Guide to 4.1 Features

Version 4.1 (4.1.1)

Table of Contents

1. Java Version
2. New Features
2.1. Cayenne Core is Dependency-Free
2.2. Field-Based Data Objects
2.3. Extensible Project XML Structure
3. API Changes
3.1. Transaction propagation logic and isolation level
3.2. Injectable PkGenerator
3.3. DataChannelFilter replaced with DataChannelQueryFilter and DataChannelSyncFilter

g U1 U1 U1 W W W W N

Copyright © 2011-2021 Apache Software Foundation and individual authors

License

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements.
See the NOTICE file distributed with this work for additional information regarding copyright
ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

This guide highlights the new features and changes introduced in Apache Cayenne 4.1. For a full list
of changes consult RELEASE-NOTES.txt included in Cayenne download. For release-specific upgrade
instructions check UPGRADE.txt.

http://www.apache.org/licenses/LICENSE-2.0

Chapter 1. Java Version

Minimum required JDK version is 1.8 or newer. Cayenne 4.1 is fully tested with Java 1.8 and 11.

Chapter 2. New Features

2.1. Cayenne Core is Dependency-Free

Cayenne now depends only on s1f4j-api library. We removed velocity, commons-1lang and commons-
collections dependencies from the Cayenne core. Velocity templates replaced with a simplified
(and also much faster) parser for the parts of the Velocity syntax essential for Cayenne.

This should be transparent in almost all case. See UPGRADE . txt for details.

2.2. Field-Based Data Objects

Cayenne 4.1 generates field-based DataObjects by default. And it is HUGE for the app performance.
The new objects are much faster to read and write and significantly reduce the overall app memory
footprint and the corresponding GC pauses.

The new objects are mostly backwards-compatible with our “classic” map-based objects from the
application standpoint. The main source of incompatibility is support for “dynamic” properties (i.e.
persistent properties not known at compile time).

Field-based DataObjects are generated via new class templates. So to take advantage of this feature
you should simply regenerate you model classes.

2.3. Extensible Project XML Structure

Cayenne mapping project structure was modularized, allowing embedding of extensions with their
own XML schemas. This enables support for comments for entities, attributes and relationships.
Also Cayenne 4.1 have extensions for cdbimport and cgen, making OR modeling workflow
experience so much smoother.

o
. DataMap m Class Generation

=

Y |

= project
v % datamap
@ Artist
© Exhibit
@ Gallery
& Painting
& Paintinginfo
EH artist
EH exhibit
EA gallery
EA painting
EA painting_exhibit
EA painting_info

‘m|[@ (B B

Database Import Configuration

v I3 cayenne
v B painting_info
image_blob
B4 artist
B exhibit
Ed qallery
B painting
B painting_exhibit

» Advanced Options

BB ¢ 0 2 S

< Include

{ Exclude

Database Schema
¥ & cayenne
v H artist
artist_id
artist_name
date_of_birth
v [exhibit
closing_date
exhibit_id
gallery_id
opening_date
» B gallery
» B painting
» EH painting_exhibit
» E painting_info

"= Run Import

Chapter 3. API Changes

3.1. Transaction propagation logic and isolation level

New API allows to fully control transaction behavior where it’s needed.

TransactionManager manager = runtime.getInjector().getInstance(TransactionManager
.class);
TransactionDescriptor descriptor = new TransactionDescriptor(
Connection.TRANSACTION SERIALIZABLE, // set transaction isolation to
SERIALIZABLE
TransactionPropagation.REQUIRES_NEW // require new transaction for every
operation
)i
manager.performInTransaction(() -> {
// perform some DB operations...
return null;
}, descriptor);

3.2. Injectable PkGenerator

All PkGenerators are now managed by DI so you can simply inject your own implementation.

ServerModule.contributePkGenerators(binder)
.put(MySQLAdapter.class.getName(), CustomSQLPkGenerator.class);

3.3. DataChannelFilter replaced with
DataChannelQueryFilter and DataChannelSyncFilter

DataChannelFilter is deprecated. Instead two separate filters are introduced.

ServerModule.contributeDomainQueryFilters(binder).add((context, query, chain) -> {
// do something with query
/] ...
return chain.onQuery(context, query);

1

ServerModule.contributeDomainSyncFilters(binder).add((context, changes, syncType,
chain) -> {

// do something with changes

/] ...

return chain.onSync(context, changes, syncType);

1

	Guide to 4.1 Features
	Table of Contents
	Chapter 1. Java Version
	Chapter 2. New Features
	2.1. Cayenne Core is Dependency-Free
	2.2. Field-Based Data Objects
	2.3. Extensible Project XML Structure

	Chapter 3. API Changes
	3.1. Transaction propagation logic and isolation level
	3.2. Injectable PkGenerator
	3.3. DataChannelFilter replaced with DataChannelQueryFilter and DataChannelSyncFilter

