
1 - Ptolemy 2/19/99

The Ptolemy II Test Bed

Christopher Hylands
<cxh@eecs.berkeley.edu>

2 - Ptolemy 2/19/99

The Ptolemy II Test Bed
• Regression testing
• Nightly Builds
• Scripting is good - easy access to the

code, fast development of tests
• Jacl or Tcl Blend - Interfaces between

Tcl (a scripting language) and Java (a
system language)

• Code coverage tools provide verification
• Todo: Performance Measurements

 GUI Testing

3 - Ptolemy 2/19/99

Why Test?
• Makes development easier - changes that

break the code are quickly detected
• Shipping product is easier - we’ve been

testing all along
• Poorly tested code is usually incorrect

code
• Developing code is not just writing code:

design, testing and maintenance usually
take up more time.

4 - Ptolemy 2/19/99

Nightly Builds
• Happens every night, email is sent to the

group
• “Don’t break the build” - prompts

developers to test changes before
checking them in

• Developers see problems immediately
• Build a distribution every night -

When we ship, much of the work is done

5 - Ptolemy 2/19/99

Scripting
• Using Scripting to write tests for Java is

quick and easy
• Writing tests is much more of an

incremental process than writing system
code - a scripted language makes sense

• Being able to easily modify tests, and
then run them from an interpreter makes
test case development faster

6 - Ptolemy 2/19/99

Jacl and Tcl Blend
• Jacl and Tcl Blend provide an interface

between Tcl (a scripting language), and
Java, (a system language)

• Jacl - An implementation of Tcl written
solely in Java.

• Tcl Blend - A platform dependent Tcl
extension that gets loaded into Tcl

• So what’s the difference?

7 - Ptolemy 2/19/99

Jacl
• First Implemented by Ioi Lam while at

Cornell
• 100% Java implementation of most of the

Tcl 8.x interpreter
• Main Benefit: Platform independent, can

be used in applets
• Main Drawback: Can be very slow,

especially for recursion

8 - Ptolemy 2/19/99

Tcl Blend
• First Implemented by Ken Corey and

Scott Stanton while at Sun Microsystems
• Tcl extension that gets loaded into a Tcl

Program like tclsh or wish
• Main Benefit: Provides easy access to

Java code to preexisting Tcl Programs
• Main Drawback: Platform dependent -

Currently runs under 95/98/NT, Solaris,
Linux, Digital Unix

9 - Ptolemy 2/19/99

Access to Java
• Jacl and Tcl Blend provide the same

interface between Tcl and Java
• Tcl command to instantiate a Java object:
set a [java::new classname]

• Returns a handle, like java0x4
• We can then call Java methods

on the handle:
$a toString

10 - Ptolemy 2/19/99

Create a Java String
• Create a Java String, get its value
% set a [java::new \

{String String} \
"A string"]

java0x4
% $a toString
A string

11 - Ptolemy 2/19/99

Tcl Testing Framework
• First implemented by

Mary Ann May-Pumphrey of Sun
Microsystems

• Create a Tcl proc called test
• Usage:
test testname {comment} {
 # code to run
} {expected results}

12 - Ptolemy 2/19/99

A Simple Test
test SimpleTest-1.1 {Test Foo} {
set a \

[java::new {String String} \
"A string"]

$a toString
} {A string}

13 - Ptolemy 2/19/99

An Actual Ptolemy II Test
test NamedObj-2.1 {Create a NamedObj, \

 set the name, change it} {
 set n [java::new \
 ptolemy.kernel.util.NamedObj]
 set result1 [$n getName]
 $n setName "A Named Obj"
 set result2 [$n getName]
 $n setName "A different Name"
 set result3 [$n getName]
 $n setName {}
 set result4 [$n getName]
 list $result1 $result2 $result3 $result4
} {{} {A Named Obj} {A different Name} {}}

14 - Ptolemy 2/19/99

Code Coverage
• Run the test suite and use a

tool to measure code coverage
• We use JavaScope from Sun -

available at no cost to schools,
$795/license otherwise

• 100% code coverage does not
mean the code is completely
tested

• However, a high level of code
coverage is a start

15 - Ptolemy 2/19/99

What’s Missing
• Formalized timing performance

measurements
• Testing the GUI
• Better testing of the interaction between

components

