
zation graphs that could be exploited in addition to the
correspondence with set covering. The extension of
Sarkar’s concept of counting semaphores [25] to self-
timed, iterative execution, and the incorporation of
extended counting semaphores within our resynchroniza-
tion framework are also interesting directions for further
work.

References 1

[1] S. S. Bhattacharyya, S. Sriram, and E. A. Lee,Optimizing
Synchronization in Multiprocessor Implementations of Iterative
Dataflow Programs, Electronics Research Laboratory, Univer-
sity of California at Berkeley, January, 1995.

[2] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Minimizing
Synchronization Overhead in Statically Scheduled Multiproces-
sor Systems,”Proc. Intl. Conf. on Application Specific Array
Processors, July, 1995.

[3] S. S. Bhattacharyya, S. Sriram, and E. A. Lee,Resynchroni-
zation for Embedded Multiprocessors, Electronics Research Lab-
oratory, University of California at Berkeley, September, 1995.

[4] L. F. Chao and E. Sha, “Unfolding and Retiming Data-Flow
DSP Programs for RISC Multiprocessor Scheduling,”Proc. Intl.
Conf. on Acoustics, Speech, and Signal Processing, April 1992.

[5] E. G. Coffman, Jr.,Computer and Job Shop Scheduling The-
ory, Wiley, 1976.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction
to Algorithms, McGraw-Hill, 1990.

[7] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the Con-
trol-unit through the Resynchronization of Operations,”INTE-
GRATION, the VLSI Journal, Vol. 13, 1992.

[8] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing
Memory Requirements in Rate-Optimal Schedules,”Proc. Intl.
Conf. on Application Specific Array Processors, August, 1994.

[9] T. C. Hu, “Parallel Sequencing and Assembly Line Prob-
lems,”Operations Research, Vol. 9, 1961.

[10] D. S. Johnson, “Approximation Algorithms for Combinato-
rial Problems,”Journal of Computer and System Sciences, Vol.
9, 1974.

[11] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steeg-
mans, and J. Van Ginderdeuren, “GRAPE: A CASE Tool for
Digital Signal Parallel Processing,”IEEE ASSP Magazine, Vol.
7, No. 2, April, 1990.

[12] E. A. Lee and D. G. Messerschmitt, “Synchronous Data-
flow”, Proceedings of the IEEE, September, 1987.

[13] E. A. Lee and S. Ha, “Scheduling Strategies for Multipro-
cessor Real-Time DSP,”Globecom, November 1989.

[14] L. Lovasz, “On the Ratio of Optimal Integral and Fractional
Covers,”Discrete Mathematics, Vol. 13, 1975.

1. References 1, 2, and 3 are available by anonymous ftp from
ptolemy.eecs.berkeley.edu in the directory
pub/ptolemy/papers/synchOpt.

[15] K. Parhi and D. G. Messerschmitt, “Static Rate-optimal
Scheduling of Iterative Data-flow Programs via Optimum
Unfolding,” IEEE Transactions on Computers, February 1991.

[16] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthe-
sis for DSP Using Ptolemy,”Journal of VLSI Signal Processing,
January, 1995.

[17] D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Syn-
thesis of Optimized DSP Assembly Code from Signal Flow
Block Diagrams,”Proc. Intl. Conf. on Acoustics, Speech, and
Signal Processing, March, 1992.

[18] P. L. Shaffer, “Minimization of Interprocessor Synchroniza-
tion in Multiprocessors with Shared and Private Memory,”Proc.
Intl. Conf. on Parallel Processing, 1989.

[19] G. Liao, G. R. Gao, E. Altman, and V. K. Agarwal,A Com-
parative Study of DSP Multiprocessor List Scheduling Heuris-
tics, School of Computer Science, McGill University, 1993.

[20] H. Printz, “Compilation of Narrowband Spectral Detection
Systems for Linear MIMD Machines,”Proc. Intl. Conf. on
Application Specific Array Processors, August, 1992.

[21] S. Ritz, M. Pankert, and H. Meyr, “High Level Software
Synthesis for Signal Processing Systems,”Proc. Intl. Conf. on
Application Specific Array Processors, August, 1992.

[22] P. P. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice Hall, 1993.

[23] M. Veiga, J. Parera, and J. Santos, “Programming DSP Sys-
tems on Multiprocessor Architectures,”Proc. Intl. Conf. on
Acoustics, Speech, and Signal Processing, April 1990.

[24] G. C. Sih and E. A. Lee, “Scheduling to Account for Inter-
processor Communication Within Interconnection-Constrained
Processor Networks,”Proc. Intl. Conf. on Parallel Processing,
1990.

[25] V. Sarkar, “Synchronization Using Counting Semaphores,”
Proc. Intl. Symp. on Supercomputing, 1988.

[26] R. Reiter, Scheduling Parallel Computations,Journal of the
ACM, October 1968.

4. Example

In this section we present an example of resynchroniza-
tion as applied to a 7 band QMF (Quadrature Mirror Fil-
ter) Filter Bank application. Such an application consists
of a set of analysis filters used to decompose a signal, and
a set of synthesis filters used to reconstruct the decom-
posed signal (Fig. 3). See [22] for detailed description
about filter banks.

If we apply the resynchronization heuristic outlined in
the previous section, we get the resynchronized graph in
Fig. 4. Note that instead of the 9 feedforward synchroniza-

tion edges in Fig. 3, we now have only 4 such edges
(dashed edges in Fig. 4).

5. Conclusions

This paper has outlined our research on resynchroniza-
tion for shared-memory multiprocessor implementations
of iterative dataflow programs. We have established that
the optimal resynchronization problem is NP-hard through
a correspondence to set covering. Furthermore, we have
shown that a family of heuristics emerges naturally from
the correspondence to set covering. The psudocode for an

A B

C

D

E

F

G H

I

J

K

L

M N

FIGURE 3. Initial synch. graph for a 7 band QMF filter
bank; A, B, C are assigned to one processor,
D, E, F, G, to the second, H, I, J, K to the
third, and L, M, N to the fourth.

D

D D

D

A B

C

D

E

F

G H

I

J

K

L

M N

D

D D

D

FIGURE 4. The resynchronized graph, R(Gs),
corresponding to Fig. 3.

algorithm corresponding to such a family of heuristics is
shown in Fig. 5. We have illustrated a practical example
where such heuristics may be applied to reduce synchroni-
zation costs.

Several useful directions for future work emerge from
our study. These include investigating whether efficient
techniques can be developed that consider resynchroniza-
tion opportunities within strongly connected components,
rather than just accross feedforward edges. There may also
be considerable room for improvement over our proposed
family of heuristics, which is a straightforward adaptation
of existing set covering algorithms. In particular, it may be
interesting to search for properties of practical synchroni-

Function Resynchronize
Input: A synchronization graph .
Output: A synchronization graph that preserves .

Compute for each ordered pair of vertices in .

For each SCC of

For each SCC of

If is a predecessor SCC of Then

End If
End For

End For
Return

Function Pairwise(, ,)

Input: Two strongly connected synchronization graphs
 and , and a set of edges whose source vertices

are all in and whose sink vertices are all in .

Output: A resynchronization .
For each vertex in

For each vertex in

End For
End For

Return

G V E,()=

G̃ G

Ẽ E=
ρG x y,() G

Ca G

Cd G

Ca Cd

Ef e E∈ e()src Ca∈() e()snk Cd∈()and{ }=

F Pairwise Ca()subgraph Cd()subgraph Ef, ,()=

Ẽ Ẽ Ef–
 F∪

 =

V Ẽ,()

G1 G2 F

G1 G2 F

G1 G2

F′
u G1

v G2

χ u v,() = e F∈ ρG v e()snk,() ρG v e()snk,()= 0={ }

T χ u v,() u is in G1 v is in G2and
 { }=

Ξ Cover F T,()=

d0 u v,() χ u v,() Ξ∈{ }

FIGURE 5. An algorithm for resynchronization that is
derived from an arbitrary algorithm Cover
for the set covering problem

sponding to . This last step has the effect of making
each pair preserve exactly those
edges that correspond to members of ; in other words,
after this construction, ,
for each . Finally, for each edge created in the previous
step, we create a corresponding feedback edge oriented in
the opposite direction, and having a unit delay.

Figure 2 shows the synchronization graph that results
from this construction process. Here, it is assumed that
each vertex corresponds to a separate processor; the asso-
ciated unit delay, self loop edges are not shown to avoid
excessive clutter. Observe that the graph contains two
SCCs — and

 — and that the set of feed-
forward edges is the set of edges that correspond to mem-
bers of . Now, recall that a major correspondence
between the given instance of set covering and the
instance of pairwise resynchronization defined by Figure
2(a) is that , for each .
Thus, if we can find a minimal resynchronization of Figure
2(a) such that each edge in this resynchronization is
directed from some to the corresponding

FIGURE 2. (a). An instance of the pairwise
resynchronization problem that is derived
from an instance of the set covering problem.
(b). The DFG that results from a solution to
this instance of resynchronization.

D
D

D
D

x 3
x 1

vs
rc

(t
1)

vs
nk

(t
1)

D
D

D
D

x 2
x 4

vs
rc

(t
3)

vs
nk

(t
3)

D
D

D
D

vs
nk

(t
2)

vs
rc

(t
2)

D
D

D
D

vs
rc

(t
1)

vs
nk

(t
1)

D
D

D
D

vs
rc

(t
3)

vs
nk

(t
3)

D
D

D
D

vs
nk

(t
2)

vs
rc

(t
2)

(a) (b)

xi
tj()vsrc tj()vsnk,()

tj
χ tj()vsrc tj()vsnk,()() tj=

j

xi()src{ } ti()vsrc{ }∪()
xi()snk{ } ti()vsnk{ }∪()

X

χ ti()vsrc ti()vsnk,()() ti= i

tk()vsrc

, then the associated 's form a minimum cover
of . For example, it is straightforward, albeit tedious, to
verify that the resynchronization illustrated in Figure 2(b),

, i s a
minimal resynchronization of Figure 2(a), and from this,
we can conclude that is a minimal cover for .
From inspection of the given sets and , it is easily ver-
ified that this conclusion is correct.

This example illustrates how an instance of pairwise
resynchronization can be constructed (in polynomial time)
from an instance of set covering, and how a solution to this
instance of pairwise resynchronization can easily be con-
verted into a solution of the set covering instance. Our
proof of the NP-hardness of pairwise resynchronization,
presented in [1], is a generalization of the example in Fig-
ure 2. We summarize with the following theorem. A for-
mal proof is given in [1].

Theorem 2: The pairwise resynchronization problem
is NP-hard, and thus, the resynchronization problem is
NP-hard.

This correspondence to set covering also yields a frame-
work for adapting any heuristic for set covering into a heu-
rist ic for the resynchronization problem. In this
framework, each pair of distinct SCCs is resyn-
chronized separately by computing the family of subsets

, where is the
set of synchronizations that can be eliminated if we imple-
ment a zero delay synchronization edge directed from to

. Each of the sets can easily be obtained by
adding edge to the synchronization graph, and then
applying the redundant edge removal procedure described
in [1]. The complexity of this procedure is . If we
denote the set of original synchronization edges directed
from members of to by , then and form an
instance of set covering. This instance is attacked with the
given set covering heuristic to yield a set of new syn-
chronization edges directed from vertices in to vertices
in . Then, in the overall synchronization graph, the
members of are replaced with the members of . This
procedure is repeated for every distinct pair of SCCs
and such that there is at least one edge directed from a
member of to a member of . A detailed specifica-
tion of this approach will be given in section 5.

In addition to establishing the intractability of resyn-
chronization, and identifying a natural heuristic solution,
we have identified a class of synchronization graphs for
which optimal resynchronizations can be computed using
an efficient polynomial-time algorithm. Due to lack of
space, we cannot elaborate on this approach here; instead,
we refer the reader to [3] for details.

tk()vsnk tk
X

t1()vsrc t1()vsnk,() t3()vsrc t3()vsnk,(),{ }

t1 t3,{ } X
X T

C1 C2,()

T ϕ u v,() u C1∈ v C2∈,{ }= ϕ u v,()

u
v ϕ u v,()

u v,()

O V
3()

C1 C2 Z T Z

Z′
C1

C2
Z Z′

C1
C2

C1 C2

of actors in , we say that subsumes
 in if

.

Thus, subsumes if and only if a zero-
delay synchronization edge directed from to makes

 redundant.

3. Resynchronization in self-timed systems

Definition 1 formalizes our concept of resynchroniza-
tion. This considers resynchronization only “across” feed-
forward edges. We impose this restriction so that the
serialization imposed by resynchronization does not
degrade the estimated throughput [3].

Definition 1: Suppose is a synchroniza-
tion graph and is the set of feedforward edges in . A
resynchronization of is a set
of edges that are not necessarily contained in , but
whose source and sink vertices are in , such that

 are feedforward edges in the DFG
, and preserves . Each

member of that is not in is aresynchronization
edge, is called theresynchronized graph associated
with , and this graph is denoted by .

For example is a resynchronization of
the synchronization graph shown in Figure 1(c), since

 subsumes al l the synchronizat ion edges
.

Theresynchronization problem is the problem of find-
ing a resynchronization that has minimal cardinality. In
[1], we prove that the resynchronization problem is NP-
hard. To establish the NP-hardness of the resynchroniza-
tion problem, we examine a special case that occurs when
there are exactly two SCCs, which we call thepairwise
resynchronization problem, and we derive a polynomial-

B

D

F

A

C

E

DD

B

D F

A

C

E

Processor Actor ordering
Proc. 1 B, D, F
Proc. 2 A, C, E

FIGURE 1. Part (c) shows the IPC graph that
corresponds to the DFG of part (a) and the processor
assignment / actor ordering of part (b). A “D” on top of
an edge represents a unit delay.

(a)

(b)

(c)

y1 y2,() G y1 y2,()
x1 x2,() G

ρG x1 y1,() ρG y2 x2,()+ x1 x2,()()delay≤

y1 y2,() x1 x2,()
y1 y2

x1 x2,()

G V E,()=
F G

G R e1′ e2′ … em′, , ,{ }≡
E

V
e1′ e2′ … em′, , ,
G∗ V E F–() R+,()≡ G∗ G

R E
G∗

R R G()

R E B,(){ }=

E B,()
A B,() C F,() E D,(), ,{ }

time reduction from the classicset covering problem[14],
a well-known NP-hard problem, to the pairwise resyn-
chronization problem. In the set covering problem, one is
given a finite set and a family of subsets of , and
asked to find a minimal (fewest number of members) sub-
family such that

.

A subfamily of is said tocover if each member of
is contained in some member of the subfamily. Thus, the
set covering problem is the problem of finding a minimal
cover.

Suppose that is a synchronization graph with exactly
two SCCs and such that each feedforward edge is
directed from a member of to a member of . We
start by viewing the set of feedforward edges in as
the finite set that we wish to cover, and with each edge
from a vertex in to a vertex of , we associate the
subset of defined by

.
Thus, is the set of feedforward edges of whose
corresponding synchronizations can be eliminated if we
implement a zero-delay synchronization edge directed
from the first vertex of the ordered pair to the second
vertex of . The sets can be found using Theorem
1, and applying the shortest paths based technique of [2] to
find redundant edges in a worst case complexity of

. Clearly then, is a resynchro-
nization if and only if each is contained in at
least one — that is, if and only
if covers .
Thus, solving the pairwise resynchronization problem for

 is equivalent to finding a minimal cover for given
the family of subsets .

Figure 2 helps to illustrate this intuition and our method
for converting an instance of the set covering problem to
an instance of pairwise resynchronization. Suppose that
we are given the set , and the family
o f subse ts , where ,

, and . To construct an
instance of the pairwise resynchronization problem, we
first create two vertices and an edge directed between
these verticesfor each member of ; we label each of the
edges created in this step with the corresponding member
of . Then for each , we create two vertices

 and . Next, for each relation
(there are six such relations in this example), we create
two zero-delay edges — one directed from the source of
the edge corresponding to to , and another
directed from to the sink of the edge corre-

X T X

Ts T⊆

t
t Ts∈
∪ X=

T X X

G
C1 C2

C1 C2
F G

p
C1 C2

F

χ p() e F∈ p esubsumes(){ }≡
χ p() G

p
p χ p()

O V
3() e1′ e2′ … en′, , ,{ }

e F∈()
χ ei ′()src ei ′()snk,()()

χ ei ′()src ei ′()snk,()() 1 i n≤ ≤{ } F

G F
χ x y,() x C1∈ y C2∈,(){ }

X x1 x2 x3 x4, , ,{ }=
T t1 t2 t3, ,{ }= t1 x1 x3,{ }=

t2 x1 x2,{ }= t3 x2 x4,{ }=

X

X t T∈
t()vsrc t()vsnk xi tj∈

xi tj()vsrc
tj()vsnk

tion and completes execution.

Initially, an IPC edge in represents two functions:
reading and writing of tokens into the corresponding
buffer, and synchronization between the sender and the
receiver. To differentiate these functions, we define
another graph called thesynchronization graph, in which
edges between tasks assigned to different processors,
calledsynchronization edges, representsynchronization
constraints only.

Initially, the synchronization graph is identical to .
However, resynchronization modifies the synchronization
graph in certain “valid” ways (defined shortly) by adding
and deleting edges. At the end of our optimizations, the
synchronization graph may look very different from the
IPC graph: it is of the form , where

 is the set of original synchronization edges that were
deleted, and is the set of new synchronization edges
that are were introduced. At this point the IPC edges in

 represent buffer activity, and must be implemented
as buffers in shared memory, whereas the synchronization
edges represent synchronization constraints, and are
implemented by updating and testing flags in shared mem-
ory. If there is an IPC edge as well as a synchronization
edge between the same pair of actors, then the synchroni-
zation protocol is executed before the buffer correspond-
ing to the IPC edge is accessed so as to ensure sender-
receiver synchronization. On the other hand, if there is an
IPC edge between two actors in the IPC graph, but there is
no synchronization edge between the two, then no syn-
chronization needs to be done before accessing the shared
buffer. If there is a synchronization edge between two
actors but no IPC edge, then no shared buffer is allocated
between the two actors; only the corresponding synchroni-
zation protocol is invoked.

If the execution time of each actor is a fixed constant
 for all invocations of , and the time required for

IPC is ignored (assumed to be zero), then as a conse-
quence of Reiter’s analysis in [26], the throughput (num-
ber of DFG iterations per unit time) of a synchronization
graph is given by , where

, (EQ 2)

where is the sum of the delays of all edges that are
traversed by the cycle [1].

Since in our problem context, we only have execution
time estimates available instead of exact values, we
replace with the corresponding estimate in

Gipc

Gipc

V Eipc F– F′+(),()
F

F′

Gipc

v
t∗ v() v

G 1 λmax⁄

λmax

max

cycle C in G

t∗ v()
v C∈
∑

∆ C()

=

∆ C()
C

t∗ v() t v()

(2) to obtain theestimated iteration period . In the
transformations that we present in this paper, we ensure
that we do not alter theestimated throughput .
Thus, our objective in this paper is to increase theactual
throughput by reducing the rate at which synchronization
operations must be performed, while making sure that the
estimated throughput is not degraded.

All transformations that we perform on the synchroniza-
tion graph must respect the synchronization constraints
implied by . If we ensure this, then we only need to
implement the synchronization edges of the optimized
synchron iza t ion g raph . I f and

 are synchronization graphs with the same
vertex-set and the same set of intraprocessor edges (edges
that are not synchronization edges), we say that pre-
serves if for all such that , we have

, where
if there is no path from to in the synchronization
graph , and if there is a path from to , then

 is the minimum over all paths directed from
 to of the sum of the edge delays on . The

values can be computed efficiently using Djkstra’s all pairs
shortest path algorithm in time. The following
theorem, which is developed in [1], underlies the validity
of resynchronization.

Theorem 1: The synchronization constraints (as
specified by (1)) of imply the constraints of if
preserves .

Intuitively, Theorem 1 is true because, if preserves
, then for every synchronization edge in , there is

a path in that enforces the synchronization constraint
specified by .

A synchronization edge is redundant in a synchroniza-
tion graph if its removal yields a graph that preserves

. For example, in Figure 1(c), the synchronization edge
 i s redundan t , because the pa th

 implicitly enforces the syn-
chronization constraint specified by the edge . In
[1], it is shown that if all redundant edges in a synchroni-
zation graph are removed, then the resulting graph pre-
serves the original synchronization graph, and an efficient
algorithm is given for determining the redundant synchro-
nization edges of a synchronization graph. This algorithm
is an extension to iterative dataflow programs of an earlier
algorithm developed by Shaffer [18].

We conclude this section with a number of definitions.
An execution sourceof a synchronization graph is any
actor that either has no input edges, or has nonzero delay
on each input edge. Given a synchronization graph , a
synchronization edge in , and an ordered pair

λ̃max

1 λ̃max⁄

Gipc

G1 V E1,()=
G2 V E2,()=

G1
G2 e E2∈ e E1∉

ρG1
e()src e()snk,() e()delay≤ ρG x y,() ∞≡

x y
G x y

ρG x y,() p
x y p ρG x y,()

O V E()

G1 G2 G1
G2

G1
G2 e G2

G1
e

G
G

C F,()
C E,() E D,() D F,(), ,()

C F,()

G
x1 x2,() G

Warp compiler [20], DESCARTES [21], GRAPE [11], and
the Graph Compiler [23].

An important property of SDF graphs is that it is possi-
ble to determine efficient schedules for such graphs at
compile time. A number of techniques have been proposed
for statically scheduling SDF programs for efficient multi-
processor implementation. Parhi and Messerschmitt [15],
and Chao and Sha [4] have developed systematic tech-
niques for exploiting overlapped execution to generate
schedules that have optimal throughput, assuming zero
cost for IPC. Other work has focused on taking IPC costs
into account during scheduling, such as that described in
[1, 19, 20, 24]; these efforts have not attempted to exploit
overlapped execution of graph iterations. Similarly, in [8],
Govindarajan and Gao develop techniques to simulta-
neously maximize throughput, possibly using overlapped
execution, and minimize buffer memory requirements
under the assumption of zero IPC cost. Our work can be
used as a post-processing step to improve the performance
of implementations that use any of these scheduling tech-
niques.

In SDF, a program is represented as a directed graph in
which vertices (actors) represent computational tasks,
edges specify data dependences, and the number of data
values (tokens) produced and consumed by each actor is
fixed. Delays on SDF edges represent initial tokens, and
specify dependencies between iterations of the actors in
iterative execution. For example, if tokens produced by
the th invocation of actor are consumed by the

th invocation of actor , then the edge
contains two delays. Tasks can be of arbitrary complexity.
In DSP design environments, they typically range in com-
plexity from basic operations such as addition or subtrac-
tion to signal processing subsystems such as FFT units and
adaptive filters. We assume that the input SDF graph is
homogeneous, which means that the numbers of tokens
produced and consumed are identically unity. However,
since efficient techniques have been developed to convert
general SDF graphs into homogeneous graphs [12], our
techniques can easily be adapted to general SDF graphs.
We refer to a homogeneous SDF graph as a dataflow graph
(DFG).

Our implementation model involves aself-timedsched-
uling strategy [13]. Each processor executes the tasks
assigned to it in a fixed order that is specified at compile
time. Before firing an actor, a processor waits for the data
needed by that actor to become available. Thus, processors
are required to perform run-time synchronization when
they communicate data. This provides robustness when
the execution times of tasks are not known precisely or

k A
k 2+() B A B,()

when then they may exhibit occasional deviations from
their estimates.

Interprocessor communication (IPC) is assumed to take
place through shared memory, which could be global
memory between all processors, or it could be distributed
between pairs of processors. Sender-receiver synchroniza-
tion is also assumed to take place by setting and checking
flags in shared memory (see [1] for details on the assumed
synchronization protocols). Thus, effective resynchroniza-
tion results in a significantly reduced rate of accesses to
shared memory for the purpose of synchronization.

Resynchronization has been studied earlier in the con-
text of hardware synthesis [7]. However in this work, the
scheduling model and implementation model are signifi-
cantly different from the structure of self-timed multipro-
cessor implementations, and as a consequence, the
analysis techniques and algorithmic solutions do not apply
to our context, and vice-versa [3].

2. Analysis of self-timed execution

A strongly connected component (SCC) of a directed
graph is a maximal subgraph in which there is a path from
each vertex to every other vertex. Afeedforward edge is
an edge that is not contained in an SCC. The source and
sink actors of an SDF edge are denoted and

, and the delay on is denoted . An
edge is aself loop edgeif . An SCC

 is asource SCCif there does not exist any edge such
that is in and is not in . Similarly,

 is asink SCCif there does not exist an edge such that
 is in and is not in .

For each task in a given DFG , we assume that an
estimate (a positive integer) of the execution time is
available. Given a multiprocessor schedule for , we
derive a DFG called theIPC graph, denoted , by
instantiating a vertex for each task, connecting an edge
from each task to the task that succeeds it on the same pro-
cessor, and adding an edge that has unit delay from the last
task on each processor to the first task on the same proces-
sor. Also, for each edge in that connects tasks
that execute on different processors, anIPC edgeis instan-
tiated in from to . Figure 1(c) shows the IPC
graph that corresponds to the DFG of Figure 1(a) and the
processor assignment / actor ordering of Figure 1(b).

Each edge in represents thesynchroniza-
tion constraint

, (EQ 1)

where and respectively represent
the time at which invocation of actor begins execu-

e e()src
e()snk e e()delay
e e()src e()snk=

C e
e()snk C e()src C

C e
e()src C e()snk C

v G
t v()

G
Gipc

x y,() G

Gipc x y

vj vi,() Gipc

start vi k,() end vj k vj vi,()()delay–,()≥

start v k,() end v k,()
k v

Self-Timed Resynchronization: A Post-
Optimization for Static Multiprocessor Schedules

Shuvra S. Bhattacharyya, Sundararajan Sriram,
and Edward A. Lee

Abstract

In a shared-memory multiprocessor system, it is possible
that certain synchronization operations are redundant —
that is, their corresponding sequencing requirements are
enforced completely by other synchronizations in the sys-
tem — and can be eliminated without compromising cor-
rectness. This paper addresses the problem of adding new
synchronization operations in a multiprocessor implemen-
tation in such a way that the number of original synchroni-
zations that consequently become redundant significantly
exceeds the number of new synchronizations. We refer to
this approach to reducing synchronization overhead as
resynchronization. In this paper we formally define the
resynchronization problem, we show that optimal resyn-
chronization is NP-hard, and we propose a family of heu-
ristics for this problem. Finally we present a practical
example where resynchronization is useful.

1. Motivation

Resynchronization is based on the concept that there can
be redundancy in the synchronizations of a multiprocessor
implementation. Shaffer showed that the amount of run-
time overhead required for synchronization can be
reduced significantly by detecting and eliminating redun-
dant synchronizations; an efficient, optimal algorithm was
also proposed for this purpose [18], and this algorithm was
subsequently extended to handle iterative computations in
[2].

The objective of resynchronization is to introduce new
synchronizations in such a way that the number of original
synchronizations that consequently become redundant is
significantly greater that the number of new synchroniza-
tions. We formulate and study this problem in the context
of self-timed execution of iterative synchronous dataflow
(SDF) [12] programs. The resynchronization technique is
therefore significantly different from the techniques pre-
sented in [2, 18], which focus on removing redundant syn-
chronization points without considering the addition of
new synchronizations. An iterative dataflow program con-
sists of a dataflow representation of the body of a loop that
is to be iterated infinitely; dataflow programming in this
form has been studied and applied extensively, particularly
in the context of signal processing software. Self-timed
execution refers to a combined compile-time/run-time
scheduling strategy in which processors synchronize with
one another only based on interprocessor communication
(IPC) requirements, and thus, synchronization of proces-
sors at the end of each loop iteration does not generally
occur [13].

SDF has proven to be a useful model for representing a
significant class of digital signal processing (DSP) algo-
rithms, and it has been used as the foundation for numer-
ous graphical DSP design environments, in which signal
processing applications are represented as hierarchies of
block diagrams. Examples of commercial tools based on
SDF are the Signal Processing Worksystem (SPW) [17],
and COSSAP [21]. Tools developed at various universities
that use SDF and related models include Ptolemy [16], the

This research was partially funded as part of the Ptolemy project, which
is supported by the Advanced Research Projects Agency and the U.S. Air
Force (under the RASSP program, contract F33615-93-C-1317), the
Semiconductor Research Corporation (project 94-DC-008), the National
Science Foundation (MIP-9201605), the State of California MICRO pro-
gram, and the following companies: Bellcore, Bell Northern Research,
Dolby Laboratories, Hitachi, LG Electronics, Mentor Graphics, Mitsub-
ishi, Motorola, NEC, Pacific Bell, Philips, and Rockwell.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory,
Hitachi America, Ltd., 201 East Tasman Drive, San Jose, CA 95134,
USA, shuvra@halsrl.com, fax: (408)954-8907.

S. Sriram is with the DSP R&D Centre at Texas Instruments, MS446,
13510 North Central Expressway, Dallas, TX75265-5474, USA,
sriram@hc.ti.com, fax: (214)995-6194.

E. A. Lee is with the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, CA 94720, USA,
eal@eecs.berkeley.edu, fax: (510)642-2739.

— To appear inProc. International Parallel Processing Symposium, 1996 —

