DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

ANNUAL REPORT

HETEROGENEOUS MODELING AND DESIGN

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)
COMPOSITE CAD PROGRAM

CONTRACTOR: University of California at Berkeley
AGREEMENT NUMBER: DAABO07-97-C-J007

CONTRACT PERIOD: 11/18/96 - 11/31/99

DATE: December 1, 1997

TITLE: Heterogeneous Modeling And Design
REPORT PERIOD: 11/18/96 - 11/15/97

SPONSOR: Air Force Research Laboratory (AFRL)
TECHNICAL POC: James P. Hanna

REPORT PREPARED BY: Edward A. Lee

Principal Investigator: Edward A. Lee
Organization: University of California at Berkeley



Contents

1. Project Overview 4
2. Heterogeneous Design Principles 4
2.1.Block Diagrams 4
2.2.System-Level Design 5
2.3. Heterogeneous Implementations 6
2.4. Heterogeneous Modeling and design 6
2.5. Models of Computation 7
2.5.1. Differential equations 8
2.5.2. Difference equations 9
2.5.3. Process networks and dataflow 9
2.5.4. Synchronous/reactive models 9
2.5.5. Discrete-event models 10
2.5.6. Rendezvous models 10
2.5.7. Finite-state machines 10
2.6.Choosing Models of Computation 11
3. Approach 11
3.1. Angle of Attack 11
3.2. Examples Requiring Heterogeneity 12
3.3.Tasks 12
3.3.1. Phase 1 (18 months) 12
3.3.2. Phase 2 (18 months) 13
4. Summary of Accomplishments 14
4.1.Task 1: Modular deployable design tools 14
4.1.1. Java Exploration 14
4.1.2. Java Ptolemy Kernel 15
4.1.3. Network Integrated Design 15
4.1.4. Java-Tcl Interaction 18
4.1.5. Java Signal Plotter 19
4.1.6. Tycho Information Models (TIM) 20
4.1.7. Object Modeling 21
4.2. Task 2: Domain-specific design tools 23
4.2.1. Process Network Domain in Java and Tycho 23
4.2.2. Benchmarking Code Generation Methodologies for Embedded Software 23
4.2.3. Real-Time Sonar Beamforming using Process Network Models (UT Austin) 24
4.2.4. Real-Time Smart Antennas for Wireless Communications (UT Austin) 25
4.2.5. Filter Design 26
4.3. Task 3: Heterogeneous interaction semantics 26
4.3.1. Generalized Hybrid Systems 26
4.3.2. Type Systems 27
4.3.3. A Partial Order of Models of Computation 27
4.4, General Infrastructure 28
4.4.1. Software Engineering 28
4.4.2. Ptolemy and Tycho Software 28
4.4.3. Support Software 30
5. Software 31

2 of 40 Principal Investigator: Edward A. Lee



5.1. Information dissemination Policy 31
5.2.Tycho 31
5.2.1. Tycho 0.2 Release (June 1997) 32
5.3.PtPlot 1.0 and 1.1 32
6. Plans for the next year 32
6.1. Modular Deployable Design Tools 32
6.2. Domain-specific design tools 34
6.3. Heterogeneous interaction semantics 34
7. Technology Transfer 34
7.1. Hewlett-Packard Integrates Ptolemy with Analog Simulation 34
7.2.Lockheed-Martin and Berkeley Target Configurable Hardware 35
7.3.POLIS — A codesign system based on Ptolemy 35
7.4. Ptolemy Miniconference 36
7.4.1. Second Ptolemy Miniconference — March 14, 1997 36
8. Acknowledgments 37
8.1. Participants at Berkeley 37
8.1.1. Principal investigator 37
8.1.2. Professional staff 37
8.1.3. Post-doctoral researchers 37
8.1.4. Graduate students 38
8.2.Corporate Support 38
8.2.1. Sponsors 38
9. Publications 38
9.1.Journal Articles 38
9.2. Conference Papers 39
9.3. Technical Reports 40
9.4.Ph.D. Theses 40
10. References 40

Heterogeneous Modeling and Design 30of 40



1. Project Overview

The Heterogeneous Modeling and Design (HMAD) projectai 2 phase, 36 month, Defense
Advanced Research Project Agency (DARPA) sponsored program to develop a design methodology,
and associated modeling software, for composite, heterogeneous systems. Such systems combine
diverse implementation technologies, including microelectromechanical systems (MEMS), microwave
circuits, analog circuits, digital circuits, and embedded software. They also combine modeling and
design paradigms, including physical modeling using differential equations, continuous-time signal
processing, discrete-time signal processing, and discrete-event controllers. They are invariably concur-
rent, involving diverse modules that operate at the same time and interact through continuous signals
or discrete messages. The focus of the project is on the theory and technology of heterogeneous mod-
eling of heterogeneous concurrent systems.

Formerly entitled Distributed Adaptive Signal Processing (DASP), this project focuses on funda-
mental modeling and design techniques that are not specific to signal processing. Phase 1 is an 18
month effort to develop the supporting infrastructure. The infrastructure consists of modular design
tools, domain-specific design techniques, and models for the interaction of dynamic, discrete control-
lers with static digital and analog subsystems. Phase 2 is an 18 month effort to develop a process level
type system theory capturing different kinds of interaction of concurrent modules, and concurrency
semantics for regulation of heterogeneous combinations of such interaction semantics. Phase 2 will
also focus on formal analysis, debugging, and system level visualization for heterogeneous concurrent
systems.

This project is part of a long term effort at Berkeley called the Ptolemy project that has been study-
ing various aspects of design methodology. The Ptolemy project has an established track record of
high-impact contributions in methodology, theory, and software, with demonstrable transfer of the
resulting technology to industry. The underlying principle of the project, which we expand on below, is
to embrace heterogeneity. The Composite CAD program at DARPA appears to be an excellent candi-
date for targeted heterogeneous methodologies.

2. Heterogeneous Design Principles

This project is about heterogeneous system-level and implementation-level descriptions of sys-
tems and the relationships between these two levels. This relationship is generally a combination of
modeling and specification. That is, components at the implementation level may be modeled or spec-
ified at the system level. Most interesting designs will have some of both.

The heterogeneity at the two levels and the multi-way relationships between levels augment the
complexity of the design process and the difficulty that designers have with such designs. A major part
of our approach to managing this design complexity is by exploiting visual syntaxes such as block dia-
grams and bubble-and-arc diagrams. In this project, we are working on such visual syntaxes, their
underlying semantics, and the software architecture that supports the use of several such syntaxes in
combination.

2.1 BLOCK DIAGRAMS

Visual depictions of electronic systems have always held a strong human appeal, making them
extremely effective in conveying information about a design. Many of the domains of interest in this
project use such depictions to completely and formally specify systems, most notably in circuit design,

4 of 40 Principal Investigator: Edward A. Lee



where schematic diagrams can capture all of the essential information needed to implement some sys-
tems. Others have failed dramatically, for example flowcharts for capturing the behavior of software.
Recently, a number of innovative visual formalisms have been garnering support, including visual
dataflow, hierarchical concurrent finite state machines, and object models.

The subset of these that are recognizable as “block diagrams” represent concurrent systems. There
are many possible concurrency semantics associated with such diagrams. Formalizing the semantics is
essential if these diagrams are to be used for system specification and design. This project is exploring
some of the possible concurrency semantics, with the premise that their strengths and weaknesses
make them complementary rather than competitive, so that no single model is likely to emerge as a
universally useful model.

2.2 SYSTEM-LEVEL DESIGN

By “system-level design” we mean design at the problem level that is relatively unencumbered by
implementation issues. Components are represented in terms of their functionality or role in a design
rather than in terms of their construction. A typical system-level model of a system, implemented in
Ptolemy, is shown in figure 1.

W el Ve e v s ol e s e ® e T

s A ey Froorree v e AEEmey _ e —
Livilisra CreLli’ ATy Sy Tk ¥ T e Ll el
Ul i | RS i L
F-|
N maA - iy

P Drgraiiey | Wi | SwiE | mgn
I F i ] Mgl
i i gels Tl = = Baam Patbarn
— e s, o g - "
|5 i F ;1' §
|
- T Type & s ~a0ion 7' m
— [ R S
=

a5~ -

....I| )

L

- ] # 1 Vi peras ver Srae Fl S Ben i l‘\_\_\_\_#//ﬂh
St [
| LT [ 1§
" i ' Ll T 1=
i | ERIET L.
0D
AR EE -“LF ax {1
E
b 7 ¥ | BE —_—
20 . 1 BB ETE
-1 nsa ]
ELC R LT ]
[Iees
BERMCE

FIGURE 1. A system-level model (developed in Ptolemy by Uwe Trautwein of the Technical Univer-
sity of lImenau, Germany) of a beamformer for wireless communications that adaptively nulls interfer-
ers.

Heterogeneous Modeling and Design 50f 40



Such specifications araodular, in that large designs are composed of smaller designs, and these
smaller designs encapsulate specialized expertise. Thelienarchical in that composite designs
themselves become modules, and modules may be very complicated. Theynatgrent in that
modules logically operate simultaneously. Implementations may be sequential, parallel, or distributed.
They areabstract in that the interaction of modules occurs within a model of computation. They are
domain specifictuned in this case to the needs of signal processing applications. Often they will need
to combine multiple domain-specific subsystems.

Some of the modules in a system-level description will be models of physical components (such as
antennas and microwave circuits in the example in figure 1). Others will be specifications of function-
ality without particular reference to the implementation technology. They could be implemented by
any physical realization capable of delivering the specified functionality, such as microelectromechan-
ical systems (MEMS), analog circuits, digital circuits, or embedded software. To be successful, there-
fore, system-level design must be coupled with high quality synthesis tools that translate system-level
specifications into implementations.

The example in figure 1 uses a dataflow model of computation, a particularly convenient and pop-
ular means for specification of signal processing systems. However, that example fails to include many
aspects of a true system-level model of a wireless communication system. It focuses only on the adap-
tive nulling, and omits the control logic associated with, for example, multiple access to the radio
medium or call processing. The latter aspects of the design are a poor match to dataflow modeling, so
alternative models of computation must also be included.

2.3 HETEROGENEOUS IMPLEMENTATIONS

Embedded systems today are typically implemented using a combination of implementation tech-
nologies, as suggested in figure 2. Custom digital hardware, for example, may be combined with ana-
log, microwave, or MEMS designs. Hard real-time software, written in assembly code for a specialized
processor like a programmable DSP, may be combined with higher-level software, typically written in
C, that implements the control logic of the application. And of course, hardware and software are com-
bined within the same design.

2.4 HETEROGENEOUS MODELING AND DESIGN

Typical embedded systems today will exhibit heterogeneity both at the problem level and at the
implementation level. Two competing approaches to the design of such systems guanithenified
approachand theheterogeneous approachhe grand unified approach seeks to find a common repre-
sentation language for all components, and to develop techniques to synthesize diverse implementa-
tions from this representation. The heterogeneous approach uses domain-specific models of
computation hierarchically mixed and matched to define a system and seeks to find retargettable syn-
thesis techniques from specifications to diverse implementation technologies. This project is pursuing
the latter approach.

The heterogeneous approach has a number of advantages. First and foremost, it is clearly possible,
while there is no clearly usable grand unified approach. In addition, it emphasizes domain specific
techniques, which match the applications better. Furthermore, because they are more specialized,
domain-specific techniques are more amenable to high-level synthesis.

Any particular (known) candidate for a grand unified approach has a number of serious disadvan-
tages. First, it must, of necessity, impose a model of computation. For example, choosing to use an
imperative language will impose a sequential model of computation. But any particular model of com-
putation can greatly affect the chosen system architecture. Using an imperative language, for instance,

6 of 40 Principal Investigator: Edward A. Lee



will strongly bias implementations towards software over hardware. On the other hand, using a dis-
crete-event model of computation, as with structural VHDL, will strongly bias the implementation

towards hardware over software. If a grand unified approach fails to impose a model of computation,
then it will have all of the disadvantages of the heterogeneous approach and none of the advantages.

In the heterogeneous approach, multiple models of computation may be used at the problem level
(figure 1) and the implementation level (figure 2). The core of the project, therefore, is on the relation-
ship between heterogeneous models at these two levels, as suggested in figure 3. This relationship con-
sists of a modeling relationship (where a problem-level description is a model of an implementation),
and specification (where a problem-level description is translated into an implementation-level
description).

2.5 MODELS OF COMPUTATION

There are a rich variety of models of computation that deal with concurrency in different ways. In
this section, we outline some of the most useful models in the Composite CAD domain. All of these
will lend an interpretation, osemanticsto the same bubble-and-arc, or block-and-arrow diagram
shown in figure 4.

network controller
I-ti
l T r’. real-time — process
operating _\_/
system
_ \/ > user interface
ASIC microcontroller process
T T system interconnect
] { 7 g
host port
microwave, FPGA
rogrammable ¢ >
microfluidic, Prog CODEC
DSP
MEMS )
i memory interface
control panel I l T
DSP a}Jdlo/
video

assembly
code

FIGURE 2. Typical hardware architecture for an embedded system. The architecture is highly hetero-
geneous, and its hardware-software combination is only one of several manifestations of this.

Heterogeneous Modeling and Design 7 of 40



2.5.1 Differential equations

One possible semantics for the syntax in figure 4 is that of differential equations. The arcs repre-
sent continuous functions of a continuum that is interpreted as time. The bubbles represent relations

between these functions. The job of a simulator is to find a fixed-point, i.e., a set of functions that sat-
isfy all the relations.

Differential equations are excellent for modeling analog circuits and many physical systems. This
is the model of computation used in Spice circuit simulators. However, they have disadvantages. Since

problem level (heterogeneous models of computation)
e I e LT

| umspansoe e
= e 5
S = - T = y
= e T 1
— XV e T ar b
i n
1 5
— L 1 f | = = r - 3
e i [ % W /~1 I T : ',

specification &
modeling

real-tirme
Crpmatating

"‘\::_,_,

=y

rrifcroscontrofler

R \
I f sysimmiinterconmoot -
Fy4 P ] .
£ g Fraa mogrr,; r:able
rrieron B, Le s )l
MEALS DS
mamory intartace
f control panel l 1 \
anadhal
osPe RALet=IeY
assembly
code

implementation level (heterogeneous implementation technologies)

FIGURE 3. The focus of this project is on heterogeneous problem-level modeling, heterogenous
implementation-level modeling, and the relationships between these levels.

FIGURE 4. A singlesyntax(bubble-and-arc or block-and-arrow diagram)
can have a number of possislemanticginterpretations).

8 of 40 Principal Investigator: Edward A. Lee



they directly describe a physical system, they are tightly bound to an implementation, leaving few
implementation options. Moreover, they are only applicable to relatively well-understood technolo-
gies, where lumped-parameter modeling is appropriate. They must be generalized to partial differential
equations for less understood technologies, where solution techniques such as finite elements can be
quite costly. For well-understood technologies, they can be expensive to simulate compared to more
digital representations of comparable functionality (and hence, they can be expensive to implement in
software). Thus, differential equations are best used for implementation-level modeling.

Although at Berkeley we have not yet created the ability to use differential equations in Ptolemy,
Hewlett-Packard has recently announced an integration of Ptolemy with their well regarded analog and
microwave circuit simulators. For more details, see Section 7 “Technology Transfer” on page 34. We
are pursuing many of the fundamental issues associated with such composite modeling under this
project.

2.5.2 Difference equations

Differential equations can be discretized to get difference equations, a commonly used model of
computation in digital signal processing. This model of computation can be further generalized to sup-
port multirate difference equations. In either case, a glolmlk defines the discrete points at which
signals have values (at thieks).

Difference equations are considerably easier to implement in software, and hence leave more free-
dom of implementation. Thus, they can be used at the problem level. Their key weaknesses are the glo-
bal synchronization implied by the clock, and the awkwardness of specifying irregularly timed events
and control logic.

Thesynchronous dataflodomain in Ptolemy is used to model difference equations, although it is
slightly more general, and avoids the global synchronization implied by a pure interpretation of differ-
ence equations.

2.5.3 Process networks and dataflow

In a Process Network (PN) model of computation, the arcs represent sequences of data values
(tokens), and the bubbles represent functions that map input sequences into output sequences. Certain
technical restrictions on these functions are necessary to edsteeminacy meaning that the
sequences are fully specified. Dataflow models, popular in signal processing, are a special case of pro-
cess networks [25].

PN models are excellent for signal processing. They are loosely coupled, and hence relatively eas-
ily to parallelize or distribute. They can be implemented efficiently in both software and hardware
(something demonstrated by this project), and hence leave many implementation options open. Thus,
they are best used for problem-level specification.

A key weakness of PN models is that they are awkward for specifying control logic.

PN models are implemented in Ptolemy using a hierarchy of four nested domains. These are, from
smallest (least general) to largest (most genethichronous datafloSDF), boolean dataflow
(BDF), dynamic dataflofDDF), andprocess network@N).

2.5.4 Synchronous/reactive models

In the Synchronous/Reactive (SR) model of computation, the arcs represent data values that are
aligned with global clock ticks. Thus, they are discrete signals, as with difference equations, but unlike
difference equations, a signal need not have a value at every clock tick. The bubbles represent relations
between input and output values at each tick, and are usually partial functions with certain technical

Heterogeneous Modeling and Design 9 of 40



restrictions to ensure determinacy.

SR models are excellent for applications with concurrent and complex control logic. They can be
realized in the popular Esterel language and certain variants of the Statecharts language. Because of
the tight synchronization, however, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need to
seek a global fixed point at each clock tick.

2.5.5 Discrete-event models

In discrete-event (DE) models of computation, the arcs represent sstemtfiplaced in time. An
event consists of malueandtime stamp This model of computation is popular for specifying hard-
ware and simulating telecommunications systems, and has been realized in a large number of simula-
tion environments, simulation languages, and hardware description languages, including VHDL and
Verilog. Unlike the SR model, there is no global clock tick, but like the SR, differential equations, and
difference equations, there is a globally consistent notion of time.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. A key weakness is that it is relatively expensive to implement in software, as evidenced by the
relatively slow simulators.

2.5.6 Rendezvous models

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between sequen-
tial processes, where the bubbles represent the processes. “Atomic” means that the two processes are
simultaneously involved in the exchange, and that the exchange is initiated and completed in a single
uninterruptable step. Examples of rendezvous models include Hearaisunicating sequential pro-
cessegCSP) and Milner'salculus of communicating systef@CS). This model of computation has
been realized in a number of concurrent programming languages, including Lotos and Occam.

Rendezvous models are particular well-matched to applications where resource sharing is a key
element, for example, client-server database models and multitasking or multiplexing of hardware
resources. A key weakness of rendezvous-based models is that maintaining determinacy can be diffi-
cult. Proponents of the approach, of course, cite the ability to model nondeterminacy as a key strength.

2.5.7 Finite-state machines

In FSMs, bubbles represent syststateand arcs represent stdtansitions This model of com-
putation is radically different from all the previous ones in that it is not concurrent. Execution is a
strictly ordered sequence of state transitions.

FSM models are excellent for control logic in embedded systems, particularly safety-critical sys-
tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid surprising
behavior. Moreover, FSMs are easily mapped to either hardware or software implementations, and thus
are suitable for use at the problem level.

FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to describe
all partially recursive functions. However, this weakness is acceptable in light of the formal analysis
that becomes possible. Many questions about designs are decidable for FSMs and undecidable for
other models of computation. A second key weakness is that the number of states can get very large
even in the face of only modest complexity. This makes the models unwieldy.

10 of 40 Principal Investigator: Edward A. Lee



The latter problem can be solved by using FSMs in combination with concurrent models of com-
putation. This was first noted by David Harel, who introduced that Statecharts formalism, which com-
bines a loose version of SR with FSMs. FSMs have also been combined differential equations, yielding
the so-calledhybrid systemsnodel of computation.

A major (ongoing) result of this project has been to show that FSMs can be hierarchically com-
bined with all of the concurrent models of computation described above. We call the resulting formal-
ism “*charts” (pronounced “starcharts”) where the star represents a wild card. Limited combinations
of FSM with synchronous dataflow and discrete-event were implemented and released, although a
great deal more work remains to be done.

2.6 CHOOSING MODELS OF COMPUTATION

The rich variety of available concurrent models of computation outlined in the previous section
can be daunting to a designer faced with having to select them. Most designers today do not face this
choice because they get exposed to only one or two. This is changing, however, as the level of abstrac-
tion and domain-specificity of design software both rise. We expect that sophisticated and highly
visual user interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be a real number that advances, and placing events on a time
line or evolving continuous signals along the time line. Others are more abstract and take time to be
discrete. Others are still more abstract and take time to be merely a constraint imposed by causality.
This latter interpretation results in time that is partially ordered, and explains much of the expressive-
ness in process networks and rendezvous models of computation. Partially ordered time provides a
mathematical framework for formally analyzing and comparing models of computation. This observa-
tion has led to some key theoretical results partly under this project. These results have profoundly
affected our view of Ptolemy domains and their interrelationships.

A grand unified approach would seek a concurrent model of computation that serves all purposes.
This could be accomplished by creatingnelange a mixture of all of the above, but such a mixture
would be extremely difficult to use, and synthesis and simulation tools would be difficult to design.
Another alternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in the-
ory. Most of these models of computation are sufficiently expressive to be able to subsume most of the
others. However, this fails to acknowledge the strengths and weaknesses of each model of computa-
tion. Differential equations, for instance, are very good at describing the interaction of point masses in
a model of a MEMS system, but not as good at describing the discrete control logic that may be ulti-
mately controlling the actuators in the MEMS system. Similarly, finite-state machines are good at
modeling at least simple control logic, but hopelessly inadequate for modeling the interaction of point
masses. Thus, to design interesting systems, designers will have to use heterogeneous models.

3. Approach

3.1 ANGLE OF ATTACK
Our approach can be summarized as follows:

» We are investigating the theory and techniques needed to mix diverse models of computation, for
example mixed signal, hybrid systems, and more generally systems that mix discrete and continu-

Heterogeneous Modeling and Design 11 of 40



ous events.

* We are developing theory and software for domain-specific modeling of composite concurrent sys-
tems, i.e., the diverse models of computation in the previous bullet.

» We are using programming language concepts such as type theories, semantics, and concurrency
theories for the modeling of concurrent composite systems.

» We are developing a software architecture for modular, distributed, and heterogeneous design,
modeling, simulation, and visualization.

* We are emphasizing modeling and specification methods that are amenable to visual syntaxes such
as block diagrams.

With regard to the first two items, the specific issues that the project is addressing include:

* Semantics (what constitutes a behavior of a system)
» Determinacy (how many behaviors are there)

» Simulation (finding a behavior)

* Analysis (finding properties of behaviors)

» Compositionality (encapsulating subsystems)

« Synthesis (translation to implementation)

» Design (choosing implementations)

* Heterogeneity

3.2 EXAMPLES REQUIRING HETEROGENEITY

Throughout the project, we will be considering examples requiring heterogeneity such as the follow-
ing:

 MEMS device with a discrete controller (differential equations plus discrete-event models)
* Modal models, with regimes of operation (differential equations plus finite-state machines)
» Mixed signal systems (differential equations plus discrete-time and/or discrete-event systems)

» Hardware/software systems (differential equations, discrete-events, discrete-time, finite-state
machines, dataflow, rendezvous, process networks, etc.)

3.3 TASKS
3.3.1 Phase 1 (18 months)

Task 1: Modular deployable design todbky.stem-level design tools such as our Ptolemy environment

tend to be large monolithic software systems, following the VLSI CAD tradition. This makes them dif-
ficult to use, maintain, and support, Moreover, increasingly, design tools are expected to perform in an
environment where design and evolution of a larger system is ongoing, persisting well beyond initial
system deployment. We are exploiting software technologies such as abstract machines, web-based
design, migrating processes, client-server architectures, and object-request brokers to break apart the
design tools into modular building blocks. One consequence is that certain elements of a design tool
(such as schedulers, user-interfaces, displays, controls, and even models) can be deployed as part of
system, facilitating maintenance, adaptation, evolution, and documentation. An underlying object-ori-
ented software architecture will provide the modular heterogeneity amenable to such partitioning.

Task 2: Domain-specific design todiigh-level design tools tend to be domain-specific, supporting a

12 of 40 Principal Investigator: Edward A. Lee



narrow range of design problems. Successful examples include Spice for circuit modeling, digital
hardware design tools, and visual dataflow environments for signal processing. Many of these tools
share common principles. Most can be viewed in fact as languages in that they have a syntax (either
ASCII or pictorial) and a semantics. For electronic systems, the semantics is often concurrent, in that
modules conceptually (or physically) operate at the same time, interacting through signals. For MEMS
systems, the semantics is always concurrent, reflecting an underlying physical modeling problem, and
interaction is through physical effects. We are studying and developing various domain-specific
approaches appropriate to composite CAD. These include Spice-level modeling of circuits and
mechanical systems, discrete-event modeling of synchronous and asynchronous digital hardware,
dataflow modeling of discrete-time systems and embedded software, state-machine modeling of
sequential controllers, and various higher-level models that focus on resource allocation and system-
level design, applicable for example to hardware/software codesign.

Task 3: Heterogeneous interaction semantieeguently, domain-specific design tools and languages
need to be combined to design and model heterogeneous systems. One example of great commercial
interest is in wireless communication, where Spice-level modeling of RF circuits needs to be com-
bined with functional modeling of signal processing that is often implemented in embedded software.
MEMS systems are similar, if a bit more complex, in that they may combine physical models at the
level of differential equations, Spice-level circuit models for analog driving and sensing circuitry, func-
tional models of sequential control logic, and functional models of signal processing that deal with
sensor data or actuator control signals. Each of these is best supported by a distinct modeling para-
digm, language, and tool. These tools tend to grow and evolve in isolation, making it difficult to com-
bine them to achieve system-level design. We are studying and developing theory and techniques for
heterogeneous combinations of such tools and languages.

3.3.2 Phase 2 (18 months)

Task 4: Process level type syst&mongly typed programming languages are more robust than
weakly typed languages. Static type systems can prevent many common software faults and facilitate
compiler optimizations. We will extend this concept to composite system-level design to facilitate het-
erogeneous modeling and design. We will develop a type system for concurrent processes that regu-
lates the interaction between heterogeneous system components. The notion of types will be adapted
beyond that of numerics and data structures to encompass such notions as a continuous-time signal, a
discrete-time signal, a set of discrete-events in time, a rendezvous, or a sequence of messages. Instead
of defining variables, our types define signals. The forms that signals can take determine the types of
the processes that interact with these signals. A type hierarchy will determine how processes can be
combined and type resolution and translation will be developed to support heterogeneous modeling.

Task 5: System-level validatidrormal analysis can play a major role in validating designs of embed-

ded systems. Models of computation based on a formal mathematical framework, such as differential
equations, synchronous/reactive models, communicating finite-state machines, and dataflow models,
have been used to design systems that provably have some desirable property such as safety, stability,
or liveness. Such techniques have been applied in hybrid systems, which combine continuous-time dif-
ferential equation models with discrete finite automata. However, the methods used today mostly do
not scale well to practical systems. Key questions frequently become undecidable, and many of those
that remain decidable become intractably complex. We will develop systematic techniques that can
applied to practical systems. The keys are information hiding and hierarchy. Simple, mathematical
models of computation can be used to define the interaction between modules at a large grain level. We

Heterogeneous Modeling and Design 13 of 40



will show that by hiding the internal implementation of modules, they can become large and complex
without adversely affecting the ability to answer key validation questions at the system level.

Task 6: System-level visualizatidile will construct an object-oriented design visualization environ-
ment for complex, evolving, distributed systems. Initially (at least) this will be based on the Tycho syn-
tax manager that we have begun under the Ptolemy project. Tycho supports syntax-directed editing and
domain-specific graphical visualization by using a modular, object-oriented software architecture. This
architecture will support deployable design tools; visualization modules will be separable from the
design environment. We will devise visual representations to illustrate the concurrent and real-time
behavior of composite systems. We expect that different visual syntaxes will be required for different
models of computation (physical modeling of MEMS components will likely require significantly dif-
ferent representations than the automata that control them). We will devise live, direct-manipulation
interfaces for design and modeling composite systems.

4. Summary of Accomplishments

The major accomplishments of the project are summarized in this section. Concrete deliverables
included monthly and annual reports, software, demonstrable technology transfer, and 24 publications
to date, all of which have been posted on the World Wide Web.

4.1 TASK 1: MODULAR DEPLOYABLE DESIGN TOOLS

4.1.1 Java Exploration

At the start of this project, we began a serious investigation of the Java language as a possible basis
for our future software development. This evaluation came out strongly in favor of using Java, comple-
menting it with Tcl (for scripting) and Tk (for user interface work). The user interface capability in
Java was (and still is) extremely limited compared to Tk. The use of a scripting language in combina-
tion with Java has compelling advantages that we will elaborate on below. Rather than using Tcl/Tk in
pure form, we are using ltcl, an object-oriented extension.

The Java language offers a number of significant advantages for use in our context. Like Ada, it is
much safer than C or C++ because of its built-in memory management and its lack of pointer arith-
metic. Also like Ada, it is a concurrent language, with a built-in thread library. It has also proven porta-
ble and distributable, with well-conceived and robust mechanisms for migrating code across platforms.
Finally, a huge investment is being made in industry in software development environments, class
libraries, and applications. We can leverage this investment.

Initially we had a number of key questions that needed to be addressed. First, since the language is
conceived around interpreted byte code, will it be capable of delivering the performance needed by
signal processing applications? We made some measurements, comparing interpreted Java code
against compiled Java code using a just-in-time Java compiler, and found about a factor of 30 improve-
ment in speed. Although there is still a performance penalty compared to optimized C++ code, we
believe that there is no fundamental reason for Java to be slower than C++ code, if compiled into native
code. Java compilers and interpreters will improve over time, as there is a huge investment in them in
industry.

A second key question is whether the Java thread library provides an adequate platform for con-
structing concurrent applications. The basic mechanism, wait and notify, is too low level for most
applications programming. In particular, direct use of such low-level primitives makes validation of

14 of 40 Principal Investigator: Edward A. Lee



concurrent programs very difficult. For example, there is no direct way of ensuring determinacy and
preventing deadlock. Indeed, our experience writing threaded Java code underscores the need for a
higher level abstraction above threads.

We have completed two pilot projects that show that higher-level determinate mechanisms can be
built on top of Java threads. In the first of these, Dick Stevens, a visiting scholar from the Naval
Research Labs, together with two graduate students, Marlene Wan and Peggy Laramie, have designed
a set of classes that implement Kahn process networks. KPNs have sequential processes that communi-
cate via unidirectional FIFO queues. Based on previous work at Berkeley and at Lincoln Labs by Tom
Parks, they were able to implement a simple algorithm that ensures that the size of the FIFO queues
will not grow unbounded unless the program requires them to grow unbounded. We have set out, as
detailed below, to construct a Java-based Ptolemy software architecture that will have PN as one of its
first domains.

The second project, completed by Jim Young of the CAD group at Berkeley, implements a barrier
synchronization mechanism on top of Java threads.

These two pilot projects are very encouraging because the two concurrency models are very differ-
ent from one another, and yet both appear to be efficiently implementable on top of Java threads.

4.1.2 Java Ptolemy Kernel

We are in the process of designing and implementing a set of Java classes that realize key function-
ality in the Ptolemy kernel. An image of the more essential classes and their relationships are shown in
figure 5. The design of these classes has been painstaking and careful. We have emphasized systematic
software engineering over speed of development. One reason for this is that the group of students,
staff, and faculty working on the software are all relatively inexperienced with Java, and most of them
are also relatively unfamiliar with the Ptolemy kernel. We have instituted careful code review mecha-
nisms, and have rewritten the most critical code several times. The result so far has been to build a
small and very well-designed core software infrastructure, and to build a cohesive team of experts.

A key idea in the design of these classes is to define a small core data structure supporting uninter-
preted hierarchical graphs. Such graphs provide an abstract syntax for netlists, state transition dia-
grams, block diagrams, etc. Although this idea is present in the original Ptolemy kernel, in fact the
Ptolemy kernel has much more semantics than we would like. Much of the effort involved in imple-
menting models of computation that are very different from dataflow stems from having to work
around certain assumptions in the kernel that, in retrospect, proved to be particular to dataflow.

Hierarchical graphs are collection of “entities” and “relations”. Entities have “ports” and relations
connect the ports. Entities can contain a graph, and ports in the contained graph can be exposed as
ports of the container entity. A port can link to any number of entities, and thus is equivalent to the
MultiPort of the C++ Ptolemy kernel. There is ho simple port in the Java kernel.

Consistent with theoretical results recently obtained as part of the Ptolemy project [21], we have
been designing the Particle class to support tags and values. Particles are explicitly given the notion of
tags and values by implementing a tag/value interface hierarchy (in the Java sense). In some cases, say
SDF, the tag of a particle may be non-existent and in other cases, say FSM, the value of a particle may
be non-existent.

4.1.3 Network Integrated Design

We have made progress on several fronts in making our design tools and methodologies network
aware.

John Reekie and Kevin Chang made Tycho internet aware. Tycho is the Itcl side of our software

Heterogeneous Modeling and Design 15 of 40



NamedObj

_name
_params
getName()

getParams()
setName(new name)

Entity .-
_portList - _parent
getPort(name) _relationsList
getPorts() getParent()
getLinkedEntities(?port name?) getLinkedRelations()
getLinkedRelations(?portname?) link(relation)
numLinkedEntities() numLinks()
numLinkedEntities(port name) setParent(entity)

unlinkAll()

N

. 1 HierEntity

getContainer()
getFullName()
isAtomic()
setContainer(parent)

N

unlink(relation)

Relation

isPortLinked(port)
getLinkedEntities()
getLinkedPorts()
getLinkedPortsExcept(port)
numLinks(port name)

é

HierPort

_upAlias

_downAlias

getDownAlias()
getUpAlias()
setDownAlias()

CompositeEntity

add(child)
get(name)
getChildren()
getLeaves()
remove(child)
remove(name)

setUpAlias()

4

IOPort

_islnput
_inOutput
isInput()
isOutput()
makelnput()

makeOutput()

removeAll()

size()
Galaxy

alias(internal port, external port)
add(relation)
getRelations()

e
)

_relations el el

FIGURE 5. Key classes and their methods in the Java Ptolemy kernel.

16 of 40

Principal Investigator: Edward A. Lee



effort. It provides an infrastructure for data management and user interface design. Their software
architecture supports transparent access to URLS, as if they were local files. Every place where Tycho
has been able to reference a local file it can now reference a URL. This is done by using Tcl's built in
socket mechanism to connect directly to HTTP servers through the network. This mechanism is porta-
ble (it works under NT as well as Solaris) and robust.

Kevin Chang has also created a portable interface to electronic mail within Tycho. Thus, Tycho
scripts can now be easily written that will send electronic mail, and hyperlink references now support
the “mailto:” protocol. The EditMail editor uses the ResourceMail class to contact the mail server on
socket port 25. Using sockets instead of UNIX mail, ResourceMail is platform independent. We are
experimenting with using this to enhance our own information flow within our software development
effort.

We have also collaborated with the WELD project (web-based electronic design), headed by Rich-
ard Newton. WELD aims to provide software infrastructure where design tools execute on compute
servers in the network and are used by designers anywhere. John Reekie has built into Tycho a number
of features to support access to WELD databases and applications. The intent of the integration is to
use Tycho to provide more complex user interfaces to WELD design tools that are operated over the
network. Tycho provides a significantly higher-level platform for user interface design than Java, on
which WELD is based.

John Reekie has demonstrated using Ptolemy remotely via the WELD protocol with Tycho provid-
ing the user interface. He gave the demo at DAC (the Design Automation Conference). We learned
from this that some refinement of the WELD protocol is needed to support more dynamic simulations.
Using the WELD protocol would have a number of advantages like independence from the user inter-
face, ability to monitor just the data of interest from various simulations, perhaps a workflow applica-
tion that supports dynamic monitoring, and control of any simulation.

This work has contributed some infrastructure to Tycho, including persistent object support
classes, which Tycho uses to access the WELD database (written in Java), a client-side interface to a
WELD server (Java), and a simple server process that runs Ptolemy under the control of Tycho. This is
perhaps the first client-server implementation of Ptolemy.

To make Tycho “WELD-aware”, John Reekie wrote a subclass of the Resource class, called
ResourceWELD, and added the protocol name “weld” to the existing list (“http”, “mailto”, “file”).
Because of this approach, access to the WELD server is transparent: if you open a file browser (in
tycho -java) and enter weld://machinename, you will get a listing of the contents of the WELD server
on that machine. John has installed on the main WELD server machine (called “yoyodyne.eecs.berke-
ley.edu”) a graph editor with a simple dataflow graph. There is a menu entry on the graph editor called
“Run Remote Ptolemy”, which will generate a set of textual commands to Ptolemy and send them to a
Tycho server. The Tycho server can also be run from the WELD workflow applet. This infrastructure,
however, keeps breaking because WELD and Tycho are both very much work-in-progress and their

interfaces keep changing.

We learned a few lessons. First, running Ptolemy in client server mode is easy because of its Tcl-
based textual command interface. Second, security is a big problem with this setup, since the server is
executing an arbitrary Tcl script. A safe Tcl interpreter is required. Third, most Ptolemy applications
need to be modified to work this way because most assume that the user interface coincides on the
same machine with the simulation. Thus, for example, output data needs to be returned over the net-
work rather than displayed directly in a plot on the screen. Finally, more development would be needed
to fully realize interactive executions, as opposed to executions that put their results in a file. The
WELD team is interested in extending their protocol to better support Ptolemy-style interactive simu-

Heterogeneous Modeling and Design 17 of 40



lations.

Finally, inspired by the WELD work, UT Austin (with partial support under our subcontract) has
announced Version 1.0.5 of a web-enabled simulation (WEDS) framework for embedded software for
DSPs and microcontrollers. The web page is:

http://anchovy.ece.utexas.edu/~arifler/wetics/

The team developing this is led by Prof. Brian L. Evans and includes Dogu Arifler, Chi Duong, Sri-
kanth Gummadi, Saleem Marwat, Chris Moy, Ha Nguyen, Han Nguyen, and Anna Yuan. The frame-
work runs on a Java-enabled Web browser, and consists of the following:

» A set of Java applets that provide a configurable framework for Web-based user interfaces for
instruction set architecture simulators.

» A multithreaded TCP/IP Internet server written as a Java application that provides the interface
between the Java applets and the instruction set architecture simulators.

* Command-line ISA instruction set architecture simulators written in C/C++ that run under Win-
dows '95, Windows NT, and more than twelve Unix architectures including Solaris 2.5 and Linux
for the following processors:

a. Texas Instruments TMS320C30 floating-point digital signal processor
b. Motorola MC68HC11 microcontroller.

Acknowledgment$JT based the MC68HC11 simulator on a freely distributable simulator engine
written by Ted Dunning at New Mexico State University and Tomaso Poletti from Follina Italy. They
based the TMS320C30 simulator on the freely distributable TMS320C30 simulator on the freely dis-
tributable C30 DSK tools by Keith Larson at Texas Instruments. The makefile structure is based on
Ptolemy.

4.1.4 Java-Tcl Interaction

In the near term, our software environment will mix Java and ltcl. We feel that the combination of
a scripted language such as Itcl and a faster compiled language such as Java will be a compelling com-
bination for a wide variety of network-aware applications. Both are platform-independent, network-
savvy, and object-oriented. Java is at least 10 times faster that ltcl, so for computationally intensive
applications, calling Java methods makes a lot of sense. For high-level control and dynamic reconfigu-
ration, ltcl offers a higher-level interface.

Over the last year, we have been through several Java/ltcl interfaces. The long term solution
appears to be TcIBlend, recently released by Sun Microsystems. Currently, TcIBlend does not work
with Itcl, but it does work with Tcl (the non-object-oriented base language). We have been working
closely with the SunScript group in configuration management and porting issues for TcIBlend, and in
fact contributed to its development in a number of ways.

TclBlend is a Tcl/Java interface that uses C code that calls the Java Native Invocation (JNI) mod-
ule in JDK1.1 (the currently stable Java development kit). We have found problems, for example, with
multiprocessor platforms (where SunScript’s own test suites fail). We plan on using the Tcl/Java inter-
face to provide a flexible scripting interface to software modules like Ptplot and the new Java Ptolemy
kernel. Our first use is to construct a scripted test suite for the new Java Ptolemy kernel that we are
building.

Sun has also released Jacl 1.0, which is a “100% pure Java” implementation of a subset of Tcl.

18 of 40 Principal Investigator: Edward A. Lee



Unfortunately, Jacl cannot currently be used to construct scripted applets, and it throws security excep-
tions on any attempt. We are not exactly sure what Sun is trying to accomplish with this project, but
have been experimenting with it nonetheless.

Prior to TclBlend, we wrote an interface between Tcl and Java that uses the Java Reflect class. This
interface was considerably easier to use than Sun’s TclJava0.4 interface, Sun'’s first attempt, making
the integration more transparent. We believe that we influenced the design of TcIBlend through this
work.

4.1.5 Java Signal Plotter

We have released on the net two versions of our first Java module, a versatile signal plotter. See the
web page, which contains a number of demonstrations:

http://ptolemy.eecs.berkeley.edu/java/ptplot
There are a number of reasons behind our choice to release this module first:

1. ltis neither trivial nor excessively complex, and thus represents a manageable amount of software
with which to learn about the issues in writing and releasing Java code.

2. The application combines numerical computation, threading, and simple user interfaces. Thus, it
hits most of the key facets we expect to find in such modules.

3. ltis a clearly circumscribed module that is useful on its own as well as within the larger Ptolemy
system.

The plotter is backwards compatible with pxgraph, the signal plotter that has been used in Ptolemy, but
adds the interactive animated plotting feature of TkPlot, which is also used in Ptolemy. Thus, it will
replace these two facilities. There are a number of things we have learned so far from this experience:

1. Writing nontrivial multithreaded Java programs is very difficult. It is hard to avoid deadlock and
starvation conditions. We believe that the Ptolemy process networks domain that we will be reim-
plementing in Java will make this much easier by providing a much higher level interface to con-
currency primitives than Java threads provide.

2. Writing Java code that runs everywhere is much more difficult than would be ideal.
The plotter has the following properties:

» It can be an applet or an application.

» It can read binary or ASCII data off the net or from local files.
e It supports auto-ranging of the scales.

* |t does automatic or manual labeling of axes.

e It supports automatic or manual tick marks.

« Live, animated plots.

* Infinite zooming.

» Various plot styles: connected lines, scatter plot, bars, etc.
» Various point styles: none, dots, points, and unique marks.
« Multiple data sets and a legend.

» Color or black and white plotting.

Heterogeneous Modeling and Design 19 of 40



The applet implementation can read data to plot from a URL or construct the data in custom Java code.
The application can read data from a file and use command-line arguments to format the plot. The
command-line arguments are compatible with pxgraph.

There is a set of demonstrations of these classes. The main class implementing the plotter is Plot. It
is derived from PlotBox, which provides only the axes and decorations of the plot. This is imple-
mented in a base class so that it can be reused for different kinds of plots. Live (animated) data plots
are supported by the PlotLive class. This class is abstract; a derived class must be created to generate
the data to plot (or collect it from some other application). The application is implemented by the
Pxgraph class. The Pxgraph class includes support for printing and generating HTML for use with the
Plot applet. Unix users can invoke the pxgraph Bourne Shell script to simulate the pxgraph X11 binary
on machines where the X Window System is not available. See the Pxgraph class documentation for
pxgraph script installation instructions under Unix. Windows users can invoke the pxgraph.bat DOS
batch file. Pxgraph is a slight extension to xgraph which reads binary files as well as ASCII. This code
owes a heavy debt to David Harrison, the original author of xgraph. The extensions in pxgraph were
written by Joe Buck.

The 1.0 release achieved a rating in the top 5% of JARS - The Java Applet Rating Service (http://
jars.developer.com/).

The changes between ptplotl.0 and ptplotl.1 were:

* In 1.1, PlotBox extends Panel. In 1.0 PlotBox extended Applet. This makes it much easier to use
Plot as an component in either an application or an applet that contains other components

» The PlotApplet class is new in 1.1. PlotApplet can be used for applets that use the Plot class, or the
PlotLive class. As a result, the HTML applet tags for the demos now use code="ptplot.PlotAp-
plet". Formerly, they used code="ptplot.Plot".

» The directory structure has been reorganized so that the plot classes are in ptplot, and the demo
classes are in ptplot/demo. This means that the ptplot.zip does not contain the demo classes, which
is better if anyone actually wants to use the plotter instead of just running the demos.

* There is a new demo that uses real time audio.

» Fixed a bar graph label bug reported by Marc Ellis.

» A few other minor bugs were fixed.

4.1.6 Tycho Information Models (TIM)

John Reekie has defined a simple framework to support exchange of information and cooperation
between modular tools. The aim is to make it easy to describe a model, to describe relationships
between models, and to define new models.

A Tycho information model (TIM) is the unit of information read and generated by tools. It is con-
ceptually similar to the file representation of a compound document in systems like OpenDoc -- that is,
it contains structured data, but it is not an object or a database. Models have attributes, which contain
information about the model and its relation to other models, entities, which are conceptually similar
to objects in object models, and associations between entities, which are similar to associations or
links in object models.

The TIM classes are expected to form the base classes for virtually all domain-specific visual edi-
tors and visualization tools that we will be building in Tycho. TIM is based on a “model-view” (MV)
paradigm, which is a simplification of the classical “model-view-controller” (MVC) paradigm that was
originally elaborated in Smalltalk. In MV, the view and controller are consolidated into a single object

20 of 40 Principal Investigator: Edward A. Lee



that serves both the visualization and manipulation role. This consolidation is warranted by the huge
improvements in user interfaces since MVC was first developed.

The basic idea in MV is that data is represented abstractly in a “model” and one or more “views”
render that data concretely. For example, a model may represent a netlist as a mathematical graph and
a view may render it as a block diagram. However, a given model may have more than one view. Thus,
for example, the same netlist might be rendered as a gantt chart displaying an execution schedule.
Either view may include editing, or direct manipulation capabilities, that modify the data stored in the
model.

Central to the MV concept is that views subscribe to the model and are automatically notified
when changes to the model are made. The model “publishes” data modifications, and the views “sub-
scribe” to the model to be notified of modifications. The base class, called Model, implements the pub-
lish-and-subscribe infrastructure. It also implements a reasonably flexible unbounded undo and redo
mechanism, something that almost all editable models will require.

DataModel extends the Model class to support data models and the TIM interchange format. TIM
is a simple meta-data format that encourages a simple and clean representation of data, both in in-
memory objects and in an external file representation. A data model is loaded from a string in TIM for-
mat with theparsemethod, and will produce a TIM description of itself with ttiescribemethod. The
DataModel class also provides infrastructure for searching and sorting the objects in the model.

Models are expressed in terms of a simple and flexible syntax. A simple syntax makes it easy to
create new models: you do not need to invent new syntax, but just to declare the things in your model.
The syntax is based on the observation that there are two common ways of describing data: i) by giving
a mapping from names to values; and ii) by saying what a thing is and then giving information about it.
TIM calls these attributes and declarations.

TIM is specified at two levels: an abstract syntax states what things TIM can describe and how; a
concrete syntax states how you write it. The atomic units of the abstract syntax are types, names, and
strings. The concrete syntax used in Tycho is a Tcl-like syntax.

Because TIM is a simple and structured format, it is relatively simple to parse and generate. In
Tycho, the Model class provides the support heeded to parse and generate TIM files. Subclasses that
implement particular models with their own set of entities and associations need only follow a couple
of simple rules to inherit this capability. TIM is implemented in the Model class in Tycho, and so far is
used in the preferences manager and in the Schedule class. The Model class handles undoing and redo-
ing changes and provides support for making data persistent.

John Reekie has redesigned the preferences manager in Tycho using TIM to make it more modu-
lar. Previously, the preferences manager was entirely centralized, providing a significant barrier to
modularizing Tycho. The preferences manager needed to be aware of all existing classes. Now, classes
register a style sheet with the preferences manager, so classes can be added dynamically and there is no
particular fixed set of preferred classes.

The new version is based on the concept of a style sheet. Packages can define their own style-
sheets, and each style-sheet can have multiple styles from which the user can choose. This can be over-
ridden on a per-class basis.

4.1.7 Object Modeling

John Reekie has undertaken to lead a study group that is examining current practice in object mod-
eling in general and the UML language in particular. This study is being applied to critically examine
the current and future design of Ptolemy. Working documents describing the ongoing work can be

Heterogeneous Modeling and Design 21 of 40



found at;

http://ptolemy.eecs.berkeley.edu/~johnr/tycho/design/
In particular, the following issues have been specifically addressed:

1. The relationship between functional blocks in a netlist and their graphical representation (stars and
icons, in the terminology of Ptolemy). One major issue that has been considered is that a given
icon may actually represent several possible implementations of the same functionality. Also con-
sidered is the relationship between mechanisms for interacting with a functional block (parameters
and ports) and their graphical representations.

2. The relationship between ports (logical input and output of a functional block) and terminals (the
graphical representation thereof). Questions about how to handle aggregation of indefinite num-
bers of ports and how to restrict graphical manipulations of ports have been addressed.

3. The representation of logical connections in a netlist. Issues considered include the need to anno-
tate connections, the need to order terminals in a net, and the need to have both point-to-point and
multi-way nets. The group has also created a dynamic model for the process of creating and
manipulating a connection.

Currently, the group is addresses the uses of design patterns. Patterns seem to be a hot topic in the
object-oriented design community, both academic and commercial. The promise of patterns is to pro-
vide a means of capturing and reusing object-oriented design expertise that simply cannot be expressed
in terms of specific classes or applications.

The object modeling study group has also completed a study of interfaces, a central capability in
the Java language. The different purposes for interfaces that we identified are:

Role in a collaboration An interface provides the syntactic declaration of a role in a collaboration
between objects. Design patterns typically contain collaborations suitable for interfaces -- for example,
Strategy, Observer, Iterator. Classes can participate in multiple collaborations by implementing multi-
ple interfaces.

Multiple classification (the Java version of multiple inheritance) A class may naturally be classified
in two different ways, and implementing multiple interfaces (or inheriting from one superclass and
implementing interfaces as the others) is the only way in Java to directly express this.

Separate interface from implementatiddecause interfaces do not have any implementation, inter-
faces can be used to separate the interface presented by objects (its type) from the implementation.
Some people even advise that every class should be split into an interface and a class. Doug Lea's Col-
lections classes use this idea extensively.

Marker interface Some interfaces are empty -- their sole purpose is as a “marker” that declares that
classes that implement it have a certain function. The Java classes Cloneable, Serializable, and Remote
are marker interfaces.

In view of these classifications, we studied the details of a number of built-in Java interfaces, including
java.lang.Runnable, java.lang.Cloneable, java.rmi.registry.Registry, and a number of interfaces in
Doug Lea's Collections classes.

The current prototype of Java Ptolemy contains interfaces for tags and values, both of which must

22 of 40 Principal Investigator: Edward A. Lee



be implemented by Particle classes. Subclasses of Particle can implement more specific sub-interfaces
of Tag and Value, thus providing compile-time type checking on particle usage. We are re-examining
this design in view of what we've learned.

4.2 TASK 2: DOMAIN-SPECIFIC DESIGN TOOLS

4.2.1 Process Network Domain in Java and Tycho

Tom Park's Process Network (PN) domain in Ptolemy implements an asynchronous, highly dis-
tributable concurrent model of computation that generalizes dataflow. It appears to be a very good can-
didate for providing a higher-level abstraction in Java (above threads) for concurrent programming.
The current Ptolemy implementation uses threads via C++. Tom wrote a Sieve of Eratosthenes demo in
Java that uses the Java threads to compute the first N prime numbers, giving an existence proof that
Java provided a reasonable substrate.

We subsequently further developed this work, and built a complete Java infrastructure supporting
the PN model of computation. The next step will be to create a Java Ptolemy PN domain, which is
likely to be the first Java domain.

4.2.2 Benchmarking Code Generation Methodologies for Embedded Software

Under subcontract, Brian Evans and his team at UT Austin have completed an in-depth study
where they benchmark code generation methodologies for programmable digital signal processors
[10]. They evaluate rapid prototyping tools and compilers as code generation methodologies for pro-
grammable digital signal processors (DSPs). Code generated by compilers and rapid prototyping tools
have been reported as significantly less efficient in memory usage and execution time versus assembly
language code written by expert programmers. As complexity of the system increases, however, the
scale tips in favor of the automated code generation techniques. They quantify when this trade-off
occurs on a Motorola 56002 DSP using the Motorola KCCA56 C compiler version 1.26 (May 22,
1996) and the automated C and 56000 code generators in Ptolemy version 0.7 (June 13, 1997). The
Motorola KCCA56 C compiler, which is GNU-based, is available on the Motorola DSP Development
Tools CD ROM.

In their evaluation of code generation techniques, they used 3 kernels and 3 stand-alone applica-
tions. The kernels were an IIR filter, a 256-point Complex FFT, and Goertzel's DFT. For the applica-
tions, they used Ptolemy demonstrations that obey Synchronous Dataflow semantics: (1) IIR filtering,
(2) CD-DAT converter, and (3) Dual-Tone Multiple-Frequency (DTMF) touchtone codec. To isolate
the effects of (a) compiler inefficiencies and (b) automatic scheduling algorithms, they coded the ker-
nels and the IIR filtering application (1) manually in 56002 assembly code (2) manually in C and com-
piled using the KCCA56 C compiler, (3) using Ptolemy’s Code Generation for the 56000 (CG56)
domain, and (4) using Ptolemy’s Code Generation in C (CGC) domain to generate code in C which
was later compiled using the KCCA C compiler.

They implemented the other two applications using (2)-(4). Comparing assembly language and C
implementations exposes compiler deficiencies, whereas comparing hand-written code with Ptolemy
generated code emphasizes differences in manual vs. automated scheduling algorithms. In addition, by
comparing the results for the same application given by the Ptolemy CG56 domain vs. the Ptolemy
CGC domain plus the KCCA56 C compiler with the same scheduler, they isolate the effects of the
KCCA56 C compiler.

Table 1 below (from the benchmarking for the CD-DAT converter), shows that Ptolemy performed
very well on two fronts. First, with its libraries of optimized code blocks, it was able to come up with

Heterogeneous Modeling and Design 23 of 40



smaller code size. Second, its optimizing scheduler resulted in much shorter execution time for the
same application. These same effects were visible to an even larger extent with the DTMF Codec
application in which the hand-coded C version resulted in a final object code that was too large to fit
onto our 56002 evaluation board’s program memory.

Table 11: Memory Usage and Execution Times for the CD-DAT Converter

Ptolemy CG56 Ptolemy CGC Hand coding in C
Program Memory 413 586 687
X Data Memory 456 468 398
Y Data Memory 283 280 324
Execution Time 295069 381076 463004

Ptolemy-generated 56000 assembly language programs outperform compiled hand-coded C imple-
mentations in program memory usage and execution time, and are comparable in data memory usage.
The gap widens as complexity increases. At some point between the complexity of the IIR filtering and
CD-DAT converter applications, Ptolemy-generated C programs begin to outperform hand-coded C
implementations in the same way. The increase of complexity from a CD-DAT converter to a DTMF
codec causes an increase by an order of magnitude of the efficiency of Ptolemy-generated C programs
over the hand-coded C implementations. Although not shown, we found that for the IIR filtering dem-
onstrations that Ptolemy-generated assembly language programs were only 2% worse in performance
vs. hand-coded assembly implementations.

As far as which code generation methodology to use to create the most efficient implementations
in a DSP assembly language, they draw the following conclusions:

1. When the choice is between writing C code manually for compilation and using a synthesis tool to
generate assembly language directly, the synthesis tool should be chosen.

2. Akey use of a C compiler is to complement a tool that synthesizes assembly language programs
by generating efficient implementations of kernels in assembly language when they do not exist.

3. When the choice is between writing assembly language code manually and using a synthesis tool
to generate assembly language, the synthesis tool should be chosen for applications of complexity
slightly greater than a DTMF codec.

4.2.3 Real-Time Sonar Beamforming using Process Network Models (UT Austin)

Sonar beamforming algorithms, which require on the order of one billion operations per second,
have traditionally been limited to custom hardware implementations to meet real-time requirements.
Real-time sonar beamformers in the field today are based on custom application-specific integrated cir-
cuits (ASICs). A typical sonar beamformer processor costs $1 million. At present, only one company
manufacturers real-time sonar beamformer processors. However, recent developments in both hard-
ware and software present the possibility of accomplishing real-time beamforming on UNIX worksta-
tions at a fraction of the cost of a custom hardware solution.

Prof. Brian Evans (on a subcontract to UT Austin) and Mr. Gregory Allen (Advanced Sonar
Group, Applied Research Laboratories, UT Austin) have been developing scalable software to imple-
ment real-time sonar beamformers on UltraSparc workstations using the Solaris operating system [12].

24 of 40 Principal Investigator: Edward A. Lee



They have been implementing digital interpolation beamforming algorithms specified using the Pro-
cess Network computation model [25] and implemented using POSIX threads. Being a superset of
dataflow models, the process network model captures the parallelism in data-intensive digital signal
processing algorithms such as sonar beamformers.

The software beamformer gained near linear speedup over one, two, and four processors. On two
processors, the processor utilization was over 95%. At the present time, real-time sonar beamforming
is feasible on a workstation containing 12 high-end UltraSPARC-II processors. Such as workstation
costs on the order of $250,000, which is one-fourth the cost of the ASIC sonar beamformer.

4.2.4 Real-Time Smart Antennas for Wireless Communications (UT Austin)

The proliferation of wireless communication services have been stimulating unprecedented
demands for scarce radio spectrum. A key emerging technique for increasing the number of users in a
cell site is to add spatial diversity to existing standards, such as the 1S-95 CDMA standard. Spatial
diversity among the users is incorporated by means of an antenna array with embedded processing. As
the number of standards continue to increase, a significant need is arising for software base stations
that can support multiple standards by means of deployable, configurable software. The reason is that
base stations cost on the order of $150,000 to build, and it is becoming more cost effective to reuse the
existing stations than to build new ones for each new standard.

Prof. Brian Evans’ research team at UT Austin (under subcontract) has developed three new
approaches for implementing smart antenna systems in real-time:

1. optimal weight vectors for spatial broadcast channels [13][4]
2. blind estimation of FIR channels in CDMA systems [14]
3. modified constant modulus antenna arrays [15]

The first two approaches can be modeled using a mixture of Boolean Dataflow and Synchronous Data-
flow, and the third approach is completely Synchronous Dataflow. All three approaches lead to stati-

cally scheduled implementations. The first two approaches have been implemented in the Real-time
Wireless Communications Testbed run by Prof. Guanghan Xu (UT Austin). Ptolemy demonstrations

and real-time implementations of the third approach are forthcoming.

In the first approach, the UT Austin team improves capacity of broadcast channels by employing
multiple transmitters and exploiting the spatial diversity among the users. They derive fast algorithms
to compute orthogonal, near-optimal, and optimal weight vectors for broadcasting message signals to
two and three users. The key innovation is that we decouple the weight vectors in the measure of chan-
nel capacity to (1) simplify the optimization problem to a search for the maxima of a smooth multidi-
mensional function and (2) derive closed-form expressions for the orthogonal and near-optimal
algorithms. All three methods are well-suited for implementations on embedded digital signal proces-
sors or workstations.

The second approach takes advantage of the structure in CDMA signals. CDMA systems com-
monly use aperiodic spreading codes to distribute a signal spectrum uniformly over the channel band-
width and differentiate neighboring cell sites. CDMA receivers often suffer from interference due to
multipath fading. Blind signal estimation schemes cannot be used because they require access to one
or more periods of the spreading sequences, and the period of aperiodic spreading codes in the 1S-95
standard is on the order of 1800 days. RAKE receivers are often used, but they cannot fully exploit the
rich structure of CDMA signals to minimize interference. This paper presents an iterative technique to
estimate multipath parameters which can serve as a preprocessing step in a receiver to increase signal-
to-interference ratio. They investigate the performance of the proposed method using computer simu-

Heterogeneous Modeling and Design 25 of 40



lations. Preliminary simulation results show an average of 10 dB gain on channel parameter estima-
tion.

The third approach takes advantage of those digital modulation schemes whose constellation either
has constant amplitude (such as BPSK) or is composed of a union of constant amplitude codes (such as
QAM). The multistage constant modulus array is capable of separating interference from other users
(known as cochannel signals) [26]. They convert a constant modulus (CM) array into a robust smart
antenna by modifying the error criterion to be a weighted sum of conventional CM array error and
decision-directed equalization error. The new error criterion enables the CM array to (1) separate digi-
tal cochannel signals with multipath and inter-symbol interference and (2) track fading signals. Fading
signals result from the regions of high and low amplitudes of the standing waves caused by the Dop-
pler shift in received frequencies from a moving transmitter. The key contribution is that the modified
error criterion adds phase sensitivity to the otherwise phase insensitive CM error criterion. The UT
team presents computer simulations to show the signal tracking properties of the CM array using the
modified error criterion in a fading environment.

4.2.5 Filter Design

William Wu is working on the basic skeleton of a software architecture for interactive filter design.
The idea is that, like PtPlot, this will form another of the modular pieces of Ptolemy software in Java.
In the current design conception, a filter is a model (or subject), extending a Java Observable class. Its
pole/zero plot, frequency response plot, impulse response plot, and other dependent data will extend
the Java Observer class, implementing a view in a model-view paradigm. There will be a object called
Manager that creates the plots (observers) and filter (subject). The Manager also handles the initial
setup for the filter from the user. However all the changes of the filter data are handled between filter
and plots, using the notify and update functions that are built in to the Java base classes.

William also plans to construct a static library in that has many useful math functions needed in fil-
ter design computations, like an FFT, polynomial expansion, roots finding etc. Eventually this will
expand beyond this class of applications. It will for another modular package in the Java Ptolemy
ensemble.

4.3 TASK 3: HETEROGENEOUS INTERACTION SEMANTICS
4.3.1 Generalized Hybrid Systems

We have completed a paper [20] that develops the semantics of hierarchical finite-state machines
that are composed using various concurrency models, particularly dataflow, discrete-events, and syn-
chronous/reactive modeling. It is argued that all three combinations are useful, and that therefore the
concurrency model should be selected independently of the decision to use hierarchical FSMs. In con-
trast, most formalisms that combine FSMs with concurrency models, such as Statecharts (and its vari-
ants) and Hybrid systems, tightly integrate the FSM semantics with the concurrency semantics. We
have prototyped an implementation of two of the three combinations described.

One of the several contributions in this paper is the definition of a new dataflow model of compu-
tation called Heterochronous Dataflow (HDF) that combines FSMs with dataflow is such a way as to
preserve certain formal properties of synchronous dataflow. This is particularly important for embed-
ded system design, where guestions such as deadlock and bounded memory must be answered at
design time.

26 of 40 Principal Investigator: Edward A. Lee



4.3.2 Type Systems

We have conceptualized a formal approach to type systems for system-level design that we believe
will solve many of the problems we have encountered in the past, and also will scale up to encompass
semantic as well as syntactic issues in heterogeneous systems.

The problem we are addressing is that modular system components expose interfaces of different
types, and interconnecting such components requires resolving the type differences. In classical pro-
gramming languages, these types define the layout of data in memory (a syntactic issue), and to a more
limited degree, its semantic interpretation (e.g. a double precision IEEE floating point number versus a
long integer). In modern object-oriented systems, type issues become somewhat more complex
because of polymorphism, where objects of fundamentally different types expose the same interface.
In system-level design, the issue becomes still more complicated because the semantic interpretations
get considerably richer. For example, two lists of numbers may be syntactically identical, but one may
represent a time-domain signal while the other represents a frequency-domain signal.

In the early 1970s, Dana Scott proposed the use of partial orders for representing and analyzing
type systems. We have realized that this is exactly the approach we need. In this approach, an “infor-
mation order” is used, where a type is “less than” another type if it is less specific. Thus, for example,
type “Number” is “less than” type “Double” in Java. The least type in a scalar type system would be
the Ptolemy “Anytype” (this is called the “bottom” of the partial order). The partial order can be given
a “top” as well, where “top” represents a type conflict, i.e. an unresolvable type. Such an order will
(usually) be finite, and therefore the mathematical structure of the type system becomes a lattice.

The type signature of a module (corresponding to a C++ template, for example) will be given by a
function that given some guess about the type of the interface ports returns a new guess that is at least
as specific. In terms of the partial order, such a function is monotonic. Moreover, any composition of
such functions is monotonic. Resolving the type of an interconnection of modules becomes a matter of
iteratively applying these monotonic functions until they converge on a resolved type for every signal
interfacing two modules. This convergence point is called a “fixed point.” The well-known Knaster-
Tarsky fixed point theorem states that any monotonic function over a lattice has a least fixed point.
“Least” in this case means least specific, thus leaving maximum room for polymorphism.

To practically apply this theory, we can use the scheduler developed by Stephen Edwards for the
SR (synchronous/reactive) domain in Ptolemy. That scheduler finds an efficient order in which to eval-
uate monotonic functions in a finite complete partial order (CPO). A lattice is a CPO, so the result can
be used directly, despite the fact that the context for which Edwards developed it was radically differ-
ent.

This idea for a type system may scale very well up to the process level. One could, for instance,
consider as part of the type whether a signal is in the frequency domain or the time domain. Fixed-
point data types could also be ordered (more precise is more specific). Moreover, approximate signals
could perhaps be ordered by type much like fixed-point signals. The semantics of signals (discrete-
event, dataflow, synchronous/reactive) might also be amenable to ordering, allowing inference of inter-
action semantics between modules in addition to resolution of syntactic types.

We believe that this is a very exciting development, and may prove to be one of the major contribu-
tions of this project.

4.3.3 A Partial Order of Models of Computation

Heterogeneity has always been a core principle of the Ptolemy project. Ptolemy supports hierar-
chically nesting multiple models of computation using a software architecture that has come to be

Heterogeneous Modeling and Design 27 of 40



known as the Wormhole architecture. The strict hierarchy implied by Wormholes and the information
hiding between them, however, preclude certain optimization possibilities. We have developed an
approach that permits both arbitrary combination of models of computation using wormholes and
tighter integration of models of computation. We are implementing this as part of the new Ptolemy ker-
nel written in Java.

Partially ordered sets (posets) of models of computation are specified by the designer of a particu-
lar modeling tool (formerly “domain”). At runtime, the model of computation of an application is
resolved by selecting the least upper bound of the models of computation of the modules that compose
the design.

This process has been implicit in Ptolemy. For example, the dataflow domains are related accord-
ing to the following order: SDF < BDF < DDF < PN. Thus, an SDF block can run in a PN simulation.

In our current design, we take this idea beyond theory and explicitly set a policy for implementation.
As designers create and implement new models of computation (both control and additional dataflow),
relationships between these models of computation can be specified. However, in the current Ptolemy,
there is no systematic way to mix in models of computation that do not follow such a neat total order,
such as FSMs.

4.4 GENERAL INFRASTRUCTURE

We have done quite a bit of work that contributes to each of the three tasks without being specifi-
cally part of any one of them. This section summarizes that work.

4.4.1 Software Engineering

Christopher Hylands has been exploring using JavaScope, a code coverage tool. Unfortunately, it
fails to work with TclBlend, which we are using to construct the test suite. Thus, we cannot perform
code coverage tests on the test suite for the Java Ptolemy kernel. We have submitted detailed bug
reports.

We downloaded and tested a beta version of Parasoft's CodeWizard for Java. The web site,
www.parasoft.com says:

CodeWizard - Prevent bugs automatically with this easy-to-use source code analysis tool.
CodeWizard can help you correct poor design strategies, improve software reliability, and enforce
coding standards. Available now for C++ and for Java!

Unfortunately, CodeWizard for Java did not install properly, and it cannot deal with Java packages.
Christopher Hylands has submitted a bug report.

4.4.2 Ptolemy and Tycho Software

We have made a large number of changes to the Ptolemy and Tycho software supporting the
research in this project. This section list a few of these changes.

» Christopher Hylands built a simple syntax-sensitive Java editor in Tycho and an interface between
Tycho and a Java applet viewer.

» CIliff Cordeiro has developed a tool for generating and browsing documentation for object-oriented
languages, and has built implementations for Itcl and Java. The tool analyzes the source code syn-
tax and relationships between classes and constructs a Tycho information model (TIM) that repre-
sents the components and their interrelationships. A viewer compactly displays these
relationships, allowing simultaneous multi-resolution views of a set of classes.

28 of 40 Principal Investigator: Edward A. Lee



» Christopher Hylands has developed support for embedded Tcl/Java code in HTML documents.

» Christopher Hylands fixed a number of portability problems in Tycho so that it now runs reliably
on NT machines and some Macintoshes.

» Christopher Hylands wrote oct2tim, a tool for converting the old-style Oct database information
for Ptolemy designs into Tycho Information Model (TIM) for use in Tycho. This is a first step in
porting existing Ptolemy applications to the new infrastructure.

e Christopher Hylands improved the handling Java files within Tycho under Windows NT so that
Java files can now be compiled and executed entirely from within Tycho. A major part of the chal-
lenge here was to develop a rational and robust handling the CLASSPATH environment variable
that Java depends on.

» Christopher Hylands created a facility in Tycho for generating class inheritance diagrams from
C++ source code. This complements the facility we previously wrote in Tycho that generates class
diagrams from Itcl source code.

* Mudit Goel completed a modification of Ptolemy that improves the modeling of time in combined
discrete-event and dataflow applications. In particular, previously, a dataflow subsystem within a
discrete-event simulation had to be supplied with clocking events to trigger its firings. With
Mudit’'s change, the dataflow subsystem can directly specify that it requires repeated periodic fir-
ing. This allows it to more naturally model real-time signal sources using dataflow.

» Christopher Hylands added a mechanism to Tycho that will convert a Unix style makefile to a
Microsoft Visual C++ makefile. This will help in the construction of a more complete port of
Ptolemy to Windows.

* Edward Lee and Seehyun Kim implemented a gridded, multi-column user query widget in Tycho.
The first application is a dialog whereby the user guides the selection of fixed-point properties of a
signal processing system described with a dataflow graph.

» Brian Evans and Guy Maor (UT Austin, under subcontract) installed a new Matlab interface that
removes dependencies on the Matlab 5 shared library in the Ptolemy executables. It also works
with Matlab 4.2 and works when Matlab is not present.

» Seehyun Kim wrote some C++ code to collect statistics of inputs, outputs, and states of a func-
tional block in the dataflow domains. Statistics might be used for estimating signal ranges to help
in generating a fixed-point implementation of a system. He modified the Tycho editor class EditPt-
lang to translate a block definition without range estimation into one with range estimation. He has
also modified the Ptolemy preprocessor ptlang to support the C++ classes implementing range
estimation.

» Christopher Hylands was able to compile and run the DE domain under Tcl8.0 under NT4.0. He
used Cygwinl18 to compile Tcl8.0b2. He has made some progress using Microsoft Visual C++, but
this work remains incomplete.

» Tom Lane (of Structured Software Systems) completed a major redesign of the higher-order func-
tions (HOF) mechanism in Ptolemy. This mechanism is central the ability to specify scalable
applications compactly, and may turn out to be central to supporting mutable systems in the future.
The previous mechanism was full of bugs concerning its interaction with hierarchy and with the
notion of delays on arcs.

» John Reekie added a simple animation facility to the Slate, one that supports linear moving and
reshaping of graphical items. The idea is to use this infrastructure in design visualization. An ani-
mation is driven by an instance of a new class called Animator; Animator is a sub-class of Interac-
tor, but generates interaction events by itself instead of in response to mouse events. The

Heterogeneous Modeling and Design 29 of 40



animate{} method of the Slate class provides a simple interface to objects of this class.

Seehyun Kim has created a flexible facility for synthesizing fixed-point implementations of blocks
that are specified more generically. This will support more intensive exploration of fixed point
designs.

Christopher Hylands modified the HTML browser in Tycho so that if it is running within Java and
the HTML file it is parsing contains an applet, then the applet is displayed. This is done in a sepa-
rate window because we do not yet know how to map Java frames into Tk windows in a portable
way. However, it is done within a single process, not with an external invocation of an applet-
viewer, and so it provides most of the infrastructure for a tighter integration.

Christopher Hylands completed the first cut at the Tycho test suite. It is possible to run all the tests
with one command.

Alain Girault has written an automatic star generator for the PN domain that takes as input OC
specifications, which are the output from several synchronous languages (Esterel, Lustre, Argos).
This provides an interesting experimental infrastructure for exploring the “desynchronization” of
synchronous specifications, allowing for distributed implementations. Details are contained in:
http://ptolemy.eecs.berkeley.edu/~girault/Ocpn/ocpn.html

Christopher Hylands has constructed a “builder dialog” that can be used to manage installation of
Tycho. One consequence is that it becomes unnecessary to bloat the software distribution with
automatically generated documentation because the builder dialog will manage generation of the
documentation at installation time.

John Reekie and Sunil Bhahe have constructed a “target” in Ptolemy that generates stand-alone
applications that leverage the Tycho user interface infrastructure. The objective is to be able to col-
lect parts of the design infrastructure to create a customized deployed system that includes part of
the design software. In the current implementation, a shared library file is created that encapsulates
the signal processing part of the system, and the shared library is dynamically linked to running
Tycho executable, which then provides the user interface infrastructure. We are working next on
mechanisms for extracting the relevant parts of Tycho to provide a minimal, deployable user inter-
face containing exactly what is needed and no more.

John Reekie and Christopher Hylands have interfaced Tycho to the Java debugger, jdb.

Bilung Lee has modified Ptolemy to animate finite-state machines models. This should help with
debugging and visualization.

Kevin Chang added a ‘diff’ capability to Tycho, whereby files can be easily compared. A major
use for this is within the version control system.

The group worked on the compilation interface, whereby Tycho manages Java and C++ compila-
tions.

Christopher Hylands created mechanisms in Tycho for constructing a graph describing hyperlinks
in HTML documents and for exporting postscript from HTML documents. Tycho already has a
mechanism for viewing such graphs and exporting gifimages and imagemap files that can be used
together to create navigation aids on the web.

4.4.3 Support Software

We have also worked with third party software in ways that generically contribute to our project.

Christopher Hylands ported Glimpse to Windows NT and interfaced it to Tycho. Glimpse is a
search engine that efficiently handles large numbers of files. We use in Tycho for searching a
source code tree.

30 of 40 Principal Investigator: Edward A. Lee



» Christopher Hylands set up the htdig search engine so that it will search most of the pages on the
http://ptolemy.eecs.berkeley.edu web site. This search mechanism is for our own internal use and
has already proved extremely useful for searching the wealth of information we maintain locally.

» We continue to explore alternative Java packages that are available on the net that might provide
generic infrastructure for our software development. We have recently discovered JAL from Sili-
con Graphics, which is like the C++ Standard Template Library. The following is from the SGI
page (http://reality.sgi.com/austern/java/index.html):

*  “The Java Algorithm Library (JAL), is a collection of generic algorithms for the Java (TM) lan-
guage; itis modeled on the STL as closely as Java makes possible. The only data structure in Java
that can contain both built-in types and user-defined classes is the array, so the JAL is a set of algo-
rithms that operate on one-dimensional arrays.”

» We are investigating a package from Bell Labs, called NSBD, Not-So-Bad Distribution, that might
help maintain security in distributed Tycho and Ptolemy applications. The home page of NSBD is
http://www.bell-labs.com/nshd

* We obtained an evaluation version of the ICEM CFD Tcl Lint program. This is a modified version
of the ICE Tcl compiler. Instead of creating C or bytecode the lint program checks for probable or
possible errors in the Tcl code and prints warning and error messages. Unfortunately, this promis-
ing utility appears unable to test Tk, Itcl, or Itk code, greatly limiting its usefulness to us.

* We have obtained and evaluated ssh (secure shell) for Windows NT, and believe that it provides
adequate security for remote access to Windows NT systems. This means that our Windows NT
machines can now be safely integrated into the cluster.

5. Software

Software in the Ptolemy project serves as both a laboratory for experimentation and a mechanism
for disseminating results. A new feature of this project is that we expect to be distributing software in
the form of smaller packages rather than large monolithic software systems. During the first year of the
project we completed two small software releases, Tycho 0.2 and PtPlot 1.0. The first is written in ltcl
and the second in Java.

5.1 INFORMATION DISSEMINATION POLICY

The Ptolemy web site, http://ptolemy.eecs.berkeley.edu, is used to distribute all software (includ-
ing source code) and documentation, together with updated summary sheets, answers to frequently
asked questions, and tutorials. We use the most liberal copyright permitted by the University of Cali-
fornia, one which has proven effective in promoting technology transfer. A Usenet news group called
comp.soft-sys.ptolemy and a mailing list ptolemy-hackers@ptolemy.eecs.berkeley.edu are used to
communicate with outside users. Postings to the mailing list are cross-posted to the news group. Post-
ings are archived and searchable from our web site.

5.2 TYCHO

Tycho is an object-oriented syntax manager with an underlying heterogeneous technical rationale
that was started with DARPA funding prior to the commencement of this particular project. It provides
a number of editors and graphical widgets in an extensible, reusable framework. The intent is that
visual editors and visualization tools will be fully integrated, although most of this work will be con-
ducted in the second 18 month phase of the project. Documentation for Tycho modules is integrated,

Heterogeneous Modeling and Design 31 of 40



using HTML, with an integrated and network capable simplified browser.

Tycho was originally conceived for use with Ptolemy system, but under this project is evolving
into a set of modules that can be used independently. Tycho has been used extensively in the develop-
ment of the Tycho software itself. It is written primarily in Itcl, also called [incr Tcl], developed by
Michael McLennan of AT&T. Itcl is an object-oriented extension of Tcl, a “tool command language”
written by John Ousterhout of U.C. Berkeley, now under continued development at Sun Microsystems.
The window toolkit Tk and its object-oriented extension Itk are also used extensively.

5.2.1 Tycho 0.2 Release (June 1997)

Tycho 0.2 was released with Ptolemy 0.7. It included some capabilities developed with prior fund-
ing, and some developed under this project. In particular, the Java interface is central to this project.
Significant new features in this version:

» Java/Tycho interface

» Compilation and dynamic loading of C modules at runtime.

» Improved preferences manager.

* An interface to C,C++ and Java compilers.

* Interfaces to SCCS and RCS revision control systems.

* An interface to the Glimpse index browser, which can rapidly search large directory trees.
» A graphical Tcl profiler.

* A source code documentation system and browser.

* A Tycho Information Model (TIM) architecture.

» Atime-slice scheduler for dynamically linked C modules.

5.3 PTPLOT 1.0AND 1.1

We released our first small, modular Java package, in part as a way to gain experience with the
process. We have learned that “write-once, run anywhere” is largely an unrealized promise of Java, and
that Java threads are particularly vulnerable to unpredictable behavior on different platforms. Nonethe-
less, we have successfully distributed what appears to be a useful package, and judging from the email
traffic that it has generated, one that is actually being used.

PtPlot is a set of two dimensional signal plotter components fashioned after the plotting capabili-
ties built into Ptolemy. It is written in Java and is described in detail above. The PtPlot package can be
found at:

http://ptolemy.eecs.berkeley.edu/java/ptplot/
6. Plans for the next year

6.1 MODULAR DEPLOYABLE DESIGN TOOLS

A major part of our work over the next year will be completing and releasing the Java implementa-
tion of Ptolemy, with at least a process networks and synchronous dataflow domain. Further efforts
will emphasize cleanly incorporating finite-state machine semantics into these domains, following the
theoretical developments over the last year [20]. A major still-open question, however, is how to mod-
ularize the software. We discuss some of the issues here.

We have had extensive discussions within the group about how to achieve a software architecture

32 of 40 Principal Investigator: Edward A. Lee



for modular deployable design tools. A key part of the problem is to determine how to reliably create a
subset of the developer’s software infrastructure to deploy. There is prior art on which to base our
design. For example, many Lisp systems include a way to dump the state of the system to disk for
restarting later. For example, GNU Emacs includes the function ‘dump-emacs’. In Lucid Common
Lisp, there was a mechanism called ‘tree shaking’ which would allow a developer to ‘shake’ a code
tree and get the ‘fruit’, or the code that was actually used. Franz’ Allegro Common Lisp has a similar
thing, in which the developer ‘trains’ the application and then can build a file that contains only the
necessary parts of the system. Presumably we could do a similar thing with Tycho, using
‘namespace::tycho {info classes} to see what classes are loaded.

A possible visual aid would be to enhance the class diagram so that the classes that are actually
loaded are highlighted. This might help the developer understand the ramifications of particular
choices. To do this, we would need to extend class diagram viewer in Tycho so that it would add the
proper functionality.

In Ptolemy, the CGC domain (code generation in C) comes fairly close to building deployable
stand-alone binaries. Clearly, CGC can build simple non-graphical deployable applications. Two key
stumbling blocks to making more complex applications stand-alone are the interactive graphical infra-
structure and the makefile infrastructure for compiling code. Also problematic are applications that use
shared libraries that might be on the user’s system and applications that use proprietary formats, such
as Sun .au files for audio.

One question to deal with throughout is what platform we assume a deployable system will be
deployed on. How much software infrastructure can be assumed? A Java virtual machine interpreter?
A Tcl interpreter? Where processor-specific binaries are required, we need a mechanism to package
the minimal set of binaries. Software component technology such as Corba may provide a solution
here.

A Java-specific question is whether to focus on creating applets or to focus on finding architectures
that support Java applications. The security model built in to applets is essential for certain uses, but it
can also be a significant hindrance. Java Beans, another software component technology, provides an
alternative that we are investigating.

Concerning the software architecture issues around modular deployable tools, John Reekie con-
tributes the following observations:

« There is always a tension between reusing code by inheritance (inherit and extend the functional-
ity) or by composition (compose objects to obtain more complex functionality). Our designs tend
to use a lot of inheritance; deployability implies that the emphasis should shift to composition --
which in turn implies shallower, broader, inheritance trees.

« Java encourages the separation needed for deployability with its interfaces. Using interfaces could
allow alternative “lighter” classes to be deployed instead of heavier ones.

» Cleanly staging the “evolution” of a design from Ul to execution will aid deployment at one of a
number of stages. At each, it should be clear what is required to deploy and what is not. For exam-
ple, it should be possible to deploy and execute a system that contains no scheduler; implication:
the run-time data structures contain a reference to a schedule, but not a reference to a scheduler.

* Incremental changes need to be supported at each stage -- the amount of “stuff’ required at each
deployable stage depends on degree of mutability needed. It should, for example, be possible to
say “l want, at run-time, to substitute this subgraph with this other subgraph” without having to
deploy an SDF scheduler. The semantics of mutability at run-time should therefore not be defined
as graph mutations.

Heterogeneous Modeling and Design 33 0of 40



» Adeployed executable can be as light as the preceding stages can make it. It does not, for example,
have to actually contain a graph. The framework for deployed applications needs to support the
concepts of execution, control, monitoring, and debugging without being dependent on a graph
structure.

6.2 DOMAIN-SPECIFIC DESIGN TOOLS

We are focusing here on domain-specific techniques that are relevant to analog circuit and MEMS,
particularly lumped parameter modeling. We are particularly interested in the interaction of such mod-
els with foreign models, such as finite-state machines that may be modeling discrete controllers. Stan-
dard methods for numerical integration, such as Runge-Kutta, appear at first glance to be incompatible
with such foreign interaction. We are investigating both the mathematics of simulation and the soft-
ware architecture questions, and hope to be able to provide within the Java Ptolemy infrastructure con-
tinuous models.

We have also had extensive discussions within the group about the implications of dynamically
modifying the topology of applications that are specified using the various models of computation that
we use that are based on graphs representing the interconnection of modules. The cost of such muta-
tions depends on the amount of static analysis done prior to execution of the application. Thus, the cost
savings (in overhead) of static analysis are offset by the cost of mutations for dynamically changing
topologies. There are, however, mechanisms for supporting limited graph mutations without incurring
extensive run-time cost. Hierarchically combining FSMs (finite-state machines) with synchronous
dataflow can (usually) be done in such a way that the FSMs effect mutations without demanding re-
analysis of the dataflow graph. We are further evaluating the expressiveness of this particular combina-
tion, since it seems to be a promising approach for adaptive signal processing applications.

6.3 HETEROGENEOUS INTERACTION SEMANTICS

A major part of the effort here will be to bring into practice (via the Java Ptolemy implementation)
the considerable theory that we have developed for integrating finite-state controllers hierarchically
with concurrency models [20]. In addition, we plan to continue work on the type-system concepts, and
also implement a process-level type system in Java Ptolemy.

7. Technology Transfer

One of the notable properties of the Ptolemy project is its track record of demonstrable transfer of
technology to industry leaders in the computer-aided design and defense industries. This is accom-
plished via a careful cultivation of industry contacts and a strategy of wide open, very liberal distribu-
tion of software and publications. All software is made available on the Web with the most liberal
copyright notice permitted by the University of California. This notice retains ownership of the copy-
right, but expressly grants permission to use the software for any purpose, including development of
commercial products. It is distinctly more liberal than the GNU public license, and thus better repre-
sents “free software.”

Although it is still too early in this project for major results of the project to have been transferred,
there are some ongoing interactions that we wish to highlight.

7.1 HEWLETT-PACKARD INTEGRATES PTOLEMY WITH ANALOG SIMULATION

On June 2, 1997, Hewlett-Packard’s EEsof Division announced plans to deliver a comprehensive
digital signal processing (DSP) design system as part of its effort to broaden its solutions for the elec-

34 of 40 Principal Investigator: Edward A. Lee



tronic design automation (EDA) industry. In their June 2, 1997, press release, HP EEsof states:
“Built into the HP DSP Designer software is a new simulation technology developed by merg-
ing HP research and technology with the University of California at Berkeley Ptolemy project.
This new simulation engine facilitates cosimulation of time, frequency and data flow technolo-
gies and significantly expands the DSP development capability for mixed RF/analog/DSP
communications projects.”

The software is comprised of two new DSP tools - DSP Designer and DSP Synthesis. It is part of HP’s
newly introduced HP Advanced Design System, which includes the latest versions of its highly
regarded RF and analog circuit simulation technology. The complete press release and a related article
from EE Timesare available on the Ptolemy Web site. Some of the major additions to Ptolemy are:

* Runs On NT 4.0, NT 3.51 and Win 95

* Added time and frequency simulation and modeling
* Added DSP filter tool

* Added VHDL modeling and simulation

* Added Verilog modeling and simulation

* Added 300-400 time and frequency models

* Added Spice and Harmonic Balance cosimulation....

HP has integrated their HF Spice, Harmonic Balance and Circuit Envelope simulators into HP
Ptolemy. Their simulation executable links two distinct simulator software architectures: one based on
Ptolemy (HP Ptolemy) and the other incorporating the HP EEsof analog simulators (Gemini). In HP
Ptolemy there currently are two simulation domains: SDF and TSDF. In TSDF, HP has modified the
semantics of SDF to introduce a notion of time to apparently make it easier to combine DSP simula-
tions with analog simulations. Using the TSDF domain a user can embed a circuit simulator into a
dataflow simulation using an interface very similar to a Ptolemy WormHole.

This interaction is particularly relevant because of its integration of Ptolemy’s dataflow modeling
with HP’s continuous-time modeling of analog and RF circuits. The fundamental theory techniques
behind this kind of mixture are a major part of this project.

7.2 LOCKHEED-MARTIN AND BERKELEY TARGET CONFIGURABLE HARDWARE

Sanders, a Lockheed-Martin company, has joined forces with the Ptolemy project to develop a
capability in Ptolemy to synthesize application for configurable logic (such as FPGAS). This project is
just starting.

7.3 POLIS — A CODESIGN SYSTEM BASED ON PTOLEMY

The POLIS team at Berkeley and Cadence (headed by Professor Alberto Sangionvanni-Vincen-
telli) has been cooperating with the Ptolemy project to develop hardware/software codesign technol-
ogy. They recently announced the public availability of the POLIS-0.3 co-design environment for
control-dominated embedded systems. POLIS, which is based on Ptolemy, offers an integrated interac-
tive environment for specification, co-simulation, formal verification, and synthesis of embedded sys-
tems implemented as a mix of hardware and software components.

Most of the information about POLIS, including pointers to source and object code (for various
CPUs and OSes) is available at the WEB site:

http://www-cad.eecs.berkeley.edu/~polis

Heterogeneous Modeling and Design 35 0f 40



The POLIS team consists of Felice Balarin, Massimiliano Chiodo, Alberto Ferrari, Paolo Giusto,
Harry Hsieh, Attila Jurecska, Marcello Lajolo, Luciano Lavagno, Claudio Passerone, Claudio Sansoe',
Ellen Sentovich, Marco Sgroi, Kei Suzuki, Bassam Tabbara, Reinhard von Hanxleden, and Alberto
Sangiovanni-Vincentelli.

7.4 PTOLEMY MINICONFERENCE

We held a miniconference at Berkeley that reviewed major accomplishments of the Ptolemy
project and introduced this new effort. The objectives of the conference were primarily to report to and
solicit advice from the industrial sponsors and friends of the project. The miniconferences was held in
conjunction with Berkeley’s annual Industrial Liaison Program (ILP) conference.

7.4.1 Second Ptolemy Miniconference — March 14, 1997

This miniconference reviewed the previous DARPA-funded effort in the Ptolemy project, which
was at the stage of wrapping up, and future plans and preliminary results under this new DARPA
effort. The conference included several outside speakers reporting on uses of Ptolemy software and
technigues plus ongoing interactions. We had 58 attendees from the following organizations:

* Adaptec

» Advanced Fibre Communications

* Advantest

e Alta Group of Cadence Design Systems
* Angeles Design Systems

» Berkeley Design Technology

» Data Flow Systems

» Ericsson Radio Systems AB

* Hewlett Packard

* Hughes Aircraft

* Hughes Space and Communications
* LG Electronics

* Lockheed-Martin

* Motorola

* National Semiconductor
« NEC

* Nortel

* Rockwell International

» Sanders, a Lockheed Martin Company
* Seiko Epson Corp.

* Semiconductor Research Corporation
* Seoul National University

*  Sony

e Structured Software Systems

* Sun Microsystems

e Synopsys

36 of 40 Principal Investigator: Edward A. Lee



Tektronix

Thomson-CSF

University of Pittsburg
University of Texas, Austin
University of Washington
White Eagle Systems

The highlights of the conference included:

The first public demonstration of hierarchical finite-state machines combined with dataflow and
discrete-event concurrency models.

The first public demonstration of a synchronous/reactive modeling environment that supports hier-
archical heterogeneity.

The first public demonstration of Tycho, our user-interface development environment, interacting
with Java and with Ptolemy.

The first public demonstration of Web-based simulators for programmable DSPs, from UT Austin.

The first public description of an investment analysis tool from Structured Software Systems,
based on Ptolemy.

The miniconference also included descriptions of the use of Ptolemy in modeling free-space optoelec-
tronic systems (from the University of Pittsburg), a description of Myrnet network simulations in
Ptolemy (from Sanders), the use of Ptolemy for VHDL-based circuit design, research on multidimen-
sional signal processing models, and theory that we have developed to help us understand interacting
models of computation. In addition, we outlined plans for future work including a strategy for support-
ing fixed-point design and our plans for Java-based design. The proceedings of the conference are at:

http://ptolemy.eecs.berkeley.edu/papers/viewgraphs/miniconf97/

8. Acknowledgments

8.1 PARTICIPANTS AT BERKELEY

8.1.1 Principal investigator

Edward A. Lee

8.1.2 Professional staff

Christopher Hylands
Fiona Sinclair
Mary Stewart

8.1.3 Post-doctoral researchers

Praveen Murthy
John Reekie
Dick Stevens (from NRL)

Heterogeneous Modeling and Design 37 of 40



8.1.4 Graduate students

» CIiff Cordeiro

e John Dauvis, Il

e Stephen Edwards
* Ron Galicia

e Mudit Goél

e Michael Goodwin
e Bilung Lee

e JielLiu

* Praveen K. Murthy

* Neil Smyth

* Michael C. Williamson
e William Wu

* Yuhong Xiong
8.2 CORPORATE SUPPORT
8.2.1 Sponsors

The following organizations have contributed additional financial support for the Ptolemy project:
» the State of California MICRO program
* The Alta Group of Cadence Design Systems

e Hitachi

» Lockheed Martin ATL
« NEC

*  Philips

* Rockwell

* the Semiconductor Research Corporation (SRC)
9. Publications

Following is a list of publications with significant content developed under this project (or in a
couple of cases, content developed largely during the proposal phase of this project).

9.1 JOURNAL ARTICLES

[1] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of Embedded Sys-
tems: Formal Models, Validation, and Synthesipceedings of the IEEB/I. 85, No. 3, March
1997. (http://ptolemy.eecs.berkeley.edu/papers/97/codesign)

[2] W.-T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous Simulation — Mixing Discrete-Event
Models with Dataflow,” invited papedournal on VLSI Signal Processingol. 13, No. 1, January
1997. (http://ptolemy.eecs.berkeley.edu/papers/96/heterogeneity)

38 of 40 Principal Investigator: Edward A. Lee



[3]

[4]

[5]

9.2
[6]

[7]

[8]

[9]

S.S. Bhattacharyya, S. Sriram, and E.A. Lee, “Optimizing Synchronization in Multiprocessor
DSP Systems,1IEEE Tr. on Signal Processinyol. 45, No. 6, June 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/synchronization/)

M. Torlak, G. Xu, B. L. Evans, and H. Liu, "Fast Estimation of Weight Vectors to Optimize Multi-
Transmitter Broadcast Channel Capacity,” IEEE Transactions on Signal Processing, Jan. 1998.

M. Torlak, G. Xu, B. L. Evans, and H. Liu, "Fast Estimation of Weight Vectors to Optimize Multi-
Transmitter Broadcast Channel Capacit{gEE Transactions on Signal Processjnig appear,
Jan. 1998.

CONFERENCE PAPERS

C. Hylands, E. A. Lee, and H. J. Reekie, “The Tycho User Interface SysttimAnnual Tcl/Tk
Workshop '97Boston, Massachusetts, July, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/tcltk-97/)

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Software Synthesis for Synchronous Data-
flow,” International Conference on Application Specific Systelnshitectures, and Processors,
July, 1997, invited paper. (http://ptolemy.eecs.berkeley.edu/papers/97/softwareSynth)

S. Kim and E. A. Lee, “Infrastructure for Numeric Precision Control in the Ptolemy Environ-
ment”, Proceedings of the 40th Midwest Symposium on Circuits and Systegust 3-6, 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/fixedpointinfra)

D. Arifler, C. Duong, B. L. Evans, S. K. Marwat, C. M. May, and A. Yuan, “A Configurable, Por-
table, Extensible Framework for Web-Enabled Interactive Simulation of Software for Embedded
Programmable Processorsfibmitted

[10] A. K. Kulkarni, A. Dube, and B. L. Evans, “Benchmarking Code Generation Methodologies for

Programmable Digital Signal Processoisjbmitted

[11] B. Lu, B. L. Evans, and D. V. Tosic, “Simulation and Synthesis of Artificial Neural Networks

Using Dataflow Models in Ptolemy,” Invited Papétroc. IEEE Conf. on Neural Network Appli-
cations in EngineeringSep. 8-9, 1997.

[12] G. E. Allen, D. C. Schanbacher, and B. L. Evans, "Real-Time Sonar Beamforming on a Unix

workstation Using Process Networks and Pthreads", Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Proc., submitted.

[13] M. Torlak, G. Xu, B. L. Evans, and H. Liu, "Estimation of Optimal Weight Vectors for Broadcast

Channels", Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., Apr. 17-20, 1997,
Munich, Germany.

[14] M. Torlak, B. L. Evans, and G. Xu, "Blind Channel Estimation in CDMA Systems with Aperiodic

Spreading Sequences,"” Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, Nov. 3-
5, 1997.

[15] S. Gummadi and B. L. Evans, "Cochannel Signal Separation in Fading Channels Using a Modi-

fied Constant Modulus Array"”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc.,
submitted.

Heterogeneous Modeling and Design 39 of 40



[16] G. E. Allen, D. C. Schanbacher, and B. L. Evans, "Real-Time Sonar Beamforming on a Unix
workstation Using Process Networks and Pthreasi¢c. IEEE Int. Conf. on Acoustics, Speech,
and Signal Prog submitted.

[17] 4. M. Torlak, G. Xu, B. L. Evans, and H. Liu, "Estimation of Optimal Weight Vectors for Broad-
cast Channels'Rroc. IEEE Int. Conf. on Acoustics, Speech, and Signal Pyar. 17-20, 1997,
Munich, Germany.

[18] M. Torlak, B. L. Evans, and G. Xu, "Blind Channel Estimation in CDMA Systems with Aperiodic
Spreading Sequences,"” Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, Nov. 3-
5, 1997.

[19] S. Gummadi and B. L. Evans, "Cochannel Signal Separation in Fading Channels Using a Modi-
fied Constant Modulus ArrayRroc. IEEE Int. Conf. on Acoustics, Speech, and Signal Psub-
mitted.

9.3 TECHNICAL REPORTS

[20] A. Girault, B. Lee, and E. A. Lee, “A Preliminary Study of Hierarchical Finite State Machines
with Multiple Concurrency Models,” Memorandum UCB/ERL M97/57, Electronics Research
Laboratory, University of California, Berkeley, CA 94720, August 1997.
(http://ptolemy.eecs.berkeley.edu/papers/97/preliminaryStarcharts)

[21] E. A. Lee and A. Sangiovanni-Vincentelli, “A Denotational Framework for Comparing Models of
Computation,” ERL Memorandum UCB/ERL M97/11, University of California, Berkeley, CA
94720, January 30, 1997. (http://ptolemy.eecs.berkeley.edu/papers/97/denotational/)

[22] P. K. Murthy and E. A. Lee, “Some cycle-related problems for regular dataflow graphs: complex-
ity and heuristics,” UCB/ERL Technical Report M97/76, July 1997.

[23] R. S. Stevens (Naval Research Laboratory), M. Wan, P. Laramie (UCB), T. M. Parks (MIT Lin-
coln Labs), and E. A. Lee (UCB), “Implementation of Process Networks in Java,” UCB/ERL
Tech. Report, November 1997.

9.4 PHD THESES

[24] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive Sys-
tems,”Ph.D. thesis University of California, Berkeley, May 1997. Available as UCB/ERL M97/
31. (http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

10. References

[25] T. W. Parks, "Bounded Scheduling of Process Networks," Technical Report UCB/ERL-95-105,
Ph.D. Dissertation, EECS Department, University of California, Berkeley, CA 94720, Dec. 1995.

[26] J. J. Shynk, A. V. Keerthi, and A. Mathur, "Steady state analysis of the multistage CM array,"
IEEE Trans. on Signal Processing, vol. 44, pp. 948-962, 1996.

40 of 40 Principal Investigator: Edward A. Lee



