FLAIM 4 Database Format

Provides details of the FLAIM 4 database file format

"Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Copyright © 1991,2006 Novell, Inc. All rights reserved.

THIS DOCUMENTATION MAY NOT BE REVISED OR MODIFIED WITHOUT THE PRIOR WRITTEN CONSENT OF NOVELL, INC. THE DOCUMENTATION IS PROVIDED "AS IS." IN NO EVENT SHALL NOVELL OR THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE DOCUMENTATION OR THE USE OR OTHER DEALINGS IN THE DOCUMENTATION."

Table of Contents

1.1 Database Files
1

1.2 Control File (xxx.db)
1

1.3 Lock File
1

1.4 Data Files
2

1.4.1 Naming Convention for Pre 4.3 Databases
2

1.4.2 Naming Convention for 4.3 Databases (and beyond)
2

1.5 Rollback Log Files
3

1.5.1 Naming Convention for Pre 4.3 Databases
3

1.5.2 Naming Convention for 4.3 Databases (and beyond)
3

1.6 Maximum Data File and Rollback File Sizes
4

1.7 Block Addresses
4

1.8 Roll Forward Log Files
5

1.8.1 Naming Convention For Pre-4.3 Databases
5

1.8.2 Naming Convention For 4.3 Databases (and beyond)
5

1.8.3 Roll Forward Log File Header
6

1.8.4 Roll Forward Log File Layout
7

2. First Block of the Control File (xxx.db)
13

2.1 Database Header Structure
13

2.2 Log Header Structure
14

3. Logical Files (Containers and Indexes)
20

3.1 LFH Block Structure
20

3.2 Logical File Header Structure
21

4. Block Header Structure
23

4.1 Avail List Block Linkages
25

5. B-Tree Organization
27

5.1 Non-Leaf Variable Key Size Blocks
27

5.2 Non-Leaf Variable Key Size With Counts Blocks
28

5.3 Non-Leaf Fixed Key Size Blocks
29

5.4 Leaf Blocks
29

5.4.1 Next DRN Marker Element
30

5.5 Rightmost Elements
30

6. Data Portion of Leaf Elements
31

6.1 Data Record Structure
31

6.1.1 Standard Field
31

6.1.2 Open Field
31

6.1.3 Free Field
32

6.1.4 No Value Field
33

6.1.5 Set Field Level
33

6.1.6 Field Value Formats
33

6.2 Reference Set Structure
36

6.2.1 SEN (Simple Encoded Number) Format
36

6.2.2 Reference Set Format
36

7. Index Key Structure
38

7.1 Compound Markers
38

7.2 Truncated Pieces
38

7.3 Valueless Pieces
38

7.4 First Substring Pieces
38

7.5 Binary Index Piece
39

7.6 Context Index Piece
39

7.7 Field ID Index Piece
39

7.8 Numeric Index Piece
39

7.9 Text Index Piece
40

7.9.1 Tables for Mapping Characters to Collation Values
40

7.9.2 Sub-Collation Format
41

7.9.3 Case Information
41

7.9.4 Post Compound Indexes
42

7.9.5 Language
42

7.9.6 Two-Byte Collation Values (Asian Languages)
42

7.9.7 Hebrew and Arabic Sorting
44

1.1 Database Files

A FLAIM database consists of five types of files: 1) A control file, 2) lock file, 3) data files, 4) rollback log files, and 5) roll-forward log files. The name of the database is the name of the control file. The names of all other files are based on the name of the control file. The naming convention and usage of each type of file is explained below.

1.2 Control File (xxx.db)

The control file name is expected to conform to the following convention:

xxx.db

where xxx is a one to three character string. All other file names are derived from the xxx name.

The first block of the control file is reserved for some application information, a log header, and a database header. These are described in the next section. The rest of the file is actually part of the rollback log space in the database. Because the rollback log can grow and shrink, it is common to see the control file change its size.

1.3 Lock File

The lock file name is xxx.lck. It resides in the same directory as the control file and is used to prevent multiple processes from opening a database at the same time.

On Netware and Windows platforms, the lock file is created and opened in exclusive mode. When FLAIM first opens a database, it will attempt to create and open this file. When FLAIM finally closes a database, the lock file will be deleted. The mere existence of the lock file does not mean that the database is currently open by some process. It may be that the process has aborted without shutting down FLAIM, or the system crashed before FLAIM could close the database. Thus, when opening a database for the first time, if the file already exists, FLAIM will attempt to delete the file first. If it cannot delete the file, it knows that the database is currently being accessed by another process or NLM, and it will return an access denied error.

On Unix platforms there is no way to open a file in exclusive mode. In addition, it is possible to delete a file that another process has opened. Therefore, FLAIM uses the lock file in a slightly different way. Instead of deleting and re-creating the file every time it opens a database, the file is created when the database is first created, and remains as long as the database remains. To prevent multiple processes from accessing the database, FLAIM will put a byte lock on byte zero of the file. If it cannot obtain the byte lock, it knows that another process has already obtained the byte lock and is accessing the database, and an access denied error will be returned.

1.4 Data Files

The data files are used to store all of the blocks of the database, including data blocks, index blocks, available blocks, etc. Data files reside in the same directory as the control file, and have the same xxx name as the control file, but different extensions. Each data file has a number that is encoded into the extension. The total number of data files and the naming conventions for data files depends on the version of the database.

1.4.1 Naming Convention for Pre 4.3 Databases

For versions of the database prior to 4.3, the maximum number of data files is 511 (file numbers 1 through 511). The extension for a data file is its file number encoded as a two digit base 24 number. The ASCII characters used to represent the 24 values (0-23) of a base 24 digit are as follows:

Numeric Value
ASCII Digit

0-9

‘0’ – ‘9’

10-23

‘g’, ‘h’, ‘j’, ‘k’, ‘m’, ‘n’, ‘p’, ‘q’, ‘s’, ‘t’, ‘w’, ‘x’, ‘y’, ‘z’

The following examples illustrate:

Data File Number

Data File Name

1

xxx.01

2

xxx.02

3

xxx.03

1.4.2 Naming Convention for 4.3 Databases (and beyond)

For versions of the database of 4.3 and beyond, the maximum number of data files is 2047 (file numbers 1 through 2047). For file numbers 1 through 511, the same naming convention that exists for pre-4.3 databases is used. That is, the extension for a data file is its file number encoded as a two digit base 24 number (see above). For file numbers 512 through 2047, the file number mod 512 is used to encode the first two digits as a two digit base 24 number, and then an additional third digit is added to the extension, as follows:

Data File Numbers

Additional Third Digit

512 through 1023

‘r’

1024 through 1535

‘s’

1536 through 2047

‘t’

The following examples illustrate:

Data File Number

Data File Name

1

xxx.01

2

xxx.02

512

xxx.00r
(512 mod 512 is 0)

513

xxx.01r
(513 mod 512 is 1)

1024

xxx.00s
(1024 mod 512 is 0)

1025

xxx.01s
(1025 mod 512 is 1)

1536

xxx.00t
(1536 mod 512 is 0)

1537

xxx.01t
(1537 mod 512 is 1)

1.5 Rollback Log Files

The rollback log files are used to log blocks of the database. Rollback logging has three primary purposes: 1) to undo a transaction when it aborts, 2) to recover a database to its last checkpointed state when doing database recovery after a system crash, and 3) to maintain read-consistent views of the database for read transactions. The control file is actually also a rollback log file, except for its very first block (see explanation above). It is considered to be rollback log file number zero. If this file fills up because of a very large transaction (a circumstance that will be very rare), additional rollback log files will be created. These additional rollback log files reside in the same directory as the control file, and will have the same xxx name as the control file, but different extensions. Each additional rollback log file has a number that is encoded into its extension. The total number of rollback log files and the naming conventions for data files depends on the version of the database.

1.5.1 Naming Convention for Pre 4.3 Databases

For versions of the database prior to 4.3, the maximum number of rollback files is 513 - file number 0 (the control file), and file numbers 512 through 1023. The file name for file number zero is, of course, xxx.db. Additional rollback log files (512 through 1023) use the file number mod 512 to encode a two digit extension (base 24 format described above), and then add on a third digit of ‘x’ so that the extension does not conflict the extensions used for data file names. The following are some examples:

Rollback Log File Number

Rollback Log File Name

512

xxx.00x
(512 mod 512 is 0)

513

xxx.01x
(513 mod 512 is 1)

514

xxx.02x
(514 mod 512 is 2)

1.5.2 Naming Convention for 4.3 Databases (and beyond)

For versions of the database of 4.3 and beyond, the maximum number of rollback log files is 2049 - file number 0 (the control file), and file numbers 2048 through 4095. The file name for file number zero is, of course, xxx.db. Additional rollback log files (2048 through 4095) use the file number mod 512 to encode a two digit extension (base 24 format described above), and then add on a third digit as follows:

Rollback Log File Number

Additional Third Digit

2048 through 2559

‘v’

2560 through 3071

‘w’

3072 through 3583

‘x’

3584 through 4095

‘z’

Below are some examples:

Rollback Log File Number

Rollback Log File Name

2048

xxx.00v
(2048 mod 512 is 0)

2049

xxx.01v
(2049 mod 512 is 1)

2560

xxx.00w
(2560 mod 512 is 0)

2561

xxx.01w
(2561 mod 512 is 1)

3072

xxx.00x
(3072 mod 512 is 0)

3073

xxx.01x
(3073 mod 512 is 1)

3584

xxx.00z
(3584 mod 512 is 0)

3585

xxx.01z
(3585 mod 512 is 1)

1.6 Maximum Data File and Rollback File Sizes

Prior to database version 4.3, the maximum file size for both data and rollback files was fixed at 0x7FFF0000 (roughly 2 gigabytes). With the maximum number of data files being 511, this meant that a database could only grow to be just under 1 terabyte.

In database versions 4.3 and greater, the maximum file size for data and rollback files has been increased to 0xFFFC0000 (almost 4 gigabytes). Because 4.3 databases allow up to 2047 data files, database capacity has been increased to almost 8 terabytes. This will always be the case for newly created databases. However, databases that are converted from a version prior to 4.3 up to version 4.3 may not be able to have a maximum file size of 0xFFFC0000. This would happen if the database already has more than one data file created (xxx.02, xxx.03, etc.) at the time it is converted. In this case, FLAIM has to set the maximum file size to the old limit, which is 0x7FFFF0000 (about 2 gigabytes). With 2047 data files, this still increases the database capacity to almost 4 terabytes.

Note on the reason for choosing 0xFFFC0000 as the new maximum file size: This odd number was chosen because of a bug that was discovered in the Netware Legacy file system that only allows a file to grow to one block less that 0xFFFFFFFF when operating in direct I/O mode. Assuming a block size of 64K (normal for most Netware Legacy file systems), this means we could have had a maximum of 0xFFFF0000. However, since we do not know what the maximum possible block size is, we had to assume that there was a chance it could be more than 64K on some systems, but would probably never be more than 256K - thus the limit of 0xFFFC0000 - which is 256K less than 0xFFFFFFFF.

1.7 Block Addresses

A block address has two components. The lower 12 bits represents a file number. The upper 20 bits represents a 4K block offset within the file. To obtain the offset for a block, it is only necessary to mask off the lower 12 bits of the block address. To obtain the file number, it is only necessary to mask off the upper 20 bits of the block address.

Using the lower 12 bits for a file number allows for file numbers 0 to 4095, which covers all possible data file numbers and rollback log file numbers. However, for versions of the database prior to 4.3, only 10 of those bits were used, limiting the range of file numbers to 0 to 1023.

File number zero is reserved for the control file (xxx.db) in all database versions. The first block in the control file (offset 0) is reserved for the database header and log header. Blocks coming after the first block are rollback log blocks.

For database versions 4.3 and greater, file numbers 1 through 2047 are data files, and file numbers 2048 through 4095 are additional rollback log files. For database versions prior to 4.3, file numbers 1 through 511 are data files, and file numbers 512 through 1023 are additional rollback log files.

1.8 Roll Forward Log Files

FLAIM logs the operations of transactions to a roll-forward log. Roll-forward log files are used to recover transactions after a system failure and when restoring a database from backup.

1.8.1 Naming Convention For Pre-4.3 Databases

In database versions prior to 4.3, a single roll-forward log file is used. It is named xxx00001.log and resides in the same directory as the other database files (xxx.db, xxx.01, etc.). Transactions are only kept until a checkpoint is performed on the database, at which time the roll-forward file is reset and reused.

1.8.2 Naming Convention For 4.3 Databases (and beyond)

In version 4.3 and beyond an administrator can request that transactions logged to the roll-forward log be kept for recovery purposes if needed. When this mode is employed, multiple log files are utilized instead of just one. Roll-forward log files are not reset and reused when checkpoints are performed. Instead, the roll-forward log continually grows. For all practical purposes, a single file with a 64 bit address space would be more than adequate for thousands of years worth of transactions, given the transaction rate we can realistically sustain. However, there are a couple of reasons it is not practical or useful to simply keep growing a single file, even one with 64 bit capacity. First, not all operating systems support 64 bit files (Netware's legacy file system only allows 4 gigabytes - 32 bit address space - per file). Second, in the design of hot continous backup, it was desirable that an administrator be allowed to move older portions of the roll-forward log to tape or some other backup media, thus conserving disk space on the volume where the roll-forward log files are kept. To achieve this, the roll-forward log is broken into multiple files. Each log file has a sequence number. The sequence number is written into a header within the file and is also encoded into the log file's name.

In database versions 4.3 and beyond, roll-forward log files are stored in a subdirectory called xxx.rfl. Unless otherwise specified by an administrator, this subdirectory is located in the same directory as the other database files (xxx.db, xxx.01, etc.). If an administrator specifies a different directory for the roll-forward log files, an xxx.rfl subdirectory will still be created within the specified directory. For example, if an administrator specified sys:\rflfiles as the directory for roll-forward log files, FLAIM would create an xxx.rfl subdirectory:

sys:\rflfiles\xxx.rfl.

Roll forward log files in the xxx.rfl subdirectory will be named as nnnnnnnn.log, where nnnnnnnn is a hex number that is the log file's sequence number. Thus, log file number 1 is named 00000001.log, log file number 2 is named 00000002.log, and so forth.

1.8.3 Roll Forward Log File Header

The first 512 bytes of every roll-forward log file is reserved for a log file header. Not all 512 bytes are currently in use. The header is formatted as follows:

ROLL-FORWARD LOG FILE HEADER
SIZE IN BYTES
OFFSET IN FILE
STARTING HEX OFFSET

Roll-forward Log File Signature
8
0
0x00

Log File Sequence Number
4
8
0x08

Log File EOF
4
12
0x0C

Database Serial Number

(Only used in 4.3 and beyond)
16
16
0x10

Log File Serial Number

(Only used in 4.3 and beyond)
16
32
0x20

Next Log File Serial Number

(Only used in 4.3 and beyond)
16
48
0x30

Keep Signature

(Only used in 4.3 and beyond)
16
64
0x40

NOTE: Unless otherwise specified, 32 bit (4 byte) numeric values and 16 bit (2 byte) numeric values are stored in little-endian byte order.

Roll-forward Log File Signature. This is an eight byte string that contains the string “RFL31.00”. When a log file is opened, this signature is used to verify that the file is a roll-forward log file.

Log File Sequence Number. This is the sequence number for the log file. When a roll-forward log file is opened, there is an expectation of what sequence number the file represents. The expected sequence number will be verified against the value stored here.

Log File EOF. This is the offset in the file where the roll-forward data ends. Anything after this point in the file is unused. NOTE: This field may contain a value of zero, which signifies that the EOF has not yet been determined. FLAIM only updates this field when it switches to a new roll-forward log file. It would be too costly to update it at the end of every transaction. Until FLAIM switches to a new file, the EOF for the current roll-forward log file is kept in the log header for the database (see section 2.2).

Database Serial Number. This is only present in database versions 4.3 and greater. It is the serial number of the database this roll-forward log file belongs to. It is the database serial number that is stored in the database’s log header (see section 2.2). When a roll-forward log file is opened, this serial number is compared to the serial number in the database’s log header to make sure they are the same.

Log File Serial Number. This is the serial number for this log file. The serial number is assigned when the log file is first created. During restore operations, the serial number is verified as the restore process opens roll-forward log files.

Next Log File Serial Number. This is the serial number that should appear on the next roll-forward log file in the sequence. During restore operations, when moving from one roll-forward log file to the next, the chain of serial numbers is verified.

Keep Signature. This is a string that indicates whether this roll-forward log file is being operated in “keep” mode or “no-keep” mode. The string is 16 characters long, including the null terminating character. When operating in keep mode, the string is:

“----KeepLog----”

When operating in no-keep mode, the string is:

“--DontKeepLog--”

When FLAIM switches from keep mode to no-keep mode, it will go to the next roll-forward log file in the sequence. Thus, the keep signature on a log file is permanent. A string was chosen so that it could be easily seen by someone who wanted to just try to list the file.

1.8.4 Roll Forward Log File Layout

After the header, the data in the roll-forward log file consists of a sequence of packets, written one after the other. Packets are variable size and each consists of a header and a body. The information in the header identifies the packet type and allows FLAIM to determine the format of the data in the body.

Size In Bytes
Starting Hex Offset

Address of Packet in the RFL
4
0x00

Checksum
1
0x04

Packet Type
1
0x05

Packet Body Length
2
0x06

· Address of Packet in the RFL: specifies the offset from the start of the RFL. This information is actually redundant; FLAIM uses it as a double check.

· Checksum: This is a checksum of the packet type and length fields in the header, and the data in the packet body.

· Packet Body Length: Specifies the length of the packet body (in bytes).

· Packet Type: FLAIM currently supports 15 types of packets in the RFL:

Type Number
Type Name

1
Begin Transaction

2
Commit Transaction

3
Abort Transaction

4
Record Add

5
Record Modify

6
Record Delete

7
Reserve DRN

8
Change Fields

9
Data Record

10
Index Set

11
Start Unknown

12
Unknown Data

13
Reduce Database

14
Extended Begin Transaction

15
Upgrade Database

1.8.4.1 Begin Transaction Packet

A Begin Transaction packet marks the start of data for a specific transaction. There should be a corresponding Commit Transaction or Abort Transaction packet to mark the end of data for that transaction. The body of a Begin Transaction packet is 8 bytes long and contains two elements:

Size In Bytes
Offset from Start of Body

Transaction ID
4
0x00

Time (GMT)
4
0x04

1.8.4.2 Commit Transaction and Abort Transaction Packets

The Commit Transaction and Abort Transaction packets record how a transaction finished either committing or aborting. The bodies of these packets are exactly the same. They are 8 bytes long and contain two elements:

Size In Bytes
Offset from Start of Body

Transaction ID
4
0x00

Transaction Begin Address
4
0x04

The second element, Transaction Begin Address, is the offset in the RFL of the Transaction Begin packet that corresponds to this packet. This field is no longer used in FLAIM and is kept only for compatibility.

1.8.4.3 Record Add, Record Modify, Record Delete and Reserve DRN Packets

The Record Add, Record Modify and Record Delete packets signify that a change is going to be made as part of the current transaction. They all have the same bodies. They are 10 bytes long and contain three elements:

Size In Bytes
Offset from Start of Body

Transaction ID
4
0x00

Container #
2
0x04

DRN
4
0x06

Record Add packets are followed by one or more Data Record packets that contain the actual data to add. Record Modify packets are followed by either one or more Change Field packets or one or more Record Add packets, depending on which is the most efficient means of representing the modifications. (Both of these packet types are described in further detail below.)

A Reserve DRN packet is used to specify that a particular DRN has been reserved by the application. This prevents FLAIM from issuing that DRN when it creates a new record. Its body is exactly the same as the Record Add, Record Modify and Record Delete packets.

1.8.4.4 Data Record Packet

Data Record packets consist of a sequence of fields. A field in a Data Record packet contains all the data to completely specify one field in a FLAIM record. There can be multiple fields in a single packet, and one field can span multiple packets. There are five parts to each field:

Description:
Length (in bytes)

Field #
2

Data Type
1

Level
1

Length
2

Data
variable

A Field # of 0 (which is an illegal number for a FLAIM field) indicates that there is no more data for this particular record. In this case, the packet will end immediately after the 0. (This is analogous to a Null-terminated string in a C program.) Note that only the Data element will be split across a packet. If any of the other elements would cause the packet to exceed its maximum size, then the entire field will be put in another Data Record packet.

1.8.4.5 Change Field Packet

A Change Field packet consists of a sequence of "deltas", or individual changes to a single record. There can be multiple deltas in a single Change Field packet, and a single delta can span multiple packets.

The first three bytes of each delta consist of one byte of type information and two bytes to specify the position of the field that is being changed. There are four types of changes that can be made: insert field (type 1), delete field (type 2), modify field (type 3) and end-of-changes (type 4).

Position is a field's ordinal position within a record. This should not be confused with a field's level, which is a measure of how deep the field is in the record's hierarchy. For example, in the record shown below Name is at level 1, but position 5. (Level numbers start at 0, but position numbers start at 1.)

[image: image1]
The end-of-changes type signifies there are no more changes to be made to the current record and the Change Fields packet will end immediately after the 4. (This is similar to what happens when a field in a Data Record packet has a field number of 0.)

For the other three types of changes, the structure of the rest of the delta depends on the type of change.

Delete field removes a field from the record. This is the simplest type of delta. It consists only of the type and position bytes no further information is needed.

Insert field is used to insert a new field into the record. Its format is shown below:

Description:
Length (in bytes)

Type
1

Position
2

Field #
2

Data Type
1

Level
6

Data Length
2

Data
variable

Position is the position within the record where the new field will be inserted. (For example, if Position is 4, then all the fields whose position is currently 4 or higher will be moved down, and the new field will be inserted at position 4.)

Modify field is used to change an existing field in the record. There are three modification operations currently defined: replace all bytes, insert bytes, and delete bytes. However, only the replace all bytes operation is currently used. Its structure is defined below:

Description
Length (in bytes)

Type
1

Position
2

ModType
1

Length
2

Data
variable

(The structures for the insert bytes and delete bytes have not yet been defined.)

ModType is the operation that is being performed (1 for replace, 2 for insert and 3 for delete). Length is the number of bytes in the data field and data is the new data.

1.8.4.6 Index Set Packet

An Index Set packet is used to generate the keys for an index. (An index is created by adding its definition record to the Dictionary container, but this does not generate the keys for that index.)

Type
Size in Bytes
Offset From Start of Packet Body

Transaction ID
4
0x00

Index #
2
0x04

Start DRN
4
0x06

End DRN
4
0x0A

The Transaction ID and Index # elements are self explanatory. The Start DRN and End DRN fields indicate which records are to be indexed during this transaction. This is necessary because indexes created in the background will use multiple transactions to generate their keys a few at a time, instead of generating all of them at once.

1.8.4.7 Start Unknown and Unknown Packets

Unknown packets are used to store application-specified data. (Unknown, in this case refers to the fact the FLAIM doesn't know what the data is. It is assumed that the application knows how to interpret the data in these packets.) The body of a Start Unknown packet consists of only 4 bytes which hold the transaction ID. Any number of Unknown packets follow the Start Unknown packet and have unspecified content. (These packets are analogous to binary fields in the database. That is, FLAIM will simply read the data and pass it right to the application; it does not try to interpret the data at all.) These packets may be used by the application during a restore operation; they are ignored during a recovery.

1.8.4.8 Reduce Database Packet

This packet records the fact that a Database Reduce operation has been performed. It consists of a Transaction ID and a Count. Count is the number of blocks that the application has indicated that FLAIM should try to remove from the database. (Note that this is not necessarily the number of blocks that were actually removed.)

Type
Size in Bytes
Offset From Start of Packet Body

Transaction ID
4
0x00

Count
4
0x04

This packet type is new to version 4.3.

1.8.4.9 Extended Begin Transaction

This is a replacement for the Begin Transaction packet. It was added to version 4.3 and has one additional element: Last Logged Committed Transaction ID.

Size In Bytes
Offset from Start of Body

Transaction ID
4
0x00

Time (GMT)
4
0x04

Last Logged Committed ID
4
0x08

This new element holds the ID number of the last transaction to be both committed and logged to the RFL. It is used during RFL playback to ensure no transactions are missed (which could happen if an RFL file was corrupted).

1.8.4.10 Database Upgrade

This packet is used to record the fact that a Database Upgrade operation has occurred. It consists of the transaction ID of the upgrade as well as the old and new version numbers.

Size In Bytes
Offset from Start of Body

Transaction ID
4
0x00

Old Version
4
0x04

New Version
4
0x08

2. First Block of the Control File (xxx.db)

The first block of the control file (xxx.db) reserves room for the items shown in the table below:

FLAIM 4.x FORMAT OF

FIRST BLOCK

SIZE

IN BYTES

OFFSET IN

Control File

STARTING HEX OFFSET

Application Information
16
0 – 15
0x0000

Log Header
156
16-171
0x0010

Database Header
172
1876 – 2047
0x0754

Application Information. This 16 bytes is the area which is reserved for application information. FLAIM will initialize this area when the database is created. The application data is supplied by the application as part of the CREATE_OPTS structure on database creation.

Database Header. This 172 bytes contains information about the high level layout of the database.

Log Header. This 156 bytes contains information which is used during database transactions to preserve the logical integrity of the database.

2.1 Database Header Structure

The database header begins at byte 1876 (0x0754) in the control file (xxx.db) and is 172 bytes long. The database header contains information about the high level layout of the database. It is structured as follows:

ITEMS IN

DATABASE HEADER

SIZE

IN BYTES

OFFSET IN

Database Header

STARTING

HEX OFFSET

FLAIM Version Info
9
0 - 8
0x0754

UNUSED - zero value
4
9 - 12
0x075d

Default Language
1
13
0x0761

Block Size
2
14 - 15
0x0762

UNUSED - zero value
16
16 - 31
0x0764

First LFH Block Address
4
32 - 35
0x0774

UNUSED - zero value
136
36 - 171
0x0778

NOTE: Unless otherwise specified, 32 bit (4 byte) numeric values and 16 bit (2 byte) numeric values are stored in little-endian byte order.

FLAIM Version Info. This contains an ASCII string which tells the version of the database format. FLAIM checks this when it opens the database to make sure we are really accessing a FLAIM database and that it is accessible under the current version of the FLAIM software.

Default Language. This contains a number which specifies the default language for indexes in the database. If an index definition does not explicitly specify a language, the language specified here will be used.

Block Size. This contains the size (in bytes) of blocks in the database. All blocks in the database are the same size.

First LFH Block Address. This is the address of the first LFH block in the database.

2.2 Log Header Structure

The log header begins at byte 16 (0x10) in the control file (xxx.db), and is structured as follows:

LOG HEADER ITEMS
SIZE (BYTES)
HEADER OFFSET
OFFSET IN

CONTROL FILE

Current Roll-forward Log File Number
4
0 - 3
0x10

Last Transaction Offset in Roll-forward log file
4
4 - 7
0x14

Last Checkpoint Roll-forward Log File Number
4
8 - 11
0x18

Last Checkpoint Offset in Roll-forward log file
4
12 - 15
0x1C

Rollback Log EOF
4
16 - 19
0x20

Incremental Backup Sequence Number (Not used prior to version 4.3)
4
20 - 23
0x24

Last Database Transaction ID
4
24 - 27
0x28

Committed Transaction Count
4
28 - 31
0x2C

First Checkpoint Rollback Log Address
4
32 - 35
0x30

Last Roll-forward Log File Deleted
4
36 - 39
0x34

Minimum Roll-forward Log File Size
4
40 - 43
0x38

Log Header Checksum
2
44 - 45
0x3A

Database Version Number
2
46 - 47
0x3C

Last Backup Transaction ID

(Not used prior to version 4.3)
4
48 - 51
0x40

Blocks Changed Since Last Backup

(Not used prior to version 4.3)
4
52 - 55
0x44

Last Checkpoint Transaction ID
4
56 - 59
0x48

First Backchain Address
4
60 - 63
0x4C

Avail List Block Address
4
64 - 67
0x50

Logical End Of Database Address
4
68 - 72
0x54

Unused
4
72 - 75
0x58

Keep Aborted Transactions in Roll-Forward Log Flag (Not used prior to version 4.3)
1
76
0x5C

First Backchain Count
1
77
0x5D

Keep Roll-forward Log Files Flag
1
78
0x5E

Auto-Turn-Off Keep of Roll-Forward Log Files Flag (Not used prior to version 4.3)
1
79
0x5F

Number of Avail Blocks
4
80 - 83
0x60

Maximum Roll-forward Log File Size (Not used prior to version 4.3)
4
84 - 87
0x64

Database Serial Number (Not used prior to version 4.3)
16
88 - 103
0x68

Last Roll-forward Log Serial Number (Not used prior to version 4.3)
16
104 - 119
0x78

Next Roll-forward Log Serial Number (Not used prior to version 4.3)
16
120 - 135
0x88

Incremental Backup Serial Number (Not used prior to version 4.3)
16
136 - 151
0x98

Not used
2
152 - 153
0xA8

Maximum Data and Rollback File Size (64K units. Not used prior to version 4.3)
2
154-155
0xAA

NOTE: Unless otherwise specified, 32 bit (4 byte) numeric values and 16 bit (2 byte) numeric values are stored in little-endian byte order.

Current Roll-forward Log File Number. This contains the roll-forward log file number of the log file where the last update transaction ended.

Last Transaction Offset in Roll-forward Log File. This contains the offset within the current roll-forward log file where the last update transaction ended. NOTE: This may contain a value of zero, which is a special value to indicate that we have not yet written to the current roll-forward log file. When we do write to it, if the file already exists, we will overwrite it, and the logging will actually start at offset 512.

Last Checkpoint Roll-forward Log File Number. This contains the roll-forward log file number of the log file where the last checkpoint ends.

Last Checkpoint Offset in Roll-forward Log File. This contains the offset within the last checkpoint roll-forward log file where the last check point ends. After a system crash, FLAIM restores the database to the state of the last checkpoint and then starts from this offset and redoes any transactions in the roll-forward log from this point to the point in the roll-forward log where the last committed transaction was logged. NOTE: This should never be less that 512.

Rollback Log EOF. This contains the address in the rollback log where the rollback log ends.

Incremental Backup Sequence Number. This is the sequence number that will be assigned to the next incremental backup that is taken. NOTE: This is only used for database versions 4.3 and greater.

Last Database Transaction ID. This contains the transaction ID number of the most recently completed (committed or aborted) update transaction. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

Committed Transaction Count. This contains a count of the number of update transactions that have successfully committed. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

First Checkpoint Rollback Log Address. This contains the address in the rollback log of the first block that was logged after the last completed checkpoint. After a system crash, FLAIM will start from this point in the rollback log to roll the database back to the state of the last completed checkpoint.

Last Roll-forward Log File Deleted. This contains the roll-forward log file number of the last roll-forward log file that FLAIM deleted from the system. When a database’s roll-forward log file is in the “no-keep” state, FLAIM will automatically delete any log files that may have been generated while it was in the “keep” state - up to, but not including, the oldest log file needed for recovery.

Minimum Roll-forward Log File Size. This contains the minimum size (in bytes) that a roll-forward log file may grow to. When in the “no-keep” state, FLAIM will truncate the one log file that is being used to this size whenever it completes a checkpoint. It will then reset itself and begin logging at the beginning of the file. When in the “keep” state, FLAIM will roll to a new roll-forward log file once the minimum size has been exceeded. Normally, once FLAIM knows it has exceeded the minimum, FLAIM will wait to roll to a new file until the current transaction completes, unless the current transaction would cause FLAIM to exceed the maximum roll-forward log file size. In that case, FLAIM will roll to the next roll-forward log file before the maximum log file size is exceeded. If exceeding the minimum would cause FLAIM to also exceed the maximum (for example, if both minimum and maximum are set to the same value or close to the same value), FLAIM will give preference to staying under the maximum. It is therefore possible that roll-forward log files may never exceed the minimum.

Log Header Checksum. This contains a two byte checksum of the log header.

Database Version Number. This contains the database version number. This is normally the same version number that is stored in the database header. However, when doing database conversions from an older version to a newer version, we needed to be able to update and commit the database version number in the same transaction as any other database changes that needed to be done. Hence, it is now stored in the log header, and the version number in the log header takes precedence over the version number stored in the database header. When doing a database conversion, FLAIM will always attempt to update the FLAIM version number in the database header as well, but it is not possible to perform this update in the same transaction that performs other database conversions. It is possible that a crash could occur between the time the conversion transaction committed and the time the database header could be updated. For this reason, FLAIM always assumes that the version number in the log header is the correct version number if there is a difference between the version number in the log header and the version number in the database header.

Last Backup Transaction ID. This is only used in database versions 4.3 and later. It contains the transaction ID that was backed up to in the last full or incremental backup. It basically means that the last backup taken contains all committed transactions up to this transaction ID. This is used when doing an incremental backup to determine which blocks have been modified since the last backup was taken. An incremental backup will backup only blocks that are stamped with a transaction ID that is greater than this value.

Blocks Changed Since Last Backup. This is a count of the number of blocks in the database that have been changed since the last full or incremental backup was taken. This number will give an application some idea of what percentage of blocks have been changed since the last backup, so it can determine whether it is worth it to do an incremental or full backup.

Last Checkpoint Transaction ID. This is the transaction ID of the last transaction that was successfully checkpointed. When recovering after a crash, FLAIM uses this number to determine which blocks in the roll-back log should be reapplied to roll back to the last checkpoint. Blocks that have a transaction ID greater than this value will be skipped over.

First Backchain Address. The avail list contains threaded backchains that are double-linked throughout the avail list. This contains the address of the first backchain block. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

Avail List Block Address. This contains the address of the first block in the avail list. When new blocks are needed during a transaction, they are allocated from the avail list. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

Logical End Of Database Address. This contains the address of the logical end of the database. When the avail list is empty and new blocks are needed during a transaction, they will be allocated from the end of the database, and the database will be extended. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

Keep Aborted Transactions In Roll-forward Log Flag. This flag is used to indicate whether or not FLAIM should keep aborted transactions in the roll-forward log. A non-zero value indicates that we are keeping aborted transactions, while a zero value indicates that we are not. This flag is not used in database versions prior to 4.3.

First Backchain Count. This contains the number of inclusive blocks that are between the avail list block address and the first backchain block. This number is used to determine when to assign a new backchain block to the avail list. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

Keep Roll-forward Log Files Flag. This flag indicates whether or not we are doing roll-forward logging in a “keep” mode or “no-keep” mode. A non-zero value indicates a keep mode, while a zero value indicates a no-keep mode. The keep mode causes FLAIM to roll to a new roll-forward log file when the current file fills up. The no-keep mode causes FLAIM to reset and reuse the current roll-forward log file whenever a checkpoint is completed. NOTE: FLAIM has configuration options that allow a database to be switched between the keep and no-keep modes. Whenever FLAIM is switched from keep to no-keep or vice versa, it will roll to a new roll-forward log file and stamp that new file as keep or no-keep. ADDITIONAL NOTE: Database versions prior to 4.3 are not allowed to switch to a keep mode - they always operate in no-keep mode.

Auto-Turn-Off Keep of Roll-Forward Log Files Flag. This flag indicates whether or not FLAIM should automatically switch back to “no-keep” mode if the disk which contains the roll-forward log files somehow gets full. A non-zero value indicates it should automatically switch back, while a zero value indicates it should not. Although not recommended, this flag may allow database operations to continue up to a point if the roll-forward log disk gets full because it flips the database back into a mode where it will reuse the current roll-forward log file for transaction logging instead of trying to create new roll-forward log files. It will also cause FLAIM to delete older roll-forward log files that are no longer in use, thus freeing up disk space that is needed to continue logging transactions.

Number of Avail Blocks. This contains the total number of avail blocks that are in the avail list. NOTE: This number is not written to disk until a checkpoint occurs. Until then, it is updated only in memory.

Maximum Roll-forward Log File Size. This contains the maximum size (in bytes) that a roll-forward log file may grow to. When in the “no-keep” state, this value is ignored. When in the “keep” state, FLAIM will normally roll to a new roll-forward log file once the minimum size has been exceeded. Once FLAIM knows it has exceeded the minimum, FLAIM will wait to roll to a new file until the current transaction completes, unless the current transaction would cause FLAIM to exceed the maximum roll-forward log file size. In that case, FLAIM will roll to the next roll-forward log file before the maximum log file size is exceeded. If exceeding the minimum would cause FLAIM to also exceed the maximum (for example, if both minimum and maximum are set to the same value or close to the same value), FLAIM will give preference to staying under the maximum. It is therefore possible that roll-forward log files may never exceed the minimum. NOTE: This value is only used in database versions 4.3 and greater.

Database Serial Number. This contains the database serial number. NOTE: This value is only used in database versions 4.3 and greater.

Last Roll-forward Log Serial Number. This contains the serial number of the last roll-forward log file that has been created. NOTE: It is possible that the last roll forward log file is being pointed to by the log header, but it has not yet been created - it will be created when the next transaction begins. In that case, this serial number will be written to the roll-forward log file’s header once it is created. NOTE: This value is only used in database versions 4.3 and greater.

Next Roll-forward Log Serial Number. This contains the serial number that is to be used for the next roll-forward log file when we roll to the next file. Each roll-forward log file contains its own serial number and the serial number of the next log file in the sequence. NOTE: This value is only used in database versions 4.3 and greater.

Incremental Backup Serial Number. This contains the serial number for the next incremental backup. NOTE: This value is only used in database versions 4.3 and greater.

Maximum Data and Rollback File Size. This value indicates the maximum size for data files and rollback log files. It specifies the number of 64K units. Thus, a value of 0xFFFF really means 0xFFFF 64K units, which is a maximum size of 0xFFFF0000 bytes. NOTE: This value is only used in database versions 4.3 and greater. Once set, this value should NOT be changed except perhaps by a database conversion utility that knows what it is doing.

3. Logical Files (Containers and Indexes)

Internally, both indexes and containers are referred to as “logical files” in a FLAIM database. Physically, they are B-Trees. Each B-Tree has a logical file header. Logical file headers are stored inside LFH blocks. All LFH blocks are linked together in a doubly linked chain (via the Next Block Address field in the Block Header structure - see section 4). The first block in the chain is pointed to from the First LFH Block Address field in the Database Header structure (see section 2.1).

3.1 LFH Block Structure

An LFH block contains logical file headers for indexes and containers. It is structured as follows:

ITEMS IN LFH BLOCK

SIZE IN BYTES
OFFSET IN BLOCK

Block Header
32
0 - 31

Logical File Header 1
32
32 - 63

Logical File Header 2
32
64 - 95

 .

 .

 .

Logical File Header n
32
(n * 32) to (n + 1) * 32 - 1

Block Header. Each block in the database, except for blocks which belong to log segments, has a block header. For a detailed description of the structure of a block header see section 4.

Logical File Header. There is one logical file header for each container and index in the database. For a detailed description of the structure of a logical file header see the following section.

3.2 Logical File Header Structure

The structure for logical file headers is as follows:

ITEMS IN LOGICAL FILE

HEADER

SIZE

IN BYTES

OFFSET IN

LOGICAL FILE HEADER

Logical File Number
2
0 - 1

Logical File Type
1
2

Set, but not used in pre-4.3.

Not set or used in 4.3
1
3

B-Tree Root Block Address
4
4 - 7

Set, but not used in pre-4.3.

Not set or used in 4.3
4
8 - 11

Next Container DRN
4
12 - 15

Right Split Fill Size

(Not used in 4.3)
1
16

Delete Minimum Fill Size

(Not used in 4.3)
1
17

UNUSED (filled with zeroes)
14
18 - 31

NOTE: Unless otherwise specified, 32 bit (4 byte) numeric values and 16 bit (2 byte) numeric values are stored in little-endian byte order.

Logical File Number. This contains the ID number for the logical file. The ID number for user defined indexes and containers is the DRN of their corresponding dictionary definition record. Pre-defined indexes and containers have pre-defined numbers - the logical file number for the data dictionary container is always 32000, the logical file number for the default data container is always 32001, etc.

Logical File Type. This byte indicates what type of logical file this is. A value of one (1) indicates that it is a container. A value of two (2) indicates that it is an index. A value of fifteen (15) indicates that this is an unused logical file header (it may be reused when new indexes or containers are created).

B-Tree Root Block Address. This contains the address of the root block for the B-Tree. A value of 0xFFFFFFFF means that there is no root block - i.e., the B-Tree is empty.

Next Container DRN. This field is used only on container logical files. Its value is the DRN which will be assigned to the next record that is added to the container if the container is currently empty (i.e., B-Tree Root Block Address is 0xFFFFFFFF). If the container is not currently empty, the next DRN is kept in the rightmost leaf block of the B-Tree in a special element known as the DRN_LAST_MARKER element.

Right Split Fill Size. This field indicates how full to keep a block when adding records to the rightmost block in the B-Tree. When the rightmost block is split, the old block will retain the percent specified in this field. NOTE: The value in this field is not a straight percentage. The percentage is represented as a ratio of 128. Thus, if the number in this field is 96, the percentage is 96 divided by 128, which is 75 percent. This representation makes it easier for FLAIM to use. In database versions 4.3 and beyond, FLAIM uses a hardcoded value of 116 (which translates to approximately 91% full).

Delete Minimum Fill Size. This field indicates the minimum percent a block should be filled. If a block drops below this percent, an attempt will be made to coalesce the block with an adjacent block. NOTE: The value in this field is not a straight percentage. The percentage is represented as a ratio of 128. Thus, if the number in this field is 96, the percentage is 96 divided by 128, which is 75 percent. This representation makes it easier for FLAIM to use. In database versions 4.3 and beyond, FLAIM uses a hardcoded value of 44 (which translates to approximately 34% full).

4. Block Header Structure

Every block in the database, regardless of its type, has a block header. The block header begins at offset zero within the block and is 32 bytes long. It is structured as follows:

ITEM IN BLOCK HEADER

SIZE

IN BYTES

OFFSET IN

BLOCK HEADER

XOR Checksum

(This is also XORed with low byte of block address)
1
0

Block Address - high 3 bytes
3
1 - 3

Previous Block Address
4
4 - 7

Next Block Address
4
8 - 11

Block Type
1
12

Block Level (if in B-Tree)

(See section 4.1on avail list linkage)
1
13

End Of Block
2
14 - 15

Block Transaction ID
4
16 - 19

Prior Version Transaction ID
4
20 - 23

Prior Version Address (in rollback log)
4
24 - 27

Logical File Number

(See section 4.1on avail list linkage)
2
28 - 29

Not Used

(See section 4.1on avail list linkage)
1
30

AdditionChecksum

(This is also summed with the low byte of block address)
1
31

NOTE: Unless otherwise specified, 32 bit (4 byte) numeric values and 16 bit (2 byte) numeric values are stored in little-endian byte order.

XOR Checksum. This byte contains the XOR (exclusive OR) checksum for the block. This is calculated by XORing all of the bytes in the block up to the end of block offset. The end of block offset is the value contained in the End Of Block field rounded up to the nearest multiple of 4. The reason we round up to the nearest multiple of 4 is because when blocks used to be encrypted we had to account for the fact that the encryption algorithm consumed up to the nearest multiple of 4. Note that bytes 0 and 31 are NOT included in the XOR because they are the two checksums on the block (the XOR and addition checksums) and are set only after the checksums have been calculated. Note also that the XOR Checksum also XORs in the low byte of the block address.

Block Address. This contains the high three bytes of the block address of the block. The block address is stored so that FLAIM can verify that the correct block was fetched. The low byte of the block address is XORed with the XOR Checksum field and is also added to the Addition Checksum field. Thus, the low byte of the block address may be obtained by either: 1) XORing all of the bytes of the block (except bytes 0 and 31) and then XORing that value against the XOR Checksum field that is stored in byte zero, or 2) summing all of the bytes of the block (except bytes 0 and 31) and then subtracting that value from the Addition Checksum field that is stored in byte 31.

Previous Block Address. This contains the address of the previous block in a linked list of blocks. It will contain 0xFFFFFFFF if there is no previous block. This field, in conjunction with the Next Block Address field is used to doubly link lists of blocks. All LFH blocks are linked together in a doubly linked list, as are all blocks that reside at the same level in a given B-Tree. There is also a list of available blocks, but it has a special type of linkage mechanism that is somewhat more exotic than the simple doubly linked list.

Next Block Address. This contains the address of the next block in a linked list of blocks. It will contain 0xFFFFFFFF if there is no next block.

Block Type. This byte contains information about the type of block. The bits in this byte are as follows:

Bit 0 (0x80). This bit is set if the block is a root block in a B-Tree.

Bit 1 (0x40). This bit is not currently used.

Bits 2 through 3 (0x30). These bits are set on blocks in the rollback log if the block was logged so that the current transaction could be aborted. These bits are only set on blocks written to the rollback log.

Bits 4 through 7 (0x0F). These low order bits contain one of the following values to indicate the block type:

0
Free block. This indicates that the block is in the avail list.

1
Leaf block. This indicates that the block is a leaf block in a B-Tree.

4
LFH block. This indicates that the block contains logical file headers for the database. The block will be in a doubly linked list of blocks of this type.

5
PCODE block. This indicates that the block contains dictionary pcode. The block will be in a doubly linked list of blocks of this type. NOTE: This type of block is no longer used in version 4.3 and beyond.

6
Non-leaf block, variable size keys. This is a non-leaf block in a B-tree. The block may be a container or an index block for versions of the database prior to 4.0. For 4.0 and beyond, this type of block is only used for non-leaf index blocks.

7
Non-leaf data block, fixed size keys. This is a non-leaf block in a container B-Tree. This type of block was introduced for versions 4.0 and beyond. The keys in this type of a block are all fixed size (eight bytes), making it possible to do binary searches in the block to look up a key.

8
Non-leaf block with counts. This is a non-leaf block in an index B-Tree. It is used for indexes whose index definition record have requested that positioning data be kept. This type of block is only supported in versions 4.3 and beyond. The additional data that is kept in the block allows FLAIM to do absolute positioning within the index.

Block Level. This byte indicates the level of the block in the B-Tree. This byte has no meaning for blocks that are not part of a B-Tree (except for avail blocks - see section 4.1). Leaf blocks are always at level zero, while the root block is at the highest level. The maximum levels in any b‑tree can be eight levels.

End Of Block. This tells the number of bytes in the block which are currently being used.

Block Transaction ID. This contains the transaction ID of the last update transaction that modified the block.

Prior Version Transaction ID. This contains the transaction ID of the prior version of the block.

Prior Version Address. This contains the address in the rollback log where the prior version of the block is stored. This is used to chain together prior versions of the block so that a read transaction can obtain the version of the block that is required for its read-consistent view of the database. Note that the chain does not extend back through all prior versions. Prior versions are eliminated when they are no longer needed, but the prior version address is not necessarily updated at that point.

Logical File Number. This contains the number of the logical file the block belongs to if the block belongs to an index or a container B-Tree.

Addition Checksum. This byte contains the addition checksum for the block. This is calculated by summing all of the bytes in the block up to the end of block offset. The end of block offset is the value contained in the End Of Block field rounded up to the nearest multiple of 4. The reason we round up to the nearest multiple of 4 is because when blocks used to be encrypted we had to account for the fact that the encryption algorithm consumed up to the nearest multiple of 4. Note that bytes 0 and 31 are NOT included in the summation because they are the two checksums on the block (the XOR and addtion checksums) and are set only after the checksums have been calculated. Note also that the Addition Checksum also adds in the low byte of the block address.

4.1 Avail List Block Linkages

Blocks in the avail list are linked together in a special manner to improve update performance. In very early versions of FLAIM, the avail list was a fully doubly linked list. Whenever a block was put into the avail list, it would be linked at the front of the list. If there was already a block in the avail list, that block’s “previous” pointer had to be updated to point to the newly added block. This, of course, resulted in dirtying and writing an additional block, not to mention the before-image of the block to the rollback log. All of this resulted in additional costs for operations that deleted records in the database - particularly bulk deletes.

After analyzing the situation, it was concluded that the “previous” pointer in the avail list had no use, because blocks were never unlinked from the middle of the avail list, only from the front of the list. Hence, it was decided that blocks in the avail list only had to be singly linked, not doubly linked. This would result in a huge performance gain for bulk delete operations.

After deciding to make the avail list a singly linked list, it was discovered that there was one special case where blocks might need to be removed from the middle of the avail list. That was during calls to FlmDbReduceSize. FlmDbReduceSize operates by unlinking blocks at the physical end of the last data file and replacing them with blocks from the avail list that are not at the physical end of the last data file. Blocks at the end of the last data file can then be truncated off and returned to the file system. If the block at the physical end of the last data file happened to be a block in the avail list, it is only necessary to unlink that block from the avail list. There is no need to replace it. Because the block might be in the middle of the avail list, a mechanism was needed for determining the block’s previous block.

At first, it was thought that we would have to keep the avail list as a doubly linked list after all. However, a compromise was struck. Instead of a previous pointer in every block, it was determined that every 36th block in the avail list would belong to a special chain of blocks. Every 36th blocks would be doubly linked, while still participating in the singly linked list of all blocks in the avail list. This meant that extra overhead would only be incurred every 36th block that was put into the avail list - thus retaining much of the performance advantage of a singly linked list for bulk delete operations. To find a block’s previous block, FLAIM would follow the block’s “next” pointer forward until it found one of these special 36th blocks. It would then follow that block’s “previous” pointer to the previous 36th block and then go forward again until it found the block whose “next” pointer was pointing to the block it started from. This is a somewhat costly way to find a block’s previous block, but it was concluded that most of the time when FlmDbReduceSize operates it will not be finding avail blocks at the physical end of the last data file that it needs to unlink from the avail list. It is more probable that it will find other types of blocks at the end of the last data file, which it will switch with blocks in the avail list. In addition, FlmDbReduceSize is not an operation that we anticipate will be called very often, and hence it is a good compromise to have it take an occasional performance hit so that freeing a block into the avail list is not as costly.

In conclusion, blocks in the avail list have three pointers: 1) a “next” pointer (the Next Block Address field), 2) a “previous 36th block” pointer (the Previous Block Address field), and 3) a “next 36th block” pointer. Items 2 and 3 are only used every 36th block. In all other blocks in the avail list, they are set to zero. Item 3 was not originally planned for in the block header, so some fancy byte overloading was done. Its bits are found in non-contiguous bytes in the block header, as shown below:

Bits 0 through 7 (low bits)

-
Byte 30 in the block header

Bits 8 through 15

-
Byte 13 in the block header

Bits 16 through 23

-
Byte 28 in the block header

Bits 24 through 31 (high bits)

-
Byte 29 in the block header

Observe that byte 30 is an unused byte in the block header. Byte 13 is the block level when the block is a B-Tree block - but block level means nothing for blocks in the avail list. Bytes 28 and 29 contain the logical file number when the block is in a B-Tree, but logical file number means nothing for blocks in the avail list.

5. B-Tree Organization

Each logical file in the database is stored as a B-Tree. B-Trees consist of database blocks which may be leaf blocks or non-leaf blocks. Leaf blocks are the blocks only at the very bottom of the B-Tree. Non-leaf blocks are all blocks at higher levels in the tree. Each B-Tree has a root block at the highest level. The structure of each block in a B-Tree is as follows:

ITEMS IN B-Tree BLOCK

SIZE

IN BYTES

OFFSET IN BLOCK

Block Header
32
0 - 31

Element 1
Variable
Variable (>= 32)

 .
 .
 .

 .
 .
 .

 .
 .
 .

Element n
Variable
Variable (>= 32)

All blocks at any given level of a B-Tree are forward and backward linked via the Next Block Address and Previous Block Address fields in the block header (see section 4 for a detailed description of the block header). A value of 0xFFFFFFFF in the Previous Block Address field indicates that the block is the first block in the chain. A value of 0xFFFFFFFF in the Next Block Address field indicates that the block is the last block in the chain. NOTE: The Root Block of the B-Tree is the only block which will have 0xFFFFFFFF in both fields.

There are four types of blocks that may comprise a B-Tree: 1) Non-Leaf Variable Key Size, 2) Non-Leaf Variable Key Size With Counts, 3) Non-Leaf Fixed Key Size, and 4) Leaf. The structure of elements within a block depend on whether the block is a leaf block or a non-leaf block. These are described in the following sections.

5.1 Non-Leaf Variable Key Size Blocks

Non-leaf variable key size blocks are used primarily in index B-Trees. Versions of FLAIM prior to 4.0 also used them in container B-Trees. The elements in this type of block have a key portion and an optional domain number. When this type of block is used in a container B-Tree, the key portion of its elements is a DRN. The domain number is only present in index B-Trees, but even there it is optional. If present, the domain number defines the lower bound DRN number for the key within the child block the element points to. The lower bound DRN number is calculated by multiplying the domain number by 256. This number essentially gives a more refined key so that FLAIM can quickly position to the proper element within a key's reference set when inserting or deleting DRNs. This is particularly useful for positioning within very large reference sets. If the domain number is NOT present, the lower bound DRN for the child block is assumed to be zero.

The structure of a non-leaf variable key size element is as follows:

Byte(s)
Bit(s)
Description

0
0 (0x80)
Domain Flag. If set, this bit indicates that a three byte domain number follows the key value.

1 (0x40)
Unused

2-3 (0x30)
High bits for key length. These should be concatenated to the key length (byte 1) to get the full key length - 10 bits worth.

4-7 (0x0F)
Previous key continuation count. This indicates the number of bytes from the previous element's key which are part of this element's key. This will ALWAYS be zero in the first element in a block.

1

Lower 8 bits of key length. Full key length is obtained by concatenating bits 2 and 3 from byte 0 as the high order bits. NOTE: For data records, since the key is always a DRN, the key length plus the previous key continuation count should ALWAYS add up to 4 bytes.

2-5

Child block address (little endian byte order). This contains the address of the child block this key points to in the B-Tree. All of the keys in the child block will be less than or equal to the key in this element. The key in the LAST element of the child block MUST MATCH the key in this element.

6

Key starts on sixth byte.

6 + Key Length

Three bytes containing the domain number will be stored after the key if the domain flag is set (byte 0, bit 0). Remember, domain number is only used in index B-Trees (see above).

Total length of a non-leaf variable key size element is 6 + key length if domain flag is NOT set. If the domain flag is set, total length is 6 + key length + 3.

5.2 Non-Leaf Variable Key Size With Counts Blocks

Non-leaf variable key size with counts blocks are used only in index B-Trees. They are only available in database versions 4.3 and greater. Elements in this type of block are very similar to the variable key size elements described in section 5.1. The only difference is that just prior to the key value, starting at byte #6, there is a 32 bit (four bytes) count value, which is the total number of references found in the sub-tree pointed to by this element. This means that the key value starts at byte #10. The structure of a non-leaf variable key size with counts element is as follows:

Byte(s)

Description

0-5

See description in section 5.1.

6-9
Reference count (little endian byte order). This is the count of references that are contained in the sub-tree pointed to by this element.

10
Key starts on tenth byte.

10 + Key Length
Three bytes containing the domain value will be stored after the key if the domain flag is set (byte 0, bit 0). As with non-leaf variable key size blocks (see section 5.1), domain number is only used in index B-Trees (see above).

Total length of a non-leaf variable key size with counts element is 10 + key length if domain flag is NOT set. If the domain flag is set, total length is 10 + key length + 3.

5.3 Non-Leaf Fixed Key Size Blocks

Non-leaf fixed key size blocks are used only for containers. Each element in the block is exactly eight bytes long. The fixed element size allows FLAIM to search for keys in the block using a binary search. This results in a significant performance improvement when searching down a B-Tree. When searching for a key in variable size blocks FLAIM is forced to scan the block sequentially. Each eight byte element is structured as follows:

Byte(s)

Description

0-3
Key value. This is always a DRN in big endian byte order.

4-7
Child block address (little endian byte order). This contains the address of the child block this element points to in the B-Tree. All of the keys in the child block will be less than or equal to the key in this element. The key in the LAST element of the child block MUST MATCH the key in this element.

5.4 Leaf Blocks

Leaf block elements are formatted the same for both index and container B-Trees. The elements in leaf blocks of a B-Tree have a key portion and a data portion. The maximum data portion space in any given element is 250 bytes.

For container B-Trees, the key portion holds the DRN for the record, and the data portion holds the data record identified by that DRN. If the data record is longer than 250 bytes, it will be stored in one or more continuation elements.

For index B-Trees, the key portion of an element contains the key value, and the data portion contains the reference set for the key.

The structure of leaf elements is as follows:

Byte(s)
Bit(s)
Description

0
0 (0x80)
First element bit. If set, this bit indicates that the element is the first element for a data record (only used in container B-Trees). If this bit is NOT set, the element is a continuation element.

1 (0x40)
Last element bit. If set, this bit indicates that the element is the last element for a data record (only used in container B-Trees).

2-3 (0x30)
High bits for key length. These should be concatenated to the key length (byte 1) to get the full key length - 10 bits worth.

4-7 (0x0F)
Previous key continuation count. This indicates the number of bytes from the previous element's key which are part of this element's key. This will ALWAYS be zero in the first element in a block.

1

Lower 8 bits of key length. Full key length is obtained by concatenating bits 1 and 2 from byte 0 as the high order bits. NOTE: For data records, since the key is always a DRN, the key length plus the previous key continuation count should ALWAYS add up to 4 bytes.

2

Length of data portion.

3

Key starts on third byte.

3 + Key Length

Data portion starts after the key.

Total length of a leaf element is 3 + key length + data portion length.

5.4.1 Next DRN Marker Element

The rightmost leaf block in a container B-Tree has a special element just before the last element. It is called the Next DRN Marker Element. This element is used to store the next DRN value that is to be used for the next record that is added to the container. The key for this element is always 0xFFFFFFFF, so it automatically stays in the rightmost block (which is why 0xFFFFFFFF is not a valid DRN). The data portion of the element contains the next DRN value. If all records are deleted from the container, the next DRN value is then stored in the logical file header for the container, and the last B-Tree block is deleted.

5.5 Rightmost Elements

The rightmost element is the last element of the last block at a given level in a B-Tree. Except for non-leaf fixed key size elements, the key length for these elements will always be zero. In addition, the rightmost element in the leaf level of the B- Tree will have a data portion length of zero. Thus, the length of the rightmost element for non-leaf variable key size blocks will always be 6 bytes, the length of the rightmost element for non-leaf variable key size with counts blocks will always be 10 bytes, and the length of the rightmost element for leaf blocks will always be 3 bytes.

6. Data Portion of Leaf Elements

The data portion of leaf elements is used to store one of two kinds of data, depending on whether the leaf block is in a container B-Tree or an index B-Tree. If it is a container B-Tree, the data portion of the element stores the data record that is identified by the DRN key. If it is an index B-Tree, the data portion of the element stores a reference set which is the list of DRNs that identify the records which contain the key. These are described in the following sections.

6.1 Data Record Structure

The data portion of a leaf element in the database records or data dictionary records logical file contains a series of variable length field operations. The first byte of each field operation may be used to determine the type of field operation and what follows. The field operations are described in the following sections.

6.1.1 Standard Field

This type is generally used to store fields whose value length is less than or equal to 63 bytes and whose field number is less than or equal to 255. The field must be a registered field (one that is defined in the data dictionary).

Byte 0 = 0yllllll

y
Field's relationship to previous field. If one, it is the previous field's child. If zero, it is the previous field's sibling.

llllll
Length of value portion of field.

Byte 1 = Field Number.

Byte 2 = Value starts here.

6.1.2 Open Field

This type is generally used to store fields whose value length is greater than 63 bytes or whose field number is greater than 255. The field must be a registered field (one that is defined in the data dictionary) or one of FLAIM's reserved field numbers (for records in the data dictionary itself).

Byte 0 = 1001yxfv

y
Field's relationship to previous field. If one, it is the previous field's child. If zero, it is the previous field's sibling.

x
Not used.

f
Flag indicating whether field number is one byte or two bytes. If set, two bytes are used, otherwise one is used.

v
Flag indicating whether one or two bytes is used to specify the value length. If set, two bytes are used, otherwise one is used.

Field Number. The field number comes immediately after byte zero. Field number will be two bytes if the 'f' bit is set in byte 0 (see above), one byte if not set.

Value Length. The value length comes immediately after the field number. Value length will be two bytes if the 'v' bit is set in byte 0 (see above), one byte if not set.

Value. The value comes immediately after the value length.

6.1.3 Free Field

This type is used to store unregistered fields or reserved fields whose type is not TEXT. Note that reserved fields whose type is TEXT are stored as open fields (see section 6.1.2). This type could also be used to store registered fields, but it is never used for that purpose.

Byte 0 = 1000yxfv

y
Field's relationship to previous field. If one, it is the previous field's child. If zero, it is the previous field's sibling.

x
Not used.

f
Flag indicating whether field number is one byte or two bytes. If set, two bytes are used, otherwise one is used.

v
Flag indicating whether one or two bytes is used to specify the value length. If set, two bytes are used, otherwise one is used.

Byte 1 = ggggtttt

gggg

Unused.

tttt
Field type. It may be one of the following:

0 = TEXT

1 = NUMBER

2 = BINARY

3 = CONTEXT

8 = BLOB

Field Number. The field number comes immediately after the field type. Field number will be two bytes if the 'f' bit is set in byte 0 (see above), one byte if not set. Before storing the field number, the high bit (0x8000) is toggled. If it was set, it will be unset. If it was not set, it will be set. Thus, to get the true field number, the high bit must be toggled again upon retrieval. By toggling the high bit, we get the effect of reducing the space needed to store the first 255 unregistered field numbers (0x8001 through 0x80FF). Because the high bit is toggled off, these 255 field numbers can be stored as a single byte.

Value Length. The value length comes immediately after the field number. Value length will be two bytes if the 'v' bit is set in byte 0 (see above), one byte if not set.

Value. The value comes immediately after the value length.

6.1.4 No Value Field

This type is used to store fields which have no value.

Byte 0 = 10101yf0

y
Field's relationship to previous field. If one, it is the previous field's child. If zero, it is the previous field's sibling.

f
Flag indicating whether field number is one byte or two bytes. If set, two bytes are used, otherwise one is used.

Field Number. The field number comes immediately after byte zero. Field number will be two bytes if the 'f' bit is set in byte 0 (see above), one byte if not set.

6.1.5 Set Field Level

This type does NOT contain field data. It is a special type that is used to store the relationship between the prior field and the next field. When two contiguous fields are siblings or the first field is the parent of the second field, a single bit in byte 0 (the ‘y’ bit) of the second field specifies that relationship (y=1 means the 2nd field is a child to the first, y=0 means the 2nd field is a sibling to the first). When the relationship is neither child nor sibling, the Set Field Level type is used. It is only used to jump back up a certain number of levels in the record.

The Set Field Level type specifies the number of levels between the previous field and the next field. This type can only specify a maximum of 7 levels. If there is a larger jump, the Set Field Level type will appear multiple times in a row.

Byte 0 = 10100nnn

nnn
Number of levels difference between prior and next field.

6.1.6 Field Value Formats

Each of the data types (text, binary, number, context, BLOB) has a storage format. These are described in the following sections.

6.1.6.1 Text Storage Format

The text format is a sequence of character objects. Each character object is one or more bytes of data that represents a single character. The type of character object is determined by the bit pattern in the first byte of the object. The types of character objects are as follows:

ASCII Character. This is a single byte object, where the bits in the byte are as follows:

0ccccccc

High bit is zero, remaining seven bits (ccccccc) is the ASCII character. This type is used for all Unicode characters whose character set is zero and whose character is 0x20 (space) through 127. It is also used when putting “native” text into the database if the character is between 0x20 and 127.

White Space. This is a single byte object used to represent certain “white space” characters. It is a relic from prior versions of FLAIM, and technically is not really needed. In future versions of FLAIM, its use will be phased out. It is currently only used when putting “native” text into the database, and is only used for tab (0x9), linefeed (0xA), and carriage return(0xD). The bits in the byte are as follows:

110ccccc

The lower five bits contain the white space character, which is always one of the following:

0x7
Carriage Return (Will be converted to 0xD coming out)

0xC
Tab (Will be converted to 0x9 coming out)

0xD
Linefeed (Will be converted to 0xA coming out)

Unknown Type. This is a two byte object used to represent “native” characters below 0x20. Like the white space object, this object is also a relic from prior versions of FLAIM, and technically is not really needed. In future versions of FLAIM, its use will be phased out. It is only used when putting “native” text into the database. The bytes are as follows:

11110nnn

The lower three bits contain type of the second byte. Currently, only a value of 0x2 is used, which means that the second byte is a “native” character below 0x20, except for 0x9, 0xA, and 0xD, which are represented as a White Space type (see above).

Byte 2. The “native” character below 0x20.

OEM (Native) Character. This is a two byte object that represents a native (OEM) character above 127. This is only used when putting “native” text into the database. Presumably, the character is associated with some machine’s code page, which would be needed to properly convert it out to Unicode. However, the code page is not preserved in FLAIM. Furthermore, in future versions of FLAIM, it is likely that storing of “native” text will no longer be supported. Hence, this type will be phased out. The two bytes for this type are as follows:

First Byte = 11101001 (0xE9)

This byte is a special code to indicate that the following byte is an “native” (OEM) character.

Byte 2. The “native” character above 127.

Two-Byte WordPerfect Character. This is a two byte object that represents a WordPerfect character that must be converted to the corresponding Unicode character. The two bytes are as follows:

First Byte = 10cccccc

The lower six bits is the WordPerfect character set.

Second Byte = WordPerfect Character.

Three-Byte WordPerfect Character. This is a three byte object that represents a WordPerfect character that must be converted to the corresponding Unicode character. The three bytes are as follows:

First Byte = 11101000 (0xE8)

This special code indicates that the next two bytes are a WordPerfect Character.

Second Byte = WordPerfect Character Set.

Third Byte = WordPerfect Character.

Three-Byte Unicode Character. This is a three byte object that represents a Unicode character. This is used for Unicode characters that cannot be converted to a WordPerfect character. The three bytes are as follows:

First Byte = 11101010 (0xEA)

This special code indicates that the next two bytes are a Unicode Character.

Second Byte = High byte of Unicode character.

Third Byte = Low byte of Unicode character.

6.1.6.2 Number Storage Format

Numbers are stored in a BCD (binary coded decimal) format. If the number is a negative number, the first nibble will be a 0xB. Each nibble that follows represents a base-10 digit of the number. If there is an odd number of nibbles, the last nibble will be a 0xF, to indicate that the number is terminated. The following examples illustrate:

-1
stored as:
0xB1

-10
stored as:
0xB1,0x0F

175
stored as:
0x17,0x5F

1573
stored as:
0x15,0x73

6.1.6.3 Binary Storage Format

Binary fields are stored exactly as they are handed in to FLAIM by the application.

6.1.6.4 Context Storage Format

This section refers to context fields that have a DRN value. The DRN value is always stored as a four byte value in little-endian byte order.

6.1.6.5 BLOB Storage Format

A BLOB field is formatted as follows:

Byte 0

This is the version of the BLOB format. Currently set to 28.

Byte 1
This is the BLOB storage type. A value of 0x04 means it is an unowned external BLOB - i.e., the data is stored in a file that FLAIM does not manage. A value of 0x14 means it is an owned external BLOB - i.e., the data is stored in a file that FLAIM manages. The file will be deleted when the field is deleted.

Bytes 2,3
Flags. 0x10 = Owned referenced BLOB. 0x1000 = Unowned referenced BLOB.

Bytes 4-27
Currently all zero.

Byte 28
Character set used for file name. 1=ANSI, 2=UNICODE.

Byte 29
Length of file name in bytes.

Byte 30
File name begins here.

6.2 Reference Set Structure

The data portion of a leaf element in an index B-Tree is a portion of the reference set for the key. Much of the structure of the reference relies on the usage of SENs (simple encoded numbers). This is described in the following section.

6.2.1 SEN (Simple Encoded Number) Format

The SEN Format is designed to represent up to 36 bit integer numbers in as few bytes as possible. Numbers may take anywhere from one to 5 bytes. The SEN format has been deliberately designed so that it can ALWAYS be distinguished from a set of special escape codes mentioned that are used in the reference set format. These special escape codes always have a hex F in the first nibble. The first nibble of a SEN will never be a hex F.

The various number ranges which can be represented in SEN format are as follows:

1 Byte - 0nnnnnnn (up to 7 bit numbers)

This represents a number between 0 and 127 (0x7F).

2 Bytes - 10nnnnnn nnnnnnnn (up to 14 bit numbers)

This represents a number between 0 and 16383 (0x3FFF).

3 Bytes - 1100nnnn nnnnnnnn nnnnnnnn (up to 20 bit numbers)

This represents a number between 0 and 1048575 (0xFFFFF).

4 Bytes - 1101nnnn nnnnnnnn nnnnnnnn nnnnnnnn (up to 28 bit numbers)

This represents a number between 0 and 268435455 (0xFFFFFFF).

5 Bytes - 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn (up to 36 bit numbers)

This represents a number between 0 and 0xFFFFFFFFF.

6.2.2 Reference Set Format

The data portion of a leaf element in an index B-Tree is structured as follows:

Element Domain Number (optional)

The Element Domain Number is optional, but if present will ALWAYS be at the beginning of the element's data portion. The presence of the Element Domain Number is signaled by a 0xFC in byte 0 of the element's data portion. The 0xFC byte is followed by the domain number in SEN format (see section 6.2.1). This number defines the lower bounds domain for the element. This number, when multiplied by 256, gives the lowest DRN number which can be added to the element's record portion. If the Element Domain Number is not present, the lower bounds domain is assumed to be zero.

Base DRN Number

The Base DRN Number is the highest DRN number in the element's record portion. Unless there is an Element Domain Number (as signaled by a 0xFC in byte 0), the Base DRN Number will be at byte 0 of the element's data portion. Otherwise, it immediately follows the Element Domain Number. The base DRN number is in SEN format (see section 6.2.1).

Delta Numbers

The Base DRN Number is followed by a series of values that are used to generate a sequence of DRN numbers based on the Base DRN Number. The algorithm for expanding delta numbers into a sequence of DRN numbers is to traverse the delta numbers and successively subtract one or more values from the previous DRN number to get the next DRN number. The Base DRN Number is the starting DRN to subtract from. The delta numbers are as follows:

0xF0 through 0xF7

These numbers specify a one run. Upon encountering one of these numbers, the DRN generation algorithm will iteratively subtract one from the previous DRN number up to 'n' times to produce up to 'n' new DRN numbers. The number 0xF0 specifies a one run where 'n' is 2, 0xF1 specifies a one run where 'n' is 3, 0xF2 specifies a one run where 'n' is 4, etc. -- 0xF7 specifies a one run where 'n' is 9.

0xF8

This number specifies a one run where 'n' is greater than 9. The 'n' value is specified in a SEN Number (see section 6.2.1) which follows the 0xF8.

Single Delta Number

A Single Delta Number is a number represented in SEN format (see section 6.2.1). Upon encountering a Single Delta Number, the DRN generation algorithm will subtract the value from the previous DRN to produce a single new DRN number.

7. Index Key Structure

Index keys are composed of data from one or more fields as specified in the index definition. Keys are formatted so that they can be compared and sorted using a simple left-to-right byte-for-byte comparison (a memcmp). Depending on the indexing options, keys may or may not be able to generate the original field data from which they were created.

7.1 Compound Markers

If the index is defined as a compound index then each index piece is separated by a compound marker, which is a value of 0x02. An index with only one field has a single index piece and no compound markers. Each index piece is formatted according to one of the following formats: binary, context, field ID, numeric, and text.

7.2 Truncated Pieces

A binary or text piece may be truncated if a limit has been specified for that piece. To indicate that a binary or text piece has been truncated, FLAIM appends a value of 0x0C. NOTE: In Asian indexes, if a text piece is truncated, a two byte value is appended: 0x00, 0x0C.

7.3 Valueless Pieces

In a single-field index (non-compound), if a field is present in a record, but it has no value, FLAIM will create a key with a single byte value of 0x03. If the index is an Asian index on a text field, the key will be two bytes: 0x00,0x03.

In a compound index, if a field is present in a record, but it has no value, that piece of the index will be empty - zero bytes of data. This will also be the case for optional fields which are not even present in the record. Thus, in a compound index, it is not possible to tell the difference between a field that is not present and a field that is present but has no value.

7.4 First Substring Pieces

In a sub-string text piece, the first sub-string created from the text field is specially marked. A value of 0x03 is appended to the text piece to indicate it is the first sub-string. In Asian indexes, a two-byte value will be appended: 0x00,0x03.

As an example, consider a text field whose value is SMILE. It will generate the following sub-string keys in a sub-string index:

SMILE, MILE, ILE, LE

The sub-string SMILE is the “first” sub-string, and will be marked with the 0x03 value to so indicate.

Note that if the sub-string is also truncated, the truncation value (0x0C) described above in section 7.2 will be appended after the 0x03 value.

7.5 Binary Index Piece

The output for a binary index piece is two bytes for every one byte of original binary data. Each nibble of a binary character is added to COLLS (0x20) and output as a byte. For example, the binary value 0x5a would collate to the two bytes 0x25 and 0x2a. The reason for the expansion is that we need to be able to parse for a compound marker within a compound key. If the binary index piece just contained the original binary values it would be impossible to know if you were looking at a compound marker or a binary value of 0x02.

7.6 Context Index Piece

A context index piece contains a DRN pointer to another record. The format for this piece is a 0x1F prefix byte followed by four bytes containing the DRN pointer value in high‑low byte order (big endian). For example, the value 786 (decimal) would be the following five bytes (shown in hex):

1F 00 00 03 12

7.7 Field ID Index Piece

The field ID piece contains the field number of a specified field. The format is a 0x1E prefix byte followed by two bytes containing the tag number in high‑low byte order (big endian). For example, the field number 831 would be the following three bytes (shown in hex):

1E 03 3F

7.8 Numeric Index Piece

The first byte of a numeric index piece contains the sign and digit count.

Bit 0 (0x80)
Sign bit - zero is negative and one is positive. This causes all positive numbers to sort after the negative numbers.

Bits 1-7 (0x7F)
Bias 63 value of the digit count. 1 digit=0x40, 2 digit=0x41. For negative numbers, this value is XORed with zero. For positive numbers, this causes numbers with lower number of digits to sort before numbers with higher number of digits. For negative numbers, because the value is XORed with zero, it will cause numbers with higher number of digits to sort before numbers with lower number of digits.

The bytes that follow contain each numeric BCD value (a nibble) plus 5 so that it will not conflict with the compound marker (0x02). If the entire value is negative each BCD value (a nibble) is subtracted from 9 so that negative values will sort in the correct order. A value of 5 is added to each nibble so it will not conflict with the compound marker. If there is an extra nibble at the end then a high nibble (0x0F) will be stored. For example: 1 = [0xC0 0x6F], 20 = [0xC1 0x75], 300 = [0xC2 0x85 0x5F], -1 = [0x3F 0xDF].

7.9 Text Index Piece

A text index piece is formatted so that when two text pieces are compared, there is, in effect, a three stage comparison going on. In other words, the formatting allows FLAIM in a single pass to accomplish three logical passes. The first pass only compares collation values corresponding to each character. The second pass compares sub‑collated values for each character. Sub‑collating values consist of diacritics, OEM character values and characters that do not have collation values. The third pass compares lower and upper case information. Each text index piece contains collation, sub‑collation and lower/upper case data. Sub-collation and case information may be compressed out.

7.9.1 Tables for Mapping Characters to Collation Values

The following tables show how characters are mapped to a collation value.

MACRO DEFINITION

START OF COLLATION RANGE

DESCRIPTION

COLLS
32
Space

COLS1
41
Quotes

COLS2
46
Parentheses

COLS3
52
Money Symbols

COLS4
58
Math Operators

COLS5
66
More Math Operators

COLS6
80
Other Symbols: %#&@_|~

COLS7
93
Greek

COLS8
118
Numbers

COLS9
128
Alphabet (A-Z,a-z)

COLS10
188
Cyrillic, Hebrew and Arabic

COLS11
235
End of List

COLSOEM
254
OEM Character >= 127

COLS0
255
Characters that do not have a collating value

For reference reasons, the table below contains a mapping of the alphabet to each letters' collating value. This could be useful during debugging. This table does not include all of the diacritic combinations for different languages. For accurate information on each diacritic collation value see the collation state table in the collation code.

COLLATED VALUE
CHARACTER

0x80
A

0x82
B

0x83
C

0x86
D

0x87
E

0x88
F

0x89
G

0x8A
H

0x8C
I

0x8E
J

0x8F
K

0x90
L

0x92
M

0x93
N

0x95
O

0x97
P

0x98
Q

0x99
R

0x9B
S

0x9D
T

0x9E
U

0x9F
V

0xA0
W

0xA1
X

0xA2
Y

0xA3
Z

7.9.2 Sub-Collation Format

The sub‑collation area is prefixed by a 0x07 byte value. If there is not any sub-collation information, the case information may come next (see section 7.9.3). In order to parse through the sub‑collation area the count of collation bytes, stored before the 0x07 code, must be known. For each and every collation character one of the following bit codes will appear:

0
No sub‑collation information for the corresponding collation byte.

10
Take the next 5 bits and the corresponding collation byte to compute the diacritic character or digraph. For Japanese the value of the 5 bits defines a table position of an original symbol.

110
Align to the next byte and the next two bytes (little endian) contain the character value or the OEM character value. The OEM character set is zero. This is used for characters that have no collation value from the collation table.

1110
Align to the next byte and the next two bytes (low-high) contain the Hebrew or Arabic ‘insert’ character. NOTE: This sub-collation value will NOT correspond to a collation value in the text because it is an ‘insert’ character.

11110
Align to the next byte and the next two bytes (little endian) contain a Unicode character. This is used to preserve a Unicode character that cannot be mapped to a WordPerfect character. The collation value for such a Unicode character will be 0xFF.

7.9.3 Case Information

The lower/upper case area is prefixed by one of the following byte codes:

0x04
All characters in the collation area are lowercase. For Greek, Icelandic and Danish, the 0x04 indicates that all characters in the collation area are uppercase.

0x05
This indicates that there is mixed case for the characters in the collation area. Following the 0x05 is a sequence of bytes whose bits indicate the case for each character in the collation area - one bit per character. Bits in a byte correspond to characters starting from the high order bit (0x80) and going to the low order bit (0x01). Note that the last byte in the sequence may not have all bits used. A bit is set if the corresponding character in the collation area is upper case. This causes upper case to sort after lower case. For the Greek, Icelandic, and Danish languages the bit is set if the corresponding character is lower case, because in those languages they want lower case to sort after upper case.

0x06
All characters in the collation area are uppercase. For Greek, Icelandic and Danish, the 0x06 indicates that all characters in the collation area are lowercase.

7.9.4 Post Compound Indexes

The post compound indexes save all case bits from every text field and append to the end of the key - causing case to be considered last when doing comparisons of keys containing text pieces. Each field in a post compound index key is separated by a 0x02 byte value. The post case information is prefixed by a 0x01 byte value. The lower/upper text index pieces that were made are then appended end to end. Each piece keeps its original byte alignment. The last byte of the post compound index key contains the number of bytes that are in the post case section. This value does not include the last byte itself.

7.9.5 Language

Every index in a FLAIM database has an associated language. The index definition can specify a language, or the default language for the database can be used. The language of an index does not dictate what characters can be stored in the index. All Unicode characters can always be stored, regardless of index language. The primary purpose of the language specification is to determine a sort order for characters in the index. However, FLAIM also assumes that the language indicates what set of characters will be most commonly stored and searched. Hence, when Japanese is specified, FLAIM assumes that most characters will probably be Japanese characters, which probably means a significant number of kanjis will be stored.

Based on the assumption that language gives a clue as to what characters will be stored and searched most often, FLAIM uses language to make determinations about what key format might be most optimal for text pieces. This is primarily manifested in the fact that a two-byte collation format is used for the Asian languages (see section 7.9.6 for more information).

7.9.6 Two-Byte Collation Values (Asian Languages)

The collation part of a text index piece normally stores one collation byte per character. This allows for 255 unique collation values. Obviously, the number of Unicode characters exceeds 255. Hence, it is not possible to have a unique collation value for every Unicode character. For non-Asian indexes this problem is handled in one of two ways:

1)
In some cases, the same collation value is used for multiple characters. This is generally done for characters with diacritics. Diacritics information is stored in the sub-collation area. Thus, to determine the actual character, both the collation value and the sub-collation value must be retrieved.

2)
The collation value of 0xFF is a catch-all collation value for characters which need to be collated after all other characters. When this collation value is used, the actual character is stored in the sub-collation area. Characters stored in this manner include kanjis from the Asian languages (Japanese, Korean, Chinese) and an assortment of other Unicode characters whose usage may be somewhat rare.

This latter technique causes kanjis and the other special characters to sort after all other characters, which is entirely adequate as far as sort order goes. However, it creates a problem for doing efficient sub-string searching on such characters if much of the database consists of those characters - such as a database that has mostly Japanese kanjis stored. The search key generated by FLAIM for sub-string searches cannot include a sub-collation part, only a collation part. Since all kanji characters will have the same collation value (0xFF), a search key for a sub-string containing kanjis will be a sequence of 0xFF bytes. This is not a very good search key, because it is likely to span a significant chunk of the index - if not the entire index. Search performance will be poor in such cases.

To help with this problem, FLAIM utilizes a two-byte collation format when the language for the index is one of the Asian languages (Japanese, Korean, Chinese). Recall that the specification of a language for an index does not dictate what characters can be stored in the index. All Unicode characters can always be stored, regardless of index language. The primary purpose of the language specification is to determine a sort order for characters in the index. However, FLAIM also uses language as a clue for what characters will be mostly stored and searched (see section 7.9.5). In the case of the Asian languages, FLAIM elects to use two-byte collation values - thus allowing kanjis and other special characters to have their own collation value. The following sections describe the character sets and how they are handled in Asian languages.

ASCII (below 127), Latin, Greek, Cyrillic. The first byte of the two-byte collation value will be a zero, and the second byte will be the same collation value that is used for non-Asian languages. Latin, Greek, and Cyrillic are sometimes called hankaku characters.

Katakana. This character set may contain two character value voicing marks: dakuten and handakuten. These voicing marks may or may not be combined with other katakana characters to form kankaku characters (see below). The first byte of the two-byte collation value will be a one, and the second byte will be a value assigned to each katakana character.

Hiragana. Each hiragana character maps one for one to a matching katakana character. Both hiragana and katakana represent the same character meanings but the display is different. As with katakana, the first byte of the two-byte collation value will be a one, and the second byte will be a value assigned to each hiragana character.

Kanji. The two-byte collation value is the Kanji character itself.

Collation Markers. Collation markers are values that mark the end and start of a new section in an index text piece. Markers include subcollation (7), case information (4,5,6) and end of text piece (2). In Asian languages, these markers will be two bytes. The high byte will always be zero. Note that the 2 marker is used to separate compound pieces. It is only two bytes when it terminates a text piece. When terminating a non-text piece, it will still be one byte.

Subcollation. Subcollation values may be voicings for katakana and hiragana characters, or the position in a table for some characters. If a character does not have a collation value then the original character will be stored as the sub-collation value. The following are the subcollation bits for katakana and hiragana characters:

100b

handakuten - half voiced

010b

dakuten - voiced

001b

set if a large character

000b

value of a small character without a voice

Case Bits. The case information is extended to two bits for each collation value. If the collation represents a character in the Latin/Greek/Cyrillic range the first bit is set if the character should converted to be a double wide (kankaku) character. The second bit is set if the character is not a lower case value.

7.9.7 Hebrew and Arabic Sorting

Hebrew and Arabic will sort over the collation values of Cyrillic if the language is Hebrew, Arabic, Farsi or Urdu.

The subcollation format is extended to handle these languages. These languages have accents defined that can be combined with most of the base characters. These accents should be ignored during the first pass of the sort and not even represented in the collation portion of the string. This can cause problems with the subcollation area. There is a bit code of 1110 to mean that the next aligned word value should be inserted into the Unicode string at the current position. This means that the subcollation information could have more values than the collation section. The code that reconstructs the original Unicode string will move the remaining characters down and insert the accent character at the current location in the string.

As was noted above, there is not a one-for-one correspondence between collation values and the number of bit-code sequences in the subcollation area. This is because accent characters could follow the last character that has a collation value. Therefore, these languages must always have an extra 1 bit zero to terminate the subcollation area so that the code which constructs the original Unicode string will know when it is at the end of the subcollation area.

Packet

Packet

Packet

Packet

Packet

Header

8 Bytes

Body

Variable Length

Header

(512 Bytes)

Position	Level

1		0	Employee

2		1		Address

3		2			City	"Provo"

4		2			State	"Utah"

4		1		Name

6		2			First	"John"

7		2			Last	"Doe"

