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Compile-Time Scheduling of Dynamic Constructs in
Data
ow Program Graphs
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Abstract|Scheduling data
ow graphs onto processors con-
sists of assigning actors to processors, ordering their execu-
tion within the processors, and specifying their �ring time.
While all scheduling decisions can be made at runtime, the
overhead is excessive for most real systems. To reduce this
overhead, compile-time decisions can be made for assigning
and/or ordering actors on processors. Compile-time deci-
sions are based on known pro�les available for each actor at
compile time. The pro�le of an actor such as the execution
time and the communication patterns. However, a dynamic
construct within a macro actor, such as a conditional and
a data-dependent iteration, makes the pro�le of the actor
unpredictable at compile time. For those constructs, we
propose to assume some pro�le at compile-time and de�ne
a cost to be minimized when deciding on the pro�le un-
der the assumption that the runtime statistics are available
at compile-time. Our decisions on the pro�les of dynamic
constructs are shown to be optimal under some bold as-
sumptions, and expected to be near-optimal in most cases.
The proposed scheduling technique has been implemented
as one of the rapid prototyping facilities in Ptolemy. This
paper presents the preliminary results on the performance
with synthetic examples.

Keywords| multiprocessor scheduling, dynamic con-
structs, pro�le, macro actor, data
ow program graphs.

I. Introduction

A
D ata
ow graph representation, either as a program-
ming language or as an intermediate representation

during compilation, is suitable for programming multipro-
cessors because parallelism can be extracted automatically
from the representation [1], [2] Each node, or actor, in a
data
ow graph represents either an individual program in-
struction or a group thereof to be executed according to
the precedence constraints represented by arcs, which also
represent the 
ow of data. A data
ow graph is usually
made hierarchical. In a hierarchical graph, an actor itself
may represent another data
ow graph: it is called a macro

actor.
Particularly, we de�ne a data-dependent macro actor, or

data-dependent actor, as a macro actor of which the execu-
tion sequence of the internal data
ow graph is data depen-
dent (cannot be predicted at compile time). Some examples
are macro actors that contain dynamic constructs such as
conditional, data-dependent iteration, and recursion. Ac-
tors are said to be data-independent if not data-dependent.
The scheduling task consists of assigning actors to pro-

cessors, specifying the order in which actors are executed on
each processor, and specifying the time at which they are
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executed. These tasks can be performed either at compile
time or at run time [3]. In the fully-dynamic scheduling,
all scheduling decisions are made at run time. It has the

exibility to balance the computational load of processors
in response to changing conditions in the program. In case
a program has a large amount of non-deterministic behav-
ior, any static assignment of actors may result in very poor
load balancing or poor scheduling performance. Then, the
fully dynamic scheduling would be desirable. However, the
run-time overhead may be excessive; for example it may
be necessary to monitor the computational loads of pro-
cessors and ship the program code between processors via
networks at run time. Furthermore, it is not usually prac-
tical to make globally optimal scheduling decision at run
time.
In this paper, we focus on the applications with a mod-

erate amount of non-deterministic behavior such as DSP
applications and graphics applications. Then, the more
scheduling decisions are made at compile time the better
in order to reduce the implementation costs and to make
it possible to reliably meet any timing constraints.
While compile-time processor scheduling has a very rich

and distinguished history [4], [5], most e�orts have been
focused on deterministic models: the execution time of
each actor Ti on a processor Pk is �xed and there are no
data-dependent actors in the program graph. Even in this
restricted domain of applications, algorithms that accom-
plish an optimal scheduling have combinatorial complexity,
except in certain trivial cases. Therefore, good heuristic
methods have been developed over the years [4], [6], [7],
[8]. Also, most of the scheduling techniques are applied to
a completely expanded data
ow graph and assume that an
actor is assigned to a processor as an indivisible unit. It
is simpler, however, to treat a data-dependent actor as a
schedulable indivisible unit. Regarding a macro actor as
a schedulable unit greatly simpli�es the scheduling task.
Prasanna et al [9] schedule the macro data
ow graphs hi-
erarchically to treat macro actors of matrix operations as
schedulable units. Then, a macro actor may be assigned to
more than one processor. Therefore, new scheduling tech-
niques to treat a macro actor as a schedulable unit was
devised.
Compile-time scheduling assumes that static informa-

tion about each actor is known. We de�ne the pro�le of
an actor as the static information about the actor neces-
sary for a given scheduling technique. For example, if we
use a list scheduling technique, the pro�le of an actor is
simply the computation time of the actor on a processor.
The communication requirements of an actor with other
actors are included in the pro�le if the scheduling tech-
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nique requires that information. The pro�le of a macro
actor would be the number of the assigned processors and
the local schedule of the actor on the assigned processors.
For a data-independent macro actor such as a matrix op-
eration, the pro�le is deterministic. However, the pro�le
of a data-dependent actor of dynamic construct cannot be
determined at compile time since the execution sequence
of the internal data
ow subgraph varies at run time. For
those constructs, we have to assume the pro�les somehow
at compile-time.
The main purpose of this paper is to show how we can

de�ne the pro�les of dynamic constructs at compile-time.
A crucial assumption we rely on is that we can approximate
the runtime statistics of the dynamic behavior at compile-
time. Simulation may be a proper method to gather these
statistics if the program is to be run on an embedded DSP
system. Sometimes, the runtime statistics could be given
by the programmer for graphics applications or scienti�c
applications.
By optimally choosing the pro�le of the dynamic con-

structs, we will minimize the expected schedule length of a
program assuming the quasi-static scheduling. In �gure 1,
actor A is a data-dependent actor. The scheduling result is
shown with a gantt chart, in which the horizontal axis in-
dicates the scheduling time and the vertical axis indicates
the processors. At compile time, the pro�le of actor A is
assumed. At run time, the schedule length of the program
varies depending on the actual behavior of actor A. Note
that the pattern of processor availability before actor B
starts execution is preserved at run time by inserting idle
time. Then, after actor A is executed, the remaining static
schedule can be followed. This scheduling strategy is called
quasi-static scheduling that was �rst proposed by Lee [10]
for DSP applications. The strict application of the quasi-
static scheduling requires that the synchronization between
actors is guaranteed at compile time so that no run-time
synchronization is necessary as long as the pattern of pro-
cessor availability is consistent with the scheduled one. It
is generally impractical to assume that the exact run-time
behaviors of actors are known at compile time. Therefore,
synchronization between actors is usually performed at run
time. In this case, it is not necessary to enforce the pattern
of processor availability by inserting idle time. Instead, idle
time will be inserted when synchronization is required to
execute actors. When the execution order of the actors is
not changed from the scheduled order, the actual schedule
length obtained from run-time synchronization is proven to
be not much di�erent from what the quasi-static scheduling
would produce [3]. Hence, our optimality criterion for the
pro�le of dynamic constructs is based on the quasi-static
scheduling strategy, which makes analysis simpler.

II. Previous Work

All of the deterministic scheduling heuristics assume that
static information about the actors is known. But almost
none have addressed how to de�ne the static information
of data-dependent actors. The pioneering work on this is-
sue was done by Martin and Estrin [11]. They calculated
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Fig. 1. (a) A data
ow graph consists of �ve actors among which actor
A is a data-dependent actor. (b) Gantt chart for compile-time
scheduling assuming a certain execution time for actor A. (c) At
run time, if actor A takes longer, the second processor is padded
with no-ops and (d) if actor A takes less, the �rst processor is
idled to make the pattern of processor availability same as the
scheduled one (dark line) in the quasi-static scheduling.

the mean path length from each actor to a dummy terminal
actor as the level of the actor for list scheduling. For exam-
ple, if there are two possible paths divided by a conditional
construct from an actor to the dummy terminal actor, the
level of the actor is a sum of the path lengths weighted by
the probability with which the path is taken. Thus, the
levels of actors are based on statistical distribution of dy-
namic behavior of data-dependent actors. Since this is ex-
pensive to compute, the mean execution times instead are
usually used as the static information of data-dependent
actors [12]. Even though the mean execution time seems a
reasonable choice, it is by no means optimal. In addition,
both approaches have the common drawback that a data-
dependent actor is assigned to a single processor, which is
a severe limitation for a multiprocessor system.

Two groups of researchers have proposed quasi-static
scheduling techniques independently: Lee [10] and Loe�er
et al [13]. They developed methods to schedule conditional
and data-dependent iteration constructs respectively. Both
approaches allow more than one processor to be assigned to
dynamic constructs. Figure 2 shows a conditional and com-
pares three scheduling methods. In �gure 2 (b), the local
schedules of both branches are shown, where two branches
are scheduled on three processors (N = 3) while the total
number of processors is 4 (T = 4).

In Lee's method, we overlap the local schedules of both
branches and choose the maximum termination for each
processor. For hard real-time systems, it is the proper
choice. Otherwise, it may be ine�cient if either one branch
is more likely to be taken and the size of the likely branch
is much smaller. On the other hand, Loe�er takes the
local schedule of more likely branch as the pro�le of the
conditional. This strategy is ine�cient if both branches
are equally likely to be taken and the size of the assumed
branch is much larger. Finally, a conditional evaluation can
be replaced with a conditional assignment to make the con-
struct static; the graph is modi�ed as illustrated in �gure
(c). In this scheme, both true and false branches are sched-
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Fig. 2. Three di�erent schedules of a conditional construct. (a) An
example of a conditional construct that forms a data-dependent
actor as a whole. (b) Local deterministic schedules of the two
branches. (c) A static schedule by modifying the graph to use
conditional assignment. (d) Lee's method to overlap the local
schedules of both branches and to choose the maximum for each
processor. (e) Loe�er's method to take the local schedule of the
branch which is more likely to be executed.

uled and the result from one branch is selected depending
on the control boolean. An immediate drawback is ine�-
ciency which becomes severe when one of the two branches
is not a small actor. Another problem occurs when the
unselected branch generates an exception condition such
as divide-by-zero error. All these methods on conditionals
are ad-hoc and not appropriate as a general solution.
Quasi-static scheduling is very e�ective for a data-

dependent iteration construct if the construct can make
e�ective use of all processors in each cycle of the iteration.
It schedules one iteration and pads with no-ops to make
the pattern of processor availability at the termination the
same as the pattern of the start (�gure 3) (Equivalently,
all processors are occupied for the same amount of time
in each iteration). Then, the pattern of processor avail-
ability after the iteration construct is independent of the
number of iteration cycles. This scheme breaks down if the
construct cannot utilize all processors e�ectively.

one iteration cycle

Fig. 3. A quasi-static scheduling of a data-dependent iteration con-
struct. The pattern of processor availability is independent of the
number of iteration cycles.

The recursion construct has not yet been treated suc-
cessfully in any statically scheduled data 
ow paradigm.
Recently, a proper representation of the recursion con-
struct has been proposed [14]. But, it is not explained
how to schedule the recursion construct onto multiproces-
sors. With �nite resources, careless exploitation of the par-
allelism of the recursion construct may cause the system to
deadlock.
In summary, dynamic constructs such as conditionals,

data-dependent iterations, and recursions, have not been

treated properly in past scheduling e�orts, either for static
scheduling or dynamic scheduling. Some ad-hoc methods
have been introduced but proven unsuitable as general so-
lutions. Our earlier result with data-dependent iteration [3]
demonstrated that a systematic approach to determine the
pro�le of data-dependent iteration actor could minimize
the expected schedule length. In this paper, we extend our
analysis to general dynamic constructs.
In the next section, we will show how dynamic constructs

are assigned their pro�les at compile-time. We also prove
the given pro�les are optimal under some unrealistic as-
sumptions. Our experiments enable us to expect that our
decisions are near-optimal in most cases. Section 4,5 and 6
contains an example with data-dependent iteration, recur-

sion, and conditionals respectively to show how the pro-
�les of dynamic constructs can be determined with known
runtime statistics. We implement our technique in the
Ptolemy framework [15]. The preliminary simulation re-
sults will be discussed in section 7. Finally, we discuss the
limits of our method and mention the future work.

III. Compile-Time Profile of Dynamic

Constructs

Each actor should be assigned its compile-time pro�le
for static scheduling. Assuming a quasi-static scheduling
strategy, the proposed scheme is to decide the pro�le of a
construct so that the average schedule length is minimized
assuming that all actors except the dynamic construct are
data-independent. This objective is not suitable for a hard
real-time system as it does not bound the worst case be-
havior. We also assume that all dynamic constructs are
uncorrelated. With this assumption, we may isolate the ef-
fect of each dynamic construct on the schedule length sep-
arately. In case there are inter-dependent actors, we may
group those actors as another macro actor, and decide the
optimal pro�le of the large actor. Even though the decision
of the pro�le of the new macro actor would be complicated
in this case, the approach is still valid. For nested dynamic
constructs, we apply the proposed scheme from the inner
dynamic construct �rst. For simplicity, all examples in this
paper will have only one dynamic construct in the data
ow
graph.
The run-time cost of an actor i, Ci, is the sum of the total

computation time devoted to the actor and the idle time
due to the quasi-static scheduling strategy over all proces-
sors. In �gure 1, the run-time cost of a data-dependent
actor A is the sum of the lightly (computation time) and
darkly shaded areas after actor A or C (immediate idle
time after the dynamic construct). The schedule length of
a certain iteration can be written as

schedule length =
1

T
(Ci +R); (1)

where T is the total number of processors in the system,
and R is the rest of the computation including all idle time
that may result both within the schedule and at the end.
Therefore, we can minimize the expected schedule length
by minimizing the expected cost of the data-dependent ac-
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tor or dynamic construct if we assume that R is indepen-
dent of our decisions for the pro�le of actor i. This assump-
tion is unreasonable when precedence constraints make R
dependent on our choice of pro�le. Consider, for example,
a situation where the dynamic construct is always on the
critical path and there are more processors than we can
e�ectively use. Then, our decision on the pro�le of the
construct will directly a�ect the idle time at the end of
the schedule, which is included in R. On the other hand,
if there is enough parallelism to make e�ective use of the
unassigned processors and the execution times of all actors
are small relative to the schedule length, the assumption is
valid. Realistic situations are likely to fall between these
two extremes.
To select the optimal compile-time pro�le of actor i, we

assume that the statistics of the runtime behavior is known
at compile-time. The validity of this assumption varies to
large extent depending on the application. In digital signal
processing applications where a given program is repeat-
edly executed with data stream, simulation can be useful
to obtain the necessary information. In general, however,
we may use a well-known distribution, for example uniform
or geometric distribution, which makes the analysis simple.
Using the statistical information, we choose the pro�le to
give the least expected cost at runtime as the compile-time
pro�le.
The pro�le of a data-dependent actor is a local schedule

which determines the number of assigned processors and
computation times taken on the assigned processors. The
overall algorithm of pro�le decision is as follows. We as-
sume that the dynamic behavior of actor i is expressed with
parameter k and its distribution p(k).

min = LARGE;
// T is the total number of processors.
// N is the number of processors assigned to the actor.
for N = 1 to T f

// A(N,k) is the actor cost with parameter N, k
// p(k) is the probability of parameter k
temp =

P
k p(k)A(N; k);

if (temp < min) min = temp;
g

In the next section, we will illustrate the proposed
scheme with data-dependent iteration, recursion, and con-

ditionals respectively to show how pro�les are decided with
runtime statistics.

IV. Data Dependent Iteration

In a data-dependent iteration, the number of iteration
cycles is determined at runtime and cannot be known at
compile-time. Two possible data
ow representations for
data-dependent iteration are shown in �gure 4 [10].
The numbers adjacent to the arcs indicate the number

of tokens produced or consumed when an actor �res [2]. In
�gure 4 (a), since the upsample actor produces M tokens
each time it �res, and the iteration body consumes only one
token when it �res, the iteration body must �re M times
for each �ring of the upsample actor. In �gure 4 (b), the
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Fig. 4. Data-dependent iteration can be represented using the either
of the data
ow graphs shown. The graph in (a) is used when the
number of iterations is known prior to the commencement of the
iteration, and (b) is used otherwise.

number of iterations need not be known prior to the com-
mencement of the iteration. Here, a token coming in from
above is routed through a "select" actor into the iteration
body. The "D" on the arc connected to the control input
of the "select" actor indicates an initial token on that arc
with value "false". This ensures that the data coming into
the "F" input will be consumed the �rst time the "select"
actor �res. After this �rst input token is consumed, the
control input to the "select" actor will have value "true"
until function t() indicates that the iteration is �nished by
producing a token with value "false". During the itera-
tion, the output of the iteration function f() will be routed
around by the "switch" actor, again until the test function
t() produces a token with value "false". There are many
variations on these two basic models for data-dependent
iteration.

The previous work [3] considered a subset of data-
dependent iterations, in which simultaneous execution of
successive cycles is prohibited as in �gure 4 (b). In �gure 4
(a), there is no such restriction, unless the iteration body
itself contains a recurrence. Therefore, we generalize the
previous method to permit overlapped cycles when succes-
sive iteration cycles are invokable before the completion of
an iteration cycle. Detection of the intercycle dependency
from a sequential language is the main task of the parallel
compiler to maximize the parallelism. A data
ow represen-
tation, however, reveals the dependency rather easily with
the presence of delay on a feedback arc.

We assume that the probability distribution of the num-
ber of iteration cycles is known or can be approximated
at compile time. Let the number of iteration cycles be a
random variable I with known probability mass function
p(i). For simplicity, we set the minimum possible value of
I to be 0. We let the number of assigned processors be
N and the total number of processors be T . We assume a
blocked schedule as the local schedule of the iteration body
to remove the unnecessary complexity in all illustrations,
although the proposed technique can be applicable to the
overlap execution schedule [16]. In a blocked schedule, all
assigned processors are assumed to be available, or syn-
chronized at the beginning. Thus, the execution time of
one iteration cycle with N assigned processors is tN as dis-
played in �gure 5 (a). We denote by sN the time that must
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elapse in one iteration before the next iteration is enabled.
This time could be zero, if there is no data dependency
between iterations. Given the local schedule of one itera-
tion cycle, we decide on the assumed number of iteration
cycles, xN , and the number of overlapped cycles kN . Once
the two parameters, xN and kN , are chosen, the pro�le of
the data-dependent iteration actor is determined as shown
in �gure 5 (b). The subscript N of tN , sN , xN and kN
represents that they are functions of N , the number of the
assigned processors. For brevity, we will omit the subscript
N for the variables without confusion. Using this pro�le of
the data-dependent macro actor, global scheduling is per-
formed to make a hierarchical compilation. Note that the
pattern of processor availability after execution of the con-
struct is di�erent from that before execution. We do not
address how to schedule the iteration body in this paper
since it is the standard problem of static scheduling.

1
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next iteration cycle is executable

(b) i = x
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Fig. 5. (a) A blocked schedule of one iteration cycle of a data-
dependent iteration actor. A quasi-static schedule is constructed
using a �xed assumed number x of cycles in the iteration. The
cost of the actor is the sum of the dotted area (execution time)
and the dark area (idle time due to the iteration). There displays
3 possible cases depending on the actual number of cycles i in (b)
for i = x, (c) for i < x, and (d) for i > x.

According to the quasi-static scheduling policy, three
cases can happen at runtime. If the actual number of cy-
cles coincides with the assumed number of iteration cycles,
the iteration actor causes no idle time and the cost of the
actor consists only of the execution time of the actor. Oth-
erwise, some of the assigned processors will be idled if the
iteration takes fewer than x cycles (�gure 5 (c)), or else the
other processors as well will be idled (�gure 5 (d)). The
expected cost of the iteration actor, C(N; k; x), is a sum
of the individual costs weighted by the probability mass
function of the number of iteration cycles. The expected
cost becomes

C(N; k; x) =

xX

i=0

p(i)Ntx +

1X

i=x+1

p(i)(Ntx + T td
i� x

k
e):

(2)
By combining the �rst term with the �rst element of the
second term, this reduces to

C(N; k; x) = Ntx + T t

1X

i=x+1

p(i)d
i� x

k
e: (3)

Our method is to choose three parameters (N , k, and
x) in order to minimize the expected cost in equation (3).
First, we assume that N is �xed. Since C(N; k; x) is a de-
creasing function of k with �xed N , we select the maximum
possible number for k. The number k is bounded by two
ratios: T

N
and t

s
. The latter constraint is necessary to avoid

any idle time between iteration cycles on a processor. As
a result, k is set to be

k = min(b
T

N
c; b

t

s
c): (4)

The next step is to determine the optimal x. If a value x is
optimal, the expected cost is not decreased if we vary x by
+1 or �1. Therefore, we obtain the following inequalities,

C(N; k; x) � C(N; k; x+ 1) =

�Nt+ T t

1X

i=0

p(x+ 1 + ik) � 0

C(N; k; x) � C(N; k; x� 1) =

Nt� T t

1X

i=0

p(x+ ik) � 0: (5)

Since t is positive, from inequality (5),

1X

i=0

p(x+ 1 + ik) �
N

T
�

1X

i=0

p(x+ ik): (6)

If k is equal to 1, the above inequality becomes same as
inequality (5) in [3], which shows that the previous work is
a special case of this more general method.
Up to now, we decided the optimal value for x and k for

a given number N . How to choose optimal N is the next
question we have to answer. Since t is not a simple function
of N , no closed form for N minimizing C(N; k; x) exists,
unfortunately. However, we may use exhaustive search
through all possible values N and select the value mini-
mizing the cost in polynomial time. Moreover, our exper-
iments show that the search space for N is often reduced
signi�cantly using some criteria.
Our experiments show that the method is relatively in-

sensitive to the approximated probability mass function for
i [3]. Using some well-known distributions which have nice
mathematical properties for the approximation, we can re-
duce the summation terms in (3) and (6) to closed forms.
Let us consider a geometric probability mass function with
parameter q as the approximated distribution of the num-
ber of iteration cycles. This models a class of asymmetric
bell-shaped distributions. The geometric probability mass
function means that for any non-negative integer r,

P [j � r] = qr; P [j = r] = p(r) = qr(1� q): (7)

To use inequality (6), we �nd

1X

i=0

p(x+ ik) = (1� q)
qx

1� qk
: (8)
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Therefore, from the inequality (6), the optimal value of x
satis�es

1� q

1� qk
qx+1 �

N

T
�

1� q

1� qk
qx: (9)

Using 
oor notation, we can obtain the closed form for the
optimal value as follows:

x = blogq
N(1� qk)

T (1� q)
c: (10)

Furthermore, equation (3) is simpli�ed by using the fact

1X

i=x+1

p(i)d
i� x

k
e =

qx+1

1� qk
; (11)

getting

C(N; k; x) = Ntx + T t
qx+1

1� qk
: (12)

Now, we have all simpli�ed formulas for the optimal pro-
�le of the iteration actor. Similar simpli�cation is possible
also with uniform distributions [17]. If k equals to 1, our
results coincide with the previous result reported in [3].

V. Recursion

Recursion is a construct which instantiates itself as a part
of the computation if some termination condition is not sat-
is�ed. Most high level programming languages support this
construct since it makes a program compact and easy to
understand. However, the number of self-instantiations,
called the depth of recursion, is usually not known at
compile-time since the termination condition is calculated
at run-time. In the data
ow paradigm, recursion can be
represented as a macro actor that contains a SELF actor
(�gure 6). A SELF actor simply represents an instance of
a subgraph within which it sits.
If the recursion actor has only one SELF actor, the func-

tion of the actor can be identically represented by a data-
dependent iteration actor as shown in �gure 4 (b) in the
previous section. This includes as a special case all tail re-
cursive constructs. Accordingly, the scheduling decision for
the recursion actor will be same as that of the translated
data-dependent iteration actor. In a generalized recursion
construct, we may have more than one SELF actor. The
number of SELF actors in a recursion construct is called
the width of the recursion. In most real applications, the
width of the recursion is no more than two. A recursion
construct with width 2 and depth 2 is illustrated in �gure 6
(b) and (c). We assume that all nodes of the same depth in
the computation tree have the same termination condition.
We will discuss the limitation of this assumption later. We
also assume that the run-time probability mass function of
the depth of the recursion is known or can be approximated
at compile-time.
The potential parallelism of the computation tree of

a generalized recursion construct may be huge, since all
nodes at the same depth can be executed concurrently.
The maximum degree of parallelism, however, is usually

not known at compile-time. When we exploit the paral-
lelism of the construct, we should consider the resource
limitations. We may have to restrict the parallelism in or-
der not to deadlock the system. Restricting the parallelism
in case the maximum degree of parallelism is too large has
been recognized as a di�cult problem to be solved in a dy-
namic data
ow system. Our approach proposes an e�cient
solution by taking the degree of parallelism as an additional
component of the pro�le of the recursion construct.
Suppose that the width of the recursion construct is k.

Let the depth of the recursion be a random variable I with
known probability mass function p(i). We denote the de-

gree of parallelism by d, which means that the descendents
at depth d in the computation graph are assigned to dif-
ferent processor groups. A descendent recursion construct
at depth d is called a ground construct (�gure 7 (a)). If
we denote the size of each processor group by N , the to-
tal number of processors devoted to the recursion becomes
Nkd. Then, the pro�le of a recursion construct is de�ned
by three parameters: the assumed depth of recursion x, the
degree of parallelism d, and the size of a processor group
N . Our approach optimizes the parameters to minimize
the expected cost of the recursion construct. An example
of the pro�le of a recursion construct is displayed in �gure 7
(b).
Let � be the sum of the execution times of actors a,c,

and h in �gure 6. And, let �o be the sum of the execution
times of actors a and b. Then, the schedule length lx of a
ground construct becomes

lx = �(k0+k1+� � �+kx�d�1)+�ok
x�d = �

kx�d � 1

k � 1
+�ok

x�d;

(13)
when x � d. At run time, some processors will be idled if
the actual depth of recursion is di�erent from the assumed
depth of recursion, which is illustrated in �gure 7 (c) and
(d). When the actual depth of recursion i is smaller than
the assumed depth x, the assigned processors are idled.
Otherwise, the other processors as well are idled. Let R be
the sum of the execution times of the recursion besides the
ground constructs. This basic cost R is equal to N�(kd�1)

k�1
.

For i � x, the runtime cost, C1, becomes

C1 = R+Nkd(�
kx�d � 1

k � 1
+ �ok

x�d); (14)

assuming that x is not less than d. For i > x, the cost C2
becomes

C2 = R+Nkd(�
ki�d � 1

k � 1
+ �ok

i�d) +

(T �Nkd)(
�

k � 1
+ �o)(k

i�d � kx�d): (15)

Therefore, the expected cost of the recursion construct,
C(N; x; d) is the sum of the run-time cost weighted by the
probability mass function.

C(N; d; x) = R+
xX

i=0

p(i)C1 +
1X

i=x+1

p(i)C2: (16)
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F       T
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f

(b) (c)
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0

1

2

1

0

2

SELF actor

function f(x)

a(x);

if  test(x) is TRUE

else

     return b(x);

(a) 

     return h(f(c1(x)),f(c2(x)));

c

Fig. 6. (a) An example of a recursion construct and (b) its data
ow representation. The SELF actor represents the recursive call. (c) The
computation tree of a recursion construct with two SELF actors when the depth of the recursion is two.
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Fig. 7. (a) The reduced computation graph of a recursion construct of width 2 when the degree of parallelism is 2. (b) The pro�le of the
recursion construct. The schedule length of the ground construct is a function of the assumed depth of recursion x and the degree of
parallelism d. A quasi-static schedule is constructed depending on the actual depth i of the recursion in (c) for i < x and in (d) for i > x.

After a few manipulations,

C(N; d; x) = N(�
kx � 1

k � 1
+ �ok

x) +

1X

i=x+1

p(i)T (
�

k � 1
+ �o)(k

i�d � kx�d):(17)

First, we assume that N is �xed. Since the expected
cost is a decreasing function of d, we select the maximum
possible number for d. The number d is bounded by the
processor constraint: Nkd � T . Since we assume that the
assumed depth of recursion x is greater than the degree of

parallelism d, the optimal value for d is

d = min(blogk
T

N
c; x): (18)

Next, we decide the optimal value for x from the observa-
tion that if x is optimal, the expected cost is not decreased
when x is varied by +1 and �1. Therefore, we get

C(N; d; x) � C(N; d; x+ 1) =

(� + �o(k � 1))(�Nkx + Tkx�d
1X

i=x+1

p(i)) � 0

C(N; d; x) � C(N; d; x� 1) =
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(� + �o(k � 1))(Nkx�1 � Tkx�d�1
1X

i=x

p(i)) � 0:(19)

Rearranging the inequalities, we get the following,

1X

i=x+1

p(i) �
Nkd

T
�

1X

i=x

p(i): (20)

Note the similarity of inequality (20) with that for data-
dependent iterations (6). In particular, if k is 1, the two
formulas are equivalent as expected. The optimal values
d and x depend on each other as shown in (18) and (20).
We may need to use iterative computations to obtain the
optimal values of d and x starting from d = blogk

T
N
c.

Let us consider an example in which the probability mass
function for the depth of the recursion is geometric with
parameter q. At each execution of depth i of the recursion,
we proceed to depth i + 1 with probability q and return
to depth i� 1 with probability 1� q. From the inequality
(20), the optimal x satis�es

qx+1 �
Nkd

T
� qx: (21)

As a result, x becomes

x = blogq
Nkd

T
c: (22)

Up to now, we assume that N is �xed. Since � is a tran-
scendental function of N , the dependency of the expected
cost upon the size of a processor group N is not clear. In-
stead, we examine the all possible values for N , calculate
the expected cost from equation (3) and choose the opti-
mal N giving the minimum cost. The complexity of this
procedure is still polynomial and usually reduced signi�-
cantly since the search space of N can be reduced by some
criteria. In case of geometric distribution for the depth of
the recursion, the expected cost is simpli�ed to

C(N; d; x) = N(�
kx � 1

k � 1
+�ok

x)+T (�+�o(k�1))k
x�d qx+1

1� qk
:

(23)
In case the number of child functions is one (k = 1), our
simpli�ed formulas with a geometric distribution coincide
with those for data-dependent iterations, except for an
overhead term to detect the loop termination.
Recall that our analysis is based on the assumption that

all nodes of the same depth in the computation tree have
the same termination condition. This assumption roughly
approximates a more realistic assumption, which we call
the independence assumption, that all nodes of the same
depth have equal probability of terminating the recursion,
and that they are independent each other. This equal prob-
ability is considered as the probability that all nodes of
the same depth terminate the recursion in our assumption.
The expected number of nodes at a certain depth is the
same in both assumptions even though they describe dif-
ferent behaviors. Under the independence assumption, the
shape of the pro�le would be the same as shown in �gure 7:

the degree of parallelism d is maximized. Moreover, all re-
cursion processors have the same schedule length for the
ground constructs. However, the optimal schedule length
lx of the ground construct would be di�erent. The length
lx is proportional to the number of executions of the recur-
sion constructs inside a ground construct. This number can
be any integer under the independence assumptions, while
it belongs to a subset f0; k1; k2; :::g under our assumption.
Since the probability mass function for this number is likely
to be too complicated under the independence assumption,
we sacri�ce performance by choosing a sub-optimal sched-
ule length under a simpler assumption.

VI. Conditionals

Decision making capability is an indispensable require-
ment of a programming language for general applications,
and even for signal processing applications. A data
ow
representation for an if-then-else and the local schedules of
both branches are shown in �gure 2 (a) and (b).
We assume that the probability p1 with which the

"TRUE" branch (branch 1) is selected is known. The
"FALSE" branch (branch 2) is selected with probability
p2 = 1�p1. Let tij be the �nishing time of the local sched-
ule of the i-th branch on the j-th processor. And let t̂j
be the �nishing time on the j-th processor in the optimal
pro�le of the conditional construct. We determine the op-
timal values ft̂jg to minimize the expected runtime cost of
the construct. When the i-th branch is selected, the cost
becomes

NX

k=1

t̂k + T max[0; max
j2[1;N ]

(tij � t̂j)]: (24)

Therefore, the expected cost C(N) is

C(N) =

NX

k=1

t̂k + T

2X

i=1

pimax[0; max
j2[1;N ]

(tij � t̂j)]: (25)

It is not feasible to obtain the closed form solutions for t̂j
because the max function is non-linear and discontinuous.
Instead, a numerical algorithm is developed.
1. Initially, take the maximum �nish time of both branch
schedules for each processor according to Lee's method
[10].

2. De�ne �i = max[0;maxj(tij � t̂j); 0)]. Initially, all
�i = 0. The variable �i represents the excessive cost
per processor over the expected cost when branch i is
selected at run time. We de�ne the bottleneck proces-
sors of branch i as the processors fjg that satisfy the
relation tij � t̂j = �i. For all branches fig, repeat the
next step.

3. Choose the set of bottleneck processors, �i, of branch
i only. If we decrease t̂j by � for all j 2 �i, the
variation of the expected cost becomes �C(N) =
(�j�ij+Tpi)�. Increase � until the set �i needs to be
updated. Update �i and repeat step 3.

Now, we consider the example shown in �gure 2. Sup-
pose p1 = 0:3 and p2 = 0:7. The initial pro�le in our algo-
rithm is same as Lee's pro�le as shown in �gure 8 (a), which
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happens to be same as Loe�er's pro�le in this speci�c ex-
ample. The optimal pro�le determined by our algorithm is
displayed in �gure 8 (b).

21 3 1 2 3

(a) initial profile (b) optimal profile

T N

Fig. 8. Generation of the optimal pro�le for the conditional construct
in �gure 2. (a) initial pro�le (b) optimal pro�le.

We generalized the proposed algorithm to the M-way
branch construct by case construct. To realize an M-way
branch, we prefer to using case construct to using a nested
if-then-else constructs. Generalization of the proposed al-
gorithm and proof of optimality is beyond the scope of this
paper. For the detailed discussion, refer to [17]. For a given
number of assigned processors, the proposed algorithm de-
termines the optimal pro�le. To obtain the optimal number
of assigned processors, we compute the total expected cost
for each number and choose the minimum.

VII. An Example

The proposed technique to schedule data-dependent ac-
tors has been implemented in Ptolemy, which is a het-
erogeneous simulation and prototyping environment being
developed in U.C.Berkeley, U.S.A. [15]. One of the key
objectives of Ptolemy is to allow many di�erent computa-
tional models to coexist in the same system. A domain is
a set of blocks that obey a common computational model.
An example of mixed domain system is shown in �gure 9.
The synchronous data
ow (SDF) domain contains all data-
independent actors and performs compile-time scheduling.
Two branches of the conditional constructs are represented
as SDF subsystems, so their local schedules are generated
by a static scheduler. Using the local schedules of both
branches, the dynamic data
ow(DDF) domain executes the
proposed algorithm to obtain the optimal pro�le of the con-
ditional construct. The topmost SDF domain system re-
gards the DDF domain as a macro actor with the assumed
pro�le when it performs the global static scheduling.

SWITCH
T      F

T      F
SELECT

SDF SDF

DDF

SDF

Fig. 9. An example of mixed domain system. The topmost level of
the system is a SDF domain. A dynamic construct(if-then-else)
is in the DDF domain, which in turn contains two subsystems in
the SDF domain for its branches.

We apply the proposed scheduling technique to several
synthetic examples as preliminary experiments. These ex-
periments do not serve as a full test or proof of generality
of the technique. However, they verify that the proposed
technique can make better scheduling decisions than other
simple but ad-hoc decisions on dynamic constructs in many
applications. The target architecture is assumed to be a
shared bus architecture with 4 processors, in which com-
munication can be overlapped with computation.

To test the e�ectiveness of the proposed technique, we
compare it with the following scheduling alternatives for
the dynamic constructs.

Method 1. Assign all processors to each dynamic con-
struct
Method 2. Assign only one processor to each dynamic
construct
Method 3. Apply a fully dynamic scheduling ignoring
all overhead
Method 4. Apply a fully static scheduling

Method 1 corresponds to the previous research on quasi-
static scheduling technique made by Lee [10] and by Loef-

er et. al. [13] for data dependent iterations. Method 2 ap-
proximately models the situation when we implement each
dynamic construct as a single big atomic actor. To simulate
the third model, we list all possible outcomes, each of which
can be represented as a data-independent macro actor.
With each possible outcome, we replace the dynamic con-
struct with a data-independent macro actor and perform
fully-static scheduling. The scheduling result from Method
3 is non-realistic since it ignores all the overhead of the
fully dynamic scheduling strategy. Nonetheless, it will give
a yardstick to measure the relative performance of other
scheduling decisions. By modifying the data
ow graphs,
we may use fully static scheduling in Method 4. For a con-
ditional construct, we may evaluate both branches and se-
lect one by a multiplexor actor. For a data-dependent iter-
ation construct, we always perform the worst case number
of iterations. For comparison, we use the average schedule
length of the program as the performance measure.

As an example, consider a For construct of data-
dependent iteration as shown in �gure 10. The number
inside each actor represents the execution length. To in-
crease the parallelism, we pipelined the graph at the be-
ginning of the For construct.

The scheduling decisions to be made for the For con-
struct are how many processors to be assigned to the iter-
ation body and how many iteration cycles to be scheduled
explicitly. We assume that the number of iteration cycles
is uniformly distributed between 1 and 7. To determine the
optimal number of assigned processors, we compare the ex-
pected total cost as shown in table I. Since the iteration
body can utilize two processors e�ectively, the expected
total cost of the �rst two columns are very close. How-
ever, the schedule determines that assigning one processor
is slightly better. Rather than parallelizing the iteration
body, the scheduler automatically parallelizes the iteration
cycles. If we change the parameters, we may want to paral-
lelize the iteration body �rst and the iteration cycles next.
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Fig. 10. An example with a For construct at the top level. The
subsystems associated with the For construct are also displayed.
The number inside an actor represents the execution length of
the actor.

The proposed technique considers the tradeo�s of paral-
lelizing inner loops or parallelizing outer loops in a nested
loop construct, which has been the main problem of par-
allelizing compilers for sequential programs. The resulting
Gantt chart for this example is shown in �gure 11.

0 10 20 30 40 50 60 70

FOR
10 24 6

15 14 5

6 15 17

9 17 24 2

Fig. 11. A Gantt chart disply of the scheduling result over 4 proces-
sors from the proposed scheduling technique for the example in
�gure 10. The pro�le of the For construct is identi�ed.

If the number of iteration cycles at run time is less than
or equal to 3, the schedule length of the example is same
as the schedule period 66. If it is greater than 3, the sched-
ule length will increase. Therefore, the average schedule
length of the example becomes 79.9. The average schedule
length from other scheduling decisions are compared in ta-
ble II. The proposed technique outperforms other realistic
methods and achieves 85% of the ideal schedule length by
Method 3. In this example, assigning 4 processors to the
iteration body (Method 1) worsens the performance since
it fails to exploit the intercycle parallelism. Con�ning the
dynamic construct in a single actor (Method 2) gives the
worst performance as expected since it fails to exploit both
intercycle parallelism and the parallelism of the iteration
body. Since the range of the number of iteration cycles is
not big, assuming the worst case iteration (Method 4) is
not bad.

This example, however, reveals a shortcoming of the pro-
posed technique. If we assign 2 processors to the iteration
body to exploit the parallelism of the iteration body as well
as the intercycle parallelism, the average schedule length
becomes 77.7, which is slightly better than the scheduling
result by the proposed technique. When we calculate the

expected total cost to decide the optimal number of pro-
cessors to assign to the iteration body, we do not account
for the global e�ect of the decision. Since the di�erence
of the expected total costs between the proposed technique
and the best scheduling was not signi�cant, as shown in ta-
ble I, this non-optimality of the proposed technique could
be anticipated. To improve the performance of the pro-
posed technique, we can add a heuristic that if the ex-
pected total cost is not signi�cantly greater than the opti-
mal one, we perform scheduling with that assigned number
and compare the performance with the proposed technique
to choose the best scheduling result.
The search for the assumed number of iteration cycles

for the optimal pro�le is not faultless either, since the pro-
posed technique �nds a local optimum. The proposed tech-
nique selects 3 as the assumed number of iteration cycles.
It is proved, however, that the best assumed number is
2 in this example even though the performance di�erence
is negligible. Although the proposed technique is not al-
ways optimal, it is certainly better than any of the other
scheduling methods demonstrated in table II.
Experiments with other dynamic constructs as well as

nested constructs have been performed to obtain the sim-
ilar results that the proposed technique outperforms other
ad-hoc decisions. The resulting quasi-static schedule could
be at least 10% faster than other scheduling decisions cur-
rently existent, while it is as little as 15 % slower than
an ideal (and highly unrealistic) fully-dynamic schedule.
In a nested dynamic construct, the compile-time pro�le of
the inner dynamic construct a�ects that of the outer dy-
namic construct. In general, there is a trade-o� between
exploiting parallelism of the inner dynamic construct �rst
and that of the outer construct �rst. The proposed tech-
nique resolves this con
ict automatically. Refer to [17] for
detailed discussion.
Let us assess the complexity of the proposed scheme. If

the number of dynamic constructs including all nested ones
is D and the number of processors is N , the total number
of pro�le decision steps is order of ND, O(ND). To deter-
mine the optimal pro�le also consumes O(ND) time units.
Therefore, the overall complexity is order of ND. The
memory requirements are the same order od magnitude as
the number of pro�les to be maintained, which is also order
of ND.

VIII. Conclusion

As long as the data-dependent behavior is not dominat-
ing in a data
ow program, the more scheduling decisions
are made at compile time the better, since we can reduce
the hardware and software overhead for scheduling at run
time. For compile-time decision of task assignment and/or
ordering, we need the static information, called pro�les,
of all actors. Most heuristics for compile-time decisions
assume the static information of all tasks, or use ad-hoc
approximations. In this paper, we propose a systematic
method to decide on pro�les for each dynamic construct.
We de�ne the compile-time pro�le of a dynamic construct
as an assumed local schedule of the body of the dynamic
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TABLE I

The expected total cost of the For construct as a function of the number of assigned processors

Number of assigned processors 1 2 3 4
Expected total cost 129.9 135.9 177.9 N/A

TABLE II

Performance comparison among several scheduling decisions

Method Proposed 1 2 3 4
Average schedule length 79.7 90.9 104.3 68.1 90

% of ideal 0.85 0.75 0.65 1.0 0.76

construct. We de�ne the cost of a dynamic construct and
choose its compile-time pro�le in order to minimize the ex-
pected cost. The cost of a dynamic construct is the sum
of execution length of the construct and the idle time on
all processors at run-time due to the di�erence between
the compile-time pro�le and the actual run-time pro�le.
We discussed in detail how to compute the pro�le of three
kinds of common dynamic constructs: conditionals, data-
dependent iterations, and recursion.
To compute the expected cost, we require that the statis-

tical distribution of the dynamic behavior, for example the
distribution of the number of iteration cycles for a data-
dependent iteration, must be known or approximated at
compile-time. For the particular examples we used for ex-
periments, the performance does not degrade rapidly as
the stochastic model deviates from the actual program be-
havior, suggesting that a compiler can use fairly simple
techniques to estimate the model.
We implemented the technique in Ptolemy as a part of

a rapid prototyping environment. We illustrated the e�ec-
tiveness of the proposed technique with a synthetic example
in this paper and with many other examples in [17]. The
results are only a preliminary indication of the potential in
practical applications, but they are very promising. While
the proposed technique makes locally optimal decisions for
each dynamic construct, it is shown that the proposed tech-
nique is e�ective when the amount of data dependency from
a dynamic construct is small. But, we admittedly cannot
quantify at what level the technique breaks down.
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