
References

28 of 28 Fusing Dataflow with Finite State Machines

[4] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”Sci. Comput. Program., vol. 8, pp.
231-274, 1987.

[5] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, M. Trakht-
enbrot, “STATEMATE: A Working Environment for the Development of Complex Reactive Systems,”
IEEE Tr. on Software Engineering, vol. 16, no.4, April 1990.

[6] F. Maraninchi, “The Argos Language: Graphical Representation of Automata and Description of
Reactive Systems,”Proceedings of the IEEE Workshop on Visual Languages, Kobe, Japan, October
1991.

[7] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”Proceedings of the IEEE, vol. 83, no. 5, pp.
773-801, May, 1995.

[8] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, et al., “Sequential circuit design using synthesis and
optimization,” inProc. of ICCD (International Conference on Computer Design), Cambridge, MA,
USA, 11-14 Oct. 1992). Los Alamitos, CA, pp. 328-33, 1992.

[9] J. Rasure and C. S. Williams, “An Integrated Visual Language and Software Development Environ-
ment,”Journal of Visual Languages and Computing, vol. 2, pp. 217-246, 1991.

[10] M. von der Beeck, “A Comparison of Statecharts Variants,” inProc. of Formal Techniques in Real
Time and Fault Tolerant Systems, LNCS 863, pp. 128-148, Sprinter-Verlag, Berlin, 1994.

Future Work

Fusing Dataflow with Finite State Machines 27 of 28

Furthermore, FSM semantics is useful for control-oriented systems, and dataflow semantics for

numeric-intensive systems. With the two models brought together, a system doing both sophisti-

cated control and signal processing can be specified and simulated in Ptolemy.

The interaction semantics defines the interaction between different semantic models. We define

one state transition in the FSM domain, and relate it to a firing in the SDF domain.

Although we mainly discuss mixing FSM with SDF in this paper, there are many other (even

non-dataflow, such asdiscrete-event) domains in Ptolemy which can interact with FSM domain

by similar mechanisms.

7.0 Future Work

The current implementation of the FSM domain is a simulation domain in Ptolemy. We may

extend its capabilities with the code generation in C, C++, Tcl, and VHDL.

A visual syntax using a graphical editor describes the FSM applications in this paper. A lan-

guage with textual syntax may also describe the FSM automata, such as Esterel [1]. We may

extend the FSM domain to allow using the textual syntax as the FSM description.

For further implementation, we may consider FSM optimization in this domain using some

FSM minimization tool, like SIS [8].

8.0 References

[1] F. Boussinot, R. De Simone, “The ESTEREL Language,”Proceedings of the IEEE, vol. 79, no. 9,
September 1991.

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Processing in Ptolemy,”
Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing, Toronto, Canada, April 1991.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems,”International Journal of Computer Simulation, special issue on
“Simulation Software Development,” vol. 4, pp. 155-182, April, 1994.

Conclusion

26 of 28 Fusing Dataflow with Finite State Machines

5.3 Discussion

This example demonstrates how FSM and SDF domains are hierarchically nested to specify and

simulate a system in Ptolemy. The FSM models mainly focus on describing the control flow of the

system, and the SDF graphs are for the numeric-computation of the system.

As shown in Figure 20, the SDF galaxy, in which three one-bit counters are interconnected,

encapsulates the semantic property ofconcurrency.

Look at the FSM of the one-bit counter as shown in Figure 21. When the current state isState0

and theinput value is zero, i.e. noinput signal is present, the FSM remains inState0. Then, the

SDF galaxy associated withState0, as shown in Figure 22, sends zero as its output. In another sit-

uation, when the current state isState1 and theinput value is one, the FSM makes a transition to

State0, and the galaxy sends one as its output. In the stateState0, the output values may be differ-

ent based on different transitions. This is because we generalize the Moore machine by associat-

ing an action with each state, and the action may output different values in different situations.

Therefore, our Moore-type machine does not have the constraint that each different output value

requires a different state, and this can reduce the complexity of the state space.

In addition to the example illustrated above, other complicated applications can be developed by

similar steps. For example, the answering machine mentioned in Section 1.0 contains both signal

processing and sophisticated control. The key principle is to use the dataflow model to specify the

signal processing part and the FSM model to specify the control flow part. Furthermore, the data-

flow model can be used to describe the concurrency semantics of the system.

6.0 Conclusion

In this paper, we introduce an FSM domain into Ptolemy. By hierarchically nesting two distinct

domains, FSM and dataflow, we can describe HFSMs with desired semantic properties: FSM,

concurrency and hierarchy. Most importantly, we do not need a new complicated semantics for a

complex HFSM, we can use basic FSM models mixed with dataflow graphs to achieve the goal.

Application example

Fusing Dataflow with Finite State Machines 25 of 28

 Figure 21. The FSM of the 1-bit counter.

 Figure 22. The SDF galaxy associated with the State0 state in the 1-bit counter.

Application example

24 of 28 Fusing Dataflow with Finite State Machines

Every one-bit counter is connected with the externalstart signal which serves as an initialization

signal and starts every counter in its initial state. The externalstop signal is not necessary in this

level, so we just discard it. The externalcount signal is connected to the first one-bit counter as its

input signal, and is like thea signal in Figure 2. The output signalend of the third one is sent to

the outer domain. The three one-bit counters are put in a sequential connection. However, they all

fire in one SDF iteration, so they are consideredconcurrent in that they all fire once per state tran-

sition of the outer FSM.

The FSM subsystems of the three one-bit counters are all the same, as shown in Figure 21, and

each of them simply consists of two states,State0 andState1. The bold circle around theState0

state means that this state is the initial state. A simple SDF galaxy (see Figure 22) associated with

theState0 state will do the desired job. This galaxy discards thereset signal and reacts to the

input signal. Only when theinput value is one will theoutput value be one to represent that a

signal occurs in this state. In theState1 state, the FSM just sends zero to output, i.e. nooutput

signal occurs in this state.

 Figure 20. The SDF galaxy associated with the Counting state in the 3-bit counter.

Application example

Fusing Dataflow with Finite State Machines 23 of 28

input value becomes 1.0, i.e. there is a signal occurring, it issues message and pauses the simula-

tion.

As mentioned earlier, the3bitCounter_FSM block is an FSM subsystem. We use a Moore-type

machine as a demonstration to describe this subsystem (a Mealy-type machine can be used in a

similar way). It consists of two states,Not Counting andCounting, as shown in Figure 19. The

bold circle around theNot Counting state means that this state is the initial state of the FSM. In

the stateNot Counting, no computation needs to be done, and the3bitCounter_FSM subsystem

only sends zero to the output.

The SDF graph associated with theCounting state is more subtle, as shown in Figure 20. There

are three FSM subsystems (1bitCounter_FSM blocks) in the graph, each a one-bit counter.

 Figure 19. The FSM of the 3-bit counter.

Application example

22 of 28 Fusing Dataflow with Finite State Machines

Oncestart occurs, the automaton enters theCounting state. Then, three one-bit counters,

which are initialized in states (A0, B0, C0), become active to react to external inputa. After seven

occurrences ofa, the refined automata are in states(A1, B1, C1), and they outputend reacting to

one more occurrence ofa.

Wheneverstop occurs, the automaton stops the counting and enters theNot Counting state.

Afterwards, three refined automata do not react to the inputa. They will become active only when

start occurs again.

5.2 Simulation

By using the SDF and FSM domains, we can describe and simulate the previous system in

Ptolemy. In the SDF domain, a star must have tokens on all inputs and produce tokens on all out-

puts whenever it fires. Therefore, we have to use1/0 value of a token to denote whether a signal

event occurs or not.1 means the signal is present, and0 means it is not. This idea is important

throughout the example.

The topmost level of the system is a dataflow model in the SDF domain, as shown in Figure 18.

The built-inTkButton star, from SDF library, is used to generate three buttons labeledStart,

Stop andCount, and also three outputsstart, stop andcount, respectively. The output value is

0.0 unless the corresponding button is pushed. When theStart button is pressed, for example, the

output values are 1.0, 0.0 and 0.0, respectively. If no button is pushed, this star sends 0.0 on all

outputs. The3bitCounter_FSM block is a subsystem in the FSM domain, and we will discuss it

below. Finally, another built-inTkBreakPt star is used to catch the output of the FSM. When its

 Figure 18. System diagram in SDF domain for simulating the 3-bit counter.

Application example

Fusing Dataflow with Finite State Machines 21 of 28

5.1 System Description

At the top level of the HFSM, there are two states:Not Counting andCounting. TheCounting

state is refined into three other automata, each of them a one-bit counter. The first one-bit counter,

reacting to signala, triggers the second one by emitting signalb for every twoa’s. The second one

reacts to signalb and emits signalc in every twob’s to trigger the third one. The third one outputs

end reacting to every twoc’s. The three automata of the one-bit counters are reactingconcurrently

to external signala, i.e. the communication between them is considered as occurring inone state

transition in the global behavior.

 Figure 17. A new graphical editor developed in Tycho. (The drawing mechanisms of
this editor have been mainly developed by Wan-teh Chang.)

Application example

20 of 28 Fusing Dataflow with Finite State Machines

system that computes a fast Fourier transform (FFT) consuming 1024 samples at its input, the

method mentioned in Section 4.3.2 would be time-consuming because the FSM and inner SDF

subsystems are invoked 1024 times before the inner SDF subsystem is actually ready to run

through one iteration. A more reasonable alternative for this case is that the FSM will inform the

outer SDF domain how many tokens are consumed at the input of the inner SDF subsystem, and

then the FSM will not be invoked until there are sufficient input tokens for the SDF subsystem to

cycle through one SDF iteration. Moreover, there may be more than one SDF subsystem associ-

ated with the FSM, it is required that all SDF subsystems consume the same number of input

tokens to fire.

4.4 Graphical User Interface (GUI)

An FSM can be described by a visual syntax, such as the state transition diagram. The old and

outdated visual interface to Ptolemy, called VEM, is not suitable for drawing the familiar bubble-

and-arc diagrams for an FSM. A new visual editor (see Figure 17) is under development based on

Tycho, a hierarchical syntax manager, which is part of the Ptolemy project. In addition to drawing

the bubble-and-arc graph, users can click on a state or an arc to create or view a subsystem graph

that is associated with it. After drawing the state transition diagram, users can further make an

icon compatible with VEM and simulate it in Ptolemy.

Sometimes, no computation needs to be done in an action, and the outputs of the FSM are only

fixed values. In Figure 1, for example, both FSMs just send zero or one to their outputs. For this

case, the new editor also provides a way to specify the output values directly.

With the new visual editor, users can seamlessly traverse a hierarchical design that combines

FSMs with dataflow block diagrams.

5.0 Application example

As mentioned in Section 2.2.2, Figure 2 is an HFSM representation of a three-bit counter with

initialization and interruption mechanisms. In this section, we will detail it as a demonstration of

an application that mixes the FSM and SDF domains in Ptolemy.

FSM Domain

Fusing Dataflow with Finite State Machines 19 of 28

If the SDF subsystem is a multirate system [2], which may consume and produce multiple

tokens on the input and the output at each firing, the behavior becomes more subtle. One possibil-

ity is that when the input tokens are not sufficient to cycle through one SDF iteration, the SDF

subsystem will simply return and produce no output tokens. Only when enough input tokens have

accumulated will one SDF iteration be executed and the output tokens be produced. However, this

is not always the most efficient approach.

4.3.3 Dataflow inside FSM inside Dataflow

Figure 16 shows an SDF subsystem embedded in an FSM that is inside another SDF domain.

When the SDF subsystem needs to consume a large number of input tokens, for example a sub-

SDF
FSM

one state transition

 Figure 15. The FSM subsystem reacts to the firing with exactly
one state transition.

SDF

FSM

 Figure 16. If an SDF subsystem is embedded in an FSM which is inside another SDF
domain, the FSM will inform the outer SDF domain how many tokens are
consumed at the input of the inner SDF subsystem.

SDF

10241024

FSM Domain

18 of 28 Fusing Dataflow with Finite State Machines

4.2.4 Data Output (FSMDataOut)

Sometimes, an FSM may need to send output to the outside world. Similar toFSMDataIn star,

there is a type ofFSMDataOut star in this domain to serve as an output interface for the FSM.

4.3 Interaction Semantics

From the point of view of implementation, a stand-alone FSM domain in Ptolemy is not very

interesting, because in most of applications, the signal processing part is not negligible. Moreover,

there are various dataflow models of Ptolemy domains. With the FSM domain mixed with them,

we can get a much more powerful FSM model. Therefore, one of the main issues we would like to

explore is how the FSM domain is combined with Ptolemy dataflow domains. We will focus on

how FSM interacts with SDF in this paper.

4.3.1 FSM inside Dataflow

The inner FSM subsystem must externally behave like a dataflow actor to obey dataflow seman-

tics. SDF actors generally consume and produce a fixed number of tokens on every input and

every output. In Ptolemy, due to the current software implementation, a subsystem inside the SDF

domain is constrained to behave like ahomogeneous SDF actor, which consumes and produces a

single token on each input and each output at each firing. Nevertheless, this constraint can be

relaxed by modifying the wormhole mechanism in the SDF domain in Ptolemy.

We relateone firing of an SDF actor toone state transition of an FSM module. This means that

when the FSM subsystem inside the SDF actor fires once by the outside SDF system, it reacts

with exactly one state transition, as shown in Figure 15.

4.3.2 Dataflow inside FSM

Each action in an FSM can be specified by a subsystem in any domain. If the subsystem is an

SDF graph, how much work should the dataflow scheduler do before returning control to the FSM

scheduler? Inone state transition of the FSM, there is exactly one action to be performed. Once

this action (an SDF subsystem) is invoked by the FSM, the SDF scheduler should run throughone

iteration, consuming the input and producing the output.

FSM Domain

Fusing Dataflow with Finite State Machines 17 of 28

4.2 Stars

4.2.1 Moore-type state (FSMMoore)

We generalize the basic Moore machine by allowing each state to be associated with an action.

Moreover, we define this action as an entry action that is carried out upon entering the state. Once

we decide to simulate the FSM as a Moore-type machine,FSMMoore stars are needed to repre-

sent the states in the FSM.FSMMoore is a class derived fromFSMStateStar.

4.2.2 Mealy-type state (FSMMealy)

An action is associated with a transition (arc) from one state to another in a Mealy machine. In a

sense, those actions associated with transitions which come out of the same state may be viewed

asattached to that state, as shown in Figure 14. The reason to do this is that we can just define a

FSMMealy star which is derived fromFSMStateStar. A FSMMealy state may have more than

one action attached to it depending on the number of possible transitions. Nonetheless, each

action is still supposed to be considered as associated with the transition.

4.2.3 Data Input (FSMDataIn)

The input data (or controls) are important for an FSM. Both actions and transitions rely on

them. We define a type ofFSMDataIn star to serve as an input interface. The scheduler uses its

input portholes to receive the input data (or controls).

S0

S1

S2

S3

 Figure 14. Actions may be viewed as attached to a state in a Mealy machine.

Actions A1, A2 and A3 may be
viewed as attached to state S0

A1

A2

A3

FSM Domain

16 of 28 Fusing Dataflow with Finite State Machines

viewed as attached to a state (see Section 4.2.2). Therefore, we can define a virtual function in this

class, and thus a redefined function in the derived class is invoked to do the action depending on

what type of machine it is.

4.1.2 Target and Scheduler

The machine type is specified as a parameter of theFSMTarget. This information will be

passed toFSMScheduler. There are two main reactions to an input inFSMScheduler: changing

state and performing an action. Whenever there is an input triggering the FSM, the scheduler will

try to find the transition that matches the input and current state by invoking a function in the

FSMStateStar. Once the next state is found, for a Moore-type machine, it makes the transition

first, and then does the action in the state being entered; for a Mealy-type machine, it does the

action associated with the transition, and then makes the transition.

Since the FSM domain has no notion of time, the unit of work reacting to an input isone state

transition in an FSM. “One state transition” here means a transition from one state to another or

back to the same state plus an action.

S0

S1

S2

S3

input == 1

input == 2

input == 3

T1

 Figure 13. When the input is equal to one, this FSM makes a
transition from S0 to S1.

FSM Domain

Fusing Dataflow with Finite State Machines 15 of 28

4.0 FSM Domain

4.1 Kernel

4.1.1 State Star

There is a specific type of kernel class in the FSM domain:FSMStateStar. This is the base

class for representing a state in the state transition diagram of the FSM. Important derived types of

this class areFSMMoore (see Section 4.2.1), representing a state for the Moore-type FSM, and

FSMMealy (see Section 4.2.2), representing a state for the Mealy-type FSM.

For a module in this domain, there may be many actions associated with it, and each action can

be specified by a subsystem in any domain. Therefore, one of the jobs for this class is to create the

required FSM wormhole to encapsulate the action subsystem.

Two key functions in this class are invoked from the scheduler. First, reacting to an input, the

FSM needs to determine a transition to the next state from the possible transitions out of the cur-

rent state. A transition is chosen if the condition associated with it is true. In Figure 13, for exam-

ple, suppose that S0 is the current state, then when the input is equal to one, the condition

associated with transition T1 becomes true, and the FSM makes a transition from S0 to S1. More-

over, we restrict our FSM to bedeterministic; i.e. for each input, there existsat most one enabled

transition out of each state. Furthermore, when no condition is true, we define it as areflexive tran-

sition; i.e. the FSM makes a transition back to the current state.

Second, as mentioned earlier, there may be many actions associated with an FSM. Although an

action is associated with a transition in a Mealy machine, in a sense, some actions can also be

 Figure 12. An SDF graph with a zero-delay loop.

A B

Ptolemy Implementation

14 of 28 Fusing Dataflow with Finite State Machines

There is no notion of time in the SDF domain. The unit of work is given in the unit of SDFiter-

ation. At each iteration, each block in the SDF graph fires the minimum number of times to satisfy

thebalance equations [7]. The balance equations for an SDF graph are the set of equations relat-

ing the number of tokens consumed to the number produced for each pair of blocks associated

with an arc. Consider a simple SDF graph and its balance equation depicted in Figure 10. The

number adjacent to the connection between an arc and a block represents the number of tokens

consumed or produced in that block, and the unknownsrA andrB are the minimum firing times

that are required to maintain balance on each arc for blocks A and B respectively. We can see that

the solution for the balance equation isrA = 2 andrB = 3.

An SDF graph is said to beinconsistent and is flagged as an error if the balance equations have

no non-zero solution, as shown in Figure 11. Another situation that an SDF graph is not valid is

when there are zero-delay loops in the graph, as shown in Figure 12.

3 2

 Figure 10. A simple SDF graph and its balance equation.

3r A 2r B=

A B

A

 Figure 11. An inconsistent SDF graph and its balance equations.

r A r C=

r A r B=

2r B r C=

1

1

1 2

1

1
C

B

Ptolemy Implementation

Fusing Dataflow with Finite State Machines 13 of 28

3.3 Dataflow Domains in Ptolemy

There are three existing dataflow domains in Ptolemy:Synchronous dataflow (SDF),Boolean

dataflow (BDF) andDynamic dataflow (DDF). We will focus on SDF mixed with FSM in this

paper. Other domains can be explored in a similar way.

The SDF domain is one of the most mature domains in Ptolemy, and is an appropriate model for

signal processing algorithms. In this domain, the firing order of the blocks is determined once,

and may be repeated periodically during simulation runs. Each block consumes and produces a

fixed number of data tokens on each input and output of the block at each firing.

 Figure 8. Hierarchical nesting of dataflow graphs with FSM controllers.

FSMDataflow Dataflow

A dataflow block
invokes a FSM

Invoking dataflow graphs
from within a FSM

FSM FSM

 Figure 9. The hierarchy property of an HFSM can be achieved by
nesting an FSM within another FSM.

Invoking another FSM
from within a FSM

Ptolemy Implementation

12 of 28 Fusing Dataflow with Finite State Machines

3.2 Wormholes

In Ptolemy, different domains are intermixed hierarchically to work together. In other words,

two domains do not interact as peers. Instead, a domain may appear as a block inside another

domain, as shown in Figure 7. Such a mechanism is a significant feature in Ptolemy and is called

Wormhole. It encapsulates a subsystem specified in one domain within a system specified in

another. The key idea of a Wormhole is that it must obey the semantics of outer domain at its

boundary and the semantics of the inner domain internally.

We develop an FSM domain by generalizing the wormhole mechanism in Ptolemy. Each action,

specifying the numerical computation and signal processing, of a module in the FSM domain can

be defined by a subsystem in any domain, including FSM. Then, this subsystem is encapsulated as

a Wormhole in the FSM domain. This means that a module in the FSM domain can be associated

with any number of subsystems defined using different semantics in various domains. Moreover,

this FSM module can be placed inside any domain such that various domains are hierarchically

mixed. Figure 8 shows an example where the FSM and dataflow domains are nested.

Intuitively, when we put an FSM subsystem into another system in the FSM domain, the hierar-

chy property of an HFSM is easily achieved, as shown in Figure 9.

 Figure 7. Mixing domains using hierarchy: a subsystem in domain YYY embedded
in domain XXX as a block.

Domain XXX Domain YYY

Ptolemy Implementation

Fusing Dataflow with Finite State Machines 11 of 28

nous/reactive communication model allows the specification of zero-delay loops. We will focus

on the dataflow model in this paper.

3.0 Ptolemy Implementation

3.1 Overview of Ptolemy

A system in Ptolemy is represented as a block diagram constructed by interconnecting both

user-created and existing library blocks. Two types of blocks can be used for interconnection: the

Star and theGalaxy. A Star is a fundamental block containing code segments for execution or

code generation. A Galaxy is a block that internally contains Stars and possibly other Galaxies.

By building a subsystem as a Galaxy, a large complicated system can be decomposed into many

subsystems which are hierarchically nested and interconnected. AUniverse is a complete Ptolemy

application and describes a system.

The input and output interfaces in a block are calledPortholes. Interconnection of blocks is

achieved by connecting the Portholes of blocks. Data objects passed between the blocks in

Ptolemy are calledParticles.

A Domain encapsulates a type of model of computation in Ptolemy. Users can choose aTarget

for a Universe or a Galaxy in a specific Domain to define the mechanism by which a system is

executed. Associated with a Target is aScheduler which determines the operational order of each

block in the application.

 Figure 6. A pair of transitions that produce events triggering each other
will cause a zero-delay loop in terms of block diagrams.

a/b b/a a/b b/ab

a

Models of Computation

10 of 28 Fusing Dataflow with Finite State Machines

There are at least two interpretations of such “instantaneous broadcast”,microsteps and afixed

point. In the microsteps case, the transitions occurring at a given time instant have a natural order.

In the fixed point case, they are genuinely simultaneous, and the execution of transitions involves

finding a consistent value (called afixed point) for all events at a given time instant. In the former

case, the concurrency semantics can be specified using the dataflow model, and in the latter case,

it can be specified using the synchronous/reactive communication model that is found in synchro-

nous languages. In Figure 5, both interpretations lead the same result, so the concurrency property

can be specified by a block diagram with the three interconnected blocks in a dataflow model or a

synchronous/reactive communication model.

However, some concurrency models may not work in some situations. For example, a pair of

transitions that produce events triggering each other (aninstantaneous dialog) will cause a zero-

delay loop in terms of block diagrams (see Figure 6), andsynchronous dataflow (see Section 3.3),

a typical type of dataflow model, does not allow zero-delay loops. On the other hand, the synchro-

a a/b
A0

A1

c c/end
C0

C1

b b/c
B0

B1

a a/b
A0

A1

b b/c
B0

B1

c c/end
C0

C1

a b c end

 Figure 5. The specification of concurrent FSMs in Statecharts can be
considered as a syntactic shorthand for an interconnection of
FSMs in a concurrency model.

Models of Computation

Fusing Dataflow with Finite State Machines 9 of 28

The Statecharts formalism [4] and at least 20 variants [10], including Argos [6], are typical

examples of HFSM models. Some programming environments use similar models, such as

Statemate from iLogix [5], SpeedChart from Speed Electronics Inc., StateVision from Vista Tech-

nologies and VisualHDL from Summit Design Inc.

2.3 Mixing Dataflow with FSMs

We identify three orthogonal semantic properties in Statecharts and related models of computa-

tion: FSM, concurrency and hierarchy. After we suppress hierarchy-crossing transitions allowed

in Statecharts (see Figure 4), two important observations are as follow: First, we get a simpler

model in which the FSM semantics can be cleanly separated from the concurrency semantics.

Second, the specification of concurrent FSMs in Statecharts can be considered as a syntactic

shorthand for an interconnection of FSMs in a concurrency model (see Figure 5). In other words,

the basic FSM model can be hierarchically mixed with various concurrency models to get many

models that are similar to Statecharts. Although this lacks hierarchy-crossing transitions of State-

charts, those transitions are considered by many to violate modularity in hierarchical design any-

way.

The concurrency semantics in parallel FSMs is one of the main differences between variants of

Statecharts. Statecharts and most related formalisms use the notion ofinstantaneous broadcast to

model the communication between concurrent FSMs. This means that all concurrent FSMs may

contain transitions that are executed simultaneously in response to an input event, and these tran-

sitions may produce internal events that trigger other transitions instantaneously.

 Figure 4. An example of a hierarchy-crossing transition
allowed in Statecharts.

Models of Computation

8 of 28 Fusing Dataflow with Finite State Machines

A, B andC, each of them consisting of two states. Compared to the representation in a flat FSM

model (see Figure 3), the HFSM model may reduce the complexity of the state space because of

its hierarchy and concurrency.

start

stop

A0

A1

C0

C1

B0

B1

a a/b b b/c c c/endNot Counting

Counting

 Figure 2. An HFSM representation of a 3-bit counter.

A B C

Not Counting C0, B0, A0

a & stop

a & stop /end

C0, B0, A1 C0, B1, A0 C0, B1, A1

C1, B0, A0

C1, B1, A1 C1, B1, A0 C1, B0, A1

start

stop

a & stop a &stop

a & stop

a & stop

a & stopa & stop

 Figure 3. A basic FSM representation of a 3-bit counter.

stop

stop

stop

stop

stop

stop

stop

Models of Computation

Fusing Dataflow with Finite State Machines 7 of 28

each arc represents the input value that triggers the transition, and the number after the slash rep-

resents the output value associated with that transition.

In general, as shown in Figure 1, a Moore machine may require more states than an equivalent

Mealy machine. This is because in a Mealy machine there may be more than one arc pointing to a

single state, each arc with a different output value; however, in a Moore machine, each different

output value requires one state.

The FSM model of computation is suitable for modeling control-dominated systems. However,

the basic FSM model, which is flat and sequential, has a major weakness; nontrivial systems have

a very large number of states.

2.2.2 Hierarchical FSMs (HFSMs)

The hierarchical FSM (HFSM) model of computation adds support for hierarchy and concur-

rency into the basic FSM model. Hierarchy permits each state to be further decomposed into a set

of substates, and thus the complexity of the state space is reduced. Concurrency permits a further

reduction of complexity by allowing multiple FSMs to operate simultaneously and communicate

through signals.

Figure 2 shows an example of a simple three-bit counter represented by means of an HFSM. In

this figure, we can see that the stateCounting is decomposed into three concurrent components,

Moore machine Mealy machine

 Figure 1. Equivalent Moore and Mealy machines.

S0 S1

1/1

1/-1

0/0 0/0

S00/0

S11/1
1
1

0 S10/0 0

S0-1/-1

00
11

Models of Computation

6 of 28 Fusing Dataflow with Finite State Machines

2.0 Models of Computation

A key principle to support heterogeneous design methodologies is the notion ofmodels of com-

putation. A model of computation is the semantics that defines the interaction between modules

and components. For example, dataflow and FSMs are two distinct models of computation.

2.1 Dataflow

Dataflow is a particular type of process network model [7]. In dataflow, a program is specified

by a directed graph. The nodes of the graph represent computational functions (actors) that map

input data into output data when theyfire, and the arcs represent the exchanged data (streams of

tokens) from one node to another. The processes in a dataflow graph are executed by repeated

actor firings according tofiring rules. Variants of this model are used in many visual programming

environments intended for signal processing, such as COSSAP from the Synopsys, the DSP Sta-

tion from the Mentor Graphics, Khoros from the University of New Mexico [9], Ptolemy from the

University of California at Berkeley, and SPW from the Alta Group of Cadence.

2.2 Finite state machines (FSMs)

2.2.1 Basic FSMs

An FSM model consists of a set ofstates, a set oftransitions between states, and a set ofactions

associated with these states or transitions. Each transition is a function that determines the next

state from the current state and the input, and each action is a function that determines the output

from the current state and/or the input.

There are two distinct types of FSMs, where output is associated with the state (a Moore

machine) and with the transition (a Mealy machine). A directed graph, called astate transition

diagram, can be used to describe an FSM. Figure 1 shows state transition diagrams of equivalent

Moore and Mealy machines. Each elliptic node represents a state and each arc from node to node

represents a transition. In the Moore machine, the number adjacent to each arc represents the

input value that triggers the transition, and the number after the slash in each node represents the

output value in that state. Similarly, in the Mealy machine, the number before the slash adjacent to

Introduction

Fusing Dataflow with Finite State Machines 5 of 28

1.0 Introduction

Real-time embedded systems frequently need both numerical computations and sophisticated

control. A digital telephone answering machine, for example, may contain a signal processing

part including speech compression and decompression. Moreover, to develop such a machine, a

sizable portion of effort is required to design the control flow that manages the initialization of the

connection and the interaction between the caller and the machine. Therefore, the design process

for such a system needs two different design methodologies.

The dataflow model [7] is useful for specifying the numeric-intensive systems, like most signal

processing systems. However, it is far less convenient for representing the control-dominated sys-

tems, like real-time process controllers. On the other hand, the FSM model is well known for its

ability to easily describe a control-oriented system. Mixing dataflow with FSMs is a good solution

for representing a system which requires both signal processing and control. Our main objective is

to get the best of both worlds while preserving the integrity and simplicity of each model. In other

words, instead of creating a new semantics combining both models, we would like to develop a

mechanism that works the two models together, but allows each model to retain its purity of

semantics. The advantage of this is that it does not compromise the ability to synthesize efficient

hardware and software implementations.

Ptolemy [3] is a software environment that supports heterogeneous system specification, design

and simulation. It allows diverse models of computation coexisting and interacting. In Ptolemy,

different models of computation are hierarchically nested, with strict information hiding between

layers of the hierarchy. Therefore, Ptolemy serves as a good development environment to mix

these two different kinds of computational models, dataflow and FSMs.

We define a prototype implemented in Ptolemy where FSMs and dataflow are hierarchically

nested. Each model isolates its semantic properties from the other because of the information hid-

ing in Ptolemy. With the two models nested, it becomes convenient to specify those applications

that consist of both dataflow and control flow.

4 of 28 Fusing Dataflow with Finite State Machines

4.3.3 Dataflow inside FSM inside Dataflow 19

4.4 Graphical User Interface (GUI) 20

5.0 Application example 20

5.1 System Description 21

5.2 Simulation 22

5.3 Discussion 26

6.0 Conclusion 26

7.0 Future Work 27

8.0 References 27

Fusing Dataflow with Finite State Machines 3 of 28

Table of Contents

1.0 Introduction 5

2.0 Models of Computation 6

2.1 Dataflow 6

2.2 Finite state machines (FSMs) 6

2.2.1 Basic FSMs 6

2.2.2 Hierarchical FSMs (HFSMs) 7

2.3 Mixing Dataflow with FSMs 9

3.0 Ptolemy Implementation 11

3.1 Overview of Ptolemy 11

3.2 Wormholes 12

3.3 Dataflow Domains in Ptolemy 13

4.0 FSM Domain 15

4.1 Kernel 15

4.1.1 State Star 15

4.1.2 Target and Scheduler 16

4.2 Stars 17

4.2.1 Moore-type state (FSMMoore) 17

4.2.2 Mealy-type state (FSMMealy) 17

4.2.3 Data Input (FSMDataIn) 17

4.2.4 Data Output (FSMDataOut) 18

4.3 Interaction Semantics 18

4.3.1 FSM inside Dataflow 18

4.3.2 Dataflow inside FSM 18

2 of 28 Fusing Dataflow with Finite State Machines

Acknowledgment

The work that leads to this paper would not be possible without the assistance from my advisor,

Edward A. Lee. I would also like to thank the whole Ptolemy team for building such a magnificent

environment for experimenting the concepts discussed in this paper. In particular, I wish to thank

Wan-teh Chang.

May 3, 1996

1 of 28

A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T

Department of Electrical
Engineering and Computer
Science

University of California

Berkeley, California 94720

Fusing Dataflow with Finite State
Machines

Bilung Lee

MS Report

ABSTRACT

The dataflow model of computation has been used extensively in signal processing design, and is

particularly convenient for numeric-intensive computation of applications. Finite state machines

(FSMs) have been developed to solve a different class of problems, namely sequential control. In

this project, we propose to hierarchically nest the dataflow and FSM models of computation. With

the two models mixed, concurrency and hierarchy are naturally supported in a manner similar to

hierarchical FSMs, like Statecharts. This provides a clean and simple mechanism for describing

systems that combine sophisticated signal processing with sophisticated control. We implement

the ideas in the Ptolemy software environment, which has been under development at University

of California at Berkeley.

