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ABSTRACT 1

In this paper, we formally develop techniques that minimize the memory requirement
target program when synthesizing software from dataflow descriptions of multirate signal p
cessing algorithms. The dataflow programming model that we consider is thesynchronous data-
flow (SDF) model [21], which has been used heavily in DSP design environments over the p
several years. We first focus on the restricted class ofwell-orderedSDF graphs. We show that
while extremely efficient techniques exist for constructing minimum code size schedules for
ordered graphs, the number of distinct minimum code size schedules increases combinato
with the number of vertices in the input SDF graph, and these different schedules can have
different data memory requirements. We develop a dynamic programming algorithm that co
putes the schedule that minimizes the data memory requirement from among the schedule
minimize code size, and we show that the time complexity of this algorithm is cubic in the n
ber of vertices in the given well-ordered SDF graph. We present several extensions to this
dynamic programming technique to more general scheduling problems, and we present a h
that often computes near-optimal schedules with quadratic time complexity. We then show 
finding optimal solutions for arbitrary acyclic graphs is NP-complete, and present heuristic 
niques that jointly minimize code and data size requirements. We present a practical examp
simulation data that demonstrate the effectiveness of these techniques.
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1 Motivation

The use of block diagram programming environments for signal processing has bec

widespread over the past several years. Their potential for modularity, software-reuse, conc

clear semantics, and an intuitive, visually appealing syntax are all reasons for their popular

addition, many models of computation (MoC) that have strong formal properties can be use

the underlying model on which the block diagram language is built; these MoCs include, fo

example, dataflow, Petri Nets, and Kahn Process Networks [19]. These formal properties m

include determinacy, guarantees on bounded memory execution policies, compile-time det

of deadlock, and static (i.e, compile-time) schedulability (thus obviating dynamic sequencin

the associated overheads).

The synchronous dataflow (SDF) model has been used widely as a foundation for b

diagram programming of digital signal processing (DSP) systems (see, for example, [10, 1

22, 24, 25]). In this model, as in other forms of dataflow, a program is specified by a directe

graph in which the vertices, calledactors, represent computations, and the edges represent F

queues that store data values, calledtokens, as they pass between computations. We refer to th

FIFO queue associated with each edge as abuffer. SDF imposes the restriction that the number 

tokens produced and consumed by each actor is fixed and known at compile time. Figure 1

an example of an SDF graph. Each edge is annotated with the number of tokens produced

sumed) by each invocation of the source (sink) actor. The SDF model has several formal p

ties that make it popular as the underlying model: the model is well suited for specifying mu

signal processing systems, it can be scheduled statically, it exposes most of the parallelism

application, and deadlock can be detected at compile time.

Rapid prototyping environments such as those described in [10], [18], [24], and [23]

port code-generation for programmable digital signal processors (PDSP) used in embedde

tems. Traditionally, PDSPs have been programmed manually, in assembly language, and t

Figure 1. A chain-structured SDF graph.

A B C D
4 3 1 1 2 3
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tedious, error-prone process at best. Hence, generating code automatically is a desirable g

Since the amount of on-chip memory on such a PDSP is severely limited, it is imperative th

generated code be parsimonious in its memory usage. Adding off-chip memory is often infe

due to increased cost, increased power requirements, and a speed penalty that will affect th

bility of real-time implementations. One approach to automatic code generation is to specif

program in an imperative language such as C, C++, or FORTRAN and use a good compiler

ever, even the best compilers today produce inefficient code [28]. In addition, specifications

imperative languages are difficult to parallelize, are difficult to change due to side effects, a

offer few chances for any formal verification of program properties. An alternative is to use 

block diagram language based on an MoC with strong formal properties such as SDF to sp

the system, and to do code-generation starting from this specification. One reason that a co

for a block diagram language is likely to give better performance than a compiler for an imp

tive language is because the underlying MoC often imposes restrictions on the control flow

specification, and this can be profitably exploited by the compiler.

The code-generation strategy followed in many block diagram environments is calle

threading; in this method, the underlying model (in our case, SDF) is scheduled to generat

sequence of actor invocations (provided that the model can be scheduled at compile time o

course). A code generator then steps through this schedule and generates the machine ins

necessary for the computation specified by each actor it encounters; these instructions are

obtained from a predefined library of actor codeblocks. We assume that the code-generato

ates inline code; this is because the alternative of using subroutine calls can have unaccep

overhead, especially if there are many small tasks. By “compile an SDF graph”, we mean e

the strategy described above for generating a software implementation from an SDF graph

fication of the system in the block diagram environment.

A key problem that arises in this strategy is code-size explosion since if an actor app

20 times in the schedule, then there will be 20 codeblocks in the generated code. However

SDF graphs, it is usually possible to generate the so-called single appearance schedules w

each actor only appears once; for these schedules, inline code-generation results in the m

pact code to a first approximation. However, there can be many different single appearance
3
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ules for a given SDF graph; each of these schedules will have differing buffer memory

requirements. In this paper, we consider the problem of generating single appearance sche

that minimize the amount of buffer-memory required by the schedule for certain classes of 

graphs.

The predefined actor codeblock in the library can either be hand-optimized assembl

guage (feasible since the actors are usually small, modular components), or it can be an im

tive language specification that is compiled by a compiler. As already mentioned, a compile

an imperative language cannot usually exploit the restrictions in the overall control flow of t

system. However, the codeblocks within an actor are usually much simpler, and may even 

spond to basic blocks that compilersare adept at handling. Hence, compiling an SDF graph us

the methods we describe in this paper does not preclude the use of a good imperative lang

compiler; we expect this hybrid approach to eventually produce code competitive to hand-w

code, as compiler technology improves. However, in this paper, we only consider the code 

buffer memory optimization possible at the SDF graph level.

This paper is organized as follows. In the next section, we develop the notation and 

cepts for SDF graph scheduling. We develop the buffering model and show that our model 

reasonable one. We also review a factoring transformation that is useful for reducing buffer

memory in a schedule. In Section 3, we show that for chain-structured SDF graphs, the num

distinct valid single appearance schedules increases combinatorially with the number of ac

and thus exhaustive evaluation is not, in a general, a feasible means to find the single appe

schedule that minimizes the buffer memory requirement. We also develop some results in S

3 that show that minimum buffer single appearance schedules fall into a class of schedules

particular structure. In Section 4, we show that the problem of finding a valid single appear

schedule that minimizes the buffer memory requirement for a chain-structured SDF graph i

ilar to the problem of most efficiently multiplying a chain of matrices, for which a cubic-time

dynamic programming algorithm exists [13]. We show that this dynamic programming techn

can be adapted to our problem to give an algorithm with time complexity , where  i

number of actors in the input chain-structured SDF graph.

In Section 5, we illustrate the relevance of our dynamic programming solution throug

O m3( ) m
4
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practical example — a sample-rate conversion system to convert between the output of a c

disk player and the input of a digital audio tape player. In Section 6, we discuss an alternat

solution to the problem of minimizing the buffer memory requirement over all single appear

schedules for a chain-structured SDF graph. This is a heuristic approach whose worst-cas

complexity is ; our experimental data suggests that this heuristic often performs quite

In Section 7, we discuss how the dynamic programming technique of Section 5 can be app

other problems in the construction of efficient looped schedules. Through Section 7 we are

cerned primarily with chain-structured SDF graphs. In Section 8, we prove that the buffer-m

zation problem is NP-complete for acyclic SDF graphs. We discuss solutions that we have

developed for general acyclic SDF graphs, and present simulation data that demonstrates 

cacy of these methods. Finally, in Section 9, we discuss closely related work of other resea

2 Background

Given an SDF edge , we denote the source actor of  by  and the sink a

of  by . We denote the number of tokens produced onto  per each invocation of

 by , and similarly, we denote the number of tokens consumed from

per each invocation of  by . Each edge in a general SDF graph also h

associated with it a non-negative integerdelay.A unit of delay represents an initial token on an

edge. For clarity, in this paper, we will usually assume that the edges in an SDF graph all h

zero delay; however, we will explain how to extend our main techniques to handle delays.

In this paper, we focus initially on SDF graphs that arechain-structured. An -vertex

directed graph is chain-structured if it has  edges, and there are orderings

and  for the vertices and edges, respectively, such that each  is directe

from  to . Figure 1 is an example of a chain-structured SDF graph. The major results

we present for chain-structured SDF graphs can be extended to the somewhat more gener

of well-ordered graphs, but for clarity, we develop our techniques in the context of chain-str

tured graphs. A directed graph is well-ordered if it has only one ordering of the vertices suc

O m2( )

α α α( )source

α α( )sink α

α( )source α( )produced α

α( )sink α( )consumed

m

m 1– v1 v2 … vm, , ,( )

α1 α2 … αm 1–, , ,( ) αi

vi vi 1+
5
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for each edge ,  occurs earlier in the ordering than . We will discuss the

extensions of our techniques to well-ordered SDF graphs in Section 7. Even though chain-

tured graphs are a rather restricted class of graphs, they are useful for developing a set of 

that can be applied more generally, as we will show later.

A scheduleis a sequence of actor firings. We compile a properly-constructed SDF gr

by first constructing a finite schedule  that fires each actor at least once, does not deadlo

produces no net change in the number of tokens queued on each buffer. When such a sch

is repeated infinitely, we call the resulting infinite sequence of actor firings avalid periodic

schedule, or simply a “valid schedule”, and we say that  is thebody of this valid schedule. Cor-

responding to each actor in the schedule body , we insert a code block that is obtained fr

library of predefined actors, and the resulting sequence of code blocks is encapsulated wit

infinite loop to generate a software implementation of the valid schedule.

SDF graphs for which valid schedules exist are calledconsistent graphs. Systematic tech

niques exist to efficiently determine whether or not a given SDF graph is consistent [21]. Al

given a consistent SDF graph, the minimum number of times that each actor must execute

body of a valid schedule can be computed efficiently [21]. We represent these minimum nu

of firings by a vector , indexed by the actors in , and we refer to  as therepetitions vec-

tor  of  (we often suppress the subscript if  is understood from context). For Figure 1,

.1

For example,  represents

a valid schedule for Figure 1. Here, a parenthesized term  specifies  success

ings of the “subschedule” , and we translate such a term into a loop in the target c

Note that this notation naturally accommodates the representation of nested loops. We refe

each parenthesized term  as aschedule loop havingiteration count  anditerands

.We say that a schedule for an SDF graph is alooped scheduleif it contains zero or

1.We adopt the convention of indexing vectors and matrices using functional notation rat
er than subscripts or superscripts. Also, we denote the transpose of a vector  by .

α α( )source α( )sink

σ

σ

σ

σ

qG G qG

G G

q A B C D, , ,( )q 9 12 12 8, , ,( )T= =

x xT

∞ 2ABC( )DABCDBC 2ABCD( )A 2BC( ) 2ABC( )A 2BCD( )( )

nS1S2…Sk( ) n

S1S2…Sk

nS1S2…Sk( ) n

S1 S2 … Sk, , ,
6
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more schedule loops. Thus, the “looped” qualification indicates that the schedule in questio

be expressed in terms of schedule loops. Given a valid looped schedule , we refer to each

of the outermost schedule loop (the loop that has infinite iteration count) as aniterand of .

A more compact valid schedule for figure 1 is . We call th

schedule asingle appearance schedule since it contains only one appearance of each actor. T

good first approximation, any valid single appearance schedule gives the minimum code sp

cost for in-line code generation. This approximation neglects loop overhead and other seco

order effects, such as the efficiency of data transfers between actors [4].

In general, a schedule of the form  is called a

flat single appearance schedule. For the graph in figure 1, the schedule

 is a flat single appearance schedule.

2.1 Buffering Costs

The amount of memory required for buffering may vary greatly between different sch

ules. We define thebuffer memory requirement of a schedule , denoted ,

as , where the sum is taken over all edges , and

denotes the maximum number of tokens that are simultaneously queued on  during an ex

of . For example, the schedule  has a buffer memory requiremen

, and the schedule  has a buffer memory

requirement of .

In the model of buffering implied by our “buffer memory requirement” measure, each

buffer is mapped to a contiguous and independent block of memory. This model is convenie

natural for code generation, and it is the model used, for example, in the SDF-based code 

tion environments described in [15, 23, 24]. However, perfectly valid target programs can b

erated without these restrictions. For example, another model of buffering is to use a shared

of size  which gives the maximum amount of data

transferred on any edge in oneperiod (one iteration of the outermost loop) of the flat single

S

S

∞ 3 3A( ) 4B( )( ) 12C( ) 8D( )( )

∞ q N1( )N1( ) q N2( )N2( )… q NK( )NK( )( )

∞ 9A( ) 12B( ) 12C( ) 8D( )( )

S S( )buffer_memory

α S,( )max_tokens∑ α α S,( )max_tokens

α

S ∞ 9A( ) 12B( ) 12C( ) 8D( )( )

36 12 24+ + 72= ∞ 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )( )

12 12 6+ + 30=

Ni( )q Ni( )produced× 1 i K<≤{ }( )max
7
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appearance schedule, , where  is the number of

nodes in the graph. Assuming that there are no delays on the graph edges, it can be shown

proper management of pointers, such a buffer suffices. For the example graph above, this 

imply a buffering requirement of 36 since on edge , 36 samples are exchanged in the sc

, and this is the maximum over all arcs. Moreover, the implementa

of this schedule using a shared buffer would be much simpler than the implementation of a

complicated nested schedule. But there are two problems with buffer-sharing that prevent i

as the model for evaluating the buffering cost of single appearance schedules. Consider th

in Figure 2. The shared-buffer cost for the flat schedule for this graph is given by

. However, with a buffering model where we

have a buffer on each edge, the schedule  requires total buffering of o

250 units. Of-course, we could attempt sharing buffers in this nested looped schedule as w

the implementation of such sharing could be awkward.

Consider also the effect of having delays on the arcs. In the model where we have a

on every edge, having delays does not affect the ease of implementation. For example, if w

duce  delays on edge  in the graph in Figure 2, then we merely augment the amount o

ering required on that edge by . This is fairly straightforward to implement. On the other h

having delays in the shared buffer model causes complications because there is often no lo

place in the buffer to place the delays since the entire buffer might be written over by the tim

reach the actor that consumes the delays. For instance, consider the graph in figure 3. The

tions vector for this graph is given by . Suppose that we were to use t

∞ q N1( )N1( ) q N2( )N2( )… q NK( )NK( )( ) K

AB

∞ 9A( ) 12B( ) 12C( ) 8D( )( )

A B C D
50 1 100 50 1 25

Figure 2. Example to illustrate the inefficiency of using shared buffers.

q=(1,50,100,4)T

max 1 50 50 100 100 50 4 25×,×,×,×{ }( ) 5000=

∞A 50B 2C( )( ) 4D( )( )

d BC

d

A B C D
1 3 4 7 8 7

E
15

Figure 3. Example to illustrate the difficulty of using shared buffers with delays.

147 49 28 32 160, , , ,( )T
8
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shared-buffer implementation for the flat schedule. We find that we need a buffer of size 22

After all of the invocations of  have been fired, the first 147 locations of the buffer are fille

Since  writes more samples than it reads, it starts writing at location  and writes 196 s

ples. When  begins execution, it starts reading from location 148 and starts writing from l

tion 120 (120 = (148+196) mod 224). Actor  then writes 224 samples into the buffer. Whe

is invoked, it starts reading from location 120. Hence, if there were a delay on edge  for

instance, the logical thing to do would be to have a buffer of size 225 (meaning that  would

reading from location 119) and place the delay in location 119. However, location 119 would

been written over by ; hence, it is not a safe location. This shows that handling delays in 

shared buffer model can be quite awkward, and would probably involve copying over data f

“delay” buffer of some sort. Therefore, in this paper we focus mainly on the buffering model

ciated with the “buffer memory requirement” measure, although, in Section 7, we present a

extension of our techniques to combine the above simple model of buffer sharing with the n

shared model. The buffer sharing model will only be used whenever it is feasible to do so (

ever there are no delays, and the size of the shared buffer is lower). There are also other w

which sharing can be done; thoroughly combining the advantages of nested loops and thes

ways of sharing buffers is a topic for further study.

We note briefly that nested-schedules have a lower latency than flat single appearan

schedules. The latency is defined to be the time at which the sink node fires for the first time

schedule. In a flat schedule , the latency is given by

, where  is the sample period of the source actor, and

the execution time of actor . All these times are assumed to be in number of instruction c

of the processor. A nested-schedule will usually have a latency less than this because if the

actor is part of a nested loop body, then all of the invocations of actors upstream do not ha

occur before the sink actor fires for the first time. In section 5, we illustrate this by an exam

We will use the following definitions in this paper

A

B 148

C

C D

CD

D

A

∞ q N1( )N1( ) q N2( )N2( )… q NK( )NK( )( )

q N1( ) 1–( )T E1 q Ni( )Ei
i 2=

K 1–

∑+ + T Ei

Ni
9
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•  Given an SDF graph , we denote the set of actors in  by , and the se

edges in  by .

•  By asubgraphof an SDF graph, we mean the SDF graph formed by any

 together with the set of edges . We

denote the subgraph associated with the set of actors  by .

•  Given a finite set  of positive integers, we denote by  the greatest commo

divisor of  — the largest positive integer that divides all members of .

•  Given a finite set , we denote the number of elements in  by .

•  Given a connected, consistent SDF graph , and a subset , we defi

. In [4], we show that  can be viewed as the number 

times that a periodic schedule for  invokes the subgraph associated with .

When discussing the complexity of algorithms, we will use the standard ,  and

notation. A function  is  if for sufficiently large ,  is bounded above by a p

itive real multiple of . Similarly,  is  if  is bounded below by a positive

real multiple of  for sufficiently large , and  is  if it is both  and

.

Also, we will use a number of facts that are proved in [4]. The first fact relates the re

tions vector of a connected SDF subgraph to that of an enclosing SDF graph.

Fact 1: If  is a connected, consistent SDF graph and  is a connected subgraph of , t

for each , .

The next fact is related to thefactoring transformation for looped schedules that was

introduced in [4]. As an example of the factoring transformation, consider the valid schedul

, and observe that the iteration counts of the two loops th

G G G( )actors

G G( )edges

V G( )actors⊆ α G( )edges∈ α( )source α( )sink, V∈( ){ }

V V G,( )subgraph

P P( )gcd

P P

Z Z Z

G V G( )actors⊆

qG V( ) qG A( ) A V∈( ){ }( )gcd≡ qG V( )

G V

O Ω Θ

f x( ) O g x( )( ) x f x( )

g x( ) f x( ) Ω g x( )( ) f x( )

g x( ) x f x( ) Θ g x( )( ) O g x( )( )

Ω g x( )( )

G R G

A R( )actors∈ qG A( ) qG R( )actors( )qR A( )=

S1 ∞ 3 3A( ) 4B( )( ) 2 6C( ) 4D( )( )( )≡
10
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are nested in the loop  have a common divisor of . Fact 2 guarantees that if 

“factor” this common divisor from the iteration counts of these two inner loops into the itera

count of the enclosing loop, then the resulting schedule,

valid and that its buffer memory requirement does not exceed the buffer memory requireme

the original schedule. It is easy (although a bit tedious) to verify that  is indeed a valid sc

ule, and we see that , while

, and thus for this example, the factoring transforma

tion has reduced the buffer memory requirement by .

Fact 2: Suppose that  is a valid schedule for an SDF graph , and suppose that

 is a schedule loop in  of any nesting depth such that

. Suppose also that  is any positive integer th

divides ; let  denote the schedule loop ;

and let  denote the schedule that results from replacing  with  in . Then

(a).  is a valid schedule for ;and

(b). .

The factoring transformation is closely related to theloop fusiontransformation, which

has been used for decades in compilers for procedural languages to reduce memory requi

and increase data locality [1, 26]. In compilers for procedural languages, tests for the validi

loop fusion include analysis of array subscripts to determine whether or not for each iteratio

the (lexically) second loop, this iteration depends only on iterations  of the first loo

[27]. These tests are difficult to perform comprehensively due to the complexity of exact sub

analysis [3], and due to complications such as data-dependent subscript values, conditiona

branches, and input/output statements. In contrast, Fact 2 gives a simple test for the validity

factoring transformation that is applicable to a broad class of looped schedules, including a

gle appearance schedules.

2 6C( ) 4D( )( ) 2

S2 ∞ 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )( )≡

S2

S2( )buffer_memory 12 12 6+ + 30= =

S1( )buffer_memory 12 12 12+ + 36= =

17%

S G

L m n1S1( ) n2S2( )… nkSk( )( )= S

1 i j k≤<≤( ) Si( )actors⇒ Sj( )actors∩ ∅= γ

n1 n2 … nk, , , L′ γm γ 1–
n1S1( ) γ 1–

n2S2( )… γ 1–
nkSk( )( )

S′ L L′ S

S′ G

S′( )buffer_memory S( )buffer_memory≤

n

1 2 … n, , ,
11



 not

are

ult in

n in

nsfor-

wing

edule

duced

bound

ge  in

.

Before we state Fact 3, we need to introduce a few more definitions.

•  If  is either a schedule loop or a looped schedule, we say that  iscoprime if not all

iterands of  are schedule loops, or if all iterands of  are schedule loops, and there does

exist an integer  that divides all of the iteration counts of the iterands of .

•  We say that a single appearance schedule  isfully reduced if  is coprime and every

schedule loop contained in  is coprime.

For example, the schedule loops  and  are coprime, while

 and  are not coprime; similarly, the looped schedules

and  are coprime, while the looped schedules  and  

not. From our discussion of Fact 2, we know that non-coprime schedules or loops may res

significantly higher buffer memory requirements than their factored counterparts. It is show

[4] that given a valid single appearance schedule, we can repeatedly apply the factoring tra

mation to derive from it a valid fully reduced schedule. As a consequence, we have the follo

fact.

Fact 3: Suppose that  is a consistent SDF graph and  is a valid single appearance sch

for . Then there exists a valid single appearance schedule  for  such that  is fully re

and .

2.2 Buffer Memory Lower Bounds

Given a consistent SDF graph , there is an efficiently computable upper and lower 

on the buffer memory requirement over all valid single appearance schedules. Given an ed

an SDF graph, let , , , and

Definition 1: Given an SDF edge , we define thebuffer memory lower bound (BMLB) of ,

denoted , by

, where

Λ Λ

Λ Λ

j 1> Λ

S S

S

5 3A( ) 7B( )( ) 70C( )

3 4A( ) 2B( )( ) 10 7C( )( ) ∞A 7B( ) 7C( )( )

∞ 2A( ) 3B( )( ) ∞ 4AB( )( ) ∞ 6AB( ) 3C( )( )

G S

G S′ G S′

S′( )buffer_memory S( )buffer_memory≤

G

e

a e( )produced= b e( )consumed= c gcd a b,( ){ }= d e( )delay=

e e

BMLB e( )

BMLB e( )
η e( ) d+( ) if d η e( )<

d if d η e( )≥



= η e( ) ab
c

------=
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If  is an SDF graph, then

is called the BMLB of , and a valid single appearance schedule  for  that sat

 for all  is called aBMLB schedule for .

We can also prove the following theorem about the lower bound on the buffering memory

required by any valid schedule, not just a single appearance schedule. A less general vers

this result was also derived independently in [2].

Theorem 1: [6] Given an SDF edge , the lower bound on the amount of memory required

any schedule on the edge  is given by  if , and by

otherwise.

Hence, the BMLB can be a lot greater than the lower bound for any schedule, and the lower

for any schedule does not provide a meaningful number for comparing against single appe

schedules.

3 R-schedules

Let  be a chain-structured SDF graph with actors  and edges

 such that each  is directed from  to . In the trivial case, , 

immediately obtain  as a valid single appearance schedule for . Otherwise, given 

, define

, and

.

From Fact 1, if  and  are valid single appearance schedules for  and

respectively, then  is a valid single appearance schedule for , where

 and .

For example, suppose that  is the SDF graph in Figure 1 and suppose . It is 

G V E,( )=

BMLB e( )
e E∈
∑ 

 

G S G

e S,( )max_tokens BMLB e( )= e E∈ G

e

e a b c– d mod c( )+ + d a b c–+< d

G A1 A2 … Am, , ,

α1 α2 … αm 1–, , , αk Ak Ak 1+ m 1=

∞A1( ) G

i 1 2 … m 1–, , ,{ }∈

i( )left A1 A2 … Ai, , ,{ } G,( )subgraph≡

i( )right Ai 1+ Ai 2+ … Am, , ,{ } G,( )subgraph≡

∞SL( ) ∞SR( ) i( )left i( )right

∞ qLSL( ) qRSR( )( ) G

qL qG Aj( ) 1 j i≤ ≤{ }( )gcd= qR qG Aj( ) i j< m≤{ }( )gcd=

G i 2=
13
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verified that  and . Thus,

 and  are valid single appearance schedules 

 and , and  is a valid single appearance schedu

for Figure 1.

We can recursively apply this procedure of decomposing a chain-structured SDF gra

into left and right subgraphs to construct a schedule. However, different sequences of choi

 will in general lead to different schedules. For a given chain-structured SDF graph, we re

the set of valid single appearance schedules obtainable from this recursive scheduling proc

the set ofR-schedules.

We will use the following fact, which is easily verified from the definition of an R-sche

ule.

Fact 4: Suppose that  is a chain-structured SDF graph, , and

. Then a valid single appearance schedule  for  is an R

schedule if and only if every schedule loop  contained in  satisfies the following property

(a).  has a single iterand, and this single iterand is an actor; that is,  for s

 and some ;or

(b).  has exactly two iterands, and these two iterands are schedule loops having co

iteration counts; that is, , where ;  and  are posi

tive integers; ; and  and  are looped schedules.

Note that if  is an R-schedule, and  is a two-iterand loop in ,

then (a). or (b). must also be satisfied for every schedule loop contained in  and for e

schedule loop contained in ; thus, it follows that  and  are also R-schedu

If a schedule loop  satisfies condition (a) or condition (b) of Fact 4, we say that  i

R-loop; otherwise, we call  anon-R-loop. Thus, a valid single appearance schedule  is an

q i( )left A B,( ) 3 4,( )T
= q i( )right C D,( ) 3 2,( )T

=

∞SL( ) ∞ 3A( ) 4B( )( )= ∞SR( ) ∞ 3C( ) 2D( )( )=

i( )left i( )right ∞ 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )( )

i

G G( )actors 1>

α( )delay 0=( ) α G( )edges∈( )∀, S G

L S

L L nA( )=

n 1 2 … ∞, , ,{ }∈ A G( )actors∈

L

L m n1S1( ) n2S2( )( )= m 1 2 … ∞, , ,{ }∈ n1 n2

n1 n2,( )gcd 1= S1 S2

S L m n1S1( ) n2S2( )( )= S

n1S1( )

n2S2( ) ∞S1( ) ∞S2( )

L L

L S
14
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schedule if and only if every schedule loop contained in  is an R-loop.

Now let  denote the number of R-schedules for an -actor chain-structured SDF g

Trivially, for a -actor graph there is only one schedule obtainable by the recursive schedu

process, so . For a -actor graph, there is only one edge, and thus only one choice

. Since for a -actor graph,  and  both contain only one actor, we have

. For a -actor graph,  contains  actor and  contains

actors, while  contains  actors and  contains a single actor. Thus,

.

Continuing in this manner, we see that for each positive integer ,

. (1)

The sequence of positive integers generated by (1) with  is known as the set 

Catalan numbers, and each  is known as the th Catalan number. Catalan numbers

in many problems in combinatorics; for example, the number of different binary trees with

tices is given by the th Catalan number, . It can be shown that the sequence generated

is given by

, for , (2)

S

εn n

1

ε1 1= 2 i

i 1= 2 1( )left 1( )right

ε2 ε1 ε1× 1= = 3 left 1( ) 1 1( )right 2

left 2( ) 2 2( )right

ε3 the number of R-schedules wheni 1=( )( )
the number of R-schedules wheni 2=( )( )+
=

the number of R-schedules for 1( )left( )
the number of R-schedules for 2( )right( )×

=

the number of R-schedules for 2( )left( )
the number of R-schedules for 1( )right( )×

+

ε1 ε2×( ) ε2 ε1×( )+= 2ε1ε2=

n 1>

εn the number of R-schedules wheni k=( )( )
k 1=

n 1–

∑ εk εn k–×( )
k 1=

n 1–

∑= =

ε1 1=

εi i 1–( )

n

n εn

εn
1
n
--- 2n 2–

n 1– 
 = n 1 2 3 …, , ,=
15
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where , and it can be shown that the expression on the right han

side of (2) is  [11].

For example, the chain-structured SDF graph in Figure 1 consists of four actors, so 

indicates that this graph has  R-schedules. The R-schedules for Figure 1 are

, ,

, , and

; and the corresponding buffer memory requirements are, res

tively, , , , , and .

The following theorem establishes that the set of R-schedules always contains a sch

that achieves the minimum buffer memory requirement over all valid single appearance sch

ules.

Theorem 2: Suppose that  is a chain-structured SDF graph;

; and  is a valid single appearance schedule for . Then

there exists an R-schedule  for  such that .

Proof: We prove this theorem by construction. We use the following notation here: given a s

ule loop  and a looped schedule , we define  to be the set of non-R-loops in ;

define  to be the number of iterands of ; we define  to be the iteration count of

we define .

First observe that all chain-structured SDF graphs are consistent so no further assum

are required to assure that valid schedules exist for , and observe that from Fact 3, there 

valid fully reduced schedule  for  such that .

Now let  be an innermost non-R-loop in ; that is,  is not an R

loop, but every loop nested in  is an R-loop. If  then since  is fully reduced,

a
b 

  a a 1–( )… a b 1+–( )
a!

-----------------------------------------------------≡

Ω 4
n

n⁄( )

1
4
--- 6

3 
  5=

∞ 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )( ) ∞ 3 3A( ) 4 1B( ) 1C( )( )( ) 8D( )( )

∞ 3 1 3A( ) 4B( )( ) 4C( )( ) 8D( )( ) ∞ 9A( ) 4 3 1B( ) 1C( )( ) 2D( )( )( )

∞ 9A( ) 4 3B( ) 1 3C( ) 2D( )( )( )( )

30 37 40 43 45

G

α( )delay 0=( ) α G( )edges∈( )∀, S G

S′ G S′( )buffer_memory S( )buffer_memory≤

L S S( )nonR S

I L( ) L C L( ) L

Î S( ) I L ′( )
L′ S( )nonR∈

∑≡

G

S0 G S0( )buffer_memory S( )buffer_memory≤

L0 nT1T2…Tm( )= S0 L0

L0 m 1= S0
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, for some iterand , where  is an R-loop. Let  be the schedule that

results from replacing  with  in . Then clearly,  is also valid and fully reduced, 

 generates the same invocation sequence as , so

. Also, replacing  with  reduces the numbe

of non-R-loops by one, and does not increase the number of iterands of any loop, and thus

.

If on the other hand , we define  if  is an actor and  otherw

(if  is a schedule loop). Also, if  are all schedule loops, we define

,

where , and  are the bodies of the loops

, respectively; if  are not all schedule loops, we define

. Let  be the schedule that results from replacing  with  

. Now, because  is fully reduced, the iteration counts of  and  must be coprime. Th

is easily verified that  is a valid, fully reduced schedule and that  is an R-loop, and wit

aid of Fact 2, it is also easily verified that .

Finally, observe that  and  are R-loops, but  may or may not be an R-loop

(depending on ). Thus, replacing  with  either reduces the number of non-R-loops 

one, or it leaves the number of non-R-loops unchanged, and we see that either

, or . Since ,

we again conclude that .

Thus, from , we have constructed a valid, fully reduced schedule  such that

 and .

L0 n 1T′( )( )= T′ 1T( ) S1

L0 nT′( ) S0 S1

S1 S0

S1( )buffer_memory S0( )buffer_memory= L0 nT′( )

Î S1( ) Î S0( )<

m 2≥ Sa 1T1( )≡ T1 Sa T1≡

T1 T2 T3 … Tm, , ,

Sb γ
C T2( )

γ
---------------B2 

  C T3( )
γ

---------------B3 
  …

C Tm( )
γ

----------------Bm 
 

 
 ≡

γ C Ti( ) 2 i m≤ ≤( ){ }( )gcd= B2 B3 … Bm, , ,

T2 T3 … Tm, , , T2 T3 … Tm, , ,

Sb 1T2…Tm( )≡ S1 L0 L0′ nSaSb( )=

S0 L0 Sa Sb

S1 L0′

S1( )buffer_memory S0( )buffer_memory≤

Sa L0′ Sb

L0 L0 L0′

Î S1( ) Î S0( ) I L0( )–= Î S1( ) Î S0( ) I L0( )– I Sb( )+= I Sb( ) I L0( ) 1– I L0( )<=

Î S1( ) Î S0( )<

S0 S1

S1( )buffer_memory S0( )buffer_memory S( )buffer_memory≤ ≤ Î S1( ) Î S0( )<
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Clearly, if , we can repeat the above process to obtain a valid, fully reduced

gle appearance schedule  such that  and

. Continuing in this manner, we obtain a sequence of valid single appearance 

ules  such that for each  in the sequence with ,

, and . Since  is finite, we cannot

go on generating 's indefinitely — eventually, we will arrive at an , , such that

. From Fact 4,  is an R-schedule.QED.

Theorem 2 guarantees that from within the set of R-schedules for a given chain-stru

SDF graph, we can always find a single appearance schedule that minimizes the buffer me

requirement over all single appearance schedules; however, from (2), we know that in gene

R-schedules are too numerous for exhaustive evaluation to be feasible. The following secti

sents a dynamic programming algorithm that obtains an optimal R-schedule in cubic time.

4 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer memory requir

ment for a chain-structured SDF graph can be formulated as an optimal parenthesization pr

A familiar example of an optimal parenthesization problem is matrix chain multiplication [11

13]. In matrix chain multiplication, we must compute the matrix product , assum

that the dimensions of the matrices are compatible with one another for the specified multip

tion. There are several ways in which the product can be computed. For example, with

one way of computing the product is , where the parenthesizations indicate

order in which the multiplies occur. Suppose that  have dimensions

, respectively. It is easily verified that computing the matrix chain

product as  requires  scalar multiplications, whereas computing it as

 requires only  multiplications (assuming that we use the standard algo

Î S1( ) 0≠

S2 S2( )buffer_memory S1( )buffer_memory≤

Î S2( ) Î S1( )<

S0 S1 S2 S3 …, , , , Si i 0>

Si( )buffer_memory S( )buffer_memory≤ Î Si( ) Î Si 1–( )< Î S0( )

Si Sn n 0≥

Î Sn( ) 0= Sn

M1M2…Mn

n 4=

M1 M2M3( )( )M4

M1 M2 M3 M4, , ,

10 1× 1 10× 10 3× 3 2×, , ,

M1M2( )M3( )M4 460

M1 M2M3( )( )M4 120
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rithm for multiplying two matrices).

Thus, we would like to determine an optimal way of placing the parentheses so that

total number of scalar multiplications is minimized. This can be achieved using a dynamic p

gramming approach. The key observation is that any optimal parenthesization splits the pro

 between  and  for some  in the range , and thus the cos

this optimal parenthesization is the cost of computing the product , plus the cos

computing , plus the cost of multiplying these two products together. In an

optimal parenthesization, the subchains  and  must themselve

parenthesized optimally. Hence this problem has the optimal substructure property and is t

amenable to a dynamic programming solution.

Determining the optimal R-schedule for a chain-structured SDF graph is similar to th

matrix chain multiplication problem. Recall the example of Figure 1. Here

; an optimal R-schedule is ; and

the associated buffer memory requirement is . Therefore, as in the matrix chain multiplic

case, the optimal parenthesization (of the schedule body) contains a break in the chain at s

. Because the parenthesization is optimal, the chains to the left of  an

the right of  must both be parenthesized optimally. Thus, we have the optimal substructure

erty.

Now given a chain-structured SDF graph  consisting of actors  and ed

, such that each  is directed from  to , given integers  in the ra

, denote by  the minimum buffer memory requirement over all R-schedule

for . Then, the minimum buffer memory requirement over al

R-schedules for  is . If , then,

, (3)

M1M2…Mn Mk Mk 1+ k 1 k n 1–( )≤ ≤

M1M2…Mk

Mk 1+ Mk 2+ …Mn

M1M2…Mk Mk 1+ Mk 2+ …Mn

A B C D, , ,( )q 9 12 12 8, , ,( )T
= ∞ 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )( )

30

k 1 2 … n 1–( ), , ,{ }∈ k

k

G A1 A2 … An, , ,

α1 α2 … αn 1–, , , αk Ak Ak 1+ i j,

1 i j n≤ ≤ ≤ b i j,[ ]

Ai Ai 1+ … Aj, , ,{ } G,( )subgraph

G b 1 n,[ ] 1 i j n≤<≤

b i j,[ ] b i k,[ ] b k 1+ j,[ ] ci j, k[ ]+ +( ) i k j<≤( ){ }( )min=
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where  for all ,and  is the memory cost at the split if we split the chain at

It is given by

. (4)

Thegcdterm in the denominator arises because from Fact 1, the repetitions vector  of

 satisfies , for all

.

A dynamic programming algorithm derived from the above formulation is specified in

Figure 4. In this algorithm, first the quantity  is computed for eac

subchain . Then the two-actor subchains are examined, and the buffer mem

requirements for these subchains are recorded. This information is then used to determine

minimum buffer memory requirement and the location of the split that achieves this minimu

each three-actor subchain. The minimum buffer memory requirement for each three-actor s

chain  is stored in entry  of the array , and the index of the ed

corresponding to the split is stored in entry  of the  array. This data is 

examined to determine the minimum buffer memory requirement for each four-actor subch

and so on, until the minimum buffer memory requirement for the -actor subchain, which is

original graph , is determined. At this point, procedure  is called to recursive

construct an optimal R-schedule from a top-down traversal of the optimal split positions sto

the  array.

Assuming that the components of  are bounded, which makes thegcdcomputations

elementary operations, it is easily verified that the time complexity of  is

dominated by the time required for the innermostfor  loop — the (for

) loop — and the running time of one iteration of this loop is bound

b i i,[ ] 0= i ci j, k[ ] Ak

ci j, k[ ]
qG Ak( ) αk( )produced

qG Am( ) i m j≤ ≤( ){ }( )gcd
--------------------------------------------------------------------=

q′

Ai Ai 1+ … Aj, , ,{ } G,( )subgraph q′ Ap( )
qG Ap( )

qG Am( ) i m j≤ ≤( ){ }( )gcd
--------------------------------------------------------------------=

p i i 1+ … j, , ,{ }∈

qG Am( ) i m j≤ ≤( ){ }( )gcd

Ai Ai 1+ … Aj, , ,

Ai Ai 1+ Ai 2+, , i i 2+,[ ] Subcosts

i i 2+,[ ] SplitPositions

n

G ConvertSplits

SplitPositions

qG

ScheduleChainGraph

i 0 1 … chain_size 2–, , ,=
20



procedure ScheduleChainGraph
input:  a chain-structured SDF graph  consisting of actors

and edges  such that each  is directed from  to .

output:  an R-schedule body for  that minimizes the buffer memory requirement.

for /* Compute the gcd’s of all subchains */

for

for ;

for

for

;

;

for

;

;

if

;

; ;

output ; /* Convert the  array into an R-schedule */

procedure ConvertSplits( )

implicit inputs:  the SDF graph  and the  and  arrays

of procedure ScheduleChainGraph.
explicit inputs: positive integers  and  such that .

output: An R-schedule body for  that minimizes

the buffer memory requirement.

if output

else
; ;

;

output ;

G A1 A2 … An, , ,

α1 α2 … αn 1–, , , αi Ai Ai 1+

G

i 1 2 … n, , ,=

GCD i i,[ ] qG Ai( )=

j i 1+( ) i 2+( ) … n, , ,=

GCD i j,[ ] GCD i j 1–,[ ] qG Aj( ),{ }( )gcd=

i 1 2 … n, , ,= Subcostsi i,[ ] 0=

chain_size 2 3… n, , ,=

right chain_size chain_size 1+ … n, , ,=

left right chain_size 1+–=

min_cost ∞=

i 0 1 … chain_size 2–, , ,=

split_cost qG Aleft i+( ) GCD left right,[ ]⁄( ) αleft i+( )produced×=

total_cost split_cost Subcosts left lefti+,[ ] Subcosts left i 1+ + right,[ ]+ +=

total_cost min_cost<( )
split i= min_cost total_cost=

Subcosts left right,[ ] min_cost= SplitPositions left right,[ ] split=

ConvertSplits 1n,( ) SplitPositions

L R,
G GCD SplitPositions

L R 1 L R n≤ ≤ ≤ G( )actors=

AL AL 1+ … AR, , ,{ } G,( )subgraph

L R=( ) AL

s SplitPositionsL R,[ ]= i L GCD L L s+,[ ] GCD L R,[ ]⁄=

iR GCD L s 1+ + R,[ ] GCD L R,[ ]⁄=

iLConvertSplitsL L s+,( )( ) iRConvertSplitsL s 1+ + R,( )( )

Figure 4. Procedure to implement the dynamic programming algorithm.
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by a constant that is independent of . Thus, the following theorem guarantees that under 

assumptions, the running time of  is  and .

Theorem 3: The total number of iterations of the (for ) loop that are

carried out in  is  and .

Proof: This is straightforward; see [4] for the derivation.

5 Example: Sample Rate Conversion

Digital audio tape (DAT) technology operates at a sampling rate of  kHz, while co

pact disk (CD) players operate at a sampling rate of  kHz. Interfacing the two, for exam

to record a CD onto a digital tape, requires a sample rate conversion.

The naive way to do this is shown in Figure 5(a). It is more efficient to perform the ra

change in stages. Rate conversion ratios are chosen by examining the prime factors of the

sampling rates. The prime factors of  and  are  and , respectiv

Thus, the ratio  is , or . One way to perform this conversi

in four stages is , , , and . Figure 5(b) shows the multistage implementatio

Explicit upsamplers and downsamplers are omitted, and it is assumed that the FIR filters a

n

ScheduleChainGraph O n
3( ) Ω n

3( )

i 0 1 … chain_size 2–, , ,=

ScheduleChainGraph O n
3( ) Ω n

3( )

48

44.1

Figure 5. (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate system.

CD DATFIR

160 147
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CA D E F
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1 2
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2
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7
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1
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1
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Here ; the optimal looped schedule

given by our dynamic programming approach is ; and t

associated buffer memory requirement is . In contrast, the alternative schedule

 has a buffer memory requirement of  if a

separate buffer is used for each edge and a buffer-memory requirement of  if one share

buffer is used. This is an important savings with regard to current technology: a buffer mem

requirement of  will fit in the on-chip memory of most existing programmable digital sign

processors, while a buffer memory requirement of  is too high for all programmable di

signal processors, except for a small number of the most expensive ones. The savings of

( %) over using a single shared buffer can also be significant on chips that only have on 

order of  words of memory. It can be verified that the latency of the optimally nested s

ule is given by , as opposed to

 for the flat schedule. If we take  (for

example, a 22.05Mhz chip has 22.05Mhz/44.1khz = 500 instruction cycles in one sample p

of the CD actor), and , then the two latencies are 73810 

103510 instruction cycles; the nested schedule has 29% less latency.

One more advantage that a nested schedule can have over the flat schedule with sh

buffering is in the amount ofinput buffering required. Some DSP chips have a feature where a

dedicated I/O manager can write incoming samples to a buffer in on-chip memory, the size

which can be programmed by the user. If the single appearance schedule spans more than

sample period, then input buffering is a useful feature since it avoids the need for interrupts.

that have input buffering include the Analog Devices ADSP 2100. If we compute the amoun

input buffering required by the flat schedule, we find that it is

, whereas for the optimally nested schedule, i

is given by .

A B C D E F, , , , ,( )q 147 147 98 28 32 160, , , , ,( )T
=

∞ 7 7 3AB( ) 2C( )( ) 4D( )( ) 32E 5F( )( )( )

264

∞ 147A( ) 147B( ) 98C( ) 28D( ) 32E( ) 160F( )( ) 1021

294

264

1021

30

10

1000

146T EA EB 2EC 4ED EE+ + + + +

146T EA 147EB 98EC 28ED 32EE+ + + + + T 500=

EA 10 EB EC ED EE 100= = = =,=

147 98 28 32+ + +( )100 160 10×+( ) 500⁄ 65≅

100 200 400 3200 1600+ + + +( ) 500⁄ 11≅
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6 An Efficient Heuristic

Our dynamic programming solution for chain-structured graphs runs in  time,

where  is the number of actors. As a quicker alternative solution, we developed a more ti

efficient heuristic approach. The heuristic is simply to introduce the parenthesization on the

where the minimum amount of data is transferred. This is done recursively for each of the t

halves that result. The running time of the heuristic is given by the recurrence

, (5)

where  is the actor at which the split occurs. This is because we must compute thegcdof the rep-

etitions vector components of the  actors to the left of the split, and thegcdof the repetitions of

the  actors to the right. This takes  time assuming that the repetitions vector com

nents are bounded. Computing the minimum of the data transfers takes a further  time

there are  edges to consider. The worst case solution to this recurrence is , bu

average case running time is  if . It can be verified that this heuristic g

the R-schedule with the minimum buffer memory requirement,

for Figure 1.

We have evaluated the heuristic on  randomly generated -actor chain-struc

SDF graphs, and we have found that on average, it yields a buffer memory requirement tha

within  of the optimal cost. For each random graph, we also compared the heuristic’s s

tion to the worst-case schedule and to a randomly-generated R-schedule. On average, the

case schedule had over  times higher cost than the heuristic’s solution, and the rando

schedule had  times higher cost. Furthermore, the heuristic outperformed the random s

ule on  percent of the trials. We also note that in over 99% of the randomly generated 

actor chain-structured SDF graphs, the shared-buffer cost for the flat single appearance sc

was worse than the cost of the nested schedule given by the heuristic. Unfortunately, the h

does not perform well on the example of Figure 5 — it achieves a buffer memory requireme

O m3( )

m

T n( ) T n k–( ) T k( ) O n( )+ +=

k

k

n k– O n( )

O n( )

O n( ) O n2( )

O n log• n( ) k Ω n( )=

∞ 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )( )

10 000, 50

60%

9000

225

97.8
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, which is over double of what is required by an optimum R-schedule. In comparison, th

worst R-schedule for Figure 5 has a buffer memory requirement of . Note that this heuri

not limited to chain-structured graphs; it can be used in place of the exact dynamic program

algorithm wherever the dynamic programming algorithm is used as a post-optimization step

will be explained in the next few sections).

7 Extensions

In this section we present three useful extensions of the dynamic programming solu

developed in Section 4. First, the algorithm can easily be adapted to optimally handle chain

tured graphs that have delays on one or more of the edges. This requires that we modify th

putation of , the amount of memory required to split the subchain

between the actors  and . This cost now gets computed as

, where , if

; otherwise (if ),

 gets computed as . Accordingly, if the optimum split extracted in

given invocation ofConvertSplits(Figure 4) corresponds to a split in which the latter condition

applied in the computation of , thenConvertSplitsreturns

; otherwise,ConvertSplitsreturns

, as in the original version. This requires a

method for keeping track of which condition applies to each of the optimum subchain splits

which can easily be incorporated, for example, by varying the sign of the associated entry 

SplitPositionsarray.

Second, as mentioned in Section 1, the technique applies to the more general class 

ordered SDF graphs. A well-ordered graph is one where the partial order is a total order; c

structured graphs are a special case of these. Again, this requires modifying the computati

565

755

ci j, k[ ] Ai Ai 1+ … Aj, , ,

Ak Ak 1+

ci j, k[ ] 1
r
---qG Ak( ) αk( )produced αk( )delay+= r qG Am( ) i m j≤ ≤( ){ }( )gcd=

αk( )delay
1
r
---qG Ak( ) αk( )produced< αk( )delay

1
r
---qG Ak( ) αk( )produced≥

ci j, k[ ] ci j, k[ ] αk( )delay=

ci j, k[ ]

iRConvertSplitsL s 1+ + R,( )( ) i LConvertSplitsL L s+,( )( )

iLConvertSplitsL L s+,( )( ) iRConvertSplitsL s 1+ + R,( )( )
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. Here, this cost gets computed as

, (6)

where

;

that is,  is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Section 4 can also be applied to reducing th

buffer memory requirement of a given single appearance schedule for an arbitrary acyclic S

graph (not necessarily chain-structured or well-ordered). To explain this extension, we nee

define the concept of atopological sort. A topological sort of a directed acyclic graph consistin

of the set of vertices  and the set of edges  is an ordering  of the members

such that for each , ; that is, the source

vertex of each edge occurs earlier in the ordering than the sink vertex.

Suppose we are given a valid single appearance schedule  for an acyclic SDF gra

again for simplicity, assume that the edges in the graph contain no delay. Let

denote the sequence of lexical actor appearances in  (for example, for the schedule

, ). Thus, since  is a single appearance schedule,  mus

a topological sort of the associated acyclic SDF graph. The technique of Section 4 can eas

modified to optimally “re-parenthesize”  into the optimal single appearance schedule (with

regard to buffer memory requirement) associated with the topological sort . The techniqu

applied to the sequence , with  computed as in (6). It can be shown that the algor

runs in time , where  is the number of nodes in the graph.

Thus, given any topological sort  for a consistent acyclic SDF graph, we can effici

determine the single appearance schedule that minimizes the buffer memory requirement o

ci j, k[ ]

ci j, k[ ]
qG

α Si j k, ,∈
∑ Ak( ) αk( )produced

qG Am( ) i m j≤ ≤( ){ }( )gcd
----------------------------------------------------------------------=

Si j k, , β β( )source Ai Ai 1+ … Ak, , ,{ }∈( )
β( )sink Ak 1+ Ak 2+ … Aj, , ,{ }∈( )and

{
}

≡

Si j k, ,

V E v1 v2 … v V, , , V

e E∈ e( )source vi=( ) e( )sink vj=( )and( ) i j<( )⇒

S

Ψ B1 B2 … Bm, , ,=

S

∞ 4A 2FD( )( )C( ) Ψ A F D C, , ,= S Ψ

S

Ψ

Ψ ci j, k[ ]

O V 3( ) V

Ψ∗
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valid single appearance schedules for which the sequence of lexical actor appearances is

Another extension applies when we relax the assumption that each edge is mapped

separate block of memory, and allow buffers to be overlaid in the same block of memory. T

are several ways in which buffers can be overlaid; the simplest is to have one memory segm

size

(7)

for the subchain  (as explained in Section 2.1). We follow this computation w

, (8)

to determine amount of memory to use for buffering in the subchain . In gen

this gives us a combination of overlaid and non-overlaid buffers for different sub-chains. Inc

rating the techniques of this section with more general overlaying schemes is a topic for fu

work.

Finally, the dynamic programming algorithm can be applied to arbitrary acyclic graphs with

delays; we refer the reader to [7].

8 Acyclic SDF Graphs

Consistent acyclic SDF graphs are guaranteed to have single appearance schedules

flat schedule corresponding to any topological sort is a valid single appearance schedule. F

trary graphs (not necessarily acyclic), necessary and sufficient conditions are given in [4] fo

gle appearance schedules to exist, and efficient algorithms are given to find such schedule

whenever they exist. These techniques require decomposing each strongly connected com

into an acyclic graph that consists ofclusters, or supernodes, of smaller strongly connected co

ponents, constructing a single appearance schedule for this acyclic graph, and then recurs

applying this procedure to each of the clustered strongly connected components to obtain t

schedule for the corresponding supernode. For each decomposed strongly connected com

Ψ∗

CSi j,
αk( )produced Ak( )q× i k j<≤( ){ }( )max

Ai( )q Ai 1+( )q … Aj( )q, , ,{ }( )gcd
---------------------------------------------------------------------------------------------------------≡

Ai Ai 1+ … Aj, , ,

b′ i j,[ ] b i j,[ ] CSi j,,{ }( )min=

Ai Ai 1+ … Aj, , ,
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there is a “top-level” cost associated with the edges that are not contained in any of the ass

clusters, and thus the total buffering cost of a general SDF graph involves the top-level cos

each strongly connected component in the cluster hierarchy, in addition to the buffering cos

each acyclic graph that occurs in the hierarchy. Furthermore, to attain the lowest buffering c

may be necessary to increase the extent of some strongly connected components by clust

neighboring actors together with actors in the strongly connected components before deco

ing the components [4]. Hence, graphs with cycles are significantly more difficult to constru

buffer-optimal single appearance schedules for than acyclic graphs.

The number of topological sorts in an acyclic graph can be exponential in the size o

graph; for example, a complete bipartite graph with  nodes has  possible topologic

sorts. Each topological sort gives a valid flat single appearance schedule. An optimal repar

sization of this schedule is then computed by applying the dynamic programming algorithm

problem is therefore to determine the topological sort that will give the lowest buffer memor

requirement when nested optimally. For example, the graph in Figure 6 shows a bipartite g

with 4 nodes. The repetitions vector for the graph is given by , and there are

possible topological sorts for the graph. The flat schedule corresponding to the topological 

 is given by . This can be parenthesized as

, and this schedule has a buffer memory requirement of 208. Th

flat schedule corresponding to the topological sort , when parenthesized optimally, g

the schedule , with a buffer memory requirement of 120.

2n n!( )2

12 36 9 16, , ,( )T

A

B D

C
3 4

4
4

1 3

94

Figure 6. A bipartite SDF graph to illustrate the different buffer
memory requirements possible with different topological sorts.

ABCD ∞ 12A( ) 36B( ) 9C( ) 16D( )( )

∞ 3 4A( ) 3 4B( )C( )( ) 16D( )( )

ABDC

∞ 4 3A( ) 9B( ) 4D( )( ) 9C( )( )
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8.1 Complexity

Here we show that the problem of constructing buffer-optimal single appearance sch

for acyclic graphs with delays is NP-complete in general. In fact, we prove the resu

homogenous SDF (HSDF) graphs (these are graphs where each actor produces and con

token). Since any schedule for an HSDF graph is a single appearance schedule, it follows 

problem for general acyclic SDF graphs, with delays allowed on edges, is also NP-complete

follows that computing a minimum buffer schedule for an arbitrary acyclic SDF graph with d

allowed, without the single appearance restriction is also NP-complete. Finally, cyclic grap

an even more general case, so both the single appearance and non-single appearanc

minimal scheduling problems for HSDF and SDF graphs are NP-complete. The only rem

interesting class of graphs is the set of delayless acyclic (but not well-ordered) SDF grap

homogenous). For this class, the complexity of the minimum buffer scheduling problems re

open.

Definition 1: The AHSDF MIN BUFFER problem is the following

Instance: An acyclic, directed graph  where every edge has 0 or 1 delays, an

integer .

Question: Is there a schedule for  that has a total buffering memory requirement of

less?

Remark: Note that since we have a buffer on every arc, the buffering memory requirement 

be at least .

Definition 2: The vertex cover (VC) problem is the following:

Instance: An undirected graph , and integer .

Question: Is there a subset , with , such that  covers every edge; that is

every edge , at least one of  is in ?

Remark: For an undirected graph, if  is an edge, so is .

Theorem 4: VC is NP-complete [12].

Theorem 5: AHSDF MIN BUFFER is NP-complete.

G V A,( )=

K

G A K+

A

G' V' A',( )= k

V'' V'⊂ V'' k≤ V''

u v,( ) A∈ u v, V''

u v,( ) v u,( )
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Proof: Membership in NP is easy to see since we just have to simulate the schedule to see

buffering requirement is met; this can be done in linear time since the schedule has length

Completeness follows from a reduction of vertex cover. From an arbitrary instance

, of the VC problem, we construct the instance  of AHSDF MIN BUFFER as

follows. Let . Let ,

, , and . Each edge in  has one delay, a

each edge in  has 0 delays. We refer to a vertex of the form  as a “0” vertex and to a v

of the form  as a “1” vertex. Clearly, this is an instance of AHSDF MIN BUFFER; the grap

acyclic because all edges are directed from a “1” vertex to a “0” vertex. We claim that this

instance of AHSDF MIN BUFFER has a solution iff the VC instance has a solution.

Suppose that there is a solution  to the VC instance. Let  be the set of edges def

. Note that . Delete these edges from , reverse the rest o

edges in , and remove the delays from them to get the graph . Clearly  is delayles

claim that it is also acyclic. Suppose that it were not acyclic. Then there would be a directed

of the form  in . Without loss in generality, assume that

for some . A “0” vertex of this type can only have an outgoing edge directed to the vertex

; hence, . A “1” vertex can only have an outgoing edge to some “0” vertex; he

 for some . Continuing this argument, it can be seen that the length of the cycle 

be even, and that there are  “0” vertices and for each such vertex ,  is also in the

None of these vertices  can be in  since all edges of the form  were deleted for

and only the remaining edges (from ) were reversed to yield edges of the form

since  is an edge in the above cycle, it follows that  is an edge in , but it i

covered by . Hence,  cannot be a solution to the VC instance, giving us a contradiction

since  is acyclic and delayless, it has a valid schedule. This schedule is also a valid sche

 since it respects all the precedence constraints of the delayless arcs in . On all arcs th

reversed, the sink actor in the original graph  is a source actor in ; hence, on all these a

buffer size is 1 in . For the deleted arcs, we could have the source actor firing before th

actor, and on these arcs the buffer size would be 2. Since there are at most  deleted arcs,

buffering requirement is at most .

V

G' V' A',( )=

k G V A,( )=

V v0 v1 : v V'∈,{ }= A1 v1 v0,( ) : v V'∈{ }=

A0 v1 w0,( ) : v w,( ) A'∈{ }= A A0 A1∪= K k= A1

A0 v0

v1

U W

W v1 v0,( ) : v U∈{ }= W A1⊂ G

A1 G'' G''

u1 u2 … um u1→ → → → G'' u1 v0=

v0 v1

G'' u2 v1=

u3 w0= w0

m 2⁄ v0 v1

v U u1 u0,( ) u U

A1 v0 v1,( )

v1 w0,( ) v w,( ) G'

U U

G''

G G

G G''

G

K

A K+
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Now suppose that the AHSDF MIN BUFFER instance has a schedule with buff

requirement of at most . This means that there are at most  arcs that have delays

the source actor of the arc is fired before the sink actor in the schedule; denote this set of

. For all other arcs that have delays, the sink actor fires before the source actor. Since 

with a delay in  is of the form , let the set  be defined as

Clearly, . We claim that  is a vertex cover for . Indeed, suppose it were

Then there would be an edge  in  where neither  is in . This means that neit

 is in . This means that in the schedule for ,  fires before , and  f

before . But since  is an edge in ,  and  are delayless edges i

meaning that  must fire before , and  must fire before  in any valid schedule. Pu

this together, we see that we have a cyclic dependency  that ca

possibly be respected by the schedule, thereby contradicting our assumption that the set

a vertex cover.■

8.2 A Heuristic: RPMC

A heuristic solution for this problem can be based on extending the main idea that w

used in the heuristic for the chain-structured graph case: find thecut (a partition of the set of

actors) of the graph across which the minimum amount of data is transferred and schedule

resulting halves recursively. The cut that is produced must have the property that all edges

cross the cut have the same direction. This is to ensure that we can schedule all nodes on

side of the partition before scheduling any on the right side. In addition, we would also like 

impose the constraint that the partition that results be fairly evenly sized. This is to increase

possibility of having gcd’s that are greater than unity for the repetitions of the nodes in the s

produced by the partition, thus reducing the buffer memory requirement. To see that having

greater than one for the subsets produced is beneficial to memory reduction, consider figur

we formed the partition that had actor  on one side of the cut and actors  on the o

side of the cut, we get the loop bodies  and  and do not immediate

see a reduction in buffering requirements since the repetitions of  are co-prime. How

a partition with  on the same side of the cut immediately gives us a reduction since 

A K+ K

W

G v1 v0,( ) U U v : v1 v0,( ) W∈{ }=

U W K≤= U G'

v w,( ) G' v w, U

v1 v0,( ) w1 w0,( ), W G v0 v1 w0

w1 v w,( ) G' v1 w0,( ) w1 v0,( ) G

v1 w0 w1 v0

v0 v1 w0 w1 v0→ → → →

U

B A C D, ,

36B( ) 12A( ) 9C( ) 16D( )( )

A C D, ,

A B C, ,
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schedule body  can be factored as , and this reduces

memory for the subgraph consisting of actors . In general, by constraining the sizes 

partition, we increase the probability of being able to factor schedule bodies so that a reduc

memory is obtained in each stage of the recursion. Needless to say, this is a greedy appro

which is likely to fail sometimes but has proved to be a good rule of thumb for most instanc

8.3 A Heuristic to find Minimum Legal Cuts into Bounded Sets

Suppose that  is an SDF graph, and let  and . A cut

is a partition of the vertex set  into two disjoint sets  and . Define

and  to be the subgraphs produced by the cut. The cut islegal if for all

edges crossing the cut (that is all edges that are not contained in  nor

), we have  and . Given abounding constant

, the cut results in bounded sets if it satisfies

, . (9)

The weight of an edge  is defined as

. (10)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then

find the minimum weight legal cut into bounded sets for the graph with the weights defined

(10). Since the related problem of finding a minimum cut (not necessarily legal) into bounde

is NP-complete [12], and the problem of finding an acyclic partition of a graph is NP-compl

[12], we believe this problem to be NP-complete as well even though we have not discover

proof. Kernighan and Lin [16] devised a heuristic procedure for computing cuts into bounde

but they considered only undirected graphs. Methods based on network flows [11] do not w

because the minimum cut given by the max-flow-min-cut theorem may not be legal and ma

be bounded. The graph in Figure 7, where the weight on the edge denotes the capacity of 

12A( ) 36B( ) 9C( )( ) 3 4A( ) 12B( ) 3C( )( )

A B C, ,

G V G( )actors= E G( )edges= G

V VL VR GL VL( )subgraph=

GR VR( )subgraph=

e VL( )subgraph

VR( )subgraph e( )source VL∈ e( )sink VR∈

K V≤

VR K≤ VL K≤

e

w e( ) qG e( )source( ) e( )produced×=
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edge, illustrates this. The maximum flow into vertex  is seen to be  (1 unit of flow along t

path , 1 unit along  and 1 unit along ) and this corresponds to the cut wher

 and . The value of the cut is given by  (note th

the definition of the value of a cut in network flow theory is defined as sum of the capacities 

edges crossing the cut in the  to  direction only) but the cut is not legal because of the re

edge from  to . Indeed, the minimum weight legal cut for this graph has a value of , c

sponding to the cut where .

Therefore, we give a heuristic solution for finding legal minimum cuts into bounded s

The heuristic is to examine the set of cuts produced by taking a vertex and all of itsdescendants as

the vertex set  and the set of cuts produced by taking a vertex and all of itsancestorsas the set

. For each such cut, an optimization step is applied that attempts to improve the cost of t

A vertex  is defined to be adescendant of a vertex  if there is a directed path from  to  an

a vertex  is aancestor of vertex  if there is a directed path from  to . A vertex  isindepen-

dent of  if  is neither a descendant nor an ancestor of . Define the set of ancestors as

, and descendants as , an

consider a cut produced by setting  for some vertex . Consider

set  of independent,boundary nodes of  in . Aboundary node in  is a node that is

not the predecessor of any other node in . Following Kernighan and Lin [16], for each of 

s t

A

B D

C
1

10

10

10

10

1

1

10

Minimum
cut

Figure 7. The min-cut given by the max-flow-min-cut
theorem is not equal to the min-legal cut for this graph.

t 3

sBCt sADt sBDt

VL s B C, ,{ }= VR A D t, ,{ }= 1 1 1+ + 3=

s t

A C 11

VL s{ }=

VR

VL

v u u v

v u v u u

v u v

ancs v( ) v{ } ancestors v( )∪= desc v( ) v{ } descendants v( )∪=

VL ancs v( ) VR, V \ VL= = v

TR v( ) v VR VR

VR
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procedure MinimumLegalCutIntoBoundedSets

input : weighted digraph , and a bound b. output : .

for each

,

for  each

/* Cost difference if this vertex is moved over */
end for

while  (  &  & )

end while

if  ( ), , end if

,

for each

end for
/* Carry out the same type of steps as above to determine the partition */

end for

/*  correspond to the minimum legal cut. */

G V A,( )= VR VL,

u V∈
S desc u( )= S V\S=

cutVa l cut S S,( )=

TL u( ) independent u( ) boundary S( )∩←

a TL u( )∈

E a( ) w a x,( )
x S∈
∑=

I a( ) w
x S∈
∑ x a,( )=

D a( ) I a( ) E a( )–=

D Idx,[ ] sort D( )←
k 1←

S b< D k( ) 0< k TL u( )<

S S Idx k( ){ }∪←
S S\ Idx k( ){ }←
cutVa l cutVa l D k( )+←
k k 1+←

minCutVa l min minCutVa l cutVa l,( )←
mincutVa l cutVa l≡ VL S VR, S← ←

P a ncs u( )= P V \ P=

TR u( ) independent u( ) boundary P( )∩←

a TR u( )∈

E a( ) w x a,( )
x P∈
∑=

I a( ) w
x P∈
∑ a x,( )=

D a( ) I a( ) E a( )–=

minCutVa l VL V R, ,

Figure 8. Algorithm for finding minimum legal cuts into bounded sets.
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nodes, we can compute the cost difference that results if the node is moved into . This c

ference for a node  in  is defined to be the difference between the total weight of all

arcs out of  and the total weight of all arcs into . We then move those nodes across that 

the cost. We apply this optimization step for all cuts of the form  and  for ea

vertex  in the graph and take the best one as the minimum cut. The algorithm is shown in 

8. Since a greedy strategy is being used to move nodes across, and only the boundary nod

considered, examples can be constructed where the heuristic will not give optimal cuts. Sin

there are  nodes in the graph,  cuts are examined. Moreover, the cut produced will h

bounded sets since cuts that produce unbounded sets are discarded. For example, one of 

examined by the heuristic for the graph in Figure 7, with bounding constant , is

. This cut has a value of 30. The set of independent, boundary nodes of

 is , and the cost difference for  is given by . Hence,  will not be mov

over. The cut produced by considering  has a value of 12. The cost

ference for the independent vertex  is given by ; hence,  is moved into

yield a cut of value 11, and thus, in this example, the heuristic finds the minimum weight leg

Delays on arcs are handled as follows. If the number of delays  on some arc  sa

, (11)

then the size of the buffer on this arc need not be any greater than . However, if  crosse

cut, then the size of the buffer will become . Hence, an arc

that has  delays, where  satisfies equation 11, istagged; a tagged arc does not affect the lega

ity of the cut (in other words, the heuristic ignores tagged arcs when it constructs the legal c

affects the cost of the cut: if a tagged arc crosses the cut in the reverse direction, the cost of

is given by , and if the tagged arc crosses the cut in the forward direction, the cost is give

. This will discourage the heuristic is choosing partitions

where tagged arcs cross the cut in the forward direction.

VL

a TR v( )

a a

ancs v( ) desc v( )

v

V 2 V

K V 1–=

ancs A( ) s A,{ }= A

VR B{ } B 11 10– 1= B

ancs C( ) s A B C, , ,{ }=

D 10 11– 1–= D VL

D e

D qG e( )source( ) e( )produced×≥

D e

D qG e( )source( ) e( )produced×+

D D

D

D qG e( )source( ) e( )produced×+
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The running time of the heuristic for computing the legal minimum cut into bounded 

can be determined as follows. Computing the descendents or ancestors of a vertex can be 

using breadth-first-search; this takes time . The breadth-first-search will also gi

the independent nodes in the complement set. Finding and computing the cost difference fo

of the boundary nodes in the set of independent nodes takes at most  steps. Sorting 

differences takes  steps at most, and moving the nodes that reduce the cos

 time at most. Since a cut is determined for every vertex twice, the total running time

.

The heuristic for generating an schedule for the acyclic graph now proceeds by part

ing the graph by computing the legal minimum cut and forming the schedule body

where ,  and  are schedule bodie

for  and  respectively. The schedule bodies  are obtained recursively by partitio

 and . Once the entire schedule body has been constructed, the dynamic programm

algorithm is run to re-parenthesize the schedule to possibly give a better nesting. Letting

the running time for this heuristic can be determined by solving the recurrence

, where  and . If we

choose the bound  in (9) to be a constant factor of the graph size, for example, 3/4, then it

shown easily that . If we do not bound the size of the sets

be a constant factor of the graph size, then the worst case running time is

. The reparenthesizing step that is run at the end uses the dynam

programming algorithm and requires  running time. Thus the overall running time is

given by .

8.4 Experimental Results

The heuristic was tested on hundreds of randomly generated 50 vertex SDF graphs

random graphs were sparse, having  edges on average. The numbers produced and co
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on the arcs were restricted to be less than or equal to 10 in order to prevent huge rate chan

thus, repetitions vectors) from occurring. The bounding constant  was used i

heuristic for generating legal minimum cuts into bounded sets; other bounds gave inferior re

The costs given by the heuristic were compared to the best cost determined by just constru

number of random topological sorts, and nesting each optimally to determine the cost (we c

a random schedule). Since a random topological sort can be found in linear time, the time to

mine a random schedule that has been nested optimally is given by . A measureme

the actual running time of the heuristic on a 50 node graph shows that we can construct an

ine 2 random schedules in approximately the same time that the heuristic takes to construc

schedule (including the dynamic programming post-optimization step). Hence, a fair compa

is to pick the better of 2 random schedules and compare it to the heuristic answer. We also

the heuristic against another heuristic described in detail in [8], outlined below.

One of the earliest techniques for jointly optimizing both code and data requirement

SDF graphs was the PGAN (pairwise grouping of adjacent nodes) approach [5]. This approach,

which was devised for general SDF graphs (not necessarily acyclic), involves constructing 

ter hierarchy by clustering two vertices at each clustering step. The cluster selection is bas

frequency of occurrence — the pair of adjacent actors is selected whose associated subgr

the highest repetition count. In [5] it is shown that the approach naturally favors nested loop

“flat” hierarchies, and thus reduces the buffer memory requirement over flat schedules. We

evaluated the APGAN heuristic [8] (which is an efficient implementation of PGAN for acycli

graphs) against RPMC and randomly generated schedules. In each case, the dynamic pro

ming extension of Section 7 was applied as a post-processing step to optimally reparenthes

APGAN schedule. Timing measurements show that the running time of APGAN and dynam

programming is also equivalent to constructing 2 random schedules. Table 1 summarizes t

formance of these heuristics, both against each other, and against randomly generated sch

As can be seen, RPMC outperforms APGAN on these random graphs almost two-thirds of

time. The comparison against 4 random schedules shows that in general, the relative perfo

of these heuristics goes down if a large number of random schedules are inspected. Of cou

also entails a proportionate increase in running time. However, we observed that even whe

K 3 V 4⁄( )=

O V 3( )
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heuristic produces schedules worse than randomly constructed ones, it is still very close to

best random schedule, whereas the random schedules can produce very bad schedules. H

heuristic gives good schedules almost all the time, even if slightly better ones could be con

structed by examining a large number of random schedules. It should be noted that APGAN

optimal for a class of acyclic SDF graphs that includes many practical systems; this optima

result can be found in [8]. The study in [8] and the study done here allows us to conclude th

APGAN and RPMC are complimentary heuristics; RPMC performs well when the graphs h

irregular topologies and irregular rate changes, while APGAN performs well on graphs with 

regular structures and rate changes. A more extensive experimental survey can also be fou

[6]. All of the algorithms developed in this paper have been implemented in the Ptolemy en

ment [10].

8.5 An Example for Acyclic Graphs

Figure 9 shows the implementation of a non-uniform, near-perfect reconstruction filt

bank in Ptolemy. The lowpass filters retain 2/3 of the spectrum while the highpass filters re

3 (instead of the customary 1/2,1/2 for the octave QMF). Rate changes in the graph are an

wherever the number produced or consumed is different from unity. The gain actors on the

between the analysis and synthesis sections enable the use of the filterbank as a simple 4

Table 1: Performance of the two heuristics on random graphs.

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < min(4 random) 87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%
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equalizer. The repetitions vector of this graph is given by

. The heu-

ristic, when run on this graph, obtains a schedule with a buffering cost of 100; the worst ca

schedule (for any topological sort) would have a buffering cost of 438. The best schedule ob

by examining 30 random topological sorts had a cost of 125 for this graph and the best sch

obtained by examining 60 random topological sorts had a cost of 120. The APGAN heurist

found a schedule of cost 117. This example clearly shows that, in practice, the performance

new heuristic is likely to be better than that suggested by its performance on random graph

9 Related Work

In [17], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SD

calledcyclo-static dataflow. In cyclo-static dataflow, the number of tokens produced and con-

sumed by an actor can vary between firings as long as the variations form a certain type of

odic pattern. For example, consider an actor that routes data received from a single input t

of two outputs in alternation. In cyclo-static dataflow, this operation can be represented as a

that consumes one token on its input edge, and produces tokens according to the periodic

 (one token produced on the first invocation, none on the second, one on the th

and so on) on one output edge, and according to the complementary pattern  o

other output edge. A cyclo-static dataflow graph can be compiled as a cyclic pattern of pure

graphs, and static periodic schedules can be constructed in this manner. A major advantag
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Figure 9. Non-uniform filterbank example. The produced/consumed parameters are
shown whenever they are different from unity.
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cyclo-static dataflow is that it can eliminate large amounts of token traffic arising from the ne

generate dummy tokens in corresponding (pure) SDF representations. This leads to lower 

ory requirements and fewer run-time operations. Although cyclostatic dataflow can reduce 

amount of buffering for graphs having certain multirate actors like explicit downsamplers, it i

clear whether this model can in general be used to get schedules that are as compact as s

appearance schedules for pure SDF graphs but have lower buffering requirements than tha

from techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synch

nous dataflow graph in a parallel processing context is explored by Govindarajan and Gao i

Here the goal is to minimize the buffer cost without sacrificing throughput — just as the goa

this paper is to minimize buffering cost without sacrificing code compactness. Thus, the tec

niques of [14] address the problem of selecting a schedule that minimizes buffering cost fro

among the set ofrate-optimalschedules. This problem does not take code space constraints 

account. Instead, it focuses on another dimension of scheduling that the techniques of our 

do not consider — parallel processing.

10 Conclusion

In this paper, we have presented algorithms for constructing schedules that minimiz

buffer usage from among the schedules that minimize program memory usage (called buffe

mal single appearance schedules) for programs expressed as SDF graphs. We defined the

R-schedules and showed that there is always an R-schedule that is a buffer-optimal single 

ance schedule. It is possible to construct buffer-optimal R-schedules for the class of well-o

SDF graphs by using a dynamic programming algorithm. We showed the efficacy and the u

ness of our algorithm on a practical example. We also showed that the problem of determin

buffer-optimal single appearance schedules for general acyclic SDF graphs is NP-complete

Instead, we have presented heuristics that perform well in practice.

There are still many open problems left to be solved in this area of compiler design 

SDF graphs. It would be interesting to see what effect a better heuristic for finding minimum

weight legal cuts into bounded sets would have on the quality of the schedules. Recall that
40
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very idea of using minimum cuts is a heuristic; hence, even if we were able to determine th

mal legal minimum cuts (which is unlikely since that problem appears to be NP-complete a

well), we wouldn’t always produce buffer-optimal single appearance schedules. However, it 

improve the quality of the schedules somewhat. We also gave some reasons why the prob

constructing buffer-optimal single appearance schedules becomes even more complicated

arbitrary SDF graphs. Heuristic solutions for this problem are a topic for further study. Fina

techniques for systematically trading program compactness for buffer usage are also a top

further study.
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