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1. Modeling and Design
The Ptolemy project studies heterogeneous modeling and design of concurrent systems. Th

is on embedded systems, particularly those that mix technologies, including for example analog a
digital electronics, hardware and software, and electronics and mechanical devices (including M
microelectromechanical systems). The focus is also on systems that are complex in the sense t
mix widely different operations, such as signal processing, feedback control, sequential decision
ing, and user interfaces.

Modelingis the act of representing a system or subsystem formally. A model might be mathe
cal, in which case it can be viewed as a set of assertions about properties of the system such as
tionality or physical dimensions. A model can also be constructive, in which case it defin
computational procedure that mimics a set of properties of the system. Constructive models ar
used to describe behavior of a system in response to stimulus from outside the system. Cons
models are also called executable models.

Designis the act of defining a system or subsystem. Usually this involves defining one or m
models of the system and refining the models until the desired functionality is obtained within a
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models m
immutable, in the sense that they describe subsystems, constraints, or behaviors that are ex
imposed on a design. For instance, they may describe a mechanical system that is not under des
must be controlled by an electronic system that is under design.

Executable models are sometimes calledsimulations, an appropriate term when the executab
model is clearly distinct from the system it models. However, in many electronic systems, a mode
starts as a simulation mutates into a software implementation of the system. The distinction be
the model and the system itself becomes blurred in this case. This is particularly true for emb
software.

Embedded software is software that resides in devices that are not first-and-foremost compu
is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft
odeling and Design 1
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security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing s
appliances, etc. A technically active person probably interacts regularly with more pieces of emb
software than conventional software.

A major emphasis in the Ptolemy project is on the methodology for defining and pro-
ducing embedded software together with the systems within which it is embedded.

Executable models are constructed under amodel of computation, which is the set of “laws of
physics” that govern the interaction of components in the model. If the model is describing a mec
cal system, then the model of computation may literally be the laws of physics. More commonly,
ever, it is a set of rules that are more abstract, and provide a framework within which a designer
models. A set of rules that govern the interaction of components is called thesemanticsof the model of
computation. A model of computation may have more than one semantics, in that there might b
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on the type of model being constructe
example, for a purely computational system that transforms a finite body of data into another
body of data, the imperative semantics that is common in programming languages such as C
Java, and Matlab will be adequate. For modeling a mechanical system, the semantics needs to
to handle concurrency and the time continuum, in which case a continuous-time model of compu
such that found in Simulink, Saber, Hewlett-Packard’s ADS, and VHDL-AMS is more appropriat

The ability of a model to mutate into an implementation depends heavily on the model of co
tation that is used. Some models of computation, for example, are suitable for implementation o
customized hardware, while others are poorly matched to customized hardware because of their
sically sequential nature. Choosing an inappropriate model of computation may compromise the
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality of a system design.

For embedded systems, the most useful models of computation handle concurrency and tim
is because embedded systems consist typically of components that operate simultaneously a
multiple simultaneous sources of stimuli. In addition, they operate in a timed (real world) environm
where the timeliness of their response to stimuli may be as important as the correctness
response.

The objective in Ptolemy II is to support the construction and interoperability of exe-
cutable models that are built under a wide variety of models of computation.

2. Models of Computation
There are a rich variety of models of computation that deal with concurrency and time in diffe

ways. In this section, we outline some of the most useful models for embedded systems. All of
will lend a semantics to the same bubble-and-arc, or block-and-arrow diagram shown in figure 2

2.1  Differential Equations

One possible semantics for the syntax in figure 2.1 is that of differential equations. The arcs
sent continuous functions of a continuum that is interpreted as time. The bubbles represent re
Ptolemy Project 2
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between these functions. The job of a simulator is to find a fixed-point, i.e., a set of functions tha
isfy all the relations.

Differential equations are excellent for modeling analog circuits and many physical systems
is the model of computation used in Simulink, Saber, and VHDL-AMS, and is closely related to th
Spice circuit simulators. However, they have disadvantages. Since they directly describe a ph
system, they are tightly bound to an implementation, leaving few implementation options. More
they are only applicable to relatively well-understood technologies, where lumped-parameter m
ing is appropriate. They must be generalized to partial differential equations for less understood
nologies, where solution techniques such as finite elements can be quite costly. For well-unde
technologies, they can be expensive to simulate compared to digital representations of comp
functionality (and hence, they can be expensive to implement in software).

Embedded systems frequently contain components that are best modeled using differentia
tions, such as MEMS and other mechanical components, analog circuits, and microwave ci
These components, however, interact with an electronic system that may serve as a controll
recipient of sensor data. This electronic system may be digital, in which case there is a fundam
mismatch in models of computation. Joint modeling of a continuous subsystem with digital electr
is known asmixed signal modeling.

2.2  Difference Equations

Differential equations can be discretized to get difference equations, a commonly used mo
computation in digital signal processing. This model of computation can be further generalized to
port multirate difference equations. In either case, a globalclock defines the discrete points at whic
signals have values (at theticks).

Difference equations are considerably easier to implement in software, and hence leave mor
dom of implementation. Their key weaknesses are the global synchronization implied by the c
and the awkwardness of specifying irregularly timed events and control logic.

Thesynchronous dataflow(SDF) domain in Ptolemy II is extended with a model of time to mod
difference equations. Dataflow models are discussed below in section 2.7.

2.3  Finite-State Machines

In FSMs, bubbles represent systemstateand arcs represent statetransitions. The simple FSM
model of computation is not concurrent. Execution is a strictly ordered sequence of state transi

FSM models are excellent for control logic in embedded systems, particularly safety-critical
tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid su

A

C

B

FIGURE 2.1.  A singlesyntax (bubble-and-arc or block-and-arrow diagram)
can have a number of possiblesemantics (interpretations).
Heterogeneous Concurrent Modeling and Design 3
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behavior. Moreover, FSMs are easily mapped to either hardware or software implementations.
FSM models have a number of key weaknesses. First, at a very fundamental level, they are

expressive as the other models of computation described here. They are not sufficiently rich to de
all partially recursive functions. However, this weakness is acceptable in light of the formal ana
that becomes possible. Many questions about designs are decidable for FSMs and undecida
other models of computation. A second key weakness is that the number of states can get ver
even in the face of only modest complexity. This makes the models unwieldy.

The latter problem can often be solved by using FSMs in combination with concurrent mode
computation. This was first noted by David Harel, who introduced that Statecharts formalism. S
charts combine a loose version of synchronous-reactive modeling (described below) with FSM
FSMs have also been combined with differential equations, yielding the so-calledhybrid systems
model of computation [9].

A major (ongoing) result of the Ptolemy project has been to show that FSMs can be hierarch
combined with a huge variety of concurrent models of computation. We call the resulting forma
“*charts” (pronounced “starcharts”) where the star represents a wildcard [7].

2.4  Synchronous/Reactive Models

In the synchronous/reactive (SR) model of computation [1], the arcs represent data values th
aligned with global clock ticks. Thus, they are discrete signals, as with difference equations, but u
difference equations, a signal need not have a value at every clock tick. The bubbles represent re
between input and output values at each tick, and are usually partial functions with certain tec
restrictions to ensure determinacy. Examples of languages that use the SR model of comp
include Esterel [3], Signal [2], Lustre [5], and Argos [16].

SR models are excellent for applications with concurrent and complex control logic. Becau
the tight synchronization, safety-critical real-time applications are a good match. However,
because of the tight synchronization, some applications are overspecified in the SR model, limiti
implementation alternatives. Moreover, in most realizations, modularity is compromised by the ne
seek a global fixed point at each clock tick.

2.5  Discrete-Event Models

In discrete-event (DE) models of computation, the arcs represent sets ofeventsplaced in time. An
event consists of avalueand time stamp. This model of computation is popular for specifying hard
ware and simulating telecommunications systems, and has been realized in a large number of
tion environments, simulation languages, and hardware description languages, including VHD
Verilog. Unlike the SR model, there is no global clock tick, but like SR, differential equations, and
ference equations, there is a globally consistent notion of time.

DE models are excellent descriptions of concurrent hardware, although increasingly the glo
consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems w
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clo
rates. A key weakness is that it is relatively expensive to implement in software, as evidenced
relatively slow simulators.

2.6  Synchronous Message Passing

In synchronous message passing, processes communicate in atomic, instantaneous action
Ptolemy Project 4
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rendezvous. If two processes are to communicate, and one reaches the point first at which it is rea
communicate, then it stalls until the other process is ready to communicate. “Atomic” means th
two processes are simultaneously involved in the exchange, and that the exchange is initiated an
pleted in a single uninterruptable step. Examples of rendezvous models include Hoare’scommunicat-
ing sequential processes(CSP) [11]and Milner’scalculus of communicating systems(CCS) [19]. This
model of computation has been realized in a number of concurrent programming languages, inc
Lotos and Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is
element, such as client-server database models and multitasking or multiplexing of har
resources. A key weakness of rendezvous-based models is that maintaining determinacy can b
cult. Proponents of the approach, of course, cite the ability to model nondeterminacy as a key str

2.7  Asynchronous Message Passing

In asynchronous message passing, processes communicate by sending messages through
that can buffer the messages. The sender of the message need not wait for the receiver to be
receive the message. There are several variants of this technique, but we focus on those tha
determinate computation, namely Kahn process networks [12] and dataflow models.

In a process network (PN) model of computation, the arcs represent sequences of data
(tokens), and the bubbles represent functions that map input sequences into output sequences
technical restrictions on these functions are necessary to ensure determinacy, meaning t
sequences are fully specified. Dataflow models, popular in signal processing, are a special case
cess networks [14].

PN models are excellent for signal processing. They are loosely coupled, and hence relative
to parallelize or distribute. They can be implemented efficiently in both software and hardware
hence leave implementation options open. A key weakness of PN models is that they are awkw
specifying control logic.

Several special cases of PN are useful in certain circumstances. Dataflow models constru
cesses of a process network as sequences of atomic actorfirings. Synchronous dataflow (SDF) is a par
ticularly restricted special case with the extremely useful property that deadlock and boundedne
decidable. Boolean dataflow (BDF) is a generalization that sometimes yields to deadlock and b
edness analysis, although fundamentally these questions are undecidable. Dynamic dataflow
uses only run-time analysis, and thus makes no attempt to statically answer questions about de
and boundedness. The general case, process networks (PN), is implemented in Ptolemy II usi
threads for the processes.

2.8  Timed CSP and Timed PN

CSP and PN both involve threads that communicate via message passing, synchronously
former case and asynchronously in the latter. Neither model intrinsically includes a notion of
which can make it difficult to interoperate with models that do include a notion of time. In fact, m
sage events are partially ordered, rather than totally ordered as they would be were they place
time line.

Both models of computation can be augmented with a notion of time to promote interopera
Threads assume that time does not advance while they are active, but can advance when they
inputs, outputs, or explicitly indicate that time can advance. By this vehicle, additional constrain
imposed on the order of events, and determinate interoperability with timed models of compu
Heterogeneous Concurrent Modeling and Design 5
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3. Choosing Models of Computation
The rich variety of concurrent models of computation outlined in the previous section ca

daunting to a designer faced with having to select them. Most designers today do not face this
because they get exposed to only one or two. This is changing, however, as the level of abstract
domain-specificity of design software both rise. We expect that sophisticated and highly visua
interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of
Some are very explicit by taking time to be a real number that advances uniformly, and placing e
on a time line or evolving continuous signals along the time line. Others are more abstract an
time to be discrete. Others are still more abstract and take time to be merely a constraint impo
causality. This latter interpretation results in time that is partially ordered, and explains much o
expressiveness in process networks and rendezvous-based models of computation. Partially
time provides a mathematical framework for formally analyzing and comparing models of com
tion [15].

A grand unified approach to modeling would seek a concurrent model of computation that s
all purposes. This could be accomplished by creating amelange, a mixture of all of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools w
be difficult to design.

Another alternative would be to choose one concurrent model of computation, say the rende
model, and show that all the others are subsumed as special cases. This is relatively easy to do
ory. Most of these models of computation are sufficiently expressive to be able to subsume most
others. However, this fails to acknowledge the strengths and weaknesses of each model of co
tion. Differential equations, for instance, are very good at describing the interaction of point mas
a model of a MEMS system, but not as good at describing the discrete control logic that may b
mately controlling the actuators in the MEMS system. Similarly, finite-state machines are go
modeling at least simple control logic, but hopelessly inadequate for modeling the interaction of
masses. Thus, to design interesting systems, designers need to use heterogeneous models.

4. Visual Syntaxes
Visual depictions of electronic systems have always held a strong human appeal, making

extremely effective in conveying information about a design. Many of the domains of interest in
Ptolemy project use such depictions to completely and formally specify models.

One of the principles of the Ptolemy project is that visual depictions of systems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternativesyntaxto associate with the semantics of a model of com
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, part
when they are judiciously combined with textual syntaxes.

Visual representations of models have a mixed history. In circuit design, schematic diagrams
to be routinely used to capture all of the essential information needed to implement some sy
Schematics are often replaced today by text in hardware description languages such as VHDL
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capt
Ptolemy Project 6
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the behavior of software. Recently, a number of innovative visual formalisms have been garnerin
port, including visual dataflow, hierarchical concurrent finite state machines, and object models
UML visual language for object modeling has been receiving a great deal of attention, and in f
used fairly extensively in the design of Ptolemy II itself.

A subset of visual languages that are recognizable as “block diagrams” represent concurre
tems. There are many possible concurrency semantics (and many possible models of compu
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to
for system specification and design. Ptolemy II supports exploration of the possible concur
semantics. A principle of the project is that the strengths and weaknesses of these alternative
them complementary rather than competitive. Thus, interoperability of diverse models is essent

5. Ptolemy II
Ptolemy II is a complete, from the ground up, redesign of the Ptolemy 0.x software environ

[4], which supports heterogeneous modeling and design of concurrent systems. It offers a unified
structure for implementations of a number of models of computation. The overall architecture co
of a set of packages that provide generic support for all models of computation and a set of pac
that provide more specialized support for particular models of computation. Examples of the fo
include packages that contain math libraries, graph algorithms, an interpreted expression lan
signal plotters, and interfaces to media capabilities such as audio. Examples of the latter include
ages that support clustered graph representations of models, packages that support executable
anddomains, which are packages that implement a particular model of computation.

5.1  Package Structure

The package structure is shown in figure 5.1. This is a UML package diagram [22]. The nam
each package is in the tab at the top of each box. Subpackages are contained within their paren
age. Dependencies between packages are shown by dotted lines with arrow heads. For exampactor
depends onkernel.eventwhich depends onkernelwhich depends onkernel.util. Actoralso depends on
data andgraph. The role of each package is explained below.

actor This package supports executable entities that receive and send data through
It includes both untyped and typed actors. For typed actors, it implements a so
ticated type system that supports polymorphism. It includes the base class Dire
for domain-specific classes that control the execution of a model.

actor.lib This subpackage is a library of polymorphic actors.
actor.process This subpackage provides infrastructure for domains where actors are proces

implemented on top of Java threads.
actor.sched This subpackage provides infrastructure for domains where actors are statica

scheduled by the director.
actor.util This subpackage contains utilities that support directors in various domains. S

cifically, it contains a simple FIFO Queue and a sophisticated priority queue ca
a calendar queue.

data This package provides classes that encapsulate and manipulate data that is t
ported between actors in Ptolemy models.

data.expr This class supports an extensible expression language and an interpreter for 
language. Parameters can have values specified by expressions. These expre
Heterogeneous Concurrent Modeling and Design 7
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FIGURE 5.1.  The package structure of Ptolemy II. The actor.lib package has not yet been fully con-
structed.

data

BooleanMatrixToken
BooleanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken
DoubleToken
IntMatrixToken
IntToken
LongMatrixToken
LongToken
MatrixToken
Numerical
ObjectToken
ScalarToken
StringToken
Token
TypeLatticeActor

ActorListener
AtomicActor
CompositeActor
DefaultExecutionListener
Director
Executable
ExecutionEvent
ExecutionListener
IOPort
IORelation
Mailbox
Manager
NoRoomException
NoTokenException
QueueReceiver
Receiver
TypeConflictException
TypeTerm
TypedActor
TypedAtomicActor
TypedCompositeActor
TypedIOPort
TypedIORelation

kernel

actor

actor.util

actor.lib

math

graph

data.expr

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity
Port
Relation

kernel.util

Attribute
CrossRefList
IllegalActionException
InternalErrorException
InvalidStateException
KernelException
NameDuplicationException
Nameable
NamedList
NamedObj
NoSuchItemException
PtolemyThread
Workspace

kernel.event

TopologyChangeFailedException
TopologyChangeRequest
TopologyEvent
TopologyListener
TopologyMulticaster

Add
Const
Demux
Expression
FunctionGenerator
Gain
Multiply
Mux
Plot
Print
Repeat
Select
Switch
XYPlot

CQComparator
CalendarQueue
DoubleCQComparator
FIFOQueue

ArrayMath
Complex
ExtendedMath
Fraction
SignalProcessing

CPO
DirectedAcyclicGraph
DirectedGraph
Graph
Inequality
InequalitySolver
InequalityTerm

ASCII_CharStream
ASTPtBitwiseNode
ASTPtFunctionNode
ASTPtFunctionalIfNode
ASTPtLeafNode
ASTPtLogicalNode
ASTPtMethodCallNode
ASTPtProductNode
ASTPtRelationalNode
ASTPtRootNode
ASTPtSumNode
ASTPtUnaryNode
JJTPtParserState
Node
Parameter
ParameterEvent
ParameterListener
ParseException
PtParser
PtParserConstants
PtParserTokenManager
PtParserTreeConstants
SimpleNode
Token
TokenMgrError
UtilityFunctions

plot

LogicAnalyzer
LogicAnalyzerFrame
Message
Plot
PlotApplet
PlotApplication
PlotBox
PlotDataException
PlotFrame
PlotLive
PlotLiveApplet
PlotPoint
Pxgraph

media

Audio
AudioViewer

schematic

Domain
EntityType
Icon
IconLibrary
PTMLParser
PTMLPrinter
PtolemySystem
Schematic
SchematicElement
SchematicEntity
SchematicParameter
SchematicPort
SchematicRelation
XMLElement

NotifyThread
ProcessDirector
ProcessReceiver
ProcessThread
TerminateProcessException

actor.process

NotSchedulableException
Scheduler
StaticSchedulingDirector

actor.sched
Ptolemy Project 8
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may refer to other parameters. Dependencies between parameters are handl
transparently, as in a spreadsheet, where updating the value of one will result i
update of all those that depend on it.

graph This package provides algorithms for manipulating and analyzing mathematic
graphs. Mathematical graphs are simpler than Ptolemy II clustered graphs in 
there is no hierarchy, and arcs link exactly two nodes. This package is expect
supply a growing library of algorithms.

kernel This package provides the software architecture for the key abstract syntax, c
tered graphs. The classes in this package support entities with ports, and rela
that connect the ports. Clustering is where a collection of entities is encapsulate
a single composite entity, and a subset of the ports of the inside entities are exp
as ports of the cluster entity.

kernel.event This package contains classes and interfaces that support controlled mutation
clustered graphs. Mutations are modifications in the topology, and in general,
are permitted to occur during the execution of a model. But in certain domains
where maintaining determinacy is imperative, the director may wish to exercis
tight control over precisely when mutations are performed. This package supp
queueing of mutation requests for later execution. It uses a publish-and-subsc
design pattern.

kernel.util This subpackage of the kernel package provides a collection of utility classes 
do not depend on the kernel package. It is separated into a subpackage so tha
utility classes can be used without the kernel. The utilities include a collection
exceptions, classes supporting named objects with attributes, lists of named
objects, a specialized cross-reference list class, and a thread class that helps
Ptolemy keep track of executing threads.

math This package encapsulates mathematical functions and methods for operatin
matrices and vectors. It also includes a complex number class and a class su
ing fractions.

media This package encapsulates a set of classes supporting audio and image proc
plot This package provides two-dimensional signal plotting widgets.
schematic This package provides a top-level interface to Ptolemy II. A GUI can use the

classes in this package to gain access to Ptolemy II models.

5.2  Overview of Key Classes

Some of the key classes in Ptolemy II are shown in figure 5.2. This is astatic structure diagramin
UML (unified modeling language). The key syntactic elements are boxes, which represent class
hollow arrow, which indicates generalization, and other lines, which indicate association. Some
have a small diamond, which indicates aggregation.

Instances of all of the classes shown can have names; they all implement the Nameable int
Most of the classes generalize NamedObj, which in addition to being nameable can have a
attributes associated with it. Attributes themselves are instances of NamedObj.

Entity, Port, and Relation are three key classes that extend NamedObj. These classes de
primitives of the abstract syntax supported by Ptolemy II. They will be fully explained in the ke
chapter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by
support for clustered graphs. CompositeEntity extends ComponentEntity and represents an a
Heterogeneous Concurrent Modeling and Design 9
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The Executable interface defines objects that can be executed. The Actor interface exten

with capability for transporting data through ports. AtomicActor and CompositeActor are conc
classes that implement this interface.

An executable Ptolemy II model consists of a top-level CompositeActor with an instance of D
tor and an instance of Manager associated with it. The manager provides overall control of the e
tion (starting, stopping, pausing). The director implements a semantics of a model of computat
govern the execution of actors contained by the CompositeActor.

Director is the base class for directors that implement models of computation. Each such di
is associated with a domain. We have defined in Ptolemy II directors that implement continuous
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, an
municating sequential processes.

FIGURE 5.2.  Some of the key classes in Ptolemy II. These are defined in thekernel, kernel.util, andactor
packages.

ComponentEntity CompositeEntity

AtomicActor

Director

«Interface»
Executable

CompositeActor0..n
0..1

0..1

0..n container

«Interface»
Actor

0..2

1

Manager

0..1

1

NamedObj

«Interface»
Nameable

Workspace

0..n 1
Attribute

0..n
0..1

Entity Port0..n

0..1

container Relation0..n

0..nlink

link

ComponentPort

ComponentRelation

0..n

0..1container
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5.3  Capabilities

Ptolemy II is a second generation system. Its predecessor, Ptolemy 0.x, still has many active
and developers, and may continue to evolve for some time. Ptolemy II has a somewhat dif
emphasis, and through its use of Java, concurrency, and integration with the network, is aggre
experimental. Some of the major capabilities in Ptolemy II that we believe to be new technolo
modeling and design environments include:
• Higher level concurrent design in JavaTM. Java support for concurrent design is very low level,

based on threads and monitors. Maintaining safety and liveness can be quite difficult [13]. Pto
II includes a number of domains that support design of concurrent systems at a much highe
of abstraction. These include, at varying levels of maturity, process networks, communicatin
sequential processes (rendezvous based), dataflow, synchronous/reactive modeling, contin
time modeling, and hierarchical concurrent finite-state machines.

• Better modularization through the use of packages. Ptolemy II is divided into packages that can b
used independently and distributed on the net, or drawn on demand from a server. This break
tradition in design software, where tools are usually embedded in huge integrated systems 
interdependent parts.

• Complete separation of the abstract syntax from the semantics. Ptolemy designs are structured a
clustered graphs. Ptolemy II defines a clean and thorough abstract syntax for such clustere
graphs, and separates into distinct packages the infrastructure supporting such graphs from
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to
graphs.

• Improved heterogeneity. Previous realizations of Ptolemy provided a wormhole mechanism fo
hierarchically coupling heterogeneous models of computation. This mechanism is improved
Ptolemy II through the use of opaque composite actors, which provide better support for mod
computation that are very different from dataflow, the best supported model in prior versions
Ptolemy software. These include hierarchical concurrent finite-state machines and continuo
time modeling techniques.

• Thread-safe concurrent execution. Ptolemy models are typically concurrent, but in the past, su
port for concurrent execution of a Ptolemy model has been primitive. Ptolemy II supports co
rency throughout, allowing for instance for a model to mutate (modify its clustered graph
structure) while the user interface simultaneously modifies the structure in different ways. C
tency is maintained through the use of monitors and read/write semaphores [11] built upon 
lower level synchronization primitives of Java.

• A software architecture based on object modeling. Since the first Ptolemy implementation, soft-
ware engineering has seen the emergence of sophisticated object modeling [18][23][25] an
design pattern [6] concepts. We have applied these concepts to the design of Ptolemy II, an
have resulted in a more consistent, cleaner, and more robust design. We have also applied a
fied software engineering process that includes systematic design and code reviews [17][21

• A truly polymorphic type system. Earlier implementations of Ptolemy supported rudimentary po
morphism through the “anytype” particle. Even with such limited polymorphism, type resolut
proved challenging, and the implementation is ad-hoc and fragile. Ptolemy II has a more mo
type system based on a partial order of types and monotonic type refinement functions asso
with functional blocks. Type resolution consists of finding a fixed point, using algorithms insp
by the type system in ML [20].

• Domain-polymorphic actors. In earlier implementations of Ptolemy, actor libraries were separa
Heterogeneous Concurrent Modeling and Design 11
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by domain. Through the notion of subdomains, actors could operate in more than one doma
Ptolemy II, this idea is taken much further. Actors with intrinsically polymorphic functionality c
be written to operate in a much larger set of domains. The mechanism they use to commun
with other actors depends on the domain in which they are used. This is managed through a
cept that we call aprocess level type system.

5.4  Future Capabilities

Capabilities that we anticipate making available in the future include:
• Extensible XML-based file formats. XML is an emerging standard for representation of informa

tion that focuses on the logical relationships between pieces of information. Human-readab
resentations are generated with the help of style sheets. Ptolemy II will use XML as its prim
format for persistent design data.

• Interoperability through software components. Ptolemy II will use distributed software componen
technology such as CORBA, JINI, or COM, in a number of ways. Components (actors) in a
Ptolemy II model will be implementable on a remote server. Also, components may be para
ized where parameter values are supplied by a server (this mechanism supportsreduced-order
modeling, where the model is provided by the server). Ptolemy II models will be exported via
server. And finally, Ptolemy II will support migrating software components.

• Embedded software synthesis. Pertinent Ptolemy II domains will be tuned to run on a Java virtu
machine on an embedded CPU. Hardware, firmware, and configurable hardware componen
expose abstractions to this Java software that obey the model of computation of the pertine
domain. Java's native code interface will be used to define a stub for the embedded hardwa
ponents so that they are indistinguishable from any other Java thread within the model of com
tion. Domains that seem particularly well suited to this approach include PN and CSP.

• Embedded hardware synthesis. Earlier versions of Ptolemy had only very weak mechanisms fo
migrating designs from idealized floating-point simulations through fixed-point simulations to
embedded software, FPGA, and hardware designs. Ptolemy II will separate the interface defi
of component blocks from their implementation, allowing libraries to be constructed where c
patibility across implementation technologies is assured [24]. This work is currently being pr
typed in Ptolemy 0.7.1.

• Integrated verification tools. Modern verification tools based on model checking [10] could be
integrated with Ptolemy II at least to the extent that finite state machine models can be chec
We believe that the separation of control logic from concurrency will greatly facilitate verificati
since only much smaller cross-sections of the system behavior will be offered to the verifica
tools.
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