Apache UIMA Ruta™ Guide and Reference

Written and maintained by the Apache UIMA Development Community

Version 3.2.0



Copyright © 2011, 2022 The Apache Software Foundation

Licenseand Disclaimer.  The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks.  All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date June, 2022



http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Apache UIMA RULB OVEIVIEIW .....coooiiieieee e 1
1.1. What is APache UIMA RULA? ......uiiieiiiieieiiiie et e e et e e e e e e e 1
D T T o I = T4 1< o [P P PP PPPPPPPRPRP 1
G T 0o (N o]0 o £ T PP PO PP PPPPPTPRPPIN 1
1.4. Learning DY EXAMPIE ......oi i 3
1.5. UIMA ANalYSIS ENQINES ....vuuiiiieiiiieiie et e e e e e e e n e e e e eaaes 12

151 RULB ENGING ..ottt e e e e eanees 12
1.5.2. ANNOLELION WIITEY ..ooeiiiiiiiiiiiiiiiiiiii e 20
1.5.3. Plain TEXt ANNOLBION ......vvvvrveiereiiiiiiiiiiiiitieteaebebebeeeeeaeeeeeaeeebebeeeeeeeeeeeeeneeee 21
03 S 1 oo [ 1= 21
155, HTML ANNOBLON ....cvvvriiiieeeiieeeitis e 22
1.5.6. HTML CONVEITET ....oiieeiiieiiiie e e e e e e e e e e e e e e e e e e e eennnes 22
1.5.7. StYI€ M@D CIEBION ...uuveuiieiiieeieiiiiiieiiteieteteteteeeeeeebebebebeeeeseebeeeeeseenenrneenenees 24
0L TR 1 1 = 24
15,9, VIBW WIITEE oo 25
1520 XM WWEIEEE <o e 25

2. Apache UIMA RULE LANQUBJE .....uvuunieeiiiieeiiiiiee e e e e eeeiti e s e e e e eeebtbi e s e e e e eesanaaneaeaaaeenes 27
N TSV 4 - PRSPPI 27
2.2. Rule elements and their matching Order ...........ccoovvviiiiiiiiei e 29
2.3. Basic annotations and tOKENS ..........uuuuiiiiiiiiiiiiii et aeeeeees 31
A @ U= 0 1) 1= RPN 32

A TS - € (== |V 33
P RS v gl = (= [ o - o | 33
24.3. 4 PIUS GrEEAY ...vvueieie et e e 33
244, +?2 PluS REIUCTANT ....oovviiiiiiiiiiiiii 33
2.4.5. 2 QUESLION GrEEAY ... 33
2.4.6. 7?2 QUESHION REIUCTANT .....vuvniieeiiiiiiiii et 34
2.4.7. [X,Y] MiNn MaX GIEEAY ....ccevvuriiiieieieeieet e e e et s e e e e e et e aeeeeeeees 34
2.4.8. [x,y]? Min Max RelUCtant ... 34
2.5, DECIAIAIONS ...ccevei e e 34
A T T Y/ o= S PP 34
2.5.2. VaABDIES ... 35
2.5.3. RESOUICES ....eviiiii ettt ettt e et e e e e e et e e e e et e e ea e e ean s 35
R S o ] o L= PRTURR 36
2.5.5, COMPONENES ...eetiieeiii e e e e e e e e e e et e e e e et e e e e eranes 36
2.6, EXPIrESSIONS ...coeeiiieiiieieie ittt ettt ettt ettt ettt ettt ettt ettt ettt ettt e ettt et et e teeeeeeeeeaeeees 37
2.6.1. TYPE EXPIrESSIONS ...uuuuiieeiieeeiiiiie e e e e et ettt e e e e e e e e ettt s e e e e e e e eeaneaaeeeeeeeeenes 37
2.6.2. ANNOLatioN EXPrESSIONS ....vvuuiieeieieeeiiiie s e e e e e e eeetts e s e e e e e e e et s e e e e e e eanennnns 38
2.6.3. NUMDEr EXPIrESSIONS ... s 38
2.6.4. SUNG EXPIrESSIONS ..uuiieiiieieiiiiiis e e e e ettt e e e e e e ettt s e e e e e e e eeenean e e eeeeeeeees 39
2.6.5. BOOIEAN EXPrESSIONS ....ceievvieieieieeeeeeeeiiiiis e e e e e eeeeastanssseeeeeeeassnnnnneeaaeaeennes 39
2.6.6. LiSt EXPIrESSIONS ...coeieieeeeee e 40
2.6.7. FEAUIE EXPIESSIONS ....cceiii ettt 41
2.7, CONAITIONS ...t 41
270 AFTER et b b 41
272 AND oo 42
2.7.3. BEFORE ..ottt 42
274, CONTAINS ..ottt ettt ettt et be bt bbbt bb bbbt bbbebebebenees 42
2.7.5. CONTEXTCOUNT ..coitiiiiiiiiiiieieie ettt ettt 43
2.7.6. COUNT Lottt a4
2.7.7. CURRENTCOUNT ...ootiiiiiiiiitiiie ettt a4

Apache UIMA Ruta™ Guide and Reference iii



Apache UIMA Ruta™ Guide and Reference

2.7.8. ENDSWITH .ot e e e s e s s e e e aaa s 45
2.7.9. FEATURE ..ot 45
2 50 T 1 45
2 0 T T 1 N 1 N 46
A O R 1 T 46
N 5 T 1 1 T 46
A A Y 1@ | N 47
2.7.05. NEAR oot 47
A A5 T 1L 47
N A A © | = 48
2.7.08. PARSE ..o e 48
A N R T = AN = O | 48
2.7.20. PARTOFNEQ ...ouuuiiiiiiiiiiicie ettt e e e ettt e e e e e e eeens 49
A g T = O 1 N N [ N 49
2.7.22. REGEXP ...ttt 50
2.7.23. SCORE ... 50
27248, SIZE ..o 50
2.7.25. STARTSWITH .oontiiiiiieeee et e e e sraaa e e e eaans 51
2.7.26. TOTALCOUNT .ottt e e e e e e et e e e e e e ees 51
A A Y © 1 I 51
b2 S I AN o o 1 52
2.8.1. ADD oo 52
2.8.2. ADDFILTERTY PE ..ottt e e e et e e ees 52
2.8.3. ADDRETAINTYPE ... oottt e e ereaa e 52
2.8.4. ASSIGN .o 53
2.8 5, CALL it 53
2.8.6. CLEAR .o 54
R T A O 0 I @ = 54
2.8.8. CONFIGURE ......coniiiiiii et a s 54
2.8.9. CREATE ..ot e e e e e e e e e 55
P28 T 1O I T 55
2.8.11. DYNAMICANCHORING .....cotiiiiiieeeeeeee e 55
2.8.02. EXEC .. 56
208 T G T 1 I N 56
2.8.14. FILTERTY PE ..ottt eaaas 57
2.8.15. GATHER ..o e e e e 57
P28 T 1 T 58
2.8.17. GETFEATURE ..ot e e e aas 58
P T T 1 Y 1 58
2.8.19. GREEDYANCHORING ......ouiiiiiiiicieeie et eaaas 59
2.8.20. LOG .. ittt 59
2.8.21. MARK e 60
2.8.22. MARKFAST ..o e e e eees 60
2.8.23. MARKFIRST ...ttt e e e e e e e e e s eabaeees 61
2.8. 24, MA RK LA ST o 61
2.8.25. MARKONGCE ......cotniiiiie e e e e 61
2.8.26. MARKSCORE .......ciiiiiiiiii e et e e et e e s et essaab e eaens 62
2.8.27. MARKTABLE ...t e e e e 62
2.8.28. MATCHEDTEXT ..ottt e e e e e e e e eens 63
2.8.29. MERGE ... oot 63
2.8.30. REMOVE ...t e et e e e e 63
2.8.31. REMOVEDUPLICATE ..ottt r e e 64
2.8.32. REMOVEFILTERTYPE ...t 64

Apache UIMA Ruta™ Guide and Reference UIMA RutaVersion 3.2.0



Apache UIMA Ruta™ Guide and Reference

2.8.33. REMOVERETAINTYPE .....itiiiiiiiiiiiiiiiiiiiiiiiiieieiiieieieneieieeeeeeeeeneeenenenenee 64
2.8.34. REPLACE .....cciiiiiiiiiieiiitie ettt 65
2.8.35. RETAINTYPE ...ooiiiiiiiiiiiitieieie ettt e e e e eeeeeees 65
2.8.36. SETFEATURE ......otitiiiiiiiiiiiititiiiiieietebebebe bbb bebeeeeeeenee 65
28,37, SHIFT e 66
PTG < S I 66
2.8.39. TRANSFER .....cooiiiiiiiiiiiiiiii 67
2840. TRIE ..o 67
2841 TRIM Lo 68
2.8.42. UNMARK ...ooiiiieieieie ettt ettt ettt e e e e e e eeeeeeeeeeeees 68
2.8.43. UNMARKALL ...etiiiiiiiiitititi s 69

2.9. Robust extraction using filtering .........cccoeeeiiiiiiiiiii e 69
220 0 IOV o (0= o I 70
228 NI © o 1 o = 1 = (oo 71
2.12. LabhEl EXPIrESSIONS ...vvvuiiieeeieeeieiiee e e e e e e ettt e e e e e e e et e e e e e e e et a e e e e eaa 71
203, BIOCKS ..ottt e e e e e aaaeaaaa 71
2131 BLOCK ittt 71
2.13.2. FOREACH ...ttt s 74
204, INHNE TUIES ...vveiie e e e e e e e e e e e e et e e e e eaeaees 74
2.15. Macros for conditions and @CHIONS ...........ccevviiiiiiiiiiiiiiiiiiieeeee e 75
2.16. Heuristic extraction using SCOMNG FUIES ..........uuuiiiieeieiieeiiiie e eeeeeeie e e e eeeeaenns 76
225 g\ [T [ { o= 1o o SR 76
2.18. EXIEINGl FESOUICES ...cvvuiieeiii ettt et e e e e e e e e e e e et e e e e e 76
2.18.1 WORDLISTS .o 77
2.18.2. WORDTABLES .....uttitiiiiiiiiiiiiitiiiiibibibitebeb bbb eeeeeeeeeesenenenees 78
2.19. Simple Rules based on Regular EXPreSSioNS ........cccuvvveiiieeeieeeiiiiiinnne e eeeeeeiiinns 78
2.20. Language EXTENSIONS ......uuueeiiieeeiiieeiiiies s e e e e et s e e e e e e e et s e e e e e e e eeanan e e e eeeees 79
2.20.1. Provided EXIENSIONS .....coooiiiiieeeeeeeeee e 79
2.20.2. Adding new Language EIements .............uuueuueumiiiimiiiiiiiiiiiiiiiieieiieeieenennnens 83
2.21. Internal indexing and FeINAEXING ......ooieeeiireeeiiiie e e e e e e e e e eeeeenee 84
2.21.1. Why additional indeXing? .........uuiiiiiieiiiieiiiiee e 84
2.21.2. How isit stored, created and updated? ..........ccoovvviiiiiiiieiiiieeee e 84
2.21.3. How to optimize the performance? ..........ccoovveeiivieiiiiiin e 85

3. Apache UIMA RuUta WOrkbenCh ..........ouuuiiiii e 87
G300 I 1 01 = = (o o SRR 87
3.2. UIMA Ruta Workbench OVENVIEW .........cocoiiiiiiiiiie e 88
I U 1 1 N = W o] = o £ 20
3.3.1. UIMA Ruta create project Wizard .........cooooeieieiiiiieieeeeee e 91

34, UIMA RULB PEISPECLIVE ..ottt e e aab e e e e aaees 93
341 ANNOLELION BIOWSES .....tiiitititiiiiitititiiitititibib e 93

B S < 1= o o] o [T 94

3.5. UIMA Ruta EXplain Perspective ...........ooeveiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 95
351 APPHE RUIES ...t e e e e e 95
3.5.2. Matched Rules and Failed RUIES ............ccoooviiiiiiiiiii 97
35.3. RUIE EIEBMENES ... .o 97
3.5.4. INlINEA RUIES ...ttt 98
3.5.5. COVENNG RUIES ....ccoeeeeiii e e e e e e e e e e e e e 98
B.5.6. RUIE LISt ettt e e e e aeeeaees 98
3B5.7. Created BY oo, 99
R S RS [ (] o PP PPPPPPPPPPPPPPPPP 99

3.6. UIMA Ruta CDE PErSpECHIVE ....coeviiiiiiiiiiiiiiiieeeeet ettt 100
3.6.1. CDE DOCUMENES VIEW .. cevviieiiiii i eeeii s e e et e e e et e e et e e e et e e e et e e e eannas 101
3.6.2. CDE CONSLIAINIS VIBW ......evieiiiiiiiiiiiiiieiebeieiebeiebebebebebeeeeeeeseeebeeeeeeeeeeeennee 101

UIMA RutaVersion 3.2.0 Apache UIMA Ruta™ Guide and Reference Y



Apache UIMA Ruta™ Guide and Reference

3.6.3. CDE RESUIT VIBW ...uuiiiiiiiiiiiiiiiiiiiiiitibbbibi bbb eeeeeeeeeee 101

3.7. RULA QUENY VIBW .eeeiieiieeeee ettt e e e e e et s e e e e e e e e a e e e e e 101
B8 TERING oo 102
381 USAR ...ttt 104
3.8.2. EVAIUALOIS ...cceiiiiiiiiii ittt 108

B9 TEXIRUIEY . 109
3.9.1. Included rule learning algorithms .............uoiiiiiiiiii e 109
3.9.2. The TEXIRUIES VIBW .....uiiiiiiiiiiiiiiiiiiiiiiiiiib bbb 111

3.10. CheCk ANNOLELIONS VIBW ....ccceiiiiiiiiiie e 112
3.11. Creation Of Tree WOrd LiStS .....ccoiieiiiiiiiiee e 114
3.12. Apply a UIMA Ruta script to afolder .......coooveeviieeiiiiiie e 115
4. Apache UIMA RUA HOWTOS ....ccoviiiiiiiieeiceeeiiis et e e e e e e e e e e 117
4.1. Apply UIMA Ruta AnalysisEngine in plain Java .........ccoooovviiviiiiiiiinieeeccceeiiiinn 117
4.2. Integrating UIMA Rutain an existing UIMA ANNOLator ...........coevvvveeiinieeereeenennnnnn 118
4.2.1. Adding Ruta to our ANNOLALOT ........vvuiieeeieeeeiiieie e eee e e e e e e 118
4.2.2. Developing Ruta rules and applying them from inside Javacode ................. 119

4.3. UIMA RUG MaVeN PlUGIN ....couuriiiiee e e e e e e ee e 119
A.3.1. QENEALE Ol .....oeeeeeeeii e 120
A.3.2. AW QOBL .. 122
G TG T 110117 o o = | RSP PUR 123

4.4. UIMA RUta MaVven ATCNELYPE .....cccvieeeiiee ettt e e 124
4.5. Induce rules with the TextRuler framework .................ueeeveviiueiiiiiiiiiiiiiiiieienens 124
4.6. HTML annotations in plain teXt .........coooiiiiiiiiiiii 125
4.7. Sorting files With UIMA RULA .........cceuueiieiie it e e e e e 125
4.8. Converting XML documents with UIMA RUta ........ccoooeeiiiiiiiiiiiieeeeeeeeee e 126

Vi

Apache UIMA Ruta™ Guide and Reference UIMA RutaVersion 3.2.0



Chapter 1. Apache UIMA Ruta Overview

1.1. What is Apache UIMA Ruta?

Apache UIMA Ruta™ is arule-based script language supported by Eclipse-based tooling.

The language is designed to enable rapid development of text processing applications within
Apache UIMA™. A special focus lies on the intuitive and flexible domain specific language for
defining patterns of annotations. Writing rules for information extraction or other text processing
applicationsis atedious process. The Eclipse-based tooling for UIMA Ruta, called the Apache
UIMA Ruta Workbench, was created to support the user and to facilitate every step when writing
UIMA Rutarules. Both the Rutarule language and the UIMA Ruta Workbench integrate smoothly
with Apache UIMA.

1.2. Getting started

This section gives a short roadmap how to read the documentation and gives some
recommendations how to start developing UIMA Ruta-based applications. This documentation
assumes that the reader knows about the core concepts of Apache UIMA. Knowledge of the
meaning and usage of theterms“ CAS’, “Feature Structure”, “Annotation”, “Type”, “Type
System” and “Analysis Engine” isrequired. Please refer to the documentation of Apache UIMA for
an introduction.

Unexperienced users that want to learn about UIMA Ruta can start with the next two sections:
Section 1.3, “Core Concepts’ [1] gives a short overview of the core ideas and features of the

UIMA Rutalanguage and Workbench. This section introduces the main concepts of the UIMA
Ruta language. It explains how UIMA Ruta rules are composed and applied, and discusses the
advantages of the UIMA Ruta system. The following Section 1.4, “Learning by Example’ [3]
approaches the UIMA Ruta language using a different perspective. Here, the language is introduced
by examples. Thefirst example starts with explaining how a simple rule looks like, and each
following example extends the syntax or semantics of the UIMA Ruta language. After the
consultation of these two sections, the reader is expected to have gained enough knowledge to start
writing her first UIMA Ruta-based application.

The UIMA Ruta Workbench was created to support the user and to facilitate the devel opment
process. It is strongly recommended to use this Eclipse-based IDE since it, for example,
automatically configures the component descriptors and provides editing support like syntax
checking. Section 3.1, “Installation” [87] describes how the UIMA Ruta Workbench is

installed. UIMA Rutarules can aso be applied on CAS without using the UIMA Ruta Workbench.
Section 4.1, “Apply UIMA Ruta Analysis Engine in plain Java’ [117] contains examples how

to execute UIMA Rutarulesin plain java. A good way to get started with UIMA Rutaisto play
around with an exemplary UIMA Ruta project, e.g., “ExampleProject” in the example-projects of
the UIMA Ruta source release. This UIMA Ruta project contains some simple rules for processing
citation metadata.

Chapter 2, Apache UIMA Ruta Language [27] and Chapter 3, Apache UIMA Ruta
Workbench [87] provide more detailed descriptions and can be referred to in order to gain
knowledge of specific parts of the UIMA Rutalanguage or the UIMA Ruta Workbench.

1.3. Core Concepts

The UIMA Rutalanguage is an imperative rule language extended with scripting elements. A
UIMA Rutarule defines a pattern of annotations with additional conditions. If this pattern applies,

Apache UIMA Ruta Overview 1



Core Concepts

then the actions of the rule are performed on the matched annotations. A ruleis composed of

a sequence of rule elements and a rule element essentially consist of four parts: A matching
condition, an optional quantifier, alist of conditions and alist of actions. The matching condition
istypically atype of an annotation by which the rule element matches on the covered text of

one of those annotations. The quantifier specifies, whether it is necessary that the rule element
successfully matches and how often the rule element may match. The list of conditions specifies
additional constraints that the matched text or annotations need to fulfill. Thelist of actions defines
the consequences of the rule and often creates new annotations or modifies existing annotations.
They are only applied if al rule elements of the rule have successfully matched. Examples for
UIMA Rutarules can be found in Section 1.4, “Learning by Example” [3].

When UIMA Rutarules are applied on a document, respectively on a CAS, then they are always
grouped in a script file. However, aUIMA Ruta script file does not only contain rules, but also
other statements. First of al, each script file starts with a package declaration followed by alist
of optional imports. Then, common statements like rules, type declarations or blocks build the
body and functionality of a script. Section 4.1, “Apply UIMA Ruta Analysis Enginein plain
Java’ [117] gives an example, how UIMA Ruta scripts can be applied in plain Java. UIMA

Ruta script files are naturally organized in UIMA Ruta projects, which is a concept of the UIMA
Ruta Workbench. The structure of a UIMA Ruta project is described in Section 3.3, “UIMA Ruta
Projects’ [90]

Theinference of UIMA Rutarules, that is the approach how the rules are applied, can be described
as imperative depth-first matching. In contrast to similar rule-based systems, UIMA Rutarules

are applied in the order they are defined in the script. The imperative execution of the matching
rules may have disadvantages, but also many advantages like an increased rate of development

or an easier explanation. The second main property of the UIMA Rutainference is the depth-first
matching. When a rule matches on a pattern of annotations, then an alternative is always tracked
until it has matched or failed before the next alternative is considered. The behavior of arule may
change, if it has already matched on an early alternative and thus has performed an action, which
influences some constraints of the rule. Examples, how UIMA Rutarules are applied, are givenin
Section 1.4, “Learning by Example” [3].

The UIMA Ruta language provides the possibility to approach an annotation problem in different
ways. Let us distinguish some approaches as an example. It iscommon in the UIMA Ruta language
to create many annotations of different types. These annotations are probably not the targeted
annotation of the domain, but can be helpful to incrementally approximate the annotation of
interest. This enables the user to work “bottom-up” and “top-down”. In the former approach, the
rules add incrementally more complex annotations using simple ones until the target annotation

can be created. In the latter approach, the rules get more specific while partitioning the document

in smaller segments, which result in the targeted annotation, eventually. By using many “helper” -
annotations, the engineering task becomes easier and more comprehensive. The UIMA Ruta
language provides distinctive language elements for different tasks. There are, for example, actions
that are able to create new annotations, actions that are able to remove annotations and actions that
are able to modify the offsets of annotations. This enables, amongst other things, a transformation-
based approach. The user starts by creating general rules that are able to annotate most of the text
fragments of interest. Then, instead of making these rules more complex by adding more conditions
for situations where they fail, additional rules are defined that correct the mistakes of the general
rules, e.g., by deleting false positive annotations. Section 1.4, “Learning by Example” [3]

provides some examples how UIMA Ruta rules can be engineered.

To writerules manually is atedious and error-prone process. The UIMA Ruta Workbench was
developed to facilitate writing rules by providing as much tooling support as possible. This
includes, for example, syntax checking and auto completion, which make the development less
error-prone. The user can annotate documents and use these documents as unit tests for test-driven

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Learning by Example

development or quality maintenance. Sometimes, it is necessary to debug the rules because they do
not match as expected. In this case, the explanation perspective provides views that explain every
detail of the matching process. Finally, the UIMA Ruta language can aso be used by the tooling,
for example, by the “Query” view. Here, UIMA Rutarules can be used as query statementsin order
to investigate annotated documents.

UIMA Ruta smoothly integrates with Apache UIMA. First of al, the UIMA Rutarules are applied
using ageneric Analysis Engine and thus UIMA Ruta scripts can easily be added to Apache UIMA
pipelines. UIMA Ruta also provides the functionality to import and use other UIMA components
like Analysis Engines and Type Systems. UIMA Rutarules can refer to every type defined in an
imported type system, and the UIMA Ruta Workbench generates a type system descriptor file
containing all types that were defined in a script file. Any Analysis Engine can be executed by rules
as long as their implementation is available in the classpath. Therefore, functionality outsourced in
an arbitrary Analysis Engine can be added and used within UIMA Ruta

1.4. Learning by Example

This section gives an introduction to the UIMA Ruta language by explaining the rule syntax and
inference with some simplified examples. It is recommended to use the UIMA Ruta Workbench
towrite UIMA Rutarulesin order to gain advantages like syntax checking. A short description
how to install the UIMA Ruta Workbench is given here. The following examples make use of the
annotations added by the default seeding of the UIMA Ruta Analysis Engine. Their meaning is
explained along with the examples.

Thefirst example consists of a declaration of atype followed by asimplerule. Type declarations
always start with the keyword “DECLARE” followed by the short name of the new type. The
namespace of the typeisequal to the package declaration of the script file. If there is no package
declaration, then the types declared in the script file have no namespace. Thereis also the
possibility to create more complex types with features or specific parent types, but thiswill be
neglected for now. In the example, a simple annotation type with the short name“Animal” is
defined. After the declaration of the type, arule with onerule element is given. UIMA Rutarules
in general can consist of a sequence of rule elements. Simple rule elements themselves consist

of four parts: A matching condition, an optional quantifier, an optional list of conditions and an
optional list of actions. The rule element in the following example has a matching condition “W”,
an annotation type standing for normal words. Statements like declarations and rules always end
with a semicolon.

DECLARE Ani nal ;
W REGEXP( " dog”) -> MARK(Ani mal)}:

The rule element also contains one condition and one action, both surrounded by curly parentheses.
In order to distinguish conditions from actions they are separated by “->". The condition
“REGEXP("dog")” indicates that the matched word must match the regular expression “dog”. If the
matching condition and the additional regular expression are fulfilled, then the action is executed,
which creates a new annotation of the type “ Animal” with the same offsets as the matched token.
The default seeder does actually not add annotations of the type “W”, but annotations of the types
“SW” and “CW” for small written words and capitalized words, which both have the parent type
“W”,

Thereis aso the possibility to add implicit actions and conditions, which have no explicit name,
but consist only of an expression. In the part of the conditions, boolean expressions and feature
match expression can be applied, and in the part of the actions, type expressions and feature
assignment expression can be added. The following example contains one implicit condition and

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 3



Learning by Example

one implicit action. The additional condition is aboolean expression (boolean variable), whichis
set to “true’, and therefore is always fulfills the condition. The “MARK” action was replaced by a
type expression, which refer to the type “Animal”. The following rule shows, therefore, the same
behavior as the rule in the last example.

DECLARE Ani mal ;
BOOLEAN active = true;
W REGEXP("dog"), active -> Aninal};

Thereis also a specia kind of rules, which follow a different syntax and semantic, and enables a
simplified creation of annotations based on regular expression. The following rule, for example,
creates an “Animal” annotation for each occurrence of “dog” or “cat”.

DECLARE Ani mal ;
"dog|cat" -> Aninal;

Since it istedious to create Animal annotations by matching on different regular expression,
we apply an externa dictionary in the next example. Thefirst line defines aword list named
“AnimalsList”, which islocated in the resource folder (the file “ Animals.txt” contains one
animal name in each line). After the declaration of the type, arule usesthisword list to find all
occurrences of animalsin the complete document.

WORDLI ST Ani mal sList = 'Aninmals.txt';
DECLARE Ani mal ;
Docunent { - > MARKFAST( Ani mal , Ani mal sList)};

The matching condition of the rule element refers to the compl ete document, or more specific to
the annotation of the type “DocumentAnnotation”, which covers the whole document. The action
“MARKFAST” of thisrule element creates an annotation of the type “Animal” for each found
entry of the dictionary “AnimalsList”.

The next exampl e introduces rules with more than one rule element, whereby one of themisa
composed rule element. The following rule tries to annotate occurrences of animals separated by
commas, e.g., “dog, cat, bird”.

DECLARE Ani mal Enum
(Ani mal COVMA) +{-> MARK( Ani mal Enum 1, 2)} Ani mal ;

The rule consists of two rule elements, with “ (Animal COMMA)+{-> MARK(Anima Enum,1,2)}”
being the first rule element and “Animal” the second one. Let us take a closer ook at the first rule
element. This rule element is actually composed of two normal rule elements, that are “ Animal”
and “COMMA”, and contains a greedy quantifier and one action. This rule element, therefore,
matches on one Animal annotation and a following comma. Thisis repeated until one of the inner
rule elements does not match anymore. Then, there has to be another Animal annotation afterwards,
specified by the second rule element of the rule. In this case, the rule matches and its action is
executed: The MARK action creates a new annotation of the type “ AnimalEnum”. However, in
contrast to the previous examples, this action also contains two numbers. These numbers refer to
the rule elements that should be used to calcul ate the span of the created annotation. The numbers
“1, 2" state that the new annotation should start with the first rule element, the composed one, and
should end with the second rule element.

L et us make the composed rule element more complex. The following rule also matches on lists of
animals, which are separated by semicolon. A digunctive rule element is therefore added, indicated
by the symbol “|’, which matches on annotations of the type “COMMA” or “SEMICOLON".

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Learning by Example

(Ani mal (COMMA | SEM COLON))+{-> MARK(Ani mal Enum 1, 2)} Ani mal ;

There two more special symbols that can be used to link rule elements. If the symbol “|” is replaced
by the symbol “&” in the last example, then the token after the animal need to be acommaand a
semicolon, which is of course not possible. Another symbol with a special meaning is“%", which
cannot only be used within a composed rule element (parentheses). This symbol can be interpreted
asaglobal “and”: It links several rules, which only fire, if al rules have successfully matched. In
the following example, an annotation of the type “FoundIt” is created, if the document contains two
periodsin arow and two commasin arow:

PERI OD PERI OD % COMVA COWMA{ - > Foundlt};

Thereisa“wild card” (“#") rule element, which can be used to skip some text or annotations until
the next rule element is able to match.

DECLARE Sent ence;
PERI OD #{-> MARK( Sentence)} PERI OD;

This rule annotates everything between two “PERIOD” annotations with the type “ Sentence”.
Please note that the resulting annotations is automatically trimmed using the current filtering
settings. Conditions at wild card rule elements should by avoided and only be used by advanced
users.

Another special rule element is called “optional” (*_"). Sometimes, an annotation should be created
on atext position if it is not followed by an annotation of a specific property. In contrast to normal
rule elements with optional quantifier, the optional rule element does not need to match at all.

W ANY{ - PARTOF( NUM } ;
W _{- PARTOF(NUM };

The two rulesin this example specify the same pattern: A word that is not followed by a number.
The difference between the rules shows itself at the border of the matching window, e.g., at the
end of the document. If the document contains only a single word, the first rule will not match
successfully because the second rule element already fails at its matching condition. The second
rule, however, will successfully match due to the optional rule element.

Rule elements can contain more then one condition. The rulein the next example tries to identify
headlines, which are bold, underlined and end with a colon.

DECLARE Headl i ne;

Par agr aph{ CONTAI NS( Bol d, 90, 100, true),
CONTAI NS( Under | i ned, 90, 100, true), ENDSW TH( COLON)
-> MARK( Headl i ne) };

The matching condition of this rule element is given with the type “ Paragraph”, thus the rule takes
alook at al Paragraph annotations. The rule matches only if the three conditions, separated by
commas, are fulfilled. Thefirst condition “CONTAINS(Bold, 90, 100, true)” states that 90%-100%
of the matched paragraph annotation should also be annotated with annotations of the type “Bold”.
The boolean parameter “true” indicates that amount of Bold annotations should be cal culated
relatively to the matched annotation. The two numbers “90,100" are, therefore, interpreted as
percent amounts. The exact calculation of the coverage is dependent on the tokenization of the
document and is neglected for now. The second condition “CONTAINS(Underlined, 90, 100,
true)” consequently states that the paragraph should also contain at least 90% of annotations of

the type “underlined”. The third condition “ENDSWITH(COLON)” finally forces the Paragraph

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 5



Learning by Example

annotation to end with a colon. It isonly fulfilled, if thereis an annotation of the type “COLON",
which has an end offset equal to the end offset of the matched Paragraph annotation.

The readability and maintenance of rules does not increase, if more conditions are added. One
of the strengths of the UIMA Ruta language is that it provides different approachesto solve an
annotation task. The next two examples introduce actions for transformation-based rules.

Headl i ne{- CONTAI NS(W -> UNMARK( Head! i ne)};

This rule consists of one condition and one action. The condition “~-CONTAINS(W)” is negated
(indicated by the character “-"), and is therefore only fulfilled, if there are no annotations of the
type “W” within the bound of the matched Headline annotation. The action “UNMARK (Headline)”
removes the matched Headline annotation. Put into simple words, headlines that contain no words
at all are not headlines.

The next rule does not remove an annotation, but changes its offsets dependent on the context.

Headl i ne{-> SHI FT(Headline, 1, 2)} COLON,

Here, the action “SHIFT (Headline, 1, 2)” expands the matched Headline annotation to the next
colon, if that Headline annotation is followed by a COLON annotation.

UIMA Rutarules can contain arbitrary conditions and actions, which isillustrated by the next
example.

DECLARE Mont h, Year, Date;
ANY{ | NLI ST(Mont hsLi st) -> MARK(Month), MARK(Date, 1, 3)}
PERI OD? NUM REGEXP(".{2,4}") -> MARK(Year)};

Thisrule consists of three rule elements. The first one matches on every token, which hasa
covered text that occursin aword lists named “MonthsList”. The second rule element is optional
and does not need to be fulfilled, which isindicated by the quantifier “?’. The last rule element
matches on numbers that fulfill the regular expression “REGEXP(".{2,4}"” and are therefore at
least two characters to a maximum of four characterslong. If this rule successfully matches on
atext passage, then its three actions are executed: An annotation of the type “Month” is created
for the first rule element, an annotation of the type “Year” is created for the last rule element and
an annotation of the type “Date” is created for the span of all three rule elements. If the word

list contains the correct entries, then this rule matches on strings like “ Dec. 2004”, “July 85" or
“11.2008" and creates the corresponding annotations.

After introducing the composition of rule elements, the default matching strategy is examined. The
two rulesin the next example create an annotation for a sequence of arbitrary tokens with the only
difference of one condition.

DECLARE Text 1, Text?2;
ANY+{ -> MARK(Text1)};
ANY+{ - PARTOF( Text 2) -> MARK(Text2)};

The first rule matches on each occurrence of an arbitrary token and continues this until the end of
the document is reached. Thisis caused by the greedy quantifier “+”. Note that this rule considers
each occurrence of atoken and is therefore executed for each token resulting many overlapping
annotations. This behavior isillustrated with an example: When applied on the document “ Peter
works for Frank”, the rule creates four annotations with the covered texts “ Peter works for Frank”,
“works for Frank”, “for Frank” and “Frank”. The rule first tries to match on the token “ Peter” and

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Learning by Example

continues its matching. Then, it tries to match on the token “works’ and continues its matching, and
so on.

In this example, the second rule only returns one annotation, which covers the complete document.
Thisis caused by the additional condition “-PARTOR(Text2)”. The PARTOF condition is fulfilled,
if the matched annotation is located within an annotation of the given type, or putin simple

words, if the matched annotation is part of an annotation of the type “Text2”. When applied on the
document “ Peter works for Frank”, the rule matches on the first token “ Peter”, continues its match

and creates an annotation of the type “ Text2” for the complete document. Then it tries to match on

the second token “works”, but fails, because this token is already part of an Text2 annotation.

UIMA Rutarules can not only be used to create or modify annotations, but also to create features
for annotations. The next example defines and assigns a relation of employment, by storing the
given annotations as feature values.

DECLARE Annot ati on Enpl Rel ati on
(Enpl oyee enpl oyeeRef, Enpl oyer enpl oyer Ref);

Sent ence{ CONTAI NS( Enpl oynent | ndi cat or) -> CREATE( Enpl Rel ati on,
"enpl oyeeRef" = Enpl oyee, "enpl oyer Ref" = Enpl oyer)};

Thefirst statement of this example is a declaration that defines a new type of annotation named
“EmplRelation”. This annotation has two features. One feature with the name “employeeRef” of
the type “Employee” and one feature with the name “employerRef” of the type “Employer”. If the
parent type is Annotation, then it can be omitted resulting in the following declaration:

DECLARE Enpl Rel ati on ( Enpl oyee enpl oyeeRef, Enpl oyer enpl oyer Ref);

The second statement of the example, which is asimple rule, creates one annotation of the type
“EmplRelation” for each Sentence annotation that contains at least one annotation of the type
“Employmentindicator”. Additionally to creating an annotation, the CREATE action also assigns
an annotation of the “Employee”, which needs to be located within the span of the matched
sentence, to the feature “ employeeRef” and an Employer annotation to the feature “employerRef”.
The annotations mentioned in this example need to be present in advance.

In order to refer to annotations and, for example, assigning them to some features, special kinds

of local and global variables can be utilized. Local variables for annotations do not need to be
defined by are specified by alabel at arule element. Thislabel can be utilized for referring to the
matched annotation of this rule element within the current rule match alone. The following example
illustrate some simple use cases using local variables:

DECLARE Annot ati on Enpl Rel ati on
(Enpl oyee enpl oyeeRef, Enpl oyer enpl oyer Ref);
el: Enpl oyer # Enpl oyment| ndi cator # e2: Enpl oyee)
{-> Enpl Rel ati on, Enpl Rel ati on. enpl oyeeRef =e2,
Enpl Rel ati on. enpl oyer Ref =el};

Global variables for annotations are declared like other variables and are able to store annotations
acrossrules asillustrated by the next example:

DECLARE Menti onedAfter (Annotation first);

ANNOTATI ON first Person;

# p: Person{-> firstPerson = p};

Entity{-> MentionedAfter, MentionedAfter.first = firstPerson};

Thefirst line declares a new type that are utilized afterwards. The second line defines avariable
named f i r st Per son which can store one annotation. A variable able to hold several annotations

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 7



Learning by Example

is defined with ANNOTATIONLIST. The next line assigns the first occurrence of Person
annotation to the annotation variable f i r st Per son. The last line creates an annotation of the type
MentionedAfter and assigns the value of the variablef i r st Per son to the featuref i r st of the
created annotation.

Expressions for annotations can be extended by a feature match and also conditions. This does also
apply for type expressions that represent annotations. This functionality isillustrated with asimple
example:

Sent ence{- > CREATE( Enpl Rel ati on, "enpl oyeeRef" =
Enpl oyee. ct ==" Pet er " { ENDSW TH( Sent ence) }) };

Here, an annotation of the type Enpl Rel at i on is created for each sentence. The feature

enpl oyeeRef isfilled with one Enpl oyee annotation. This annotation is specified by its type
Enpl oyee. Thefirst annotation of this type within the matched sentence, which covers the text
“Peter” and also ends with a Sent ence annotation, is selected.

Sometimes, an annotation which was just created by an action should be assigned to afeature. This
can be achieved by referring to the annotation given its type like it was shown in the first example
with “EmplRelation”. However, this can cause problemsin situations, e.g. where several annotation
of atype are present at a specific span. Local variables using labels can also be used directly at
actions, which create or modify actions. The action will assign the new annotation the the label
variable, which can then be utilized by following actions as shown in the following example:

Wct=="Peter"{-> e: Enpl oyee, CREATE(Enpl Rel ati on, "enpl oyeeRef" = e)};

In the last examples, the values of features were defined as annotation types. However, also
primitive types can be used, as will be shown in the next example, together with a short
introduction of variables.

DECLARE Annot ati on MoneyAnount (STRI NG currency, |NT anount);
I NT noneyAnount ;
STRI NG noneyCurrency;
NUM PARSE( noneyAnount )} SPECI AL{ REGEXP("€") -> MATCHEDTEXT(nmoneyCurrency),
CREATE( MoneyAnount, 1, 2, "anount" = noneyAnount,
"currency" = nmoneyCurrency)};

First, anew annotation with the name “MoneyAmount” and two features are defined, one string
feature and one integer feature. Then, two UIMA Ruta variables are declared, one integer variable
and one string variable. The rule matches on a number, whose value is stored in the variable
“moneyAmount”, followed by a specia token that needs to be equal to the string “€”. Then,

the covered text of the special annotation is stored in the string variable “moneyCurrency” and
annotation of the type “MoneyAmount” spanning over both rule elementsis created. Additionally,
the variables are assigned as feature values.

Using feature expression for conditions and action, can reduce the complexity of arule. Thefirst
rule in the following example set the value of the feature “ currency” of the annotation of the type
“MoneyAmount” to “Euro”, if it was“€” before. The second rule creates an annotation of the type
“LessThan” for all annotations of the type “MoneyAmount”, if their amount is less than 100 and
the currency is“Euro”.

DECLARE LessThan;
MoneyAmount . curr ency=="€"{-> MoneyAnount . currency="Euro"};
MoneyAmount { ( MoneyAnmount . anmount <=100) ,

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Learning by Example

MoneyAnmount . currency=="FEuro" -> LessThan};

UIMA Ruta script files with many rules can quickly confuse the reader. The UIMA Ruta language,
therefore, allows to import other script filesin order to increase the modularity of aproject or to
create rule libraries. The next example imports the rules together with all known types of another
script file and executes that script file.

SCRI PT ui na. rut a. exanpl e. Secondar yScri pt ;
Docunent { - > CALL( SecondaryScript)};

The script file with the name * Secondary Script.ruta’, which is located in the package * uima/ruta/
example’, isimported and executed by the CALL action on the complete document. The script
needs to be located in the folder specified by the parameter scriptPaths, or in a corresponding
package in the classpath. It is also possible to import script files of other UIMA Ruta projects, e.g.,
by adapting the configuration parameters of the UIMA Ruta Analysis Engine or by setting a project
reference in the project properties of a UIMA Ruta project.

For simple rules that match on the complete document and only specify actions, asimplified syntax
exists that omits the matching parts:

SCRI PT ui na. rut a. exanpl e. SecondaryScri pt;
CALL( SecondaryScri pt);

The types of important annotations of the application are often defined in a separate type system.
The next example shows how to import those types.

TYPESYSTEM ny. package. NamedEnt i t yTypeSyst em
Per son{ PARTOF( Or gani zati on) -> UNVARK( Person)};

The type system descriptor file with the name “NamedEntity TypeSystem.xml” located in the
package “my/package” isimported. The descriptor needs to be located in afolder specified by the
parameter descriptorPaths.

It is sometimes easier to express functionality with control structures known by programming
languages rather than to engineer al functionality only with matching rules. The UIMA Ruta
language provides the BLOCK element for some of these use cases. The UIMA Ruta BLOCK
element starts with the keyword “BLOCK” followed by its name in parentheses. The name of a
block has two purposes: On the one hand, it is easier to distinguish the block, if they have different
names, e.g., in the explain perspective of the UIMA Ruta Workbench. On the other hand, the name
can be used to execute this block using the CALL action. Hereby, it is possible to access only
specific sets of rules of other script files, or to implement arecursive call of rules. After the name
of the block, asingle rule element is given, which has curly parentheses, even if no conditions or
actions are specified. Then, the body of the block is framed by curly brackets.

BLOCK( Engl i sh) Document { FEATURE( " | anguage", "en")} {
/1 rules for english docunents

}

BLOCK( Ger man) Docunent { FEATURE(" | anguage", "de")} {
/'l rules for german docunents

}

This example contains two simple BLOCK statements. The rules defined within the block are only
executed, if the condition in the head of the block is fulfilled. The rules of the first block are only
considered if the feature “language” of the document annotation has the value “en”. Following this,
the rules of the second block are only considered for German documents.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 9



Learning by Example

The rule element of the block definition can also refer to other annotation types than “ Document”.
While the last example implemented something similar to an if-statement, the next example
provides a show case for something similar to a for-each-statement.

DECLARE Sent enceW t hNoLeadi ngNP;
BLOCK( For Each) Sent ence{} {

Docunent { - STARTSW TH( NP) - > MARK( Sent enceW t hNoLeadi ngNP) } ;
}

Here, the rule in the block statement is performed for each occurrence of an annotation of the
type “ Sentence”. The rule within the block matches on the complete document, which is the
current sentence in the context of the block statement. As a consequence, this example creates an
annotation of the type “ SentenceWithNoL eadingNP” for each sentence that does not start with a
NP annotation.

There are two more language constructs (“->" and “<-") that alow to apply rules within acertain
context. These rules are added to an arbitrary rule element and are called inlined rules. Thefirst
example interprets the inlined rules as actions. They are executed if the surrounding rule was able
to match, which makes this one very similar to the block statement.

DECLARE Sent enceW t hNoLeadi ngNP;
Sent ence{}->{

Docunent { - STARTSW TH( NP) -> Sent enceW t hNoLeadi ngNP} ;
b

The second one (“<-") interprets the inlined rules as conditions. The surrounding rule can only
match if at least one inlined rule was successfully applied. In the following example, a sentence is
annotated with the type SentenceWithNPNP, if there are two successive NP annotations within this
sentence.

DECLARE Sent enceW t hNPNP;

Sent ence{ - > Sent enceW t hNPNP} <- {
NP NP;

be

A rule element may be extended with several inlined rule block as condition or action. If there a
more than one inlined rule blocks as condition, each needs to contain at |east one rule that was
successfully applied. In the following example, the rule will one match if the sentence contains a
number followed by a another number and a period followed by a comma, independently from their
location within the sentence:

Sent ence<- { NUM NUM } <- { PERI OD COWVA; };

Let ustake a closer look on what exactly the UIMA Ruta rules match. The following rule matches
on aword followed by another word:

WWwW

To be more precise, this rule matches on al documents like “ Apache UIMA”, “Apache UIMA”,
“ApacheUIMA”, “ Apache <b>UIMA</b>". There are two main reasons for this: First of all, it
depends on how the avail able annotations are defined. The default seeder for the initial annotations
creates an annotation for al characters until an upper case character occurs. Thus, the string
“ApacheUIMA” consists of two tokens. However, more important, the UIMA Ruta language
provides a concept of visibility of the annotations. By default, al annotations of the types
“SPACE", “NBSP”, “BREAK” and “MARKUP” (whitespace and XML elements) arefiltered and

10

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Learning by Example

not visible. This holds of course for their covered text, too. The rule elements skip all positions of
the document where those annotations occur. The rule in the last example matches on all examples.
Without the default filtering settings, with all annotations set to visible, the rule matches only on
the document “ApacheUIMA” since it is the only one that contains two word annotations without
any whitespace between them.

The filtering setting can aso be modified by the UIMA Ruta rules themselves. The next example
provides rules that extend and limit the amount of visible text of the document.

Sent ence;

Docunent { - > RETAI NTYPE( SPACE) };

Sent ence;

Docunent {-> FI LTERTYPE(CW };

Sent ence;

Docunent { - > RETAI NTYPE, FILTERTYPE};

The first rule matches on sentences, which do not start with any filtered type. Sentences that start
with whitespace or markup, for example, are not considered. The next rule retains all text that is
covered by annotations of the type “ SPACE” meaning that the rule elements are now sensible to
whitespaces. The following rule will, therefore, match on sentences that start with whitespaces. The
third rule now filters the type “ CW” with the consequence that all capitalized words areinvisible.

If the following rule now wants to match on sentences, then thisis only possible for Sentence
annotations that do not start with a capitalized word. The last rule finally resets the filtering setting
to the default configuration in the UIMA Ruta Analysis Engine.

The next exampl e gives a showcase for importing external Analysis Engines and for modifying the
documents by creating a new view called “modified”. Additional Analysis Engines can be imported
with the keyword “ENGINE” followed by the name of the descriptor. These imported Analysis
Engines can be executed with the actions “CALL” or “EXEC”. If the executed Analysis Engine
adds, removes or modifies annotations, then their types need to be mentioned when calling the
descriptor, or else these annotations will not be correctly processed by the following UIMA Ruta
rules.

ENG NE utils. Modifier;

Dat e{-> DEL};

MoneyAmount { - > REPLACE( " <MoneyAmount/>")};
Docunent {-> COLOR(Headl i ne, "green")};
Docunent {- > EXEC(Modifier)};

In this example, we first import an Analysis Engine defined by the descriptor “Modifier.xml”
located in the folder “ utils’. The descriptor needs to be located in the folder specified by the
parameter descriptorPaths. The first rule deletes all text covered by annotations of the type “Date’”.
The second rule replaces the text of all annotations of the type “MoneyAmount” with the string
“<MoneyAmount/>". Thethird rule remembers to set the background color of text in Headline
annotation to green. Thelast rule finally performs all of these changes in an additional view called
“modified”, which is specified in the configuration parameters of the analysis engine. Section 1.5.4,
“Modifier” [21] and Section 2.17, “Modification” [76] provide a more detailed description.

In the last example, a descriptor file was loaded in order to import and apply an external analysis
engine. Analysis engines can also be loaded using uimaFI T, whereas the given class name has to
be present in the classpath. In the UIMA Ruta Workbench, you can add a dependency to ajava
project, which contains the implementation, to the UIMA Ruta project. The following example
loads an analysis engine without an descriptor and applies it on the document. The additional list of
types states that the annotations of those types created by the anaysis engine should be available to
the following Rutarules.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 11



UIMA Analysis Engines

U MAFI T my. package. i mpl . MyAnal ysi sEngi ne;
Docunent { - > EXEC( MyAnal ysi sEngi ne, {M/Typel, M/Type2})};

1.5. UIMA Analysis Engines

This section gives an overview of the UIMA Analysis Engines shipped with UIMA Ruta. The most
important one is “RutaEngine”, a generic analysis engine, which is able to interpret and execute
script files. The other analysis engines provide support for some additional functionality or add
certain types of annotations.

1.5.1.

Ruta Engine

This generic Analysis Engine is the most important one for the UIMA Rutalanguage since it
isresponsible for applying the UIMA Rutarules on a CAS. Itsfunctionality is configured by
the configuration parameters, which, for example, specify the rule file that should be executed.
In the UIMA Ruta Workbench, a basic template named “BasicEnginexml” isgiven in the
descriptor folder of aUIMA Ruta project and correctly configured descriptors typically named
“MyScriptEngine.xml” are generated in the descriptor folder corresponding to the package
namespace of the script file. The available configuration parameters of the UIMA Ruta Analysis
Engine are described in the following.

1.5.1.1. Configuration Parameters

The configuration parameters of the UIMA Ruta Analysis Engine can be subdivided

into three different groups: parameters for the setup of the environment (mainScript to

additional Extensions), parameters that change the behavior of the analysis engine (reloadScript to
simpleGreedyForComposed) and parameters for creating additional information how the rules were
executed (debug to createdBY). First, a short overview of the configuration parametersisgiven in
Table 1.1, “Configuration parameters of the UIMA Ruta Analysis Engine” [12]. Afterwards,

all parameters are described in detail with examples.

To change the value of any configuration parameter within a UIMA Ruta script, the
CONFIGURE action (see Section 2.8.8, “CONFIGURE” [54]) can be used. For changing
behavior of dynamicAnchoring the DY NAMICANCHORING action (see Section 2.8.11,
“DYNAMICANCHORING” [55]) is recommended.

Table 1.1. Configuration parameters of the UIMA Ruta Analysis Engine

Name Short description Type

mainScript Name with complete namespace of the script Single String
which will be interpreted and executed by the
analysis engine.

rules Script (list of rules) to be applied. Single String

rulesScriptName This parameter specifies the name of thenon- | Single String
existing script if the parameter 'rules' is used.

scriptEncoding Encoding of all UIMA Ruta script files. Single String

scriptPaths List of absolute locations, which contain the Multi String

necessary script files like the main script.

12

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Ruta Engine

Name Short description Type

descriptorPaths List of absolute locations, which contain the Multi String
necessary descriptor files like type systems.

resourcePaths List of absolute locations, which contain the Multi String
necessary resource files like word lists.

additional Scripts Optional list of names with complete Multi String
namespace of additional scripts, which can be
referred to.

additional Engines Optional list of names with complete Multi String
namespace of additiona analysis engines,
which can be called by UIMA Rutarules.

additionalUimafitEngines | Optional list of class names with complete Multi String
namespace of additional uimaFIT analysis
engines, which can be called by UIMA Ruta
rules.

additional Extensions List of factory classes for additional extensions | Multi String

of the UIMA Ruta language like proprietary
conditions.

rel oadScript Option to initialize the rule script each time the | Single Boolean
analysis engine processes a CAS.

seeders List of class names that provide additional Multi String
annotations before the rules are executed.

defaultFilteredTypes List of complete type names of annotationsthat | Multi String

areinvisible by default.

removeBasics Option to remove al inference annotations Single Boolean
after execution of the rule script.

indexOnly Option to select annotation types that should be | Multi String
indexed internally in ruta.

indexSkipTypes Option to skip annotation typesin the internal Multi String
indexing.

indexOnlyMentionedTypes | Option to index only mentioned types Single Boolean
internally in ruta.

indexAdditionally Option to index types additionally to the Multi String
mentioned ones internally in ruta.

reindexOnly Option to select annotation types that should be | Multi String
reindexed internally in ruta.

reindexSkipTypes Option to skip annotation typesin theinternal | Multi String

reindexing.

reindexOnlyMentionedType;

5 Option to reindex only mentioned types
internally in ruta.

Single Boolean

UIMA RutaVersion 3.2.0

Apache UIMA Ruta Overview

13



Ruta Engine

Name Short description Type
reindexAdditionally Option to reindex types additionally to the Multi String
mentioned ones internally in ruta.
indexUpdateM ode Mode how internal indexing should be applied. | Single String
validatel nternal Indexing Option to validate the internal indexing. Single String

emptylsinvisible

Option to define empty text positions as
invisible.

Single Boolean

modifyDataPath Option to extend the datapath by the Single Boolean
descriptorPaths

strictlmports Option to restrict short type names resolution to | Single Boolean
those in the declared typesystems.

typel gnorePattern Option to ignore types even if they are Single String

available in the typesystem/CAS.

dynamicAnchoring

Option to alow rule matches to start at any rule
element.

Single Boolean

lowMemoryProfile

Option to decrease the memory consumption
when processing alarge CAS.

Single Boolean

simpleGreedyForComposed

Option to activate a different inferencer for
composed rule elements.

Single Boolean

debug

Option to add debug information to the CAS.

Single Boolean

debugWithMatches

Option to add information about the rule
matchesto the CAS.

Single Boolean

debugAddTolndexes

Option to add al debug information to the
indexes.

Single Boolean

debugOnlyFor List of ruleids. If provided, then debug Multi String
information is only created for those rules.

profile Option to add profile information to the CAS. | Single Boolean

statistics Option to add statistics of conditions and Single Boolean
actionsto the CAS.

createdBy Option to add additional information, which Single Boolean
rule created an annotation.

varNames String array with names of variables. Isused in | Multi String
combination with varValues.

varVaues String array with values of variables. Isused in | Multi String
combination with varNames.

dictRemoveWs Remove whitespaces when loading Single Boolean

dictionaries.

14

Apache UIMA Ruta Overview

UIMA RutaVersion 3.2.0




Ruta Engine

Name Short description Type

csvSeparator String/token to be used to split columnsin CSV | Single String
tables.

inferenceVisitors List of factory classesfor additional inference | Multi String
visitors.

maxRuleM atches Maximum amount of allowed matches of a Single Integer
singlerule.

maxRuleElementMatches | Maximum amount of allowed matches of a Single Integer
single rule element.

mainScript

This parameter specifies the rule file that will be executed by the analysis engine and is, therefore,
one of the most important ones. The exact name of the script is given by the compl ete namespace
of the file, which corresponds to its location relative to the given parameter scriptPaths. The single
names of packages (or folders) are separated by periods. An exemplary value for this parameter
could be "org.apache.uima.Main", whereas "Main" specifies the file containing the rules and
"org.apache.uima’ its package. In this case, the analysis engine loads the script file "Main.ruta’,
which islocated in the folder structure "org/apache/uima/™. This parameter has no default value and
has to be provided, although it is not specified as mandatory.

rules

A String parameter representing the rule that should be applied by the analysis engine. If set, it
replaces the content of file specified by the mainScript parameter.

rulesScriptName

This parameter specifies the name of the non-existing script if the rules parameter is used. The
default value is 'Anonymous.

scriptEncoding
This parameter specifies the encoding of the rulefiles. Its default valueis "UTF-8".
scriptPaths

The parameter scriptPaths refersto alist of String values, which specify the possible locations

of script files. The given locations are absolute paths. A typical value for this parameter is, for
example, "C:/Ruta/MyProject/script/”. If the parameter mainScript is set to org.apache.uima.Main,
then the absolute path of the script file has to be " C:/Ruta/MyProject/script/org/apache/uima/
Main.ruta". This parameter can contain multiple values, as the main script can refer to multiple
projects similar to a class path in Java.

descriptorPaths

This parameter specifies the possible locations for descriptors like analysis engines or type systems,
similar to the parameter scriptPaths for the script files. A typical value for this parameter isfor
example "C:/Ruta/lMyProject/descriptor/". The relative values of the parameter additional Engines
are resolved to these absolute locations. This parameter can contain multiple values, as the main
script can refer to multiple projects similar to aclass path in Java.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 15




Ruta Engine

resourcePaths

This parameter specifies the possible locations of additional resources like word lists or CSV
tables. The string values have to contain absolute locations, for example, " C:/Ruta/MyProject/
resources/".

additionalScripts

The optional parameter additional Scriptsis defined as alist of string values and contains script
files, which are additionally loaded by the analysis engine. These script files are specified by their
complete namespace, exactly like the value of the parameter mainScript and can be refered to by
language elements, e.g., by executing the containing rules. An exemplary value of this parameter
is"org.apache.uima.SecondaryScript”. In this example, the main script could import this script file
by the declaration "SCRIPT org.apache.uima.SecondaryScript;" and then could execute it with the
rule "Document{-> CALL (SecondaryScript)};". This optional list can be used as a replacement of
global importsin the script file.

additionalEngines

This optional parameter contains alist of additional analysis engines, which can be executed by
the UIMA Rutarules. The single values are given by the name of the analysis engine with their
complete namespace and have to be located relative to one value of the parameter descriptorPaths,
the location where the analysis engine searches for the descriptor file. An example for one value of
the parameter is "utils.Html Annotator”, which points to the descriptor “"Html Annotator.xml" in the
folder "utils". Thisoptiona list can be used as a replacement of global importsin the script file.

additionalUimafitEngines

This optional parameter contains alist of additional analysis engines, which can be executed by
the UIMA Rutarules. The single values are given by the name of the implementation with the
complete namespace and have to be present int he classpath of the application. An example for
one value of the parameter is " org.apache.uima.ruta.engine.Html Annotator", which points to the
"Html Annotator” class. This optional list can be used as a replacement of global importsin the
script file.

additionalExtensions

This parameter specifies optional extensions of the UIMA Ruta language. The elements of the
string list have to implement the interface " org.apache.uima.ruta.extensions.|RutaExtension”. With
these extensions, application-specific conditions and actions can be added to the set of provided
ones.

reloadScript

This boolean parameter indicates whether the script or resource files should be rel oaded when
processing a CAS. The default valueis set to false. In this case, the script files are loaded when the
analysis engineisinitialized. If script files or resource files are extended, e.g., adictionary isfilled
yet when a collection of documents are processed, then the parameter is needed to be set to truein
order to include the changes.

seeders

Thislist of string values refers to implementations of the interface
"org.apache.uima.ruta.seed.RutaAnnotationSeeder”, which can be used to automatically

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Ruta Engine

add annotations to the CAS. The default value of the parameter is asingle seeder, namely
"org.apache.uima.ruta.seed. TextSeeder" that adds annotations for token classes like CW, NUM and
SEMICOLON, but not MARKUP. Remember that additional annotations can also be added with an
additional enginethat is executed by aUIMA Rutarule.

defaultFilteredTypes

This parameter specifies alist of types, which are filtered by default when executing a script file.
Using the default values of this parameter, whitespaces, line breaks and markup elements are not
visibleto Rutarules. The visibility of annotations and, therefore, the covered text can be changed
using the actions FILTERTY PE and RETAINTY PE.

removeBasics

This parameter specifies whether the inference annotations created by the analysis engine should be
removed after processing the CAS. The default value is set to false.

indexOnly

This parameter specifies the annotation types which should be indexed for ruta's internal
annotations. All annotation types that are relevant need to be listed here. The value of this
parameter needs only be adapted for performance and memory optimization in pipelines that
contains several ruta analysis engines. Default value is uimactcas.Annotation

indexSkipTypes

This parameter specifies annotation types that should not be indexed at all. These types normally
include annotations that provide no meaningful semantics for text processing, e.g., types
concerning ruta debug information.

indexOnlyMentionedTypes

If this parameter is activated, then only annotations of types are internally indexed that are
mentioned with in the rules. This optimization of the internal indexing can improve the speed and
reduce the memory footprint. However, severa features of the rule matching require the indexing
of types that are not mentioned in therules, e.g., literal rule matches, wildcards and actions like
MARKFAST, MARKTABLE, TRIE. Default value isfalse.

indexAdditionally

This parameter specifies annotation types that should be index additionally to types mentioned in
the rules. This parameter is only used if the parameter 'indexOnlyMentionedTypes is activated.

reindexOnly

This parameter specifies the annotation types which should be reindexed for ruta's internal
annotations All annotation types that changed since the last call of a ruta script need to be listed
here. The value of this parameter needs only be adapted for performance optimization in pipelines
that contains several ruta analysis engines. Default value is uima.tcas.Annotation

reindexSkipTypes

This parameter specifies annotation types that should not be reindexed. These types normally
include annotations that are added once and are not changed in the following pipeline, e.g., Tokens
or TokenSeed (like CW).

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 17



Ruta Engine

reindexOnlyMentionedTypes

If this parameter is activated, then only annotations of types areinternally reindexed at beginning
that are mentioned with in the rules. This parameter overrides the values of the parameter
‘reindexOnly" with the types that are mentioned in the rules. Default value isfalse.

reindexAdditionally

This parameter specifies annotation types that should be reindexed additionally to types mentioned
intherules. This parameter isonly used if the parameter 'reindexOnlyMentionedTypes' is activated.

indexUpdateMode

This parameter specifies the mode for updating the internal indexing in RutaBasic annotations. This
isatechnical parameter for optimizing the runtime performance/speed of RutaEngines. Available
modes are: COMPLETE, ADDITIVE, SAFE_ADDITIVE, NONE. Default valueis ADDITIVE.

validatelnternallndexing

Option to validate the internal indexing in RutaBasic with the current CAS after the indexing

and reindexing is performed. Annotations that are not correctly indexing in RutaBasics cause
Exceptions. Annotations of types listed in parameter 'indexSkipTypes and 'reindexSkipTypes are
ignored. Default valueisfalse.

validatel nternallndexing

emptylsinvisible

This parameter determines positions asinvisible if the internal indexing of the corresponding
RutaBasic annotation is empty. Default valueistrue.

modifyDataPath

This parameter specifies whether the datapath of the ResourceManager is extended by the values of
the configuration parameter descr i pt or Pat hs. The default value is set to false.

strictimports

This parameter specifies whether short type names should be resolved against the typesystems
declared in the script (true) or at runtime in the CAS typesystem (false). The default valueis set to
false.

typelgnorePattern

An optional pattern (regular expression) which defined types that should be ignored. These types
will not be resolved even if strictimportsis set to false. This parameter can be used to ignore
complete namespaces of type that could contain ambiguous short names.

dynamicAnchoring

If this parameter is set to true, then the Ruta rules are not forced to start to match with the first
rule element. Rather, the rule element referring to the most rare type is chosen. This option can be
utilized to optimize the performance. Please mind that the matching result can vary in some cases
when greedy rule elements are applied. The default valueis set to false.

18

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Ruta Engine

lowMemoryProfile

This parameter specifies whether the memory consumption should be reduced. This parameter
should be set to true for very large CAS documents (e.g., > 500k tokens), but it also reduces the
performance. The default value is set to false.

simpleGreedyForComposed
This parameter specifies whether a different inference strategy for composed rule elements should
be applied. This option is only necessary when the composed rule element is expected to match

very often, e.g., arule element like (ANY ANY)+. The default value of this parameter is set to
fase.

debug

If this parameter is set to true, then additional information about the execution of arule script is
added to the CAS. The actual information is specified by the following parameters. The default
value of this parameter is set to false.

debugWithMatches

This parameter specifies whether the match information (covered text) of the rules should be stored
in the CAS. The default value of this parameter is set to false.

debugAddTolndexes

This parameter specifies whether all debug annotation should be added to the indexes. By default
this parameter is deactivated and only the root script apply is added.

debugOnlyFor

This parameter specifiesalist of rule-ids that enumerate the rule for which debug information
should be created. No specific ids are given by default.

profile

If this parameter is set to true, then additional information about the runtime of applied rulesis
added to the CAS. The default value of this parameter is set to false.

statistics
If this parameter is set to true, then additional information about the runtime of UIMA Ruta

language elements like conditions and actions is added to the CAS. The default value of this
parameter is set to false.

createdBy

If this parameter is set to true, then additional information about what annotation was created by
which rule is added to the CAS. The default value of this parameter is set to false.

varNames

This parameter specifies the names of variables and is used in combination with the parameter
varValues, which contains the values of the corresponding variables. The n-th entry of this string

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 19



Annotation Writer

array specifies the variable of the n-th entry of the string array of the parameter varValues. If the

variablesis defined in the root of a script, then the name of the variable suffices. If the variable

isdefined in aBLOCK or imported script, then the the name must contain the namespaces of the

blocks as a prefix, e.g., InnerBlock.varName or OtherScript.SomeBlock.varName.
varValues

This parameter specifies the values of variables as string valuesin an string array. It is used

in combination with the parameter varNames, which contains the names of the corresponding

variables. The n-th entry of this string array specifies the value of the n-th entry of the string array

of the parameter varNames. The valuesfor list variables are separated by the character “,”. Thus,

the usage of commasis not allowed if the variableisalist.

dictRemoveWS

If this parameter is set to true, then whitespaces are removed when dictionaries are loaded. The
default is set to "true".

csvSeparator

If this parameter is set to any String value then this String/token is used to split columnsin CSV
tables. The defaultisset to ;'

inferenceVisitors
This parameter specifies optional class names implementing the interface
or g. apache. ui ma. rut a. vi si tor. Rut al nf er enceVi si t or, which will be notified during
applying the rules.
maxRuleMatches
Maximum amount of allowed matches of asinglerule.

maxRuleElementMatches

Maximum amount of allowed matches of a single rule element.

1.5.2. Annotation Writer

This Analysis Engine can be utilized to write the covered text of annotationsin atext file, whereas
each covered text is put into anew line. If the Analysis engine, for example, is configured for

the type “uima.example.Person”, then all covered texts of all Person annotations are stored in a
text file, one person in each line. A descriptor file for this Analysis Engine is located in the folder
“descriptor/utils’ of aUIMA Ruta project.

1.5.2.1. Configuration Parameters

Output

This string parameter specifies the absolute path of the resulting file named “output.txt”. However,
if an annotation of the type “ org.apache.uima.examples.SourceDocumentlnformation” is given,
then the value of this parameter is interpreted to be relative to the URI stored in the annotation and

20

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



Plain Text Annotator

the name of the file will be adapted to the name of the sourcefile. If this functionality is activated
in the preferences, then the UIMA Ruta Workbench adds the SourceDocumentInformation
annotation when the user launches a script file. The default value of this parameter is“/../output/”.

Encoding

This string parameter specifies the encoding of the resulting file. The default value of this
parameter is“UTF-8".

Type

Only the covered texts of annotations of the type specified with this parameter are stored in the
resulting file. The default value of this parameter is “ uima.tcas.DocumentAnnotation”, which will
store the complete document in anew file.

1.5.3. Plain Text Annotator

This Analysis Engines adds annotations for lines and paragraphs. A descriptor file for this
Analysis Engineislocated in the folder “descriptor/utils’ of aUIMA Rutaproject. There are no
configuration parameters.

1.5.4. Modifier

The Modifier Analysis Engine can be used to create an additional view, which contains all textual
modifications and HTML highlightings that were specified by the executed rules. This Analysis
Engine can be applied, e.g., for anonymization where all annotations of persons are replaced by the
string “Person” . Furthermore, the content of the new view can optionally be stored in anew HTML
file. A descriptor file for this Analysis Engineis located in the folder “descriptor/utils’ of aUIMA
Ruta project.

1.5.4.1. Configuration Parameters

styleMap

This string parameter specifies the name of the style map file created by the Style Map Creator
Analysis Engine, which stores the colors for additional highlightings in the modified view.

descriptorPaths

This parameter can contain multiple string values and specifies the absol ute paths where the style
map file can be found.

outputLocation

This optional string parameter specifies the absolute path of the resulting

file named “ output.modified.html”. However, if an annotation of the type
“org.apache.uima.examples.SourceDocumentInformation” is given, then the value of this
parameter is interpreted to be relative to the URI stored in the annotation and the name of thefile
will be adapted to the name of the sourcefile. If this functionality is activated in the preferences,
then the UIMA Ruta Workbench adds the SourceDocument|nformation annotation when the user
launches a script file. The default value of this parameter is empty. In this case no additional html
file will be created.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 21



HTML Annotator

outputView

This string parameter specifies the name of the view, which will contain the modified document. A
view of this name must not yet exist. The default value of this parameter is“modified”.

1.5.5.

HTML Annotator

This Analysis Engine provides support for HTML files by adding annotations for the HTML
elements. Using the default values, the HTML Annotator creates annotations for each HTML
element spanning the content of the element, whereas the most common elements are represented
by own types. The document “ This text is <b>bold</b>.”, for example, would be annotated

with an annotation of the type “ org.apache.uima.ruta.type.html.B” for the word “bold”. The

HTML annotator can be configured in order to include the start and end elements in the created
annotations. A descriptor file for this Analysis Engine is located in the folder “ descriptor/utils’ of a
UIMA Ruta project.

1.5.5.1. Configuration Parameters

onlyContent

This parameter specifies whether created annotations should cover only the content of the HTML
elements or also their start and end elements. The default valueis “true’.

1.5.6.

HTML Converter

This Analysis Engine is able to convert html content from a source view into aplain string
representation stored in an output view. Especialy, the Analysis Engine transfers annotations under
consideration of the changed document text and annotation offsets in the new view. The copy
process also sets features, however, features of type annotation are currently not supported. Note
that if an annotation would have the same start and end positionsin the new view, i.e., if it would
be mapped to an annotation of length 0, it is not moved to the new view. The HTML Converter also
supports heuristic and explicit conversion patterns which default to html4 decoding, e.g., "&nbsp;",
"&It;", etc. Concepts like tables or lists are not supported. Note that in general it is suggested to run
an html cleaner before any further processing to avoid problems with malformed html. A descriptor
file for this Analysis Engineis located in the folder “descriptor/utils’ of a UIMA Ruta project.

1.5.6.1. Configuration Parameters

outputView

This string parameter specifies the name of the new view. The default value is “plaintext”.

inputView

This string parameter can optionally be set to specify the name of the input view.

newlinelnducingTags

This string array parameter sets the names of the html tags that create linebreaks in the output view.
The default is“br, p, div, ul, ol, dI, li, hl, ..., h6, blockquote”.

22

Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



HTML Converter

replaceLinebreaks

This boolean parameter determines if linebreaks inside the text nodes are kept or removed. The
default behavior is“true”.

replaceLinebreaks

This string parameter determines the character sequence that replaces alinebreak. The default
behavior isthe empty string.

conversionPolicy

This string parameter determines the conversion policy used, either "heuristic”, "explicit",

or "none". When the valueis "explicit", the parameters “conversionPatterns’ and optionally
“conversionReplacements’ are considered. The "heuristic" conversion policy uses simple regular
expressions to decode html4 entities such as "& nbsp;". The default behavior is "heuristic”.

conversionPatterns

This string array parameter can be used to apply custom conversions. It defaultsto alist of
commonly used codes, e.g., &nbsp;, which are converted using html 4 entity unescaping. However,
explicit conversion strings can also be passed via the parameter “ conversionReplacements’.
Remember to enable explicit conversion via“ conversionPolicy” first.

conversionReplacements

This string array parameter corresponds to “conversionPatterns’ such that “ conversionPatterns[i]”
will be replaced by “conversionReplacementd[i]”; replacements should be shorter than the source
pattern. Per default, the replacement strings are computed using Html4 decoding. Remember to
enable explicit conversion via“conversionPolicy” first.

skipWhitespaces

This boolean parameter determines if the converter should skip whitespaces. Html documents
often contains whitespaces for indentation and formatting, which should not be reproduced in

the converted plain text document. If the parameter is set to false, then the whitespaces are not
removed. This behavior is useful, if not Html documents are converted, but XMl files. The default
valueistrue.

processAll

If this boolean parameter is set to true, then the tags of the complete document is processed and not
only those within the body tag.

newlinelnducingTagRegExp
This string parameter contains aregular expression for HTML/XML elements. If the pattern
matches, then the element will introduce a new line break similar to the element of the parameter
“newlinelnducingTags’.

gapinducingTags

This string array parameter sets the names of the html tags that create additional text in the output
view. The actual string of the gap is defined by the parameter “gapText”.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 23



Style Map Creator

gapText

This string parameter determines the character sequence that is introduced by the html tags
specified in the “gaplnducingTags’.

useSpaceGap

This boolean parameter sets the value of the parameter “gapText” to asingle space..

1.5.7. Style Map Creator

This Analysis Engine can be utilized to create style map information, which is needed by the
Modifier Analysis Enginein order to create highlighting for some annotations. Style map
information can be created using the COLOR action. A descriptor file for this Analysis Engineis
located in the folder “ descriptor/utils’ of aUIMA Ruta project.

1.5.7.1. Configuration Parameters

styleMap

This string parameter specifies the name of the style map file created by the Style Map Creator
Analysis Engine, which stores the colors for additional highlightings in the modified view.

descriptorPaths

This parameter can contain multiple string values and specifies the absol ute paths where the style
map can be found.

1.5.8. Cutter

This Analysis Engineis able to cut the document of the CAS. Only the text covered by annotations
of the specified type will be retained and all other parts of the documents will be removed. The
offsets of annotationsin the index will be updated, but not feature structures nested as feature
values.

1.5.8.1. Configuration Parameters

keep

This string parameter specifies the complete name of atype. Only the text covered by annotations
of thistype will be retained and all other parts of the documents will be removed.

inputView
The name of the view that should be processed.
outputView

The name of the view, which will contain the modified CAS.

24 Apache UIMA Ruta Overview UIMA RutaVersion 3.2.0



View Writer

1.5.9. View Writer

This Analysis Engine is able to serialize the processed CAS to an XMl file whereas the the source
and destination view can be specified A descriptor file for this Analysis Engineis located in the
folder “ descriptor/utils’ of aUIMA Ruta project.

1.5.9.1. Configuration Parameters

output

This string parameter specifies the absolute path of the resulting file named “ output.xmi”.
However, if an annotation of the type “ org.apache.uima.exampl es.SourceDocumentl nformation”
is given, then the value of this parameter isinterpreted to be relative to the URI stored in

the annotation and the name of the file will be adapted to the name of the source file. If

this functionality is activated in the preferences, then the UIMA Ruta Workbench adds the
SourceDocument! nformation annotation when the user launches a script file.

inputView
The name of the view that should be stored in afile.
outputView

The name, which should be used, to store the view in the file.

1.5.10. XMI Writer

This Analysis Engine is able to serialize the processed CASto an XMl file. One use case for the
XMI Writer is, for example, arule-based sort, which stores the processed XMl filesin different
folder, dependent on the execution of the rules, e.g., whether a pattern of annotations occurs or not.
A descriptor file for this Analysis Engineis located in the folder “descriptor/utils’ of aUIMA Ruta
project.

1.5.10.1. Configuration Parameters

Output

This string parameter specifies the absolute path of the resulting file named “ output.xmi”.
However, if an annotation of the type “ org.apache.uima.exampl es.SourceDocumentl nformation”
is given, then the value of this parameter isinterpreted to be relative to the URI stored in

the annotation and the name of the file will be adapted to the name of the source file. If

this functionality is activated in the preferences, then the UIMA Ruta Workbench adds the

SourceDocumentlnformation annotation when the user launches a script file. The default valueis
“/..Joutput/”

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Overview 25






Chapter 2. Apache UIMA Ruta Language

This chapter provides a complete description of the Apache UIMA Ruta language.

2.1. Syntax

UIMA Ruta definesits own language for writing rules and rule scripts. This section gives aformal
overview of its syntax.

Structure: The overall structure of aUIMA Ruta script is defined by the following syntax.

Scri pt -> PackageDecl arati on? G obal Statenents Statenents
PackageDecl arati on -> "PACKAGE' Dottedldentifier ";"

d obal St at ment s -> d obal St at ement *

Gd obal St at nent -> ("SCRI PT* | "ENGJ NE")

Dott edl dentifier2 ";"
| Umafitlnmport | Inport Statenent
U mafitlnmport -> "U MAFI T" Dottedldentifier2
("(" Dottedldentifier2
(COWA Dottedldentifier2)+ ")")?;
St at enent s -> Statenent*
St at enent -> Declaration | Variabl eDeclaration
| Bl ockDecl aration | SinpleStatenment

Comments are excluded from the syntax definition. Comments start with "//" and always go to the
end of theline.

Syntax of import statements:

I nport Statenment -> (InportType | |nportPackage | |nportTypeSystem

I mport Type -> "I MPORT" Type ("FROM' Typesysten)?
("AS" Alias)?
| mpor t Package -> "| MPORT" "PAKAGE' Package ("FROM' Typesystem?

("AS" Alias)?

I mport TypeSystem -> "| MPORT" "PACKAGE' "*" "FROM' TypeSystem ("AS" Alias)?
| "I MPORT" "*" "FROM' Typesystem
| "TYPESYSTEM' Typesystem

Type -> Dottedldentifier
Package -> Dottedldentifier
TypeSyst em -> Dottedldentifier2
Alias -> ldentifier

Example beginning of a UIMA Rutafile:

PACKAGE ui na. r ut a. exanpl e;

/1 inport the types of this type system
/1 (located in the descriptor folder -> types folder)
I MPORT * FROM types. Bi bt exTypeSyst em

SCRI PT ui na. rut a. exanpl e. Aut hor;

SCRI PT uima. ruta.exanple.Title;
SCRI PT ui ma. rut a. exanpl e. Year;

Syntax of declarations:

Decl arati on -> "DECLARE" (AnnotationType)? ldentifier ("," ldentifier )*

Apache UIMA Ruta Language 27



Syntax

| "DECLARE" AnnotationType? Identifier ( "("
Feat ureDecl aration ")" )?

Feat ureDecl aration -> ( (AnnotationType | "STRING' | "INT" | "FLOAT"
"DOUBLE" | "BOOLEAN') ldentifier) )+
Vari abl eDecl aration -> (("TYPE" ldentifier ("," ldentifier)*
("=" AnnotationType)?)
| ("STRING' ldentifier ("," Identifier)*
("=" StringExpression)?)
| (("INT" | "DOUBLE" | "FLQAT") Identifier
("," ldentifier)* ("=" Nunber Expression)?)
| ("BOCLEAN' ldentifier ("," ldentifier)*
("=" Bool eanExpr essi on) ?)

| (" ANNOTATI ON' Identifier("="AnnotationExpression)?)
| ("WORDLI ST" Identifier ("=" WrdLi st Expression
| StringExpression)?)
| ("WORDTABLE" Identifier ("=" WrdTabl eExpression
| StringExpression)?)
| ("TYPELI ST" Identifier ("=" Typeli st Expression)?)
| ("STRINGLI ST" Identifier
("=" StringLi st Expression)?)
| (("INTLIST" | "DOUBLELIST" | "FLQATLIST")
Identifier ("=" NumberlListExpression)?)
| ("BOOLEANLI ST" Identifier
("=" Bool eanLi st Expr essi on) ?))
| (" ANNOTATI ONLI ST" Identifier
("=" Annotati onLi st Expr essi on) ?)
Annot ati onType -> Basi cAnnot ati onType | decl aredAnnot ati onType
Basi cAnnot ati onType -> ('COLON | 'SW | 'MARKUP' | "PERICD | 'CW| 'NUM
| "QUESTION | 'SPECIAL" | 'CAP' | ' COMVA
| "EXCLAVATION | 'SEMCOLON | 'NBSP'| 'AW' | ' '
| 'SENTENCEEND | 'W | 'PM | "ANY' | 'ALL'
| *SPACE | 'BREAK)
Bl ockDecl arati on -> "BLOCK" "(" ldentifier ")" Rul eEl ement WthCA
"{" Statenents "}"
acti onDecl arati on -> "ACTION' Identifier "(" ("VAR'? VarType

Identifier)? ("," "VAR'? VarType |dentifier)*")"
"=" Action ( "," Action)* ";"

condi tionDecl aration-> "CONDI TION' Identifier "(" ("VAR'? Var Type
Identifier)? ("," "VAR'? VarType ldentifier)*")"
“=" Condition ( "," Condition)* ";"

Syntax of statements and rule elements:

Si npl eSt at ement -> Sinpl eRul e | RegExpRul e | ConjunctRul es
| Docurment Acti onRul e
Si npl eRul e -> Rul eEl enents ";"
RegExpRul e -> StringExpression "->" G oupAssi gnnent
("," GoupAssignnent)* ";"
Conj unct Rul es -> Rul eEl ements ("% Rul eEl ements)+ ";"
Docunent Act i onRul e -> Actions ";"
G oupAssi gnnment -> TypeExpr essi on
| Nunber Epxressi on "=" TypeExpression
Rul eEl enent s -> Rul eEl enent +
Rul eEl enent -> (ldentifier ":")? "@?

Rul eEl enent Type | Rul eEl enentLiteral

Rul eEl enent Conposed | Rul eEl enent W | dCard
Rul eEl enent Opt i onal
Annot ati onTypeExpr Opti onal Rul eEl ement Par t

Rul eEl enent Type ->

Rul eEl enent W t hCA -> Annotati onTypeExpr ("{" Conditions?
Actions? "}")?

Annot ati onTypeExpr ->

(TypeExpressi on | Annot ati onExpressi on

TypelLi st Expressi on | Annot ati onLi st Expr essi on)

28

Apache UIMA Ruta Language

UIMA RutaVersion 3.2.0



Rule elements and their matching order

(Qperator)? Expression ("{" Conditions "}")?

Feat ur eiat chExpr essi on -> TypeExpression ( "." Feature)+

( Operator (Expression | "null"))?
Rul eEl enent Li t er al -> SinpleStringExpression Optional Rul eEl ement Part
Rul eEl enent Conposed ->"(" RuleElement ("&" Rul eElement)+ ")"

| "(" RuleElement ("|" RuleElenent)+ ")"

| "(" Rul eEl emrents ")"
Opt i onal Rul eEl enent Par t

Opti onal Rul eEl ement Part-> QuantifierPart? ("{" Conditions? Actions? "}")?
InlinedRul es?

I nlinedRul es -> ("<-" "{" SinpleStatement+ "}")*
("->" "{" SinpleStatement+ "}")*

Rul eEl enent W | dCard -> "#("{" Conditions? Actions? }")? InlinedRul es?
Rul eEl enent Opt i onal -> " _"("{" Conditions? Actions? }")? InlinedRules?
QuantifierPart S T I A I I A A

| "[" NunberExpression "," NunberExpression "]"

| "[" NunmberExpression "," NunberExpression "]?"
Condi ti ons -> Condition ( "," Condition )*
Acti ons ->"->" (ldentifier ":")? Action

("," (ldentifier ":")? Action)*

Since each condition and each action has its own syntax, conditions and actions are described
in their own section. For conditions see Section 2.7, “Conditions’ [41] , for actions

see Section 2.8, “Actions’ [52]. The syntax of expressionsis explained in Section 2.6,
“Expressions’ [37].

It isaso possible to use specific expression asimplicit conditions or action additionally to the set
of available conditions and actions.

Condi tion -> Bool eanExpressi on | FeatureMat chExpression
Action -> TypeExpressi on | FeatureAssi gnment Expressi on
| Vari abl eAssi gnnent Expr essi on

Identifier:

Dot t edl denti fi er -> Jldentifier ("." Identifier)*

Dot t edl dentifier2 -> ldentifier (("."["-") ldentifier)?*
Identifier -> Jletter (letter|digit)*

2.2. Rule elements and their matching order

If not specified otherwise, then the UIMA Ruta rules normally start the matching process with their
first rule element. Thefirst rule element searches for possible positions for its matching condition
and then will advise the next rule element to continue the matching process. For that reason, writing
rulesthat contain afirst rule element with an optional quantifier is discouraged and will result in
ignoring the optional attribute of the quantifier.

The starting rule element can also be manually specified by adding “@” directly in front of the
matching condition. In the following example, the rule first searches for capitalized words (CW)
and then checks whether thereis a period in front of the matched word.

PERI CD @W

This functionality can also be used for rulesthat start with an optional rule element by manually
specifying alater rule element to start the matching process.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 29



Rule elements and their matching order

The choice of the starting rule element can greatly influence the performance speed of the

rule execution. This circumstance isillustrated with the following example that contains two
rules, whereas already an annotation of the type “LastToken” was added to the last token of the
document:

ANY Last Token;
ANY @.ast Token;

The first rule matches on each token of the document and checks whether the next annotation is
the last token of the document. Thiswill result in many index operations because all tokens of the
document are considered. The second rule, however, matches on the last token and then checks if
thereisany token in front of it. This rule, therefore, considers only one token.

The UIMA Rutalanguage provides also a concept for automatically selecting the starting rule
element called dynamic anchoring. Here, a simple heuristic concerning the position of the rule
element and the involved typesis applied in order to identify the favorable rule element. This
functionality can be activated in the configuration parameters of the analysis engine or directly in
the script file with the DY NAMICANCHORING action.

A list of rule elements normally specifies a sequentia pattern. The ruleis able to match if the first
rule element successfully matches and then the following rule element at the position after the
match of thefirst rule element, and so on. There are three language constructs that break up that
sequential matching: “&”, “|” and “%". A composed rule element where al inner rule elements are
linked by the symbol “&” matches only if all inner rule elements successfully match at the given
position. A composed rule element with inner rule elements linked by the symbol “|" matchesiif
one of theinner rule element successfully matches. These composed rule elements therefore specify
aconjunction (“and”) and adisjunction (“or”) of its rule element at the given position. The symbol
“9%" specifies adifferent use case. Here, rules themselves are linked and they are only ableto fire if
each one of the linked rules successfully matched. In contrast to “&”, this linkage of rule elements
does not introduce constraints for the matched positions. In the following, afew examples of these
three language constructs are given.

(Token. posTag=="DET" & Lemma. val ue=="t he");

Thisruleisfulfilled, if thereis atoken whose feature “posTag” hasthe value “DET” and an
annotation of the type “Lemma’ whose feature “value’ has the value “the”. Both rule elements
need to be fulfilled at the same position.

NUM (W REGEXP("Peter") -> Name} & (ANY CW PARTOF(Nane)}));

This rule matches on anumber and then validates if the next word is “Peter” and if next but one
token is capitalized and part of an annotation of the type “Name”. If al rule elements successfully
matched, then a new annotation of the type “Name” will be created covering the largest match of
the linked rule elements. In this example, the new annotation covers a so the token after the word
“Peter” even if the actions was specified at the rule element with the smaller match.

((WREGEXP("Peter")} CW | ("M" PERIOD CW){-> Nane};

In this example, an annotation of the type “Name” will be created for the token “Peter” followed by
a capitalized word or the word “Mr” followed by a period and a capitalized word.

(Animal ((COWA | "and") Animal)+){-> Ani mal Enun};

30

Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Basic annotations and tokens

This rule annotates enumerations of animal annotations whereas each animal annotation is
separated by either acomma or the word “and”.

BLOCK( f or Each) Sent ence{}{
CW NUM % SW NUM - > MARK( Found, 1, 2)};
}

Here, annotations of the type “Found” are created if a sentence contains a capitalized word
followed by a number and a small written word followed by a number regardless of where these
annotations occur in the sentence.

2.3. Basic annotations and tokens

The UIMA Ruta system uses a JFlex lexer to initially create a seed of basic token annotations.
These tokens build a hierarchy shown in Figure 2.1, “Basic token hierarchy ” [31]. The

“ALL" (green) annotation is the root of the hierarchy. ALL and the red marked annotation

types are abstract. This means that they are actually not created by the lexer. An overview of

these abstract types can be found in Table 2.1, “ Abstract annotations’ [32]. The leafs of the
hierarchy (blue) are created by the lexer. Each leaf isan own type, but also inherits the types of the
abstract annotation types further up in the hierarchy. The leaf types are described in more detail

in Table 2.2, “ Annotations created by lexer” [32]. Each text unit within an input document

belongs to exactly one of these annotation types.

ALL
AMP | NUM | [ specia
| nBsp | | BREAK || sPACE | [sw | [cw ]| [cap
coMMma | | colon | | semicolon |
| exclamation | | periop | [ quesTion

Figure 2.1. Basic token hierarchy

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 31



Quantifiers

Table 2.1. Abstract annotations

Annotation Parent Description

ALL - parent type of all tokens

ANY ALL all tokens except for markup

w ANY all kinds of words

PM ANY all kinds of punctuation marks

WS ANY all kinds of white spaces

SENTENCEEND | PM all kinds of punctuation marks that indicate the end of a

sentence
Table 2.2. Annotations created by lexer
Annotation Parent Description Example

MARKUP ALL HTML and XML <p class="Headline">
elements

NBSP SPACE non breaking space "

AMP ANY ampersand expression | &amp;

BREAK ws line break \n

SPACE WS spaces

COLON PM colon

COMMA PM comma ,

PERIOD SENTENCEEND period

EXCLAMATION SENTENCEEND exclamation mark !

SEMICOLON PM semicolon ;

QUESTION SENTENCEEND guestion mark ?

SW w lower case work annotation

Ccw W work starting with one | Annotation
capitalized letter

CAP W word only containing | ANNOTATION
capitalized letters

NUM ANY sequence of digits 0123

SPECIAL ANY all other tokens and /
symbols

2.4. Quantifiers

Apache UIMA Ruta Language

UIMA RutaVersion 3.2.0




* Star Greedy

2.4.1. * Star Greedy

The Star Greedy quantifier matches on any amount of annotations and evaluates always true. Please
mind that arule element with a Star Greedy quantifier needs to match on different annotations as
the next rule element. Examples:

I nput : smal|l Big Big Big smal
Rul e: Cw

Matched: Big Big Big

Mat ched: Big Big

Mat ched: Big

2.4.2. *? Star Reluctant

The Star Reluctant quantifier matches on any amount of annotations and eval uates always true, but
stops to match on new annotations, when the next rule element matches and evaluates true on this
annotation. Examples:

I nput : 123 456 small small Big
Rul e: W? CW

Mat ched: small small Big

Mat ched: small Big

Mat ched: Big

The last match “Big” can be problematic using different typesif the rule starts matching with the
first rule element.

2.4.3. + Plus Greedy

The Plus Greedy quantifier needs to match on at least one annotation. Please mind that arule
element after arule element with a Plus Greedy quantifier matches and eval uates on different
conditions. Examples:

I nput : 123 456 small small Big
Rul e: SW+

Mat ched: small small

Mat ched: smal |

2.4.4. +? Plus Reluctant

The Plus Reluctant quantifier has to match on at least one annotation in order to evaluate true, but
stops when the next rule element is able to match on this annotation. Examples:

I nput : 123 456 small small Big
Rul e: W? CW

Mat ched: small small Big
Matched: small Big

2.4.5. ? Question Greedy

The Question Greedy quantifier matches optionally on an annotation and therefore always
evaluates true. Examples:

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 33



?? Question Reluctant

I nput : 123 456 small Big small Big
Rul e: SW CwWp SW
Mat ched: small Big snall

2.4.6. ?? Question Reluctant

The Question Reluctant quantifier matches optionally on an annotation, if the next rule element
does not match on the same annotation and therefore always evaluates true. Examples:

I nput : 123 456 small Big small Big
Rul e: SW CwWe? SwW
Mat ched: small Big snall

2.4.7. [x,y] Min Max Greedy

The Min Max Greedy quantifier hasto match at least x and at most y annotations of its rule element
to evaluate true. Examples:

I nput : 123 456 small Big small Big
Rul e: SWCW 1, 2] sw
Mat ched: small Big snall

2.4.8. [X,y]? Min Max Reluctant

The Min Max Greedy quantifier has to match at least x and at most y annotations of its rule element
to evaluate true, but stops to match on additional annotations, if the next rule element isableto
match on this annotation. Examples:

I nput : 123 456 small Big Big Big small Big
Rul e: SWCW 2, 100] ? SW
Mat ched: small Big Big Big small

2.5. Declarations

There are three different kinds of declarationsin the UIMA Ruta system: Declarations of types
with optional feature definitions, declarations of variables and declarations for importing external
resources, further UIMA Ruta scripts and UIMA components such as type systems and analysis
engines.

2.5.1. Types

Type declarations define new kinds of annotation types and optionally their features.

2.5.1.1. Example:

DECLARE Si npl eTypel, SinpleType2; // <- two new types with the parent
/1 type "Annotation"
DECLARE Parent Type NewType (SonmeType featurel, |INT feature2);
/1 a new type "NewType" with parent type "Parent Type" and two features

Attention: Types with features need a parent type in their declarations. If no special parent typeis
requested, just use type Annotation as default parent type.

34 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Variables

2.5.2. Variables

Variable declarations define new variables. There are 12 kinds of variables:
» Typevariable: A variable that represents an annotation type.
» Typelist variable: A variable that represents alist of annotation types.
* Integer variable: A variable that represents an integer.
* Integer list variable: A variable that represents alist of integers.
» Float variable: A variable that represents a floating-point number.

» Float list variable: A variable that represents alist of floating-point numbersin single
precision.

» Doublevariable: A variable that represents a floating-point number.

» Doublelist variable: A variable that represents alist of floating-point numbersin double
precision.

» String variable: A variable that represents a string.

» String list: A variable that represents alist of strings.

» Boolean variable: A variable that represents a bool ean.

» Boolean list variable: A variable that represents alist of booleans.
» Annotation variable: A variable that represents an annotation.

» Annotation list variable: A variable that represents alist of annotations.

2.5.2.1. Example:

TYPE newTypeVari abl e;

TYPELI ST newTypelLi st ;

I NT newl nt eger Vari abl e;

I NTLI ST new nt Li st ;

FLOAT newrl oat Vari abl e;

FLOATLI ST newFl oat Li st ;

DOUBLE newDoubl eVari abl e;

DOUBLELI ST newDoubl elLi st ;

STRI NG newSt ri ngVari abl e;

STRI NGLI ST newStri nglLi st ;

BOOLEAN newBool eanVari abl e;
BOOLEANLI ST newBool eanlLi st ;
ANNOTATI ON newAnnot at i onVari abl e;
ANNOTATI ONLI ST newAnnot at i onLi st ;

2.5.3. Resources

There are two kinds of resource declarations that make external resources available in the UIMA
Ruta system:

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language



Scripts

o List: A list represents anormal text file with an entry per line or a compiled tree of aword
list.

» Table: A table represents a comma separated file.

2.5.3.1. Example:

WORDLI ST | i st Name = ' someWordLi st.txt';
WORDTABLE t abl eNane = ' soneTabl e. csv' ;

2.5.4. Scripts

Additional scripts can be imported and reused with the CALL action. The types of the imported
rules are also available so that it is not necessary to import the Type System of the additional rule
script.

2.5.4.1. Example:

SCRI PT my. package. Anot her Script; // "AnotherScript.ruta" in the
/| package "ny. package"
Docunent { - >CALL( Anot her Script)}; // <- rule executes "AnotherScript.ruta"

2.5.5. Components

There are three kinds of UIMA components that can be imported in a UIMA Ruta script:

» Type System (IMPORT or TYPESY STEM): includes the types defined in an external type
system. Y ou can select which types or packages to import from a type system and how to
dliasthem. If use IMPORT statements, consider enabling strictlmports.

» Analysis Engine (ENGINE): loads the given descriptor and creates an external analysis
engine. The descriptor must be located in the descriptor paths. The type system needed for
the analysis engine has to be imported separately. Please mind the filtering setting when
calling an external analysis engine.

* Analysis Engine (UIMAFIT): loads the given class and creates an external analysis engine.
Please mind that the implementation of the analysis engine needs to be available. The
type system needed for the analysis engine has to be imported separately. Please mind the
filtering setting when calling an external analysis engine.

2.5.5.1. Type System Example:

/1 lmports all the types from "External TypeSystem xni "
TYPESYSTEM ny. package. Ext er nal TypeSyst em
I MPORT * FROM ny. package. Ext er nal TypeSyst em

/1 Inport my.package. SomeType from "External TypeSystem xm "
| MPORT ny. package. SoneType FROM ny. package. Ext er nal TypeSyst em

/1 Inport my.package. SomeType fromthe typesystem available to
/1 the CAS at runtinme. This can be useful when typesystens are
/1 | oaded by uimaFI T

I MPORT ny. package. SoneType;

36 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Expressions

/1 1nmport ny.package. SoneType from "External TypeSystem xm "
/1 and alias it to T1
I MPORT ny. package. SomeType FROM ny. package. Ext er nal TypeSyst em AS T1;

/1 Inport all types in my.package from "External TypeSystem xm "
| MPORT PACKAGE ny. package FROM ny. package. Ext er nal TypeSyst em

/1 Inport package ny.package from "External TypeSystem xm "
/1 and alias it to pl (pl. SomeType can now be used)
| MPORT PACKAGE ny. package FROM ny. package. Ext er nal TypeSystem AS pl;

/1 Inport all packages from "External TypeSystem xm " and alias themto p2
| MPORT PACKAGE * FROM ny. package. Ext er nal TypeSyst em AS p2;

2.5.5.2. Analysis Engine Example:

ENG NE ny. package. Ext er nal Engi ne; // <- "External Engi ne.xm " in the
/1 "nmy.package" package (in the descriptor folder)
U MAFI T my. i nmpl emrent ati on. Anot her Engi ne;

Docunent { - >RETAI NTYPE( SPACE, BREAK) , CALL( Ext er nal Engi ne) };
/1 calls External Engi ne, but retains white spaces
Docunent { - > EXEC( Anot her Engi ne, {SoneType})};

2.6. Expressions

UIMA Ruta provides six different kinds of expressions. These are type expressions, annotations
expressions, number expressions, string expressions, boolean expressions and list expressions.

Definition:

Rut aExpression ->  TypeExpression | Annotati onExpressi on
| StringExpression | Bool eanExpression
| Nunber Expression | ListExpression

2.6.1. Type Expressions

UIMA Ruta provides several kinds of type expressions.

1. Declared annotation types (see Section 2.5.1, “ Types’ [34] ) also including any types
present in the type system of the CAS or defined in imported type systems.

2. Type variables (see Section 2.5.2, “Variables’ [35] ).

3. Type of an annotation expression (see Section 2.6.7, “ Feature Expressions’ [41] ).

2.6.1.1. Definition:

TypeExpression -> AnnotationType | TypeVariable
| Annotati onExpression.type

2.6.1.2. Examples:

DECLARE Aut hor; // Author defines a type, therefore it is
/1 a type expression

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 37



Annotation Expressions

TYPE typeVar; /1 type variable typeVar is a type expression
Docunent { - >ASSI G\(t ypeVar, Author)};

e:Entity{-> e.type}; // the dot notation type refers to the type
/1 of the anotation stored in the label a. In this exanple,
/1 this type expression refers to the type Entity or a specific
/1 subtype of Entity.

2.6.2. Annotation Expressions

UIMA Ruta provides several kinds of annotation expressions.
1. Annotation variables (see Section 2.5.2, “Variables’ [35] ).

2. Label expressions storing matched annotations (see Section 2.12, “Label
expressions’ [71] ). Label expressions are on-the-fly defined (local) variablesin the
context of arule.

3. Annotation implicit referenced by atype expression in the match context (see Section 2.6.1,
“Type Expressions’ [37] ).

4. Annotations stored in features of other annotations. (see Section 2.6.7, “ Feature
Expressions’ [41] ).

2.6.2.1. Definition:

Annot ati onExpression -> AnnotationVariable | Label Expression
| TypeExpression | FeatureExpression

2.6.2.2. Examples:

ANNOTATI ON anno; // a variable declaration for storing an annotati on.
e:Entity; // |abel expression e stored the annotati on matched by the

/1 rule elenent with the matching condition Entity.
er: Enpl Rel ation{-> er.enpl oyer = Enployer}; // the type expression

/1 Enmployer inplicitly refers to annotations of the

/1 type Enployer in the context of the Enpl Rel ati on natch.
e: Enpl Rel ati on. enpl oyer; // this feature expression represents the

/1 annotation stored in the feature enpl oyer.

2.6.3. Number Expressions

UIMA Ruta provides several possibilities to define number expressions. As expected, every
number expression evaluates to a number. UIMA Ruta supports integer and floating-point numbers.
A floating-point number can be in single or in double precision. To get a complete overview, have
alook at the following syntax definition of number expressions.

2.6.3.1. Definition:

Nurber Expr essi on -> Addi ti veExpressi on
Addi ti veExpr essi on -> MultiplicativeExpression ( ( "+" | "-" )
Mul tiplicativeExpression )*
Mul ti plicativeExpression -> SinpleNunber Expression ( ( "*" | "/" | "% )

Si npl eNunber Expr essi on ) *

38 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



String Expressions

| ( "EXP" | "LOGN' | "SIN' | "COS" | "TAN' )
"(" Number Expression ")"
Si npl eNunrber Expr essi on ->"-"? ( DecimalLiteral | FloatingPointLiteral

| NumberVariable) | "(" Number Expression ")"
Deci nmal Li t er al -> ("0 | "1'.."9" Digit*) IntegerTypeSuffix?
I nt eger TypeSuf fi x -> ("')L)
Fl oati ngPointLiteral -> Digit+ '.' Digit* Exponent? FloatTypeSuffix?

| '.'" Digit+ Exponent? Float TypeSuffix?
| Di gi t + Exponent Fl oat TypeSuffi x?
| Di git+ Exponent ? Fl oat TypeSuffi x

Fl oat TypeSuf fi x -> ("f'"|'F|'d|'D)
Exponent ->('e'"|'E') ("+'|'-")? Digit+
Digit -> ('0'".."9")

For more information on number variables, see Section 2.5.2, “Variables’ [35] .

2.6.3.2. Examples:

98 /1 a integer nunber literal

104 // a integer nunber literal

170. 02 /] a floating-point nunber |iteral
1.0845 // a floating-point nunber literal

I NT intVari;
I NT intVar2;

Document { - >ASSI GN\(i nt Var1, 12 * intVarl - SIN(intVar2))};

2.6.4. String Expressions

There are two kinds of string expressionsin UIMA Ruta

1. String literals: String literals are defined by any sequence of characters within quotation
marks.

2. String variables (see Section 2.5.2, “Variables’ [35] )

2.6.4.1. Definition:

Stri ngExpressi on -> Si npl eSt ri ngExpr essi on
Si npl eStri ngExpression -> StringLiteral ("+" StringExpression)*
| StringVariable

2.6.4.2. Example:

STRING strVar; // define string variable
/1 add prefix "strLiteral" to variable strVar
Docunent { - >ASSI GN(strVar, "strLiteral" + strVar)};

2.6.5. Boolean Expressions

UIMA Ruta provides several possibilities to define boolean expressions. As expected, every
boolean expression evaluates to either true or false. To get a complete overview, have alook at the
following syntax definition of boolean expressions.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 39



List Expressions

2.6.5.1. Definition:

Bool eanExpr essi on -> ConposedBool eanExpr essi on
| Si npl eBool eanExpr essi on
ConposedBool eanExpressi on -> Bool eanConpare | Bool eanTypeExpr essi on
| Bool eanNunber Expr essi on | Bool eanFuncti on

Si npl eBool eanExpr essi on -> Bool eanLiteral | Bool eanVari abl e
Bool eanConpar e -> Sinpl eBool eanExpression ( "==" | "I=")

Bool eanExpr essi on
Bool eanTypeExpr essi on -> TypeExpression ( "==" | "!=") TypeExpression
Bool eanNunber Expression -> "(" NunberExpression ( "<" | "<=" | ">"

| ">=" | "==" | "!="") NunberExpression ")"
Bool eanFuncti on -> XOR "(" Bool eanExpression "," Bool eanExpression ")"
Bool eanLi ter al -> "true" | "false"

Boolean variables are defined in Section 2.5.2, “Variables’ [35] .

2.6.5.2. Examples:

Docunent { - >ASSI G\( bool Var, false)};

The boolean literal 'false' is assigned to boolean variable bool Var.

Docunent { - >ASSI G\( bool Var, typeVar == Author)};

If the type variable typeVar represents annotation type Author, the boolean type expression
evaluates to true, otherwise it evaluates to false. The result is assigned to boolean variable boolVar.

Docunent { - >ASSI G\( bool Var, (intVar == 10))};

This rule shows a boolean number expression. If the value in variable intVar is equal to 10, the
boolean number expression evaluates to true, otherwise it evaluatesto false. The result is assigned
to boolean variable boolVar. The brackets surrounding the number expression are necessary.

Docunent { - >ASSI G\( bool eanVar 1, bool eanVar2 == (10 > intVar))};

This rule shows a more complex boolean expression. If the value in variable intVar is equa to 10,
the boolean number expression evaluates to true, otherwise it evaluatesto false. The result of this
evaluation is compared to booleanVar2. The end result is assigned to boolean variable boolVarl.
Realize that the syntax definition defines exactly this order. It is not possible to have the boolean
number expression on the left side of the complex number expression.

2.6.6. List Expressions

List expression are arather simple kind of expression.

2.6.6.1. Definition:

Li st Expression ->  WrdLi st Expression | WrdTabl eExpressi on
| TypelLi st Expression | AnnotationLi st Expression
| NunberLi st Expression | StringListExpression
| Bool eanLi st Expr essi on

Wor dLi st Expr essi on -> RessourcelLiteral | WordListVariable

40 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Feature Expressions

Wor dTabl eExpr essi on ->
TypeLi st Expr essi on ->

Nurber Li st Expr essi on ->

Ressourceliteral | WrdTabl eVari abl e
TypelLi st Vari abl e
| "{" TypeExpression (","

IntListVariable | FloatlListVariable

TypeExpression)* "}"

| Doubl eLi st Vari abl e
| "{" Nunber Expression
("," Nunber Expression)* "}"
StringLi stVari abl e
| "{" StringExpression
("," StringExpression)* "}"
Bool eanLi st Expressi on -> Bool eanLi st Vari abl e
| "{" Bool eanExpression
("," Bool eanExpression)* "}"
Annot ati onLi st Expression -> AnnotationLi stVari abl e
| "{" AnnotationExpression
("," AnnotationExpression)* "}"

StringLi st Expressi on ->

A ResourceL iteral is something like 'folder/file.txt' (Attention: Use single quotes).

List variables are defined in Section 2.5.2, “Variables’ [35].

2.6.7.

Feature Expressions

Feature expression can be used in different situations, e.g., for restricting the match of arule
element, as an implicit condition or as an implicit action.

Feat ur eExpr essi on Dot t edl denti fi er

Feat ur eiat chExpr essi on

-> TypeExpression "."

-> Feat ur eExpr essi on
("==t o tEEr e | ot | e
Expr essi on

Feat ur eAssi gnnent Expr essi on -> Feat ur eExpression "="

">y

Expr essi on

Ruta allows the access of two special attributes of an annotation with the feature notation: The
covered text of an annotation can be accessed as a string expression and the type of an annotation
can be accessed as an type expression.

The covered text of an annotation can be referred to with "coveredText" or "ct". The latter oneis
an abbreviation and returns the covered text of an annotation only if the type of the annotation does
not define afeature with the name "ct". The following example creates an annotation of the type
TypeA for each word with the covered text "A".

Wct == "A" {-> TypeA};

The type of an annotation can be referred to with "type". The following example creates an
annotation of the type TypeA for each pair of ANY annotation.

(al: ANY a2: ANY){al.type == a2.type -> TypeA};

2.7. Conditions

2.7.1. AFTER

The AFTER condition evaluates true, if the matched annotation starts after the beginning of an
arbitrary annotation of the passed type. If alist of typesis passed, this hasto be true for at |east one
of them.

UIMA RutaVersion 3.2.0

Apache UIMA Ruta Language 41



AND

2.7.1.1. Definition:

AFTER( Type| TypeLi st Expr essi on)

2.7.1.2. Example:

OW AFTER(SW } ;

Here, the rule matches on a capitalized word, if there is any small written word previously.

2.7.2. AND

The AND condition is a composed condition and evaluates true, if all contained conditions evaluate
true.

2.7.2.1. Definition:

AND( Condi tioni, ..., Condi ti onN)

2.7.2.2. Example:

Par agr aph{ AND( PARTOR( Headl i ne) , CONTAI NS( Keywor d) )
- >MARK( | mpor t ant Headl i ne) };

In this example, a paragraph is annotated with an ImportantHeadline annotation, if it is part of a
Headline and contains a Keyword annotation.

2.7.3. BEFORE

The BEFORE condition evaluates true, if the matched annotation starts before the beginning of an
arbitrary annotation of the passed type. If alist of typesis passed, this hasto be true for at least one
of them.

2.7.3.1. Definition:

BEFORE( Type| TypeLi st Expr essi on)

2.7.3.2. Example:
CW BEFORE(SW } ;
Here, the rule matches on a capitalized word, if there is any small written word afterwards.

2.7.4. CONTAINS

The CONTAINS condition evaluates true on a matched annotation, if the frequency of the passed
type lies within an optionally passed interval. The limits of the passed interval are per default

42 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



CONTEXTCOUNT

interpreted as absolute numeral values. By passing a further boolean parameter set to true the limits
are interpreted as percental values. If no interval parameters are passed at all, then the condition
checks whether the matched annotation contains at |east one occurrence of the passed type.

2.7.4.1. Definition:

CONTAI NS( Type(, Nunber Expr essi on, Nunber Expr essi on(, Bool eanExpr essi on) ?) ?)

2.7.4.2. Example:
Par agr aph{ CONTAI NS( Keywor d) - >MARK( Keywor dPar agr aph) } ;

A Paragraph is annotated with a KeywordParagraph annotation, if it contains a Keyword
annotation.

Par agr aph{ CONTAI NS( Keywor d, 2, 4) - >MARK( Keywor dPar agr aph) } ;

A Paragraph is annotated with a KeywordParagraph annotation, if it contains between two and four
Keyword annotations.

Par agr aph{ CONTAI NS( Keywor d, 50, 100, t r ue) - >MARK( Keywor dPar agr aph) };

A Paragraph is annotated with a KeywordParagraph annotation, if it contains between 50%

and 100% Keyword annotations. Thisis calculated based on the tokens of the Paragraph.

If the Paragraph contains six basic annotations (see Section 2.3, “Basic annotations and

tokens’ [31]), two of them are part of one Keyword annotation, and if one basic annotation is

also annotated with a Keyword annotation, then the percentage of the contained Keywords is 50%.

2.7.5. CONTEXTCOUNT

The CONTEXTCOUNT condition numbers all occurrences of the matched type within the

context of a passed type's annotation consecutively, thus assigning an index to each occurrence.
Additionally it stores the index of the matched annotation in a numerical variable if oneis passed.
The condition evaluates true if the index of the matched annotation is within a passed interval. If no
interval is passed, the condition always evaluates true.

2.7.5.1. Definition:

CONTEXTCOUNT( Type(, Nunber Expr essi on, Nurber Expr essi on) ?(, Vari abl e) ?)

2.7.5.2. Example:

Keywor d{ CONTEXTCOUNT( Par agr aph, 2, 3, var)
- >MARK( SecondOr Thi r dKeywor dI nPar agr aph) } ;

Here, the position of the matched Keyword annotation within a Paragraph annotation is calculated
and stored in the variable 'var'. If the counted value lies within the interval [2,3], then the matched
Keyword is annotated with the SecondOrThirdK eywordl nParagraph annotation.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 43



COUNT

2.7.6. COUNT

The COUNT condition can be used in two different ways. In the first case (see first definition),

it counts the number of annotations of the passed type within the window of the matched
annotation and stores the amount in a numerical variable, if such avariableis passed. The condition
evauates true if the counted amount is within a specified interval. If nointerval is passed, the
condition always evaluates true. In the second case (see second definition), it counts the number

of occurrences of the passed V ariableExpression (second parameter) within the passed list (first
parameter) and stores the amount in a numerical variable, if such avariableis passed. Again, the
condition evaluates true if the counted amount is within a specified interval. If nointerval is passed,
the condition always evaluates true.

2.7.6.1. Definition:

COUNT( Type(, Nunmber Expr essi on, Nunber Expr essi on) ?(, Nunber Var i abl e) ?)

COUNT( Li st Expr essi on, Vari abl eExpr essi on
(, Nunber Expr essi on, Nunber Expr essi on) ?(, Nunber Vari abl e) ?)

2.7.6.2. Example:

Par agr aph{ COUNT( Keywor d, 1, 10, var) - >MARK( Keywor dPar agr aph) } ;

Here, the amount of Keyword annotations within a Paragraph is calculated and stored in
the variable 'var'. If one to ten Keywords were counted, the paragraph is marked with a
KeywordParagraph annotation.

Par agr aph{ COUNT( | i st, "aut hor", 5,7, var)};

Here, the number of occurrences of STRING "author" within the STRINGLIST 'list' is counted
and stored in the variable 'var'. If "author" occurs five to seven times within 'list’, the condition
evaluates true.

2.7.7. CURRENTCOUNT

The CURRENTCOUNT condition numbers all occurrences of the matched type within the whole
document consecutively, thus assigning an index to each occurrence. Additionaly, it storesthe
index of the matched annotation in anumerical variable, if oneis passed. The condition evaluates
true if the index of the matched annotation is within a specified interval. If no interval is passed, the
condition always evaluates true.

2.7.7.1. Definition:

CURRENTCOUNT( Type(, Nunber Expr essi on, Nunber Expr essi on) ?(, Vari abl e) ?)

2.7.7.2. Example:

Par agr aph{ CURRENTCOUNT( Keywor d, 3, 3, var) - >MARK( Par agr aphW t hThi r dkeywor d) } ;

44 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



ENDSWITH

Here, the Paragraph, which contains the third Keyword of the whole document, is annotated with
the ParagraphWithThirdK eyword annotation. The index is stored in the variable 'var'.

2.7.8. ENDSWITH

The ENDSWITH condition evaluates true, if an annotation of the given type ends exactly at the
same position as the matched annotation. If alist of typesis passed, this has to be true for at least

one of them.

2.7.8.1. Definition:

ENDSW TH( Type| TypeLi st Expr essi on)

2.7.8.2. Example:
Par agr aph{ ENDSW TH( SW } ;

Here, the rule matches on a Paragraph annotation, if it ends with a small written word.

2.7.9. FEATURE

The FEATURE condition compares a feature of the matched annotation with the second argument.

2.7.9.1. Definition:

FEATURE( St ri ngExpr essi on, Expr essi on)

2.7.9.2. Example:

Docunent { FEATURE( " | anguage", t ar get Language) }

This rule matches, if the feature named 'language’ of the document annotation equals the value of
the variable 'targetL anguage'.

2.7.10. IF

The IF condition evaluates true, if the contained boolean expression evaluates true.

2.7.10.1. Definition:

| F( Bool eanExpr essi on)

2.7.10.2. Example:

Par agr aph{ | F( keywor dAnount > 5) - >MARK( Keywor dPar agr aph) };

A Paragraph annotation is annotated with a KeywordParagraph annotation, if the value of the
variable 'keywordAmount' is greater than five.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 45



INLIST

2.7.11. INLIST

The INLIST condition isfulfilled, if the matched annotation islisted in a given word or string list.
If an optional agrument is given, then the value of the argument is used instead of the covered text
of the matched annotation

2.7.11.1. Definition:

I NLI ST(Wor dLi st (, Stri ngExpr essi on) ?)

I NLI ST(StringList(, StringExpression)?)

2.7.11.2. Example:

Keywor d{ | NLI ST( Speci al Keywor dLi st ) - >MARK( Speci al Keyword) };

A Keyword is annotated with the type Specia Keyword, if the text of the Keyword annotation is
listed in the word list or string list SpecialKeywordList.

Token{| NLI ST(MyLenmaLi st, Token. | enma) - >MARK( Speci al Lenma) } ;

Thisrule creates an annotation of the type SpecialLemmafor each token that provides a feature
value of the feature "lemma" that is present in the string list or word list MyLemmal ist.

2.7.12. IS

The IS condition evaluates true, if there is an annotation of the given type with the same beginning
and ending offsets as the matched annotation. If alist of typesis given, the condition evaluates true,
if at least one of them fulfills the former condition.

2.7.12.1. Definition:

| S( Type| TypeLi st Expr essi on)

2.7.12.2. Example:

Aut hor {I S( Engl i shman) - >MARK( Engl i shAut hor) };

If an Author annotation is also annotated with an Englishman annotation, it is annotated with an
EnglishAuthor annotation.

2.7.13. LAST

The LAST condition evaluatestrue, if the type of the last token within the window of the matched
annotation is of the given type.

2.7.13.1. Definition:

LAST( TypeExpr essi on)

46 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



MOFN

2.7.13.2. Example:

Docunent { LAST(CW };

Thisrulefires, if the last token of the document is a capitalized word.

2.7.14. MOFN

The MOFN condition is a composed condition. It evaluates true if the number of containing
conditions evaluating true iswithin agiven interval.

2.7.14.1. Definition:

MOFN( Nunber Expr essi on, Nunber Expr essi on, Condi tionl, ..., Condi ti onN)

2.7.14.2. Example:

Par agr aph{ MOFN( 1, 1, PARTOR( Headl i ne) , CONTAI NS( Keywor d) )
- >MARK( Headl i neXORKeywor ds) };

A Paragraph is marked as a HeadlineX ORK eywords, if the matched text is either part of aHeadline
annotation or contains Keyword annotations.

2.7.15. NEAR

The NEAR condition is fulfilled, if the distance of the matched annotation to an annotation of
the given type iswithin agiven interval. The direction is defined by a boolean parameter, whose
default value is set to true, therefore searching forward. By default this condition works on an
unfiltered index. An optional fifth boolean parameter can be set to true to get the condition being
evaluated on afiltered index.

2.7.15.1. Definition:

NEAR( TypeExpr essi on, Nunber Expr essi on, Nunber Expr essi on
(, Bool eanExpr essi on(, Bool eanExpr essi on) ?) ?)

2.7.15.2. Example:

Par agr aph{ NEAR( Headl i ne, 0, 10, f al se) - >MARK( NoHead! i ne) } ;

A Paragraph that starts at most ten tokens after a Headline annotation is annotated with the
NoHeadline annotation.

2.7.16. NOT

The NOT condition negates the result of its contained condition.

2.7.16.1. Definition:

"-"Condition

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 47



OR

2.7.16.2. Example:
Par agr aph{ - PARTO~( Headl i ne) - >MARK( Headl i ne) } ;
A Paragraph that is not part of a Headline annotation so far is annotated with a Headline annotation.

2.7.17. OR

The OR Condition is a composed condition and evaluates true, if at least one contained conditionis
evaluated true.

2.7.17.1. Definition:

OR(Conditiond,..., Condi ti onN)

2.7.17.2. Example:

Par agr aph{ OR( PARTOF( Headl i ne) , CONTAI NS( Keywor d) )
- >MARK( | mpor t ant Par agr aph) };

In this example a Paragraph is annotated with the |mportantParagraph annotation, if it isaHeadline
or contains Keyword annotations.

2.7.18. PARSE

The PARSE condition isfulfilled, if the text covered by the matched annotation or the text defined
by a optional first argument can be transformed into avalue of the given variable's type. If this

is possible, the parsed value is additionally assigned to the passed variable. For numeric values,
this conditions delegates to the NumberFormat of the locale given by the optional last argument.
Therefore, this condition parses the string “2,3” for the locale “en” to the value 23.

2.7.18.1. Definition:

PARSE( (st ri ngExpression,)? variabl e(, stringExpression)?)

2.7.18.2. Example:

NUM PARSE( var , "de") };
n: NUM PARSE( n. ct, var, "de")};

If the variable 'var' is of an appropriate numeric type for the locale "de", the value of NUM is
parsed and subsequently stored in 'var'.

2.7.19. PARTOF

The PARTOF condition is fulfilled, if the matched annotation is part of an annotation of the given
type. However, it is not necessary that the matched annotation is smaller than the annotation of the
given type. Use the (much slower) PARTOFNEQ condition instead, if thisis needed. If atypelist

48 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



PARTOFNEQ

is given, the condition evaluates true, if the former described condition for asingle typeisfulfilled
for at least one of the typesin thelist.

2.7.19.1. Definition:

PARTOR( Type| Typeli st Expr essi on)

2.7.19.2. Example:
Par agr aph{ PARTOR( Headl i ne) -> MARK(I| nport ant Par agr aph) };
A Paragraph is an ImportantParagraph, if the matched text is part of a Headline annotation.
2.7.20. PARTOFNEQ

The PARTOFNEQ condition isfulfilled if the matched annotation is part of (smaller than and
inside of) an annotation of the given type. If also annotations of the same size should be acceptable,
use the PARTOF condition. If atypelist is given, the condition evaluates true if the former
described condition is fulfilled for at least one of the typesin thelist.

2.7.20.1. Definition:

PARTOFNEQ Type| Typeli st Expr essi on)

2.7.20.2. Example:

W PARTOFNEQ( Headl i ne) -> MARK(I nportant Wrd)};

A word isan “ImportantWord”, if it is part of a headline.

2.7.21. POSITION

The POSITION condition is fulfilled, if the matched type is the k-th occurrence of this type within
the window of an annotation of the passed type, whereby K is defined by the value of the passed

NumberExpression. If the additional boolean paramter is set to false, then k counts the occurrences
of of the minimal annotations.

2.7.21.1. Definition:

PGSI TI ON( Type, Nunber Expr essi on(, Bool eanExpr essi on) ?)

2.7.21.2. Example:
Keywor d{ POSI TI ON( Par agr aph, 2) - >SMARK( SecondKeywor d) };

The second Keyword in a Paragraph is annotated with the type SecondK eyword.

Keywor d{ PCSI TI ON( Par agr aph, 2, f al se) - >MARK( SecondKeywor d) };

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 49



REGEXP

A Keyword in a Paragraph is annotated with the type SecondK eyword, if it starts at the same offset
as the second (visible) RutaBasic annotation, which normally corresponds to the tokens.

2.7.22. REGEXP

The REGEXP condition isfulfilled, if the given pattern matches on the matched annotation.
However, if astring variable is given as the first argument, then the pattern is evaluated on the
value of the variable. For more details on the syntax of regular expressions, take alook at the Java
APIL. By default the REGEXP condition is case-sensitive. To change this, add an optional boolean
parameter, which is set to true. The regular expression isinitialized with the flags DOTALL

and MULTILINE, and if the optional parameter is set to true, then additionally with the flags
CASE_INSENSITIVE and UNICODE_CASE.

2.7.22.1. Definition:

RECEXP( (StringVariable,)? StringExpression(, Bool eanExpressi on) ?)

2.7.22.2. Example:

Keywor d{ REGEXP("..") - >MARK( Snal | Keyword) };

A Keyword that only consists of two chars is annotated with a SmallK eyword annotation.

2.7.23. SCORE

The SCORE condition evaluates the heuristic score of the matched annotation. This score is set or
changed by the MARK action. The condition is fulfilled, if the score of the matched annotation is
inagiven interval. Optionally, the score can be stored in avariable.

2.7.23.1. Definition:

SCORE( Nurmber Expr essi on, Nunber Expr essi on(, Vari abl e) ?)

2.7.23.2. Example:

MaybeHeadl i ne{ SCORE( 40, 100) - >MARK( Headl i ne) };

An annotation of the type MaybeHeadline is annotated with Headline, if its score is between 40 and
100.

2.7.24. SIZE

The SIZE contition counts the number of elementsin the given list. By default, this condition
always evaluates true. When an interval is passed, it evaluates true, if the counted number of list
elements iswithin theinterval. The counted number can be stored in an optionally passed numeral
variable.

1 http://docs.oracle.com/javase/1.4.2/docs/api/javalutil /regex/Pattern.htm

50 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0


http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

STARTSWITH

2.7.24.1. Definition:

S| ZE( Li st Expr essi on(, Nunmber Expr essi on, Number Expr essi on) ?(, Vari abl e) ?)

2.7.24.2. Example:

Docurnent { SI ZE(| i st, 4, 10, var) };

Thisrulefires, if the given list contains between 4 and 10 elements. Additionally, the exact amount
isstored in the variable “var”.

2.7.25. STARTSWITH

The STARTSWITH condition evaluates true, if an annotation of the given type starts exactly at the
same position as the matched annotation. If atypelist is given, the condition evaluatestrue, if the
former istrue for at least one of the given typesin the list.

2.7.25.1. Definition:

STARTSW TH( Type| TypeLi st Expr essi on)

2.7.25.2. Example:
Par agr aph{ STARTSW TH( SW } ;

Here, the rule matches on a Paragraph annotation, if it starts with small written word.

2.7.26. TOTALCOUNT

The TOTALCOUNT condition counts the annotations of the passed type within the whole
document and stores the amount in an optionally passed numerical variable. The condition
evaluates true, if the amount is within the passed interval. If nointerval is passed, the condition
always evaluates true.

2.7.26.1. Definition:

TOTALCOUNT( Type(, Nunber Expr essi on, Nunber Expr essi on) ?(, Nunber Var i abl e) ?)

2.7.26.2. Example:

Par agr aph{ TOTALCOUNT( Keywor d, 1, 10, var) - >MARK( Keywor dPar agr aph) } ;

Here, the amount of Keyword annotations within the whole document is calculated and stored
in the variable 'var'. If one to ten Keywords were counted, the Paragraph is marked with a
KeywordParagraph annotation.

2.7.27.VOTE

The VOTE condition counts the annotations of the given two types within the window of the
matched annotation and evaluates true, if it finds more annotations of the first type.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 51



Actions

2.7.27.1. Definition:

VOTE( TypeExpr essi on, TypeExpr essi on)

2.7.27.2. Example:

Par agr aph{ VOTE( Fi r st Name, Last Nan®) };

Here, thisrulefires, if a paragraph contains more firstnames than lastnames.

2.8. Actions
2.8.1. ADD

The ADD action adds al the elements of the passed RutaExpressions to a given list. For example,

this expressions could be a string, an integer variable or alist. For a complete overview on UIMA
Ruta expressions see Section 2.6, “Expressions’ [37].

2.8.1.1. Definition:

ADD( Li st Vari abl e, ( Rut aExpr essi on) +)

2.8.1.2. Example:

Docunent { - >ADD(| i st, var)};

In this example, the variable 'var' is added to thelist 'list'.

2.8.2. ADDFILTERTYPE

The ADDFILTERTY PE action adds its arguments to the list of filtered types, which restrict the
visibility of therules.

2.8.2.1. Definition:

ADDFI LTERTYPE( TypeExpr essi on(, TypeExpr essi on) *)

2.8.2.2. Example:

Docurnent { - >ADDFI LTERTYPE(CW } ;

After applying this rule, capitalized words are invisible additionally to the previoudly filtered types.

2.8.3. ADDRETAINTYPE

The ADDFILTERTY PE action adds its arguments to the list of retained types, which extend the
visibility of therules.

52 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



ASSIGN

2.8.3.1. Definition:

ADDRETAI NTYPE( TypeExpr essi on(, TypeExpr essi on) *)

2.8.3.2. Example:

Document { - >ADDRETAI NTYPE( MARKUP) } ;

After applying this rule, markup is visible additionally to the previously retained types.

2.8.4. ASSIGN

The ASSIGN action assigns the value of the passed expression to a variable of the same type.

2.8.4.1. Definition:

ASSI G\( Bool eanVari abl e, Bool eanExpr essi on)

ASSI GN( Nunber Var i abl e, Nunber Expr essi on)

ASSI G\( St ri ngVari abl e, St ri ngExpr essi on)

ASSI G\( TypeVari abl e, TypeExpr essi on)

2.8.4.2. Example:

Docunent { - >ASSI G\N(anount, (amount/2))};
In this example, the value of the variable 'amount’ is divided in half.

2.8.5. CALL

The CALL action initiates the execution of adifferent script file or script block. Currently, only
complete script files are supported.

2.8.5.1. Definition:

CALL(Di fferentFile)

CALL( Bl ock)

2.8.5.2. Example:
Docunent { - >CALL( NanedEntities)};

Here, a script ‘NamedEntities for named entity recognition is executed.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 53



CLEAR

2.8.6. CLEAR

The CLEAR action removes al elements of the given list. If thelist wasinitialized as it was
declared, then it isreset to itsinitial value.

2.8.6.1. Definition:

CLEAR( Li st Vari abl e)

2.8.6.2. Example:

Docunent { - >CLEAR( SomeLi st) };

Thisrule clearsthelist 'SomeList'.

2.8.7. COLOR

The COLOR action sets the color of an annotation type in the modified view, if the rule hasfired.
The background color is passed as the second parameter. The font color can be changed by passing
afurther color as athird parameter. The supported colors are: black, silver, gray, white, maroon,
red, purple, fuchsia, green, lime, olive, yellow, navy, blue, agua, lightblue, lightgreen, orange, pink,
salmon, cyan, violet, tan, brown, white and mediumpurple.

2.8.7.1. Definition:

COLOR( TypeExpr essi on, Stri ngExpression(, StringExpression
(, Bool eanExpression)?)?)

2.8.7.2. Example:

Docunent { - >COLOR( Headl i ne, "red", "green", true)};

This rule colors all Headline annotations in the modified view. Thereby, the background color is
set to red, font color is set to green and al 'Headling' annotations are selected when opening the
modified view.

2.8.8. CONFIGURE

The CONFIGURE action can be used to configure the analysis engine of the given namespace
(first parameter). The parameters that should be configured with corresponding values are passed as
name-value pairs.

2.8.8.1. Definition:

CONFI GURE( Anal ysi sEngi ne(, Stri ngExpressi on = Expressi on) +)

2.8.8.2. Example:

ENG NE utils. Ht m Annot at or ;

54 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



CREATE

Docunent { - >CONFI GURE( Ht M Annot ator, "onlyContent" = false)};

The former rule changes the value of configuration parameter “onlyContent” to false and
reconfigure the analysis engine.

2.8.9. CREATE

The CREATE action issimilar to the MARK action. It also annotates the matched text fragments
with atype annotation, but additionally assigns values to a chosen subset of the type's feature
elements.

2.8.9.1. Definition:

CREATE( TypeExpr essi on(, Number Expr essi on) *
(, StringExpression = Expression)+)

2.8.9.2. Example:

Par agr aph{ COUNT( ANY, 0, 10000, cnt ) - >CREATE( Headl i ne, "si ze" = cnt)};

This rule counts the number of tokens of type ANY in a Paragraph annotation and assigns the
counted value to the int variable 'cnt'. If the counted number is between 0 and 10000, a Headline
annotation is created for this Paragraph. Moreover, the feature named 'size' of Headline is set to the
value of 'cnt'.

2.8.10. DEL

The DEL action deletes the matched text fragments in the modified view. For removing annotations
see UNMARK.

2.8.10.1. Definition:

DEL

2.8.10.2. Example:

Name{ - >DEL} ;

Thisrule deletes all text fragments that are annotated with a Name annotation.

2.8.11. DYNAMICANCHORING

The DYNAMICANCHORING action turns dynamic anchoring on or off (first parameter) and
assigns the anchoring parameters penalty (second parameter) and factor (third parameter).

2.8.11.1. Definition:

DYNAM CANCHORI NG Bool eanExpr essi on

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 55



EXEC

(, Number Expr essi on(, Nunber Expr essi on) ?) ?)

2.8.11.2. Example:

Docunent { - >DYNAM CANCHORI NG(t rue) };

The above mentioned exampl e activates dynamic anchoring.

2.8.12. EXEC

The EXEC action initiates the execution of a different script file or analysis engine on the
complete input document, independent from the matched text and the current filtering settings.
If the imported component (DifferentFile) refers to another script file, it is applied on a new
representation of the document: the complete text of the original CAS with the default filtering
settings of the UIMA Rutaanalysis engine. If it refersto an external analysis engine, thenitis
applied on the complete document. The optional, first argument isis a string expression, which
specifies the view the component should be applied on. The optional, third argument isalist of
types, which should be reindexed by Ruta (not UIMA itself).

Note: Annotations created by the external analysis engine are not accessible for UIMA

Ruta rules in the same script. The types of these annotations need to be provided in the
second argument in order to be visible to the Rutarules.

2.8.12.1. Definition:

EXEC((StringExpression,)? DifferentFile(, TypelListExpression)?)

2.8.12.2. Example:

ENG NE NanmedEntities;
Docunent { - >EXEC( NanedEnti ti es, {Person, Location})};

Here, an analysis engine for named entity recognition is executed once on the complete document
and the annotations of the types Person and Location (and all subtypes) are reindexed in UIMA

Ruta. Without this list of types, the annotations are added to the CAS, but cannot be accessed by
Rutarules.

2.8.13. FILL

The FILL action fills a chosen subset of the given type's feature elements.

2.8.13.1. Definition:

FI LL( TypeExpr essi on(, Stri ngExpressi on = Expressi on) +)

2.8.13.2. Example:

Headl i ne{ COUNT( ANY, 0, 10000, t okenCount )
->FI LL(Headl i ne, "si ze" = tokenCount)};

56 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



FILTERTYPE

Here, the number of tokens within an Headline annotation is counted and stored in variable
‘tokenCount'. If the number of tokensiswithin the interval [0;10000], the FILL action fills the
Headline's feature 'size' with the value of ‘tokenCount'.

2.8.14. FILTERTYPE

This action filters the given types of annotations. They are now ignored by rules. Expressions
are not yet supported. This action is related to RETAINTY PE (see Section 2.8.35,
“RETAINTYPE" [65]).

Note: Thevisibility of typesis calculated using threelists: A list “default” for theinitialy
filtered types, which is specified in the configuration parameters of the analysis engine,
thelist “filtered”, which is specified by the FILTERTY PE action, and the list “retained”,
which is specified by the RETAINTY PE action. For determining the actual visibility of
types, list “filtered” is added to list “default” and then all elements of list “retained” are
removed. The annotations of the typesin the resulting list are not visible. Please note that
the actions FILTERTY PE and RETAINTY PE replace al elements of the respective lists
and that RETAINTY PE overrides FILTERTY PE.

2.8.14.1. Definition:

FI LTERTYPE( ( TypeExpr essi on(, TypeExpressi on)*))?

2.8.14.2. Example:
Docunent { - >FI LTERTYPE( SW } ;

Thisrulefilters al small written words in the input document. They are further ignored by every
rule.

Docunent { - >FI LTERTYPE} ;

Here, the the action (without parentheses) specifies that no additional types should be filtered.

2.8.15. GATHER

This action creates a complex structure: an annotation with features. The optionally passed indexes
(NumberExpressions after the TypeExpression) can be used to create an annotation that spans the
matched information of several rule elements. The features are collected using the indexes of the
rule elements of the complete rule.

2.8.15.1. Definition:

GATHER( TypeExpr essi on(, Nunber Expr essi on) *
(, StringExpressi on = Nunmber Expr essi on) +)

2.8.15.2. Example:

DECLARE Annot ati on A;

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 57



GET

DECLARE Annot ati on B;

DECLARE Annot ati on C(Annotation a, Annotation b);
W REGEXP(" A") - >MARK( A) };

W REGEXP(" B") - >MARK(B) };

A B{-> GATHER(C, 1, 2, "a" =1, "b" = 2)};

Two annotations A and B are declared and annotated. The last rule creates an annotation C
spanning the elements A (index 1 sinceit isthefirst rule element) and B (index 2) with its features
'a set to annotation A (again index 1) and 'b' set to annotation B (again index 2).

2.8.16. GET

The GET action retrieves an element of the given list dependent on a given strategy.

Table 2.3. Currently supported strategies

Strategy Functionality

dominant finds the most occurring element

2.8.16.1. Definition:

GET(Li st Expressi on, Variable, StringExpression)

2.8.16.2. Example:

Docunent { - >GET(list, var, "domi nant")};

In this example, the element of the list 'list' that occurs most is stored in the variable 'var'.

2.8.17. GETFEATURE

The GETFEATURE action stores the value of the matched annotation's feature (first paramter) in
the given variable (second parameter).

2.8.17.1. Definition:

GETFEATURE( St ri ngExpressi on, Vari abl e)

2.8.17.2. Example:

Docunent { - >GETFEATURE( " | anguage", stringVar)};

In this example, variable 'stringVar' will contain the value of the feature language'.

2.8.18. GETLIST

This action retrieves alist of types dependent on a given strategy.

58 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



GREEDYANCHORING

Table 2.4. Currently supported strategies

Strategy Functionality
Types get all types within the matched annotation
Types.End get all typesthat end at the same offset asthe

matched annotation

Types:Begin get all typesthat start at the same offset as the
matched annotation

2.8.18.1. Definition:

GETLI ST(Li st Vari abl e, StringExpression)

2.8.18.2. Example:

Docunent { - >GETLI ST(list, "Types")};

Here, alist of al types within the document is created and assigned to list variable'list'.

2.8.19. GREEDYANCHORING

The GREEDY ANCHORING action turns greedy anchoring on or off. If the first parameter is set to
true, then start positions already matched by the same rule element will be ignored. This situation
occurs mostly for rules that start with a quantifier. The second optional parameter activates greedy
acnhoring for the complete rule. Later rule matches are only possible after previous matches.

2.8.19.1. Definition:

GREEDYANCHORI N& Bool eanExpr essi on(, Bool eanExpr essi on) ?)

2.8.19.2. Example:

Docunent { - >GREEDYANCHORI NG(true, true)};
ANY+;
CW CW

The above mentioned exampl e activates dynamic anchoring and the second rule will then only
match once since the next positions, e.g., the second token, are already covered by the first attempt.
Thethird rule will not match on capitalized word that have benn already considered by previous
matches of the rule.

2.8.20. LOG

The LOG action writes alog message.

2.8.20.1. Definition:

LOZ St ri ngExpr essi on)

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 59



MARK

2.8.20.2. Example:

Docunent { - >LOG " processed") };

This rule writes alog message with the string "processed".

2.8.21. MARK

The MARK action is the most important action in the UIMA Ruta system. It creates a new
annotation of the given type. The optionally passed indexes (NumberExpressions after the
TypeExpression) can be used to create an annotation that spanns the matched information of
several rule elements.

2.8.21.1. Definition:

MARK( TypeExpr essi on(, Nunber Expr essi on) *)

2.8.21.2. Example:

Freel i ne Paragraph{->MARK( Par agr aphAfterFreeline, 1,2)};

Thisrule matches on afree line followed by a Paragraph annotation and annotates both in a
single ParagraphAfterFreeline annotation. The two numerical expressions at the end of the mark
action state that the matched text of the first and the second rule elements are joined to create the
boundaries of the new annotation.

2.8.22. MARKFAST

The MARKFAST action creates annotations of the given type (first parameter), if an element of
the passed list (second parameter) occurs within the window of the matched annotation. Thereby,
the created annotation does not cover the whole matched annotation. Instead, it only coversthe
text of the found occurrence. The third parameter is optional. It defines, whether the MARKFAST
action should ignore the case, whereby its default valueisfalse. The optional fourth parameter
specifies a character threshold for the ignorence of the case. It is only relevant, if the ignore-case
valueis set to true. The last parameter is set to true by default and specifies whether whitespaces
in the entries of the dictionary should be ignored. For more information on lists see Section 2.5.3,
“Resources’ [35]. Additionally to external word lists, string lists variables can be used.

2.8.22.1. Definition:

MARKFAST( TypeExpr essi on, Li st Expr essi on(, Bool eanExpr essi on
(, Nurmber Expr essi on, ( Bool eanExpr essi on) ?) ?) ?)

MARKFAST( TypeExpr essi on, Stri ngLi st Expr essi on(, Bool eanExpr essi on
(, Nurber Expr essi on, ( Bool eanExpr essi on) ?) ?) ?)

2.8.22.2. Example:

WORDLI ST FirstNaneLi st = ' FirstNanes. txt';
DECLARE Fi r st Nane;

60 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



MARKFIRST

Docunent { - > MARKFAST( Fi rst Nane, FirstNaneList, true, 2)};

This rule annotates all first names listed in the list 'FirstNameL ist' within the document and ignores
the case, if the length of the word is greater than 2.

2.8.23. MARKFIRST

The MARKFIRST action annotates the first token (basic annotation) of the matched annotation
with the given type.

2.8.23.1. Definition:

MARKFI RST( TypeExpr essi on)

2.8.23.2. Example:

Docunent { - >MARKFI RST(Fi rst)};

This rule annotates the first token of the document with the annotation First.

2.8.24. MARKLAST

The MARKLAST action annotates the last token of the matched annotation with the given type.

2.8.24.1. Definition:

MARKLAST( TypeExpr essi on)

2.8.24.2. Example:

Docunent { - >MARKLAST( Last) };
This rule annotates the | ast token of the document with the annotation Last.

2.8.25. MARKONCE

The MARKONCE action has the same functionality asthe MARK action, but creates a new
annotation only, if each part of the matched annotation is not yet part of the given type.

2.8.25.1. Definition:

MARKONCE( Nunber Expr essi on, TypeExpr essi on(, Nunber Expr essi on) *)

2.8.25.2. Example:

Freel i ne Paragr aph{->MARKONCE( Par agr aphAfterFreeline, 1, 2)};

This rule matches on afree line followed by a Paragraph and annotates both in asingle
ParagraphAfterFreeline annotation, if no part is not already annotated with ParagraphAfterFreeline

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 61



MARKSCORE

annotation. The two numerical expressions at the end of the MARKONCE action state that the

matched text of the first and the second rule elements are joined to create the boundaries of the new
annotation.

2.8.26. MARKSCORE

The MARKSCORE action is similar to the MARK action. It also creates a new annotation of
the given type, but only if it is not yet existing. The optionally passed indexes (parameters after
the TypeExpression) can be used to create an annotation that spanns the matched information of
several rule elements. Additionally, a score value (first parameter) is added to the heuristic score
value of the annotation. For more information on heuristic scores see Section 2.16, “Heuristic
extraction using scoring rules’ [76] .

2.8.26.1. Definition:

MARKSCORE( Nuber Expr essi on, TypeExpr essi on(, Nunber Expr essi on) *)

2.8.26.2. Example:

Freel i ne Paragraph{->MARKSCORE( 10, Par agr aphAfterFreeline, 1, 2)};

This rule matches on afree line followed by a paragraph and annotates both in asingle
ParagraphAfterFreeline annotation. The two number expressions at the end of the mark action
indicate that the matched text of the first and the second rule elements are joined to create the

boundaries of the new annotation. Additionally, the score '10' is added to the heuristic threshold of
this annotation.

2.8.27. MARKTABLE

The MARKTABLE action creates annotations of the given type (first parameter), if an element of
the given column (second parameter) of a passed table (third parameter) occures within the window
of the matched annotation. Thereby, the created annotation does not cover the whole matched
annotation. Instead, it only covers the text of the found occurrence. Optionally the MARKTABLE
action is able to assign entries of the given table to features of the created annotation. For more
information on tables see Section 2.5.3, “Resources’ [35]. Additionally, several configuration
parameters are possible. (See example.)

2.8.27.1. Definition:

MARKTABLE( TypeExpr essi on, Nunber Expressi on, Tabl eExpression
(, Bool eanExpr essi on, Number Expr essi on,
Stri ngExpressi on, Nunber Expressi on) ?
(, StringExpressi on = Nunmber Expr essi on) +)

2.8.27.2. Example:

WORDTABLE Test Tabl e = ' Test Tabl e. csv';

DECLARE Annotation Struct(STRING first);

Docunent { - > MARKTABLE(Struct, 1, TestTable,
true, 4, ".,-", 2, "first" = 2)};

62 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



MATCHEDTEXT

In this example, the whole document is searched for al occurrences of the entries of the first
column of the given table 'TestTabl€'. For each occurrence, an annotation of the type Struct is

created and its feature first' is filled with the entry of the second column. Moreover, the case of the

word isignored if the length of the word exceeds 4. Additionally, the chars'.', ', and '-' are ignored,

but maximally two of them.

2.8.28. MATCHEDTEXT

The MATCHEDTEXT action saves the text of the matched annotation in a passed String variable.
The optionally passed indexes can be used to match the text of several rule elements.

2.8.28.1. Definition:

MATCHEDTEXT( St ri ngVari abl e(, Nunber Expr essi on) *)

2.8.28.2. Example:

Headl i ne Par agr aph{- >MATCHEDTEXT(stri ngVari abl e, 1, 2)};

The text covered by the Headline (rule element 1) and the Paragraph (rule element 2) annotation is
saved in variable 'stringVariable’.

2.8.29. MERGE

The MERGE action merges a number of given lists. The first parameter defines, if the mergeis
done as intersection (false) or as union (true). The second parameter isthe list variable that will

contain the result.

2.8.29.1. Definition:

VERGE( Bool eanExpr essi on, ListVariable, ListExpression, (ListExpression)+)

2.8.29.2. Example:

Docunent { - >MERCGE(f al se, listVar, listl, list2, list3)};

The elementsthat occur in al three lists will be placed in the list 'listVar'.

2.8.30. REMOVE

The REMOVE action removes lists or single values from a given list.

2.8.30.1. Definition:

REMOVE( Li st Vari abl e, (Argunent) +)

2.8.30.2. Example:

Docunent { - >REMOVE(| i st, var)};

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language

63



REMOVEDUPLICATE

In this example, the variable 'var' is removed from the list 'list'.

2.8.31. REMOVEDUPLICATE

This action removes all duplicates within agiven list.

2.8.31.1. Definition:

REMOVEDUPLI CATE( Li st Var i abl e)

2.8.31.2. Example:
Docunent { - >REMOVEDUPL| CATE( i st)};
Here, al duplicates within the list 'list' are removed.

2.8.32. REMOVEFILTERTYPE

The REMOVEFILTERTY PE action removes its arguments from the list of filtered types, which
restrict the visibility of the rules.

2.8.32.1. Definition:

REMOVEF| LTERTYPE( Ty peExpr essi on(, TypeExpr essi on) *)

2.8.32.2. Example:
Docunent { - >REMOVEFI LTERTYPE( W } ;
After applying thisrule, words are possibly visible again depending on the current filtering settings.

2.8.33. REMOVERETAINTYPE

The REMOVEFILTERTY PE action removes its arguments from the list of retained types, which
extend the visibility of the rules.

2.8.33.1. Definition:

REMOVERETAI NTYPE( Ty peExpr essi on(, TypeExpr essi on) *)

2.8.33.2. Example:

Docunent { - >REMOVERETAI NTYPE(W } ;

After applying this rule, words are possibly not visible anymore depending on the current filtering
settings.

64 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



REPLACE

2.8.34. REPLACE

The REPLACE action replaces the text of all matched annotations with the given StringExpression.
It remembers the modification for the matched annotations and shows them in the modified view
(see Section 2.17, “Modification” [76]).

2.8.34.1. Definition:

REPLACE( St ri ngExpr essi on)

2.8.34.2. Example:
Fi rst Nane{->REPLACE("first name")};
Thisrulereplaces all first names with the string ‘first name'.

2.8.35. RETAINTYPE

The RETAINTY PE action retains the given types. This means that they are now not ignored by
rules. Thisactionisrelated to FILTERTY PE (see Section 2.8.14, “FILTERTYPE” [57]).

Note: Thevisihility of typesis calculated using threelists: A list “default” for theinitialy
filtered types, which is specified in the configuration parameters of the analysis engine,
thelist “filtered”, which is specified by the FILTERTY PE action, and thelist “retained”,
which is specified by the RETAINTY PE action. For determining the actua visibility of
types, list “filtered” is added to list “default” and then all elements of list “retained” are
removed. The annotations of the typesin the resulting list are not visible. Please note that
the actions FILTERTY PE and RETAINTY PE replace all elements of the respective lists
and that RETAINTY PE overrides FILTERTY PE.

2.8.35.1. Definition:

RETAI NTYPE( ( TypeExpr essi on(, TypeExpressi on)*)) ?

2.8.35.2. Example:

Docunent { - >RETAI NTYPE( SPACE) } ;

Here, all spaces are retained and can be matched by rules.

Docunent { - >RETAI NTYPE} ;

Here, the the action (without parentheses) specifies that no types should be retained.

2.8.36. SETFEATURE

The SETFEATURE action sets the value of afeature of the matched complex structure.
2.8.36.1. Definition:

SETFEATURE( St ri ngExpr essi on, Expr essi on)

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 65



SHIFT

2.8.36.2. Example:

Docunent { - >SETFEATURE( " | anguage"”, "en") };

Here, the feature 'language’ of the input document is set to English.

2.8.37. SHIFT

The SHIFT action can be used to change the offsets of an annotation. The two number expressions,
which point the rule elements of the rule, specify the new offsets of the annotation. The annotations
that will be modified have to start or end at the match of the rule element of the action if the
boolean option is set to true. By default, only the matched annotation of the given type will be
modified. In either way, this means that the action has to be placed at a matching condition, which
will be used to specify the annotations to be changed.

2.8.37.1. Definition:

SHI FT( TypeExpr essi on, Nunber Expr essi on, Nunber Expr essi on, Bool eanExpr essi on?)

2.8.37.2. Example:

Aut hor{-> SHI FT(Aut hor, 1,2)} PM

In this example, an annotation of the type “Author” is expanded in order to cover the following
punctuation mark.

W STARTSW TH(FS) -> SHI FT(FS, 1, 2, true)} W MARKUP;

In this example, an annotation of the type “FS’ that consists mostly of wordsis shrinked by
removing the last MARKUP annotation.

2.8.38. SPLIT

The SPLIT action is able to split the matched annotation for each occurrence of annotation of the
given type. There are three additional parameters: The first one specifiesif complete annotations
of the given type should be used to split the matched annotations. If set to false, then even the
boundary of an annotation will cause splitting. The third (addToBegin) and fourth (addToEnd)
argument specify if the complete annotation (for splitting) will be added to the begin or end of the
split annotation. The latter two are only utilized if the first oneis set to true.. If omitted, the first
argument is true and the other two arguments are false by default.

2.8.38.1. Definition:

SPLI T( TypeExpr essi on(, Bool eanExpr essi on,
(Bool eanExpr essi on, Bool eanExpression)? )?

2.8.38.2. Example:

Sent ence{-> SPLI T(PERI OD, true, false, true)};

66 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



TRANSFER

In this example, an annotation of the type “ Sentence” is split for each occurrence of a period, which
is added to the end of the new sentence.

2.8.39. TRANSFER

The TRANSFER action creates a new feature structure and adds all compatible features of the
matched annotation.

2.8.39.1. Definition:

TRANSFER( TypeExpr essi on)

2.8.39.2. Example:

Docunent { - >5TRANSFER( LanguagesSt or age) };

Here, a new feature structure “ LanguageStorage” is created and the compatible features of the
Document annotation are copied. E.g., if LanguageStorage defined a feature named 'language’, then
the feature value of the Document annotation is copied.

2.8.40. TRIE

The TRIE action uses an external multi tree word list to annotate the matched annotation and
provides several configuration parameters.

2.8.40.1. Definition:

TRIE((String = (TypeExpression| { TypeExpr essi on, St ri ngExpr essi on,
Expression})) +, Li st Expr essi on, Bool eanExpr essi on, Nunber Expr essi on,
Bool eanExpr essi on, Number Expr essi on, St ri ngExpr essi on)

2.8.40.2. Example:

Docunent { - >TRI E("Fi rst Names. txt" = FirstName, "Conpanies.txt" = Conpany,
‘Dictionary.mw ', true, 4, false, 0, ".,-/")};

Here, the dictionary 'Dictionary.mtwl' that contains word lists for first names and companiesis used
to annotate the document. The words previously contained in the file 'FirstNames.txt' are annotated
with the type FirstName and the words in the file ‘Companies.txt' with the type Company. The

case of the word isignored, if the length of the word exceeds 4. The edit distance is deactivated.
The cost of an edit operation can currently not be configured by an argument. The last argument
additionally defines several chars that will be ignored.

Docunment { - >TRI E("Fi rst Nanes. txt" = {A "a", "first"}, "LastNames.txt" =
{B, "b", true}, "ConpleteNanes.txt" = {C, "c", 6},
listl, true, 4, false, 0, ":")};

Here, the dictionary 'listl' is applied on the document. Matches originated in dictionary
'FirstNames.txt' result in annotations of type A wheras their features 'a’ are set to first'. The other
two dictionaries create annotations of type 'B' and 'C' for the corresponding dictionaries with a
boolean feature value and ainteger feature value.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 67



TRIM

2.8.41. TRIM

The TRIM action changes the offsets on the matched annotations by removing annotations, whose
types are specified by the given parameters.

2.8.41.1. Definition:

TRI M TypeExpression ( , TypeExpression)*)

TRI M TypeLi st Expr essi on)

2.8.41.2. Example:

Keywor d{ - > TRI M SPACE) } ;

This rule removes all spaces at the beginning and at the end of Keyword annotations and thus
changes the offsets of the matched annotations.

2.8.42. UNMARK

The UNMARK action removes the annotation of the given type overlapping the matched
annotation. There are two additional configurations: If additional indexes are given, then the span
of the specified rule elements are applied, similar the the MARK action. If instead a boolean is
given as an additional argument, then all annotations of the given type are removed that start at the
matched position.

2.8.42.1. Definition:

UNMARK( Annot at i onExpr essi on)

UNMARK( Ty peExpr essi on)

UNMARK( TypeExpr essi on (, Nurmber Expr essi on) *)

UNMARK( TypeExpr essi on, Bool eanExpr essi on)

2.8.42.2. Example:

Headl i ne{ - >UNMVARK( Headl i ne) };
Here, the Headline annotation is removed.
CW ANY+? QUESTI ON{ - >UNMARK( Headl i ne, 1, 3) };

Here, all Headline annotations are removed that start with a capitalized word and end with a
guestion mark.

CW - >UNMARK( Headl i ne, true)};

Here, all Headline annotations are removed that start with a capitalized word.

68 Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



UNMARKALL

Conpl ex{ - >UNVARK( Conpl ex. i nner)};
Here, the annotation stored in the feature i nner will be removed.

2.8.43. UNMARKALL

The UNMARKALL action removes al the annotations of the given type and all of its descendants
overlapping the matched annotation, except the annotation is of at least one type in the passed list.

2.8.43.1. Definition:

UNMARKALL( TypeExpressi on, Typeli st Expressi on)

2.8.43.2. Example:
Annot at i on{- >UNMARKALL( Annot ati on, {Headline})};

Here, all annotations except from headlines are removed.

2.9. Robust extraction using filtering

Rule based or pattern based information extraction systems often suffer from unimportant fill
words, additional whitespace and unexpected markup. The UIMA Ruta System enables the
knowledge engineer to filter and to hide al possible combinations of predefined and new types of
annotations. The visibility of tokens and annotations is modified by the actions of rule elements

and can be conditioned using the complete expressiveness of the language. Therefore the UIMA
Ruta system supports a robust approach to information extraction and simplifies the creation of new
rules since the knowledge engineer can focus on important textual features.

Note: Thevisihility of typesis calculated using three lists: A list “default” for theinitialy
filtered types, which is specified in the configuration parameters of the analysis engine,
thelist “filtered” , which is specified by the FILTERTY PE action, and the list “retained”

, which is specified by the RETAINTY PE action. For determining the actual visibility of
types, list “filtered” is added to list “default” and then all elements of list “retained” are
removed. The annotations of the typesin the resulting list are not visible. Please note that
the actions FILTERTY PE and RETAINTY PE replace al elements of the respective lists
and that RETAINTY PE overrides FILTERTY PE.

If no rule action changed the configuration of the filtering settings, then the default filtering
configuration ignores whitespaces and markup. Look at the following rule:

"Dr" PERI OD CW CW

Using the default setting, this rule matches on all four lines of thisinput document:

Dr. Joachi m Baunei st er

Dr . Joachim Baunei st er

Dr. <b><i>Joachi nk/i > Baunei st er</b>
Dr . Joachi nBaunei st er

To change the default setting, usethe “FILTERTYPE” or “RETAINTY PE” action. For example
if markups should no longer be ignored, try the following example on the above mentioned input
document:

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 69



Wildcard #

Docunent { - >RETAI NTYPE( MARKUP) } ;
"Dr" PERI GD CW CW

Y ou will see that the third line of the previous input example will no longer be matched.

To filter types, try the following rules on the input document:

Docunent { - >FI LTERTYPE( PERI OD) } ;
"Dr" CWCW

Since periods are ignored here, the rule will match on all four lines of the example.

Notice that using afiltered annotation type within arule prevents this rule from being executed. Try
the following:

Docurnent { - >FI LTERTYPE( PERI OD) } ;
"Dr" PERI OD CW CW

Y ou will see that this matches on no line of the input document since the second rule uses the
filtered type PERIOD and is therefore not executed.

2.10. Wildcard #

The wildcard # is a special matching condition of arule element, which does not match itself but
uses the next rule element to determine its match. It's behavior is similar to a generic rule element
with areluctant, not restricted quantifier like ANY+? but it much more efficient since no additional
annotations have to be matched. The functionality of the wildcard isillustrated with following
examples:

PERI OD #{-> Sentence} PERI OD;

In this example, everything in between two periods is annotated with an annotation of the type
Sent ence. Thisrule is much more efficient than arule like PERI OD ANY+{ - PARTOF( PERI QD) }
PERI OD; sinceit only navigated in the index of PERIOD annotations and does not match on

all tokens. The wildcard is a normal matching condition and can be used as any other matching
condition. If the sentence should include the period, the rule would look like:

PERI OD (# PERI OD){-> Sentence};

This rule creates only annotations after a period. If the wildcard is used as an anchor of therule,
e.g., isthefirst rule element and no manual anchor is specified, then it starts to match at the
beginning of the document or current window.

(# PERI QD) {-> Sentence};
This rule creates a Sentence annotation starting at the begin of the document ending with the first

period. If the rule elements are switched, the result is quite different because of the starting anchor
of therule:

(PERI OD #){-> Sentence};

Here, one annotation of the type Sentence is create for each PERIOD annotation starting with the
period and ending at the end of the document. Currently, optional rule el ements after wildcards are
not optional.

70

Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Optional match _

2.11.

Optional match _

The optional match _ isaspecial matching condition of arule element, which does not require
any annotations or atextual span in genera to match. The functionality of the optional match is
illustrated with following examples:

PERI OD{ - > Sent enceEnd} _{-PARTOF(CW};
In this example, an annotation of the type Sent enceEnd is created for each PERI OD annotation,

if itisfollowed by something that is not part of a CW Thisis also fulfilled for the last PERI CD
annotation in a document that ends with a period.

2.12.

Label expressions

Rule elements can be extended with labels, which introduce a new local variable storing one or
multiple annotations - the annotations matched by the matching condition of the rule element. The
name of the variable is the short identifier before the colon in front of the matching condition, e.g.,
in sw. SW SWis the matching condition and swis the name of the local variable. The variable will
be assigned when the rule element tries to match (also when it fails after all) and can be utilized in
all other language elements afterwards. The functionality of the label expressionsisillustrated with
following examples:

swl: SWsw2: SW swl. end=sw2. begi n};

This rule matches on two consecutive small-written words, but matches only if thereis no spacein
between them. Label expression can also be used across Section 2.14, “Inlined rules’ [74].

2.13.

Blocks

There are different types of blocksin UIMA Ruta. Blocks aggregate rules or even other blocks and
may serve as more complex control structures. They are even able to change the rule behavior of
the contained rules.

2.13.1. BLOCK

BLOCK provides asimple control structure in the UIMA Ruta language:
1. Conditioned statements
2. Loops with restriction of the matching window
3. Procedures

Declaration of ablock:

Bl ockDecl arati on -> "BLOCK" "(" ldentifier ")" Rul eEl ement WthCA
"{" Statenments "}"
Rul eEl enent Wt hCA -> TypeExpression QuantifierPart?
"{" Conditions? Actions? "}"

A block declaration always starts with the keyword “BLOCK” , followed by the identifier of the
block within parentheses. The “RuleElementType” -element isa UIMA Rutarule that consists of
exactly one rule element. The rule element has to be a declared annotation type.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 71



BLOCK

Note: Therule element in the definition of ablock has to define a condition/action part,
even if that part isempty (“{}" ).

Through the rule element a new local document is defined, whose scope is the related block. So if
you use Docunent within ablock, this always refers to the locally limited document.

BLOCK( For Each) Par agraph{} {
Document { COUNT(CW}; // Here "Docunent” is limted to a Paragraph;
/Il therefore the rule only counts the CWannotati ons
/1 within the Paragraph

}

A block is always executed when the UIMA Rutainterpreter reaches its declaration. But a block
may also be called from another position of the script. See Section 2.13.1.3, “Procedures’ [73]

2.13.1.1. Conditioned statements

A block can use common UIMA Ruta conditions to condition the execution of its containing rules.

Examples:

DECLARE Mont h;

BLOCK( Engl i shDat es) Docunent { FEATURE("| anguage", "en")} {
Docunent { - >MARKFAST( Mont h, ' engl i shMont hNanes. txt')};
/...

}

BLOCK( Ger manDat es) Docunent { FEATURE( " | anguage", "de")} {
Docunent { - >SMARKFAST( Mont h, ' ger manMont hNames. t xt ") };
/...

}

The exampleis explained in detail in Section 1.4, “Learning by Example’ [3] .

2.13.1.2. Loops with restriction of the matching window

A block can be used to execute the containing rules on a sequence of similar text passages,
therefore representing a “foreach” like loop.

Examples:

DECLARE Sent enceW t hNoLeadi ngNP;
BLOCK( For Each) Sent ence{} {

Docunent { - STARTSW TH( NP) -> MARK( Sent enceW t hNoLeadi ngNP) };
}

The exampleis explained in detail in Section 1.4, “Learning by Example’ [3] .

This construction is especially useful, if you have a set of rules, which has to be executed
continuously on the same part of an input document. Let us assume that you have already annotated
your document with Paragraph annotations. Now you want to count the number of words within
each paragraph and, if the number of words exceeds 500, annotate it as BigParagraph. Therefore,
you wrote the following rules:

DECLARE Bi gPar agr aph;
I NT nunber O Wor ds;

72

Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



BLOCK

Par agr aph{ COUNT( W nunber Of Wor ds) } ;
Par agr aph{| F( nunber O Wrds > 500) -> MARK(Bi gPar agraph)};

Thiswill not work. The reason for thisis that the rule, which counts the number of words within
a Paragraph is executed on all Paragraphs before the last rule which marks the Paragraph as
BigParagraph is even executed once. When reaching the last rule in this example, the variable
nunber O Wor ds holds the number of words of the last Paragraph in the input document, thus,
annotating all Paragraphs either as BigParagraph or not.

To solve this problem, use a block to tie the execution of this rules together for each Paragraph:

DECLARE Bi gPar agr aph;
I NT nunber OF Wor ds;
BLOCK( | sBi g) Paragraph{} {
Document { COUNT( W nunber Of Wor ds) };
Docunent {1 F(nunber Of Wrds > 500) -> MARK(Bi gPar agraph)};

}

Since the scope of the Document is limited to a Paragraph within the block, the rule, which counts
the words is only executed once before the second rule decides, if the Paragraph is a BigParagraph.
Of course, thisis done for every Paragraph in the whole document.

2.13.1.3. Procedures

Blocks can be used to introduce procedures to the UIMA Ruta scripts. To do this, declare a block as
before. Let us assume, you want to simulate a procedure

public int count Anount Of Typesl nDocunent ( Type type){
int amount = O;
for(Token token : Docunent) {
i f(token.isType(type)){
anmount ++;
}
}

return anount;

}

public static void main() {
i nt ampbunt = count Amount O Typesl| nDocunent ( Par agr aph) ) ;
}

which counts the number of the passed type within the document and returns the counted number.
This can be done in the following way:

BOOLEAN execut eProcedure = fal se;
TYPE type;
I NT anmpunt ;

BLOCK( count Nunmber O Typesl| nDocunent) Document {| F(execut eProcedure)} {
Docunment { COUNT(type, anount)};
}

Docunent { - >ASSI G\( execut eProcedure, true)};
Docunent { - >ASSI G\(t ype, Paragraph)};
Docunent { - >CALL( MyScri pt . count Nunber O Typesl nDocunent) };

The boolean variable execut ePr ocedur e is used to prohibit the execution of the block when
the interpreter first reaches the block since thisis no procedure call. The block can be called by

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 73



FOREACH

referring to it with its name, preceded by the name of the script the block is defined in. In this
example, the script is called MyScript.ruta.

2.13.2. FOREACH

The syntax of the FOREACH block is very similar to the common BLOCK construct, but the
execution of the contained rules can lead to other results. the execution of the rulesis, however,
different. Here, all contained rules are applied on each matched annotation consecutively. In
aBLOCK construct, each rule is applied within the window of each matched annotation. The
differences can be summarized with:

1. The FOREACH does not restrict the window for the contained rules. Therules are able
to match on the complete document, or at least within the window defined by previous
BLOCK definitions.

2. The ldentifier of the FORACH block (the part within the parentheses) declares a new local
annotation variable. The match annotations of the head rule are assign to this variable for
each loop.

3. Itisexpected that the local variableis part of each rule within the FOREACH block. The
start anchor of each ruleis set to the rule element that contains the annotation as a matching
condition. If not another start anchor is defined before the variable.

4. An additional optional boolean parameter specifies the direction of the matching process.
With the default valuet r ue, the loop will start with the first annotation continuing with the
following annotations. If set to false, the loop will start with the last annotation continuing
with the previous annotations.

The following example illustrates the syntax and semantic of the FOREACH block:

FOREACH(num true) NUM}{

nun{-> Speci al Nun} CW

SW-> T5} nun{-> Speci al Nun};
}

Thefirst line specifies that the FOREACH block iterates over al annotations of the type NUM

and assigns each matched annotation to a new local variable named num The block contains two
rules. Both rules start their matching process with the rule element with the matching condition
num meaning that they match directly on the annotation match by the head rule. While the first
rule validatesif there is a capitalized word following the number, the second rule validates that the
isasmall written word before the number. Thus, this construct annotates number efficiently with
annotations of the type Speci al Numdependent on their surrounding.

2.14.

Inlined rules

A rule element can have afew optional parts, e.g., the quantifier or the curly brackets with
conditions and actions. After the part with the conditions and actions, the rule element can also
contain an optional part with inlined rules. These rules are applied in the context of the rule
element similar to the rules within a block construct: The rules will try to match within the window
specified by the current match of the rule element. There are two types of inlined rules. If the curly
brackets start with the symbol “->" | the inlined rules will only be applied for successful matches of
the surrounding rule. This behavior isvery similar to the block construct. However, there are aso
some differences, e.g., inlined rules do not specify a namespace, may not contain declarations and

74

Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Macros for conditions and actions

cannot be called by other rules. If the curly brackets start with the symbol “<-" | then the inlined
rules are interpreted as some sort of condition. The surrounding rules will only match, if one of
theinlined rules was successfully applied. A rule element may be extended with severa inlined
rule blocks of the same type. The functionality introduced by inlined rulesisillustrated with afew
examples:

Sentence{} -> {NUM-> NunBeforeWrd} W};
Sent ence{-> Sent enceW t hNunmBef or eWrd} <- {NUM W };

Thefirst rule in this example matches on each “ Sentence” annotation and applies the inlined

rule within each matched sentence. The inlined rule matches on numbers followed by aword

and annotates the number with an annotation of the type “NumBeforeWord” . The second rule
matches on each sentence and applies the inlined rule within each sentence. Note that the inlined
rule contains no actions. The rule matches only successfully on a sentence if one of theinlined rules
was successfully applied. In this case, the sentence is only annotated with an annotation of the type
“SentenceWithNumBeforeWord” , if the sentence contains a number followed by aword.

Docunent . | anguage == "en"{} -> {
PERI OD #{} <- {
COLON COLON % COMIVA COWVA;

}
PERI OD{ - > Speci al Peri od};
}

This examples combines both types of inlined rules. First, the rule matches on document
annotations with the language feature set to “en” . Only for those documents, the first inner rule
isapplied. The inner rule matches on everything between two period, but only if the text span
between the period fulfills two conditions. There must be two successive colons and two successive
commas within the window of the matched part of the wildcard. Only if these constraints are
fulfilled, then the last period is annotated with the type * Special Period” .

2.15.

Macros for conditions and actions

UIMA Ruta supports the specification of macros for conditions and action. Macros allow

the aggregation of these elements. Rule can then refer to the name of the macro in order to
include the aggregated conditions or actions. The syntax of macros is specified in Section 2.1,
“Syntax” [27] . The functionality isillustrated with the following example:

CONDI TI ON CWér PERI ODor ( TYPE t)
ACTI ON I NC(VAR I NT i, INT inc)
I NT counter = O;

ANY{ CWér PERI QDor ( Bol d) - >I NC(counter, 1)};

OR(1S(CW, | S(PERI QD) , I S(t)):
ASSI GN\(i , i +i nc);

Thefirst line in this example declares a new macro condition with the name “CWorPERIODor”
with one annotation type argument named “t” . The condition isfulfilled if the matched text is
either a CW annotation, a PERIOD annotation or an annotation of the given type t. The second
line declares a new macro action with the name “INC” and two integer arguments “i” and “inc”

. The keyword “VAR” indicated that the first argument should be treated as a variable meaning
that the actions of the macro can assign new values to the given argument. Else only the value of
the argument would be accessible to the actions. The action itself just contains an ASSIGN action,
which add the second argument to the variable given in the first argument. Therulein line 4 finally
matches on each annotation of the type ANY and validates if the matched position is either aCW,
a PERIOD or an annotation of the type Bold. If thisisthe case, then value of the variable counter
defined in line 3 isincremented by 1.

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 75



Heuristic extraction using scoring rules

2.16.

Heuristic extraction using scoring rules

Diagnostic scores are awell known and successfully applied knowledge formalization pattern for
diagnostic problems. Single known findings valuate a possible solution by adding or subtracting
points on an account of that solution. If the sum exceeds a given threshold, then the solution is
derived. One of the advantages of this pattern is the robustness against missing or false findings,
since a high number of findingsis used to derive asolution. The UIMA Ruta system tries to
transfer this diagnostic problem solution strategy to the information extraction problem. In addition
to anormal creation of a new annotation, a MARK SCORE action can add positive or negative
scoring points to the text fragments matched by the rule elements. The current value of heuristic
points of an annotation can be evaluated by the SCORE condition, which can be used in an
additional rule to create another annotation. In the following, the heuristic extraction using scoring
rulesis demonstrated by a short example:

Par agr aph{ CONTAI NS(W 1, 5) - >MARKSCORE( 5, Headl i ne) } ;

Par agr aph{ CONTAI NS(W 6, 10) - >MARKSCORE( 2, Headl i ne) };

Par agr aph{ CONTAI NS( Enph, 80, 100, t r ue) - >SMARKSCORE( 7, Headl i ne) } ;
Par agr aph{ CONTAI NS( Enph, 30, 80, t r ue) - >MARKSCORE( 3, Headl i ne) };
Par agr aph{ CONTAI NS( CW 50, 100, t r ue) - >MARKSCORE( 7, Headl i ne) } ;
Par agr aph{ CONTAI NS( W 0, 0) - >MARKSCORE( - 50, Headl i ne) };

Headl i ne{ SCORE( 10) - >MARK( Real hl ) };

Headl i ne{ SCORE( 5, 10) - >LOE " Maybe a headl i ne")};

In the first part of this rule set, annotations of the type paragraph receive scoring points for

a headline annotation, if they fulfill certain CONTAINS conditions. The first condition, for
example, evaluates to true, if the paragraph contains one word up to five words, whereas the fourth
conditionsisfulfilled, if the paragraph contains thirty up to eighty percent of emph annotations.
The last two rules finally execute their actions, if the score of a headline annotation exceeds ten
points, or liesin theinterval of fiveto ten points, respectively.

2.17.

Modification

There are different actions that can modify the input document, like DEL, COLOR and REPLACE.
However, the input document itself can not be modified directly. A separate engine, the
Modifier.xml, hasto be called in order to create another CAS view with the (default) name
"modified". In that document, all modifications are executed.

The following example shows how to import and call the Modifier.xml engine. The exampleis
explained in detail in Section 1.4, “Learning by Example” [3] .

ENG NE utils. Modifier;

Dat e{-> DEL};

MoneyAnount { - > REPLACE( " <MoneyAnount/>")};
Docunent { - > COLOR(Headl i ne, "green")};
Docunent { - > EXEC(Modifier)};

2.18.

External resources

Imagine you have a set of documents containing many different first names. (as example we use
ashort list, containing the first names “Frank” , “Peter” , “Jochen” and “Martin” ) If you like

to annotate all of them with a“FirstName” annotation, then you could write a script using the
rule("Frank" | "Peter" | "Jochen" | "Martin"){->MARK(FirstNane)}; .This
does exactly what you want, but not very handy. If you like to add new first namesto the list of

76

Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



WORDLISTs

recognized first names you have to change the rule itself every time. Moreover, writing rules with
possibly hundreds of first namesis not really practically realizable and definitely not efficient,

if you have thelist of first names already as asimple text file. Using this text file directly would
reduce the effort.

UIMA Ruta provides, therefore, two kinds of external resources to solve such tasks more easily:
WORDLISTsand WORDTABLEs.

2.18.1. WORDLISTs

A WORDLIST isalist of text items. There are three different possibilities of how to provide a
WORDLIST to the UIMA Ruta system.

Thefirst possibility isthe use of simple text files, which contain exactly onelist item per line. For
example, alist "FirstNames.txt" of first names could look like this:

Fr ank
Pet er
Jochen
Martin

First names within a document containing any number of these listed names, could be annotated by
using Docunent { - >MARKFAST( Fi r st Narre, ' Fi rst Nanmes.txt')}; , assuming an aready
declared type FirstName. To make this rule recognizing more first names, add them to the external
list. You could also use aWORLIST variable to do the same thing as follows, which is preferable:

WORDLI ST FirstNaneLi st = ' FirstNanes. txt';
DECLARE Fi r st Nane;
Docunent { - >SMARKFAST( Fi r st Name, Fi rst NaneLi st)};

Another possibility compared to the plain text files to provide WORDLISTs s the use of compiled
“treeword list” s. Thefileending for thisis“.twl” A treeword listissimilar to atrie. ltisa
XML-filethat contains a tree-like structure with a node for each character. The nodes themselves
refer to child nodes that represent all characters that succeed the character of the parent node.

For single word entries the resulting complexity is O(m*log(n)) instead of O(m*n) for simple

text files. Here m is the amount of basic annotationsin the document and n is the amount of
entriesin the dictionary. To generate atree word list, see Section 3.11, “Creation of Tree Word
Lists’ [114] . A treeword list is used in the same way as simple word lists, for example

Docunent { - >SMARKFAST(Fi rst Name, 'FirstNanes.twl')}; .

A third kind of usable WORDLISTs are “multi tree word list” s. The file ending for thisis“.mtwl”
. It is generated from several ordinary WORDLISTs given as simple text files. It contains special
nodes that provide additional information about the original file. These kind of WORDLIST is
useful, if several different WORDLISTs are used within a UIMA Ruta script. Using five different
listsresultsin five rules using the MARKFAST action. The documents to annotate are thus
searched five times resulting in a complexity of 5* O(m*log(n)) With a multi tree word list this can
be reduced to about O(m*log(5* n)). To generate amulti tree word list, see Section 3.11, “Creation
of Tree Word Lists’ [114] To use amulti tree word list UIMA Ruta provides the action TRIE.

If for example two word lists “ FirstNames.txt” and “LastNames.txt” have been merged in the multi
treeword list “Names.mtwl” , then the following rule annotates all first names and last names in the
whole document:

WORDLI ST Nanes = ' Nanes.ntw '
Decl are First Name, Last Nane;
Docunent { - >TRI E(" Fi rst Names. t xt" = FirstName, "LastNanes.txt" = Last Nane,

UIMA RutaVersion 3.2.0 Apache UIMA Ruta Language 7



WORDTABLEs

Names, false, 0, false, 0, "")};

Only if the wordlist is explicitly declared with WORDLIST, then also a StringExpression including
variables can be applied to specify thefile:

STRI NG package ="ny/package/";

WORDLI ST FirstNaneList = "" + package + "FirstNanmes.txt';
DECLARE First Nane;

Docunent { - >MARKFAST( Fi r st Name, Fi rst NaneLi st)};

2.18.2. WORDTABLEs

WORDLISTs have been used to annotate all occurrences of any list item in a document with
acertain type. Imagine now that each annotation has features that should be filled with values
dependent on the list item that matched. This can be achieved with WORDTABLES. Let us,
for example, assume we want to annotate all US presidents within a document. Moreover, each
annotation should contain the party of the president as well as the year of his inauguration.
Therefore we use an annotation type DECLARE Annot ati on Presi dent OF USA( STRI NG
party, |NT yearO | nauguration) .Toachievethis, itisrecommended to use
WORDTABLEs.

A WORDTABLE issmply a comma-separated file (.csv), which actually uses semicolons for
separation of the entries. For our example, such afile named “ presidentsOf USA.csv” could look
like this:

Bill Cinton;denocrats; 1993
George W Bush; republi cans; 2001
Bar ack Obanm; denpcr at s; 2009

To annotate our documents we could use the following set of rules:

WORDTABLE pr esi dent sOF USA = ' presi dent sOf USA. csv' ;

DECLARE Annot ati on Presi dent OF USA(STRI NG party, |NT year Of | naugurati on);

Docunent { - >SMARKTABLE( Pr esi dent Of USA, 1, presidentsOfUSA, "party" = 2,
"year O | naugur ation" = 3)};

Only if the wordtable is explicitly declared with WORDTABLE, then also a StringExpression
including variables can be applied to specify thefile;

STRI NG package ="ny/ package/";
WORDTABLE presi dentsOfUSA = "" + package + "presi dentsOf USA csv";

By default, whitespaces are removed by activating the parameter “dictRemoveWsS’ for
WORDLIST and WORDTABLE when the dictionary is loaded. In the special case when
whitespace are relevant, e.g., specific patterns of whitespaces need to be detected by the dictionary
lookup, then the analysis engine needs to be configured differently.

2.19.

Simple Rules based on Regular Expressions

The UIMA Rutalanguage includes, additionally to the normal rules, asimplified rule syntax for
processing regular expressions. These simple rules consist of two parts separated by “->" : The left
part isthe regular expression (flags: DOTALL and MULTILINE), which may contain capturing
groups. Theright part defines, which kind of annotations should be created for each match of

78

Apache UIMA Ruta Language UIMA RutaVersion 3.2.0



Language Extensions

the regular expression. If atypeis given without a group index, then an annotation of that typeis
created for the complete regular expression match, which corresponds to group 0. Each type can

be extended with additional feature assignments, which store the value of the given expression in
the feature specified by the given StringExpression. However, if the expression refers to a number
(NumberExpression), then the match of the corresponding capturing group is applied. These simple
rules can be restricted to match only within certain annotations using the BLOCK construct, and
ignore all filtering settings.

RegExpRul e -> StringExpression "->" G oupAssi gnnment
("," GoupAssignnent)* ";"
G oupAssi gnment -> TypeExpressi on Feat ur eAssi gnnent ?
| Nunber Epxression "=" TypeExpression
Feat ur eAssi gnnent ?
Feat ur eAssi gnnment -> "(" StringExpression "=" Expression
("," StringExpression "=" Expression)* ")"

The following example contains a simple rule, which is able to create annotations of two different
types. It creates an annotation of the type “T1” for each match of the complete regular expression
and an annotation of the type “T2" for each match of the first capturing group.

"A(L*?)C -> T1, 1 = T2;

2.20. Language Extensions

The UIMA Rutalanguage can be extended with external blocks, actions, conditions, type functions,
boolean functions, string functions and number functions. The block constructs are able to
introduce new rule matching paradigms. The other extensions provide atomic elements to the
language, e.g., acondition that eval uates project-specific properties. An exemplary implementation
of each kind of extension can be found in the project “ ruta-ep-example-extensions’ and asimple
UIMA Ruta project, which uses these extensions, is located at “ ExtensionsExample” . Both projects
are part of the source release of UIMA rutaand are located in the “example-projects’ folder.

2.20.1. Provided Extensions

The UIMA Rutalang