
Linux Complete Backup and Recovery HOWTO

Charles Curley

 ccurley at trib dot com

Revision History

Revision 0.02 2002−01−27 Revised by: c^2

Added Mondo to resources

Revision 0.01 2001−10−25 Revised by: c^2

Initial version for LDP release

Imagine your disk drive has just become a very expensive hockey puck. Imagine you have had a fire, and
your computer case now looks like something Salvidor Dali would like to paint. Now what?

Total restore, sometimes called bare metal recovery, is the process of rebuilding a computer after a
catastrophic failure. In order to make a total restoration, you must have complete backups, not only of your
file system, but of partition information and other data. This HOWTO is a step−by−step tutorial on how to
back up a Linux computer so as to be able to make a bare metal recovery, and how to make that bare metal
recovery. It includes some related scripts.

Table of Contents
1. Introduction...1

1.1. Copyright Information..1
1.2. Disclaimer...1
1.3. New Versions..1
1.4. Credits...2
1.5. Feedback...2
1.6. Translations...2

2. Overview..3
2.1. Limitations..4

3. Preparation..5
3.1. Installing the ZIP® Drive...5

4. Creating the Stage 1 Back Up..6

5. Booting tomsrtbt...8

6. Second Stage Restoration...10

7. Distribution Specific Notes...12
7.1. Red Hat 7.1...12
7.2. Red Hat 7.0...12

8. Application Specific Notes..13
8.1. Squid...13
8.2. Arkeia..13

9. Some Advice for Disaster Recovery..14

10. What Now?..15
10.1. To Do..15

11. The Scripts...16
11.1. First Stage...16

11.1.1. make.fdisk...16
11.1.2. make.dev.hda..23
11.1.3. dev.hda..24
11.1.4. save.metadata..25
11.1.5. restore.metadata..27

11.2. Second Stage...28
11.2.1. back.up.all...28
11.2.2. back.up.all.ssh...29
11.2.3. restore.all...30
11.2.4. restore.all.ssh..30

11.3. Backup Server Scripts...31
11.3.1. get.tester..31
11.3.2. restore.tester..33

Linux Complete Backup and Recovery HOWTO

i

Table of Contents
12. Resources...34

A. GNU Free Documentation License...35

0. PREAMBLE..36

1. APPLICABILITY AND DEFINITIONS..37

2. VERBATIM COPYING...38

3. COPYING IN QUANTITY ..39

4. MODIFICATIONS ...40

5. COMBINING DOCUMENTS...42

6. COLLECTIONS OF DOCUMENTS..43

7. AGGREGATION WITH INDEPENDENT WORKS...44

8. TRANSLATION ...45

9. TERMINATION ...46

10. FUTURE REVISIONS OF THIS LICENSE...47

11. How to use this License for your documents..48

Linux Complete Backup and Recovery HOWTO

ii

1. Introduction
The normal bare metal restoration process is: install the operating system from the product disks. Install the
backup software, so you can restore your data. Restore your data. Then you get to restore functionality by
verifying your configuration files, permissions, etc.

The process and scripts explained in this HOWTO will save re−installing the operating system. The process
explained here will restore only files that were backed up from the production computer. Your configuration
will be intact when you restore the system, which should save you hours of verifying configurations and data.

1.1. Copyright Information

Copyright © 2001, 2002 Charles Curley and distributed under the terms of the GNU Free Documentation
License (GFDL) license, stated below. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front−Cover Texts, and with no Back−Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have any questions, please contact <linux−howto at metalab.unc.edu>.

1.2. Disclaimer

No liability for the contents of this documents can be accepted by the author, the Linux Documentation
Project or anyone else. Use the concepts, examples and other content at your own risk. There may be errors
and inaccuracies that may be damaging to your system. Proceed with caution, and although errors are
unlikely, the author(s) take no responsibility for them.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a term
in this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before major installation and backups at
regular intervals.

In addition, you are strongly recommended to use a sacrificial experimental computer when mucking with the
material, espcially the scripts, in this HOWTO.

1.3. New Versions

You can find this document at its home page or at the Linux Documentation Project homepage in many
formats. Please comment to <ccurley at trib dot com>

bzip2 compressed chunky (lots of small pages. Faster reading.) HTML. •
bzip2 compressed smooth (one monster page −− no chunks. Easier to search.) HTML. •

1. Introduction 1

mailto:linux-howto at metalab.unc.edu
http://www.linuxdoc.org/
http://www.linuxdoc.org/
http://w3.trib.com/~ccurley/Linux-Complete-Backup-and-Recovery-HOWTO.html
http://www.linuxdoc.org/
mailto:ccurley at trib dot com
http://w3.trib.com/~ccurley/Linux-Complete-Backup-and-Recovery-HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO.chunky.html.tar.bz2
http://w3.trib.com/~ccurley/Linux-Complete-Backup-and-Recovery-HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO.smooth.html.tar.bz2

bzip2 compressed postscript (US letter format). •
bzip2 compressed PDF (US letter format). •
Use the source, Luke. It will be available here until I get this checked into the LDP CVS. •

1.4. Credits

This document is derived from two articles originally published in Linux Journal. My thanks to Linux
Journal for reverting the rights to those articles, thereby helping make this HOWTO possible.

Thanks to Joy Y Goodreau for excellent HOWTO editing.

1.5. Feedback

Feedback is most certainly welcome for this document. Without your corrections, suggestions and other
input, this document wouldn't exist. Please send your additions, comments and criticisms to me at:
<ccurley at trib.com>.

1.6. Translations

Not everyone speaks English. Volunteers are welcome.

Linux Complete Backup and Recovery HOWTO

1.4. Credits 2

http://w3.trib.com/~ccurley/Linux-Complete-Backup-and-Recovery-HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO.ps.bz2
http://w3.trib.com/~ccurley/Linux-Complete-Backup-and-Recovery-HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO.pdf.bz2
http://w3.trib.com/~ccurley/Linux-Complete-Backup-and-Recovery-HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO.tar.bz2
http://www.linuxjournal.com/
mailto:ccurley at trib.com

2. Overview
The process shown below is not easy, and can be hazardous to your data. Practice it before you need it! Do as
I did, and practice on a sacrificial computer!

The target computer for this HOWTO is a Pentium computer with a Red Hat 7.1 Linux server or workstation
installation on one IDE hard drive. The target computer does not have vast amounts of data because the
computer was set up as a "sacrificial" test bed. That is, I did not want to test this process with a production
computer and production data. Also, I did a fresh installation before I started the testing so that I could always
re−install if I needed to revert to a known configuration.

NOTE

The sample commands will show, in most cases, what I
had to type to recover the target system. You may have to
use similar commands, but with different parameters. It is
up to you to be sure you duplicate your setup, and not the
test computer's setup.

The basic procedure is set out in W. Curtis Preston, Unix Backup & Recovery, O'Reilly & Associates, 1999,
which I have favorably reviewed in Linux Journal. However, the book is a bit thin on specific, real−time
questions. For example, exactly which files do you back up? What metadata do you need to preserve, and
how?

Before beginning the process set forth in this HOWTO you will need to back up your system with a typical
backup tool such as Amanda, BRU", tar, Arkeia or cpio. The question, then, is how to get from toasted
hardware to the point where you can run the restoration tool that will restore your data.

Users of Red Hat Package Manager (RPM) based Linux distributions should also save RPM metadata as part
of their normal backups. Something like:

bash# rpm −Va > /etc/rpmVa.txt

in your backup script will give you a basis for comparison after a bare metal restoration.

To get to this point, you need to have:

Your hardware up and running again, with replacement components as needed. The BIOS should be
correctly configured, including time and date, and hard drive parameters. At the moment, there is no
provision for using a different hard drive.

•

A parallel port Iomega® ZIP® drive or equivalent. You will need at least 30 MB of space. •
Your backup media. •
A minimal Linux system that will allow you to run the restoration software. •

To get there, you need at least two stages of backup, and possibly three. Exactly what you back up and in
which stage you back it up is determined by your restoration process. For example, if you are restoring a tape
server, you may not need networking during the restoration process. So only back up networking in your
regular backups.

2. Overview 3

http://www.redhat.com
http://www.oreilly.com/catalog/unixbr/
http://www2.linuxjournal.com/lj-issues/issue78/3839.html
http://www.iomega.com/
http://www.iomega.com/zip/products/par100_250.html

You will restore in stages as well. In stage one, we build partitions, file systems, etc. and restore a minimal
file system from the ZIP® disk. The goal of stage one is to be able to boot to a running computer with a
network connection, tape drives, restoration software, or whatever we need for stage two.

The second stage, if it is necessary, consists of restoring backup software and any relevant databases. For
example, suppose you use Arkeia and you are building a bare metal recovery ZIP® disk for your backup
server. Arkeia keeps a huge database on the server's hard drives. You can recover the database from the tapes,
if you want. Instead, why not tar and gzip the whole arkeia directory (at /usr/knox), and save that to another
computer over nfs or ssh? Stage one, as we have defined it below, does not include X, so you will have some
experimenting to do if you wish to back up X as well as your backup program. Some restore programs
require X.

Of course, if you are using some other backup program, you may have some work to do to. You will have to
find out the directories and files it needs to run. If you use tar, gzip, cpio, mt or dd for your backup and
recovery tools, they will be saved to and restored from our ZIP® disk as part of the stage one process
describe below.

The last stage is a total restoration from tape or other media. After you have done that last stage, you should
be able to boot to a fully restored and operational system.

2.1. Limitations

This HOWTO is restricted to making a minimal backup such that, having then restored that backup to new
hardware ("bare metal"), you can then use your regular backups to restore a completely working system. This
HOWTO does not deal with your regular backups at all.

Even within that narrow brief, this HOWTO is not exhaustive. You still have some research, script editing,
and testing to do.

The scripts here restore the partition data exactly as found on the source hard drive. This is nice if you are
restoring on an identical computer or at least and identical hard drive, but that is often not the case. For now,
there are two remedies (which will make more sense after you've read the rest of the HOWTO):

Edit the partition table input file. I've done that a few times. You can also do this to add new
partitions or delete existing ones (but edit the script that uses the partition table input file as well).

•

Hand build a new partition table and go from there. That is one reason why
restore.metadata does not call the hard drive rebuilding script. (Another being that I don't
know what hard drives you have.) Make sure you remove the call to fdisk from the rebuilding script.

•

The scripts shown here only handle ext2fs, FAT12 and FAT16. Until some eager volunteer supplies code for
doing so in these scripts, you will need other tools for backing up and restoring file systems we haven't
covered. Partition Image looks like a useful candidate here.

Linux Complete Backup and Recovery HOWTO

2.1. Limitations 4

http://www.partimage.org/

3. Preparation

WARNING

Do your normal backups on their regular schedule. This
HOWTO is useless if you don't do that.

Build yourself a rescue disk. I use tomsrtbt. It is well documented and packs a lot of useful tools onto one
floppy diskette. There is an active list for it, and the few questions I've had were quickly and accurately
answered. I like that in a product my shop may depend on one day.

Next, figure out how to do the operating system backup you will need so that you can restore your normal
backup. I followed Preston's advice and used an Iomega® parallel port ZIP® drive. The drives get
approximately 90 MB of useful storage to a disk. I need about 85 MB to back up my desktop, so a 100MB
ZIP® drive may be pushing your luck.

3.1. Installing the ZIP® Drive

Installing the ZIP® drive is covered in the ZIP® Drive HOWTO, available at the Linux Documentation
Project and at its home page, http://www.njtcom.com/dansie/zip−drive.html.

3. Preparation 5

http://www.toms.net/rb
http://www.linuxdoc.org/HOWTO/mini/ZIP-Drive.html
http://www.linuxdoc.org/
http://www.linuxdoc.org/
http://www.njtcom.com/dansie/zip-drive.html

4. Creating the Stage 1 Back Up
Having made your production backups, you need to preserve your partition information so that you can
rebuild your partitions.

The script make.fdisk scans a hard drive for partition information, and saves it in two files. One is an
executable script, called make.dev.x. The other, dev.x (where "x" is the name of the device file, e.g.
hda), is the commands necessary for fdisk to build the partitions. You specify which hard drive you want to
build scripts for (and thus the file names) by naming the associated device file as the argument to
make.fdisk. For example, on a typical IDE system,

bash# make.fdisk /dev/hda

spits out the script make.dev.hda and the input file for fdisk, dev.hda.

In addition, if make.fdisk encounters a FAT partition other than FAT32, it preserves the partition's boot
sector in a file named dev.xy, where x is the drive's device name (e.g. sdc, hda) and y is the partition
number. The boot sector is the first sector, 512 bytes, of the partition. This sector is restored at the same time
the partitions are rebuilt, in the script make.dev.hda

Fortunately, the price of hard drives is plummeting almost as fast as the public's trust in politicians after an
election. So it is good that the output files are text, and allow hand editing. Right now, that's the only way to
rebuild on a larger replacement drive. (See the To Do list.)

Other metadata are preserved in the script save.metadata. The script saves the partition information in
the file fdisk.hda in the root of the ZIP® disk. It is a good idea to print this file and your /etc/fstab so that you
have hard copy should you ever have to restore the partition data manually. You can save a tree by toggling
between two virtual consoles, running fdisk in one and catting /etc/fstab or /fdisk.hda as needed. However,
doing so is error prone.

You will also want to preserve files relevant to your restoration method. For example, if you use nfs to save
your data, you will need to preserve hosts.allow, hosts.deny, exports, etc. Also, if you are using any
network−backed restoration process, such as Amanda or Quick Restore, you will need to preserve networking
files like HOSTNAME, hosts, etc. and the relevant software tree.

The simplest way to handle these and similar questions is to preserve the entire etc directory.

There is no way a 100 MB ZIP® drive is going to hold a server installation of a modern distribution of Linux.
We have to be much more selective than simply preserving the whole kazoo. What files do we need?

The boot directory. •
The /etc directory and subdirectories. •
Directories needed at boot time. •
Device files in /dev. •

To determine the directories needed at boot, we look at the boot initialization file /etc/rc.sysinit. It
sets its own path like so:

PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

4. Creating the Stage 1 Back Up 6

Trial and error indicated that we needed some other directories as well, such as /dev. In Linux, you can't do
much without device files.

In reading the script save.metadata, note that we aren't necessarily saving files that are called with
absolute paths.

We may require several iterations of back up, test the bare metal restore, re−install from CD and try again,
before we have a working backup script. While I worked on this HOWTO, I made five such iterations before
I had a successful restoration. That is one reason why it is essential to use scripts whenever possible. Test
thoroughly!

Linux Complete Backup and Recovery HOWTO

4. Creating the Stage 1 Back Up 7

5. Booting tomsrtbt
The first thing to do before starting the restoration process is to verify that the hardware time is set correctly.
Use the BIOS setup for this. How close to exact you have to set the time depends on your applications. For
restoration, within a few minutes of exact time should be accurate enough. This will allow time−critical
events to pick up where they left off when you finally launch the restored system.

Before booting tomsrtbt, make sure your ZIP® drive is placed on a parallel port, either /dev/lp0 or /dev/lp1.
The start−up software will load the parallel port ZIP® drive driver for you.

The next step is to set the video mode. I usually like to see as much on the screen as I can. When the option to
select a video mode comes, I use mode 6, 80 columns by 60 lines. Your hardware may or may not be able to
handle high resolutions like that, so experiment with it.

Once tomsrtbt has booted and you have a console, mount the ZIP® drive. It is probably a good idea to mount
it read only:

mount /dev/sda1 /mnt −o ro

Check to be sure it is there:

ls −l /mnt

Then change to the directory where the scripts are on the ZIP® drive.

cd /mnt/root.bin

Now run the script that will restore the partition information, e.g.:

./make.dev.hda

This script will:

Clean out the first 1024 bytes of the hard drive, killing off any existing partition table and master
boot record (MBR).

•

Recreate the partitions from the information gathered when you ran make.fdisk. •
Make ext2 file system partitions and Linux swap partitions as appropriate. •
Make some types of FAT partitions. •
Make mount points and mount the ext2 partitions for you. •

NOTE

If you have other operating systems to restore, now is a good
time to do so. First, reboot to tomsrtbt to finish restoring
Linux. You will have to remount the partitions you just built.
Make a new, separate, script to mount the partitions from the
tail end of the make.dev.x script.

Once you have created all your directories and mounted partitions to them, you can run the script
restore.metadata. This will restore the contents of the ZIP® drive to the hard drive.

5. Booting tomsrtbt 8

http://www.toms.net/rb
http://www.toms.net/rb
http://www.toms.net/rb

You should see a directory of the ZIP® disk's root directory, then a list of the archive files as they are
restored. Tar on tomsrtbt will tell you that tar's block size is 20, and that's fine. You can ignore it. Be sure that
lilo prints out its results:

Added linux *

That will be followed by the output from a "df −m" command.

If you normally boot directly to X, you could have some problems. To be safe, change your boot run level
temporarily. In /target/etc/inittab, find the line that looks like this:

id:5:initdefault:

and change it to this:

id:3:initdefault:

Now, you can gracefully reboot. Remove the tomsrtbt floppy from your floppy drive if you haven't already
done so, and give the computer the three fingered salute, or its equivalent:

shutdown −r now

The computer will shut down and reboot.

Linux Complete Backup and Recovery HOWTO

5. Booting tomsrtbt 9

http://www.toms.net/rb
http://www.toms.net/rb

6. Second Stage Restoration
As the computer reboots, go back to the BIOS and verify that the clock is more or less correct.

Once you have verified the clock is correct, exit the BIOS and reboot to the hard drive. You can simply let
the computer boot in its normal sequence. You will see a lot of error messages, mostly along the lines of "I
can't find blah! Waahhh!" If you have done your homework correctly up until now, those error messages
won't matter. You don't need linuxconf or apache to do what you need to do.

NOTE

As an alternative, you can boot to single user mode (at the
lilo prompt, enter linux single), but you will have to
configure your network manually and fire up sshd or
whatever daemons you need to restore your system. How
you do those things is very system specific.

You should be able to log into a root console (no X −− no users, sorry). You should now be able to use the
network, for example to nfs mount the backup of your system.

If you did the two stage backup I suggested for Arkeia, you can now restore Arkeia's database and
executables. You should be able to run

/etc/rc.d/init.d/arkeia start

and start the server. If you have the GUI installed on another computer with X installed, you should now be
able to log in to Arkeia on your tape server, and prepare your restoration.

NOTE

When you restore, read the documentation for your
restoration programs carefully. For example, tar does not
normally restore certain characteristics of files, like suid
bits. File permissions are set by the user's umask. To restore
your files exactly as you saved them, use tar's p option.
Similarly, make sure your restoration software will restore
everything exactly as you saved it.

To restore the test computer:

bash# restore.all

If you used tar for your backup and restoration, and used the −k (keep old files, don't overwrite) option, you
will see a lot of this:

tar: usr/sbin/rpcinfo: Could not create file: File exists
tar: usr/sbin/zdump: Could not create file: File exists
tar: usr/sbin/zic: Could not create file: File exists
tar: usr/sbin/ab: Could not create file: File exists

6. Second Stage Restoration 10

This is normal, as tar is refusing to overwrite files you restored during the first stage of restoration.

Then reboot. On the way down, you will see a lot of error messages, such as "no such pid." This is a normal
part of the process. The shutdown code is using the pid files from daemons that were running when the
backup was made to shut down daemons that were not started on the last boot. Of course there's no such pid.

Your system should come up normally, with a lot fewer errors than it had before, ideally no errors. The acid
test of how well your restore works on an RPM based system is to verify all packages:

bash# rpm −Va

Some files, such as configuration and log files, will have changed in the normal course of things, and you
should be able to mentally filter those out of the report. You can redirect the output to a file, and diff it
against the one that was made at backup time (/etc/rpmVa.txt), thereby speeding up this step considerably.
Emacs users should check out its diff facilities.

Now you should be up and running. It is time to test your applications, especially those that run as daemons.
The more sophisticated the application, the more testing you may need to do. If you have remote users,
disable them from using the system, or make it "read only" while you test it. This is especially important for
databases, to prevent making any corruption or data loss worse than it already might be.

If you normally boot to X, and disabled it above, test X before you re−enable it. Re−enable it by changing
that one line in /etc/inittab back to:

id:5:initdefault:

You should now be ready for rock and roll −− and some aspirin and a couch.

Linux Complete Backup and Recovery HOWTO

6. Second Stage Restoration 11

7. Distribution Specific Notes
Below are distribution notes from past experiences. If you have additional notes that you would like to add
for other distributions, please forward them to me.

7.1. Red Hat 7.1

This distribution is the one I use on my test computer. I have had no problems with it.

7.2. Red Hat 7.0

This version seems to require libcrack (in /usr/lib) and its attendant files in order to authenticate users. So in
save.metadata, add to the line that saves /usr/lib the following: /usr/lib/*crack* and enable that line.

7. Distribution Specific Notes 12

8. Application Specific Notes
I have listed below notes about backing up particular applications.

8.1. Squid

Squid is a http proxy and cache. As such it keeps a lot of temporary data on the hard drive. There is no point
in backing that up. Insert "−−exclude /var/spool/squid" into the appropriate tar command in your second stage
backup script. Then, get squid to rebuild its directory structure for you. Tack onto the tail end of the second
stage restore script a command for squid to initialize itself. Here is how I did it over ssh in
restore.tester:

ssh $target "mkdir /var/spool/squid ; chown squid:squid /var/spool/squid;\
 /usr/sbin/squid −z;touch /var/spool/squid/.OPB_NOBACKUP"

The last command creates a file of length 0 called .OPB_NOBACKUP. This is for the benefit of Arkeia, and
tells Arkeia not to back up below this directory

8.2. Arkeia

Arkeia is a backup and restore program that runs on a wide variety of platforms. You can use Arkeia as part
of a bare metal restoration scheme, but there are two caveats.

The first is probably the most problematic, as absent any more elegant solution you have to hand select the
directories to restore in the navigator at restoration time. The reason is that, apparently, Arkeia has no
mechanism for not restoring files already present on the disk, nothing anlogous to tar's −p option. If you
simply allow a full restore, the restore will crash as Arkeia over−writes a library which is in use at restore
time, e.g. lib/libc−2.1.1.so. Hand selection of directories to restore is at best dicy, so I recommend against it.

The second caveat is that you have to back up the Arkeia data dictionary and/or programs. To do that, modify
the save.metatdata script by adding Arkeia to the list of directories to save:

arkeia specific:
tar cf − usr/knox | gzip −c > $zip/arkeia.tar.gz

You must back up the data dictionary this way because Arkeia does not back up the data dictionary. This is
one of my complaints about Arkeia, and I solve it on my own computer by saving the data dictionary to tape
with The TOLIS Group's BRU".

The data dictionary will be restored in the script restore.metadata automatically.

8. Application Specific Notes 13

http://www.arkeia.com/
http://www.estinc.com/

9. Some Advice for Disaster Recovery
You should take your ZIP® disk for each computer and the printouts you made, and place them in a secure
location in your shop. You should store copies of these in your off−site backup storage location. The major
purpose of off−site backup storage is to enable disaster recovery, and restoring each host onto replacement
hardware is a part of disaster recovery.

You should also have several tomsrtbt floppies and possibly some ZIP® drives in your off−site storage as
well. Also, have copies of the tomsrtbt distribution on several of your computers so that they back each other
up.

You should probably have copies of this HOWTO, with your site−specific annotations on it, with your
backups and in your off−site backup storage.

9. Some Advice for Disaster Recovery 14

http://www.toms.net/rb
http://www.toms.net/rb

10. What Now?
This HOWTO results from experiments on one computer. No doubt you will find some directories or files
you need to back up in your first stage backup. I have not dealt with saving and restoring X on the first stage,
nor have I touched at all on processors other than Intel.

I would appreciate your feedback as you test and improve these scripts on your own computers. I also
encourage vendors of backup software to document how to do a minimal backup of their products. I'd like to
see the whole Linux community sleep just a little better at night.

10.1. To Do

Volunteers are most welcome. Check with me before you start on one of these in case someone else is
working on it already.

A partition editor to adjust partition boundaries for a different hard drive, or the same one with
different geometry, or to adjust partition sizes within the same hard drive. A GUI would probably be
a good idea here. On the other tentacle, the FSF's parted looks like it will fill part of the bill. It
does re−size existing partitions, but with restrictions.

•

make.fdisk currently spits out one script. Separate out the mount commands to another script, so
you can run make.dev.hda, then reboot to do some other mischief, like build a partition for some
exotic OS I've never heard of, or run parted, then reboot to tomsrtbt, mount all the Linux
partitions, and continue.

•

Since tomsrtbt supports bzip2, convert the scripts to use bzip2, and see if there is a noticeable
reduction in the first stage data saved.

•

make.fdisk currently only recognizes some FAT partitions, not all. Add code to make.fdisk to
recognize others and make appropriate instructions to rebuild them in the output files.

•

For FAT12 or FAT16 partitions we do not format, write zeros into the partition so that Mess−DOS
6.x does not get confused. See the notes on fdisk for an explanation of the problem.

•

Make a script for putting ext2 file systems on ZIP® disks. •
Translations into other (human) languages. •
Find out how loadlin or similar programs affect this process. •
Changes for GRUB •
Change the scripts to use a CD−ROM. A CD−ROM that would boot to tomsrtbt, with the first stage
restore data on the rest of it, would be just the ticket.

•

10. What Now? 15

http://www.gnu.org/software/parted
http://www.gnu.org/software/parted
http://www.toms.net/rb
http://www.toms.net/rb
http://www.toms.net/rb

11. The Scripts
See the notes in the beginning of each script for a summary of what it does.

11.1. First Stage

11.1.1. make.fdisk

This script, run at backup time, creates a script similar to make.dev.hda, below, for you to run at restore
time. It also produces data files similar to dev.hda, below. The name of the script and data file produced
depends on the device given this script as a a parameter. That script, run at restore time, builds the partitions
on the hard drive. make.fdisk is called from save.metadata, below.

#! /usr/bin/perl

A perl script to create a script and input file for fdisk to
re−create the partitions on the hard disk, and format the Linux and
Linux swap partitions. The first parameter is the fully qualified
path of the device of the hard disk, e.g. /dev/hda. The two
resulting files are the script make.dev.x and the data file dev.x
(where x is the hard drive described, e.g. hda, sdc). make.dev.x is
run at restore time to rebuild hard drive x, prior to running
restore.metadata. dev.x is the input file for fdisk.

Time−stamp: <2001−12−13 15:41:24 ccurley make.fdisk>

Copyright 2001 through the last date of modification Charles Curley
except for the subroutine cut2fmt.

cut2fmt Copyright (c) 1998 Tom Christiansen, Nathan Torkington and
O'Reilly & Associates, Inc. Permission is granted to use this code
freely EXCEPT for book publication. You may use this code for book
publication only with the explicit permission of O'Reilly &
Associates, Inc.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

In addition, as a special exception, Tom Christiansen, Nathan
Torkington and O'Reilly & Associates, Inc. give permission to use
the code of this program with the subroutine cut2fmt (or with
modified versions of the subroutine cut2fmt that use the same
license as the subroutine cut2fmt), and distribute linked
combinations including the two. You must obey the GNU General
Public License in all respects for all of the code used other than

11. The Scripts 16

the subroutine cut2fmt. If you modify this file, you may extend
this exception to your version of the file, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement and the subroutine cut2fmt from your version.

You can also contact the Free Software Foundation at http://www.fsf.org/

Changes:

2001 11 25: Changed the way mke2fs gets its bad block
list. badblocks does not guess at the block size, so you have to get
it (from dumpe2fs) and feed it to badblocks. It is simpler to just
have mke2fs call badblocks, but you do loose the ability to have a
writing test easily. −− C^2

2001 11 25: Changed the regex that extracts partition labels from
the mount command. This change does not affect the results at all,
it just makes it possible to use Emacs' perl mode to indent
correctly. I just escaped the left bracket in the regex. −− C^2

Discussion:

fdisk will spit out a file of the form below if you run it as "fdisk
−l".

root@tester ~/bin $ fdisk −l /dev/hda

Disk /dev/hda: 64 heads, 63 sectors, 1023 cylinders
Units = cylinders of 4032 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 1 9 18112+ 83 Linux
/dev/hda2 10 1023 2044224 5 Extended
/dev/hda5 10 368 723712+ 83 Linux
/dev/hda6 369 727 723712+ 83 Linux
/dev/hda7 728 858 264064+ 83 Linux
/dev/hda8 859 989 264064+ 83 Linux
/dev/hda9 990 1022 66496+ 82 Linux swap

What fdisk does not do is provide output suitable for later
importing into fdisk, a la sfdisk. This script parses the output
from fdisk and creates an input file for fdisk. Use the input file
like so:

fdisk /dev/hdx < dev.hdx

For the bare metal restore package, this script also builds a script
that will execute the above command so you can run it from your zip
disk. Because the bare metal restore scripts all are in /root/bin,
the data file and script created by this script are also placed
there. The same script also creates appropriate Linux file systems,
either ext2fs, or Linux swap. There is limited support for FAT12 and
FAT16. There is no support right now (hint, hint) for FAT32. For
anything else, you're on your own.

Note for FAT32: According to the MS KB, there are more than one
reserved sectors for FAT32, usually 32, but it can vary. Do a search
in M$'s KB for "boot sector" or BPB for the gory details. For more
info than you really need on how boot sectors are used, see
http://support.microsoft.com/support/kb/articles/Q140/4/18.asp

You can also edit dev.x to change the sizes of partitions. Don't

Linux Complete Backup and Recovery HOWTO

11. The Scripts 17

forget, if you change the size of a FAT partition across the 32MB
boundary, you need to change the type as well! Run "fdisk /dev/hda"
or some such, then the l command to see the available partition
types. Then go ahead and edit dev.x appropriately. Also, when moving
partition boundarys with hand edits, make sure you move both logical
and extended partition boundaries appropriately.

Bad block checking right now is a quick read of the partition. A
writing check is also possible but more difficult. You have to run
badblocks as a separate command, and pass the bad block list to
mke2fs in a file (in /tmp, which is a ram disk). You also have to
know how large the blocks are, which you learn by running
dumpe2fs. It gets messy and I haven't done it yet. You probably
don't need it for a new hard drive, but if you have had a hard drive
crash on you and you are reusing it (while you are waiting for its
replacement to come in, I presume), then I highly recommend it. Let
me know how you do it.

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

cut2fmt figures out the format string for the unpack function we use
to slice and dice the output from fdisk. From Christiansen and
Torkington, Perl Cookbook 5.

sub cut2fmt {
 my (@positions) = @_;
 my $template = '';
 my $lastpos = 1;

 foreach $place (@positions) {
 $template .= "A" . ($place − $lastpos) . " ";
 $lastpos = $place;
 }

 $template .= "A*";
 return $template;
}

Provide a default device.

if ($ARGV[0] == "") {
 $device="/dev/hda";
} else {
 $device=$ARGV[0];
}

print "Device is $device.\n";

prepare format string.
$fmt = cut2fmt (11, 19, 24, 34, 45, 49);
print "Format string is $fmt.\n\n";

define fields in the array @_.
$dev = 0;
$bootable = 1;
$firstcyl = 2;
$lastcyl = 3;
$parttype = 5;
$partstring = 6;

Linux Complete Backup and Recovery HOWTO

11. The Scripts 18

$target = "\/target";

$outputfilename = $device;
$outputfilename =~ s/\//./g;
$outputfilename = substr ($outputfilename, 1, 100);

$outputfilepath = "\/root\/bin\/";

Make a hash of the labels.
$mpid = open (MOUNT, "mount −l |") or die "Couldn't fork: $!\n";
while (<MOUNT>) {
 if ($_ =~ /^$device/i) { # is this a line with a partition in it?
print $_; # print it just for grins
 split;
 if ($_[6] ne "") { # only process if there actually is a label
 $_[6] =~ s/[\[\]]//g; # strike [and].
 $labels{$_[0]} = $_[6];
print "The label of file device $_[0] is $labels{$_[0]}.\n";
 }

 # We only mount if it's ext2fs and read and write.

 if ($_[4] eq "ext2" and $_[5] eq "(rw)") {
 $mountpoints{$_[2]} = $_[0];
print "$_[2] is the mountpoint for $mountpoints{$_[2]}.\n";
 }
 }
}
close (MOUNT);

$fpid = open (FDISK, "fdisk −l $device |") or die "Couldn't fork: $!\n";

open (OUTPUT, "> $outputfilepath${outputfilename}")
 or die "Couldn't open output file $outputfilepath${outputfilename}.\n";

while (<FDISK>) {
 if ($_ =~ /^$device/i) { # is this a line with a partition in it?
print $_; # print it just for grins
 chop; # kill trailing \r
 @_ = unpack ($fmt, $_);

 # now strip white spaces from cylinder numbers
 @_[$firstcyl] =~ s/[\t]+//;
 @_[$lastcyl] =~ s/[\t]+//;
 @_[$parttype] =~ s/[\t]+//;

 $partnumber = substr(@_[$dev], 8, 10); # get partition number for this line
 # just for grins
print " $partnumber, @_[$firstcyl], @_[$lastcyl], @_[$partstring]\n";

 # Here we start creating the input to recreate the partition
 # this line represents.

 print OUTPUT "n\n";
 if ($partnumber < 5) {
 # primary Linux partition
 if (@_[$parttype] == 83) {
 print OUTPUT "p\n$partnumber\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) { # in case it's all on one cylinder

Linux Complete Backup and Recovery HOWTO

11. The Scripts 19

 print OUTPUT "@_[$lastcyl]\n";
 }

 if ($labels{@_[$dev]}) { # do we have a label?
 # no bad block check
$format .= "mke2fs @_[$dev] −L $labels{@_[$dev]}\n";
 $format .= "echo\necho formatting and checking @_[$dev]\n";
 $format .= "mke2fs −c −L $labels{@_[$dev]} @_[$dev]\n\n";
 } else {
$format .= "mke2fs @_[$dev]\n"; # no bad block check
 $format .= "echo\necho formatting and checking @_[$dev]\n";
 $format .= "mke2fs −c @_[$dev]\n\n";
 }

 # extended partition
 } elsif (@_[$parttype] == 5) {
 print OUTPUT "e\n$partnumber\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) {
 print OUTPUT "@_[$lastcyl]\n";
 }

 # primary Linux swap partition
 } elsif (@_[$parttype] == 82) {
 print OUTPUT "p\n$partnumber\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) {
 print OUTPUT "@_[$lastcyl]\n";
 }
 print OUTPUT "t\n$partnumber\n82\n";
 $format .= "mkswap −c @_[$dev]\n\n";

 # primary mess−dos partition. We don't handle FAT32,
 # which requires a command line switch for mkdosfs.
 } elsif (@_[$parttype] == 1 || @_[$parttype] == 4 || @_[$parttype] == 6) {
 print ("dd if=@_[$dev] of=$outputfilepath$outputfilename$partnumber");
 print (" bs=512 count=1\n");
 system ("dd if=@_[$dev] of=$outputfilepath$outputfilename$partnumber bs=512 count=1");
 print OUTPUT "p\n$partnumber\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) { # in case it's all on one cylinder
 print OUTPUT "@_[$lastcyl]\n";
 }
 print OUTPUT "t\n$partnumber\n@_[$parttype]\n";
$format .= "mkdosfs @_[$dev]\n"; # no bad block check
 $format .= "echo\necho formatting and checking @_[$dev]\n";
 $format .= "mkdosfs −c @_[$dev]\n";
 $format .= "# restore FAT boot sector.\n";
 $format .= "dd if=$outputfilename$partnumber of=@_[$dev] bs=512 count=1\n\n";

 } else {
 # anything else partition
 print OUTPUT "p\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) {
 print OUTPUT "@_[$lastcyl]\n";
 }
 print OUTPUT "t\n$partnumber\n@_[$parttype]\n";
 }

 } else {
 # logical Linux partition
 if (@_[$parttype] == 83) {
 print OUTPUT "l\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) {
 print OUTPUT "@_[$lastcyl]\n";

Linux Complete Backup and Recovery HOWTO

11. The Scripts 20

 }

 if ($labels{@_[$dev]}) { # do we have a label?
 # no bad block check
$format .= "mke2fs @_[$dev] −L $labels{@_[$dev]}\n";
 $format .= "echo\necho formatting and checking @_[$dev]\n";
 $format .= "mke2fs −c −L $labels{@_[$dev]} @_[$dev]\n\n";
 } else {
$format .= "mke2fs @_[$dev]\n"; # no bad block check
 $format .= "echo\necho formatting and checking @_[$dev]\n";
 $format .= "mke2fs −c @_[$dev]\n\n";
 }

 # logical Linux swap partition
 } elsif (@_[$parttype] == 82) {
 print OUTPUT "l\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) {
 print OUTPUT "@_[$lastcyl]\n";
 }
 print OUTPUT "t\n$partnumber\n82\n";
 $format .= "mkswap −c @_[$dev]\n\n";

 # primary mess−dos partition. We don't handle FAT32,
 # which requires a command line switch for mkdosfs.
 } elsif (@_[$parttype] == 1 || @_[$parttype] == 4 || @_[$parttype] == 6) {
 print ("dd if=@_[$dev] of=$outputfilepath$outputfilename$partnumber");
 print (" bs=512 count=1\n");
 system ("dd if=@_[$dev] of=$outputfilepath$outputfilename$partnumber bs=512 count=1");
 print OUTPUT "p\n$partnumber\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) { # in case it's all on one cylinder
 print OUTPUT "@_[$lastcyl]\n";
 }
 print OUTPUT "t\n$partnumber\n@_[$parttype]\n";
$format .= "mkdosfs @_[$dev]\n"; # no bad block check
 $format .= "echo\necho formatting and checking @_[$dev]\n";
 $format .= "mkdosfs −c @_[$dev]\n";
 $format .= "# restore FAT boot sector.\n";
 $format .= "dd if=$outputfilename$partnumber of=@_[$dev] bs=512 count=1\n\n";

 } else {
 # anything else partition
 print OUTPUT "l\n@_[$firstcyl]\n";
 if (@_[$firstcyl] ne @_[$lastcyl]) {
 print OUTPUT "@_[$lastcyl]\n";
 }
 print OUTPUT "t\n$partnumber\n@_[$parttype]\n";
 }

 }

 # handle bootable partitions
 if (@_[$bootable] =~ /*/) {
 print OUTPUT "a\n$partnumber\n";
 }
 }
}

print OUTPUT "v\nw\n";

close (OUTPUT);
close (FDISK);

Linux Complete Backup and Recovery HOWTO

11. The Scripts 21

open (OUTPUT, "> ${outputfilepath}make.$outputfilename")
 or die "Couldn't open output file ${outputfilepath}make.$outputfilename.\n";

print OUTPUT <<FINIS;
#! /bin/sh

A script to restore the partition data of a hard drive and format
the partitions. Created at bare metal backup time by the Perl script
make.fdisk.

Copyright 2001 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

FINIS

Clean the old partition table out.
print OUTPUT "dd if=/dev/zero of=$device bs=512 count=2\n\nsync\n\n";

print OUTPUT "fdisk $device \< $outputfilename\n\nsync\n\n";
print OUTPUT $format;

Now build the mount points on the root and other partitions.

We have a hash of mount points and devices in %mountpoints. However,
we have to process them such that directories are built on the
appropriate target partition. E.g. where /usr/local is on its own
partition, we have to mount /usr before we build /usr/local. We can
ensure this by sorting them. Shorter mount point paths will be built
first. We can't sort a hash directly, so we use an array.

We build commands to create the appropriate mount points and then
mount the partitions to the mount points. This is in preparation for
untarring the contents of the ZIP disk, done in restore.metadata.

foreach $point (sort keys %mountpoints) {
 print OUTPUT "\n# $point is the mountpoint for $mountpoints{$point}.\n";
 print OUTPUT "mkdir $target$point\n";
 print OUTPUT "mount $mountpoints{$point} $target$point\n";
}

close (OUTPUT);

Linux Complete Backup and Recovery HOWTO

11. The Scripts 22

These scripts are dangerous & should only be visible to root.

chmod 0700, "${outputfilepath}make.$outputfilename";
chmod 0600, "${outputfilepath}$outputfilename";

11.1.2. make.dev.hda

This script is a sample of the sort produced by make.fdisk, above. It uses data files like dev.hda, below.
It builds partitions and puts file systems on some of them. This is the first script run at restore time.

If you are brave enough to edit dev.hda (q.v.), say, to add a new partition, you may need to edit this script
as well.

#! /bin/sh

A script to restore the partition data of a hard drive and format
the partitions. Created at bare metal backup time by the Perl script
make.fdisk.

Copyright 2001 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

dd if=/dev/zero of=/dev/hda bs=512 count=2

sync

fdisk /dev/hda < dev.hda

sync

echo
echo formatting and checking /dev/hda1
mkdosfs −c /dev/hda1
restore FAT boot sector.
dd if=dev.hda1 of=/dev/hda1 bs=512 count=1

echo
echo formatting and checking /dev/hda2
badblocks −c 128 −o /tmp/dev.hda2 /dev/hda2
mke2fs −L /boot −l /tmp/dev.hda2 /dev/hda2

Linux Complete Backup and Recovery HOWTO

11.1.2. make.dev.hda 23

echo
echo formatting and checking /dev/hda5
badblocks −c 128 −o /tmp/dev.hda5 /dev/hda5
mke2fs −L / −l /tmp/dev.hda5 /dev/hda5

mkswap −c /dev/hda6

/ is the mountpoint for /dev/hda5.
mkdir /target/
mount /dev/hda5 /target/

/boot is the mountpoint for /dev/hda2.
mkdir /target/boot
mount /dev/hda2 /target/boot

11.1.3. dev.hda

This data file is used at restore time. It is fed to fdisk by the script make.dev.hda. It is produced at backup
time by make.fdisk. Those familiar with fdisk will recognize that each line is an fdisk command or value,
such as a cylinder number. Thus, it is possible to change the partition sizes and add new partitions by editing
this file. That's why the penultimate command is v, to verify the partition table before it is written.

n
p
1
1
29
t
1
6
a
1
n
p
2
30
44
n
e
3
45
1023
n
l
45
944
n
l
945
1023
t
6
82
v
w

Linux Complete Backup and Recovery HOWTO

11.1.3. dev.hda 24

11.1.4. save.metadata

This is the first script to run as part of the backup process. It calls make.fdisk, above. If you have a SCSI
hard drive or multiple hard drives to back up, edit the call to make.fdisk appropriately.

#! /bin/sh

A script to save certain meta−data off to the boot partition. Useful for
restoration.

Time−stamp: <2001−11−19 09:18:52 ccurley save.metadata>

Copyright 2000 through the last date of modification, Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

export zip="/mnt/zip";
export save="/mnt/save";

echo "saving hard drive info"
make.fdisk /dev/hda

back up RPM metadata

echo "Verifying RPMs."

rpm −Va > /etc/rpmVa.txt

echo "Finished verifying RPMs; now mounting the ZIP drive."

umount $zip

modprobe ppa

mount /dev/sda1

clean it all out
rm −r $zip/*

echo "Building the ZIP drive backups."

Linux Complete Backup and Recovery HOWTO

11.1.4. save.metadata 25

mkdir $zip/lost+found

fdisk −l /dev/hda > $zip/fdisk.hda

ls −al /mnt > $zip/ls.mnt.txt
ls −al / > $zip/ls.root.txt

mkdir $zip/etc;
cp −p /etc/* $zip/etc

cd /

These appear to be required so we can restore later on.

tar cf − boot | gzip −c > $zip/boot.tar.gz
tar cf − root | gzip −c > $zip/root.tar.gz
tar cf − etc | gzip −c > $zip/etc.tar.gz
tar cf − lib | gzip −c > $zip/lib.tar.gz

tar cf − usr/sbin | gzip −c > $zip/usr.sbin.tar.gz
tar cf − usr/bin | gzip −c > $zip/usr.bin.tar.gz
tar cf − sbin | gzip −c > $zip/sbin.tar.gz
tar cf − bin | gzip −c > $zip/bin.tar.gz
tar cf − dev | gzip −c > $zip/dev.tar.gz

Now optional saves.

arkeia specific:
tar cf − usr/knox | gzip −c > $zip/arkeia.tar.gz

save these so we can use ssh for restore. *crack* for RH 7.0 login
authentication.
tar cf − usr/lib/*crack* usr/lib/libz* usr/lib/libssl* usr/lib/libcrypto*\
 | gzip −c > $zip/usr.lib.tar.gz

save the scripts we used to create the zip disk and the ones we will
use to restore it.
mkdir $zip/root.bin
cp −p /root/bin/* $zip/root.bin
rm $zip/root.bin/*~ $zip/root.bin/#*#

echo "Test our results."
find $zip −iname "*.gz" | xargs gzip −t

Not a normal part of the process: we duplicate the ZIP disk onto an
NFS mount elsewhere.

echo "Backing the ZIP drive to the NFS mount."

umount $save
mount $save

rm −r $save/zip
mkdir $save/zip
cp −pr $zip $save

df −m
eject $zip

Linux Complete Backup and Recovery HOWTO

11.1.4. save.metadata 26

11.1.5. restore.metadata

This script restores metadata from the ZIP® disk as a first stage restore.

#! /bin/sh

A script to restore the meta−data from the ZIP disk. This runs under
tomsrtbt only after partitions have been rebuilt, file systems made,
and mounted. It also assumes the ZIP disk has already been
mounted. Mounting the ZIP disk read only is probably a good idea.

Time−stamp: <2001−11−19 09:21:51 ccurley restore.metadata>

Copyright 2000 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

zip="/mnt";
target="/target";

warm fuzzies for the user.
ls −lt $zip

cd $target

restore the archived metadata files.
for archive in $(ls $zip/*.gz); do
echo $archive
ls −al $archive
gzip −dc $archive | tar −xf −
done

mkdir $target/proc
chmod a−w $target/proc

build a mount point directory so we'll have it on reboot.
mkdir $target/mnt

Build the mount points for our second stage restoration and other
things.
mkdir $target/mnt/save
mkdir $target/mnt/zip
mkdir $target/mnt/cdrom
mkdir $target/mnt/floppy

Linux Complete Backup and Recovery HOWTO

11.1.5. restore.metadata 27

mkdir $target/mnt/imports

Restore the scripts we used to create the ZIP disk and the ones we will
use to restore it. These should be the latest & greatest in case we had
to do any editing during 1st stage restore.
cp −p $zip/root.bin/* $target/root/bin

Now install the boot sector.
chroot $target /sbin/lilo −C /etc/lilo.conf

df −m

11.2. Second Stage

These scripts run on the computer being backed up or restored.

11.2.1. back.up.all

This script saves to another computer via an NFS mount. You can adapt it to save to tape drives or other
media.

#! /bin/sh

Back up the entire system to another computer's drive. To make this
work, we need a convenient chunk of disk space on the remote computer we
can nfs mount as /mnt/save.

Time−stamp: <2001−11−19 09:19:35 ccurley back.up.all>

Copyright 2000 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

save="/mnt/save"

Make sure it's there
umount $save
mount $save

Linux Complete Backup and Recovery HOWTO

11.2. Second Stage 28

cd /

rm $save/tester.tar.old.gz
mv $save/tester.tar.gz $save/tester.tar.old.gz

save everything except /mnt, /proc, and nfs mounted directories.

time tar cf − / −−exclude /mnt −−exclude /proc −−exclude $save\
 | gzip −c > $save/tester.tar.gz

11.2.2. back.up.all.ssh

This script does exactly what back.up.all does, but it uses SSH instead of nfs.

#! /bin/sh

Back up the entire system to another computer's drive. To make this
work, we need a convenient chunk of disk space on the remote
computer. This version uses ssh to do its transfer, and compresses
using bz2. This means this script has to know more about the other
computer, which does not make for good modularization.

Time−stamp: <2001−11−19 09:19:48 ccurley back.up.all.ssh>

Copyright 2000 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

save="/backs/tester"
backup_server="charlesc"

rotate the old backups. Do it all in one line to minimze authentication overhead.
ssh $backup_server "rm $save/tester.tar.old.bz2; mv $save/tester.tar.bz2 \
 $save/tester.tar.old.bz2"

save everything except /mnt, /proc, and squid directories.

time tar cf − / −−exclude /mnt −−exclude /proc −−exclude /var/spool/squid\
 | ssh $backup_server "bzip2 −9 > $save/tester.tar.bz2"

Linux Complete Backup and Recovery HOWTO

11.2.2. back.up.all.ssh 29

11.2.3. restore.all

This is the restore script to use if you backed up using back.up.all.

#! /bin/sh

A script to restore all of the data from an nfs mount. This is our final
stage restore.

Time−stamp: <2001−11−19 09:21:22 ccurley restore.all>

Copyright 2000 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

export save="/mnt/save"

mount $save

cd /
gunzip −dc $save/tester.tar.gz | tar −xpkf −

rm /var/run/*.pid

lilo

11.2.4. restore.all.ssh

This is the restoration script to use if you used back.up.all.ssh to back up.

#! /bin/sh

A script to restore all of the data using ssh and bunzip2. This is
our final stage restore.

Copyright 2000 through the last date of modification Charles Curley.

Time−stamp: <2001−11−19 09:21:33 ccurley restore.all.ssh>

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the

Linux Complete Backup and Recovery HOWTO

11.2.3. restore.all 30

Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

save="/backs/tester/"
backup_server="charlesc"

cd /

ssh $backup_server "cat $save/tester.tar.bz2" | bunzip2 | tar −xpkf −

rm /var/run/*.pid

lilo

11.3. Backup Server Scripts

The SSH scripts above have a possible security problem. If you run them on a firewall, the firewall has to
have access via SSH to the backup server. In that case, a clever cracker might also be able to crack the
backup server. It would be more secure to run backup and restore scripts on the backup server, and let the
backup server have access to the firewall. That is what these scripts are for. Rename them to get.x and
restore.x where x is the name of the target computer. Edit them (the variable $target's initialization) to
use the target computer's host name, or rewrite them to use a command line argument.

These scripts backup and restore the target completely, not just the stage one backup and restore. Also, note
that get.tester backs up the ZIP® disk as well, in case you need to replace a faulty ZIP disk.

I use these scripts routinely.

11.3.1. get.tester

#! /bin/sh

Back up another computer's drive to this system. To make this work, we
need a convenient chunk of disk space on this computer. This version
uses ssh to do its transfer, and compresses using bz2. This version was
developed so that the system to be backed up won't be authenticated to
log onto the backup computer. This script is intended to be used on a
firewall. You don't want the firewall to be authenticated to the backup
system in case the firewall is cracked.

Linux Complete Backup and Recovery HOWTO

11.3. Backup Server Scripts 31

Time−stamp: <2001−11−19 09:20:06 ccurley get.tester>

Copyright 2000 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

The host name of the computer to be backed up.

target=tester

echo Backing up $target

echo Aging the ZIP disk backups.

rm −r $target.oldzip

mv $target.zip $target.oldzip

ssh $target "modprobe ppa ; mount −r /mnt/zip"

echo Copying the ZIP disk.

−r for recursive copy, −p to preserve times and permissions, −q for
−quiet: no progress meter.

scp −qpr $target:/mnt/zip $target.zip

echo Testing the results.
find . −iname "*.gz" | xargs gunzip −t

ssh $target "eject $zip"

echo Aging the archives

rm $target.tar.old.bz2

mv $target.tar.bz2 $target.tar.old.bz2

echo Backing up $target to the backup server.

ssh $target tar −cf − / −−exclude /mnt −−exclude /proc −−exclude /var/spool/squid\
 | bzip2 −9 | cat > $target.tar.bz2

Linux Complete Backup and Recovery HOWTO

11.3. Backup Server Scripts 32

echo Testing the results.
find . −iname "*.bz2" | xargs bunzip2 −t

11.3.2. restore.tester

#! /bin/sh

A script to restore all of the data to tester via ssh. This is our final
stage restore.

Time−stamp: <2001−11−19 09:22:01 ccurley restore.tester>

Copyright 2000 through the last date of modification Charles Curley.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

You can also contact the Free Software Foundation at http://www.fsf.org/

For more information contact the author, Charles Curley, at
http://w3.trib.com/~ccurley/.

The host name of the computer to be restored.

target=tester

bunzip2 −dc $target.tar.bz2 | ssh $target "cd / ; tar −xpkf − "

ssh $target lilo

Linux Complete Backup and Recovery HOWTO

11.3.2. restore.tester 33

12. Resources
W. Curtis Preston's excellent Unix Backup & Recovery. This is the book that got me started on this
bare metal recovery stuff. I highly recommend it; read my review.

•

A list of small Linux disties.•
tomsrtbt, "The most Linux on 1 floppy disk." Tom also has links to other small disties. •
The Linux Documentation Project. See particularly the "LILO, Linux Crash Rescue HOW−TO"•
The Free Software Foundation's parted for editing (enlarging, shrinking, moving) partitions. •
Partition Image for backing up partitions. •
Hugo Rabson's Mondo "... creates one or more bootable Rescue CD's (or tape+floppies) containing
some or all of your filesystem. In the event of catastrophic data loss, you will be able to restore from
bare metal."

•

12. Resources 34

http://www.oreilly.com/catalog/unixbr/author.html
http://www.oreilly.com/catalog/unixbr/
http://www2.linuxjournal.com/lj-issues/issue78/3839.html
http://www.fokus.gmd.de/linux/linux-distrib-small.html
http://www.toms.net/rb
http://www.linuxdoc.org/
http://www.gnu.org/software/parted
http://www.partimage.org/
http://www.microwerks.net/~hugo/

A. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111−1307 USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

A. GNU Free Documentation License 35

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

0. PREAMBLE 36

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine−generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

1. APPLICABILITY AND DEFINITIONS 37

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

2. VERBATIM COPYING 38

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly−accessible computer−network location containing a complete Transparent copy of the
Document, free of added material, which the general network−using public has access to download
anonymously at no charge using public−standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

3. COPYING IN QUANTITY 39

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

A.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

B.

State on the Title page the name of the publisher of the Modified Version, as the publisher. C.
Preserve all the copyright notices of the Document. D.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. E.
Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

F.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

G.

Include an unaltered copy of this License. H.
Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

I.

Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

J.

In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

K.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

L.

Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

M.

Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section. N.

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

4. MODIFICATIONS 40

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

Linux Complete Backup and Recovery HOWTO

4. MODIFICATIONS 41

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

5. COMBINING DOCUMENTS 42

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

6. COLLECTIONS OF DOCUMENTS 43

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self−contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

7. AGGREGATION WITH INDEPENDENT WORKS 44

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

8. TRANSLATION 45

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. TERMINATION 46

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

10. FUTURE REVISIONS OF THIS LICENSE 47

http://www.gnu.org/copyleft/

11. How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with the Invariant Sections being
LIST THEIR TITLES, with the Front−Cover Texts being LIST, and with the Back−Cover
Texts being LIST. A copy of the license is included in the section entitled "GNU Free
Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front−Cover Texts, write "no Front−Cover Texts" instead of "Front−Cover Texts
being LIST"; likewise for Back−Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

11. How to use this License for your documents 48

	Table of Contents
	1. Introduction
	1.1. Copyright Information
	1.2. Disclaimer
	1.3. New Versions
	1.4. Credits
	1.5. Feedback
	1.6. Translations

	2. Overview
	2.1. Limitations

	3. Preparation
	3.1. Installing the ZIP® Drive

	4. Creating the Stage 1 Back Up
	5. Booting tomsrtbt
	6. Second Stage Restoration
	7. Distribution Specific Notes
	7.1. Red Hat 7.1
	7.2. Red Hat 7.0

	8. Application Specific Notes
	8.1. Squid
	8.2. Arkeia

	9. Some Advice for Disaster Recovery
	10. What Now?
	10.1. To Do

	11. The Scripts
	11.1. First Stage
	11.1.1. make.fdisk
	11.1.2. make.dev.hda
	11.1.3. dev.hda
	11.1.4. save.metadata
	11.1.5. restore.metadata

	11.2. Second Stage
	11.2.1. back.up.all
	11.2.2. back.up.all.ssh
	11.2.3. restore.all
	11.2.4. restore.all.ssh

	11.3. Backup Server Scripts
	11.3.1. get.tester
	11.3.2. restore.tester

	12. Resources
	A. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. How to use this License for your documents

