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ABSTRACT1

In this paper, we formally develop techniques that minimize the memory requirements of a
target program when synthesizing software from dataflow descriptions of multirate signal pro-
cessing algorithms. The dataflow programming model that we considesittteonous data-
flow (SDF model [21], which has been used heavily in DSP design environments over the past
several years. We first focus on the restricted clagelforderedSDF graphs. We show that
while extremely efficient techniques exist for constructing minimum code size schedules for well-
ordered graphs, the number of distinct minimum code size schedules increases combinatorially
with the number of vertices in the input SDF graph, and these different schedules can have vastly
different data memory requirements. We develop a dynamic programming algorithm that com-
putes the schedule that minimizes the data memory requirement from among the schedules that
minimize code size, and we show that the time complexity of this algorithm is cubic in the num-
ber of vertices in the given well-ordered SDF graph. We present several extensions to this
dynamic programming technique to more general scheduling problems, and we present a heuristic
that often computes near-optimal schedules with quadratic time complexity. We then show that
finding optimal solutions for arbitrary acyclic graphs is NP-complete, and present heuristic tech-
niques that jointly minimize code and data size requirements. We present a practical example and
simulation data that demonstrate the effectiveness of these techniques.
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1 Motivation
|
The use of block diagram programming environments for signal processing has become

widespread over the past several years. Their potential for modularity, software-reuse, concise and
clear semantics, and an intuitive, visually appealing syntax are all reasons for their popularity. In
addition, many models of computation (MoC) that have strong formal properties can be used as
the underlying model on which the block diagram language is built; these MoCs include, for
example, dataflow, Petri Nets, and Kahn Process Networks [19]. These formal properties may
include determinacy, guarantees on bounded memory execution policies, compile-time detection
of deadlock, and static (i.e, compile-time) schedulability (thus obviating dynamic sequencing and
the associated overheads).

The synchronous dataflow (SDF) model has been used widely as a foundation for block-
diagram programming of digital signal processing (DSP) systems (see, for example, [10, 18, 20,
22, 24, 25]). In this model, as in other forms of dataflow, a program is specified by a directed
graph in which the vertices, calledtors, represent computations, and the edges represent FIFO
gueues that store data values, catdens, as they pass between computations. We refer to the
FIFO queue associated with each edgelasgfar. SDF imposes the restriction that the number of
tokens produced and consumed by each actor is fixed and known at compile time. Figure 1 shows
an example of an SDF graph. Each edge is annotated with the number of tokens produced (con-
sumed) by each invocation of the source (sink) actor. The SDF model has several formal proper-
ties that make it popular as the underlying model: the model is well suited for specifying multirate
signal processing systems, it can be scheduled statically, it exposes most of the parallelism in the
application, and deadlock can be detected at compile time.

Rapid prototyping environments such as those described in [10], [18], [24], and [23] sup-
port code-generation for programmable digital signal processors (PDSP) used in embedded sys-

tems. Traditionally, PDSPs have been programmed manually, in assembly language, and this is a
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Figure 1. A chain-structured SDF graph.
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tedious, error-prone process at best. Hence, generating code automatically is a desirable goal.
Since the amount of on-chip memory on such a PDSP is severely limited, it is imperative that the
generated code be parsimonious in its memory usage. Adding off-chip memory is often infeasible
due to increased cost, increased power requirements, and a speed penalty that will affect the feasi-
bility of real-time implementations. One approach to automatic code generation is to specify the
program in an imperative language such as C, C++, or FORTRAN and use a good compiler. How-
ever, even the best compilers today produce inefficient code [28]. In addition, specifications in
imperative languages are difficult to parallelize, are difficult to change due to side effects, and
offer few chances for any formal verification of program properties. An alternative is to use a
block diagram language based on an MoC with strong formal properties such as SDF to specify
the system, and to do code-generation starting from this specification. One reason that a compiler
for a block diagram language is likely to give better performance than a compiler for an impera-
tive language is because the underlying MoC often imposes restrictions on the control flow of the
specification, and this can be profitably exploited by the compiler.

The code-generation strategy followed in many block diagram environments is called
threading; in this method, the underlying model (in our case, SDF) is scheduled to generate a
sequence of actor invocations (provided that the model can be scheduled at compile time of-
course). A code generator then steps through this schedule and generates the machine instructions
necessary for the computation specified by each actor it encounters; these instructions are
obtained from a predefined library of actor codeblocks. We assume that the code-generator gener-
ates inline code; this is because the alternative of using subroutine calls can have unacceptable
overhead, especially if there are many small tasks. By “compile an SDF graph”, we mean exactly
the strategy described above for generating a software implementation from an SDF graph speci-
fication of the system in the block diagram environment.

A key problem that arises in this strategy is code-size explosion since if an actor appears
20 times in the schedule, then there will be 20 codeblocks in the generated code. However, for
SDF graphs, it is usually possible to generate the so-called single appearance schedules where
each actor only appears once; for these schedules, inline code-generation results in the most com-

pact code to a first approximation. However, there can be many different single appearance sched-



ules for a given SDF graph; each of these schedules will have differing buffer memory
requirements. In this paper, we consider the problem of generating single appearance schedules
that minimize the amount of buffer-memory required by the schedule for certain classes of SDF
graphs.

The predefined actor codeblock in the library can either be hand-optimized assembly lan-
guage (feasible since the actors are usually small, modular components), or it can be an impera-
tive language specification that is compiled by a compiler. As already mentioned, a compiler for
an imperative language cannot usually exploit the restrictions in the overall control flow of the
system. However, the codeblocks within an actor are usually much simpler, and may even corre-
spond to basic blocks that compilars adept at handling. Hence, compiling an SDF graph using
the methods we describe in this paper does not preclude the use of a good imperative language
compiler; we expect this hybrid approach to eventually produce code competitive to hand-written
code, as compiler technology improves. However, in this paper, we only consider the code and
buffer memory optimization possible at the SDF graph level.

This paper is organized as follows. In the next section, we develop the notation and con-
cepts for SDF graph scheduling. We develop the buffering model and show that our model is a
reasonable one. We also review a factoring transformation that is useful for reducing buffering
memory in a schedule. In Section 3, we show that for chain-structured SDF graphs, the number of
distinct valid single appearance schedules increases combinatorially with the number of actors,
and thus exhaustive evaluation is not, in a general, a feasible means to find the single appearance
schedule that minimizes the buffer memory requirement. We also develop some results in Section
3 that show that minimum buffer single appearance schedules fall into a class of schedules with a
particular structure. In Section 4, we show that the problem of finding a valid single appearance
schedule that minimizes the buffer memory requirement for a chain-structured SDF graph is sim-
ilar to the problem of most efficiently multiplying a chain of matrices, for which a cubic-time

dynamic programming algorithm exists [13]. We show that this dynamic programming technique
can be adapted to our problem to give an algorithm with time compl@xity) , Wwhere isthe

number of actors in the input chain-structured SDF graph.

In Section 5, we illustrate the relevance of our dynamic programming solution through a



practical example — a sample-rate conversion system to convert between the output of a compact
disk player and the input of a digital audio tape player. In Section 6, we discuss an alternative
solution to the problem of minimizing the buffer memory requirement over all single appearance
schedules for a chain-structured SDF graph. This is a heuristic approach whose worst-case time
complexity isO(m?) ; our experimental data suggests that this heuristic often performs quite well.

In Section 7, we discuss how the dynamic programming technique of Section 5 can be applied to
other problems in the construction of efficient looped schedules. Through Section 7 we are con-
cerned primarily with chain-structured SDF graphs. In Section 8, we prove that the buffer-minimi-
zation problem is NP-complete for acyclic SDF graphs. We discuss solutions that we have
developed for general acyclic SDF graphs, and present simulation data that demonstrates the effi-

cacy of these methods. Finally, in Section 9, we discuss closely related work of other researchers.

2 Background
|

Given an SDF edge , we denote the source actar of sobycga) and the sink actor
of a by sink(a) . We denote the number of tokens produced anto  per each invocation of
sourcqa) by produceda) , and similarly, we denote the number of tokens consumeddrom

per each invocation adink(a) bgonsume¢a) . Each edge in a general SDF graph also has
associated with it a non-negative intedelay.A unit of delay represents an initial token on an
edge. For clarity, in this paper, we will usually assume that the edges in an SDF graph all have

zero delay; however, we will explain how to extend our main techniques to handle delays.
In this paper, we focus initially on SDF graphs thatca@n-structured. An m-vertex

directed graph is chain-structured if it has- 1 edges, and there are orderings..., v,,,)
and(aq, o, ..., a,,_,) forthe vertices and edges, respectively, such thaibgach s directed

fromv, tov;,, . Figure 1 is an example of a chain-structured SDF graph. The major results that

we present for chain-structured SDF graphs can be extended to the somewhat more general class
of well-ordered graphs, but for clarity, we develop our techniques in the context of chain-struc-

tured graphs. A directed graph is well-ordered if it has only one ordering of the vertices such that



for each edge& sourcda) occurs earlier in the ordering thiak(a) . We will discuss the
extensions of our techniques to well-ordered SDF graphs in Section 7. Even though chain-struc-
tured graphs are a rather restricted class of graphs, they are useful for developing a set of results
that can be applied more generally, as we will show later.

A scheduleis a sequence of actor firings. We compile a properly-constructed SDF graph
by first constructing a finite schedule that fires each actor at least once, does not deadlock, and
produces no net change in the number of tokens queued on each buffer. When such acschedule
is repeated infinitely, we call the resulting infinite sequence of actor firvaglgperiodic
schedule or simply a “valid schedule”, and we say tlbat  islibdy of this valid schedule. Cor-
responding to each actor in the schedule bmdy , we insert a code block that is obtained from a
library of predefined actors, and the resulting sequence of code blocks is encapsulated within an
infinite loop to generate a software implementation of the valid schedule.

SDF graphs for which valid schedules exist are caltawistentgraphs. Systematic tech-
niques exist to efficiently determine whether or not a given SDF graph is consistent [21]. Also,
given a consistent SDF graph, the minimum number of times that each actor must execute in the

body of a valid schedule can be computed efficiently [21]. We represent these minimum numbers
of firings by a vectoq , indexed by the actor&Gn , and we refggto asphgtions vec-
tor of G (we often suppress the subscripGif  is understood from context). For Figure 1,
q=0q(ABCD)=(91212 97!

For example(o(2ABC)DABCDBQ2ABCD)A(2BC)(2ABC)A(2BCD)) represents
a valid schedule for Figure 1. Here, a parenthesized®85,...S,) specifies  successive fir-
ings of the “subschedule3;S,...S, , and we translate such a term into a loop in the target code.
Note that this notation naturally accommodates the representation of nested loops. We refer to

each parenthesized tefn5;S,...S,)  aschedule loophavingiteration count n anditerands

S,'S,, ..., §.We say that a schedule for an SDF grapha®ped schedulef it contains zero or

1.We adopt the convention of indexing vectors and matrices using functional notation rath-
er than subscripts or superscripts. Also, we denote the transpose of avectol by
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more schedule loops. Thus, the “looped” qualification indicates that the schedule in question may
be expressed in terms of schedule loops. Given a valid looped scBedule , we refer to each iterand
of the outermost schedule loop (the loop that has infinite iteration count)tesaad of S.

A more compact valid schedule for figure Xd4s(3(3A)(4B))(12C)(8D)) . We call this
schedule aingle appearance schedulgince it contains only one appearance of each actor. To a
good first approximation, any valid single appearance schedule gives the minimum code space
cost for in-line code generation. This approximation neglects loop overhead and other second-

order effects, such as the efficiency of data transfers between actors [4].
In general, a schedule of the fofm(q(N;)N;)(a(N,)N,)...(d(Nx)INg)) is called a
flat single appearance schedule. For the graph in figure 1, the schedule

(0(9A)(12B)(12C)(8D)) is a flat single appearance schedule.

2.1 Buffering Costs
The amount of memory required for buffering may vary greatly between different sched-

ules. We define thieuffer memory requirement of a schedulé&s , denotdalffer_memor{S)
as Z max_token&, S) , where the sum is taken over all edges ,mad _tokenf, S)

denotes the maximum number of tokens that are simultaneously queaed on  during an execution
of S. For example, the schedule(9A)(12B)(12C)(8D)) has a buffer memory requirement of
36+ 12+ 24= 72, and the schedule~(3(3A)(4B))(4(3C)(2D))) has a buffer memory
requirement ofl2+ 12+ 6= 30 .

In the model of buffering implied by our “buffer memory requirement” measure, each
buffer is mapped to a contiguous and independent block of memory. This model is convenient and
natural for code generation, and it is the model used, for example, in the SDF-based code genera-

tion environments described in [15, 23, 24]. However, perfectly valid target programs can be gen-

erated without these restrictions. For example, another model of buffering is to use a shared buffer

of sizemax({ q(N;) x producec(Ni)|1 <i<K}) which gives the maximum amount of data

transferred on any edge in operiod (one iteration of the outermost loop) of the flat single



appearance schedulge(q(N;)N;)(q(N,)N,)...(a(Nk)Ng)) , whé&e is the number of

nodes in the graph. Assuming that there are no delays on the graph edges, it can be shown that via
proper management of pointers, such a buffer suffices. For the example graph above, this would
imply a buffering requirement of 36 since on edge , 36 samples are exchanged in the schedule
(0(9A)(12B)(12C)(8D)), and this is the maximum over all arcs. Moreover, the implementation

of this schedule using a shared buffer would be much simpler than the implementation of a more
complicated nested schedule. But there are two problems with buffer-sharing that prevent its use

as the model for evaluating the buffering cost of single appearance schedules. Consider the graph

in Figure 2. The shared-buffer cost for the flat schedule for this graph is given by
max{1x 50 50x 100 10 50 # 25 = 5000. However, with a buffering model where we
have a buffer on each edge, the sche(wla(50B(2C))(4D)) requires total buffering of only

250 units. Of-course, we could attempt sharing buffers in this nested looped schedule as well, but
the implementation of such sharing could be awkward.
Consider also the effect of having delays on the arcs. In the model where we have a buffer

on every edge, having delays does not affect the ease of implementation. For example, if we intro-
duced delays on edg®C in the graph in Figure 2, then we merely augment the amount of buff-

ering required on that edge by . This is fairly straightforward to implement. On the other hand,
having delays in the shared buffer model causes complications because there is often no logical
place in the buffer to place the delays since the entire buffer might be written over by the time we

reach the actor that consumes the delays. For instance, consider the graph in figure 3. The repeti-

tions vector for this graph is given %47, 49 28 32 16))T . Suppose that we were to use the

Figure 2. Example to illustrate the inefficiency of using shared buffers.

() () —()
—>
Figure 3. Example to illustrate the difficulty of using shared buffers with delays.
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shared-buffer implementation for the flat schedule. We find that we need a buffer of size 224.
After all of the invocations oA have been fired, the first 147 locations of the buffer are filled.
SinceB writes more samples than it reads, it starts writing at locbk4®n and writes 196 sam-
ples. WhenC begins execution, it starts reading from location 148 and starts writing from loca-
tion 120 (120 = (148+196) mod 224). Actor  then writes 224 samples into the buffer.0Vhen

is invoked, it starts reading from location 120. Hence, if there were a delay o€ Bdge for

instance, the logical thing to do would be to have a buffer of size 225 (meanibg that  would start
reading from location 119) and place the delay in location 119. However, location 119 would have
been written over byA ; hence, it is not a safe location. This shows that handling delays in the
shared buffer model can be quite awkward, and would probably involve copying over data from a
“delay” buffer of some sort. Therefore, in this paper we focus mainly on the buffering model asso-
ciated with the “buffer memory requirement” measure, although, in Section 7, we present an
extension of our techniques to combine the above simple model of buffer sharing with the non-
shared model. The buffer sharing model will only be used whenever it is feasible to do so (when-
ever there are no delays, and the size of the shared buffer is lower). There are also other ways in
which sharing can be done; thoroughly combining the advantages of nested loops and these other
ways of sharing buffers is a topic for further study.

We note briefly that nested-schedules have a lower latency than flat single appearance

schedules. The latency is defined to be the time at which the sink node fires for the first time in the

schedule. In a flat schedule®(g(N;)N;)(q(N,)N,)...(a(Nx)Nk)) , the latency is given by

K-1
(Q(N))-1)T+E; + z gd(N;)E;, whereT is the sample period of the source actorEand is
i=2

the execution time of actd¥; . All these times are assumed to be in number of instruction cycles

of the processor. A nested-schedule will usually have a latency less than this because if the sink
actor is part of a nested loop body, then all of the invocations of actors upstream do not have to
occur before the sink actor fires for the first time. In section 5, we illustrate this by an example.

We will use the following definitions in this paper



* Given an SDF grapz , we denote the set of acto® in achyrs(G) , and the set of
edges inG byedgegG) .

» By asubgraphof an SDF graph, we mean the SDF graph formed by any
V O actors(G) together with the set of edgga U edgegG)|(sourcga), sink(a) O V)} . We
denote the subgraph associated with the set of a¢torssubiyrapi(V, G)

» Given a finite seP  of positive integers, we denoteybg(P) the greatest common
divisor of P — the largest positive integer that divides all membePs of

 Given a finite seZ , we denote the number of elemers in|Z|by

» Given a connected, consistent SDF gr&ph , and a sdlisetctors(G) , we define

0g(V) = ged({ qG(A)|(A 0OV)}). In [4], we show thati;(V) can be viewed as the number of

times that a periodic schedule 18r  invokes the subgraph associated with

When discussing the complexity of algorithms, we will use the star@datd , ©and
notation. A functionf (x) i9D(g(x)) if for sufficiently large f,(x) is bounded above by a pos-
itive real multiple ofg(x) . Similarly,f(x) 1€Q(g(x)) iff(x) is bounded below by a positive
real multiple ofg(x) for sufficiently large , anti{x) &(g(x)) ifitis ba@(g(X)) and
Q(g(x))-

Also, we will use a number of facts that are proved in [4]. The first fact relates the repeti-

tions vector of a connected SDF subgraph to that of an enclosing SDF graph.

Fact 1. If G is a connected, consistent SDF graph Bnd  is a connected subgf@ph of | then
for eachA 0 actors(R) ,qg(A) = gg(actors(R))ggr(A) .

The next fact is related to tif@ctoring transformation for looped schedules that was

introduced in [4]. As an example of the factoring transformation, consider the valid schedule

S, =((3(3A)(4B))(2(6C)(4D))), and observe that the iteration counts of the two loops that
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are nested in the logf2(6C)(4D)) have a common divisd of . Fact 2 guarantees that if we
“factor” this common divisor from the iteration counts of these two inner loops into the iteration
count of the enclosing loop, then the resulting schedyle,(«(3(3A)(4B))(4(3C)(2D))) IS
valid and that its buffer memory requirement does not exceed the buffer memory requirement of

the original schedule. It is easy (although a bit tedious) to verify@hat is indeed a valid sched-
ule, and we see thauffer_memor(S,) = 12+ 12+ 6= 30 , while
buffer_memoryS,) = 12+ 12+ 12= 36, and thus for this example, the factoring transforma-

tion has reduced the buffer memory requirement B

Fact 2: Suppose tha is a valid schedule for an SDF gfaph , and suppose that
L = (m(nS)(n,S,)...(nS,)) is aschedule loop i8 of any nesting depth such that

(1<i<j<k)O actorg(§) n actors(Sj) = 0. Suppose also that is any positive integer that

dividesny, n,, ..., n, ; letL’ denote the schedule Io(opn(y_lnlsl)(y_lnzsz)...(y_lnkg)) ;

and letS denote the schedule that results from repldcing LwithS in . Then
(a). S is avalid schedule f@ and
(b). buffer_memor{S') < buffer_memory B.

The factoring transformation is closely related toltdog fusiontransformation, which
has been used for decades in compilers for procedural languages to reduce memory requirements
and increase data locality [1, 26]. In compilers for procedural languages, tests for the validity of

loop fusion include analysis of array subscripts to determine whether or not for each iteration  of

the (lexically) second loop, this iteration depends only on iterafipBs..., n of the first loop
[27]. These tests are difficult to perform comprehensively due to the complexity of exact subscript
analysis [3], and due to complications such as data-dependent subscript values, conditional
branches, and input/output statements. In contrast, Fact 2 gives a simple test for the validity of the
factoring transformation that is applicable to a broad class of looped schedules, including all sin-

gle appearance schedules.
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Before we state Fact 3, we need to introduce a few more definitions.

* If A\ is either a schedule loop or a looped schedule, we saj\thatoprisne if not all
iterands ofA are schedule loops, or if all iterandd of are schedule loops, and there does not
exist an integef >1 that divides all of the iteration counts of the iteranfis of

» We say that a single appearance schefulefullysreduced if Sis coprime and every
schedule loop contained B is coprime.

For example, the schedule loofig 3A)(7B)) 4m0C) are coprime, while
(3(4A)(2B)) and(10(7C)) are not coprime; similarly, the looped sched(#e&(7B)(7C))
and(«(2A)(3B)) are coprime, while the looped schedte64AB)) (an@®AB)(3C)) are

not. From our discussion of Fact 2, we know that non-coprime schedules or loops may result in
significantly higher buffer memory requirements than their factored counterparts. It is shown in
[4] that given a valid single appearance schedule, we can repeatedly apply the factoring transfor-
mation to derive from it a valid fully reduced schedule. As a consequence, we have the following

fact.

Fact 3: Suppose tha is a consistent SDF graph&nd is a valid single appearance schedule
for G. Then there exists a valid single appearance sch&lule G for su&hthat s fully reduced

and buffer_memor{S') < buffer_memory 5.

2.2 Buffer Memory Lower Bounds

Given a consistent SDF grafh |, there is an efficiently computable upper and lower bound
on the buffer memory requirement over all valid single appearance schedules. Givenan edge in
an SDF graph, led = producede) b = consumefle) ¢ = gcd{(a B} ,ardl= delay(e)

Definition 1: Given an SDF edge , we define theéfer memory lower bound (BMLB) of e,
denotedBMLB (e) , by

_ dn(e)+d)if d<n(e) _ab
BMLB(®) =0 Gitdzane Weren® =3

12



If G = (V, E) is an SDF graph, then

EegEBMLB (e)F
is called the BMLB ofG , and a valid single appearance sche8ule Gfor that satisfies
max_tokenge, § = BMLB (e) for all e E is called @8MLB schedulefor G.
We can also prove the following theorem about the lower bound on the buffering memory
required by any valid schedule, not just a single appearance schedule. A less general version of

this result was also derived independently in [2].

Theorem 1: [6] Given an SDF edge , the lower bound on the amount of memory required by
anyschedule on the edge is givendy b—c+(d modc) dKa+b-c ,andby

otherwise.

Hence, the BMLB can be a lot greater than the lower bound for any schedule, and the lower bound
for any schedule does not provide a meaningful number for comparing against single appearance

schedules.

3 R-schedules
|

Let G be a chain-structured SDF graph with acfysA,, ..., A, and edges
a4, Ay, ..., 0,4 suchthateach is directed froly AQ,, . Inthe trivial cases 1 , we
immediately obtain(«A;) as a valid single appearance schedue for . Otherwise, given any

i0{1, 2 ...,m-1}, define
left(i) = subgrapi{{ A, A,, ..., A}, G), and

right(i) = subgrapi{{ A;; 1, A 45 ... At G) .
From Fact 1, if{©S ) and«Sg) are valid single appearance scheduléftio) rigaun¢l ) ,
respectively, therfeo(q, S )(dgSg)) is a valid single appearance schedu for , where
q. = ged({qg(Aj)|1=j<i}) andgg = ged({ag(A))|i<j=m}) .

For example, suppose th@t is the SDF graph in Figure 1 and suppo2e . It is easily
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verified thatd gy (A, B) = (3,4)" andi gy (C D) = (3,2)" . Thus,

(0§) = («(3A)(4B)) and(»Sg) = («(3C)(2D)) are valid single appearance schedules for
left(i) andright(i) , and«(3(3A)(4B))(4(3C)(2D))) is a valid single appearance schedule
for Figure 1.

We can recursively apply this procedure of decomposing a chain-structured SDF graph

into left and right subgraphs to construct a schedule. However, different sequences of choices for
i will in general lead to different schedules. For a given chain-structured SDF graph, we refer to
the set of valid single appearance schedules obtainable from this recursive scheduling process as
the set oR-schedules

We will use the following fact, which is easily verified from the definition of an R-sched-

ule.

Fact 4: Suppose thaG is a chain-structured SDF grégdtors(G)| > 1 , and
(delay(a) = 0), O(a O edgegG)) . Then a valid single appearance sche@ile Gfor is an R-
schedule if and only if every schedule Idop containe8 in  satisfies the following property:

(a). L has a single iterand, and this single iterand is an actor; thatignA) for some
n{1, 2 ...,0} and someA [1 actors(G) or

(b). L has exactly two iterands, and these two iterands are schedule loops having coprime

iteration counts; that i, = (m(n,S;)(n,S,)) ,whered{1,2 ...,0} n; ang are posi-

tive integers;gcd(ny, n,) = 1 ;and; an8, arelooped schedules.

Note that ifS is an R-schedule, ahd= (m(n,S;)(n,S,)) is a two-iterand lodp in
then (a). or (b). must also be satisfied for every schedule loop contaifre&iji and for every
schedule loop contained {m,S,) ; thus, it follows thaiS; ) ) are also R-schedules.

If a schedule loof.  satisfies condition (a) or condition (b) of Fact 4, we say that is an

R-loop; otherwise, we call aon-R-loop. Thus, a valid single appearance sche@ule is an R-
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schedule if and only if every schedule loop containefl in  is an R-loop.

Now lete, denote the number of R-schedules fonan -actor chain-structured SDF graph.

Trivially, for a 1 -actor graph there is only one schedule obtainable by the recursive scheduling

process, s@, = 1 .Fora -actor graph, there is only one edge, and thus only one choice for
i = 1. Since for & -actor grapheft(1) amdht(1) both contain only one actor, we have

€, = g, x¢g; = 1. For a3 -actor grapHeft(1) contaids actor aight(1) contains

actors, whileleft(2) contain actors anght(2) contains a single actor. Thus,

g3 = (the number of R-schedules whér= 1))
+ (the number of R-schedules whérF 2))

= (the number of R-schedules faft( ))1
x (the number of R-schedules faght( ))2

+(the number of R-schedules flaft( ))2
x (the number of R-schedules faght( ))1

= (g1 %8&y) +(g,x€q) = 2¢48,.

Continuing in this manner, we see that for each positive integer

n-1 n-1
g, = z (the number of R-schedules when= k)) = z (& X €q_1) - Q)
k=1 k=1
The sequence of positive integers generated by (1)eyith 1 is known as the set of

Catalan numbers and eaclg; is known as tie-1)  th Catalan number. Catalan numbers arise
in many problems in combinatorics; for example, the number of different binary trees with  ver-
tices is given by th@ th Catalan numbegy, . It can be shown that the sequence generated by (1)
is given by

= 1@n-20 forn=1,2 3.

e, = Jn-20 @
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where %EE a(a- 1)";61_ b+1) , and it can be shown that the expression on the right hand

side of (2) isQ(4"/n) [11].

For example, the chain-structured SDF graph in Figure 1 consists of four actors, so (2)

indicates that this graph h%%% = 5 R-schedules. The R-schedules for Figure 1 are

((3(3A)(4B))(4(3C)(2D))), («(3(3A)(4(1B)(1C)))(8D)),
((3(1(3A)(4B))(4C))(8D)), («(9A)(4(3(1B)(1C))(2D))), and
(0(9A)(4(3B)(1(3C)(2D)))); and the corresponding buffer memory requirements are, respec-
tively, 30, 37, 40, 43, and45 .
The following theorem establishes that the set of R-schedules always contains a schedule

that achieves the minimum buffer memory requirement over all valid single appearance sched-

ules.

Theorem 2: Suppose thaG is a chain-structured SDF graph;
(delay(a) = 0), O(a O edgegG)) ; andS is a valid single appearance schedul&for . Then

there exists an R-schedu®  Br such thaffer memor{S') < buffer_memory B
Proof: We prove this theorem by construction. We use the following notation here: given a sched-
ule loopL and a looped schediB8e , we defioaR(S) to be the set of non-R-Id®ps in ; we

definel (L) to be the number of iterandd.of ; we de@ije) to be the iteration cdunt of ; and

we definel (S) = Sy o).
L' O nonR(S)

First observe that all chain-structured SDF graphs are consistent so no further assumptions
are required to assure that valid schedules exissfor , and observe that from Fact 3, there exists a

valid fully reduced schedul§, fd& such thatffer_memor{S,) < buffer_memory B
Now letL, = (nT;T,...T,) be aninnermost non-R-loop$y ;thatlig, is notan R-

loop, but every loop nested iy,  is an R-loopmif=1 then sigce  is fully reduced,
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= (n(1T")), for some iterand’ , wherdT) is an R-loop. Bgt  be the schedule that
results from replacing, withnT’) i, . Thenclear, is also valid and fully reduced, and
S, generates the same invocation sequen@ as , SO

buffer_memoryS,) = buffer_memory § . Also, replacing., with(nT") reduces the number
of non-R-loops by one, and does not increase the number of iterands of any loop, and thus,
i(S) <i(sp).

If on the other handh>2 , we defi3=(1T,) Tf isanactor &)e T, otherwise

(if T, is a schedule loop). Also, T, T, ..., T

T T T
. - S/DC( Dg 10Ty 0 (0

y Ba- vaD’

m are all schedule loops, we define

wherey = gcd({ C(Ti)|(2si <m)}) , andB,, B, ..., B, are the bodies of the loops

m

T, Ts, ..., Ty, respectively; ifT,, T4, ..., T, are not all schedule loops, we define

m
S,=(1T,...T,,). LetS; be the schedule that results from replatipg  With= (nS,S,) in
S - Now, because, is fully reduced, the iteration coun,of Sgnd  must be coprime. Thus, it
is easily verified tha$, is a valid, fully reduced schedule and.tfiat is an R-loop, and with the
aid of Fact 2, it is also easily verified thatffer_memor{S,) < buffer_memory §

Finally, observe tha®, and,” are R-loops, Byt may or may not be an R-loop

(depending ori, ). Thus, replacihg  with' either reduces the number of non-R-loops by

one, or it leaves the number of non-R-loops unchanged, and we see that either
1(S) = 1(S) =1(Lg), 0ori(Sy) = 1(Sy) =1(Ly) +1(S,) - Sincel (S,)) = 1(Ly)—1<I(Ly) ,
we again conclude th&(S,) <i(S,)

Thus, fromS; , we have constructed a valid, fully reduced sch&jule  such that

buffer_memoryS,) < buffer_memory § < buffer_memorg Bandi(S,) <1(S,) -
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Clearly, if T(Sl) # 0, we can repeat the above process to obtain a valid, fully reduced sin-

gle appearance schedie  such thater_memor{S,) < buffer_memory 9 and

T(SZ) < T(Sl). Continuing in this manner, we obtain a sequence of valid single appearance sched-

ulesS,, S;, S, S;, ... such that for eac® in the sequence witld ,

buffer_memor{S) < buffer_memory 5 andIA(Q) < f(S _q1) - Sincé(So) is finite, we cannot

go on generating 's indefinitely — eventually, we will arrive aSann>0 , such that

i(S,) = 0.From Fact 4S, is an R-schedu@ED.

Theorem 2 guarantees that from within the set of R-schedules for a given chain-structured
SDF graph, we can always find a single appearance schedule that minimizes the buffer memory
requirement over all single appearance schedules; however, from (2), we know that in general, the
R-schedules are too numerous for exhaustive evaluation to be feasible. The following section pre-

sents a dynamic programming algorithm that obtains an optimal R-schedule in cubic time.

4 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer memory require-
ment for a chain-structured SDF graph can be formulated as an optimal parenthesization problem.

A familiar example of an optimal parenthesization problem is matrix chain multiplication [11,

13]. In matrix chain multiplication, we must compute the matrix probfuyd¥l,...M , assuming

that the dimensions of the matrices are compatible with one another for the specified multiplica-
tion. There are several ways in which the product can be computed. For exampie ~wih ,

one way of computing the product(isl;(M,M3))M, , where the parenthesizations indicate the
order in which the multiplies occur. Suppose tiat M,, M5, M, have dimensions

10x 1,1x 10, 10x% 3 3 x 2, respectively. It is easily verified that computing the matrix chain

product ag(M;M,)M;)M, require460 scalar multiplications, whereas computing it as

(M;(M,M3))M, requires onlyl20 multiplications (assuming that we use the standard algo-
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rithm for multiplying two matrices).
Thus, we would like to determine an optimal way of placing the parentheses so that the
total number of scalar multiplications is minimized. This can be achieved using a dynamic pro-

gramming approach. The key observation is that any optimal parenthesization splits the product

M;M,...M betweerM, anil, ., forsome intherarigek<(n-1) , and thus the cost of
this optimal parenthesization is the cost of computing the prodyiet,... M, , plus the cost of
computingM, , 1M, , »...M_ , plus the cost of multiplying these two products together. In an

optimal parenthesization, the subchaihgM,...M, bid M ,5...M, must themselves be

parenthesized optimally. Hence this problem has the optimal substructure property and is thus
amenable to a dynamic programming solution.

Determining the optimal R-schedule for a chain-structured SDF graph is similar to the
matrix chain multiplication problem. Recall the example of Figure 1. Here
g(A B, C D) = (9 12 12 8T; an optimal R-schedule {80(3(3A)(4B))(4(3C)(2D))) ;and
the associated buffer memory requiremer@ds . Therefore, as in the matrix chain multiplication
case, the optimal parenthesization (of the schedule body) contains a break in the chain at some

k{12 ...,(n=1)}. Because the parenthesization is optimal, the chains to the keft of and to

the right ofk must both be parenthesized optimally. Thus, we have the optimal substructure prop-
erty.

Now given a chain-structured SDF grah  consisting of a&tgré., ..., A, and edges
a4, 0, ..., 0,_4,suchthateach, isdirected froly Ap,,; ,giveninteggrs inthe range

1<i<j<n,denote byb[i, j] the minimum buffer memory requirement over all R-schedules

for subgrapti{{ A;, A;; 1, .., Aj}, G). Then, the minimum buffer memory requirement over all

R-schedules fo6 id[1,n] .lH<i<j<n |, then,

bli, j1 = min({(b[i,k] +b[k+1, j] +¢; ;[KD)|(i <k <])}), ®3)
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whereb[i,i] = 0 foralli ,andc; j [K] is the memory cost at the split if we split the cha&ip at

It is given by

dg(Ay) produceda,)
ged({ag(Am)|(isms<j)})’

¢, [kl = ()

Thegcdterm in the denominator arises because from Fact 1, the repetitionsg/ector  of

qG(Ap)

ged{ag(An[G=m=pp O

subgrapi{{ A, Aj 1, ..., Aj}, G) satisfiesq'(A,) =

pO{ii+1, .., j}.
A dynamic programming algorithm derived from the above formulation is specified in

Figure 4. In this algorithm, first the quantiggd({ qG(Am)|(i <m<j)})  is computed for each

subchainA;, A, 4, ..., A; . Then the two-actor subchains are examined, and the buffer memory

requirements for these subchains are recorded. This information is then used to determine the
minimum buffer memory requirement and the location of the split that achieves this minimum for

each three-actor subchain. The minimum buffer memory requirement for each three-actor sub-

chainA;, A, 1, A, isstoredinentryi,i +2]  of the arr@ubcosts , and the index of the edge

corresponding to the split is stored in enfryi + 2] of @pditPositions array. This data is then
examined to determine the minimum buffer memory requirement for each four-actor subchain,
and so on, until the minimum buffer memory requirement fonthe -actor subchain, which is the
original graphG , is determined. At this point, proced@mnvertSplits is called to recursively
construct an optimal R-schedule from a top-down traversal of the optimal split positions stored in
the SplitPositions array.

Assuming that the componentsgf  are bounded, which makgsditemputations

elementary operations, it is easily verified that the time complexi8cbéduleChainGraph is
dominated by the time required for the innernfostioop — the for

i =0,1, ..., chain_size- 2loop — and the running time of one iteration of this loop is bounded
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procedure ScheduleChainGraph
input: a chain-structured SDF graph G consisting of actors A;, A,, ..., A

and edges a4, d,, ..., 0,,_; such that each qa; is directed from A; to A, , ;.

output: an R-schedule body for G that minimizes the buffer memory requirement.

fori =1,2..,n /* Compute the gcd's of all subchains */
GCD[i,i] = ag(A)
for j = (+1),(i+2),..,n
GCDO[i, j] = ged({ GCO[i, j —1], ag(A)})

for i = 1,2 ...,n Subcostpi,i] = 0;
for chain_size= 2 3...,n
for right = chain_size chain_size , 1., n
left = right—chain_size+ 1
min_cost= o ;
fori =0,1,...,chain_size- 2
split_cost= (qg(As + i)/ GCD[ left, right]) x produced o g 1 ;) 5
total_cost= split_ cost Subcofts left left] + Subcostp lefti + 1, right] ;
if (total_cosk min_cost
split = i; min_cost= total cost
SubcostE left right = min_cost SplitPosition$ left right = split;
output ConvertSplit§ 1n); /* Convert the SplitPositionsarray into an R-schedule */

procedure ConvertSplits(L, R)

implicit inputs: the SDF graph G and the GCD and SplitPositionsarrays

of procedure ScheduleChainGraph

explicit inputs: positive integers L and R such that 1<L <R< n = |actor§(G)| .
output: An R-schedule body for subgrapi{{ A, A, 1, ---» Ag}, G) that minimizes
the buffer memory requirement.

if (L=R) output A_

else
s = SplitPosition$L, R]; i, = GCD[L, L +s]/GCD[L, R] ;

ir = GCD[L +s+1,R]/GCD[L, R];
output (i, ConvertSplit¢L, L + s))(igConvertSplit§L + s+ 1, R)) ;

Figure 4. Procedure to implement the dynamic programming algorithm.
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by a constant that is independentnof . Thus, the following theorem guarantees that under our
assumptions, the running time $€heduleChainGraph (D{n3) a@dn3)

Theorem 3: The total number of iterations of ther( i = O, 1, ..., chain_size- 2 loop that are
carried out inScheduIeChainGraphisO(n3) and)(nB)

Proof: This is straightforward; see [4] for the derivation.

5 Example: Sample Rate Conversion

Digital audio tape (DAT) technology operates at a sampling ra48 of  kHz, while com-

pact disk (CD) players operate at a sampling ra#iat kHz. Interfacing the two, for example,
to record a CD onto a digital tape, requires a sample rate conversion.
The naive way to do this is shown in Figure 5(a). It is more efficient to perform the rate

change in stages. Rate conversion ratios are chosen by examining the prime factors of the two
: : 2,222 adss .
sampling rates. The prime factors43,100  a8000 218577 a5 , respectively.

Thus, the ratiai4,100: 48,000 ig'7?: 2°5 ,0t47: 160 . One way to perform this conversion

in four stages i2:1 4:3 4:7 ,anbl: 7 . Figure 5(b) shows the multistage implementation.

Explicit upsamplers and downsamplers are omitted, and it is assumed that the FIR filters are gen-

CD — FIR DAT
160 147
(@)
1 1 2 3 2 7,8 7 5 1
S e O O O O o I
CD DAT
(b)

Figure 5.  (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate system.
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eral polyphase filters [9].

Hereq(A B, C D E F = (147, 147 98 28 32 1@6 ; the optimal looped schedule
given by our dynamic programming approacke7(7( 3AB)(2C))(4D))(32E(5F))) ; and the
associated buffer memory requiremen2@! . In contrast, the alternative schedule
(0(147A)(147B)(98C)(28D)(32E)(160F)) has a buffer memory requirementkfi2l ifa
separate buffer is used for each edge and a buffer-memory requirer2dt of if one shared
buffer is used. This is an important savings with regard to current technology: a buffer memory
requirement o264 will fit in the on-chip memory of most existing programmable digital signal
processors, while a buffer memory requiremerit @1 is too high for all programmable digital
signal processors, except for a small number of the most expensive ones. The s&80ngs of
(10%) over using a single shared buffer can also be significant on chips that only have on the
order of 1000 words of memory. It can be verified that the latency of the optimally nested sched-

ule is given byl46T + E, + Eg + 2E- +4E +E , as opposed to
146T + E, + 147Eg + 98E + 28E + 32E for the flat schedule. If we take = 500  (for

example, a 22.05Mhz chip has 22.05Mhz/44.1khz = 500 instruction cycles in one sample period
of the CD actor), an, = 10, Eg = E. = E; = Eg =100 , then the two latencies are 73810 and

103510 instruction cycles; the nested schedule has 29% less latency.

One more advantage that a nested schedule can have over the flat schedule with shared
buffering is in the amount afput bufferingrequired. Some DSP chips have a feature where a
dedicated I/O manager can write incoming samples to a buffer in on-chip memory, the size of
which can be programmed by the user. If the single appearance schedule spans more than one
sample period, then input buffering is a useful feature since it avoids the need for interrupts. Chips
that have input buffering include the Analog Devices ADSP 2100. If we compute the amount of
input buffering required by the flat schedule, we find that it is

((147+ 98+ 28+ 32100+ 160x 10/500065, whereas for the optimally nested schedule, it
is given by(100+ 200+ 400+ 3200 16Q@5000111 .
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6 An Efficient Heuristic

Our dynamic programming solution for chain-structured graphs ru@gin) time,

wherem is the number of actors. As a quicker alternative solution, we developed a more time-
efficient heuristic approach. The heuristic is simply to introduce the parenthesization on the edge
where the minimum amount of data is transferred. This is done recursively for each of the two

halves that result. The running time of the heuristic is given by the recurrence
T(n) = T(n=K +T(k) +O(n), )

wherek is the actor at which the split occurs. This is because we must compaiahihe rep-
etitions vector components of the actors to the left of the split, amgtdlod the repetitions of

then—k actors to the right. This tak€X n) time assuming that the repetitions vector compo-

nents are bounded. Computing the minimum of the data transfers takes a@(nther time since
there areO(n) edges to consider. The worst case solution to this recurr@{ecg)is , but the
average case running time@gne log n)  kif= Q(n) . It can be verified that this heuristic gives

the R-schedule with the minimum buffer memory requiremen{3(3A)(4B))(4(3C)(2D))) ,
for Figure 1.

We have evaluated the heuristict® 000  randomly genetfied -actor chain-structured
SDF graphs, and we have found that on average, it yields a buffer memory requirement that is
within 60% of the optimal cost. For each random graph, we also compared the heuristic’s solu-
tion to the worst-case schedule and to a randomly-generated R-schedule. On average, the worst-
case schedule had ov@®00 times higher cost than the heuristic’s solution, and the random
schedule ha@25 times higher cost. Furthermore, the heuristic outperformed the random sched-
ule on97.8 percent of the trials. We also note that in over 99% of the randomly generated 50-
actor chain-structured SDF graphs, the shared-buffer cost for the flat single appearance schedule

was worse than the cost of the nested schedule given by the heuristic. Unfortunately, the heuristic

does not perform well on the example of Figure 5 — it achieves a buffer memory requirement of
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565, which is over double of what is required by an optimum R-schedule. In comparison, the

worst R-schedule for Figure 5 has a buffer memory requiremétisof . Note that this heuristic is
not limited to chain-structured graphs; it can be used in place of the exact dynamic programming
algorithm wherever the dynamic programming algorithm is used as a post-optimization step (this

will be explained in the next few sections).

7 Extensions

In this section we present three useful extensions of the dynamic programming solution
developed in Section 4. First, the algorithm can easily be adapted to optimally handle chain-struc-

tured graphs that have delays on one or more of the edges. This requires that we modify the com-

putation of ¢; J- [K] , the amount of memory required to split the subdkail , 4, ..., A

between the actord, amj ,, . This cost now gets computed as

ci j[K] = %qG(Ak)producec(ak)+ delay(a,), wherer = gcd({ag(Ay)|(ism<))}) ,if

delay(a,) < %qG(Ak) produceda,) ; otherwise (ifdelay(a,) > %qG(Ak) produceda,) ),

Ci | [k] gets computed arsyj[k] = delay(a,) . Accordingly, if the optimum split extracted in a

given invocation ofConvertSplitgFigure 4) corresponds to a split in which the latter condition

applied in the computation af; j [k] ,th€onvertSplitgeturns
(igConvertSplit§L + s + 1, R))(i, ConvertSplit§L, L +s)) ; otherwise ConvertSplitseturns
(i, ConvertSplit§L, L + s))(igConvertSplit§L + s+ 1, R)), as in the original version. This requires a

method for keeping track of which condition applies to each of the optimum subchain splits,
which can easily be incorporated, for example, by varying the sign of the associated entry in the
SplitPositionsarray.

Second, as mentioned in Section 1, the technique applies to the more general class of well-
ordered SDF graphs. A well-ordered graph is one where the partial order is a total order; chain-

structured graphs are a special case of these. Again, this requires modifying the computation of
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Cij [k] . Here, this cost gets computed as

dg(Ay) produceda,)

Tkl = a Lk - - ,
%l = ged{agA T =m= DD

(6)

where

S,k ={Bl(sourceP) TU{ AA 1. Ad)
and (Sink(B) O{ Acs 1 Ay 21 - AP}

thatis,§ ; , is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Section 4 can also be applied to reducing the
buffer memory requirement of a given single appearance schedule for an arbitrary acyclic SDF
graph (not necessarily chain-structured or well-ordered). To explain this extension, we need to

define the concept oftapological sort A topological sort of a directed acyclic graph consisting

of the set of vertice¥  and the set of edges is an ordeyjng, ..., v, of the memWers of

such that for eack 0 E ((sourcge) = y) and (sink(e) = vj)) O (i<j) ;thatis, the source
vertex of each edge occurs earlier in the ordering than the sink vertex.
Suppose we are given a valid single appearance schedule for an acyclic SDF graph and

again for simplicity, assume that the edges in the graph contain no deldy.+e8,, B,, ..., B,

denote the sequence of lexical actor appearances in  (for example, for the schedule
(0(4A(2FD))C),W¥ = A, F, D, C). Thus, since&s is a single appearance schedule, must be
a topological sort of the associated acyclic SDF graph. The technique of Section 4 can easily be
modified to optimally “re-parenthesiz& into the optimal single appearance schedule (with
regard to buffer memory requirement) associated with the topologicalsort . The technique is

applied to the sequenég , with j [K] computed as in (6). It can be shown that the algorithm

runs in timeO(|V|3) , wher¢v| is the number of nodes in the graph.

Thus, given any topological so#l!  for a consistent acyclic SDF graph, we can efficiently

determine the single appearance schedule that minimizes the buffer memory requirement over all
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valid single appearance schedules for which the sequence of lexical actor appeatdhtes is
Another extension applies when we relax the assumption that each edge is mapped to a

separate block of memory, and allow buffers to be overlaid in the same block of memory. There

are several ways in which buffers can be overlaid; the simplest is to have one memory segment of

size

_ max({ produceda,) x q( A)|(isk<j)})
7 ged({ a(A), a(Ai 1), - A(A)})

C3 (7)

for the subchaid, A , 1, ..., A,

] (as explained in Section 2.1). We follow this computation with

b'[i, j] = min({b[i, j],C ;}), (8)

to determine amount of memory to use for buffering in the subéhah , ;, ..., A,

. In general,
this gives us a combination of overlaid and non-overlaid buffers for different sub-chains. Incorpo-
rating the techniques of this section with more general overlaying schemes is a topic for future
work.

Finally, the dynamic programming algorithm can be applied to arbitrary acyclic graphs with

delays; we refer the reader to [7].

8 Acyclic SDF Graphs

|
Consistent acyclic SDF graphs are guaranteed to have single appearance schedules since a

flat schedule corresponding to any topological sort is a valid single appearance schedule. For arbi-
trary graphs (not necessarily acyclic), necessary and sufficient conditions are given in [4] for sin-
gle appearance schedules to exist, and efficient algorithms are given to find such schedules
whenever they exist. These techniques require decomposing each strongly connected component
into an acyclic graph that consistsotidisters or supernodes, of smaller strongly connected com-
ponents, constructing a single appearance schedule for this acyclic graph, and then recursively
applying this procedure to each of the clustered strongly connected components to obtain the sub-

schedule for the corresponding supernode. For each decomposed strongly connected component,
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there is a “top-level” cost associated with the edges that are not contained in any of the associated
clusters, and thus the total buffering cost of a general SDF graph involves the top-level cost for
each strongly connected component in the cluster hierarchy, in addition to the buffering cost for
each acyclic graph that occurs in the hierarchy. Furthermore, to attain the lowest buffering cost, it
may be necessary to increase the extent of some strongly connected components by clustering
neighboring actors together with actors in the strongly connected components before decompos-
ing the components [4]. Hence, graphs with cycles are significantly more difficult to construct
buffer-optimal single appearance schedules for than acyclic graphs.

The number of topological sorts in an acyclic graph can be exponential in the size of the
graph; for example, a complete bipartite graph \Zith nodeq hijs possible topological
sorts. Each topological sort gives a valid flat single appearance schedule. An optimal reparenthe-
sization of this schedule is then computed by applying the dynamic programming algorithm. The
problem is therefore to determine the topological sort that will give the lowest buffer memory

requirement when nested optimally. For example, the graph in Figure 6 shows a bipartite graph
with 4 nodes. The repetitions vector for the graph is give(lBy36 9 16T , and there are 4
possible topological sorts for the graph. The flat schedule corresponding to the topological sort
ABCD is given by(«(12A)(36B)(9C)(16D)) . This can be parenthesized as
(0(3(4A)(3(4B)C))(16D)), and this schedule has a buffer memory requirement of 208. The
flat schedule corresponding to the topological 868D C , when parenthesized optimally, gives

the schedulé~(4(3A)(9B)(4D))(9C)) , with a buffer memory requirement of 120.

Figure 6. A bipartite SDF graph to illustrate the different buffer
memory requirements possible with different topological sorts.
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8.1 Complexity

Here we show that the problem of constructing buffer-optimal single appearance schedules
for acyclic graphs with delays is NP-complete in general. In fact, we prove the result for
homogenous SDF (HSDF) graphs (these are graphs where each actor produces and consumes 1
token). Since any schedule for an HSDF graph is a single appearance schedule, it follows that the
problem for general acyclic SDF graphs, with delays allowed on edges, is also NP-complete. It also
follows that computing a minimum buffer schedule for an arbitrary acyclic SDF graph with delays
allowed, without the single appearance restriction is also NP-complete. Finally, cyclic graphs are
an even more general case, so both the single appearance and non-single appearance, buffer
minimal scheduling problems for HSDF and SDF graphs are NP-complete. The only remaining
interesting class of graphs is the set of delayless acyclic (but not well-ordered) SDF graphs (not
homogenous). For this class, the complexity of the minimum buffer scheduling problems remains

open.
Definition 1: The AHSDF MIN BUFFER problem is the following

Instance An acyclic, directed grapls = (V, A) where every edge has 0 or 1 delays, and an

integerK .

Question Is there a schedule f@ that has a total buffering memory requiremiittoK or

less?

Remark: Note that since we have a buffer on every arc, the buffering memory requirement has to

be at leastA|
Definition 2: The vertex cover (VC) problem is the following:

Instance An undirected grapis' = (V', A') , and inteder
Question Is there a subsa&t" O V' |, willV"| <k , such that covers every edge; that is, for
every edggu, v) 0 A , at least onewfv  is\i  ?

Remark: For an undirected graph, (i, v)  is an edge, s(vjsi)
Theorem 4: VC is NP-complete [12].

Theorem 5: AHSDF MIN BUFFER is NP-complete.
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Proof: Membership in NP is easy to see since we just have to simulate the schedule to see if the
buffering requirement is met; this can be done in linear time since the schedule haf/ength
Completeness follows from a reduction of vertex cover. From an arbitrary in§&karcégV', A") ,
k, of the VC problem, we construct the instaie= (V, A) of AHSDF MIN BUFFER as
follows. LetV = {vy, vy : vOV'} . LetA; = {(vy,Vvp) :vO VY,
Ay = {(vpywp) s (vW)OA}, A= Aj0A;,andK = k . Each edge iA; has one delay, and
each edge i\, has O delays. We refer to a vertex of thefprm  as a “0” vertex and to a vertex
of the formv, as a “1” vertex. Clearly, this is an instance of AHSDF MIN BUFFER; the graph is
acyclic because all edges are directed from a “1” vertex to a “0” vertex. We claim that this
instance of AHSDF MIN BUFFER has a solution iff the VC instance has a solution.

Suppose that there is a solution  to the VC instancalLet be the set of edges defined as
W = { (v, Vvg) : vO U} . Note thatW O A, . Delete these edges frGm , reverse the rest of the
edges inA; , and remove the delays from them to get the @aph . GBarly is delayless. We
claim that it is also acyclic. Suppose that it were not acyclic. Then there would be a directed cycle
of the formu! -~ u? -~ ... -~ u™ - ul InG" . Without loss in generality, assume tirat= v,
for someyv, . A “0” vertex of this type can only have an outgoing edge directed to thewertex  in
G"; hence,u? = v, . A “1” vertex can only have an outgoing edge to some “0” vertex; hence,
ud = w, for somew, . Continuing this argument, it can be seen that the length of the cycle has to
be even, and that there arg’2 ~ “0” vertices and for each such wgrtex , s also in the cycle.
None of these verticeas can beldn  since all edges of the(form,) were delatedidr in
and only the remaining edges (frofp ) were reversed to yield edges of th¢\vfpnm) . But
since(v4, Wy) is an edge in the above cycle, it follows (vaw) Isan ed@e in , but it is not
covered byU . Hencd) cannot be a solution to the VC instance, giving us a contradiction. Now,
sinceG" is acyclic and delayless, it has a valid schedule. This schedule is also a valid schedule for
G since it respects all the precedence constraints of the delayless@rcs in . On all arcs that were
reversed, the sink actor in the original gr&gph  is a source ad®rin ; hence, on all these arcs, the
buffer size is 1 inG . For the deleted arcs, we could have the source actor firing before the sink
actor, and on these arcs the buffer size would be 2. Since there are kit most  deleted arcs, the total

buffering requirement is at mogk| + K
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Now suppose that the AHSDF MIN BUFFER instance has a schedule with buffering
requirement of at mos$#\| + K . This means that there are atlost  arcs that have delays where
the source actor of the arc is fired before the sink actor in the schedule; denote this set of arcs by
W. For all other arcs that have delays, the sink actor fires before the source actor. Since any arc
with a delay inG is of the fornfv,,v,) , letthe st be definedlas {v: (vy, V) O W}
Clearly,|U| = |W| < K. We claim thall is a vertex cover 8¢ . Indeed, suppose it were not.
Then there would be an edge w) @ where neithev i$in . This means that neither of
(V4: Vp)s (Wyq, Wy) isinW. This means that in the schedule@rv, , fires before wgnd  fires
beforew, . But sincév, w) is an edge @ (v, Wy) afwd,, vy) are delayless edggs in
meaning that; must fire beforg, ,amg  must fire befgre  in any valid schedule. Putting
this together, we see that we have a cyclic dependencyv, — Wy - W; - V, that cannot
possibly be respected by the schedule, thereby contradicting our assumption that/the set is not

a vertex covem

8.2 A Heuristic: RPMC

A heuristic solution for this problem can be based on extending the main idea that was
used in the heuristic for the chain-structured graph case: firitfee partition of the set of
actors) of the graph across which the minimum amount of data is transferred and schedule the
resulting halves recursively. The cut that is produced must have the property that all edges that
cross the cut have the same direction. This is to ensure that we can schedule all nodes on the left
side of the partition before scheduling any on the right side. In addition, we would also like to
impose the constraint that the partition that results be fairly evenly sized. This is to increase the
possibility of having gcd’s that are greater than unity for the repetitions of the nodes in the subsets
produced by the patrtition, thus reducing the buffer memory requirement. To see that having gcd’s
greater than one for the subsets produced is beneficial to memory reduction, consider figure 6. If
we formed the partition that had act®r on one side of the cut and Actor® on the other
side of the cut, we get the loop bod(&€B) 4(M2A)(9C)(16D)) and do not immediately

see a reduction in buffering requirements since the repetitiohs@fD are co-prime. However,

a partition withA, B, C on the same side of the cut immediately gives us a reduction since the

31



schedule body(12A)(36B)(9C)) can be factored(8§4A)(12B)(3C)) , and this reduces the

memory for the subgraph consisting of actar®, C . In general, by constraining the sizes of the
partition, we increase the probability of being able to factor schedule bodies so that a reduction in
memory is obtained in each stage of the recursion. Needless to say, this is a greedy approach

which is likely to fail sometimes but has proved to be a good rule of thumb for most instances.

8.3 A Heuristic to find Minimum Legal Cuts into Bounded Sets

Suppose thaG is an SDF graph, andMet actors(G) Brd edgegG) . Acut
is a partition of the vertex sst  into two disjoint Séfs  ¥pd . Dé&ine= subgrapt{V,)
andGg = subgrapl{Vg) to be the subgraphs produced by the cut. The legfakf for all
edgese crossingthe cut (that is all edges that are not containesuisgrapt{V, ) nor
subgraphi{Vg) ), we havesourcge) O | andgink(e) 0 Vg . Givenlunding constant

K <|V|, the cut results in bounded sets if it satisfies
VR =K, |V | =K. 9)
The weight of an edge is defined as
w(e) = qg(sourcge)) x producede). (20)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then is to
find the minimum weight legal cut into bounded sets for the graph with the weights defined as in
(20). Since the related problem of finding a minimum cut (not necessarily legal) into bounded sets
is NP-complete [12], and the problem of finding an acyclic partition of a graph is NP-complete
[12], we believe this problem to be NP-complete as well even though we have not discovered a
proof. Kernighan and Lin [16] devised a heuristic procedure for computing cuts into bounded sets
but they considered only undirected graphs. Methods based on network flows [11] do not work
because the minimum cut given by the max-flow-min-cut theorem may not be legal and may not

be bounded. The graph in Figure 7, where the weight on the edge denotes the capacity of that
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edge, illustrates this. The maximum flow into vertex is seen ® be (1 unit of flow along the
pathsBCt, 1 unit alongADt and 1 unit alos@Dt ) and this corresponds to the cut where

V. ={s B C andVi = {A D, t} . The value of the cutis givenby 1+ 1 = 3 (note that
the definition of the value of a cut in network flow theory is defined as sum of the capacities of the
edges crossing the cut intee tto direction only) but the cut is not legal because of the reverse
edge fromA toC . Indeed, the minimum weight legal cut for this graph has a valde of , corre-
sponding to the cut wheNg, = {s}

Therefore, we give a heuristic solution for finding legal minimum cuts into bounded sets.

The heuristic is to examine the set of cuts produced by taking a vertex and alestgadantas

the vertex seV; and the set of cuts produced by taking a vertex and adlrafattorsas the set
V| . For each such cut, an optimization step is applied that attempts to improve the cost of the cut.

A vertexv is defined to bedescendantof a vertexu if there is a directed path from vto and
a vertexv is ancestorof vertexu if there is a directed path fram uo . A vertex intepen-
dent of v if u is neither a descendant nor an ancestar of . Define the set of ancestors as
ancg V) = {v}[]ancestor§ ¥, and descendants desd y = {v} [ ]descendanfs)v ,and

consider a cut produced by settvg = ancq J), Vg = V\V, for some vartex . Consider the
setT(v) of independenboundarynodes ofv iV . Aboundary node inVy is a node that is

not the predecessor of any other nod¥jin . Following Kernighan and Lin [16], for each of these

Minimum
cut

Figure 7. The min-cut given by the max-flow-min-cut
theorem is not equal to the min-legal cut for this graph.

33



procedure MinimumLegalCutintoBoundedSets
input : weighted digraph G = (V, A), and a bound b. output : Vg, V| .
for eachu 0V

S= des¢ ¥, S= WS

cutval= cu(S $

T, (u) — independent YN boundary $

for each a0 T  (u)

E(a) = g w(a, X)
xS
l(a) = Z w(X, a)

xO$S

D(a) = I(a)—E(a) /* Cost difference if this vertex is moved over */
end for
[D, Idx] < sort(D)
k<1
while (|§ < b& D(k) <0 & k<|T(u)])

S« g1{ I1dX &}

S « S\ {1dx(k)}

cutvVal —« cutvak O K

kK« k+1
end while
minCutVal— mirf minCutVal cutVal

if (mincutvVal= cutva), V| « S Vi « S, endif
P=anc{y),P=V\P

Tr(u) — independent yN boundary B

for each a ] Tg(u)

E(a) = g w(x a)
xUP

l(a) = Z w(a, X)
xOP
D(a) = I(a)—E(a)
end for

[* Carry out the same type of steps as above to determine the partition */
end for

= minCutVal| \{,V correspond to the minimum legal cut. */

Figure 8. Algorithm for finding minimum legal cuts into bounded sets.
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nodes, we can compute the cost difference that results if the node is mowéd into . This cost dif-
ference for anoda ifig(v) is defined to be the difference between the total weight of all the

arcs out ofa and the total weight of all arcs iato . We then move those nodes across that reduce
the cost. We apply this optimization step for all cuts of the fanuq V) darrstf for each

vertexv in the graph and take the best one as the minimum cut. The algorithm is shown in Figure
8. Since a greedy strategy is being used to move nodes across, and only the boundary nodes are

considered, examples can be constructed where the heuristic will not give optimal cuts. Since
there ardV| nodes in the grag@y| cuts are examined. Moreover, the cut produced will have
bounded sets since cuts that produce unbounded sets are discarded. For example, one of the cuts
examined by the heuristic for the graph in Figure 7, with bounding conétantV| — 1 S

ancy A = {s, A}. This cut has a value of 30. The set of independent, boundary no#les of in

Vg is{B} , and the cost difference f8r isgivenby—10= 1 .Her®e, will not be moved
over. The cut produced by consideriagc Q = {s, A B G has a value of 12. The cost dif-
ference for the independent vertex is giverlBy- 11 = -1 , heDce, is moveW into to

yield a cut of value 11, and thus, in this example, the heuristic finds the minimum weight legal cut.

Delays on arcs are handled as follows. If the number of dBlays on some arc satisfies

D = g (sourcege)) x producede), (1)

then the size of the buffer on this arc need not be any greatddthan . However, if crosses the
cut, then the size of the buffer will becorer q;(sourcege)) x producede) . Hence, an arc
that hasD delays, whei2 satisfies equation Iagped a tagged arc does not affect the legal-

ity of the cut (in other words, the heuristic ignores tagged arcs when it constructs the legal cut) but

affects the cost of the cut: if a tagged arc crosses the cut in the reverse direction, the cost of the arc
is given byD , and if the tagged arc crosses the cut in the forward direction, the cost is given by
D + gg(sourcege)) x producede) . This will discourage the heuristic is choosing partitions

where tagged arcs cross the cut in the forward direction.
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The running time of the heuristic for computing the legal minimum cut into bounded sets

can be determined as follows. Computing the descendents or ancestors of a vertex can be done by
using breadth-first-search; this takes ti@gV| + |E|) . The breadth-first-search will also give us
the independent nodes in the complement set. Finding and computing the cost difference for each
of the boundary nodes in the set of independent nodes takes & (i3t steps. Sorting the cost
differences take®(|V| * log(|V|)) steps at most, and moving the nodes that reduce the cost takes
O(]V|) time at most. Since a cut is determined for every vertex twice, the total running time is
O(IVIIE +[ M2+ log(|V])).

The heuristic for generating an schedule for the acyclic graph now proceeds by partition-

ing the graph by computing the legal minimum cut and forming the schedul€ &y (r ;Sg)
wherer, = gcd({q(V|vOV,}) ,rg = gcd({q(V|vO Vg}) ands,S; are schedule bodies
for G, andGg respectively. The schedule bodisS, are obtained recursively by partitioning
G, andGg, . Once the entire schedule body has been constructed, the dynamic programming

algorithm is run to re-parenthesize the schedule to possibly give a better nesting.r_ett|ij ,
the running time for this heuristic can be determined by solving the recurrence

T(n) = T(n=K +T(k) +O(n|g + ré« log(n)), wherek = |V | and—k = |Vq . Ifwe

choose the bound in (9) to be a constant factor of the graph size, for example, 3/4, then it can be

shown easily thaT(n) = O(|V||§ + M2« log(]V])) . If we do not bound the size of the sets to

be a constant factor of the graph size, then the worst case running time is

O(|VI2|E| + V|3« log(|V])) . The reparenthesizing step that is run at the end uses the dynamic
programming algorithm and requir€x|V/|3) running time. Thus the overall running time is
given by O(|V|3) .

8.4 Experimental Results

The heuristic was tested on hundreds of randomly generated 50 vertex SDF graphs. The

random graphs were sparse, havi§ edges on average. The numbers produced and consumed
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on the arcs were restricted to be less than or equal to 10 in order to prevent huge rate changes (and
thus, repetitions vectors) from occurring. The bounding congtant 3(|V|/4) was used in the
heuristic for generating legal minimum cuts into bounded sets; other bounds gave inferior results.
The costs given by the heuristic were compared to the best cost determined by just constructing a
number of random topological sorts, and nesting each optimally to determine the cost (we call this

a random schedule). Since a random topological sort can be found in linear time, the time to deter-

mine a random schedule that has been nested optimally is give(|\6i?) . A measurement of
the actual running time of the heuristic on a 50 node graph shows that we can construct and exam-
ine 2 random schedules in approximately the same time that the heuristic takes to construct its
schedule (including the dynamic programming post-optimization step). Hence, a fair comparison
is to pick the better of 2 random schedules and compare it to the heuristic answer. We also tested
the heuristic against another heuristic described in detail in [8], outlined below.

One of the earliest techniques for jointly optimizing both code and data requirements for
SDF graphs was the PGANdirwise grouping of adjacent nodespproach [5]. This approach,
which was devised for general SDF graphs (not necessarily acyclic), involves constructing a clus-
ter hierarchy by clustering two vertices at each clustering step. The cluster selection is based on
frequency of occurrence — the pair of adjacent actors is selected whose associated subgraph has
the highest repetition count. In [5] it is shown that the approach naturally favors nested loops over
“flat” hierarchies, and thus reduces the buffer memory requirement over flat schedules. We have
evaluated the APGAN heuristic [8] (which is an efficient implementation of PGAN for acyclic
graphs) against RPMC and randomly generated schedules. In each case, the dynamic program-
ming extension of Section 7 was applied as a post-processing step to optimally reparenthesize the
APGAN schedule. Timing measurements show that the running time of APGAN and dynamic
programming is also equivalent to constructing 2 random schedules. Table 1 summarizes the per-
formance of these heuristics, both against each other, and against randomly generated schedules.
As can be seen, RPMC outperforms APGAN on these random graphs almost two-thirds of the
time. The comparison against 4 random schedules shows that in general, the relative performance
of these heuristics goes down if a large number of random schedules are inspected. Of course, this

also entails a proportionate increase in running time. However, we observed that even when the
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Table 1: Performance of the two heuristics on random graphs.

RPMC < APGAN 63%
APGAN < RPMC 37%
RPMC < min(2 random) 83%
APGAN < min(2 random) 68%
RPMC < min(4 random) 75%
APGAN < min(4 random) 61%
min(RPMC,APGAN) < min(4 random) 87%
RPMC < APGAN by more than 10% 45%
RPMC < APGAN by more than 20% 35%
APGAN < RPMC by more than 10% 23%
APGAN < RPMC by more than 20% 14%

heuristic produces schedules worse than randomly constructed ones, it is still very close to the
best random schedule, whereas the random schedules can produce very bad schedules. Hence, the
heuristic gives good schedules almost all the time, even if slightly better ones could be con-
structed by examining a large number of random schedules. It should be noted that APGAN is
optimal for a class of acyclic SDF graphs that includes many practical systems; this optimality
result can be found in [8]. The study in [8] and the study done here allows us to conclude that
APGAN and RPMC are complimentary heuristics; RPMC performs well when the graphs have
irregular topologies and irregular rate changes, while APGAN performs well on graphs with more
regular structures and rate changes. A more extensive experimental survey can also be found in
[6]. All of the algorithms developed in this paper have been implemented in the Ptolemy environ-
ment [10].

8.5 An Example for Acyclic Graphs

Figure 9 shows the implementation of a non-uniform, near-perfect reconstruction filter-
bank in Ptolemy. The lowpass filters retain 2/3 of the spectrum while the highpass filters retain 1/
3 (instead of the customary 1/2,1/2 for the octave QMF). Rate changes in the graph are annotated
wherever the number produced or consumed is different from unity. The gain actors on the limbs

between the analysis and synthesis sections enable the use of the filterbank as a simple 4-channel
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equalizer. The repetitions vector of this graph is given by

q=1[27,2799186 69 12,6,9,4,4,6,8 4,4 4,12 6 6 9,18 9 27 27.2he heu-

ristic, when run on this graph, obtains a schedule with a buffering cost of 100; the worst case flat
schedule (for any topological sort) would have a buffering cost of 438. The best schedule obtained
by examining 30 random topological sorts had a cost of 125 for this graph and the best schedule
obtained by examining 60 random topological sorts had a cost of 120. The APGAN heuristic
found a schedule of cost 117. This example clearly shows that, in practice, the performance of the

new heuristic is likely to be better than that suggested by its performance on random graphs.

9 Related Work

|
In [17], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF,

calledcyclo-static dataflowin cyclo-static dataflow, the number of tokens produced and con-
sumed by an actor can vary between firings as long as the variations form a certain type of peri-
odic pattern. For example, consider an actor that routes data received from a single input to each
of two outputs in alternation. In cyclo-static dataflow, this operation can be represented as an actor

that consumes one token on its input edge, and produces tokens according to the periodic pattern
1,0, 1 Q... (one token produced on the first invocation, none on the second, one on the third,
and so on) on one output edge, and according to the complementary @atiedny, ... on the

other output edge. A cyclo-static dataflow graph can be compiled as a cyclic pattern of pure SDF

graphs, and static periodic schedules can be constructed in this manner. A major advantage of

A Nonuniform filterbank.
The highpass component retains 1/3 of the
spectrum at each stage while the lowpass
retains 2/3 of the spectrum

Analysis sections Synthesis sections

Figure 9. Non-uniform filterbank example. The produced/consumed parameters are
shown whenever they are different from unity.
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cyclo-static dataflow is that it can eliminate large amounts of token traffic arising from the need to
generate dummy tokens in corresponding (pure) SDF representations. This leads to lower mem-
ory requirements and fewer run-time operations. Although cyclostatic dataflow can reduce the
amount of buffering for graphs having certain multirate actors like explicit downsamplers, it is not
clear whether this model can in general be used to get schedules that are as compact as single
appearance schedules for pure SDF graphs but have lower buffering requirements than that arising
from techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchro-
nous dataflow graph in a parallel processing context is explored by Govindarajan and Gao in [14].
Here the goal is to minimize the buffer cost without sacrificing throughput — just as the goal in
this paper is to minimize buffering cost without sacrificing code compactness. Thus, the tech-
niques of [14] address the problem of selecting a schedule that minimizes buffering cost from
among the set ahte-optimalschedules. This problem does not take code space constraints into
account. Instead, it focuses on another dimension of scheduling that the techniques of our paper

do not consider — parallel processing.

10 Conclusion
|
In this paper, we have presented algorithms for constructing schedules that minimize

buffer usage from among the schedules that minimize program memory usage (called buffer-opti-
mal single appearance schedules) for programs expressed as SDF graphs. We defined the class of
R-schedules and showed that there is always an R-schedule that is a buffer-optimal single appear-
ance schedule. It is possible to construct buffer-optimal R-schedules for the class of well-ordered
SDF graphs by using a dynamic programming algorithm. We showed the efficacy and the useful-
ness of our algorithm on a practical example. We also showed that the problem of determining
buffer-optimal single appearance schedules for general acyclic SDF graphs is NP-complete.
Instead, we have presented heuristics that perform well in practice.

There are still many open problems left to be solved in this area of compiler design for
SDF graphs. It would be interesting to see what effect a better heuristic for finding minimum

weight legal cuts into bounded sets would have on the quality of the schedules. Recall that the

40



very idea of using minimum cuts is a heuristic; hence, even if we were able to determine the opti-
mal legal minimum cuts (which is unlikely since that problem appears to be NP-complete as
well), we wouldn’t always produce buffer-optimal single appearance schedules. However, it might
improve the quality of the schedules somewhat. We also gave some reasons why the problem of
constructing buffer-optimal single appearance schedules becomes even more complicated for
arbitrary SDF graphs. Heuristic solutions for this problem are a topic for further study. Finally,
techniques for systematically trading program compactness for buffer usage are also a topic for

further study.
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