
-- Proc. of ICASSP '97, Munich, Germany, April 1997 --

CODE GENERATION BY USING INTEGER-CONTROLLED
DATAFLOW GRAPH

Takashi Miyazaki and Edward A. Lee *
Information Technology Research Laboratories, NEC Corporation

1-1, Miyazaki, 4-chome, Miyamae-ku, Kawasaki, Kanagawa, 216, Japan
miyazaki@dsp.cl.nec.co.jp

* Dept. of EECS, University of California, Berkeley
518 Cory Hall, #1770, Berkeley, CA 94720-1770, USA

eal@eecs.berkeley.edu

ABSTRACT

Integer-Controlled Dataflow (IDF) and its code
generation applications in Ptolemy are presented. In IDF
graphs, which specify data processing systems, data token
flow is controlled by integer control tokens and states of
actors at run-time. The firing order of actors (schedule) is
determined at compile-time, however, the actors are
conditionally activated at run-time. This static schedule
contributes to effective simulation of systems. IDF supports
code generation. This enables code generation from
program graphs that include conditional jumps, loops and
repetitions, and greatly improves the practical usability of
the program synthesis in Ptolemy.

1. INTRODUCTION

 Ptolemy [1] is a framework for simulation, prototyping
and software synthesis for heterogeneous systems. In
Ptolemy, a system is specified by a dataflow graph in which
nodes represent computational actors and data token flow
between them along the arcs of the graph. Algorithms with
control flow that is completely deterministic can be
effectively represented by using the synchronous dataflow
(SDF) model of computation [2]. In SDF graphs, each actor
consumes and produces a constant number of tokens at
every firing. The advantage of the SDF model is that it is
possible to determine the execution order of actors
(schedule) and memory requirements at compile-time.
However, data-dependent decision-making at run-time is
required in many digital signal processing algorithms.
Dynamic dataflow (DDF) [4, 5] is a data-driven model that
includes asynchronous operations. The DDF model is usable,
but the overhead of run-time scheduling is excessive.

To preserve the compile-time scheduling properties of
SDF but permit data-dependent execution, Boolean-

controlled dataflow (BDF) [6, 7] was developed. The BDF
model of computation extends the SDF model to permit data
movement to depend on the values of certain Boolean tokens
in the system. The BDF model is successfully applied to
simulation and C program synthesis in Ptolemy. Limiting
control variables to binary values, however, is overly
restrictive. A generalization to integer control variables has
been proposed [8].
 In this paper, integer-controlled dataflow (IDF) and its
code generation implementation in Ptolemy are presented.
The IDF graphs, which include IF, CASE, REPEAT and
LOOP control structures, support not only simulation but
also code generation. C and DSP assembler programs with
the IDF structure can be synthesized.

2. INTEGER-CONTROLLED DATAFLOW
GRAPH

2.1. IDF Control
A digital signal processing system is described as a

dataflow graph in Ptolemy. Data token flow in the IDF graph
is controlled by IDF actors. The IDF actor (Fig. 1) evaluates
integer values of tokens received from its control port and its
own internal state to decide its behavior, such as input and
output port selection and data processing at run-time.

,') DFWRU

FRQWURO

LQSXWV RXWSXWV

VWDWH

SURFHVVLQJ

HYDOXDWLRQ

Fig. 1 IDF actor

IDF is derived from BDF in the Ptolemy class hierarchy
in order to fully utilize BDF scheduling techniques to control
execution of actors in IDF. In BDF, control of token flow at
a conditional port of an actor is a function of the value of a
Boolean control token. An input conditional port will either
consume a token, or consume no token, depending on the
control. An output conditional port will either produce a
token or not produce a token.

The behavior of IDF actors newly implemented in
Ptolemy is managed by an integer control token and a state
variable of the actor. To use BDF conditional ports, a
decision function is introduced into the IDF dataflow control
mechanism as shown in Fig. 2. The decision function
evaluates a function of the integer values of a token from a
control port and a state of the actor, and returns the
Boolean-valued result. A conditional port (either an input or
an output) is activated depending on the result of the
decision function. The decision function is a user-defined
function programmed in the host language. The combination
of decision functions and conditional ports makes it possible
to create a variety of IDF actors that control token flow.

2.2 IDF Actor
 CASE-BEGIN, CASE-END, REPEAT-BEGIN,
REPEAT-END and LOOP are a basic set of IDF actors to
build IDF graphs. CASE-BEGIN and CASE-END actors
work as a switch and a selector, respectively. The CASE-
BEGIN actor passes input data tokens to one of output ports
selected by a control token. The CASE-END actor receives
input data tokens from the selected input port, and send
them to the output port. A pair of CASE-BEGIN and
CASE-END actors in Fig. 3 form a case structure equivalent
to switch-case statements in C programs. In this example,
data tokens go through one of three data paths chosen by the
case control token. It is obvious how CASE-BEGIN and
CASE-END can be implemented with the structure in Fig. 2

REPEAT-BEGIN and REPEAT-END actors are used for
multiphase execution. The REPEAT-BEGIN actor receives
a control token (the desired number of repetitions) and an
input data token in its first phase, and sends an output token
once on each subsequent phase of a cycle. The length of a
cycle is determined by the integer control token. The
REPEAT-END actor receives input data tokens on every
phase of its cycle, but sends an output token only in the last
phase. The REPEAT-BEGIN and REPEAT-END actors
hold a repeat count as a state, therefore, the control token is
required only in the first phase. These REPEAT actors are
subtly different from multi-rate actors in SDF, because each
repetition is counted as one iteration in the actor execution
schedule.

The LOOP actors in Fig. 5 realizes iteration in dataflow

graphs. The LOOP actor receives the number of the loop
count and an input data token at the beginning of the
iteration. The data token cycles around the loop path
repeatedly up to the loop counts, and passes out from the
output port at the end of iteration. The LOOP actor keeps the

GHFLGHFLVVLRLRQQ

IIXXQFWLRQQFWLRQ

FRQWUROFRQWURO

SRUWSRUW

LLQQSXW SSXW SRRUUWW

VVWDWWDWHH

�L�LQQWWHHJJHU�HU�

,') FRQGLWLRQDO SRUW

GDWD WRNHQ

%')

FRQGLWLRQDO

SRUW

%RROHDQ

FRQWURO

WRNHQ

LQWHJHU

FRQWURO

WRNHQ

�758(�

Fig. 2 IDF dataflow control

LLQQSSXXWW

GGDDWWDD

FFDDVVHH

FRFRQQWUROWURO

&
$

&
$
66
(
�%
(

(
�%
(
**
,
1
,
1

&
$

&
$
66
(
�(
1

(
�(
1
''

RRXXWWSXSXWW

GGDDWWDD

Fig. 3 Case actors

UUHHSSHHDDWW
FFRRQWUROQWURO

LQSXWLQSXW
GGDDWDWD

55
((
3
(
3
(
$$
7
�
%

7
�
%
((
**
,,
11

55
((
3
(
3
(
$$
7
�
(
1
'

7
�
(
1
'

RXWSXWRXWSXW
GGDDWDWD

Fig. 4 REPEAT actors

//222323

ORORRSRS

FRQWURFRQWUROO

LLQSQSXWXW

GDGDWWDD

ORRS SDWK

RRXXWWSSXWXW

GDGDWWDD

Fig. 5 LOOP actor

iteration count as its state; therefore, it runs by itself after the
number of iteration is set.

2.3 IDF Graph
IDF actors such as IF, CASE, REPEAT and LOOP attain

flexible system expression. SDF actors are also available in
IDF graphs; therefore, a variety of systems can be easily
described. A simple (toy) example of an IDF graph is shown
in Fig. 6. This graph has a CASE structure. IIDUniform, Abs
and QntBtsInt actors generate control tokens. Source data
from the Const actor are switched to one of four Gain stars
by CASE actors. The switching depends on the value of the
control tokens. In the simulation, the graph computes data
iteratively according to its execution schedule, and the
results are displayed in Xgraph. The combination of static
scheduling at compile-time and IDF flow control at run-time
greatly contributes to efficient simulation on Ptolemy.

3. CODE GENERATION AND APPLICATION

The IDF capability also supports code generation [9] in
Ptolemy. Programmers edit program graphs composed of
existing SDF code generation actors and IDF code
generation actors such as CASE-BEGIN, CASE-END,
REPEAT-BEGIN, REPEAT-END and LOOP. The code
generation procedure is as follows. First, the scheduler
makes a list that details the firing order of actors (List 1
shows the Ptolemy representation of such a schedule for the
program in Fig. 6). Then, buffer size and memory allocation
are determined. This is possible, because execution order of
the actors is determined at compile-time. Finally, the code is
generated by concatenating code blocks in the firing order.
The decision functions of IDF actors are defined as
subroutines in the target language. When conditional branch
statements are found in the schedule during code generation,
they are replaced by a call to the decision-making subroutine
and a conditional branch instruction in the target language
(List 2). To make generated programs compact, IDF actors
can share the decision-making subroutines. Code synthesis

of C and Motorola 56000 DSP assembler programs from the
IDF program graphs is currently attained.
 The IDF graphs can effectively describe a variety of digital
signal processing block diagrams. For example, in video
coding algorithms, such as MPEG and H.26x series,
encoding mode is dynamically selected to get better
compression result. The mode switching is represented by
using CASE actors. REPEAT actors are useful to express
iterations like the block-by-block process. Support of the
IDF program graphs significantly extends application range
of the code generation in Ptolemy. Especially, the capability
of DSP program synthesis stimulate reuse of assembler
program libraries and helps to design DSP based systems.
 The scheduling of the IDF graph relies on the BDF
techniques. It is known that the static scheduling of BDF
graphs is not always possible. Indeed, it is undecidable for
any given graph whether a static, bounded memory schedule
can be constructed [7]. Nonetheless, experience with BDF
indicates that most practical applications yield static
scheduling. In any case, the set of applications that can be
statically scheduled is much larger than the set that can be
described with SDF.

4. CONCLUSION

IDF and its code generation applications in Ptolemy are
presented. The IDF model of computation is built on BDF
with the introduction of a decision function. The IDF
schedule is determined at compile-time, and actors
conditionally run at run-time. IDF graphs, which support
CASE, REPEAT and LOOP, have capability to specify a
variety of DSP systems. These features contribute to
effective and efficient simulation. IDF supports code
generation. This enables code generation from program
graphs that include conditional jumps, loops and repetitions,
and greatly improves the practical usability of the program
synthesis in Ptolemy.

Fig. 6 IDF Graph with case actors

REFERENCES

[1] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
´Ptolemy: A framework for simulating and prototyping
heterogeneous systems,µ International journal of Computer
Simulation, special issue on Simulation Software
Development, vol. 4, pp. 155-182, 1994.
[2] E. A. Lee and D. G. Messerschmit, ´Synchronous data
flow,µ Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-
1245, 1987.
[3] E. A. Lee, ́ Consistency in Dataflow Graphs,µ IEEE
Transactions on Parallel and Distributed Systems, Vol. 2,
No.2, April 1991.
[4] D. G. Messerschmitt, ́Structured Interconnection of
Signal Processing Programs,µ Globecom, Atlanta, Georgia,
1984.
[5]D. G. Messerschmitt, ´A Tool for Structured Functional
Simulation,µ IEEE Journal on Selected Areas in
Communications, vol. SAC-2 no. 1, 1984.
[6] J. Buck and E. A. Lee, ´Scheduling Dynamic Dataflow

Graphs With Bounded Memory Using the Token Flow
Model,µ Proc. Of ICASSP·93, 1993.
[7] J. Buck, ́ Scheduling Dynamic Dataflow Graphs With
Bounded Memory Using the Token Flow Model,µ

Memorandum No. UCB/ERL M93/69 (Ph.D. Thesis), EECS
Dept., University of California, Berkeley, September 1993.
[8] J. T. Buck, ́Static Scheduling and Code Generation from
Dynamic Dataflow Graphs with Integer-Valued Control
Systems,µ Proc. of IEEE Asilomar Conf. on Signals,
Systems, and Computers, Oct. 31, 1994.
[9] J. L. Pino, S. Ha, E. A. Lee and J. T. Buck, ´Software
Synthesis for DSP Using Ptolemy,µ Journal of VLSI Signal
Processing, 9, 7-21, 1995.
[10] S. Ritz, M. Pankert, V. Zivojnovie and H. Meyr, ´High
level software synthesis for the design of communication
systems,µ IEEE Journal on Selected Area in
Communications, pp. 348 - 358, Apr. 1993.
[11] M. Willems, M. Pankert and S. Ritz, ´Fine grain code
synthesis within a block diagram oriented code generation
environment,µ Proc. of ICASSP, Detroit, 1995.

{ fire case4.demo.IIDUniform1 }
{ fire case4.demo.Abs1 }
{ fire case4.demo.QntBtsInt1 }
{ fire case4.demo.auto-fork-node1 }
{ fire case4.demo.Const1 }
{ fire case4.demo.ICaseB41 }
{ if(case4.demo.ICaseB41.SUB_CntlEq0_0(demo_auto-fork-node1_output#2,statOutput0)) { { fire
case4.demo.Gain1 } } }
{ if(case4.demo.ICaseB41.SUB_CntlEq1_1(demo_auto-fork-node1_output#2,statOutput1)) { { fire
case4.demo.Gain2 } } }
{ if(case4.demo.ICaseB41.SUB_CntlEq2_2(demo_auto-fork-node1_output#2,statOutput2)) { { fire
case4.demo.Gain3 } } }
{ if(case4.demo.ICaseB41.SUB_CntlEq3_3(demo_auto-fork-node1_output#2,statOutput3)) { { fire
case4.demo.Gain4 } } }
{ fire case4.demo.ICaseE41 }
{ fire case4.demo.Xgraph1 }

List 1 Run schedule of actors for the IDF graph with case actors

;------ Beginning of conditional branch (begin-if) [Depth = 1] ------
; if(case4.demo.ICaseB41.SUB_CntlEq0_0(control,statOutput0) != 0)

move x:1,a ; load 'control' to A register
move y:1,b ; load 'state' to B register
jsr SUB_CntlEq0_0 ; call an evaluation function
jne IFBRANCH_10 ; branch if result of the eval. func. is FALSE (Z flag == 0)

; code from star case4.demo.Gain1 (class CG56Gain)
clr a
move a,x:3

;------ End of conditional branch (end-if) [Depth = 1] ------
IFBRANCH_10

List 2 DSP assembler program generated for conditional run of an actors

