References

Software Synthesis for DSP Using Ptolemy 15

6.0 References
1. D.G. Powell, E. A.Lee, and W.C. Newman, "Direct

Synthesis of Optimized DSP Assembly Code from
Signal Flow Block Diagrams," International Confer-
ence on Acoustics, Speech and Signal Processing,
vol. 5, San Francisco, IEEE, 1992, p. 553-556.

2. J.M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak,
"Fast prototyping of datapath-intensive architec-
tures," IEEE Design & Test of Computers, vol. 8, no.
2, 1991, p. 40-51.

3. K.W. Leary and W. Waddington, "DSP/C: A Stan-
dard High Level Language for DSP and Numeric
Processing," International Conference on Acous-
tics, Speech and Signal Processing, vol. 2, 1990, p.
1065-1068.

4. D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, and
H. De Man, "DSP specification using the Silage lan-
guage," International Conference on Acoustics,
Speech and Signal Processing, vol. 2, 1990, p. 1056-
1060.

5. J.C. Bier, E.E. Goei, W.H. Ho, P.D. Lapsley, M.P.
O'Reilly, G.C. Sih, and E.A. Lee, "Gabriel: A design
environment for DSP," IEEE Micro , vol. 10, no. 5,
1990, p. 28-45.

6. J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
"Ptolemy: A Platform for Heterogeneous Simulation
and Prototyping," European Simulation Confer-
ence, Copenhagen, Denmark, 1991.

7. S. Ritz, M. Pankert, and H. Meyr, "High Level Soft-
ware Sythesis for Signal Processing Systems," Inter-
national Conference on Application Specific Array
Processors, IEEE Computer Society Press, 1992, p.
679-693.

8. E.A. Lee and D.G. Messerschmitt, "Synchronous
data flow," Proceedings of the IEEE, vol. 75, no. 9,
1987, p. 1235-1245.

9. S.S. Bhattacharyya, Scheduling synchronous data-
flow graphs for efficient iteration, Master's Thesis,
University of California at Berkeley, 1991.

10. J.B. Dennis, "Data Flow Supercomputers," IEEE
Computer, vol. 13, no. 11, 1980.

11. A.L. Davis and R.M. Keller, "Data Flow Program
Graphs," IEEE Computer, vol. 15, no. 2, 1982.

12. D.G. Messerschmitt, "Structured Interconnection of
Signal Processing Programs," Globecom, Atlanta,
Georgia, 1984.

13. D.G. Messerschmitt, "A Tool for Structured Func-
tional Simulation," IEEE Journal on Selected Areas
in Communications, vol. SAC-2, no. 1, 1984.

14. S. Ha, Compile-time scheduling of dataflow pro-
gram graphs with dynamic constructs, Ph.D. Disser-
tation, U.C. Berkeley, 1992.

15. J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
"Multirate signal processing in Ptolemy," Interna-
tional Conference on Acoustics, Speech and Signal
Processing, vol. 2, New York, NY, USA, IEEE,
1991, p. 1245-1248.

16. E.A. Lee and J.C. Bier, "Architectures for statically
scheduled dataflow," Journal of Parallel and Dis-
tributed Computing, vol. 10, no. 4, 1990, p. 333-348.

17. G.C. Sih and E.A. Lee, "Dynamic-level scheduling
for heterogeneous processor networks," Second
IEEE Symposium on Parallel and Distributed Pro-
cessing, 1990, p. 42-49.

18. G.C. Sih and E.A. Lee, "Declustering: A New Mul-
tiprocessor Scheduling Technique," IEEE Transac-
tions on Parallel and Distributed Systems, 1992.

19. J. Buck and E.A. Lee, "The Token Flow Model,"
Data Flow Workshop, Hamilton Island, Australia,
1992.

20. A. Kalavade, "Hardware/Software Codesign using
Ptolemy — A Case Study," International Workshop
on Hardware/Software Codesign, Grassau, Ger-
many, 1992.

21. D.S. Harrison, P. Moore, R. Spickelmier, and A.R.
Newton, "Data Management and Graphics Editing in
the Berkeley Design Environment," IEEE Interna-
tion Conference on Computer-Aided Design, 1986.

22. J.K. Ousterhout, "Tcl: An Embeddable Command
Language," Winter USENIX Conference, 1990, p.
133-146.

23. J.C. Bier and E.A. Lee, "A Class of Multiprocessor
Architectures for Real-Time DSP," International
Symposium on Circuits and Systems, vol. 4, IEEE,
1990, p. 2622-2625.

24. S. Sriram and E.A. Lee, "Design and Implementa-
tion of an Ordered Memory Access Architecture,"
International Conference on Acoustics, Speech and
Signal Processing, Minneapolis, MN, IEEE, 1993.

25. J.C. Bier and E.A. Lee, "Frigg: A Simulation Envi-
ronment For Multiple-Processor DSP System Devel-
opment," International Conference on Computer
Design: VLSI in Computers and Processors, Wash-
ington, DC, USA, IEEE Computer Society Press,
1989, p. 280-283.

26. M. Karjalainen, "DSP software integration by
object-oriented programming: a case study of
QuickSig," IEEE ASSP Magazine, vol. 7, no. 2,
1990, p. 21-31.

	Title
	Abstract
	Introduction
	Overview of Ptolemy
	DDF
	SDF
	The token flow model (BDF)

	Code Generation Domains

	Code Generation with Ptolemy
	General Framework
	Targets
	Single-Processor Targets
	Multiple-Processor Targets

	Schedulers
	Single-processor schedulers
	Parallel scheduling
	Extending beyond the SDF model: dynamic constructs

	Stars
	Interprocessor Communication
	Send/Receive
	Spread/Collect
	Wormholes

	Summary of Code Generation Procedure
	Conclusions
	Future Work
	References

