
I/O Performance HOWTO

Sharon Snider

v1.0, 2002−04−05

Revision History

Revision v1.0 2002−04−05 Revised by: sds

Wrote and converted to DocBook XML.

This HOWTO covers information on available patches for the 2.4 kernel that will improve the I/O
performance of your Linux operating system.

Table of Contents
1. Distribution Policy..1

2. Introduction...2

3. Avoiding Bounce Buffers..3
3.1. Memory and Addressing in the Linux 2.4 Kernel..3
3.2. The Problem with Bounce Buffers...3
3.3. Locating the Patch...3

3.3.1. Configuring the Linux Kernel to Avoid Bounce Buffers...3
3.3.2. Enabled Device Drivers..4

3.4. Modifying Your Device Driver to Avoid Bounce Buffers...4

4. Raw I/O Variable−Size Optimization Patch...7
4.1. Locating the Patch...7
4.2. Modifying Your Driver for the Raw I/O Variable−Size Optimization Patch...................................7

5. I/O Request Lock Patch..8
5.1. Locating the Patch...8
5.2. Modifying Your Driver for the I/O Request Lock Patch..8

6. Additional Resources..9

I/O Performance HOWTO

i

1. Distribution Policy
The I/O Performance−HOWTO is copyrighted © 2002, by IBM Corporation

The I/O Performance−HOWTO may be distributed, at your choice, under either the terms of the GNU Public
License version 2 or later or the standard Linux Documentation Project (LDP) terms. These licenses should
be available from the LDP Web site http://www.linuxdoc.org/docs.html. Please note that since the LDP terms
do not allow modification (other than translation), modified versions can be assumed to be distributed under
the GPL.

1. Distribution Policy 1

http://www.linuxdoc.org/docs.html

2. Introduction
This HOWTO provides information on improving the input/output (I/O) performance of the Linux operating
system for the 2.4 kernel. Additional patches will be added as they become available.

Please send any comments, or contributions via e−mail to Sharon Snider.

2. Introduction 2

mailto:snidersd@us.ibm.com

3. Avoiding Bounce Buffers
This section provides information on applying and using the bounce buffer patch on the Linux 2.4 kernel. The
bounce buffer patch, written by Jens Axboe, enables device drivers that support Direct Memory Access
(DMA) I/O to high−address physical memory to avoid bounce buffers.

This document provides a brief overview on memory and addressing in the Linux kernel, followed by
information on why and how to make use of the bounce buffer patch.

3.1. Memory and Addressing in the Linux 2.4 Kernel

The Linux 2.4 kernel includes configuration options for specifying the amount of physical memory in the
target computer. By default, the configuration is limited to the amount of memory that can be directly
mapped into the kernel's virtual address space. The mapping starts at PAGE_OFFSET (normally
0xC0000000). On i386 systems the default mapping scheme limits the kernel−mode addressability to the first
gigabyte (GB) of physical memory, also known as low memory. High−address physical memory is normally
the memory above 1 GB. This memory is not directly accessible or permanently mapped by the kernel.
Support for high−address physical memory is an option that is enabled during configuration of the Linux
kernel.

3.2. The Problem with Bounce Buffers

When DMA I/O is performed to or from high−address physical memory, an area is allocated in memory
known as a bounce buffer. When data travels between a device and high−address physical memory, it is first
copied through the bounce buffer.

Systems with a large amount of high−address physical memory and intense I/O activity can create a large
number of bounce buffer data copies. The excessive number of data copies can lead to a shortage of memory
and performance degradation.

Peripheral component interface (PCI) devices normally address up to 4 GB of physical memory. When a
bounce buffer is used for high−address physical memory that is below 4 GB, time and memory are wasted
because the peripheral has the ability to address that memory directly. Using the bounce buffer patch can
decrease, and possibly eliminate, the use of bounce buffers.

3.3. Locating the Patch

The latest version of the bounce buffer patch is block−highmem−all−<version>.gz , and it is available from
Andrea Arcangeli's −aa series kernels at http://kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/.

3.3.1. Configuring the Linux Kernel to Avoid Bounce Buffers

This section includes information on configuring the Linux kernel to avoid bounce buffers. The Linux

3. Avoiding Bounce Buffers 3

http://kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/

Kernel−HOWTO at http://www.linuxdoc.org/HOWTO/Kernel−HOWTO.html explains the process of
re−compiling the Linux kernel.

The following kernel configuration options are required to enable the bounce buffer patch:

Development Code − To enable the configurator to display the High I/O Support option, select Code
Maturity Level Options category and specify "y" to prompt for development and/or incomplete
code/drivers.

•

High−Address Physical Memory Support − To enable high memory support for physical memory
that is greater than 1 GB, select Processor type and feature category, and enter the actual amount of
physical memory under the High Memory Support option.

•

High−Address Physical Memory I/O Support − To enable high DMA I/O to physical addresses
greater than 1 GB, select Processor type and feature category, and enter "y" to HIGHMEM I/O
support option. This configuration option is a new option introduced by the bounce buffer patch.

•

3.3.2. Enabled Device Drivers

The bounce buffer patch provides the kernel infrastructure, small computer system interface (SCSI), and IDE
mid−level driver modifications to support DMA I/O to high−address physical memory. Updates for several
device drivers to make use of the added support are included with the patch.

You will need to apply the bounce buffer patch and configure the kernel to support high−address physical
memory I/O. Many IDE configurations and the peripheral device drivers listed below perform DMA I/O
without the use of bounce buffers:

aic7xxx_drv.o

aic7xxx_old.o

cciss.o

cpqarray.o

megaraid.o

qlogicfc.o

sym53c8xx.o

3.4. Modifying Your Device Driver to Avoid Bounce Buffers

The entire process of rebuilding a Linux device driver is beyond the scope of this document. However,
additional information is available at http://www.xml.com/ldd/chapter/book/index.html.

Modifications are required for all device drivers that are not
listed above in the Enabled Device Drivers section.

If your device driver is capable of high−address physical memory DMA I/O, you can modify your device
driver to make use of the bounce buffer patch by making the following modifications:

I/O Performance HOWTO

3.3.2. Enabled Device Drivers 4

http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html
http://www.xml.com/ldd/chapter/book/index.html

For SCSI Device Drivers: set the highmem_io bit in the Scsi_Host_Template structure, then call
scsi_register ().

For IDE Drivers: set the highmem in the ide_hwif_t structure, then call ide_dmaproc ().

Call pci_set_dma_mask () to specify the address bits that the device can successfully use on
DMA operations. Modify the code as follows:

1.

int pci_set_dma_mask (struct pci_dev *pdev, dma_addr_t mask);

If DMA I/O can be supported with the specified mask, pci_set_dma_mask () will set
pdev−>dma_mask and return 0. For SCSI or IDE, the mask value will also be passed by the
mid−level drivers to blk_queue_bounce_limit () so that bounce buffers are not created for
memory directly addressable by the device. Drivers other than SCSI or IDE must call
blk_queue_bounce_limit () directly. Modify the code as follows:

void blk_queue_bounce_limit (request_queue_t *q, u64 dma_addr);

Use pci_map_page (dev, page, offset, size, direction) to map a memory
region so that it is accessible by the peripheral device, instead of pci_map_single (dev,
address, size, direction).

2.

The address parameter for pci_map_single () correlates to the page and offset parameters of
pci_map_page (). pci_map_page () supports both the high and low physical memory.

Use the virt_to_page () macro to convert an address to a page/offset pair. The macro is
defined by including pc.h. For example:

void *address;

struct page *page;

unsigned long offset;

page = virt_to_page (address);

offset = (unsigned long) address & ~PAGE_MASK;

Call pci_unmap_page () after the DMA I/O transfer is complete, the mapping established by
pci_map_page () should be removed by calling pci_unmap_page ().

Important:

pci_map_single () is implemented using
virt_to_bus () . This function call handles low
memory addresses only. Drivers supporting high−address
physical memory should no longer call virt_to_bus
() or bus_to_virt ().

Set your driver to map a scatter−gather DMA operation using pci_map_sg (). The driver
should set the page and offset fields instead of the address field of the scatterlist structure. Refer to
step 3 for converting an address to a page/offset pair.

3.

I/O Performance HOWTO

3.3.2. Enabled Device Drivers 5

If your driver is already using the PCI DMA API,
continue to use pci_map_page () or
pci_map_sg () as appropriate. However, do not use
the address field of the scatterlist structure.

I/O Performance HOWTO

3.3.2. Enabled Device Drivers 6

4. Raw I/O Variable−Size Optimization Patch
This section provides information on the raw I/O variable−size optimization patch for the Linux 2.4 kernel
written by Badari Pulavarty. This patch is also known as the RAW VARY or PAGESIZE_io patch.

The raw I/O variable−size patch changes the block size used for raw I/O from hardsect_size (normally 512
bytes) to 4 kilobytes (K). The patch improves I/O throughput and central processing unit (CPU) utilization by
reducing the number of buffer heads needed for raw I/O operations.

4.1. Locating the Patch

You can download the patch from one of the following locations:

Andrea Arcangeli has made the patch available at
http://www.kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/2.4.18pre7aa2/. The name of the
file is 10_rawio−vary−io−1.

•

Alan Cox has included the patch in the 2.4.18pre9−ac2 kernel patch. The patch is available at
http://www.kernel.org/pub/linux/kernel/people/alan/linux−2.4/2.4.18/.

•

The patch can be found as part of the IO Scalability Package at http://sourceforge.net/projects/lse/io.
The name of the patch is PAGESIZE_io−<version> listed under the Raw I/O Enhancements release.

•

4.2. Modifying Your Driver for the Raw I/O Variable−Size
Optimization Patch

Modifications are required for all device drivers using version 2.4.17 patch. However, rebuilding device
drivers is beyond the scope of this document. Additional information is available at
http://www.xml.com/ldd/chapter/book/index.html.

In previous versions of this patch, changes were enabled for all drivers. However, the 2.4.17 and later
versions of the patch enable only the changes for the Adaptec aic7xxx and the Qlogic ISP1020 SCSI drivers.
All other drivers for version 2.4.17 must be modified to make use of the patch.

You will need to modify the code as follows:

Set the can_do_varyio bit in the Scsi_Host_Template structure before calling scsi_register ().

Drivers that have the raw I/O patch enabled must support
buffer heads of variable sizes (b_size) in a single I/O request
because hardsect_size is used until the data buffer is
aligned to the 4 K boundary.

4. Raw I/O Variable−Size Optimization Patch 7

http://www.kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/2.4.18pre7aa2/
http://www.kernel.org/pub/linux/kernel/people/alan/linux-2.4/2.4.18/
http://sourceforge.net/projects/lse/io
http://www.xml.com/ldd/chapter/book/index.html

5. I/O Request Lock Patch
This section provides information on the I/O request lock patch, also known as the scsi concurrent queuing
patch (sior1), written by Johnathan Lahr.

The I/O request lock patch improves scsi I/O performance on Linux 2.4 multi−processor systems by
providing concurrent I/O request queuing. There are significant I/O preformance and CPU utilization
improvements possible by enabling multi−processors to concurrently drive multiple block devices.

Initially block I/O requests are queued one at a time holding the global spin lock, io_request_lock.
Once the patch is applied, SCSI requests are queued which holds the specific queue lock targeted by the
request. Requests that are made to different devices are queued concurrently, and requests that are made to
the same device are queued serially.

5.1. Locating the Patch

You can download the I/O request patch from Sourceforge at http://sourceforge.net/projects/lse/io. The latest
version is sior1−v1.2416.

Additional patches that enable concurrent queuing can be downloaded from Sourceforge. The patch for the
Emulex SCSI/FC is lpfc_sior1−v0.249 and the patch for Adaptec SCSI is aic_sior1−v0.249 .

5.2. Modifying Your Driver for the I/O Request Lock Patch

Modifications are required for all device drivers. However, rebuilding device drivers is beyond the scope of
this document. Additional information is available at http://www.xml.com/ldd/chapter/book/index.html.

The I/O request lock patch installs concurrent queuing capability into the SCSI midlayer. Concurrent queuing
is activated for each SCSI adapter device driver. To activate the device, the concurrent_queue field in
the Scsi_Host_Template must be set when the system registers the driver.

You activate concurrent queuing when you apply the patch. Concurrent
queuing ensures access to the drivers request_queue. by This access is
protected by the request_queue.queue_lock acquisition.

5. I/O Request Lock Patch 8

http://sourceforge.net/projects/lse/io
http://www.xml.com/ldd/chapter/book/index.html

6. Additional Resources
The following list of Web sites provides additional information on modifying device drivers and configuring
the Linux kernel.

Information on Dynamic DMA mapping is available at
http://lwn.net/2001/0712/a/dma−interface.php3.

•

Kernel−HOWTO is available from the Linux Documentation Project at
http://www.linuxdoc.org/HOWTO/Kernel−HOWTO.html.

•

Linux Device Drivers, 2nd Edition published by O'Reilly is available online at
http://www.xml.com/ldd/chapter/book/index.html.

•

6. Additional Resources 9

http://lwn.net/2001/0712/a/dma-interface.php3
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html
http://www.xml.com/ldd/chapter/book/index.html

	Table of Contents
	1. Distribution Policy
	2. Introduction
	3. Avoiding Bounce Buffers
	3.1. Memory and Addressing in the Linux 2.4 Kernel
	3.2. The Problem with Bounce Buffers
	3.3. Locating the Patch
	3.3.1. Configuring the Linux Kernel to Avoid Bounce Buffers
	3.3.2. Enabled Device Drivers

	3.4. Modifying Your Device Driver to Avoid Bounce Buffers

	4. Raw I/O Variable-Size Optimization Patch
	4.1. Locating the Patch
	4.2. Modifying Your Driver for the Raw I/O Variable-Size Optimization Patch

	5. I/O Request Lock Patch
	5.1. Locating the Patch
	5.2. Modifying Your Driver for the I/O Request Lock Patch

	6. Additional Resources

