
THE LINUX MAN−PAGE−HOWTO

Copyright 1995−2001 by Jens Schweikhardt, email: <howto at schweikhardt dot net>

http://www.schweikhardt.net/

See further information on copying conditions below.

$Id: man_page_howto.html,v 1.20 2001/10/28 15:30:22 schweikh Exp schweikh $

Click here to browse the author's latest version of this document. Corrections and suggestions welcome!

This HOWTO explains what you should bear in mind when you are going to write on−line documentation −−
a so−called man page −− that you want to make accessible via the man(1) command. Throughout this
HOWTO, a manual entry is simply referred to as a man page, regardless of actual length and without sexist
intention.

Table of contents

A few thoughts on documentation1.
How are man pages accessed?2.
How should a formatted man page look?3.
How do I document several programs/functions in a singman page?4.
Which macro package should I use?5.
What preprocessors may I use?6.
Should I distribute source and/or already formatted docutation?7.
What are the font conventions?8.
How do I polish my man page?9.
How do I get a plain text man page without all that ^H^_ stuff?10.
How do I get a high quality PostScript man page?11.
How do I get apropos and whatis to work?12.
Copying conditionsA.
AcknowledgementsB.
ChangelogC.

1) A few thoughts on documentation

Why do we write documentation? Silly question. Because we want others to be able to use our program,
library function or whatever we have written and made available. But writing documentation is not all there is
to it:

Documentation must be accessible. If it's hidden in some non−standard place where the
documentation−related tools won't find it −− how can it serve its purpose?

•

Documentation must be reliable and accurate. There's nothing more annoying than having program
behaviour and documentation disagree. Users will curse you, send you hate mail and throw your
work into the bit bucket, with the firm intent to never install anything written by that jerk again.

•

The historical and well known way documentation is accessed on UNIX is via the man(1) command. This
HOWTO describes what you have to do to write a man page that will be correctly processed by the
documentation− related tools. The most important of these tools are man(1), xman(1x), apropos(1),

 Linux Man Page Howto

1

mailto:howto@schweikhardt.net
http://www.schweikhardt.net/
http://www.schweikhardt.net/man_page_howto.html

makewhatis(8) and catman(8). Reliability and accuracy of the information are, of course, up to you. But
even in this respect you will find some ideas below that help you avoid some common glitches.

2) How are man pages accessed?

You need to know the precise mechanism for acccessing man pages in order to give your man page the right
name and install it in the right place. Each man page should be categorized in a specific section, denoted by a
single character. The most common sections under Linux, and their human readable names, are:

Section The human readable name
 1 User commands that may be started by everyone.
 2 System calls, that is, functions provided by the kernel.
 3 Subroutines, that is, library functions.
 4 Devices, that is, special files in the /dev directory.
 5 File format descriptions, e.g. /etc/passwd.
 6 Games, self−explanatory.
 7 Miscellaneous, e.g. macro packages, conventions.
 8 System administration tools that only root can execute.
 9 Another (Linux specific) place for kernel routine documentation.
 n (Deprecated) New documentation, that may be moved to a more appropriate section.
 o (Deprecated) Old documentation, that may be kept for a grace period.
 l (Deprecated) Local documentation referring to this particular system.

The name of the man page's source file (the input to the formatting system) is the name of the command,
function or file name, followed by a dot, followed by the section character. If you write the documentation on
the format of the `passwd' file you have to name the source file `passwd.5'. Here we also have an example of
a file name that is the same as a command name. There might be even a library subroutine named passwd.
Sectioning is the usual way to resolve these ambiguities: The command description is found in the file
`passwd.1' and the hypothetical library subroutine in `passwd.3'.

Sometimes additional characters are appended and the file name looks for example like `xterm.1x' or `wish.1tk'. The intent
is to indicate that this is documentation for an X Window program or a Tk application, respectively. Some manual browsers
can make use of this additional information. For example xman will use `xterm(x)' and `wish(tk)' in the list of available
documentation.

Please don't use the n, o and l sections; according to the File System Standard these sections are deprecated.
Stick to the numeric sections. Beware of name clashes with existing programs, functions or file names. It is
certainly a bad idea to write yet another editor and call it ed, sed (for smart ed) or red (for Rocky's ed). By
making sure your program's name is unique, you avoid having someone execute your program but read
someone else's man page, or vice versa. Checking out the Linux Software Map (LSM) database on a program
name is a place to start ensuring name uniqueness.

Now we know the name to give our file. The next decision is the directory in which it will finally be installed
(say, when the user runs `make install' for your package.) On Linux, all man pages are below directories
listed in the environment variable MANPATH. The doc−related tools use MANPATH in the same way the
shell uses PATH to locate executables. In fact, MANPATH has the same format as PATH. Each contains a
colon−separated list of directories (with the exception that MANPATH does not allow empty fields and
relative pathnames −− it uses absolute names only.) If MANPATH is not set or not exported, a default will be
used that contains at least the /usr/man directory. To speed up the search and to keep directories small, the
directories specified by MANPATH (the so−called base directories) contain a bunch of subdirectories named
`man<s>' where <s> stands for the one−character section designator introduced in the table above. Not all of
the sections may be represented by a subdirectory because there simply is no reason to keep an empty `mano'
subdirectory. However, there may be directories named `cat<s>', `dvi<s>' and `ps<s>' which hold
documentation that is ready to display or print. More on this later. The only other file in any base directory

 Linux Man Page Howto

2

http://www.execpc.com/lsm/

should be a file named `whatis'. The purpose and creation of this file will also be described under paragraph
12). The safest way to have a man page for section <s> installed in the right place is to put it in the directory
/usr/man/man<s>. A good Makefile, however, will allow the user to chose a base directory, by means of a
make variable, MANDIR, say. Most of the GNU packages can be configured with the
−−prefix=/what/ever option. The manuals will then be installed under the base directory
/what/ever/man. I suggest you also provide a way to do something similar.

With the advent of the Linux File System Standard (FS−Stnd), things became more complicated. The
FS−Stnd 1.2 states that

"Provisions must be made in the structure of /usr/man to support manual pages which are written in
different (or multiple) languages."

This is achieved by introducing another directory level that distinguishes between different languages.
Quoting again from FS−Stnd 1.2:

"This naming of language subdirectories of /usr/man is based on Appendix E of the POSIX 1003.1
standard which describes the locale identification string −− the most well accepted method to
describe a cultural environment. The <locale> string is:
<language>[_<territory>][.<character−set>][,<version>]"

(See the FS−Stnd for a few common <locale> strings.) According to these guidelines, we have our man pages
in /usr/man/<locale>/man[1−9lno]. The formatted versions should then be in /usr/man/<locale>/cat[1−9lno]
of course, otherwise we could only provide them for a single locale. HOWEVER, I can not recommend
switching to that structure at this time. The FS−Stnd 1.2 also allows that

"Systems which use a unique language and code set for all manual pages may omit the <locale>
substring and store all manual pages in <mandir>. For example, systems which only have English
manual pages coded with ASCII, may store manual pages (the man[1−9] directories) directly in
/usr/man. (That is the traditional circumstance and arrangement in fact.)"

I would not switch until all tools (like xman, tkman, info and many others that read man pages) can cope with
the new structure.

3) How should a formatted man page look?

Let me present you an example. Below I will explain it in detail. If you read this as plain text it won't show
the different typefaces (bold and italics). Please refer to the paragraph "What are the font conventions?" for
further explanations. Here comes the man page for the (hypothetical) foo program.

FOO(1) User Manuals FOO(1)

NAME
 foo − frobnicate the bar library

SYNOPSIS
foo [−bar] [−c config−file] file ...

DESCRIPTION
foo frobnicates the bar library by tweaking internal symbol

 tables. By default it parses all baz segments and rearranges

 Linux Man Page Howto

3

ftp://tsx-11.mit.edu/pub/linux/docs/linux-standards/fsstnd/

 them in reverse order by time for the xyzzy(1) linker to
 find them. The symdef entry is then compressed using the WBG
 (Whiz−Bang−Gizmo) algorithm. All files are processed in the
 order specified.

OPTIONS
 −b Do not write `busy' to stdout while processing.

 −c config−file
 Use the alternate system wide config−file instead of

/etc/foo.conf. This overrides any FOOCONF environment
 variable.

 −a In addition to the baz segments, also parse the blurfl
 headers.

 −r Recursive mode. Operates as fast as lightning at the
 expense of a megabyte of virtual memory.

FILES
/etc/foo.conf

 The system wide configuration file. See foo(5) for fur−
 ther details.

~/.foorc
 Per user configuration file. See foo(5) for further
 details.

ENVIRONMENT
 FOOCONF
 If non−null the full pathname for an alternate system
 wide foo.conf. Overridden by the −c option.

DIAGNOSTICS
 The following diagnostics may be issued on stderr:

 Bad magic number.
 The input file does not look like an archive file.
 Old style baz segments.
 foo can only handle new style baz segments. COBOL
 object libraries are not supported in this version.

BUGS
 The command name should have been chosen more carefully to
 reflect its purpose.

AUTHOR
 Jens Schweikhardt <howto at schweikhardt dot net>
SEE ALSO

bar(1), foo(5), xyzzy(1)

Linux Last change: MARCH 1995 2

Here's the explanation as I promised.

The NAME section

...is the only required section. Man pages without a name section are as useful as refrigerators at the north
pole. This section also has a standardized format consisting of a comma−separated list of program or function

 Linux Man Page Howto

4

mailto:howto@schweikhardt.net

names, followed by a dash, followed by a short (usually one line) description of the functionality the program
(or function, or file) is supposed to provide. By means of makewhatis(8), the name sections make it into
the whatis database files. Makewhatis is the reason the name section must exist, and why it must adhere
to the format I described. In the groff source it must look like

.SH NAME foo \− frobnicate the bar library

The \− is of importance here. The backslash is needed to make the dash distinct from a hyphenation dash that
may appear in either the command name or the one line description.

The SYNOPSIS section

...is intended to give a short overview on available program options. For functions this sections lists
corresponding include files and the prototype so the programmer knows the type and number of arguments as
well as the return type.

The DESCRIPTION section

...eloquently explains why your sequence of 0s and 1s is worth anything at all. Here's where you write down
all your knowledge. This is the Hall Of Fame. Win other programmers' and users' admiration by making this
section the source of reliable and detailed information. Explain what the arguments are for, the file format,
what algorithms do the dirty jobs.

The OPTIONS section

...gives a description of how each option affects program behaviour. You knew that, didn't you?

The FILES section

...lists files the program or function uses. For example, it lists configuration files, startup files, and files the
program directly operates on. It is a good idea to give the full pathname of these files and to make the install
process modify the directory part to match user preferences: the groff manuals have a default prefix of
/usr/local, so they reference /usr/local/lib/groff/* by default. However, if you install using 'make
prefix=/opt/gnu' the references in the man page change to /opt/gnu/lib/groff/*

The ENVIRONMENT section

...lists all environment variables that affect your program or function and tells how, of course. Most
commonly the variables will hold pathnames, filenames or default options.

The DIAGNOSTICS section

...should give an overview of the most common error messages from your program and how to cope with
them. There's no need to explain system error error messages (from perror(3)) or fatal signals (from
psignal(3)) as they can appear during execution of any program.

The BUGS section

...should ideally be non−existent. If you're brave, you can describe here the limitations, known
inconveniences and features that others may regard as misfeatures. If you're not so brave, rename it the TO
DO section ;−)

 Linux Man Page Howto

5

The AUTHOR section

...is nice to have in case there are gross errors in the documentation or program behaviour (Bzzt!) and you
want to mail a bug report.

The SEE ALSO section

...is a list of related man pages in alphabetical order. Conventionally, it is the last section. You are free to
invent other sections if they really don't fit in one of those described so far. So how exactly did you generate
that man page? I expected that question, here's the source, Luke:

.\" Process this file with

.\" groff −man −Tascii foo.1

.\"

.TH FOO 1 "MARCH 1995" Linux "User Manuals"

.SH NAME
foo \− frobnicate the bar library
.SH SYNOPSIS
.B foo [−bar] [−c
.I config−file
.B]
.I file
.B ...
.SH DESCRIPTION
.B foo
frobnicates the bar library by tweaking internal
symbol tables. By default it parses all baz segments
and rearranges them in reverse order by time for the
.BR xyzzy (1)
linker to find them. The symdef entry is then compressed
using the WBG (Whiz−Bang−Gizmo) algorithm.
All files are processed in the order specified.
.SH OPTIONS
.IP −b
Do not write `busy' to stdout while processing.
.IP "−c config−file"
Use the alternate system wide
.I config−file
instead of
.IR /etc/foo.conf .
This overrides any
.B FOOCONF
environment variable.
.IP −a
In addition to the baz segments, also parse the
blurfl headers.
.IP −r
Recursive mode. Operates as fast as lightning
at the expense of a megabyte of virtual memory.
.SH FILES
.I /etc/foo.conf
.RS
The system wide configuration file. See
.BR foo (5)
for further details.
.RE
.I ~/.foorc
.RS
Per user configuration file. See
.BR foo (5)

 Linux Man Page Howto

6

for further details.
.SH ENVIRONMENT
.IP FOOCONF
If non−null the full pathname for an alternate system wide
.IR foo.conf .
Overridden by the
.B −c
option.
.SH DIAGNOSTICS
The following diagnostics may be issued on stderr:

Bad magic number.
.RS
The input file does not look like an archive file.
.RE
Old style baz segments.
.RS
.B foo
can only handle new style baz segments. COBOL
object libraries are not supported in this version.
.SH BUGS
The command name should have been chosen more carefully
to reflect its purpose.
.SH AUTHOR
Jens Schweikhardt <howto at schweikhardt dot net>
.SH "SEE ALSO"
.BR bar (1),
.BR foo (5),
.BR xyzzy (1)

4) How do I document several programs/functions in a single man page?

Many programs (grep, egrep) and functions (printf, fprintf, ...) are documented in a single man
page. However, these man pages would be quite useless if they were only accessible under one name. We
cannot expect a user to remember that the egrep man page is actually the grep man page. It is therefore
necessary to have the man page available under different names. You have several possibilities to achieve
this:

have identical copies for each name.1.
connect all man pages using hard links.2.
symbolic links pointing to the actual man page.3.
use groff's `source' mechanism provided by the .so macro.4.

The first way is obviously a waste of disk space. The second is not recommended because intelligent versions
of the catman program can save a lot of work by looking at the the file type or contents. Hard links will
prevent catman from being clever. (Note that catman's purpose is to format all man pages so they can be
displayed quickly.) The third alternative has a slight drawback: if flexibility is a concern, you have to be
aware that there are file systems that do not support symbolic links. The upshot of this is that the Best Thing
(TM) is using groff's source mechanism. Here's how to do it: If you want to have your man page available
under the names `foo' and `bar' in section 1, then put the man page in foo.1 and have bar.1 look like this:

.so man1/foo.1

It is important to specify the man1/ directory part as well as the file name `foo.1' because when groff is
run by the browser it will have the manual base directory as its current working directory (cwd) and

 Linux Man Page Howto

7

groff interprets .so arguments relative to the cwd.

5) Which macro package should I use?

There are a number of macro packages especially designed for use in writing man pages. Usually they are in
the groff macro directory /usr/lib/groff/tmac. The file names are tmac.<something>, where <something> is
the argument to groff's −m option. Groff will use tmac.<something> when it is given the `−m <something>'
option. Often the blank between `−m' and `<something>' is omitted so we may say `groff −man' when we
are formatting man pages using the tmac.an macro package. That's the reason for the strange name
`tmac.an'. Besides tmac.an there is another popular macro package, tmac.doc, which originated at the
University of California at Berkeley. Many BSD man pages use it and it seems that UCB has made it its
standard for documentation. The tmac.doc macros are much more flexible but alas, there are manual
browsers that will not use them but always call groff −man. For example, all xman programs I have seen
will screw up on man pages requiring tmac.doc. So do yourself a favor: use tmac.an −− use of any other
macro package is considered harmful. tmac.andoc is a pseudo macro package that takes a look at the
source and then loads either tmac.an or tmac.doc. Actually, any man page browser should use it but to
this point, not all of them do, so it is best we cling to ye olde tmac.an. Anything I tell you from now on and
concerning macros only holds true for tmac.an. If you want to use the tmac.doc macros anyway, here is
a pointer to detailed information on how to use them: http://www.bsdi.com/bsdi−man There is a searchable
index form on the page. Enter mdoc.samples and it will find you mdoc.samples(7), a tutorial
sampler for writing BSD man pages. Some distros (I'm told) also come with mdoc(7), mdoc.samples(7) and
groff_man(7).

The definitive dope for troff, with all macros explained, is the Troff User's Manual, available as html,
PostScript (ps, 760K) or Portable Document Format (pdf, 240K). by Jospeh F. Ossanna and Brian W.
Kernighan, revised November 1992. AT&T Bell Labs have made it publicly available. Don't forget to check
out the late great W. Richard Steven's homepage (famous for Unix Network Programming as well as the
TCP/IP Illustrated trilogy), who also has a list of Troff Resources including tbl, eqn, pic and other filters.

6) What preprocessors may I use?

Groff comes with at least three preprocessors, tbl, eqn, and pic (on some systems they are named gtbl,
geqn and gpic.) Their purpose is to translate preprocessor macros and their data to regular troff input.
Tbl is a table preprocessor, eqn is an equations/maths preprocessor and pic is a picture preprocessor.
Please refer to the man pages for more information on what functionality they provide. To put it in a nutshell:
don't write man pages requiring any preprocessor. Eqn will generally produce terrible output for
typewriter−like devices, unfortunately the type of device 99% of all man pages are viewed on (well, at least I
do). For example, XAllocColor.3x uses a few formulas with exponentiation. Due to the nature of
typewriter−like devices, the exponent will be on the same line as the base. N to the power of two appears as
`N2'. Tbl should be avoided because all xman programs I have seen fail on them. Xman 3.1.6 uses the
following command to format man pages, e.g. signal(7):

gtbl /usr/man/man7/signal.7 | geqn | gtbl | groff −Tascii −man
/tmp/xmana01760 2> /dev/null

which screws up for sources using gtbl, because gtbl output is fed again into gtbl. The effect is a man
page without your table. I don't know if it's a bug or a feature that gtbl chokes on its own output or if xman
could be a little smarter and not use gtbl twice. Furthermore, some systems use grog to determine what
options to pass to groff. Unfortunately grog sometimes guesses wrong and recommends groff −t when in
fact tbl must not be used. We are basically left with two workarounds for tables:

 Linux Man Page Howto

8

http://www.bsdi.com/bsdi-man
http://cm.bell-labs.com/sys/doc/troff.html
http://cm.bell-labs.com/sys/doc/troff.ps
http://cm.bell-labs.com/sys/doc/troff.pdf
http://www.kohala.com/start/
http://www.kohala.com/start/troff/troff.html

Format the table yourself manually and put it between .nf and .fi lines so that it will be left
unformatted. You won't have bold and italics this way but this beats having your table swallowed any
day.

1.

Use any tbl macros you like but distribute the tbl output instead of the input. There is however
this quirk with grog who thinks that any file containing a line starting with .TS requires tbl.
Tbl output for some reason unbeknownst to me still contains .TS and .TE. It seems you can simply
remove them and have the result still look okay. YMMV, so please test this with your particular man
page.

2.

I have yet to see a man page requiring pic preprocessing. But I would not like it. As you can see above,
xman will not use it and groff will certainly do the funky wadakiki on the input.

7) Should I distribute source and/or already formatted documentation?

Let me give the pros (+) and cons (−) of a few selected possibilities:

Source only:
+ smaller distribution package.
− inaccessible on systems without groff.

1.

Uncompressed formatted only:
+ accessible even on systems without groff.
− the user can't generate a dvi or postscript file.
− waste of disk space on systems that also handle compressed pages.

2.

Compressed formatted only:
+ accessible even on systems without groff.
− the user can't generate a dvi or postscript file.
− which compression format would you use? .Z? .z? .gz? All of them?

3.

Source and uncompressed formatted:
+ accessible even on systems without groff.
− larger distribution package
− some systems may expect compressed formatted man pages.
− redundant information on systems equipped with groff.

4.

IMHO it is best to distribute source only. The argument that it's inaccessible on systems without groff
does not matter. The 500+ man pages of the Linux Documentation Project are source only. The man pages of
XFree86 are source only. The man pages from the FSF are source only. In fact, I have rarely seen software
distributed with formatted man pages. If any sysadmin is really concerned about having man pages accessible
then he also has groff installed.

8) What are the font conventions?

First of all: don't use direct font operators like \fB, \fP etc. Use macros which take arguments. This way
you avoid a common glitch: forgetting the font change at the end of the word and having the bold or italic
extend up to the next font change. Believe me, it happens more often than you think. The tmac.an macros
provide the following type faces:

.B Bold

.BI Bold alternating with italics

 Linux Man Page Howto

9

.BR Bold alternating with Roman

.I Italics

.IB Italics alternating with bold

.IR Italics alternating with Roman

.RB Roman alternating with bold

.RI Roman alternating with italics

.SM Small (scaled 9/10 of the regular size)

.SB Small bold (not small alternating with bold)

X alternating with Y means that the odd arguments are typeset in X while the even arguments are typeset in
Y. For example

.BI "Arg 1 is Bold, " "Arg 2 is Italics, " "and Bold, " "and Italics."

The double quotes are needed to include white space into an argument; without them, no white space appears
between the alternating typefaces. In fact, you'll only need the macros for alternating typefaces in cases where
you want to avoid white space between typeface changes. So much for what's available. Here's how you
should make use of the different typefaces: (portions shamelessly stolen from man(7))

Although there are many arbitrary conventions for man pages in the UNIX world, the existence of several
hundred Linux−specific man pages defines our standards: For functions, the arguments are always specified
using italics, even in the SYNOPSIS section, where the rest of the function is specified in bold:

.BI "myfunction(int " argc ", char **" argv);

Filenames are always in italics, except in the SYNOPSIS section, where included files are in bold. So you
should use

.I /usr/include/stdio.h

and

.B #include <stdio.h>

Special macros, which are usually in upper case, are in bold:

.B MAXINT

When enumerating a list of error codes, the codes are in bold. This list usually uses the .TP (paragraph with
hanging tag) macro as follows:

.TP

.B EBADF

.I fd is not a valid file descriptor.

 Linux Man Page Howto

10

.TP

.B EINVAL

.I fd is unsuitable for reading

Any reference to another man page (or to the subject of the current man page) is in bold. If the manual
section number is given, it is given in roman, without any spaces:

.BR man (7)

Acronyms look best when typeset in small type face. So I recommend

.SM UNIX

.SM ASCII

.SM TAB

.SM NFS

.SM LALR(1)

9) Polishing your man page

Following are some guidelines that increase reliability, readability and 'formatability' of your documentation.

Test examples to make sure they work (use cut and paste to give your shell the exact wording from
the man page). Copy the output of your command into your man page, don't just type what you
think your program will print.

•

Proof read, ispell, and have someone else read it, especially if you are not a native English speaker.
The HOWTO you are reading has passed the latter test (special thanks to Michael Miller for a
particular heroic contribution! All the remaining rough edges are entirely my fault). Additional
volunteers are always welcome.

•

Test your man page: Does groff complain when you format your man page? It's nice to have the
groff command line in a comment. Does the man(1) command complain when you call man
yourprog? Does it produce the expected result? Will xman(1x) and tkman(1tk) cope with your
manual? XFree86 3.1 has xman 3.1.6 − X11R6, it will try to uncompress using
gzip −c −d < %s > %s
zcat < %s > %s

•

Will makewhatis(8) be able to extract the one−line description from the NAME section?•

10) How do I get a plain text man page without all that ^H^_ stuff?

Have a look at col(1), because col can filter out backspace sequences. Just in case you can't wait that
long:

funnyprompt$ groff −t −e −mandoc −Tascii manpage.1 | col −bx >
manpage.txt

The −t and −e switches tell groff to preprocess using tbl and eqn. This is overkill for man pages that
don't require preprocessing but it does no harm apart from a few CPU cycles wasted. On the other hand, not

 Linux Man Page Howto

11

using −t when it is actually required does harm: the table is terribly formatted. You can even find out (well,
"guess" is a better word) what command is needed to format a certain groff document (not just man pages)
by issuing

funnyprompt$ grog /usr/man/man7/signal.7
groff −t −man /usr/man/man7/signal.7

"Grog" stands for "GROff Guess", and it does what it says−−guess. If it were perfect we wouldn't need
options any more. I've seen it guess incorrectly on macro packages and on preprocessors. Here is a little perl
script I wrote that can delete the page headers and footers, thereby saving you a few pages (and mother nature
a tree) when printing long and elaborate man pages. Save it in a file named strip−headers & chmod 755.

 #!/usr/bin/perl −wn
 # make it slurp the whole file at once:
 undef $/;
 # delete first header:
 s/^\n*.*\n+//;
 # delete last footer:
 s/\n+.*\n+$/\n/g;
 # delete page breaks:
 s/\n\n+[^ \t].*\n\n+(\S+).*\1\n\n+/\n/g;
 # collapse two or more blank lines into a single one:
 s/\n{3,}/\n\n/g;
 # see what's left...
 print;

You have to use it as the first filter after the man command as it relies on the number of newlines being
output by groff. For example:

funnyprompt$ man bash | strip−headers | col −bx > bash.txt

11) How do I get a high quality PostScript man page?

funnyprompt$ groff −t −e −mandoc −Tps manpage.1 > manpage.ps

Print or view that using your favorite PostScript printer/viewer. See question 10) for an explanation of the
options.

12) How do I get `apropos' and `whatis' to work?

Suppose you wonder what compilers are installed on your system and how these can be invoked. To answer
this (frequently asked) question you say

funnyprompt$ apropos compiler
f77 (1) − Fortran 77 compiler
gcc (1) − GNU C and C++ compiler
pc (1) − Pascal compiler

Apropos and whatis are used to quickly report which man page has information on a certain topic. Both
programs search a number of files named `whatis' that may be found in each of the manual base directories.
As previously stated, the whatis data base files contain a one line entry for any man page in the respective
directory tree. In fact, that line is exactly the NAME section (to be precise: joined on one line and with
hyphenation removed; note that the section is mentioned within parentheses). The whatis database files are

 Linux Man Page Howto

12

created with the makewhatis(8) program. There are several versions around, so please refer to the man
page to determine what options are available. In order for makewhatis to be able to extract the NAME
sections correctly it is important that you, the manual writer, adhere to the NAME section format described
under question 3). The differences between apropos and whatis are simply where in the line they look,
and what they are looking for. Apropos (which is equivalent to man −k) searches the argument string
anywhere on the line, whereas whatis (equivalent to man −f) tries to match a complete command name
only on the part before the dash. Consequently, `whatis cc' will report if there is a cc manual and remain
quiet for gcc.

Corrections and suggestions welcome!

A) Copying conditions

Copyright 1995−2001 by Jens Schweikhardt. All rights reserved.

 "Two clause" BSD License:

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.

B) Acknowledgements

Michael Miller for proofreading the whole HOWTO (in February 2001); Gordon Torrie for many
helpful grammar remarks (in August 2001). Any remaining grammar or style bogons are entirely my
fault.

•

S.u.S.E. (.de) (or .com) who are the only distributor to keep sending me a free copy of their latest
product, acknowledging my work as a howto author.

•

If your name is missing here, drop me a note.

C) Changelog

March 6 2001: HTML source now passes weblint −pedantic . Paragraph 6: Added
workarounds for tbl screw−ups. Added appendices B) and C). Added RCS Id.

•

August 9 2001: Howto put under a two clause BSD license.•
August 20 2001: Improved grammar. Use a numbered list for the TOC.•

 Linux Man Page Howto

13

http://www.SuSE.de/
http://www.SuSE.com/

October 28 2001: Added refs to mdoc(7), mdoc.samples(7) and groff_man(7).•

 Linux Man Page Howto

14

