

BIND 9 Administrator Reference

Manual
Release 9.19.16

Internet Systems Consortium

2023-08-04

Introduction to DNS and BIND 9

1.1
1.2
1.3
1.4
1.5

Scope of Document

Resource Requirements

2.1
2.2
23
24
2.5
2.6
2.7

Configurations and Zone Files

Introduction,
Authoritative Name Servers
Resolver (Caching Name Servers)
Load Balancing
ZoneFile,

3.1
3.2
33
34
35

Hardware Requirements
CPU Requirements
Memory Requirements
Name Server-Intensive Environment Issues

Supported Platforms

Unsupported Platforms
Installing BINDO

Name Server Operations

Tools for Use With the Name Server Daemon
Signals
Plugins
Configuring Plugins
Developing Plugins

Zone Signingo
Secure Delegation.

Dynamic Trust Anchor Management

4.1

4.2

4.3

4.4

4.5
DNSSEC
5.1

52

5.3 DNSSEC Validation
54

5.5

PKCS#11 (Cryptoki) Support

Advanced Configurations

6.1
6.2
6.3

Dynamic Update
NOTIFY i e
Incremental Zone Transfers (IXFR)

Organization of This Document
Conventions Used in This Document
The Domain Name System (DNS)
DNS Security Overview

CONTENTS

.......................... 11

15

.......................... 15
....................................... 18
.................................... 23
.......................... 31
.......................... 31

39

.............................. 39
.......................... 43
.......................... 43
.......................... 43
.......................... 44

45

.......................... 45
.......................... 48
.......................... 49
................................... 50
...................................... 51

10

11

6.4 SplitDNS
6.5 IPv6o Supportin BIND O e e e e
6.6 Dynamically Loadable Zones (DLZ) e e
6.7 Dynamic Database (DynDB) e
6.8 Catalog Zones e e e e e e e e e
6.9 DNS Firewalls and Response Policy Zones e

Security Configurations

7.1 Access Control Lists o o i e e e e e e e e e e e e e e
7.2 Chrootand Setuld o i i i i e e e e e e e e e e
7.3 Dynamic Update Security i v i e e e e e e e e e e e
T4 TSIG . . e e e e e
7.5 SIG(0) . . o o e

Configuration Reference

8.1 Configuration File (named.conf) e
8.2 Blocks e e e e e e e e e e e e e
8.3 Statements e e e e e e e e e e e e e e e e e e e
8.4 Statements by Tag e e e
8.5 BINDOStatistiCs v v v v vt e e e e e e e e e e e e e e e e e

Troubleshooting

9.1 Common Problems e e
9.2 Incrementing and Changing the Serial Number,
9.3 Where Can I GetHelp? e

Building BIND 9

10.1 Required Libraries o i e e e e e e e e e e
10.2 Optional Features o e e e e
10.3 macOS . . . e e e e

Release Notes

11.1 Introduction e e e e e e e e e e e e e e e e e e e
11.2 Supported Platforms o . e e e e e
11.3 Download e e e e e e
11.4 KnownIssues o e e e
11.5 Notes for BIND 9.19.16 e
11.6 Notes for BIND 9.19.15 e e e e
11.7 Notes for BIND 9.19.14 e e
11.8 Notes for BIND 9.19.13 e e e
11.9 Notes for BIND 9.19.12 e e e e e
11.10 Notes for BIND 9.19.11 e e e e
11.11 Notes for BIND 9.19.10 e e e e
11.12 Notes for BIND 9.19.9 e e e e
11.13 Notes for BIND 9.19.8 e
11.14 Notes for BIND 9.19.7 e e e e e
11.15 Notes for BIND 9.19.6 e e
11.16 Notes for BIND 9.19.5
11.17 Notes for BIND 9.19.4 e e e e
11.18 Notes for BIND 9.19.3 e
11.19 Notes for BIND 9.19.2 e e e e
11.20 Notes for BIND 9.19.1 e
11.21 Notes for BIND 9.19.0 e
TT22 LACENSE . . . v o e e e e e e e e e e e e e e e e e e e

11.24 Thank YOU o o e e e e e 350

12 DNSSEC Guide 351
12.1 Preface e e 351
122 Introduction L e e e e e 352
123 Getting Started e e e e e e e e e e e e e e e 357
12.4 Validation o e e e e e 359
125 Signing L L e e e 371
12.6 Basic DNSSEC Troubleshooting e 390
12.7 Advanced DisCussionso e e e e 397
12.8 RECIPES . . v v o o i e e e e e e e e e e e e e e 410
12.9 Commonly Asked QUESHONS o i e e e e e e e e e e e 429

13 A Brief History of the DNS and BIND 433

14 General DNS Reference Information 435
14.1 Requests for Comment (RFCs) 435
142 NOLES . . . v e e e e e e e e e 440
143 Internet Drafts e e e e 440

15 Manual Pages 441
15.1 arpaname - translate IP addresses to the corresponding ARPAnames 441
15.2 ddns-confgen - TSIG key generation tool e 441
15.3 delv - DNS lookup and validation utility e 442
154 dig-DNSlookup utility o . . e e e e e e e e 447
15.5 dnssec-cds - change DS records for a child zone based on CDS/CDNSKEY 457
15.6 dnssec-dsfromkey - DNSSEC DS RR generationtool 460
15.7 dnssec-importkey - import DNSKEY records from external systems so they can be managed 462
15.8 dnssec-keyfromlabel - DNSSEC key generationtool 463
15.9 dnssec-keygen: DNSSEC key generationtool 467
15.10 dnssec-revoke - set the REVOKED bitona DNSSECkey 471
15.11 dnssec-settime: set the key timing metadata fora DNSSECkey 472
15.12 dnssec-signzone - DNSSEC zone signing tool i 476
15.13 dnssec-verify - DNSSEC zone verificationtool 481
15.14 dnstap-read - print dnstap data in human-readable form 000 483
15.15 filter-aaaa.so - filter AAAA in DNS responses when A ispresent 483
15.16 host - DNS lookup utility o oo e e e 485
15.17 mdig - DNS pipelined lookup utility e e 487
15.18 named-checkconf - named configuration file syntax checkingtool 492
15.19 named-checkzone - zone file validation tool oL oo 493
15.20 named-compilezone - zone file convertingtool 496
15.21 named-journalprint - print zone journal in human-readable form 499
15.22 named-nzd2nzf - convert an NZD database to NZF text format 500
15.23 named-rrchecker - syntax checker for individual DNS resource records 500
15.24 named.conf - configuration file fornamed o oL oL L 501
15.25 named - Internet domain NAME SETVET o b v vt e e e e e e e e e e e e e e e 518
15.26 nsec3hash - generate NSEC3 hash L 521
15.27 nslookup - query Internet name servers interactively o oL 522
15.28 nsupdate - dynamic DNS update utility e 525
15.29 rndc-confgen - rndc key generationtool oL Lo Lo Lo 531
15.30 rndc.conf - rndc configurationfile oL Lo 532
15.31 rndc - name server control utilityo oo e e 534
15.32 tsig-keygen - TSIG key generationtool L. o 542

Index 545

CHAPTER
ONE

INTRODUCTION TO DNS AND BIND 9

The Internet Domain Name System (DNS) consists of:
* the syntax to specify the names of entities in the Internet in a hierarchical manner,
* the rules used for delegating authority over names, and
* the system implementation that actually maps names to Internet addresses.

DNS data is maintained in a group of distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) software implements a domain name server for a number of operating sys-
tems. This document provides basic information about the installation and maintenance of Internet Systems Consortium
(ISC) BIND version 9 software package for system administrators.

This manual covers BIND version 9.19.16.

1.2 Organization of This Document

Introduction to DNS and BIND 9 introduces the basic DNS and BIND concepts. Some tutorial material on 7he Domain
Name System (DNS) is presented for those unfamiliar with DNS. A DNS Security Overview is provided to allow BIND
operators to implement appropriate security for their operational environment.

Resource Requirements describes the hardware and environment requirements for BIND 9 and lists both the supported
and unsupported platforms.

Configurations and Zone Files is intended as a quickstart guide for newer users. Sample files are included for Authoritative
Name Servers (both primary and secondary), as well as a simple Resolver (Caching Name Servers) and a Forwarding
Resolver Configuration. Some reference material on the Zone File is included.

Name Server Operations covers basic BIND 9 software and DNS operations, including some useful tools, Unix signals,
and plugins.

Advanced Configurations builds on the configurations of Configurations and Zone Files, adding functions and features the
system administrator may need.

Security Configurations covers most aspects of BIND 9 security, including file permissions, running BIND 9 in a “jail,”
and securing file transfers and dynamic updates.

DNSSEC describes the theory and practice of cryptographic authentication of DNS information. The DNSSEC Guide is a
practical guide to implementing DNSSEC.

BIND 9 Administrator Reference Manual, Release 9.19.16

Configuration Reference gives exhaustive descriptions of all supported blocks, statements, and grammars used in BIND
9’s named. conf configuration file.

Troubleshooting provides information on identifying and solving BIND 9 and DNS problems. Information about bug-
reporting procedures is also provided.

Building BIND 9 is a definitive guide for those occasions where the user requires special options not provided in the
standard Linux or Unix distributions.

The Appendices contain useful reference information, such as a bibliography and historic information related to BIND
and the Domain Name System, as well as the current man pages for all the published tools.

1.3 Conventions Used in This Document

In this document, we generally use fixed-width text to indicate the following types of information:
* pathnames
* filenames
* URLs
* hostnames
* mailing list names
* new terms or concepts
* literal user input
* program output
* keywords
* variables

Text in “quotes,” bold text, or italics is also used for emphasis or clarity.

1.4 The Domain Name System (DNS)

This is a brief description of the functionality and organization of the Domain Name System (DNS). It is provided to
familiarize users with the concepts involved, the (often confusing) terminology used, and how all the parts fit together to
form an operational system.

All network systems operate with network addresses, such as IPv4 and IPv6. The vast majority of humans find it easier to
work with names rather than seemingly endless strings of network address digits. The earliest ARPANET systems (from
which the Internet evolved) mapped names to addresses using a hosts file that was distributed to all entities whenever
changes occurred. Operationally, such a system became rapidly unsustainable once there were more than 100 networked
entities, which led to the specification and implementation of the Domain Name System that we use today.

2 Chapter 1. Introduction to DNS and BIND 9

BIND 9 Administrator Reference Manual, Release 9.19.16

1.4.1 DNS Fundamentals

The DNS naming system is organized as a tree structure comprised of multiple levels and thus it naturally creates a
distributed system. Each node in the tree is given a label which defines its Domain (its area or zone) of Authority. The
topmost node in the tree is the Root Domain; it delegates to Domains at the next level which are generically known as
the Top-Level Domains (TLDs). They in turn delegate to Second-Level Domains (SLDs), and so on. The Top-Level
Domains (TLDs) include a special group of TLDs called the Country Code Top-Level Domains (ccTLDs), in which
every country is assigned a unique two-character country code from ISO 3166 as its domain.

Note: The Domain Name System is controlled by ICANN (https://www.icann.org) (a 501c non-profit entity); their
current policy is that any new TLD, consisting of three or more characters, may be proposed by any group of commercial
sponsors and if it meets ICANN’s criteria will be added to the TLDs.

The concept of delegation and authority flows down the DNS tree (the DNS hierarchy) as shown:

ROOT root (.) DEIEgﬂtiﬂn
Authority

Fig. 1: Delegation and Authority in the DNS Name Space

A domain is the label of anode in the tree. A domain name uniquely identifies any node in the DNS tree and is written, left
to right, by combining all the domain labels (each of which are unique within their parent’s zone or domain of authority),
with a dot separating each component, up to the root domain. In the above diagram the following are all domain names:

example.com
b.com

ac.uk

us

org

The root has a unique label of “.” (dot), which is normally omitted when it is written as a domain name, but when it is
written as a Fully Qualified Domain Name (FQDN) the dot must be present. Thus:

example.com # domain name
example.com. # FQODN

1.4. The Domain Name System (DNS) 3

https://www.icann.org

BIND 9 Administrator Reference Manual, Release 9.19.16

1.4.2 Authority and Delegation

Each domain (node) has been delegated the authority from its parent domain. The delegated authority includes specific
responsibilities to ensure that every domain it delegates has a unique name or label within its zone or domain of authority,
and that it maintains an authoritative list of its delegated domains. The responsibilities further include an operational
requirement to operate two (or more) name servers (wWhich may be contracted to a third party) which will contain the
authoritative data for all the domain labels within its zone of authority in a zone file. Again, the tree structure ensures that
the DNS name space is naturally distributed.

The following diagram illustrates that Authoritative Name Servers exist for every level and every domain in the DNS
name space:

f— Root root (.) Authﬂ'rity
NS Delegation

TLD
B DNS
.example .b
— User TLD
DNS

Fig. 2: Authoritative Name Servers in the DNS Name Space

Note: The difference between a domain and a zone can appear confusing. Practically, the terms are generally used
synonymously in the DNS. If, however, you are into directed graphs and tree structure theory or similar exotica, a zone
can be considered as an arc through any node (or domain) with the domain at its apex. The zone therefore encompasses
all the name space below the domain. This can, however, lead to the concept of subzones and these were indeed defined
in the original DNS specifications. Thankfully the term subzone has been lost in the mists of time.

1.4.3 Root Servers

The root servers are a critical part of the DNS authoritative infrastructure. There are 13 root servers (a.root-servers.net
to m.root-servers.net). The number 13 is historically based on the maximum amount of name and IPv4 data that could be
packed into a 512-byte UDP message, and not a perverse affinity for a number that certain cultures treat as unlucky. The
512-byte UDP data limit is no longer a limiting factor and all root servers now support both [Pv4 and IPv6. In addition,
almost all the root servers use anycast, with well over 300 instances of the root servers now providing service worldwide
(see further information at https://www.root-servers.org). The root servers are the starting point for all name resolution
within the DNS.

4 Chapter 1. Introduction to DNS and BIND 9

https://www.root-servers.org

BIND 9 Administrator Reference Manual, Release 9.19.16

1.4.4 Name Resolution

So far all the emphasis has been on how the DNS stores its authoritative domain (zone) data. End-user systems use names
(an email address or a web address) and need to access this authoritative data to obtain an IP address, which they use to
contact the required network resources such as web, FTP, or mail servers. The process of converting a domain name to
a result (typically an IP address, though other types of data may be obtained) is generically called name resolution, and
is handled by resolvers (also known as caching name servers and many other terms). The following diagram shows the
typical name resolution process:

Name Resolution
Authoritative Name Servers and Resolvers

Area Resolver
DNS o (ISP, SP or
root-servers < Private Network)
PC
DNS Stub
TLD Domain H?l:sa?#gle

DNS Browser

User Domain
{cache) ! !

Fig. 3: Authoritative Name Servers and Name Resolution

An end-user application, such as a browser (1), when needing to resolve a name such as www.example.com, makes an
internal system call to a minimal function resolution entity called a stub resolver (2). The stub resolver (using stored IP
addresses) contacts a resolver (a caching name server or full-service resolver) (3), which in turn contacts all the necessary
authoritative name servers (4, 5, and 6) to provide the answer that it then returns to the user (2, 1). To improve perfor-
mance, all resolvers (including most stub resolvers) cache (store) their results such that a subsequent request for the same
data is taken from the resolver’s cache, removing the need to repeat the name resolution process and use time-consuming
resources. All communication between the stub resolver, the resolver, and the authoritative name servers uses the DNS
protocol’s query and response message pair.

1.4.5 DNS Protocol and Queries

DNS queries use the UDP protocol over the reserved port 53 (but both TCP and TLS can optionally be used in some
parts of the network).

The following diagram shows the name resolution process expressed in terms of DNS queries and responses.

The stub resolver sends a recursive query message (with the required domain name in the QUESTION section of the
query) (2) to the resolver. A recursive query simply requests the resolver to find the complete answer. A stub resolver
only ever sends recursive queries and always needs the service of a resolver. The response to a recursive query can be:

1. The answer to the user’s QUESTION in the ANSWER section of the query response.
2. An error (such as NXDOMAIN - the name does not exist).

1.4. The Domain Name System (DNS) 5

BIND 9 Administrator Reference Manual, Release 9.19.16

Recursive and Iterative Queries

DNS

root-servers

DNS
.com TLD

DNS

example.com

Mote:

e

www.example.com (QNAME)

° Area Resolver
(ISP, SP, or

Private Network)

Rafearral

PC
o o Stub
Resolver
Referral (cache)

Answer

Each numbered line represents
a query/answer pair

Item (2) is a Recursive query, one question gives one complete answer
Items (3), (4), and (5) are Iterative queries which may return either a referral,
an answer, of an error

Fig. 4: Resolvers and Queries

Chapter 1. Introduction to DNS and BIND 9

BIND 9 Administrator Reference Manual, Release 9.19.16

The resolver, on receipt of the user’s recursive query, either responds immediately, if the ANSWER is in its cache, or
accesses the DNS hierarchy to obtain the answer. The resolver always starts with root servers and sends an iterative
query (4, 5, and 6). The response to an iterative query can be:

1. The answer to the resolver’s QUESTION in the ANSWER section of the query response.

2. A referral (indicated by an empty ANSWER section but data in the AUTHORITY section, and typically IP addresses
in the ADDITIONAL section of the response).

3. An error (such as NXDOMAIN - the name does not exist).

If the response is either an answer or an error, these are returned immediately to the user (and cached for future use). If
the response is a referral, the resolver needs to take additional action to respond to the user’s recursive query.

A referral, in essence, indicates that the queried server does not know the answer (the ANSWER section of the response
is empty), but it refers the resolver to the authoritative name servers (in the AUTHORITY section of the response)
which it knows about in the domain name supplied in the QUESTION section of the query. Thus, if the QUESTION
is for the domain name www.example.com, the root server to which the iterative query was sent adds a list of the .com
authoritative name servers in the AUTHORITY section. The resolver selects one of the servers from the AUTHORITY
section and sends an iterative query to it. Similarly, the .com authoritative name servers send a referral containing a list of
the example.com authoritative name servers. This process continues down the DNS hierarchy until either an ANSWER
or an error is received, at which point the user’s original recursive query is sent a response.

Note: The DNS hierarchy is always accessed starting at the root servers and working down; there is no concept of “up”
in the DNS hierarchy. Clearly, if the resolver has already cached the list of .com authoritative name servers and the user’s
recursive query QUESTION contains a domain name ending in .com, it can omit access to the root servers. However,
that is simply an artifact (in this case a performance benefit) of caching and does not change the concept of top-down
access within the DNS hierarchy.

The insatiably curious may find reading RFC 1034 and RFC 1035 a useful starting point for further information.

1.4.6 DNS and BIND 9

BIND 9 is a complete implementation of the DNS protocol. BIND 9 can be configured (using its named. conf file) as
an authoritative name server, a resolver, and, on supported hosts, a stub resolver. While large operators usually dedicate
DNS servers to a single function per system, smaller operators will find that BIND 9’s flexible configuration features
support multiple functions, such as a single DNS server acting as both an authoritative name server and a resolver.

Example configurations of basic authoritative name servers and resolvers and forwarding resolvers, as well as advanced
configurations and secure configurations, are provided.

1.5 DNS Security Overview

DNS is a communications protocol. All communications protocols are potentially vulnerable to both subversion and
eavesdropping. It is important for users to audit their exposure to the various threats within their operational environment
and implement the appropriate solutions. BIND 9, a specific implementation of the DNS protocol, provides an extensive
set of security features. The purpose of this section is to help users to select from the range of available security features
those required for their specific user environment.

A generic DNS network is shown below, followed by text descriptions. In general, the further one goes from the left-hand
side of the diagram, the more complex the implementation.

1.5. DNS Security Overview 7

https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc1035.html

BIND 9 Administrator Reference Manual, Release 9.19.16

Note: Historically, DNS data was regarded as public and security was concerned, primarily, with ensuring the integrity
of DNS data. DNS data privacy is increasingly regarded as an important dimension of overall security, specifically DNS
over TLS.

Dynamic Rem EtE
Updates Admin
(DD NS)
and
RNDC Queries Queries
—Authoritative Area Resolver Proxy Stub (caching)
Prima ny {Caching Mame Serwe r@ Resolver (PC)
I DSL/Cable
Transfers Modern
° Authoritative
Secondary

Zone Files
— SysAdmin
—)p TS| G, TKEY, SIG(0) & TLS
——— DNSSEC & TLS

Fig. 5: BIND 9 Security Overview

The following notes refer to the numbered elements in the above diagram.

1. A variety of system administration techniques and methods may be used to secure BIND 9’s local environment,
including file permissions, running BIND 9 in a jail, and the use of Access Control Lists.

2. The remote name daemon control (rndc) program allows the system administrator to control the operation of a name
server. The majority of BIND 9 packages or ports come preconfigured with local (loopback address) security preconfig-
ured. If rndc is being invoked from a remote host, further configuration is required. The nsupdate tool uses Dynamic
DNS (DDNS) features and allows users to dynamically change the contents of the zone file(s). nsupdate access and
security may be controlled using named. conf statements or using TSIG or SIG(0) cryptographic methods. Clearly, if
the remote hosts used for either rndc or DDNS lie within a network entirely under the user’s control, the security threat
may be regarded as non-existent. Any implementation requirements, therefore, depend on the site’s security policy.

3. Zone transfer from a primary to one or more secondary authoritative name servers across a public network carries
risk. The zone transfer may be secured using named. conf statements, TSIG cryptographic methods or TLS. Clearly, if
the secondary authoritative name server(s) all lie within a network entirely under the user’s control, the security threat
may be regarded as non-existent. Any implementation requirements again depend on the site’s security policy.

4. If the operator of an authoritative name server (primary or secondary) wishes to ensure that DNS responses to user-
initiated queries about the zone(s) for which they are responsible can only have come from their server, that the data
received by the user is the same as that sent, and that non-existent names are genuine, then DNSSEC is the only solution.
DNSSEC requires configuration and operational changes both to the authoritative name servers and to any resolver which
accesses those servers.

5. The typical Internet-connected end-user device (PCs, laptops, and even mobile phones) either has a stub resolver
or operates via a DNS proxy. A stub resolver requires the services of an area or full-service resolver to completely

8 Chapter 1. Introduction to DNS and BIND 9

BIND 9 Administrator Reference Manual, Release 9.19.16

answer user queries. Stub resolvers on the majority of PCs and laptops typically have a caching capability to increase
performance. At this time there are no standard stub resolvers or proxy DNS tools that implement DNSSEC. BIND 9
may be configured to provide such capability on supported Linux or Unix platforms. DNS over TLS may be configured to
verify the integrity of the data between the stub resolver and area (or full-service) resolver. However, unless the resolver
and the Authoritative Name Server implements DNSSEC, end-to-end integrity (from authoritative name server to stub
resolver) cannot be guaranteed.

1.5. DNS Security Overview 9

BIND 9 Administrator Reference Manual, Release 9.19.16

10 Chapter 1. Introduction to DNS and BIND 9

CHAPTER
TWO

RESOURCE REQUIREMENTS

2.1 Hardware Requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that have been retired
from active duty have performed admirably as DNS servers.

However, the DNSSEC features of BIND 9 may be quite CPU-intensive, so organizations that make heavy use of these
features may wish to consider larger systems for these applications. BIND 9 is fully multithreaded, allowing full utilization
of multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i386-class machines, for serving static zones without caching, to enterprise-
class machines to process many dynamic updates and DNSSEC-signed zones, serving many thousands of queries per
second.

2.3 Memory Requirements

Server memory must be sufficient to hold both the cache and the zones loaded from disk. The max—-cache-size option
can limit the amount of memory used by the cache, at the expense of reducing cache hit rates and causing more DNS
traffic. It is still good practice to have enough memory to load all zone and cache data into memory; unfortunately, the
best way to determine this for a given installation is to watch the name server in operation. After a few weeks, the server
process should reach a relatively stable size where entries are expiring from the cache as fast as they are being inserted.

2.4 Name Server-Intensive Environment Issues

For name server-intensive environments, there are two configurations that may be used. The first is one where clients and
any second-level internal name servers query the main name server, which has enough memory to build a large cache;
this approach minimizes the bandwidth used by external name lookups. The second alternative is to set up second-level
internal name servers to make queries independently. In this configuration, none of the individual machines need to have
as much memory or CPU power as in the first alternative, but this has the disadvantage of making many more external
queries, as none of the name servers share their cached data.

11

BIND 9 Administrator Reference Manual, Release 9.19.16

2.5 Supported Platforms

The current support status of BIND 9 versions across various platforms can be found in the ISC Knowledgebase:
https://kb.isc.org/docs/supported-platforms

In general, this version of BIND will build and run on any POSIX-compliant system with a modern C11 (or better)
compiler, BSD-style sockets with RFC-compliant IPv6 support, POSIX-compliant threads, and the required libraries.

The following C11 features are required to compile BIND 9:
¢ Atomic operations support defined in <stdatomic.h>
e Thread Local Storage support defined in <threads.h>
Where it makes sense, BIND 9 uses C-standard fixes introduced by C17 update of the C11 standard.

ISC regularly tests BIND on many operating systems and architectures, but lacks the resources to test all of them. Con-
sequently, ISC is only able to offer support on a “best-effort” basis for some.

2.5.1 Regularly Tested Platforms

Current versions of BIND 9 are fully supported and regularly tested on the following systems:
* Debian 11
e Ubuntu LTS 20.04, 22.04
* Fedora 38
* Red Hat Enterprise Linux / CentOS / Oracle Linux 8, 9
* FreeBSD 12.4, 13.2
¢ OpenBSD 7.3
* Alpine Linux 3.18
The amd64, 1386, armhf, and arm64 CPU architectures are all fully supported.

2.5.2 Best-Effort

The following are platforms on which BIND is known to build and run. ISC makes every effort to fix bugs on these
platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff,
and other constraints. None of these are tested regularly by ISC.

* macOS 10.12+

* Solaris 11

* NetBSD

* Other Linux distributions still supported by their vendors, such as:
— Ubuntu 22.10+
— Gentoo
— Arch Linux

* OpenWRT/LEDE 17.01+

¢ Other CPU architectures (mips, mipsel, sparc, ...)

12 Chapter 2. Resource Requirements

https://kb.isc.org/docs/supported-platforms

BIND 9 Administrator Reference Manual, Release 9.19.16

2.5.3 Community-Maintained

These systems may not all have the required dependencies for building BIND easily available, although it is possible in
many cases to compile those directly from source. The community and interested parties may wish to help with mainte-
nance, and we welcome patch contributions, although we cannot guarantee that we will accept them. All contributions
will be assessed against the risk of adverse effect on officially supported platforms.

2.6

These are platforms on which current versions of BIND 9 are known not to build or run:

2.7

Platforms past or close to their respective EOL dates, such as:
Ubuntu 14.04, 16.04, 18.04 (Ubuntu ESM releases are not supported)
Red Hat Enterprise Linux / CentOS / Oracle Linux 6, 7

Debian 8 Jessie, 9 Stretch, 10 Buster
FreeBSD 10.x, 11.x

Unsupported Platforms

Platforms without at least OpenSSL 1.0.2

Windows

Solaris 10 and older

Platforms that do not support IPv6 Advanced Socket API (RFC 3542)
Platforms that do not support atomic operations (via compiler or library)
Linux without NPTL (Native POSIX Thread Library)

Platforms on which libuv >= 1.34 cannot be compiled or is not available

Installing BIND 9

Building BIND 9 contains complete instructions for how to build BIND 9.

The ISC Knowledgebase contains many useful articles about installing BIND 9 on specific platforms.

2.6. Unsupported Platforms

13

https://kb.isc.org/

BIND 9 Administrator Reference Manual, Release 9.19.16

14 Chapter 2. Resource Requirements

CHAPTER
THREE

CONFIGURATIONS AND ZONE FILES

3.1 Introduction

BIND 9 uses a single configuration file called named.conf. which is typically located in either /etc/namedb or
/usr/local/etc/namedb.

Note: If rndc is being used locally (on the same host as BIND 9) then an additional file rndc. conf
may be present, though rndc operates without this file. If rndc is being run from a remote host then an
rndc. conf file must be present as it defines the link characteristics and properties.

Depending on the functionality of the system, one or more zone files is required.

The samples given throughout this and subsequent chapters use a standard base format for both the named. conf and
the zone files for example.com. The intent is for the reader to see the evolution from a common base as features are
added or removed.

3.1.1 named.conf Base File

This file illustrates the typical format and layout style used for named. conf and provides a basic logging service, which
may be extended as required by the user.

// base named.conf file
// Recommended that you always maintain a change log in this file as shown here
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number 1is revealed
version "not currently available";

bi

// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
(continues on next page)

15

26

27

28

29

BIND 9 Administrator Reference Manual, Release 9.19.16

(continued from previous page)

// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
// only log info and up messages — all others discarded
severity info;

i

category default {
example_log;

}i

bi

The I1ogging and options blocks and category, channel, directory, file,and severity statements
are all described further in the appropriate sections of this ARM.

3.1.2 example.com base zone file

The following is a complete zone file for the domain example.com, which illustrates a number of common features.
Comments in the file explain these features where appropriate. Zone files consist of Resource Records (RR), which describe
the zone’s characteristics or properties.

; base zone file for example.com

STTL 2d ; default TTL for zone

SORIGIN example.com. ; base domain-name

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; serial number
12h ; refresh
15m ; update retry
3w ; expiry
2h ; minimum

)

; name server RR for the domain

IN NS nsl.example.com.
; the second name server is external to this zone (domain)
IN NS ns2.example.net.
; mail server RRs for the zone (domain)
3w IN MX 10 mail.example.com.
; the second mail servers is external to the zone (domain)
IN MX 20 mail.example.net.

; domain hosts includes NS and MX records defined above

; plus any others required

; for instance a user query for the A RR of joe.example.com will
; return the IPv4 address 192.168.254.6 from this zone file

nsl IN A 192.168.254.2

mail IN A 192.168.254.4

joe IN A 192.168.254.6

WWW IN A 192.168.254.7

; aliases ftp (ftp server) to an external domain
ftp IN CNAME ftp.example.net.

This type of zone file is frequently referred to as a forward-mapped zone file, since it maps domain names to some
other value, while a reverse-mapped zone file maps an IP address to a domain name. The zone file is called example.com
for no good reason except that it is the domain name of the zone it describes; as always, users are free to use whatever
file-naming convention is appropriate to their needs.

16 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.19.16

3.1.3 Other Zone Files

Depending on the configuration additional zone files may or should be present. Their format and functionality are briefly
described here.

3.1.4 localhost Zone File

All end-user systems are shipped with a host s file (usually located in /etc). This file is normally configured to map
the name localhost (the name used by applications when they run locally) to the loopback address. It is argued, reason-
ably, that a forward-mapped zone file for localhost is therefore not strictly required. This manual does use the BIND 9
distribution file 1localhost-forward.db (normally in /etc/namedb/master or /usr/local/etc/namedb/master) in all
configuration samples for the following reasons:

1. Many users elect to delete the hosts file for security reasons (it is a potential target of serious domain name
redirection/poisoning attacks).

2. Systems normally lookup any name (including domain names) using the host s file first (if present), followed
by DNS. However, the nsswitch.conf file (typically in /etc) controls this order (normally hosts: file dns),
allowing the order to be changed or the file value to be deleted entirely depending on local needs. Unless the
BIND administrator controls this file and knows its values, it is unsafe to assume that localhost is forward-mapped
correctly.

3. As a reminder to users that unnecessary queries for localhost form a non-trivial volume of DNS queries on the
public network, which affects DNS performance for all users.

Users may, however, elect at their discretion not to implement this file since, depending on the operational environment,
it may not be essential.

The BIND 9 distribution file 1ocalhost-forward.db format is shown for completeness and provides for both IPv4
and IPv6 localhost resolution. The zone (domain) name is localhost.

$STTL 3h

localhost. SOA localhost. nobody.localhost. 42 1d 12h 1w 3h
NS localhost.
A 127.0.0.1
AARA HENE

Note: Readers of a certain age or disposition may note the reference in this file to the late, lamented Douglas Noel
Adams.

3.1.5 localhost Reverse-Mapped Zone File

This zone file allows any query requesting the name associated with the loopback IP (127.0.0.1). This file is required to
prevent unnecessary queries from reaching the public DNS hierarchy. The BIND 9 distribution file 1localhost.rev
is shown for completeness:

STTL 1D
@ IN SOA localhost. root.localhost. (
2007091701 ; serial
30800 ; refresh
7200 ; retry
604800 ; expire
300) ; minimum

(continues on next page)

3.1. Introduction 17

BIND 9 Administrator Reference Manual, Release 9.19.16

(continued from previous page)

IN NS localhost.
1 IN PTR localhost.

3.2 Authoritative Name Servers

These provide authoritative answers to user queries for the zones they support: for instance, the zone data describing the
domain name example.com. An authoritative name server may support one or many zones.

Each zone may be defined as either a primary or a secondary. A primary zone reads its zone data directly from a file
system. A secondary zone obtains its zone data from the primary zone using a process called zone transfer. Both the
primary and the secondary zones provide authoritative data for their zone; there is no difference in the answer to a query
from a primary or a secondary zone. An authoritative name server may support any combination of primary and secondary
zones.

Note: The terms primary and secondary do not imply any access priority. Resolvers (name servers that provide the
complete answers to user queries) are not aware of (and cannot find out) whether an authoritative answer comes from the
primary or secondary name server. Instead, the resolver uses the list of authoritative servers for the zone (there must be
at least two) and maintains a Round Trip Time (RTT) - the time taken to respond to the query - for each server in the list.
The resolver uses the lowest-value server (the fastest) as its preferred server for the zone and continues to do so until its
RTT becomes higher than the next slowest in its list, at which time that one becomes the preferred server.

For reasons of backward compatibility BIND 9 treats “primary” and “master” as synonyms, as well as “secondary” and
“slave.”

The following diagram shows the relationship between the primary and secondary name servers. The text below explains
the process in detail.

The numbers in parentheses in the following text refer to the numbered items in the diagram above.
1. The authoritative primary name server always loads (or reloads) its zone files from (1) a local or networked filestore.

2. The authoritative secondary name server always loads its zone data from a primary via a zone transfer operation.
Zone transfer may use AXFR (complete zone transfer) or IXFR (incremental zone transfer), but only if both
primary and secondary name servers support the service. The zone transfer process (either AXFR or IXFR) works
as follows:

a) The secondary name server for the zone reads (3 and 4) the SOA RR periodically. The interval is defined by
the refresh parameter of the Start of Authority (SOA) RR.

b) The secondary compares the serial number parameter of the SOA RR received from the primary with the
serial number in the SOA RR of its current zone data.

c) If the received serial number is arithmetically greater (higher) than the current one, the secondary initiates a
zone transfer (5) using AXFR or IXFR (depending on the primary and secondary configuration), using TCP
over port 53 (6).

3. The typically recommended zone refresh times for the SOA RR (the time interval when the secondary reads or
polls the primary for the zone SOA RR) are multiples of hours to reduce traffic loads. Worst-case zone change
propagation can therefore take extended periods.

4. The optional NOTIFY (RFC 1996) feature (2) is automatically configured; use the not i £y statement to turn
off the feature. Whenever the primary loads or reloads a zone, it sends a NOTIFY message to the configured
secondary (or secondaries) and may optionally be configured to send the NOTIFY message to other hosts using the
also-notify statement. The NOTIFY message simply indicates to the secondary that the primary has loaded
or reloaded the zone. On receipt of the NOTIFY message, the secondary respons to indicate it has received the

18 Chapter 3. Configurations and Zone Files

https://datatracker.ietf.org/doc/html/rfc1996.html

BIND 9 Administrator Reference Manual, Release 9.19.16

Primary - Secondary
NOTIFY

—_———

(—
DNS
Primary (

DNS
Secondary

—

o AXFR/IXFR

Zone Files(s)

Fig. 1: Authoritative Primary and Secondary Name Servers

3.2. Authoritative Name Servers

19

BIND 9 Administrator Reference Manual, Release 9.19.16

NOTIFY and immediately reads the SOA RR from the primary (as described in section 2 a. above). If the zone
file has changed, propagation is practically immediate.

The authoritative samples all use NOTIFY but identify the statements used, so that they can be removed if not required.

3.2.1 Primary Authoritative Name Server

The zone files are unmodified from the base samples but the named. conf file has been modified as shown:

// authoritative primary named.conf file
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number is revealed
version "not currently available";
// This is the default - allows user queries from any IP
allow—query { any; };
// normal server operations may place items in the cache
// this prevents any user query from accessing these items
// only authoritative zone data will be returned
allow—query—-cache { none; };
// Do not provide recursive service to user queries
recursion no;
bi
// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
// only log info and up messages — all others discarded
severity info;
i
category default {
example_log;
i
bi
// Provide forward mapping zone for localhost
// (optional)
zone "localhost" {
type primary;
file "master/localhost-forward.db";
notify noj;
i
// Provide reverse mapping zone for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify noj;

(continues on next page)

20 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.19.16

(continued from previous page)
i
// We are the primary server for example.com
zone "example.com" {
// this is the primary name server for the zone
type primary;
file "example.com";
// this is the default
notify yes;
// IP addresses of secondary servers allowed to
// transfer example.com from this server
allow-transfer {
192.168.4.14;
192.168.5.53;
i
bi

The added statements and blocks are commented in the above file.

The zone block, and allow—-query, allow—query—-cache, allow-transfer, file, notify, recur—
sion, and type statements are described in detail in the appropriate sections.

3.2.2 Secondary Authoritative Name Server

The zone files local-host-forward.db and localhost . rev are unmodified from the base samples. The ex-
ample.com zone file is not required (the zone file is obtained from the primary via zone transfer). The named.conf file
has been modified as shown:

// authoritative secondary named.conf file
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number is revealed
version "not currently available";
// This is the default - allows user queries from any IP
allow—query { any; };
// normal server operations may place items in the cache
// this prevents any user query from accessing these items
// only authoritative zone data will be returned
allow—query-cache { none; };
// Do not provide recursive service to user queries
recursion noj;
bi
// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
(continues on next page)

3.2. Authoritative Name Servers 21

BIND 9 Administrator Reference Manual, Release 9.19.16

(continued from previous page)

// only log info and up messages - all others discarded
severity info;
bi
category default {
example_log;
i
i
// Provide forward mapping zone for localhost
// (optional)
zone "localhost" {
type primary;
file "master/localhost—forward.db";
notify noj;
bi
// Provide reverse mapping zone for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify noj;
bi
// We are the secondary server for example.com
zone "example.com" {
// this is a secondary server for the zone
type secondary;
// the file statement here allows the secondary to save
// each zone transfer so that in the event of a program restart
// the zone can be loaded immediately and the server can start
// to respond to queries without waiting for a zone transfer
file "example.com.saved";
// IP address of example.com primary server
primaries { 192.168.254.2; };
bi

The statements and blocks added are all commented in the above file.

The zone block, and allow—query, allow—query—-cache, allow—-transfer, file, primaries, re—
cursion, and t ype statements are described in detail in the appropriate sections.

If NOTIFY is not being used, no changes are required in this named.conf file, since it is the primary that initiates the
NOTIFY message.

Note: Just when the reader thought they understood primary and secondary, things can get more complicated. A
secondary zone can also be a primary to other secondaries: named, by default, sends NOTIFY messages for every zone
it loads. Specifying notify primary-only; in the zone block for the secondary causes named to only send NOTIFY
messages for primary zones that it loads.

22 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.19.16

3.3 Resolver (Caching Name Servers)

Resolvers handle recursive user queries and provide complete answers; that is, they issue one or more iferative queries to
the DNS hierarchy. Having obtained a complete answer (or an error), a resolver passes the answer to the user and places it
in its cache. Subsequent user requests for the same query will be answered from the resolver’s cache until the 77L of the
cached answer has expired, when it will be flushed from the cache; the next user query that requests the same information
results in a new series of queries to the DNS hierarchy.

Resolvers are frequently referred to by a bewildering variety of names, including caching name servers, recursive name
servers, forwarding resolvers, area resolvers, and full-service resolvers.

The following diagram shows how resolvers can function in a typical networked environment:

Public Network Queries e User Queries

Resolver Stub (caching)
‘ ’ (Caching Mame Serwver) Resolrer (PC)

e = Stub (cachimng)
{IIIIIIIII}— :i:t:;hu:grﬂlng ;lest::ver‘* Resolrer (PC)

Resolver and Forwarding Resolver

1. End-user systems are all distributed with a local stub resolver as a standard feature. Today, the majority of stub
resolvers also provide a local cache service to speed up user response times.

2. A stub resolver has limited functionality; specifically, it cannot follow referrals. When a stub resolver receives a
request for a name from a local program, such as a browser, and the answer is not in its local cache, it sends a
recursive user query (1) to a locally configured resolver (5), which may have the answer available in its cache. If it
does not, it issues iterative queries (2) to the DNS hierarchy to obtain the answer. The resolver to which the local
system sends the user query is configured, for Linux and Unix hosts, in /etc/resolv.conf; for Windows
users it is configured or changed via the Control Panel or Settings interface.

3. Alternatively, the user query can be sent to a forwarding resolver (4). Forwarding resolvers on first glance look
fairly pointless, since they appear to be acting as a simple pass-though and, like the stub resolver, require a full-
service resolver (5). However, forwarding resolvers can be very powerful additions to a network for the following
reasons:

a)

b)

¢

d)

Cost and Performance. Each recursive user query (1) at the forwarding resolver (4) results in two messages
- the query and its answer. The resolver (5) may have to issue three, four, or more query pairs (2) to get
the required answer. Traffic is reduced dramatically, increasing performance or reducing cost (if the link
is tariffed). Additionally, since the forwarding resolver is typically shared across multiple hosts, its cache is
more likely to contain answers, again improving user performance.

Network Maintenance. Forwarding resolvers (4) can be used to ease the burden of local administration by
providing a single point at which changes to remote name servers can be managed, rather than having to update
all hosts. Thus, all hosts in a particular network section or area can be configured to point to a forwarding
resolver, which can be configured to stream DNS traffic as desired and changed over time with minimal effort.

Sanitizing Traffic. Especially in larger private networks it may be sensible to stream DNS traffic using a
forwarding resolver structure. The forwarding resolver (4) may be configured, for example, to handle all
in-domain traffic (relatively safe) and forward all external traffic to a hardened resolver (5).

Stealth Networks. Forwarding resolvers are extensively used in stealth or split networks.

3.3. Resolver (Caching Name Servers) 23

BIND 9 Administrator Reference Manual, Release 9.19.16

4. Forwarding resolvers (4) can be configured to forward all traffic to a resolver (5), or to only forward selective traffic
(5) while directly resolving other traffic (3).

Attention: While the diagram above shows recursive user queries arriving via interface (1), there is nothing to stop
them from arriving via interface (2) via the public network. If no limits are placed on the source IPs that can send such
queries, the resolver is termed an open resolver. Indeed, when the world was young this was the way things worked
on the Internet. Much has changed and what seems to be a friendly, generous action can be used by rogue actors to
cause all kinds of problems including Denial of Service (DoS) attacks. Resolvers should always be configured to limit
the IP addresses that can use their services. BIND 9 provides a number of statements and blocks to simplify defining
these IP limits and configuring a closed resolver. The resolver samples given here all configure closed resolvers using
a variety of techniques.

3.3.1 Additional Zone Files

Root Servers (Hint) Zone File

Resolvers (although not necessarily forwarding resolvers) need to access the DNS hierarchy. To do this, they need to
know the addresses (IPv4 and/or IPv6) of the 13 roor servers. This is done by the provision of a root server zone file,
which is contained in the standard BIND 9 distribution as the file named. root (normally found in /etc/namedb or
/ust/local/namedb). This file may also be obtained from the IANA website (https://www.iana.org/domains/root/files).

Note: Many distributions rename this file for historical reasons. Consult the appropriate distribution doc-
umentation for the actual file name.

The hint zone file is referenced using the t ype hint statement and a zone (domain) name of “.” (the generally silent
dot).

Note: The root server IP addresses have been stable for a number of years and are likely to remain stable
for the near future. BIND 9 has a root-server list in its executable such that even if this file is omitted,
out-of-date, or corrupt BIND 9 can still function. For this reason, many sample configurations omit the
hints file. All the samples given here include the hints file primarily as a reminder of the functionality of the
configuration, rather than as an absolute necessity.

Private IP Reverse Map Zone Files

Resolvers are configured to send iferative queries to the public DNS hierarchy when the information requested is not in
their cache or not defined in any local zone file. Many networks make extensive use of private IP addresses (defined by
RFC 1918, RFC 2193, RFC 5737, and RFC 6598). By their nature these IP addresses are forward-mapped in various
user zone files. However, certain applications may issue reverse map queries (mapping an IP address to a name). If
the private IP addresses are not defined in one or more reverse-mapped zone file(s), the resolver sends them to the DNS
hierarchy where they are simply useless traffic, slowing down DNS responses for all users.

Private IP addresses may be defined using standard reverse-mapping techniques or using the empty—-zones—enable
statement. By default this statement is set to empty-zones—enable yes; and thus automatically prevents un-
necessary DNS traffic by sending an NXDOMAIN error response (indicating the name does not exist) to any request.
However, some applications may require a genui