
Synthesis of Parallel Hardware Implementations from
Synchronous Dataflow Graph Specifications

by

Michael Cameron Williamson

Sc.B. (Massachusetts Institute of Technology) 1989
Sc.B. (Massachusetts Institute of Technology) 1989

M.S. (University of California, Berkeley) 1991

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in

Engineering-Electrical Engineering
and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Edward A. Lee, Chair
Professor Jan M. Rabaey

Professor David G. Messerschmitt
Professor Ronald W. Wolff

Spring 1998

The dissertation of Michael Cameron Williamson is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Spring 1998

Synthesis of Parallel Hardware Implementations from
Synchronous Dataflow Graph Specifications

Copyright © 1998

by

Michael Cameron Williamson

1

Abstract

Synthesis of Parallel Hardware Implementations from
Synchronous Dataflow Graph Specifications

by

Michael Cameron Williamson

Doctor of Philosophy in Engineering-Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

This dissertation describes an approach to digital hardware design for embedded sig-

nal processing systems that addresses synthesis, simulation, and interactive design. The

objective is to improve productivity and interactivity during design without sacrificing

design quality. Our approach consists of automated register-transfer level (RTL) VHDL

code generation from synchronous dataflow (SDF) graph specifications, with automated

and interactive optimization phases, followed by RTL synthesis and simulation. Our

approach is implemented within the Ptolemy simulation and prototyping environment.

We present techniques for mapping applications specified in SDF to parallel digital

hardware implementations. Two styles of architecture generation are described. They are a

general resource sharing style for flexibility, and the mapping of sequenced groups for

compact communication and interconnect. A design flow for hardware synthesis from

SDF graphs is presented. In order to minimize cost while meeting performance require-

ments, we take advantage of opportunities for resource sharing at the coarse-grain task

level. Since there are fewer task nodes than in a fine-grain or arithmetic representation of

2

the task graph, determining a near-optimal partitioning is faster in our approach than in

behavioral synthesis.

Our approach supports verification through co-simulation. We have constructed simu-

lation techniques for VHDL models generated from SDF semantics. They address parti-

tioned simulation of VHDL models derived from SDF, and simulation of VHDL

subsystems derived from SDF within an SDF code-generation subsystems framework. A

design flow for simulation of hardware synthesized from SDF graphs is presented. Our

approach guarantees that the partitioning does not introduce deadlock or corrupt synchro-

nization, issues that many algorithm-to-implementation design tools do not explicitly

address.

An important stage in our approach is the interactive scheduling and partitioning phase

for providing feedback to the designer as well as allowing feedback from the designer for

fine-tuning optimization after the automated phase. We characterize useful features for an

interactive design tool for hardware synthesis from SDF graph specifications. A prototype

of such a tool, integrated into the hardware design flow, is presented. The result is the

leveraging of the strengths of both the designer and the tool, rather than the replacement of

one by the other.

Professor Edward A. Lee, Chair Date

iii

for Josephine
and our loving family

iv

Contents

 Acknowledgements . ix

1. Introduction . 1

 1.1 Hardware Synthesis Overview . 2

 1.2 From Silicon Compilation to Electronic Design Automation 5

 1.2.1 Origins . 5

 1.2.2 Silicon Compilers . 6

 1.2.3 Difficulties in Practice . 9

 1.2.4 Languages . 10

 1.2.5 From Compilers to Frameworks . 15

 1.2.6 Mainstream EDA . 18

 1.2.7 Emerging Challenges . 20

 1.3 Levels of Abstraction . 23

 1.4 RTL Synthesis . 25

 1.5 Behavioral Synthesis . 28

 1.6 Limitations of Behavioral Synthesis . 34

 1.7 Summary .38

2. SDF Hardware Synthesis . 40

 2.1 Elements of Synchronous Dataflow . 41

 2.2 Scheduling SDF Graphs . 42

 2.2.1 SDF Semantics . 42

 2.2.2 The Balance Equations . 43

 2.2.3 Solving the Balance Equations . 44

 2.2.4 Constructing a Sequential Schedule . 45

 2.3 Elements of the Dependency Graph . 46

 2.3.1 Firings, Tokens, and Dependencies . 46

 2.3.2 Constructing the Dependency Graph . 47

 2.3.3 The DAG and Concurrency . 50

 2.3.4 DAG Granularity and Computational Complexity . 51

 2.4 Elements of VHDL . 54

v

 2.5 Related Work . 59

 2.5.1 ADEN / ComBox . 59

 2.5.2 The DDF Timing Model and Analysis . 64

 2.5.3 The SDF Timing Model and Analysis . 66

 2.6 Hardware Architecture Considerations . 67

 2.6.1 Computations . 67

 2.6.2 Communications . 69

 2.6.3 Controller . 72

 2.6.3.1 Control Synchronization . 73

 2.6.3.2 Globally Asynchronous Hardware . 75

 2.6.3.3 Globally Synchronous Hardware . 76

 2.6.3.4 Globally and Locally Synchronous Control 77

 2.7 Synchronous Dataflow Architecture Design . 78

 2.7.1 Existing Approaches to Buffer Synthesis . 78

 2.7.2 SDF Communication Channels . 79

 2.7.3 Communication-Driven Architectural Styles . 82

 2.7.3.1 Planar Structure . 82

 2.7.3.2 General Resource Sharing . 83

 2.7.3.3 Buffer Minimization . 85

 2.7.3.4 Effects of Buffer Sharing on Performance . 90

 2.7.3.5 Resource Sharing of Sequenced Groups . 93

 2.7.3.6 Choice of Resource Sharing Approach . 94

 2.7.4 Using FIFOs to Implement Dataflow Arcs . 96

 2.7.4.1 Single-Input, Single-Output . 97

 2.7.4.2 Multi-Input, Multi-Output . 99

 2.7.4.3 FIFO Size Reduction . 100

 2.7.4.4 FIFO Clocking . 101

 2.7.4.5 Comparison to Other Approaches . 102

 2.7.4.6 Resource Sharing of Sequential Firings and Tokens 103

 2.7.5 Comparison Examples / Case Study . 103

 2.7.6 Initial Tokens on Arcs . 117

 2.7.7 Actors With State . 121

 2.7.8 Actors That Use Past Input Values . 124

 2.8 The RTL Code Generation Process . 137

 2.8.1 Determining a Valid SDF Schedule . 138

vi

 2.8.2 Running the Schedule . 140

 2.8.3 Mapping the Precedence Graph Onto an Architecture 141

 2.8.4 Generating the RTL-Code Specification . 146

 2.9 The Hardware Synthesis Design Flow . 147

 2.10 Summary . 152

3. Cosimulation . 153

 3.1 VHDL For Specification, Simulation, and Synthesis . 153

 3.1.1 VHDL For Specification . 154

 3.1.2 VHDL For Simulation . 154

 3.1.3 VHDL For RTL Synthesis . 157

 3.1.4 VHDL For Behavioral Synthesis . 158

 3.2 Elements of VHDL and the Simulation Cycle . 159

 3.2.1 Processes, Signals, and Entities . 160

 3.2.2 Process Execution . 161

 3.2.3 Signals, Transactions, and Events . 161

 3.2.4 Simulation Time . 163

 3.2.5 The VHDL Simulation Cycle . 164

 3.2.6 Delta Cycles . 165

 3.3 The Simulation Synchronization Problem . 168

 3.3.1 Synchronization of Distributed VHDL Simulation 169

 3.3.1.1 Scatter/Gather . 171

 3.3.1.2 Speculative Simulation . 171

 3.3.1.3 Topologically Sorted Simulation Partitions 174

 3.3.2 Hierarchically Composed VHDL Systems . 176

 3.3.3 Cosimulation of Dataflow in VHDL with Other Dataflow 177

 3.3.4 Cosimulating Imported VHDL Models with Dataflow 182

 3.3.5 General System-Level Cosimulation . 185

 3.4 Interfacing VHDL Simulators to Other Processes . 188

 3.4.1 Origins of the VHDL Foreign Interface . 188

 3.4.2 Foreign Architectures and Foreign Subprograms . 188

 3.4.3 Using Foreign Architectures as a Cosimulation Interface 191

 3.5 The Simulation Design Flow . 192

 3.6 Summary . 195

vii

4. Interactive Design Tools . 196

 4.1 The OAI Model . 197

 4.1.1 The Interface versus the Task . 197

 4.1.2 Objects versus Actions . 198

 4.1.3 Elements of the OAI Model . 198

 4.1.4 Direct Manipulation and The Disappearance of Syntax 201

 4.2 Desired Properties of Interactive Design Tools . 203

 4.2.1 Visual Representations . 203

 4.2.2 Graphical Data Structures . 207

 4.2.3 Interactivity . 209

 4.2.4 Multiple Views . 212

 4.2.5 Cross-Connected Views . 214

 4.2.5.1 Cross-Highlighting . 216

 4.2.5.2 Hyperlinking . 217

 4.2.6 Presentation of Tradeoffs . 221

 4.3 Perceived Benefits . 224

 4.4 TkSched and TkSched-Target . 226

 4.4.1 The Schedule View . 228

 4.4.2 The Topology View . 230

 4.4.3 The Design Space View . 232

 4.4.4 Summary . 234

 4.5 Future Extensions . 234

 4.6 Summary . 236

5. Implementation in Ptolemy . 238

 5.1 Background Tools . 239

 5.2 The Ptolemy Environment . 242

 5.2.1 Domain . 242

 5.2.2 Stars . 244

 5.2.3 Galaxies .244

 5.2.4 PortHoles . 245

 5.2.5 Geodesics . 245

 5.2.6 States . 246

 5.2.7 Targets . 246

viii

 5.2.8 The VHDL Domain . 247

 5.3 Design Using the VHDL Domain . 249

 5.3.1 Generation of VHDL from SDF for RTL Synthesis 250

 5.3.2 Cosimulation of VHDL with Other CG Subsystems 251

 5.3.3 Interactive Design in the VHDL Domain . 252

 5.4 Summary . 253

6. Conclusions and Future Directions . 254

 6.1 Conclusions . 255

 6.2 Future Directions . 256

 References . 258

ix

Acknowledgements

First of all, I want to express my thanks and great appreciation to my advisor Edward

Lee. His rare combination of strengths in both the theoretical and the practical has been a

continuous inspiration to me, as well as his genuine enthusiasm for the field.

I am also deeply indebted to my committee members, Professors Jan Rabaey, David

Messerschmitt, and Ronald Wolff. Their comments and welcoming discussions have been

an enjoyable part of this work.

Funding for my work has come from a variety of sources over time, including the

NDSEG Fellowship Program, the Semiconductor Research Corporation, and of course the

Ptolemy Project.

I would like to thank my readers and others whose discussions with me have had a

large, direct impact on what is presented here. In particular, thanks goes to John Reekie for

sharing with me his wide knowledge of issues in human-computer interaction, and for his

helpful comments. John Davis deserves recognition for his help with discrete-event

semantics and simulation. I have also had many long discussions with Ron Galicia over

hardware and software implementation issues, among other topics, that have helped me

here and have given me new ideas for future pursuits. I thank Jose Pino for making our

collaborations so worthwhile, and for his helpful computing tips and tricks.

I also want to thank Ron Galicia, John Davis, and Mudit Goel for making this small

cubicle such a lively and joyful place, especially over this past long year of work. The

members of the entire Ptolemy team, both past and present, have taught me a great deal,

and I have a lot of respect for all of you.

x

I truly want to thank the many staff members of this department who have invariably

gone out of their way to help me with many tricky situations. They have done so with car-

ing sincerity, and their hard work deserves as much recognition as possible.

Within our own group, Christopher Hylands and Mary Stewart are to be honored for

their outstanding systems administration work. As everyone knows, they are the ones who

truly run things around here, and good sysadmins are worth their weight in gold.

I want to thank Thomas Manshreck for his longstanding friendship and support, and

for his long-term perspective on the wide world beyond research.

I am so very grateful for my family, and in particular for my parents, who have taught

me and influenced me far more deeply than they realize. Their love and support has been

continuously uplifting during many struggles. My brother Scott has taught me and shared

much with me that has helped me ever since I can remember.

For my wife Josephine, words cannot express my love, appreciation and respect for

her. She has given her love and support freely and far beyond my hopes and dreams. Her

mark is on every page of my work.

Finally, and most importantly, I thank the Lord for delivering me to this place.

Trust in the Lord with all your heart

and lean not on your own understanding;

in all your ways acknowledge him,

and he will make your paths straight.

-- Proverbs 3:5-6

1

1

Introduction

In each generation of system design methodology, the distinguishing feature is often

the increased level of abstraction at which designs are initiated. As each level is mastered,

the tendency is to codify what has been learned through experience and to automate some

or all of the design tasks. By moving to specifications at higher levels, greater complexity

can be implied by a smaller amount of design data, so that productivity can be pushed fur-

ther. A necessary result of this trend is that more is left unspecified at the initial stages,

which requires greater care in managing wider design options, while avoiding compromis-

ing the design goals.

The range of hardware synthesis options available today are distinguished by the level

of abstraction they take as their input. Three of these are the logic, register-transfer, and

behavioral levels of specification. These are broadly analogous to levels of abstraction in

microcomputer programming. The logic level is comparable to the raw data in the pro-

gram data listing. The register-transfer level reduces the laboriousness of logic design just

as assembly languages help to put the program code into a human-readable form. Continu-

ing this analogy, behavioral synthesis in its many forms allows specification in higher-

level languages for hardware, just as FORTRAN, Pascal, and C liberated programmers

from assembly programming. Assembly code was readable and useful, but required the

2

programmer to be concerned with details that were not central to the design problem. To

characterize the state of the art at this point, behavioral synthesis is becoming increasingly

popular, but is not well-suited to general design problems. As a result, behavioral synthe-

sis tools, are best suited for particular domains in hardware design, or they are targeted at

specific application areas. Almost all of them are oriented around fine-grain representa-

tions of the abstract design. In this dissertation, we will examine a particular design speci-

fication form, synchronous dataflow, and we will look at coarse-grain synthesis

approaches and how they might be advantageous as an alternative approach to existing

behavioral synthesis flows.

In the following sections we lay out the background for this work in the areas of hard-

ware synthesis and design abstraction. In Section 1.1 we begin with a general overview of

hardware synthesis. We continue in Section 1.3 with a discussion of the overall design

flow of electronic systems and the forms of abstraction that are used at each level. Follow-

ing this, we discuss the issues and techniques involved at a particular stage in design, RTL

synthesis, in Section 1.4. In Section 1.5, we describe behavioral synthesis, which takes

place at a higher level of abstraction and feeds into RTL synthesis. While its usage is

increasing and it has its benefits, in Section 1.6 we discuss some of the limitations of

behavioral synthesis in order to motivate the work presented in this dissertation. We con-

clude in Section 1.7 and highlight the topics of the chapters which follow.

1.1 Hardware Synthesis Overview

The goals of hardware synthesis in the field of integrated circuit design are twofold.

The first is as a productivity multiplier, to allow more design work to be accomplished by

fewer designers. Put in slightly different terms, it is to allow design complexities to

increase at the rates which product demands and technology limits permit, while not

3

requiring the size of design teams or the numbers of hours they expend to increase at the

same rate. At the remarkable rates of increase in circuit densities and gates per design,

without such productivity amplifiers, organizations that attempt such designs would soon

run up against the limits on managing ever-growing design teams, or at least the current

limits on the number of trained professionals available in the workforce. This trend is

shown in Figure 1.1, using data from the National Technology Roadmap for Semiconduc-

tors, 1997 [SIA97].

The need to improve productivity leads the way in stimulating innovation in hardware

synthesis methods, since it occurs at the leading edge of technology where demands and

rewards are great but existing methods fail to serve for long without breaking down. The

second driver of improvements in hardware synthesis is not at the high-end of complexity

and performance, but at the broad-based low-end of seeking to make powerful integrated

circuit technology available to a wider range of designers. Productivity amplifiers not only

enable the biggest and best teams to go further, but also can allow smaller numbers of less

Figure 1.1 Current methodologies and productivity improvements are fail-
ing to keep pace with the rapid and ongoing increase in com-
plexity and technology improvements [SIA97].

10,000M

1,000M

100M

10M

1M

0.1M

0.01M

100,000K

10,000K

1,000K

100K

10K

1K

0.1K

0.01K

58% Annual
growth rate in
complexity

21% Annual
growth rate in
productivityLo

gi
c

Tr
an

si
st

or
s

pe
r

C
hi

p

P
roductivity in Trans/S

taff-m
onth

1980 1985 1990 1995 2000 2005 2010

4

experienced individuals to have access to technology that was previously only an option

for well-funded larger groups of trained specialists. A prime example of this second driver

is in synthesis for FPGAs and other programmable devices, where entry costs are much

lower since integrated circuit fabrication is not necessary, but the performance of the tech-

nology is still adequate for a wide range of applications. Designers with minimal knowl-

edge of circuit design can produce designs implemented on programmable devices with

satisfactory performance for simple and mid-range design complexities. This is the sec-

ond-wave or “echo” benefit of all the efforts that have been expended on leading-edge

problems.

The majority of attention in hardware synthesis has focused on the most general case

of random logic synthesis, where little can be assumed about either the variables and data

types being manipulated, or about the flow of control during operation. With more knowl-

edge of the structure of the applications of interest, a greater degree of specialization is

possible. Digital signal processing (DSP) is the application domain where the greatest suc-

cess has been achieved in creating specialized algorithms and tools for hardware synthe-

sis. The DSP domain includes the areas of communications, speech synthesis and

recognition, audio, image and video processing, sensing and imaging, data compression,

and control systems. DSP applications are generally characterized as being dominated by

numerical computations, as opposed to logic operations, and as being relatively limited in

their control flow branching. Both of these properties make specialized methodologies for

designing implementations of such systems practical. Such methodologies take advantage

of the regularity in structure and control of DSP applications in order to achieve results of

greater quality, and to do so in less time than would be possible by using general tools

designed for random logic synthesis.

5

1.2 From Silicon Compilation to Electronic Design Automation

The general area of hardware synthesis comes under the broader field ofelectronic

design automation(EDA). EDA deals with all aspects of non-manual approaches to the

design of electronics. This ranges from the design of circuit layout geometry all the way

up to the level of complete systems, including systems composed of both analog and digi-

tal integrated circuits, embedded software, and mechanical elements.

1.2.1 Origins

EDA has a history of more than 25 years, and is continuing to evolve and change.

Many of the early ideas emerged in the 1970s, stimulated by the increasing availability of

powerful mainframe and minicomputer systems to electronics designers [Yoffa97] and the

increasingly complex demands of VLSI technology [Gray79] [Collett84]. Broad commer-

cialization took place in the 1980s, with algorithms and tools coming from universities

and private research laboratories into the electronics engineering market. Broad accep-

tance of EDA tools and methodologies has solidified during the 1990s, to the point that

nearly no innovative electronic component or system can be designed in an economical

way without the use of EDA methodologies. The revenue for the entire EDA industry in

1997 is estimated at over $2.70 billion, and continues to grow [Santarini98b].

One of the first uses of automation in electronics engineering was to assist the designer

by alleviating some of the tedium of basic tasks such as schematic capture and logic simu-

lation [Yoffa97]. This was termed computer-aided engineering or CAE. These tasks were

essentially recording the designer’s intent, or computing the expected outcome of a deter-

ministic model of their design. From this beginning, a new direction emerged where tools

would be developed to make design decisions instead of just to capture and report on the

outcome of designers’ decisions.

6

One of the early tasks to which automation methods were applied was artwork genera-

tion [VLSIStaff84b]. Artwork generation is the production of a geometric layout in poly-

gons from which a circuit layout in silicon is manufactured. A researcher made a proposal

at a Design Automation Conference (DAC) in the mid-1970s for a system that would gen-

erate artwork automatically from a human-readable description. An unknown attendee

who saw this proposal characterized it as asilicon compiler, making an analogy with sys-

tems that produce machine instruction code from human-readable software descriptions

[VLSIStaff84a]. Some of the earliest published work to refer to silicon compilation came

at the 16th DAC in 1979, from authors associated with the Silicon Structures Project at the

California Institute of Technology [Ayres79] [Gray79] [Johannsen79].

1.2.2 Silicon Compilers

The termsilicon compilerdoes not have a strict definition, but rather it evokes a gen-

eral concept that is easily grasped and retained by anyone familiar with software compil-

ers. An early author defined silicon compilers as “programs which, when compiled, yield

code that produces manufacturing data for silicon parts” [Gray79]. A similar definition is

“an optimizing transformation program that produces manufacturable IC designs from

intelligible descriptions” [VLSIStaff84a]. A more specific definition in terms of input and

output is “a software system that accepts some form of high-level specification and pro-

duces a pattern-generation tape for the mask-making process” [VLSIStaff84a]. While the

back-end output of a silicon compiler in the form of a pattern-generation tape or mask lay-

out was often well-defined, the front-end to the process was less consistently defined

[Panasuk84]. Different implementations accepted design input at the logic level, the

block-diagram level, and the functional-description level [Southard84].

One definition that has the perspective of time, coming a decade after the first defini-

tions, conveys the movement away from monolithic silicon compiler programs to sets of

7

individual tools in a flow. The LAGER silicon compiler toolset from UC Berkeley is

described as being “composed of design managers, libraries, design tools, test generators

and simulators, which are interfaced to a common database... Another major set of tools in

LAGER involve using higher level descriptions of behavior to synthesize the structural

description, which in turn is used to provide the necessary input data to the layout genera-

tors” [Brodersen92].

Early proponents of silicon compilers saw them as a way to address the design require-

ments of increasingly complex VLSI chips. The complexity possible in chip designs

approaching one million transistors on a single chip was seen as precipitating a crisis in

electronic design [Gajski84]. This crisis had two major elements, a shortage of trained

chip designers, and an increasingly long design cycle. Designs of over 100,000 transistors

were reported as requiring hundreds of staff-years to produce manually [Panasuk84]. Par-

tial automation of the chip design process, through silicon compilation, was seen as a nec-

essary way to address these issues.

While early attempts at automation were acknowledged as producing sub-optimal

designs in comparison to manual techniques, this was weighed against the need to increase

productivity and shorten design cycles [Allerton84]. Similar gains were expected by those

who had observed the advantages of compilation over manual coding and assembly in the

software world [Ayres79]. Another significant motivation to move to silicon compilation

was to reduce the increasing number and cost of errors occurring in the VLSI design pro-

cess [Cheng84]. Perhaps the most inspiring motivation to researchers and others wishing

to take advantage of powerful integrated circuit technology was the hope that silicon com-

pilers would open up the field of chip design to system designers and end-users of VLSI

circuits [Mead82] [Johnson84].

Early attempts at silicon compilers were pioneered at universities and larger private

research laboratories. Among the university efforts were Bristle Blocks [Johannsen79] and

8

Siclops [Hedges82] from the California Institute of Technology, MacPitts from the MIT

Lincoln Laboratory [Southard83] [Fox83], FIRST from the University of Edinburgh

[Denyer83], DIADES from Warsaw Technical University [Wieclawski84], and ICEWA-

TER from University of Waterloo [Powell83].

During the same period, commercial research laboratories were also working on sili-

con compilers and related tools. These included the Functional Design System (FDS) and

PLEX from AT&T Bell Labs, the Xi Logic Generator from Bell Communications

Research, the Design and Verification System (DAV) from IBM, as well as a separate

Logic Synthesis System and Technology Mapping System from IBM, the ANGEL system

from NTT, and the SILC silicon compiler from GTE Laboratories [VLSIStaff84a]

[Ciesielski84].

Efforts to commercialize silicon compiler technology followed quickly. Some of these

efforts came directly out of research and personnel from the universities and larger labora-

tories. Founders of Silicon Compilers, Inc. (SCI) came from Caltech’s Silicon Structures

Project, including David Johannsen [Werner83b]. Work on Bristle Blocks was extended

by SCI to create Genesil. Genesil found early success in use by Digital Equipment Corpo-

ration to design the datapath chip for the MicroVAX 1 in seven months [Collett84].

Researchers from MIT Lincoln Laboratory extended and commercialized the MacPitts

system as MetaSyn when they founded Metalogic. Similarly, Silicon Design Labs was

started by researchers from AT&T Bell Labs who had worked on the PLEX project. Other

commercial efforts included cell compilers and chip composition tools from VLSI Tech-

nology, and Seattle Silicon Technology’s Concorde I system, which was incorporated into

a larger design environment by Valid Logic [VLSIStaff84b].

9

1.2.3 Difficulties in Practice

These early efforts at silicon compilation attempted to automate significant stages in

the design process. In later years, they did not prove to be the all-encompassing solutions

that were originally hoped for [Yoffa97].

According to one observer [Perryman88], by 1988 the use of silicon compilers had not

grown as much as had been predicted, and two-thirds of the original commercial vendors

did not remain in the market. A number of reasons for this were cited, including the con-

tinued need for the use of manual design to achieve the highest performance designs. This

was due to a lack of capability in the existing silicon compilers to allow experienced

designers to achieve optimal solutions. Among a less experienced set of users, it was

claimed that existing tools had too much complexity to allow novice designers to obtain

suitable solutions. Therefore, silicon compilers had not realized two of the original goals

intended for them: to increase the productivity of experienced designers without degrading

the quality of results, and to open VLSI design to less experienced designers to create

designs for their own use. Also cited was a lack of application-specific features in the

common denominator silicon compilers that were available.

Other observers noted a cultural resistance in the design community to adopt silicon

compilation methodologies [Andrews88]. Silicon compilers were accepted as an alterna-

tive design tool, but not universally. These tools were not used for high-performance

designs because evaluations did not show them to be capable of producing efficient

designs. It was expected that as silicon compiler technology developed, this situation

would improve. At the same time, many tools called for the use of high-level languages for

design input instead of the then-familiar gate-level schematics and block diagrams. The

use of expressive high-level languages was expected to allow more succinct specification

of greater complexity, but experienced designers and managers were not accustomed to

this new style.

10

One problem was the multitude of languages that were put forward by individual ven-

dors with no common standard. As is discussed in the next section, both de facto and offi-

cial standards eventually emerged that drew a critical mass of designers, leading to the

widespread adoption of high-level language specification as design input. Another prob-

lem was dissatisfaction with monolithic silicon compiler tools that didn’t allow customiza-

tion of the design process as new requirements emerged, such as test generation, or that

users found the need to become involved with manually adjusting the final layout in order

to achieve satisfactory results [Goering88]. These needs led to the fragmentation of the sil-

icon compiler into multiple specialized tools joined by design flows and frameworks, as is

described in a later section below.

1.2.4 Languages

Early silicon compilers allowed for various styles of design specification input, since

there were no broadly accepted standards other than boolean logic. Some compilers were

conceived as transforming a designer-specified architecture or structure at an abstract

level, such as a block diagram, into a gate-level and layout-level structure with the struc-

tural topology preserved, but details elaborated and filled in within each block automati-

cally. Other compilers were patterned after software compilers, taking in a specification in

a text language form and determining a structural representation from the text specifica-

tion.

A variety of input styles were used by early silicon compilers in research and in com-

mercial offerings, including graphical block diagram editors, textual languages, forms,

tables, and combinations of these. Among the graphical methods, drawing schematics at

the logic gate level was supported by many tools, but was a lengthy process for designs of

more than a few thousand gates [Beedie84]. Menu-based approaches that would allow the

selection of predefined components from hierarchically-grouped lists were used by the

11

Concorde I silicon compiler from Seattle Silicon Technology [Lee84]. Some tools also

used finite state diagram editors to allow the specification of control flow.

Among tools that allowed text input, logic equations were a natural and standard

choice, but were also limited in the way that gate-level design entry was. The MetaSyn sil-

icon compiler, which was MetaLogic’s commercial version of the MacPitts compiler, used

a textual input language based on LISP [Southard84]. Other text-input languages for sili-

con compilers included ICL from Xerox [Ayres79], LISA, an instruction-set language

from the University of Illinois [Gajski82], VIP from VLSI Technology [Martinez84],

ZEUS from GTE Laboratories [Nourani84], SCHOLAR from the University of

Southampton [Allerton84], as well as MODEL from Lattice Logic, ELLA from the Royal

Signals and Radar Establishment of England, and STRICT from the University of New-

castle, England [Beedie84].

Another style of design entry, forms, was used by the Genesil silicon compiler from

Silicon Compilers [Johnson84]. Standard blocks such as ALUs, barrel shifters, RAMs,

ROMs, and random logic could be selected, and specific parameters and connections spec-

ified for an instance using data entry into fields in a form. The system would provide feed-

back to the user by updating a graphical display of the blocks and connections, but this

display could not be directly modified by the user. Still other formats for design entry were

tabular, using truth tables for combinational logic and state transition tables for sequential

logic representations.

It is possible to represent a structure in both a text form and in a block diagram form. It

is also possible to describe an abstract behavior in either text or a block diagram, and to

transform it into one of many equivalent structures from which the final circuit layout

structure is elaborated. There was disagreement over the choice of text or block diagram

input styles [Werner83a]. Text specifications were favored by software developers accus-

tomed to text languages, who were also working on computing platforms that were adept

12

at manipulating text representations. Block diagram specifications were preferred by many

circuit and system designers who were accustomed to drawing and interpreting block dia-

grams, gate-, transistor-, and layout-schematics. While it is possible to represent either

behavior or structure in either text or a block diagram, text was usually associated with

behavioral descriptions and block diagrams were associated with structural descriptions.

Some felt that it was a mistake to start from a behavioral description and allow the sil-

icon compiler to determine an architectural structure because it would prevent designers

from using their skills in designing architectures. Others felt that there were opportunities

to be realized by starting with an abstract behavior that was not limited by initial assump-

tions about the eventual architecture [Werner83a]. The initial stage of this latter class of

problem, determining an architecture from a behavior, eventually came to be calledbehav-

ioral synthesis, architectural synthesis, or frequentlyhigh-level synthesis. Behavioral syn-

thesis is discussed further in later sections below. One factor that inhibited the early

development of behavioral synthesis was the lack of intermediate structural specification

languages. A number of languages were created for specific tools, but no common,

accepted languages were available from which to build a body of design work across

design tools. Also, because the behavioral synthesis problem adds additional complexity

to the overall design automation problem, most early silicon compilers either used simpli-

fied transformations from behavior to an unoptimized architecture, or they avoided the

problem by beginning with architecture or gate-level design as the specification input.

While a wide range of input specifications were used by the various tools available,

some observed that ultimately, the more expressive specification languages would allow

for greater productivity. Some asserted that for more than a few thousand gates of com-

plexity, higher-level descriptions were called for [Beedie84]. Not all designers reached the

point of working at or above that level of complexity at the same time. Some of the first to

do so were likely to be among the more experienced designers. These very designers

13

would be less likely to adopt design automation methods for two reasons. First, they were

experienced and long accustomed to using manual techniques. Second, they were often

skilled enough to produce designs of higher quality than the early EDA tools could. These

factors delayed the widespread adoption of language-input methodologies, but that change

did eventually take place, especially when many designers moved to the register level of

design specification.

One tool that emerged in 1988 to focus on a particular stage in silicon compilation,

that of optimized logic synthesis, was the Design Compiler from Synopsys [Weiss88]. The

first version of this tool allowed design entry in netlist formats, logic equations, and truth

tables. A year later, the tool was extended with a front-end that would allow the use of sub-

sets of Verilog and VHDL (described below) as design specification inputs [McLeod89].

In retrospect, Aart de Geus, the CEO of Synopsys, observed that as the majority of design-

ers moved from the scale of 1,000 gates to 10,000 gates, roughly between 1988-1990,

schematic entry as an input became too cumbersome, hastening the adoption of language-

based design input [Glover98].

Some early proponents of silicon compilers urged the adoption of high-level languages

known in the software world as input descriptions for electronic design, including FOR-

TRAN, C, Pascal, and LISP. Since these languages were already widely known, there

would be a larger base of designers who would not need to learn a new language in order

to use electronic design automation tools. These languages either proved to be too expres-

sive for hardware design, because they permitted dynamic memory allocation or had data-

dependent computation requirements, or not expressive enough, because they did not sup-

port the specifications of timing, data precision, or concurrency that designers wished to

have. Some of the languages used for early silicon compilers were inspired by these soft-

ware languages, but were always taken from a subset of the original language or aug-

mented in some way to fit the methodology being used.

14

Rather than deriving subsets of or extensions to existing high-level languages, the lan-

guages that were designed directly for the description of digital hardware systems proved

to be more successful. These languages directly supported hardware design constructs

such as logic, data registers, signals, hierarchy, and synchronous clocking. These lan-

guages are calledhardware description languages(HDLs). Two of these that eventually

emerged as dominant were Verilog and VHDL, displacing many of the early languages

fashioned for use in electronic design automation.

Verilog started as a proprietary HDL designed for simulation. It was developed by

Gateway Design Automation for use in a simulator product. While Verilog was propri-

etary, it came to be widely used in industry for hardware simulation. Due to its popularity,

it was chosen by Synopsys as an input language for their Design Compiler tool, extending

the use of the language from simulation to logic synthesis. In 1989, Gateway Design Auto-

mation was purchased by Cadence Design Systems, which continued to market the lan-

guage for simulation and synthesis. In 1990, Cadence moved Verilog into the public

domain, and in 1995, Verilog was made IEEE Standard 1364 [Dorsch95].

VHDL began in 1983 as a U.S. Department of Defense (DoD) initiative to create a

text-based language for specifying digital hardware designs (See Chapter 3). The language

was later extended to support simulation, and was released as IEEE Standard 1076 in

1987. VHDL was adopted along with Verilog by Synopsys when it created an HDL front-

end to Design Compiler. VHDL also increased in popularity due to its earlier adoption as

an international standard.

Both languages were suitable for both simulation and synthesis, and both became stan-

dardized and widely supported by EDA tool vendors. The languages have broad semantics

which are comparable enough that neither emerged as having a distinct advantage in use

over the other. As a result, both VHDL and Verilog continue to be widely used and sup-

15

ported internationally, a situation which some observers have lamented as being redundant

and costly for both tool users and tool developers [Dorsch95].

In practice, neither VHDL nor Verilog are used in standard form as inputs to synthesis

methodologies. Because of their origins as languages for general digital system simula-

tion, their semantics are too broad to be used in their entirety for synthesis. In order to

make the languages appropriate for synthesis, subsets of the languages are defined which

are acceptable to each synthesis tool as input. Often as a result, the accepted subset for

each synthesis tool is distinct from the others, which results in a loss of the standardization

which was defined for the full languages. This is true of both register-transfer level logic

synthesis and behavioral synthesis, which are described in later sections. Various efforts to

standardize synthesizable subsets of VHDL and Verilog have been proposed, and are stan-

dards are continuing to be defined.

1.2.5 From Compilers to Frameworks

Even with the partial success of silicon compilers, they did not prove to be complete

solutions [Yoffa97]. One reason for this was that silicon compilers focused only on the

design problem between the structural level of specification down to the physical level of

the generation of layout data. Other tools were needed to handle such design tasks as sys-

tem-level design from the behavioral level down to the structural level, simulation, timing

analysis, standard-cell library creation, and design rule checking. Another reason was that

silicon compilers kept their part of the design process closed, from design entry down to

the layout, with little opportunity for designer intervention at stages along the way.

The first problem was essentially that individual design tools covered a well-defined

but limited scope of the process. Many tools were developed to cover different design

problems, and tools tended to have differing data formats for input and output. Just as

there had been difficulties with the many languages created for design specification, other

16

interchange formats were also incompatible. Katz identified this emerging problem, and

suggested that the way to move from loose collections of non-interoperable tools to truly

useful design systems was to develop standardized integrated design databases [Katz83].

Another means of addressing the need for tool interoperability was that either “de

facto” or official standards would arise out of a set of competing specification formats, as

eventually happened with Verilog before it became standardized, and before VHDL was

officially introduced. Standards such as the Caltech Intermediate Format (CIF) for geo-

metric circuit layout data [Mead80] and the Electronic Design Interchange Format (EDIF)

for general design data exchange [Eurich90] are also in the pattern of de facto standards

being followed by official standards.

The second problem, that silicon compilers were usually closed systems within the

segment of the design flow that they covered, was an issue for designers who wished to be

able to observe more detail or to have more control of the design process at intermediate

points in the flow. Another hindrance to the acceptance of monolithic silicon compilation

tools was that designers wished to mix-and-match smaller, specialized tools to create their

own customized design systems suited to their particular needs. As the number of tools

available from various vendors increased, such as for schematic capture, logic synthesis,

test generation, layout, design rule checking, and verification, more designers wished to be

able to select what they perceived as the best of each from those vendors that excelled at

different types of tools.

No one silicon compilation tool was seen as being preferred in all aspects of design,

which restricted their acceptance. The trend toward CAD frameworks [vanDerWolf94]

instead of monolithic tools was served by companies such as Valid Logic Systems and

Mentor Graphics that offered integrated sets of tools. Existing silicon compiler tool ven-

dors, such as Silicon Compiler Systems, were not as successful with their tools, and

17

responded by unbundling their products into sets of tools that could work within a single

framework [Weiss89a].

While individual vendors produced and sold their own frameworks, this was not

enough to allow interoperability among tools from different vendors. A further move by

vendors to freely provide open interfaces to their design frameworks was intended to pro-

mote third-party tool development and integration with frameworks [Wirbel89]

[Harding89]. The arrival of VHDL during the same time period as a standard, mandated

for use by the U.S. Department of Defense, led many tool developers to support VHDL as

a common standard for design interchange among tools [Harding89] [Weiss89b].

An industry-sponsored collaboration began in 1988, called the CAD Framework Ini-

tiative (CFI) [Harding88] to address problems of design data exchange and tool interoper-

ability. While these and other industry and research efforts continued through the mid

1990s, standards for tool integration were not widely adopted by tool vendors, partly due

to the competitive rivalries of EDA vendors, and the lack of any one vendor being domi-

nant enough and willing to set a standard that others would follow [Shneider91]. It is not

necessarily in commercial EDA vendors’ self-interest to make their tools fully interopera-

ble with those of other vendors, despite the difficulties that designers have due to non-

interoperability. In 1997, the CFI announced that it was changing its name to the Silicon

Integration Initiative (SI2), and that its focus would shift to improving productivity and

reducing the costs of designing and manufacturing integrated silicon systems [CFI97].

Tool interoperability continues to be a problem. One figure quoted is that up to 50% of

semiconductor companies’ design tools groups resources are spent on integrating tools

together [Goering98].

18

1.2.6 Mainstream EDA

With the passing of monolithic silicon compilers to sets of tools and frameworks, the

term silicon compilerfell into disuse, but has not disappeared completely. Recently, the

term is used only to refer to systems that take a description of the structure of an applica-

tion or function and perform all of the steps to produce a layout. This approach is typically

restricted to special domains, such as filter design within DSP [Miyazaki93] [Jeng93]

[Hawley96] and fuzzy logic [Wicks95] [Manaresi96], where domain-specific knowledge

can lead to optimal rules for efficient layout.

For general digital system design, the term appears to be rarely used. The basic steps

that were performed by the first silicon compilers are now performed by many tools joined

together in a design flow. The Design Compiler from Synopsys is not a silicon compiler at

all, since it only performs logic synthesis, but performs no layout functions. Many other

tools have arisen to handle specific tasks required by designers, and each task is referred to

by separate names. In addition, the design process is not thought of as a monolithic, turn-

key process where even an organized set of tools can handle the many steps of circuit lay-

out design without interactive control from designers. The general field of design tools,

frameworks, and services falls under the term ofelectronic design automation (EDA).

During the past few years, EDA tools have become mainstream in their use and some-

what indispensable for creating innovative designs in a cost-effective manner. Logic syn-

thesis has taken hold as a crucial step in many design flows, and it has been improved and

extended to take more into account about the technologies to which it is targetted, be they

full-custom layout in a given silicon technology, standard-cell design, gate-array, or FPGA

implementations. In addition, sub-specializations of logic synthesis are sometimes used

for control logic and datapath design. For control, sequential logic optimization of state

machines is a specialized area within logic synthesis. For arithmetic operations and signal

19

processing, datapath compilers are emerging as additional tools to work with logic synthe-

sis.

Other tools within digital design flows include tools for physical design. Among these

are tools for floorplanning prior to the final layout, to improve the eventual layout results

and to improve logic synthesis by providing early estimates of delay and area from the lay-

out. Tools for placement and routing also continue to grow in sophistication as silicon

technologies become more challenging to design for. Parametric extraction of parasitic

resistance and capacitance are used to achieve more accurate estimates of delay and power

consumption from the layout, and design rule checkers to verify that layout rules have

been followed are also crucial to avoid expensive layout redesigns after failed fabrication.

Other tools at the layout level support the design of standard cell libraries and their charac-

terization so that libraries can be targeted by logic synthesis. Design for test and design for

low power are also motivations which are changing and extending the capabilities of logic

synthesis tools. Simulation tools at all levels of design have become important for infor-

mal verification of designs and to check for errors created in moving from one level to

another.

Above the level of logic synthesis, tools for analyzing source HDL code help designers

to target areas of source code that lead to specific problems in synthesis by annotating the

code with synthesis results. Other tools aim at design levels above logic and register-trans-

fer-level synthesis, including behavioral synthesis (described below) and emerging tools

for hardware-software codesign and system-level design. System integration standards for

the design of systems-on-a-chip (SoC) are being put forward by industry-sponsored

groups such as the Virtual Socket Interface Alliance (VSI Alliance). These efforts are

intended to promote the level of design to the system level for complex integrated circuits,

and to allow the re-use of components in multiple IC designs.

20

Behavioral synthesis (described further in Section 1.5) takes a behavioral specification

as input and produces a register-transfer-level (RTL) design for input to RTL synthesis. A

behavioral description does not specify specific timing or functional unit allocation, but

only the operations to be performed and their dependencies upon one another, along with

timing constraints on the eventual implementation. Behavioral synthesis represents the

highest level of abstraction at which some early design tools worked, and serves as a front-

end to the remainder of the design flow. Behavioral synthesis tools were successfully com-

mercialized after RTL synthesis tools had become accepted. Mentor Graphics adopted the

Cathedral tools from IMEC as the Mistral system for DSP circuit design. These tools car-

ried specific assumptions about the architecture with them. A general tool for behavioral

synthesis was introduced by Synopsys in 1994, Behavioral Compiler, which was pre-

sented as not being appropriate for all design styles, but rather for algorithmic design. In

1997, the Alta Group of Cadence Design Systems released Visual Architect, a behavioral

synthesis tool with an interactive interface presenting multiple views of the behavioral

synthesis process. A tool containing similar capabilities called Monet was introduced by

Mentor Graphics later in 1997. Synopsys later introduced BCView, a visual interface

extension to Behavioral Compiler. Behavioral synthesis tools in general are not always

appropriate for general designs, but find their best use for designs with high algorithmic

content, such as for DSP and arithmetic datapath design.

1.2.7 Emerging Challenges

The long-term trend in the industry has been to move from single all-encompassing

tools to multiple tools in a design flow. Some of these tools have emerged from research

work at universities and larger private research laboratories. Products are commercialized,

sometimes by the existing major EDA vendors, and just as often by smaller startup compa-

nies. Multiple entrants to the market appear initially, followed by a few emerging as domi-

21

nant after a few years. Often, consolidation through attrition of weaker product offerings

and large EDA vendors’ mergers with and acquisitions of smaller successful startups is a

pattern which repeats itself with each new wave of EDA technology. While innovation in

the past used to be led by non-EDA industry research efforts, followed by commercializa-

tion, recently much innovation comes incrementally from industry itself. Often these

incremental advances are additional features within existing design tools, or new tools

which fit into existing design tool flows.

Some recent areas of innovation are design for low power, design for test, verification,

system-level integration, and layout-level tools to deal with the challenges of deep-submi-

cron (DSM) scale technology. While many design tools are being modified to handle

design technology down to 0.25 microns in scale, a large question in the industry is how to

deal with technology at smaller scales, where many of the assumptions and typical design

abstractions break down. One issue involves the fact that as logic elements shrink, the

dominant contribution to circuit delay, area, and power consumption comes from the inter-

connect and not from the transistors. Another issue is that transmission-line effects and

crosstalk among interconnect traces becomes increasingly difficult to avoid. Some are

calling for an entirely new design flow below the RTL abstraction in order to meet these

challenges, while efforts still continue to modify existing flows incrementally to adapt to

shrinking technology scales. A likely feature of new design flows would be the tighter

coupling of logic synthesis, floorplanning, and place & route, instead of treating each of

these as separate stages.

For datapath-intensive designs, the possibility exists for the return of earlier silicon

compilation techniques [Goering97a], where automation is applied from the behavioral or

structural description of datapath sections down through the final layout. Because of the

regularity of datapath designs in their layout, silicon compilation has proven its greatest

value, over general logic synthesis and layout, in this area. The challenges of DSM-scale

22

designs makes this option more attractive to designers who are not expert in manual data-

path design. With DSM, less emphasis may be placed on reducing the overall number of

gates, and more importance may be assigned to obtaining layouts with predictable perfor-

mance, area, power requirements, and signal integrity.

One of the early silicon compilation techniques was applied by VLSI Technology for

standard-cell layout of datapaths. DSP is one of the areas where silicon compilation has

been most successfully applied, in tools such as LAGER [Brodersen92] and others

[Miyazaki93] [Jeng93] [Hawley96]. Recent commercial product offerings that address

datapath design at various levels include the Smartpath layout tool from Cadence Design

Systems, which provides automated layout of data-path elements (1995), the Mustang

datapath placement tool from Arcadia Design Systems (1996), the Aquarius-DP data-

path-placement tool from Avant! (1997), and the Datapath Compiler tool from Synopsys

for automatically synthesizing structural descriptions of datapath elements into gates

(1997). Even with these developments, large companies with many resources will likely

continue to design high-performance datapaths for leading-edge microprocessors by hand,

since obtaining the greatest possible performance from the datapath is central to the suc-

cess of these products.

Going forward, the challenges of designing systems in integrated circuit technology lie

both in the difficulties of working in shrinking DSM scales, as well as the desire to

increase productivity through raising the abstraction level where appropriate and making

greater re-use of existing designs. Just as the coming of VLSI design was seen as precipi-

tating a design crisis, today after several generations of technology and orders of magni-

tude in Moore’s Law, a crisis is being warned of in both the fine-scale of silicon

technology and in large-scale system design productivity. Judging from the past, rather

than halting progress, this crucial set of circumstances is more likely to spur greater efforts

23

at innovation, and greater willingness to embrace new approaches derived from that inno-

vation.

1.3 Levels of Abstraction

The fundamental implementation technology of semiconductor materials is far too

basic for direct translation from an algorithmic specification to be reasonable. Instead,

several successive layers of refinement in abstraction are passed through on the way from

algorithm to implementation. These are presented in Figure 1.2 in a typical vertical design

Figure 1.2 A typical design flow.

Algorithm description: general requirements, mathematical equations,
procedures, graphs, constraints

Behavioral Description: behavioral HDL code, high-level language

RTL Description: RTL HDL code

Logic Gate Netlist

Technology-mapped netlist

Placed and routed netlist

code generation

Layout: Semiconductor process mask images

Implementation: Fabricated integrated circuit

place and route

technology mapping

behavioral synthesis

rtl synthesis

fabrication

layout

24

flow, with the most abstract being at the top and the concrete physical implementation at

the bottom.

This is meant to be a general representation of a design flow, not an all-inclusive one,

and it is not necessary to traverse it sequentially in top-to-bottom fashion. There are typi-

cally many iterations between levels of abstraction, including branching of design alterna-

tives, as well as partial refinement of designs at mixed levels of abstraction [Hadley92].

There are also methodologies in which skipping levels of abstraction in the design flow is

appropriate. The lowest levels are the most well-defined and standardized according to the

current technologies available. The upper levels are less well-defined and have more avail-

able alternatives for how designs are specified at those levels of abstraction. The focus of

this dissertation is on the top levels of this design flow, from the algorithm description to

the RTL description of the design.

At the top level, the algorithm description is the most open-ended since it can be

defined as including all design descriptions that are more abstract than those that lie below

it. Algorithms may be specified in terms of constraints or mathematical equations in vari-

ables of interest that may or may not be in closed-form expressions. An algorithm may

also be specified in terms of a procedure or sequence of steps which describe the manipu-

lation of abstract data structures, with control flow for specifying constructs such as deci-

sions, iterations, branching, and recursion. Algorithms may also be specified in terms of

graphs of abstract objects and the relationships among them.

The termbehavioral descriptionhas a more standardized meaning in hardware synthe-

sis. It refers to any description that expresses the operations that are to take place and the

communication of information among them, without specifying the allocation of resources

to accomplish those operations or communications, and without specifying the exact tim-

ing of those operations or communications, either in their starting times, their durations, or

their total ordering. Behavioral descriptions are a subset of algorithmic descriptions, since

25

they specify operations and their relationships explicitly. Algorithmic descriptions may or

may not completely describe the specific steps to accomplish the desired goal, specifying

instead only implicitly through a set of constraints or as a general procedure without a

complete definition of the data structures or precise operations that bring about the goal.

The register-transfer level(RTL) of abstraction can be defined in terms of what is not

present in the behavioral description. An RTL description contains information about all

the operations and communications present in the system, including specific information

about which resources are instantiated to perform those operations and communications.

Among the information included are statements of what registers, or data storage ele-

ments, are present and how and when they are to be used to store the results of operations,

and to transfer those results to subsequent operations that use those results. An RTL

description may not explicitly describe when all operations in the execution of the system

take place, but it will completely describe the preconditions for all operations, possibly in

terms of logic operations on signals which are within the system or which are inputs to the

system from the environment. The timing of the loading of registers is described in terms

of one or more clock signals. These clocks may or may not be synchronized to one another

and their frequencies need not be specified in the RTL description.

1.4 RTL Synthesis

Once a valid RTL description of a design is available, it can be directly translated into

a netlist of digital logic gates. This neglects, for the moment, whether or not the gate-level

design will be feasible in any available semiconductor technology, as well as other issues

that stem from physical properties of the technology. It is also possible to perform optimi-

zations during translation from RTL to a gate-level description, but these will not change

global timing or the data types or the allocation of registers.

26

RTL synthesis proceeds by a parsing of the RTL description to determine what regis-

ters, arithmetic operators, logic elements, and switching elements are instantiated. The

synthesis process also determines from the RTL description what signals are connected

between the previously mentioned elements, including input and output signals, and their

bitwidths. Consistency checks are made for such conflicts as operator and signal bitwidth

mismatches, or signals that appear to be driven by multiple source elements simulta-

neously.

Once a consistent netlist of connected elements is ready, each of the elements can then

be mapped to sub-netlists of connected logic gates. The choice of logic gates to use can be

influenced by the implementation technology that the netlist will be mapped to. A logi-

cally correct netlist can be constructed by choosing any sub-nets of logic gates that imple-

ment the correct logic functions between registers. Such choices may not be optimal in

terms of the goals of the design, and they may not even be feasible in terms of meeting the

minimum requirements for size, performance, or power consumption, which are not spec-

ified in the RTL description. Pursuing the next step after RTL synthesis, technology map-

ping, can provide paths to predicting these design quality metrics.

In technology mapping, alternative selections of logic gate sub-nets can be made

depending on whether a specific standard library is being mapped to, or the selection can

be determined by algorithms which optimize the design locally or globally in terms of

area, switching delay, or power consumption. The inputs to such optimizations are esti-

mates of the physical properties and behavior of the sub-nets in the final implementation

technology. These estimates can come from characterizations of measurements which

have been made on standard libraries of implementations of sub-nets, or standard cells, or

they may be derived from models of the physical properties and behavior of sub-nets of

logic gates in a given technology.

27

Any such optimizations will only be as good as the library and model estimates that

are used as inputs. Increasingly, as deep-submicron (DSM) semiconductor technologies

are chosen for the final implementation, the optimization algorithms must take into

account less about the power, delay, and area of sub-nets of logic gates, and more about

the same properties of the interconnections among them. Formerly, the majority of the

area, delay and power consumption were due to the transistor circuit elements. This

allowed general properties of a design to be determined from a netlist topology without

placement information. For the increasingly shrinking technology scales of DSM, the

majority of area, delay, and power consumption are due to the interconnections, and so are

determined by the placement and routing of the interconnect. Since the sizes and geome-

tries of interconnections are not specified in a netlist of technology-mapped logic gates,

accurate predictions of power, delay, and area are increasingly difficult to obtain from such

a netlist alone. Preliminary estimates from the next stage, placement and routing, may be

required in order to estimate the geometries and physical properties of the interconnec-

tions.

No matter what the final sub-net of logic gates that is chosen for each element in the

overall netlist, it must not change the logic function as specified in the RTL description.

Within that constraint, there are limited opportunities for optimization. However, if the

original design intent is more general than what is in any single RTL description, then a

methodology which uses a specification closer to that intent will not needlessly constrain

the design flow. If the intent does not specify what operators are to be instantiated to

accomplish the computation, or how many of each, or when they should execute, then an

RTL description, which locks in choices for all of these, constrains the quality of the result

beyond the original design intent.

If instead the designer can capture the intent at a more abstract level, many different

RTL descriptions may be possible which can implement that design intent. The result may

28

be a broader design search space, which could imply a longer design time. However, if the

time required to input and debug the more general design specification is significantly

shorter than that needed for an RTL description, the benefits are twofold. First, the overall

design time may be shorter than if the initial design input were in RTL form. Second, as a

result of starting from a more general description, lower cost or higher performance alter-

natives may be possible which would not have been from a fixed RTL starting point.

Recoding from one RTL description to another for design improvement can be far more

difficult, error-prone, and time consuming than generating both RTL descriptions from a

single, more abstract statement of design intent which does not need to be modified. Any

changes in an RTL description must be verified against the original intent, but an RTL

description which is generated directly from that intent does not need to be as extensively

verified. A behavioral description is one type of more general specification of design

intent, and behavioral synthesis is the process of generating an RTL description from a

behavioral description.

1.5 Behavioral Synthesis

In this section we take a more detailed look atbehavioral synthesis, [McFarland90]

which takes a behavioral description of a design and produces an RTL description, subject

to some optimization criteria. Other terms which are used commonly in the literature

include high-level synthesis, architectural synthesis,and behavioral compilation. This

type of methodology has proven to be particularly successful for DSP applications, as

opposed to general digital logic design, achieving productivity improvements of a factor

of five over RTL synthesis methods, while maintaining or improving area and timing

[Camposano96]. A behavioral description lacks specific instantiation of computation and

communication elements, and does not specify the exact timing of operations. The pur-

29

pose of behavioral synthesis is to decide what the instantiations and interconnections

should be, along with the clock timing, so that an RTL description can be produced for use

in the remainder of the design flow.

The behavioral description may be written in a procedural text form, as in sequential

statements in a hardware description language (HDL) such as VHDL or Verilog. Behav-

ioral descriptions can also be written in high-level programming languages such as C or

FORTAN. None of these languages is ever used without some significant restrictions,

however. Many constructs that are acceptable in the general standard form of these lan-

guages are not allowed by behavioral synthesis tools. Either these constructs do not con-

form to the “style” required by the tool, or they are inherently unsynthesizable constructs,

such as absolute timing specifications, dynamic allocation/deallocation of storage ele-

ments, or pointer addressing modes. In the case of C, a simplified language with a similar

syntax has been developed, with additional constructs included for purposes of hardware

synthesis [DeMicheli90].

As an alternative to modifying existing high-level programming languages, or to

inventing new all-purpose digital design languages, specialized languages such as Silage

[Hilfinger85] for domain-specific application areas can also be employed. Silage was cre-

ated specifically with digital signal processing in mind, providing constructs for specify-

ing signals in a sample-based syntax. Silage also provides operators for specifying sample

delays. Silage is an applicative language. It is single-assignment, so that variables repre-

sent mathematical quantities and not memory locations. The syntax of Silage is compara-

ble to the way in which designers would specify DSP algorithms as relationships among

signals through discrete-time difference equations. As a result, Silage is well-suited to

specifying such systems. The original language design has been extended to support tim-

ing information, pragmatic directives, loops, and conditionals [Genin90].

30

With the availability of domain-specific languages for describing DSP designs comes

the possibility of having domain-specific tools for synthesizing implementations. A set of

tools which focus on taking Silage descriptions as the input to synthesis and then perform-

ing architectural synthesis and optimization based on distinct architectural styles is the

Cathedral family (I through IV). These tools are based on joint work at IMEC, the ESAT

Laboratory at K.U. Leuven, and Philips Research Labs [DeMan90]. The four architectural

styles supported are hard-wired bit-serial datapaths, microcoded multiprocessors, cooper-

ating bit-parallel datapaths, and regular arrays. These tools tend to focus on very high

throughput (> 100Mops/sec) applications. Also, clustering and memory management are

performed manually, and the complexity of the algorithm for synthesizing application-

specific function units is high, particularly when synthesizing many functions into a single

functional unit [Note91]. The synthesis phase has more utility when combined with a

larger design tool, as in the case of PIRAMID, which uses Cathedral II for synthesizing

sub-units, a separate Module Generation Environment (MGE) for generating detailed lay-

outs of sub-blocks, along with timing and area information, and a FloorPlanning Environ-

ment (FPE) for general architecture floorplanning [VanMeerbergen90].

Just as synthesis tools optimized for particular architectural styles can hold a specific

advantage, so can tools which are targeted at particular application areas. The PHIDEO

compiler from Philips is aimed specifically at high-speed processing of video streams,

such as what is required for high-definition television (HDTV) systems

[VanMeerbergen92]. A special requirement for video applications is the large amount of

buffer memory which needs to be managed. In order to address this, the PHIDEO com-

piler has as a major step the design of a multiport memory to serve the multiple processor

units which are also designed within the tool.

While textual languages are currently the most common form of input for behavioral

synthesis methodologies, they are not the only form possible. Graphical descriptions can

31

contain all the relevant information necessary for behavioral synthesis, as can mixed

graphical/textual descriptions. This seems even more natural in considering the fact that

many behavioral synthesis tools proceed by producing an internal graphical form of the

specification on which the algorithms for synthesis operate. The comfort of programmers

with sequential text-based languages, along with the transitioning of designers accus-

tomed to text-based RTL coding over to behavioral synthesis, are primary reasons for the

continuing predominance of text-based behavioral synthesis methodologies.

Behavioral synthesis proceeds by constructing an internal dependency graph from the

input description. This dependency graph has as nodes each of the operations that are to be

performed during the execution of the algorithm. The edges are directed arcs representing

data values that are exchanged between operations. An edge flows from the operation node

that is the source of the corresponding data item to the node of the operation that uses that

data item as an input. The edge may branch if multiple downstream operations require the

same input data item. An edge can have exactly one source node, or it may be an input to

the system from the outside. An edge can have multiple destination nodes, including the

case of being directed to an output of the system. If an edge has no destination nodes, then

the data value that it represents is not needed, and it can be eliminated. If an operation

node has no output edges, and the operation produces no meaningful side-effects, then it

can be eliminated as well.

Once the dependency graph has been constructed, the steps ofscheduling, allocation,

andmappingcan be performed, either jointly or in any order desired. Scheduling involves

taking untimed operations of the graph, including input and output events, and associating

them with specific time intervals in the execution of the system. Input and output con-

straints, as well as allocation and assignment constraints, and performance requirements,

will dictate some of the scheduling decisions for the design. Estimates of performance,

including estimates of how long each type of operation takes in the expected implementa-

32

tion technology, will constrain the remaining possible scheduling decisions. If no feasible

schedule is possible within the given timing constraints, then either a faster implementa-

tion technology must be selected, or the behavioral description must be redesigned. The

behavioral description may be changed, perhaps to trade off robustness in the presence of

noise or expected error performance for additional execution speed.

During the scheduling process, the dependency graph is annotated with information

about which operations are to take place during each time interval. This in turn places

minimum constraints on the spatial dimension in terms of specifying operations which are

executed concurrently, and hence minimum resource requirements in order to enable that

level of concurrency. The allocation phase determines the spatial dimension of how many

physical elements of each type are to be included in the implementation. For each operator

type, behavioral synthesis must allocate at least as many operators of that type as the max-

imum number of such operations that are expected to be simultaneously scheduled during

any time step. Allocation applies not only to arithmetic and logical operators but also to

registers and other elements that handle the communication of values from one operator to

the next.

The allocation phase must ensure that there are sufficient numbers of each type of ele-

ment to accomplish the computation in the expected number of time steps. Behavioral

synthesis must also determine which scheduled operations should be executed on which

allocated operators, and which scheduled communications should be handled by which

allocated communication elements. This phase is referred to as mapping, or assignment.

An arbitrary mapping will likely result in suboptimal results in terms of the system cost.

This is because the final interconnections between operators are determined by the opera-

tions which those operators are to perform and where the inputs and outputs of those oper-

ations are coming from and going to. The greater the number of source and destination

elements for each operator, the more complicated the interconnect into and out of those

33

operators will be. In cases where interconnection paths between operators can be re-used

by mappings of multiple dependency graph edges, additional interconnect need not be

built.

The result of the mapping phase is a design netlist which specifies all of the elements

that need to be instantiated and their interconnections, as well as the timing of operations

and the switching of data from one element to the next. Control signals which actuate the

latching of registers and the setting of switching elements are derived from the input clock

signals. From this body of information, a complete RTL description can be produced in

the target language to be used as input to the RTL synthesis tool downstream in the design

flow. Multiple such RTL descriptions can be generated through several iterations of behav-

ioral synthesis, each performed with varied settings of the synthesis objectives and con-

straints. Each of these RTL descriptions will be a valid representation of the behavioral

description intent without the need to manually re-code the RTL each time.

The three phases of scheduling, allocation, and mapping need not be performed in any

specific order. In resource-constrained scheduling, the allocation phase is performed first,

setting strict limits on how many physical resources will be available so as to seek to put a

cap on the implementation area. The scheduling which follows this will be subject not

only to the dependency graph of the algorithm, but to the need to avoid scheduling more

operations of a given type in a single time frame than there are operators allocated for that

type of operation. This constrained optimization problem has been shown to be NP com-

plete [Garey79]. Another variation on the three-phase ordering is partial mapping, where

certain operations are pre-designated to be performed by specific limited resources, such

as a special-purpose FFT engine. In this case, all other operations are unconstrained as to

their mappings, but the overall design must remain consistent with the initial conditions

specified for the mapped operations.

34

The three phases also need not be performed in isolation, where for example all sched-

uling is completed before any allocation or mapping can begin. Scheduling and allocation

can be performed jointly. This can significantly complicate the algorithms required to per-

form these steps, but the hope is that superior results may be obtainable this way. An

example of this is resource-constrained scheduling where the resource limits are not hard.

If during scheduling it is found that the currently set limits from allocation are causing a

particularly acute resource conflict, there may be limited flexibility to allow a slight

increase in the allocated numbers of resources to resolve the conflict. Following this, the

remainder of scheduling can continue under the new resource limits.

Another important area of work that applies to behavioral synthesis even before sched-

uling, allocation, or mapping occur is the optimization of the input specification. Just as

improved results have been obtained through the rewriting or transformation of the RTL

code that is input to RTL synthesis, optimizations of behavioral specifications can enable

better quality designs to be discovered. Transformations applied to the flow graph can lead

to simpler or more regular flow graphs that will yield better results in behavioral synthesis.

While work in this area has been in existence at the research level for some time, transfor-

mational approaches to optimization of behavioral synthesis have yet to be fully utilized in

the currently available commercial behavioral synthesis tools.

1.6 Limitations of Behavioral Synthesis

Contemporary techniques for behavioral synthesis continue to face some limitations,

which this research seeks to address in part. Methods which attack various portions of the

scheduling/allocation/mapping problem for applications specified by dataflow graphs

identify themselves as falling under the umbrella term “high-level synthesis.” However,

when they are examined closely, they typically involve operations on graphical descrip-

35

tions of algorithms at the most primitive arithmetic level of task node granularity. The

nodes are usually additions and multiplications, with variations allowed, perhaps, for mul-

tiple bitwidths within a single graph. Other work includes examples with arithmetic shifts

and other functions defined by single primitive unary and binary operators.

While this level of granularity may be convenient for the behavioral synthesis algo-

rithms to attack, it is far below the level of specification at which designers of algorithms

typically work, in that it does not include truly high-level operations such as filtering, fre-

quency-time transforms, trigonometric functions, and encoder/decoders. One way to deal

with this limitation of typical methods is to resolve high-level operations down into their

constituent arithmetic operations, and so expand a graph of coarse-grain task node com-

plexity into a much larger (in terms of the numbers of nodes and edges) graph of fine-grain

complexity. What is gained is that the new graph representation more closely matches the

kind of input specification which many behavioral synthesis algorithms are expecting.

This type of approach has been applied with success in the area of software compiler

design, where a similar fine-grain graph is used internally on which the algorithms oper-

ate. This works well for compilers that are targeting sequential machines, because the

sequential nature restricts the complexity of this approach to software compilation. The

significant drawback of this approach in hardware synthesis is that due to the parallel

nature of the target implementations, many such synthesis algorithms are highly sensitive

in their computational complexity to the size of the input graph specification. As a result,

such algorithms are likely to require very long execution times to arrive at synthesis results

when the entire fine-grain algorithm graph is used as input.

In order to mitigate this problem, the fine-grain graph is usually broken into many

smaller sub-graphs which represent portions of the overall application. The synthesis algo-

rithms will find such smaller graphs to be much more reasonable in terms of synthesis

time. This is similar to work done by [Lagnese91] for partitioning control-dataflow graphs

36

for various design goals prior to input to behavioral synthesis. Sub-clusters formed

between partitioning boundaries are synthesized separately in their approach. A drawback

to this method is that opportunities for optimizing resource sharing across the entire appli-

cation are lost once the partition boundaries are drawn. The partitioning must strive to

avoid cutting off valuable opportunities for resource sharing, but partitioning algorithms

are limited by computational complexity in ways similar to how behavioral synthesis algo-

rithms are. The result is that approximation heuristics must be applied in partitioning and

clustering.

Rather than first resolving an application graph down into fine-grain operations and

then re-clustering it into multiple partitions to be sub-synthesized, we are interested in

using the initial high-level graph structure to make informed resource sharing decisions. If

a graph contains multiple coarse-grain operations which are similar, or identical, then that

information can be of high value in discovering opportunities for resource sharing. Such

information is lost if those coarse-grain operations are broken down into their constituent

arithmetic-level operations. In order to re-infer that high-level structure from the low-level

graph of arithmetic operations, sophisticated techniques in graph pattern-matching or clus-

tering would need to be applied. There have been efforts in applying template-matching to

behavioral synthesis [Corazao96] but such matching is limited to cases such as pairings of

multiply-add operators or recognizing that subtractions can be implemented by adders and

so be covered by adder templates. These bottom-up clustering techniques are aimed at

small clusters, not the larger ones implied by coarse-grain operations of a larger scale.

Another related effort by Potkonjak and Wolf [Potkonjak95] applied clustering to sets

of individual tasks in order to minimize overall circuit area. This work, however, treated

the tasks as separate and not sharing any data dependencies. The only stated goal was to

attempt to minimize the area without any scheduling constraints among the tasks. In this

37

work we are concerned with minimizing area in implementing a full graph of tasks with

data-dependency relationships.

With a coarse-grain application graph, it is not necessary to have exact matching in

operations in order for resource sharing to be deemed worthwhile. As an example, filtering

operations where the realization type may be the same, but the number of taps differ can

be implemented by a single section of synthesized hardware, provided that the filtering

operations can be scheduled to take place at non-overlapping time intervals. Even signifi-

cantly differing operations may be candidates for mapping onto the same synthesized

hardware unit if such resource sharing will reduce the cost function while not violating the

timing constraints.

A further benefit of working with a coarse-grain graph comes from the reduced com-

plexity in numbers of nodes and edges. With graphs of lower complexity, graph algorithms

for synthesis can be accomplished more quickly, and a wider range of design options may

be explored in the amount of time it would take to synthesize once from a large fine-grain

graph of the same application. This is of course subject to the relative time cost of the

algorithms used to synthesize the realizations of the large-grain clusterings as compared to

the time cost of fine-grain clustering and behavioral synthesis. Also, because techniques

that cluster from fine-grain graphs tend to group connected graph nodes together, they

have a tendency not to favor clusterings of operations from disparate parts of the graph.

Our proposed technique, which looks beyond local arithmetic connectivity, may explore

clusterings which would not be typical for conventional methods to admit.

This class of techniques may also prove useful for attacking problems of reconfig-

urable computing. This would apply to application specifications where large portions of

the dataflow graph remain unchanged, but certain subsections change depending on deci-

sions that are based on environmental factors, user input, or changing power and perfor-

mance requirements. A single hardware realization may be required to implement multiple

38

such dataflow graphs. For the subgraphs of the dataflow graphs that embody the changes,

hardware units can be synthesized which are capable of performing a few different node

functions. Then these different functions can be selected by control inputs as reconfigura-

tions take place during operation. In order to achieve similar results from behavioral syn-

thesis at a fine-grain level, a single fine-grain graph representing all the configurations

would need to be constructed. The reconfigurable portions could be isolated, but it would

still be true that as reconfigurability demands increased, the complexity of the fine-grain

graph would increase rapidly, significantly complicating conventional behavioral synthe-

sis.

With coarse-grain methods, we can now view hardware more flexibly as collections of

concurrent functional units, each of which are operated sequentially, and which can be

idled when not needed. Such hardware units can be marshalled into service as conditions

change and then allowed to idle or shut down when not needed, saving power. A centrally-

scheduled controller will always be active in organizing the available hardware units and

interconnect resources as needs change. This controller will likely be significantly simpler

if it only needs to actuate control signals for a few hardware units instead of for a large

number of arithmetic operators and interconnect resources.

1.7 Summary

With multiple levels of abstraction available to hardware design specifiers and multi-

ple tools from which to choose, each may be valuable under the right circumstances. For

designs specified in dataflow, some form of behavioral synthesis approach appears appro-

priate, but most are aimed at a fine-grain representation of the design problem. By focus-

ing on coarse-grain approaches, there is an opportunity to reduce computational

39

complexity and to discover design tradeoffs which might be difficult to infer from existing

behavioral synthesis approaches.

In the chapters that follow, we will describe such an approach, its strengths, and its

limitations. We will also present techniques to make the approach interactive, and to allow

verification through simulation with other non-hardware design elements. In Chapter 2,

we present the details of a method for synthesizing hardware from SDF descriptions. In

Chapter 3, we present issues in cosimulation of dataflow implemented in VHDL with

other design elements. In Chapter 4, we describe how this design methodology can benefit

from the use of interactive tools, and what the features of those tools should be. In Chapter

5, we present the details of how the synthesis, cosimulation, and interactive design proce-

dures are implemented in the Ptolemy simulation and prototyping environment. Finally, in

Chapter 6, we summarize the results of the earlier chapters and discuss open areas for

future work.

40

2

SDF Hardware Synthesis

Synchronous Dataflow (SDF) is a model of computation well suited to represent appli-

cations with high algorithmic content, particularly multirate DSP. The features of SDF that

make it useful as an initial specification from which to synthesize are the ability to per-

form static scheduling and the analysis of resource needs that is possible. From any SDF

graph there are many possible implementations, and the issues involved are discussed in

this chapter. In Section 2.1 we describe the SDF model, followed by an overview of SDF

scheduling in Section 2.2. In Section 2.3, we discuss the dependency graph that is derived

from an SDF specification. In Section 2.4, elements of the VHDL hardware description

language are presented with aspects of how the dependency graph is representable in

VHDL. Related work on constructing hardware from dataflow graphs is presented in Sec-

tion 2.5. In Section 2.6, issues of implementing computation, communication, and control

in a hardware architecture are explored. In Section 2.7, details of the communication-

driven style of implementation are presented. In Section 2.8 the stages of the code genera-

tion process are described. In Section 2.9 the hardware synthesis design flow is presented,

followed by a summary in Section 2.10.

41

2.1 Elements of Synchronous Dataflow

An algorithm specified in synchronous dataflow (SDF) represents a division of the

total design into computation elements and their relationships with one another. As a

graphical specification, it conveys not only which stages of the algorithm depend upon

which others, but also it implicitly represents which stages are independent of each other.

This shapes the direction in which the design of concurrently executing hardware units

will go, determining which tasks can be performed by independent hardware units operat-

ing simultaneously, and which tasks must be performed sequentially.

An SDF graph specifies the relative rates of production and consumption of data

tokens for each firing of each actor. Given this, it is always possible to determine whether

the graph isbalanced, which means that it can be executed indefinitely with no unbounded

accumulation of tokens on any of its arcs. It is also always possible to determine whether

such a graph can be executed withoutdeadlock. Deadlock occurs when no node can be

fired because none has sufficient input tokens to satisfy the firing rules.

An SDF graph that is both balanced and deadlock-free is aconsistentSDF graph. Con-

sistent SDF graphs have at least one and often many finite schedules for their execution.

Figure 2.1 An example of an SDF system. Rates of token production and
consumption are fixed for all actor firings, and are an explicit
part of the specification.

A

C

B

D

1

2

1 1

1 1

1

2

42

Such schedules can be executed repeatedly and the computation and communication

resources necessary to do so are bounded by the finiteness of the schedule.

2.2 Scheduling SDF Graphs

A necessary step in synthesizing an SDF graph specification into a hardware realiza-

tion is deriving an execution of the graph that is consistent with the SDF semantics and

that can be implemented in hardware. In the subsections that follow, we describe the SDF

semantics, and impose a condition on execution for practical hardware. This condition

leads to a formulation of balance equations for the SDF graph, and a method for solving

them is then presented. Following this, we show how to construct a valid schedule that sat-

isfies the balance equations. Synchronous dataflow and the scheduling techniques

described in this section were originally shown in [Lee87].

2.2.1 SDF Semantics

Synchronous dataflow (SDF)is a graphical model of computation. An application is

specified in SDF as a directed graph of nodes, oractors, that represent computation ele-

ments. Nodes are connected by point-to-point graph edges, orarcs, that represent commu-

nication between actors.

The unit of computation in SDF is onefiring of an actor. Firings of actors are single-

entry, single-exit. This means that all inputs must be available before an actor fires, and all

outputs are only available after the firing has completed. Actors are enabled to be fired

when sufficient input data is available. Actors with no inputs are always enabled to be

fired.

Communication occurs through individualtokensof data on the arcs. When an actor

fires, it consumes a fixed number of tokens from each of its inputs, and it produces a fixed

number of tokens on each of its outputs. The numbers of tokens produced and consumed

43

on each input and output are constants and are part of the SDF specification. Arcs have

first-in, first-out (FIFO) queueing semantics. Multiple tokens produced onto an arc are

queued and remain on that arc until they are consumed by the actor with that arc as an

input. After tokens have been produced by the upstream actor, they are available for con-

sumption by the downstream actor.

2.2.2 The Balance Equations

Given an SDF graph, we seek to determine a schedule for executing the graph that can

be implemented in digital hardware. The schedule consists of performing individual firing

computations and token communications in a way that is consistent with the original SDF

semantics. Such a valid execution can be specified either as a sequential schedule of fir-

ings, or as a parallel schedule, where some firings may take place concurrently.

An additional constraint that we place on any execution schedule is that it must keep

the token data storage requirements bounded. This is necessary for any realization to exe-

cute indefinitely in bounded memory. The unbounded FIFO queueing of arcs in SDF does

not, in general, guarantee that this constraint is met, so we impose the additional require-

ment that arcs remain in balance over the long term during execution. We will only be

interested in schedules of firings where the number of tokens produced on each arc equals

the number of tokens consumed on that arc, over a finite number of actor firings.

In order to keep the memory requirements bounded, we want to determine how many

times to fire each actor so that each arc has the same number of tokens on it at the end of

the set of firings as it did at the beginning. For each arc, this will depend on how many

times the source and sink actors of the arc are fired, and on how many tokens are produced

or consumed each time the source or sink actor fires. The condition for balance on an arc

can be expressed as

(2-1)qsource nsource⋅ qsink nsink⋅=

44

where and are the number of firings, orrepetitions counts, of the source and

sink actors, and where and are the numbers of tokens produced and con-

sumed, respectively, by the source and sink actors. This is thebalance equationfor an arc.

The numbers of firings of all actors in the graph that will keep the arcs in balance can be

determined by simultaneously solving the balance equations for all arcs in the graph. This

is described in the next subsection.

2.2.3 Solving the Balance Equations

The balance equations form a system of linear equations that can be solved for the

number of repetitions of each actor. We can rewrite Eq. 2-1 as

. (2-2)

We can put the entire set of balance equations into matrix form as

(2-3)

where is the vector of the repetitions counts of all actors in the graph and is a vector of

all zeros. The matrix is called thetopology matrixand consists of entries describing the

connectivity of the actors and arcs and the rates of token production and consumption on

each arc. The topology matrix has one row for each arc in the graph and one column for

each actor in the graph. An element of the matrix, , represents the number of tokens

produced on or consumed from arc by actor . If tokens are produced, is positive, and

if tokens are consumed, it is negative. Otherwise, the entry is zero.

It can be shown that for a connected SDF graph, the solution space for the vector ,

which is the null space of , is of dimension 1 or 0. If it is of dimension 0, then there is no

nontrivial solution, and the graph is said to beinconsistent. This means that there is no

qsource qsink

nsource nsink

qsource nsource⋅ q ksin n ksin⋅– 0=

Γq 0=

q 0

Γ

γ i j

i j γ i j

q

Γ

45

finite number of repetitions of the actors that will keep the arcs in balance. If the solution

space is of dimension 1, then the unique minimum integer repetitions vector can be

found, and it specifies the actor firing counts to keep the graph in balance. However, there

still may not be a valid schedule for executing the graph, if it deadlocks. Determining

whether the graph deadlocks and constructing a valid schedule if it doesn’t are the subjects

of the next subsection.

2.2.4 Constructing a Sequential Schedule

Once the balance equations have been solved, it is known how many times each actor

should be fired in order to keep the graph in balance. However, it is not known in what

order to fire the actors, or whether it is possible to fire the actors at all without deadlock-

ing. Deadlock occurs when no actor in the graph has sufficient input data to be fired. This

happens in graphs with a directed loop that do not have sufficient initial tokens on the arcs

in the loop to enable the firing of all actors the required number of times.

A simple way to determine whether a graph deadlocks and to find a sequential sched-

ule at the same time is to simulate the execution of the graph. With a solution to the bal-

ance equations, we can begin by choosing any enabled actor to be fired that has not yet

been fired the number of times specified in the repetitions vector. We continue firing

enabled actors until all actors have been fired as many times as specified by their repeti-

tions count, or until no more actors are enabled. If no more enabled actors are available,

the graph is deadlocked, and no schedule can be found that satisfies the balance equations

and avoids deadlock. If we finish simulating all firings, then the sequential list of firings

just simulated forms one possible sequential schedule.

Any sequential schedule found in this way isadmissible, meaning that it can be exe-

cuted and the numbers of tokens on all arcs will remain bounded and non-negative. An

infinite-length admissible schedule that is periodic can be formed by repeating the finite

q

46

schedule indefinitely. Such a schedule is aperiodic admissible sequential schedule, or

PASS.

2.3 Elements of the Dependency Graph

2.3.1 Firings, Tokens, and Dependencies

The minimum numbers of firings of each actor in the SDF graph can be determined

from the minimum repetitions vector that is a result of the scheduling process. SDF actors

have dependencies upon one another through the communication arcs that connect them,

but specific firings of the actors will not always have direct dependency relationships with

all of the scheduled firings of adjacent actors.

The firings of a particular actor are indexed sequentially and have a unique identity

within the schedule, and the tokens produced on a particular arc also are sequentially

indexed and uniquely identified by the first-in, first-out (FIFO) behavior of the arcs, which

is specified in the SDF model of computation. These unique identities are important later

on when the partial ordering of firings and tokens is mapped onto a total ordering in an

operating implementation. If firings of an actor do not depend on one another, then they

may be executed out of order in the SDF semantics, but they still maintain their sequential

identities. The ordering of the tokens is also maintained according to the identities of the

firings that produce them, and not according to the absolute time at which they are pro-

duced in any implementation.

The order in which tokens are consumed from a particular arc by downstream actors is

also well-defined according to the firing rules. When sufficient tokens are present on the

input arcs to satisfy the firing rules, those exact numbers of tokens will be consumed by

the next firing of that actor. If an actor produces tokens onto an arc that already has tokens

47

waiting on it, the additional tokens are queued behind the already-present tokens, and will

not affect the ordering in which the already-present tokens are consumed.

Because the behavior of firings and token production and consumption for any arc are

all well-ordered, there is no ambiguity as to which firings are directly related to each other

by production and consumption of specific tokens. Because of this, for any valid schedule

that satisfies the same repetitions count determined during the scheduling phase, the same

set of dependencies will result between specific firings and specific tokens.

The dependencies that arise from such a scheduled execution of an SDF graph can be

represented as a new graph. Thisdependency graphhas individual firings of actors as the

nodes, and individual tokens transferred as the arcs between nodes. If a specific token is

produced by one firing of one actor and consumed by one firing of another actor, then a

directed arc will connect those two firings in the graph, in the direction of token flow.

Examples of dependency graphs are shown in Figure 2.2.

2.3.2 Constructing the Dependency Graph

There are at least two ways to produce such a dependency graph. One way is to simu-

late the execution of the schedule and to create nodes in the graph for each firing as it is

simulated. Such firings will have arcs emerging from them that represent the tokens cre-

ated by the firing. Later firings will have some of those arcs as inputs since they consume

those tokens. This graph is a directed acyclic graph (DAG) of all the actor firings and their

dependencies, as derived from the SDF graph. It is directed because all arcs have direction

from the producer firing to the consumer firing. It is acyclic because each firing can only

have dependencies on tokens that are produced before the firing occurs, according to the

firing rules for SDF graphs. Because of this, there can be no cycle from any firing back to

itself.

48

The second means of producing the graph does not guarantee that the graph will be

acyclic, but only that it will be a directed dependency graph. We can construct the depen-

dency graph without simulating the schedule by realizing that since the firings of an actor

are sequenced and the firing rules are fixed, the tokens produced and consumed by any

given firing can be directly determined. Every firing of an actor reads a fixed number of

tokens from each of its inputs and writes a fixed number of tokens to its outputs. From

this, combined with the sequential indexing of firings of an actor and information about

the initial tokens on the arcs of the SDF graph, the exact token dependencies of each firing

can be determined.

A1

C1

B1

D1

C2

A B

3 2
A1

A2

B3

B2

B1

Figure 2.2 (a) Dependency graph resulting from the SDF graph in Figure
2.1. Actors A, B, and D are fired once, and actor C is fired twice.
(b) Another multirate SDF graph and the resulting dependency
graph, which reveals potential concurrency.

(a)

(b)

49

One way of indexing is shown in Figure 2.3. The SDF graph is composed of vertices

and edges . If a vertex is connected to an edge through one of its ports, that port

is identified as . The number of tokens consumed or produced through that port on

each firing of the vertex is . The number of initial (or delay) tokens on the edge is

. Tokens are numbered in increasing order from 1, starting with either the first delay

token on the edge, or the first token produced onto the edge by the source vertex if there

are no initial delay tokens. Firings of a vertex are numbered in increasing order from 1.

For the th firing of a vertex producing tokens onto an edge through port , those

tokens are numbered in order from up to , for a

total of tokens. Similarly, the tokens consumed by the th firing of a vertex from

an edge through port are numbered from through , for a total

of tokens.

From the SDF balance equations, we know the number of firings of each vertex that

are necessary to keep the graph in balance. From the above indexing expressions, the iden-

tities of all tokens consumed and produced by all firings in a balanced schedule can be

determined without finding a particular schedule and without having to simulate any

schedule. A dependency graph can be constructed with each firing of each vertex of the

vi ek v e

p v e,()

nt p()

nd e()

i v e p

nt p() i 1–()⋅ 1 nd e()+ + nt p() i⋅ nd e()+

nt p() i v

e p nt p() i 1–()⋅ 1+ nt p() i⋅

nt p()

Figure 2.3 Indexing of an SDF graph by vertices and edges , with

identifiers for ports , tokens transferred , and initial

delay tokens .

vi ek

p v e,() nt p()

nd e()

vi vjek

nd ek()

p vj ek,()p vi ek,()

nt p vi ek,()() nt p vj ek,()()

50

SDF graph as a vertex in the dependency graph, and each token produced or consumed as

an edge in the dependency graph. A graph constructed in this way, without having checked

the SDF graph for deadlock, may have directed cycles in it from one or more firings back

to themselves. If there are cycles in the dependency graph, then deadlock is indicated, and

no nontrivial schedule of the SDF graph can be constructed that simultaneously keeps the

graph in balance and avoids deadlock. An example of such a deadlocking SDF graph, with

its cyclic dependency graph, is shown in Figure 2.4.

2.3.3 The DAG and Concurrency

The dependencies between firings can be determined from the solution to the balance

equations alone, and therefore are independent of the order in which the SDF actors are

fired. This means that the dependencies are the same for all valid schedules, whether

sequential or parallel. If an SDF graph is balanced and deadlock-free, the dependency

graph will be a precedence DAG. The DAG that results from constructing the dependency

graph is also uniquely defined by the SDF graph and the repetitions vector. In a sense, the

A B

Figure 2.4 (a) An SDF graph that deadlocks. (b) The resulting dependency
graph, constructed by the enumeration method. It is not a DAG
because it has a cycle. The cycle indicates that for the given
repetitions counts, the graph is in deadlock.

1

11

1

A1 B1

Solution to Balance
equations:

qA 1=

qB 1=

(a)

(b)

51

multitude of possible finite schedules with the given repetitions counts are embodied in the

single, data structure of the finite precedence DAG. A valid schedule can be constructed

from the DAG by traversing it in any order that respects the firing precedences.

More importantly for parallel hardware generation, such a DAG also implies all the

possible parallel schedules for the SDF graph, given the repetitions vector found during

the scheduling phase. It lacks information about the execution times of individual firings,

which will be an implementation-dependent property.

Firings with direct or indirect dependencies cannot be executed concurrently without

additional pipelining or modification of the SDF graph. If such dependencies are broken

through pipelining the SDF graph by adding additional tokens to an arc, the meaning of

the SDF graph is changed, and a different dependency graph will result. The change may

be as simple as adding data latency to the output of the graph, in the case of feed-forward

arcs. In the case of feedback arcs, adding additional tokens to them may change the output

data of the graph completely.

2.3.4 DAG Granularity and Computational Complexity

Because the firing precedence DAG is uniquely defined by the SDF graph and the rep-

etitions vector, it is a single, canonical data structure on which all subsequent algorithms

can operate. This does not necessarily restrict the granularity of the computations to stay

at the level of granularity of the SDF actor firings. In later stages it will be possible to

resolve single firings into their individual arithmetic operations and internal algorithmic

steps. Likewise it will be possible to combine multiple firings into merged nodes that spec-

ify combined operations and data dependencies. This representation can be helpful, but we

run the risk of losing the sense of regularity in the SDF graph. This is because with the

DAG, the multirate repetitions are unrolled. What helps us to retain the regularity is the

identity of firings that is maintained, as far as what their firing function is and what SDF

52

actor they come from, which we can keep track of during successive stages and use to our

advantage.

Because of the nature of SDF semantics and the scheduling process, the firing prece-

dence DAG has the potential to be exponentially larger than the SDF graph in terms of the

numbers of nodes and arcs. An example of this, adopted from [Pino95], is shown in Figure

2.5. This situation arises in particular when there are sample rate changes from one actor

to the next. If the source actor of a given arc produces multiple data tokens on each firing,

but the sink actor consumes only single tokens or small numbers of tokens per firing, the

scheduling process will determine that the downstream actor must fire multiple times in

order to keep the production and consumption rates on that arc in balance over the course

of the entire schedule. If the production and consumption rates differ significantly, the

downstream actor will need to be fired many more times than the upstream actor. The

same is true if the upstream actor produces small numbers of tokens, but the downstream

actor requires large numbers of tokens to fire: the upstream actor must fire many more

times in order to keep the arc balanced. Additionally, if the rates of production and con-

sumption on the arc are not divisible by one another, or in the extreme case are mutually

prime, then both actors must fire multiple times in order to keep the arc in balance. If the

same is true over chains of dependent actors, the repetitions factors can become quite large

as this effect is “amplified” down the chain.

As a result, the bound on the size of the unrolled SDF graph or DAG is at least an

exponential function of the SDF graph size, for general graphs. Since the complexity of

Figure 2.5 An example SDF graph where the number of DAG nodes rela-

tive to the SDF graph size is .O M
N()

1
M 1

2
M 1

3
M 1

N

53

any algorithm that takes the DAG as input for implementation planning is likely to be sen-

sitive to the size of the DAG, this large bound can significantly increase the cost of the

implementation-planning algorithm. Care must be taken with DSP algorithms that have

large chains of sample rate changes. Individual sample rate changes are common, espe-

cially in audio and video filtering and processing applications.

Implementation planning methods include activities such as clustering, partitioning,

scheduling, and synthesis. These activities can take different forms of specification as

input. Some require a task-level dataflow graph, such as an SDF graph. Others use the

expanded DAG as input, with tasks as the nodes. Still others use an arithmetic-level prece-

dence graph as their input, with individual arithmetic operations as the nodes. In compari-

son to methods that would resolve the entire specification down to the level of individual

arithmetic operations, such as behavioral synthesis, methods that use the task-level prece-

dence DAG involve significantly fewer graph nodes and arcs, even though the DAG may

be considerably more complex than the corresponding SDF graph [Gajski94].

The large number of operations in an arithmetic-level precedence graph has typically

been a limiting factor in the performance of behavioral synthesis algorithms. Hierarchical

graph representations are common, such as control-dataflow graphs (CDFGs), to help

reduce the complexity of the representation. A common approach to dealing with this

complexity has been to pre-partition the fine-grain arithmetic DAG into smaller sub-

graphs upon which the behavioral synthesis algorithms may take more reasonable periods

of time to operate. This comes at the expense of missing some potential tradeoffs and opti-

mizations that could have been made across the partition walls between subgraphs. For

this reason, a careful choice of partitioning is important in getting good results from such

methods [Lagnese91] [Gajski94].

54

2.4 Elements of VHDL

The use of the VHDL language is a means to the end of hardware specification and

synthesis. It is a convenient choice due to its widespread use and broad support by

researchers and commercial products. The Verilog language enjoys similar status, and for

the most part, the concepts for which VHDL is used here are interchangeable with similar

elements in Verilog. The few exceptions, in terms of specific design tool support, are due

to choices in allocating tool implementation efforts, and not due to fundamental feature

differences between the two languages.

In VHDL, all computation occurs within concurrentprocesses. Communication

between processes occurs throughsignals. One or more processes may be contained in a

singleentity, which specifies a structural unit in a design. Concurrent processes may com-

municate among themselves within an entity through local signals, or they may communi-

cate through signals between entities. A representation of these structural relationships is

shown in Figure 2.6. Processes may be as simple as a single assignment of an expression

Figure 2.6 Processes, signals, and entities. Processes perform computa-
tion, signals communicate information, and entities provide
structure and hierarchy.

entity

entity

entity

process

process

processsignal

signal

signal

55

to an output signal, or they may be large and complicated algorithmic procedures, with

local variables, conditionals, branching, and many of the language features found in high-

level programming languages such as C

VHDL is a language that provides concurrency, hierarchy, and sequential procedures.

In order to synthesize hardware specifications from VHDL, a restricted subset of the lan-

guage must be chosen, because some of the concepts such as arbitrary or absolute timing

delays and test conditions are not synthesizable, nor are constructs for dynamic entity gen-

eration. For any specific synthesis tool, there is usually a specific restrictive subset that is

particular to each tool, but generally involving comparable limits on VHDL syntax ele-

ments involving timing and dynamic structures. There are many VHDL synthesis systems,

produced both by academia and as commercial products, but none allows the unrestricted

use of the full VHDL language [Camposano91]. A set of guidelines defined by Cam-

posano is listed in Figure 2.7. While there have been a number of generations of synthesis

tools since this list was developed, these guidelines continue to hold. Improvements in

synthesis techniques in recent years have changed the optimization algorithms for deter-

mining the resulting design, but have not moved to expand or redefine the synthesizable

subsets of VHDL that are supported [Camposano96]. The main innovations have been in

the area of behavioral synthesis as a higher-level option, but the style of description and

the synthesizable subset remain similar [DeMicheli96].

The two major classes of synthesis tools are those that perform register-transfer level

(RTL) synthesis, and those that perform behavioral synthesis, or so-called high-level syn-

thesis. These two classes are named for the type of input specifications that they accept.

The first class to become available was that of RTL synthesis, and these tools are the most

common in usage today. Following on the success of RTL synthesis is behavioral synthe-

sis, which attempts to take as input a specification without the scheduling and allocation

found in RTL code. This specification is obtained at an earlier stage in the design process

56

(hence the term “high-level synthesis”). Behavioral synthesis tools accept specifications

where the operations to be performed and their dependencies are specified, but not their

specific timing or the allocation of architectural resources on which they will be executed.

The result of behavioral synthesis is usually an architecture specified in RTL code that

has specific timing and resource allocation. The computational complexity of behavioral

synthesis algorithms is usually considerably greater than that of RTL synthesis algorithms.

However, behavioral specifications are often on the order of ten times smaller than equiva-

lent RTL descriptions. This difference in coding size can lead to a reduction in specifica-

tion time, and also a reduction in the number of coding errors. This difference, along with

the potential for discovering an architecture superior to that obtained by beginning with an

Figure 2.7 A set of guidelines defined in [Camposano91] for restricting the
use of VHDL in synthesis.

1. Make no implicit assumption on the execution time of a process. To ensure proper communication among

processes, either use explicit synchronization (such as handshaking) or specify appropriate delays using the

wait statement.

2. Ignore sensitivity lists in sequential synthesis. Do not use them in sequential processes.

3. Convert time expressions to control steps and use them as design constraints.

4. In general, the synthesis system will latch those signals assigned values by a process (outputs).

5. The synthesis system often keeps loops as specified. In this case, a delay of at least one clock period must

be associated with the loop body.

6. Recursive procedure calls are not allowed.

7. Use the specification of procedures within a process as an initial given partitioning of the synthesized hard-

ware, or ignore the procedural hierarchy and flatten the design.

8. High-level synthesis ignores assert statements.

9. High-level synthesis does not support file objects and file types.

10.During high-level synthesis, variable arrays with dynamic indexing will result in memories.

11.High-level synthesis does not support access types.

12.Use an attribute to characterize the clocking scheme. High-level synthesis supports only a limited number

of clocking schemes and assumes the clocks are present. It may automatically create the clock-generation

circuits.

57

RTL specification, is driving more and more designers to adopt behavioral synthesis meth-

odologies.

Within VHDL, an RTL specification consists of entities connected by signals, with

registers for intermediate storage and clock signals for timing and control explicitly speci-

fied in the code. The RTL synthesis process is a matter of translating each of the computa-

tions into allocated functional blocks and creating wires or registers for each of the

variables assigned in the code. This reproduces the RTL code specification of the architec-

ture in an internal logic- or gate-level form.

Synthesizing from RTL code means that the architecture has already been selected,

and only optimizations within sub-elements of the architecture, such as arithmetic expres-

sions, can be performed. From a given section of RTL code, and for non-deep-submicron

technologies, the area, power, and timing of the synthesis result can be highly predictable,

even though they may not be as optimal in comparison to methods that use architectural

tradeoffs, such as behavioral synthesis. It is much more difficult to predict these metrics

from a behavioral description, because there is such a wide range of architectural possibil-

ities.

In order to bring a representation of a firing precedence DAG into a VHDL form

acceptable for RTL synthesis, some architectural planning steps are required. Deciding

which firings will be mapped to which entities in VHDL is necessary, and those decisions

must be based on considerations of resource demands and opportunities for concurrency

present in the DAG. When two or more firings are merged into a single entity, the number

of source and destination data connections can increase. The number of control inputs to

the entity is also likely to increase.

There are a various ways to multiplex a single entity to perform multiple firings in suc-

cession. These differ in how the data is routed to the inputs and outputs of the entity. Three

of these are to use multiplexors, to use FIFO/shift registers, or to use addressable memo-

58

ries (Figure 2.8). When multiple inputs are selected through multiplexors, the synthesized

Figure 2.8 Three ways of switching data connections to merged firings on
an execution unit. (a) Two firings to be merged. (b) Multiplexed
inputs. (c) FIFO/Shift register. (d) Addressable memory.

A3

B5

A3_IN
A3_OUT
B5_IN
B5_OUT

A3_IN A3_OUT

B5_IN B5_OUT

A3_IN A3_OUT

B5_IN B5_OUT

A3,B5

A3 / B5

A3 / B5

A3 / B5

READ / WRITE

MEMORY

A3,B5

A3_IN

B5_IN A3_OUT

B5_OUT

A3,B5

LOAD

CLK

ADDR
GEN

(a)

(b)

(c)

(d)

59

interconnect and control can grow in size rapidly as the numbers of inputs and outputs of

entities increase. The size of the logic function of an -input multiplexor, in terms of the

number of two-input gates, is . High fanin and fanout from functional blocks

can result in high interconnect costs.

Using FIFO registers or shift registers at the inputs and outputs to entities can save

area by shifting the data around instead of re-routing input and output connections. The

timing and ordering of inputs and outputs must be carefully synchronized, however, mak-

ing this approach less flexible. There is also a potential speed penalty due to the time

required to shift by multiple positions when the required data is not nearby in the queue.

A third option, to use an addressable memory, has flexibility, but the memory module

can become a bottleneck. Access time to a larger, centralized memory can be significantly

slower than to smaller registers distributed throughout the design layout. Other penalties

include the need to have address generation logic, the requirement to route a data bus and

possibly an address bus, as well as the scheduling issue of resource contention when mul-

tiple entities need to access the memory.

These are factors weighing against too much merging of firings into fewer entities, in

addition to the lost opportunities for concurrency that can result. Given generous timing

bounds and an objective of minimizing area, the tendency would be to merge more and

more firings together. The increasing costs of interconnect and control put restraints on

this tendency, although the effects are not always easily quantifiable.

2.5 Related Work

2.5.1 ADEN / ComBox

One body of work that is specifically aimed at generating synchronous clocked hard-

ware from dataflow specifications is from the Aachen University of Technology

n

O n nlog⋅()

60

[Zepter94] [Zepter95a] [Zepter95b] [Grotker95] [Lambrette95] [Horstmannshoff97]. This

work is framed within some limiting assumptions about both the specification semantics

and the mapping to an implementation architecture. Within these restrictions, they are able

to perform some timing analysis and consistency checks in order to map specific token

transfers onto specific clock cycles in the hardware realization.

The earliest published example of this work [Zepter94] describes the application area

being targetted, the form of dataflow that is used, the assumptions placed on the architec-

ture, and the restrictions on communication timing. Each of these are discussed in more

detail below.

The stated application area of interest is the design of digital receivers for communica-

tion links of medium to high throughput. The algorithms for these designs tend to be data-

flow-dominated, with only a small amount of control. The granularity at which they are

modeled is also relatively coarse, at the level of filters, phase rotators, or decoders. Many

of the blocks can be mapped to parameterized VHDL hardware models for the implemen-

tation.

There is little control flow in the algorithms of interest, but there is enough that SDF is

not sufficient. Limited dynamic dataflow is permitted, with certain rules for what dynamic

constructs are allowed in this approach. The allowable subset of dynamic dataflow is com-

parable to that identified by Gao, Govindarajan, and Panangaden as “well-constructed reg-

ular stream flow graphs” [Gao92]. This is effectively a restricted form of boolean dataflow

[Buck93] where control branching and merging structures are paired with one another and

subgraphs may or may not fire, depending on single control token values.

The architectural approach is not at the level of firings of the dataflow actors. Instead,

the methodology maps each dataflow actor to a single hardware unit, and each edge in the

graph to a single connection with registers along the path. The reasoning behind this is that

the granularity of the dataflow models used is coarse enough and the throughput require-

61

ments are high enough that there is no need for resource sharing among actors. Paralleliza-

tion across firings of actors is possible within hardware units, but is not discussed.

The timing model is one that takes the average rates of firings of actors and the average

rates of tokens transferred on an edge in one iteration and evenly distributes all such events

in actual system clock time. This mapping from untimed dataflow to timed digital hard-

ware is one in which all actor firings and all token transfers are periodic and equally

spaced in time throughout the execution of the system. It is possible to use SDF schedul-

ing in order to determine the actor firing and token transfer rates because the amount of

dynamism permitted is restricted to having subgraphs optionally not fire. The scheduling

analysis takes the limiting case where all actors fire, which gives constant token transfer

rates. In the realized system when a control value indicates that an actor should not fire,

the hardware that implements that actor is stalled by having its clock deactivated during

that cycle. An interesting feature of this approach allows sub-graphs to be idled when the

data on their input signals that comes from deactivated upstream hardware elements is

invalid, thus preserving the algorithmic state consistency of downstream hardware units.

The dependency of downstream actors on input data that may be invalid is factored into

the clock generation pattern. Subgraphs that depend on control tokens are clustered

together in order to determine which clocks to turn off.

The authors form equations for the input and output times of an edge in terms of sys-

tem clocks. In addition, since the ports of hardware units can input/output data at various

phases relative to one another (on different clock cycles within the same activation cycle),

there is a potential need for “shimming” delays on every edge connection so that data

coming from multiple sources with varied phases will be received at the proper times by

the ports of the downstream actor. The timing model for edges also allows for initial

tokens on the edges and treats the resulting timing consequences.

62

In subsequent work [Zepter95a] this approach is discussed within the context of a

larger design flow. This design flow is composed of algorithmic and implementation

stages. The algorithmic stage involves dataflow simulation using COSSAP [Synopsys97]

for the simulation verification of the algorithm and the selection of particular functional

blocks and their parameters. The implementation stage is library-based and involves

selecting a specific implementation choice for each dataflow actor. These come from the

hierarchical ComBox library, with class, group, and primary hierarchy levels. The class

level corresponds to the port specification of the algorithmic blocks. The group level cor-

responds to alternative algorithm choices for each block. The primary level corresponds to

alternative data width and parameter choices of VHDL codeblocks for each algorithm.

The VHDL code generation program, called ADEN (A Design Environment’s Name),

takes the instantiated library codeblocks from ComBox and combines them, along with

code for the glue registers and the control and reset signals. This methodology is applied

to a design for a minimum shift keying (MSK) transceiver for mobile communications.

One key element of the timing algorithms shown in this work is that the system itera-

tion interval is determined by calculating the least common multiple of the numbers of

tokens transferred on all edges in the graph. This gives the minimum number of clock

cycles so that all tokens can be evenly spaced in time on all edges. This number is used to

determine the logic for the timing control for each edge. Similar consideration is given to

differences among internal sample rates and the system clock frequency in the PHIDEO

compiler from Philips [VanMeerbergen92]. PHIDEO is aimed specifically at high-speed

processing of video streams, such as what is required for high-definition television

(HDTV) systems. Operations that are executed at a rate slower than the target system

clock rate may be able to share hardware with one another. As in the case of determining

the precedence graph size from an SDF graph, if there are a number of mutually prime

token rates in the dataflow graph, the minimum required clock count can grow large.

63

In [Grotker95], the authors outline their methodology. They focus on the ADEN tool

and present the MSK design example, providing details of their design results. There is

some information about the timing analysis, and the stalling of dynamic subgraphs in the

hardware realization is described.

In [Lambrette95], the focus is on the MSK algorithm design. There is also a discussion

of the design flow, followed by the results of implementing the MSK design in FPGA

technology from two vendors, as well as in a standard library of 1.0 technology mod-

ules.

In [Zepter95b], the methodology is presented, beginning with the interaction between

the algorithm and implementation levels in COSSAP and ADEN using ComBox. The

organization of the ComBox library is described with a Viterbi decoder module as an

example. The interface of a library module is described, with token rates and token pro-

duction/consumption phases. Also shown are the control/datapath architecture and the

static timing analysis that is performed, along with the MSK design.

More recent work from Aachen, which is presented in [Horstmannshoff97], is distinct

from the previous work by Zepter et. al. in that the model of computation is restricted to

SDF. They state that the timing model used in the earlier approach, where data samples are

read and written equidistantly in time, is limiting in many cases. The HDL Code Genera-

tor from Synopsys [Synopsys97] also has this restriction, they add. A consequence of this

restriction is that the earlier methodology requires blocks that are purely combinational,

with little or no sequential circuitry. Such blocks tend to have a very fine granularity,

which is counter to their original goal of providing a methodology for integrating coarse-

grain implementation blocks together.

The motivation for moving to pure SDF semantics is not explicitly provided, but it

likely relates to the requirement to allow irregular input/output timing patterns. When data

tokens on edges are not equally spaced, it becomes difficult to determine the timing for

µm

64

disabling downstream blocks when data tokens are invalid. This is because the periodicity

of data arrivals is not matched to the periodicity of block executions. As a result, individ-

ual blocks cannot be stalled in their execution with predictable timing. To stall blocks

under this scheme, the amount of stall time depends on which data token is invalid and the

time until another valid token can be expected, which is not a regular interval. For these

reasons, moving to SDF semantics and disallowing the dynamic behavior keeps the timing

analysis tractable.

This approach calls for VHDL code generation from SDF specifications, and preserves

the earlier requirement that each dataflow actor be implemented in an individual hardware

element. This results in an intuitive one-to-one mapping between the dataflow graph and

the hardware architecture as in the previous approach. There is one type of resource shar-

ing, where all firings of a given dataflow actor are executed on the same hardware

resource. Not included are alternative styles of resource sharing, such as sharing among

firings of different actors, to reduce hardware cost or to meet timing objectives.

2.5.2 The DDF Timing Model and Analysis

The timing model is outlined in [Zepter94], [Zepter95b], and [Grotker95], with more

detail given in [Zepter95a]. The model consists of a mapping of both edge and vertex

input/output operations onto specific clock cycles in the hardware execution. A global

periodic clock is defined and all system events take place on global clock edges. From this

model, time is abstracted to an increasing sequence of the nonnegative integers.

In the hardware model, each dataflow actor and each communication arc is mapped to

a corresponding hardware resource in the implementation. The dynamic dataflow seman-

tics extend to cases where actors may optionally not fire and tokens may optionally not be

transferred. From this, SDF semantics can be inferred where actors always fire and tokens

are always transferred, which forms a superset of the firings and token transfers of the

65

DDF semantics. The numbers of firings of each actor and the numbers of tokens trans-

ferred on each arc during one iteration of the SDF schedule determine the rates of activa-

tions of the corresponding hardware units in the implementation.

The specific timing of firings and token transfers are determined from a set of con-

straints on both vertex (dataflow actor) and edge (communication arc) hardware units.

Both actor firings and token transfers are periodic and synchronized to the global clock.

For each actor firing, one or more tokens are produced or consumed. As a result, the high-

est rates of activity will be token transfers and not actor firings, unless the graph is homo-

geneous with unity production and consumption rates.

In order for all token transfers to map onto a system clock edge, and for the tokens to

be evenly spaced on each edge, the token transfer rates on all edges must be evenly divisi-

ble into the number of system clocks per iteration. This requirement becomes the follow-

ing statement of the minimum number of system clocks per iteration:

(2-4)

where are the edges in the dataflow graph, and for each edge, is the number of

tokens transferred on edge during one schedule iteration. From this, we can determine

the iteration interval of each edge in the graph:

(2-5)

where is the number of system clock ticks between token transfers on edge .

The hardware implementations of each edge may have latency associated with them,

which can come either from shimming delays or from initial data tokens on the edge. The

relationship between the input and output time of each edge is expressed as

NI lcm ej∀ n ej()()=

ej n ej()

ej

I ej()
NI

n ej()
-----------=

I ej() ej

66

(2-6)

where and are the input and output times, in terms of the system clock

counter, of the first data tokens transferred into and out of edge . The shimming delays,

which are calculated later, are written as , in units of system clocks. The number of

initial tokens on the edge is , and the effect of the initial tokens is to make output

tokens available sooner in time. The size of this advance is the number of system clocks in

 edge iteration periods.

The implementations of dataflow actors also have periodic timing where for each actor

or vertex the period in terms of system clocks is . In addition, to model the latency

from inputs to outputs, as well as to model offsets between reading inputs from different

ports or writing outputs to different ports, each port of an actor has a phase for port

or for the port where vertex connects to edge . This value, for each port, is the

number of clock cycles after the beginning of an iteration of the vertex when the first data

is read or written on the port.

The authors apply work from [Jagadisch91] in order to set up the starting times of each

of the actor implementations so that timing is consistent in terms of causality. This

includes adding shimming delays where needed so that data arrives at the inputs to a hard-

ware unit at the times when the hardware unit is ready to read the data. Shimming delays

are implemented as additional registers on data pathways. In order to reduce the cost of the

additional registers, the authors describe a procedure for register minimization based on

work in [Leiserson83].

2.5.3 The SDF Timing Model and Analysis

In [Horstmannshoff97], dynamic dataflow constructs are disallowed in favor of SDF

semantics in the specification. In the hardware implementation, SDF actors are mapped to

tout e() tin e() ds e() s e()I e()–+=

tin e() tout e()

e

ds e()

s e()

s e()

v Tc v()

d P() P

d v e,() v e

67

individual hardware units that have periodic behavior, while the data activity on the ports

and arcs may be aperiodic within one period of each hardware unit. The discussion of ana-

lyzing the system for hardware implementation deals with three areas of timing. The first

of these is timing periodicity adjustment, which is for ensuring that there is rate consis-

tency throughout the implementation, analogous to the rate consistency requirement of a

repeatable SDF schedule, with specific timing information attached to the actor firings.

The second area of analysis is in generating initial values for internal registers where they

are needed, and in adding delays on arcs between actors to adjust for differing timing pat-

terns on the source actor output port and the sink actor input port. This latter check is

needed because the tokens are not, in general, evenly-spaced in time in the implementa-

tion. The third area of analysis deals with initialization, which is to calculate the reset or

start-up times of each actor, and to generate additional shimming delays to keep the arrival

times consistent among ports on the same actor. For each of these three areas, algorithms

are presented for calculating the timing and number of clock delays to be added through-

out the hardware implementation. Open issues for future work include cost estimation of

this approach and strategies for optimization.

2.6 Hardware Architecture Considerations

2.6.1 Computations

The unit of computation derived from the firing precedence DAG is that of the individ-

ual SDF actor firing. The granularity of individual firings can have a very broad range

within an SDF graph. The semantics of SDF do not place any restrictions on the size or

complexity of computations of SDF actors. The only restrictions are on the firing rules that

determine the input and output behavior of SDF actors. With no specified bounds, a firing

68

could be as simple as a two-input addition or a gain operation, or it could be at least as

complex as a 1,024-point fast Fourier Transform or a decision feedback equalizer.

The granularity must be selected by the designer, whose intent is captured in the initial

SDF graph specification. Caution is needed, however that the granularity is not chosen to

be so small that the graph description becomes large in the number of nodes and edges.

This would in turn raise the computation time of the algorithms that operate on the graph.

The granularity chosen will also be affected by the constraints of the particular design tool

being used. The design tool may only have a limited choice of SDF graph actors, with

fixed granularity. The tool may also allow the designer to create new actors of arbitrary

granularity, or to combine existing actors into new actors within the environment.

Actor granularity will vary within the specification at various stages of the algorithm.

Multiple streams of data that are processed by sophisticated algorithms may be blended

and merged by simple arithmetic operations. In turn, the sophisticated blocks may be

specifiable by subgraphs of individual arithmetic operations joined together, or they may

be monolithic blocks. The benefit of maintaining large monolithic blocks is in the fact that

such blocks group functionality and reduce the complexity of the overall graph so that the

node count is not forced to be large solely due to the algorithmic complexity. Other bene-

fits of using hierarchical blocks are the encapsulation of expertise of other designers, the

use of module generators for parameterizable structures, the promotion of design re-use,

and the improvement of design visualization and conceptualization. Another advantage

during partitioning and synthesis is that multiple instances of complex blocks that have

similarity can be identified and grouped together easily. However, if every block is

reduced to its smallest arithmetic elements, it is much more difficult to infer a larger struc-

tural similarity in computations across the application graph.

The choice of SDF actor granularity will have a significant impact on the algorithms

that are used to process the graph. Usually the granularity is chosen so as to make the

69

designer’s specification process as smooth and understandable as possible, which is not

always in harmony with the goals of the hardware synthesis process. As will be discussed

further in later sections, however, the methodology proposed is most beneficial when there

are multiple firings of significant complexity and also sufficient similarity to make merg-

ing them cost-effective.

2.6.2 Communications

Given that two firings communicate through the production and consumption of data

tokens, it is necessary to provide a medium through which that data can be passed. That

medium can be a direct connection, or it can be one or more intervening storage locations.

A direct connection results in a tight coupling between the timing of the source and desti-

nation firings. Without intervening storage, the source of the data must continue to drive

the direct connection with the data value until the destination of the data has finished using

the data.

Figure 2.9 shows alternative realizations of a two-actor SDF graph, both with and

without intervening storage. This choice has an effect on the clock period and resource uti-

lization. Having execution units A and B directly connected is referred to aschaining

because both operations are chained together in sequence during each clock cycle. By

placing a register in between A and B, orpipeliningthe connection, execution units A and

B can both operate concurrently during each clock cycle. There is a one-cycle penalty in

latency in the pipelined version, but each clock cycle can be shorter than in the chained

version.

For realizations with directed loops, pipelining cannot be done within a loop because

there are no feed-forward cutsets that both intersect a loop and also bisect the graph. Put-

ting even one additional register within a loop can alter the functional behavior. Registers

70

can be added within a loop without changing the behavior only if they are clocked at dif-

ferent times in coordinated fashion.

Figure 2.9 Chaining vs. pipelining. (a) A two-actor SDF subgraph. (b) An
implementation that uses chaining. (c) An implementation that
uses pipelining. (d) Chained schedule. (e) Pipelined schedule.

A B

A B

A B

A1

B1

A2

B2

A3

B3

A1

B1A2

B2A3

B3

CLK2

CLK2

CLK1

CLK1

CLK1

CLK1

CLK1

CLK2

CLK2

CLK2

CLK2

(a)

(b)

(c)

(d) (e)

71

If the two firings are to be allowed to be scheduled other than immediately in succes-

sion, then temporary storage must be reserved for the data. If the two firings are addition-

ally not mapped to the same entity, then local storage within one entity is not sufficient,

and a communication channel between entities must be reserved, as well as extra input and

output ports being added to the consumer and producer entities, respectively. This tempo-

rary storage could be an individual register, a FIFO/shift register, or it could be a regular

block of memory such as a single- or dual-port RAM. In any case, the correct management

of temporary storage is an important requirement for successfully orchestrating parallel

hardware entities that pass data among themselves throughout the iteration cycle.

The first requirement is to preserve the correctness of the computation result. With

respect to communication, this is done by ensuring that data is stored and saved for down-

stream computations after it is produced, without being overwritten or lost. This can be

guaranteed by allocating individual storage elements for each data token that is to be trans-

ferred during the iteration cycle, but this is more costly than is necessary. Further optimi-

zation calls for applying data lifetime analysis, which is common in behavioral synthesis

[Kurdahi87] [DeMicheli96]. Data lifetime analysis serves in minimizing the number of

storage elements required by having data items that do not need to be preserved during

overlapping periods of time share the same allocated storage element. This is usually per-

formed after the computations have been scheduled, when data lifetimes are statically

known. A further clustering of registers into multiport memories is possible by using inte-

ger linear programming techniques [Balakrishnan88]. Other storage structures can also be

used, such as specialized register files for storing state in loop bodies of synthesized code

[Ercanli96].

Another issue in synthesizing the communication is storing data that is consumed by

multiple downstream actors. In the abstract SDF model, data tokens that are inputs to an

actor are consumed when the actor fires, and if multiple actors need to have access to data,

72

they are replicated, typically through a fork actor whose outputs are multiple copies of the

input tokens, reproduced on multiple arcs.

If a firing needs to remember past inputs in order to perform present and future compu-

tations, then internal storage is implied for that SDF actor. This could come in the form of

state, and could be internal to the implementation intended for the actor. This can also be

viewed as additional inputs and outputs that feed state tokens back to the SDF actor. This

externalization of state makes all data storage requirements more explicit in the specifica-

tion. In the case of multiple firings of such an actor with state, there may be state depen-

dencies from one firing to the next of the same actor, in addition to the usual data

dependencies between firings of adjacent SDF actors. The introduction of these state

dependencies can result in feedback loops in the otherwise acyclic graph, which lead from

the last invocation of an actor within one iteration to the first invocation of the same actor

within the next iteration.

2.6.3 Controller

In order to coordinate the complex concurrent activities of the multiple entities in the

synthesized hardware architecture, some form of control is necessary. This control could

be distributed throughout the individual execution units, or it could be centralized in a sep-

arate controller entity, from which the individual control signals would be routed to the

datapath execution units.

The major function of the control is to synchronize the hardware to the regular streams

of input and output data coming from and going to the system environment. Internally, the

control circuitry is necessary to regulate the storage of data values that are produced by

execution units, when such storage is needed, as well as the switching of the datapath to

route data values between execution units.

73

2.6.3.1 Control Synchronization

The form of control used in concurrent hardware may be broadly categorized accord-

ing to the synchronization used at the global and the local levels. The global level involves

synchronization between execution units when they exchange data in a send/receive trans-

action. The local level of synchronization is the synchronization within a single execution

unit. The notion of an execution unit has yet to be defined, but here we state that an execu-

tion unit is below the level of dataflow concurrency, able to compute only a single dataflow

firing at a time. Thus, local synchronization is within a single execution unit computing a

dataflow actor firing, and global synchronization is between execution units.

Communication at either the global or local levels may be synchronous or asynchro-

nous. For synchronous communication, both the sending and receiving hardware are

driven by the same clock signal, and so the steps in a communication transaction can be

mapped onto specific clock cycles of both the sending and receiving hardware. For asyn-

chronous designs [Meng90], the lack of a shared clock means that there is no guarantee on

the timing relationship between the sending and receiving hardware. This requires the

receiving hardware to wait until the data signals are known to contain valid data before

acting on that data. Similarly, the sending hardware must wait until the receiving hardware

is known to have read the transmitted data before de-asserting that data from the data sig-

nals or over-writing that data with new data.

Asynchronous circuit design can be effectively applied to digital signal processor

design where datapath elements communicate with one another in predictable ways

[Meng88] [Meng89a] [Meng91a]. This can result in performance improvements over syn-

chronous designs where data- and instruction-dependent delay require the slowest opera-

tions to determine the clock rate. The main motivation for moving to asynchronous design

is to remove the need for a global clock [Meng91a]. Additional benefits of asynchronous

design are that it decouples the block interface design from the block functionality design,

74

and that it scales up to multi-chip module and board-level interconnect distances. While

asynchronous logic circuit design adds additional area and performance overhead, as well

as handshake circuit design complexity, asynchronous logic circuits can be synthesized

automatically from state transition graphs [Meng87] [Meng89b] [Hung90]. Also, such cir-

cuits can be analyzed for testability [Beerel91] and timed asynchronous circuits, which are

bounded by timing constraints, can be synthesized more efficiently [Myers93].

Asynchronous communication requires additional signals shared by the sending and

receiving hardware, often in the form of two additional handshaking signals,sendand

acknowledge, driven by the sending and receiving hardware elements respectively. The

sender first asserts valid data on the data lines, and after a sufficient amount of time to

ensure that the data signals are stable, the sender asserts a send signal that is visible to the

receiving hardware. The receiving hardware waits for the send signal to be asserted before

reading any data from the data signals. Once the receiver has read the data or taken appro-

priate action to respond to the data, the receiver asserts the acknowledge signal, which is

visible to the sender. The sender, after having asserted the send signal, waits for the

acknowledge signal to be asserted before de-asserting the data signals. Once the acknowl-

edgment has been observed, the sender de-asserts the send signal, which informs the

receiver that the acknowledgment has been received and processed. Finally, the receiver

de-asserts the acknowledge signal, completing the communication transaction.

Because of the overhead involved with using asynchronous handshaking for communi-

cation, it is of little value at the local level within a single execution unit. Because the

computation steps needed to complete a single firing are usually statically defined and take

a constant amount of time, there is usually no need for multiple clock signals within a sin-

gle execution unit. Therefore, we determine that our form of control will be locally syn-

chronous. The form of synchronization at the global level still needs to be selected, and is

discussed in the following subsections.

75

2.6.3.2 Globally Asynchronous Hardware

Globally asynchronous hardware allows separate execution units to run on different

clock signals, but still allows them to communicate with one another. This can be useful in

situations where the tasks being performed by the execution units take an unpredictable

amount of time to complete. It may also be useful where execution units operate at very

different rates and it is more cost-effective to drive them with different clocks than to

divide down one master clock for the slower execution unit. Operating some execution

units with a slower local clock can reduce power consumption. Another benefit of globally

asynchronous hardware is that the problem of clock distribution over a large circuit is sim-

plified, so that clock signals do not need to be coherent throughout the circuit in order for

it to function properly.

These benefits may be most appropriate when the semantics of the specification are

those of dynamic dataflow. Dynamic dataflow requires asynchronous data rates between

actors, so that globally asynchronous hardware would seem to be appropriate. Dynamic

dataflow can be implemented with globally synchronous hardware, where execution units

idle in wait states during periods of waiting for data to be available for reading, as in the

use of blocking reads. If execution units idle when waiting for storage to be available for

writing results, as in blocking writes, then deadlock may be introduced. The questions of

bounded execution time and bounded storage requirements for dynamic dataflow graphs

are undecidable already, and introducing blocking writes can further complicate the analy-

sis.

The additional overhead of handshaking signals and circuitry must be weighed against

the potential benefits of asynchronous communication. The main motivation for exploring

globally asynchronous designs in the past was the concern that clock distribution in large

designs would become more difficult and that clock skew would increase with clock speed

and technology scaling, which would in turn limit system throughput [Meng91a]. Clock

76

skew occurs when the phase of a global clock signal varies significantly throughout a large

design due to the long distances over which the signal is routed and the variations in loads

and capacitances throughout the system. This can cause otherwise synchronous systems to

become desynchronized, resulting in incorrect behavior. Because this is an important issue

in all areas of large-scale digital design, much effort has been applied to minimize this

problem, with some success. Designers now have techniques for effective clock distribu-

tion design [Tsay93] [Chou95] [Tellez97]. Two of the main techniques are the generation

of balanced-tree clock routing, and the insertion of buffers in the clock distribution net-

work. Designers are also able to refine these methods further in order to reduce both power

consumption and peak currents [Xi97] [Benini97].

2.6.3.3 Globally Synchronous Hardware

For globally synchronous hardware, all events in the system are mapped onto cycles of

a single global clock, which can simplify the control structures necessary. An asynchro-

nous communication protocol may be mapped onto synchronous clocked hardware. Hand-

shaking signals and logic may be synchronized to the clock, or even eliminated, but the

events in the system must be able to map onto transitions of the same clock. The master

clock must be distributed across the hardware implementation so that the signal is not

skewed from one part of the system to another, which would cause otherwise synchronous

events to be misaligned in time, producing logic errors. For smaller hardware designs or

sufficiently slower clocks, this issue is avoided.

When implementing designs specified in synchronous dataflow, the fact that the data

rates on all arcs in the graph are rational multiples of one another allows them to be

mapped onto transitions of a single clock signal. If the further restriction is added that all

token transfers be evenly spaced in time on each edge, then the global clock rate is the

least common multiple of all the token transfer rates, which can be large. This is the

77

approach taken in ADEN/Combox, described in Section 2.5.1. This simplifies some analy-

sis, but is not necessary, as communications of tokens can be accomplished with less rigid

timing while still mapping them onto transitions of the same clock signal, as is done in

work by Horstmannshoff, described in Section 2.5.3. This is possible, without any mis-

alignment or the need for any periodic timing adjustment, due to the relationships among

data rates.

If the time for a dataflow firing to be computed is non-constant, then other portions of

the system may need to be stalled to wait for the slower computation to complete. This can

be accomplished by temporarily turning off the clock to the other parts of the system or

sending those other execution units into wait states until the slow computation is finished.

In many cases, the time to compute all firings can be fixed or bounded in advance, and so

there is no need for any additional stalling control logic or signalling. The lower cost of

globally synchronous designs, as well as the deterministic timing from SDF designs with

fixed computation times, makes globally synchronous hardware preferable to globally

asynchronous hardware, and so we have chosen to restrict ourselves to globally synchro-

nous design.

2.6.3.4 Globally and Locally Synchronous Control

The type of hardware obtained from this methodology is that of a clocked, globally-

synchronous circuit. With the addition of handshaking signals for communication events,

a locally-synchronous, globally-asynchronous circuit realization is also a possibility. In

the globally synchronous case, a single clock must be distributed to all the computation

entities, or control signals that are derived from that clock. Some entities will be executing

at widely-varying rates relative to one another, so the clock may in turn be divided down

into sub-clocks of appropriate rates depending on the final timing selected for the synthe-

sized system.

78

Because the semantics of SDF are synchronous and static, a single, fixed control

schedule can be determined prior to synthesis. No branching can take place within SDF

semantics, although branching within actor firings is allowed. The worst-case durations of

computations are assumed to be data-independent so that the absolute timing of control

does not need to vary from iteration to iteration.

Because the logic of the controller is non-branching, it is not necessary to construct a

general finite-state-machine (FSM) model for the controller. Instead, it is sufficient to gen-

erate a much simpler sequencer for regulating the timing of all control events relative to

the predefined, fixed computation schedule.

2.7 Synchronous Dataflow Architecture Design

2.7.1 Existing Approaches to Buffer Synthesis

When generating software implementations from SDF graphs, often the communica-

tion is mediated through buffers allocated for each arc. In the generated program code,

these buffers are usually specified as indexed array data structures. The size of the buffers

is determined by the particular schedule as well as the chosen indexing scheme that is

being applied. For hardware implementations, storage must be explicitly specified as vari-

ables or memory locations, unless the synthesis tool being targeted is capable of mapping

array references onto internal hardware registers. Another alternative is to co-synthesize

the hardware to work with a separate RAM memory module. This requires special inter-

face synthesis in order to access storage that is outside of the synthesized datapath and

controller. Some tools are capable of these techniques for memory management. Visual

Architect from Cadence allows tradeoffs between using registers and memories, with user

control over partitioning between the two. This tool also allows the inclusion of user-

defined memories with complex interfaces in the behavioral synthesis methodology.

79

Behavioral Compiler from Synopsys allows memory reads and writes to be specified in

the behavioral HDL code as array accesses. This behavioral synthesis tool can schedule

memory I/O operations onto control steps, resolving contention. This tool also allows

tradeoffs between specifying single- and multi-ported memories by interpreting additional

non-standard pragma attributes added by the user within the input HDL code.

2.7.2 SDF Communication Channels

Fundamental to the SDF model of computation is the communication model. In the

denotational semantics of SDF, each edge in the graph represents asignal that is a totally

ordered set of events with each event containing a token value. One way to model the

edges is as communication channels with first-in, first-out (FIFO) queueing behavior. This

is shown for a single communication channel in Figure 2.10. A consequence of this queue-

ing is that tokens that are produced in a certain order at the source node will be received

and consumed at the sink node in the same fixed order. This is consistent with the total

ordering of events on each signal in the denotational semantics. However, ordering of

events on signals does not imply that events are ordered in time. If two firings of the same

actor have no data dependencies between them either directly or indirectly, such as two fir-

ings of the same stateless SDF actor, then these firings may be executed at the same time

or even out of order with respect to the signal event ordering.

A B...
m n

Figure 2.10 Model of data exchange between dataflow actors. The general
dataflow model has unbounded first-in, first-out (FIFO) queues
between communicating actors.

80

Because the production and consumption rates on ports of SDF actors are fixed and

known in advance, the firing rates of all actors can be determined so as to keep the com-

munication buffer sizes in balance. For each communication channel, the value of

(2-7)

gives the number of tokens transferred on an edge during one complete schedule iteration.

The values of and are the numbers of firings of actors A and B, respectively, in one

schedule iteration. The values of and are the numbers of tokens produced and con-

sumed by each firing of actors A and B, respectively. An iteration is defined as a nonempty

set of firings of actors such that the buffers are returned to their initial state, meaning their

original token occupancies. This makes it possible to determine a maximum, fixed buffer

size, which is shown in Figure 2.11. If buffer locations are re-used during an iteration, the

size of the buffer can be smaller than . Depending on the particular graph and the

scheduling technique applied, the buffer size may be much smaller than .

For the case of static scheduling of SDF graphs, the FIFO channels become buffers of

fixed sizes. If the buffer size is , then each buffer location corresponds to a particular

token transferred. In addition, the relationships between specific buffer locations and their

source and sink firings are known. A direct way of viewing these dependencies is shown in

Figure 2.12. By rotating the buffer by 90 degrees and expanding each actor into its associ-

Nt qA m⋅ qB n⋅= =

qA qB

m n

Figure 2.11 For a given PASS, the FIFO can be implemented as a finite
buffer. The buffer size is bounded by the total number of tokens
transferred in one iteration,

A B
m nSize =Nt

Nt

Nt

Nt

81

ated firings, it can be clearly seen which source firings produce specific data, and which

sink firings consume that data. This view uses a regular array data structure to portray a

portion of the precedence DAG in detail.

Because tokens are written into the channel in a specific order by the firings that pro-

duce them, they can be identified uniquely by that ordering. More than one firing may read

a given token value from the buffer, as will be seen later, but the firing that produces a

given token is unique. In addition, the ordering in which a source firing writes multiple

tokens into the channel is preserved once they are written, so that they are read in the same

Figure 2.12 In a sequential execution style, tokens are written into the
buffer by actor A in a precise sequence, in blocks of size m and
read in sequence by actor B, in blocks of size n (a). However,
other execution styles are consistent with the denotational
semantics (b). It is apparent from the data dependencies that
firings of the same actor need not be executed sequentially, or
even in numerical order (c).

A B
m n

n

m

B N

A 1

AM

B 1

A 2

A 3

B 2

B 4

B 3

}

}
}

}

}

{

{
{

{
}

}

n

}

n

}

...
..

parallel buffer

sequential FIFO

m } m }

n

}

n

}

B N

A 1

AM

B 1

A 2

A 3

B 2

B 4

B 3

...
.

precedence graph

(a)

(b) (c)

82

order by downstream consumer firings. If we choose to number the produced tokens with

integers increasing from zero, we can refer to specific tokens by their index, as is shown in

Figure 2.13. We can also easily determine which firing produced a given token by the

token number and the count of tokens produced on each firing. Identifying which firings

read the token is similar, but becomes more complicated in certain cases, as will be seen

later.

2.7.3 Communication-Driven Architectural Styles

2.7.3.1 Planar Structure

The inherent structure of SDF can be a guide as to what architectural styles of imple-

mentation to consider. When arranged spatially, the firings and communicated tokens form

the beginnings of a structure that can guide the eventual choice of an architectural style.

An example of this structure is shown in Figure 2.14. There are two major spatial axes.

Along one axis, a producer firing generates tokens, which pass through interconnect or

intermediate storage, which in turn passes the tokens on to consumer firings. Along a per-

pendicular axis, sequences of producer firings are aligned side-by-side, in increasing index

Figure 2.13 The tags of tokens in a given channel are totally ordered and
can be uniquely identified by the order in which they are written
into the communication channel queue in the sequential execu-
tion case. An actual implementation may produce and consume
the tokens in parallel or out of order, but the token identities
remain the same.

0

1

...

m-1

m

m+1

...

2m-1

{
{

}
}

A 1

A 2

B 1

B 2

m

m

n

n

...

83

order. The firings need not be executed in actual index order in time, and they may even be

executed by shared hardware resources in the final implementation. Similarly, consumer

firings are also aligned in sequence order. In between, communicated tokens can be

arranged in index order, again regardless of the temporal order in which they are produced

and consumed in the eventual implementation. What emerges from this conceptual view is

a two-dimensional planar structure that can guide the mapping to an implementation

architecture. This structure corresponds to the geometry of the eventual layout, which is

planar in current integrated circuit technologies. This structure as described is local to

each pair of actors that communicate. The larger structure will be similar to that of the

SDF graph, with these local planar structures as elements. The final structure will likely

not be a one-to-one mapping of this local planar structure, but it can be a tiling of this

structure mapped onto a smaller structure.

2.7.3.2 General Resource Sharing

One way to approach the design of an architecture from a set of actor firings and data

tokens is to allow general and arbitrary resource sharing. Additional interconnect and con-

Figure 2.14 The local structure of the precedence graph between two sets
of actor firings suggests a planar architectural structure.

A B
4 3

A1 B1

A2

A3

B2

B3

B4

A1 B1

B2

B3

B4

A2

A3

84

trol provides the support for sharing resources in this way, mapping the individual firings

and tokens onto a smaller number of EXUs and registers. In this architectural style, firings

can be implemented in their own execution units (EXUs) in hardware, or they can share

EXUs with other firings. An EXU is defined as performing the firings mapped to it

sequentially, so firings that share an EXU are executed in nonoverlapping time intervals.

Firings need not come from the same actor or even be similar in order to share an EXU.

The execution model of an EXU is that signals are presented and held steady at the inputs,

and a certain amount of time later the outputs become available.

For communication, tokens are mapped to buffer locations in the implementation

where intermediate storage is needed. If it is not needed, then data may pass from the out-

puts of one EXU directly to the inputs of another without being latched. This latter situa-

tion will require the source EXU to hold its outputs steady until the downstream EXU has

completed its execution, unless the downstream EXU latches its inputs internally. By

default, we assume that EXUs do not latch their inputs internally.

In general, allocating one buffer location for each token transferred on a given arc is

inefficient. If tokens are mapped to registers, then those registers can be resource-shared

with other tokens for which the registers have sufficient bitwidth and at times when the

registers are otherwise not in use. During the execution of one iteration of the dataflow

graph schedule, the tokens transferred each have lifetimes spanning from the time they are

written to the time they are last read. If the lifetimes of two tokens are non-overlapping,

then they can be communicated through the same buffer location with the addition of a

multiplexor and control for that location, as in Figure 2.15. However, because the lifetimes

of tokens are not yet known but will be determined by the parallel schedule, minimizing

buffer sizes beforehand will place additional constraints on the architecture and on the per-

formance that is possible.

85

2.7.3.3 Buffer Minimization

Previous work that treats buffer minimization [Bhattacharyya96] is aimed at minimiz-

ing code size and buffer storage for single-processor software synthesis. Since dataflow

graphs execute sequentially when running on a single processor, this work deals mostly

with constructing sequential schedules for code size and buffer size minimization. Still,

some of the results can be extended to parallel execution. We will first examine these

results for sequential schedules. This previous work assumes that all tokens are transferred

through some buffer location between the source firing and the destination firing. Follow-

ing our examination, we show that parallel schedules can do no better than sequential

schedules, under the same assumption and with additional restrictions.

Figure 2.15 Two tokens with non-overlapping lifetimes may share the same
buffer location.

A B

A 1 B 1

A 2 B 2

CLKCTL

11

A 1 B 1

A 2 B 2

q=2q=2

86

The upper bound on the number of buffer locations that might be needed is easily

determined from the total numbers of tokens transferred during a complete execution of

the sequential schedule. In this case, one location is allocated for every token that is trans-

ferred, plus additional locations for the delay tokens on each edge of the graph. For a

sequential schedule , the expression for the total buffer requirements with no buffer shar-

ing is

(2-8)

where are the edges in the graph, is the total number of tokens transferred on

edge , as determined by Eq. 2-7, and is the initial number of delay tokens on the

edge.

A more efficient buffering model can be obtained by applying buffer sharing. Buffer

sharing can be used on each individual edge, or on all edges in the graph collectively. If an

individual buffer is allocated for each edge, then the number of buffer locations can be

determined by finding the maximum number of tokens that are on the edge at any one time

during the execution of the sequential schedule. The total buffer requirements are then

given by

(2-9)

where we are maximizing over all of the firings in the sequential schedule . The func-

tion gives the number of tokens on edge after executing firing of sched-

ule .

S

bufUnshared S() Nt ei() del ei()+
ei

∑=

ei Nt ei()

ei del ei()

bufEdgeShared S() max
sj

tokens ei sj,()

ei

∑=

sj S

tokens ei sj,() ei sj

S s1 s2 sM,,,,,{ }=

87

The greatest degree of buffer sharing can be applied when all tokens on all edges share

one global buffer. Different edges may reach their maxima at different points in the

sequential schedule, leaving opportunities for sharing among the edges in the graph

throughout the schedule. The buffer requirement for this global sharing is

(2-10)

where we are maximizing over the whole sum at each firing instead of just over each edge

as in Eq. 2-9. To produce an implementation that used global buffer sharing would require

a design that mapped each token to an available register or memory address so as to

achieve the minimum. Some techniques for register and memory sharing are discussed in

Section 2.6.2.

To illustrate the effects of buffer sharing, an example is taken from Figure 3.1 of

[Bhattacharyya96], which is the simple SDF graph shown in Figure 2.16. The smallest

possible balanced schedule of this graph has two firings of actor A, three firings of B, and

three firings of C. There are many correct sequential schedules that satisfy these repeti-

tions. Two of them are S1:AABBBCCCand S2:BCABCABC. The buffer requirements for

this graph will depend not only on what type of buffer sharing is used, but also on what

schedule is executed.

For each of these two schedules, the buffer requirements for each edge throughout the

execution of the schedules is shown in Table 2.1 and Table 2.2. From these tables it is clear

bufGlobalShared S() max
sj

tokens ei sj,()
ei

∑
 =

Figure 2.16 A simple SDF graph, taken from Figure 3.1 of
[Bhattacharyya96].

A B C
2 1 13

2D

e1 e2

88

that buffer requirements will depend on the particular schedule used as well as the buffer

sharing scheme. For no buffer sharing, both schedules produce the same values for on

each arc. Eq. 2-8 gives for both schedules. For buffer sharing

within edges, Eq. 2-9 gives , which is equal to the maximum,

and . If global buffer sharing is applied, Eq. 2-10 results in

 and .

Some additional results from [Bhattacharyya96] are also of interest. The authors

define a problem, HSDF-MIN-BUFFER, which is as follows. Given an arbitrary homoge-

neous SDF graph (one with the same token rates on all ports) and a positive integer , the

problem is to determine if there exists a valid sequential schedule for the graph that has a

total buffering requirement of or less, assuming separate buffers on each edge. It is

proven that even this problem is NP-complete, and so is intractable for general graphs.

A heuristic is given where a graph is scheduled by determining the set of fireable

actors at each step and selecting one to fire that is not deferrable. An actor is deferrable if

Table 2.1.Buffer requirements during the execution of a schedule.

init A A B B B C C C

e1 2 5 8 6 4 2 2 2 2

e2 0 0 0 1 2 3 2 1 0

sum 2 5 8 7 6 5 4 3 2

Table 2.2.Buffer requirements during a different schedule.

init B C A B C A B C

e1 2 0 0 3 1 1 4 2 2

e2 0 1 0 0 1 0 0 1 0

sum 2 1 0 3 2 1 4 3 2

Nt

bufUnshared S() 11=

bufEdgeShared S1() 11=

bufEdgeShared S2() 5=

bufGlobalShared S1() 8= bufGlobalShared S2() 4=

K

K

89

any of its output edges has sufficient tokens for a downstream actor to be fired. The actor

that is selected is to be the one that increases the total token count on all the edges the

least. While this algorithm does not always produce the minimum buffer usage, it pro-

duces sequential schedules that are close to optimal in general.

Another result given is for the simplified case of a 2-actor SDF graph with one edge

where the first actor produces tokens and the second actor consumes tokens from the

edge. The edge has initial tokens, and the value is the greatest common

divisor of the production and consumption rates. It is proven that the minimum buffering

required of all valid sequential schedules is if and oth-

erwise.

While the above results pertain to sequential schedules, it can be shown that parallel

schedules cannot do any better as far as saving buffer space. Again, we assume that all

tokens are transferred through some buffer location between the source firing and the des-

tination firing. That buffer location could be implemented as a register, a memory location,

or as a wire. As noted in Section 2.7.3.2, if the buffer location is implemented as a wire,

then the source execution unit will have to hold its output steady until the token value has

been read. The main requirement is that the buffer location is implemented as a structure

that is capable of holding a data value until that value is no longer needed. We also assume

that in a parallel schedule, tokens are not consumed until a firing has completed, at which

time any produced tokens are simultaneously created. This is because in physical imple-

mentations, data inputs often need to be held until a computation is completed, at which

time the buffer space for those inputs may be safely freed.

In a parallel schedule, some firings may occur at the same time, but those that do not

happen simultaneously will have an ordering relationship in time with one another. Any

two firings that do not occur simultaneously have the same effect as if they were executed

in a sequential schedule.

a b

d c gcd a b,()=

a b mod d c,()–+ 0 d a b c–+≤ ≤ d

90

For simultaneous firings, we only need to consider three cases. For two simultaneous

firing completions, tokens are written at the same time, which will always consume more

buffer space than either of the two firings alone. The result is equivalent to that of perform-

ing the write operations sequentially, back-to-back in either order.

For two simultaneous read operations, the fact that two firings are eligible to be fired at

the same time means that one of them may have been eligible to be fired before the tokens

were produced that enabled the other. The result of two simultaneous reads is equivalent to

that of performing the read operations sequentially, in order of firing eligibility.

The third and final case is for the simultaneous production and consumption of tokens.

For a read operation to be eligible to proceed at the same time as a write operation, the

buffer locations that the read operation depends on must be separate from the buffer loca-

tions filled by the write operation. Since there are no mutual dependencies, this is equiva-

lent to a sequential schedule that performs the two firings in either order.

To summarize, sequential firings in a parallel schedule have the same effect on buffer

space as sequential firings in a sequential schedule. Parallel firings in a parallel schedule

can occur in three cases, each of which is equivalent in buffer usage to a sequential pair of

firings in a sequential schedule. Because of these equivalences, parallel schedules can do

no better as far as reducing maximum buffer consumption than sequential schedules can.

In this section we have discussed buffer minimization independent of other design

goals. In the next section, we consider the effect of buffer sharing on the schedule and per-

formance.

2.7.3.4 Effects of Buffer Sharing on Performance

Figure 2.17 shows a simple SDF graph with corresponding precedence graphs. The

total number of tokens transferred in one iteration is 6. The smallest buffer size that can be

obtained by a sequential schedule is 4. If 4 buffer locations are allocated for this arc, then

91

two of them must be reused. One way to model limited buffer resources for the arc from A

to B is to add an additional arc from B back to A with a finite number of initial tokens on

it. The SDF parameters on this second arc match those for the original arc for each actor.

Figure 2.17 An SDF graph (a) with its precedence graph (b), and its simpli-
fied precedence graph (c).

A B
32

q=2q=3

A 1
B 1

A 2

A 3

B 2

A 1
B 1

A 2

A 3

B 2

(a)

(b) (c)

92

Figure 2.18 shows a new SDF graph with this additional feedback arc. The initial

tokens on the feedback arc limit the number of firings of A that are enabled before actor B

must be fired. In order to fire, actor A must have at least two tokens available on its input.

This represents the requirement for there to be at least two buffer locations available for

actor A to write to, and that two locations are consumed by each firing of A. Only four

tokens in all are available, and once they are consumed by actor A, actor B must be fired in

order to produce three new tokens for actor A. This models the behavior of each firing of

actor B freeing three buffer locations that actor A can then use.

The result of buffer sharing is that new precedence constraints are added to the prece-

dence graph. Firing A3 must wait until firing B1 has completed in order to have sufficient

input tokens (output buffer space) available to proceed. This adds another precedence arc

from firing B1 to firing A3. The precedence graph in Figure 2.17, with no buffer sharing,

had a critical path of only 2 firings. The new precedence graph at the bottom of Figure

Figure 2.18 A new precedence graph (a) for execution of the SDF graph
shown in Figure 2.17 under buffer constraints, with 4 locations
allocated. The corresponding precedence graph (b) and simpli-
fied precedence graph (c) are also shown. The new precedence
graph has a critical path of 4 firings.

A B
32

q=2q=3

A 1
B 1

A 2

A 3

B 2

A 1
B 1

A 2

A 3

B 2

(a)

(b) (c)

4

2 3

1
2

3
4

1

2
3
4

93

2.18, as a result of buffer sharing, has a critical path of 4 firings. The additional precedence

constraints that arise from buffer sharing result in a critical path length that is at least as

long as that of the original precedence graph. Buffer sizes can be traded off against the

other goals of the system synthesis process, such as improving EXU area, timing, and

power.

2.7.3.5 Resource Sharing of Sequenced Groups

An alternative to a general resource-sharing architectural style is one that doesn’t

allow the same generality but uses the regularity of the SDF precedence graph to devise a

more regular architecture. By exploiting this regularity, it may be possible to derive some

savings in the interconnect between EXUs and registers, as well as a simplification of the

control structure. By making use of the fact that there is concurrency not only among

actors in the SDF graph, but potentially among firings of the same actor, as well as among

communications of tokens on the same arc, groupings of parallel structures in the architec-

ture can be planned out.

In the general resource-sharing scheme mentioned above, individual firings and tokens

are mapped to shared EXUs and registers, respectively. There are no restrictions on which

firings share EXUs or on which tokens share registers. As an alternative, we can choose to

map only sequenced groups of firings to sets of parallel EXUs. In the sequenced group

style of architecture design, a set of sequential firings of one SDF actor will be mapped to

a similar group of comparable EXUs. The EXUs need not be arranged adjacently in the

layout, but it may lead to area efficiencies if they are. If there are more firings of the actor

than there are EXUs in the grouping, then the remaining firings can be mapped to the

group of EXUs again in sequence, starting over from the beginning of the group and

counting to the end of the group. In this way, groups of sequential firings of an SDF actor

can be executed in parallel, provided there are no feedback loops from the actor to itself.

94

This style allows some of the firing-level parallelism to be exploited, but not as much

as in the general resource-sharing approach. The advantage is in the regularity of the map-

ping, as well as in the regularity and compactness of the interconnect, as will be seen.

Sequenced groups of tokens are also mapped to a bank of adjacent registers. Consumer fir-

ings can similarly be mapped in sequenced groups to parallel EXUs that read those regis-

ters.

This style could be arrived at by imposing group structure to the general resource-shar-

ing style mentioned above, but by beginning with the mapping of sequenced groups in

mind, some of the complexity of the general mapping approach is reduced in exchange for

some constraints on the schedule and the architecture. In sections that follow we will

explain and compare these two styles of design and see how they influence the implemen-

tation results.

2.7.3.6 Choice of Resource Sharing Approach

The general resource-sharing style has the fullest freedom in terms of mapping firings

to shared EXUs and tokens to shared registers. Since firings are treated individually, there

is no additional constraint on scheduling, as long as an EXU is available at the desired

time. To support this architectural style, additional interconnect, control, multiplexors, and

registers may be required as compared to the sequenced group style.

In using the sequenced group architectural style, regular patterns in the computation

representation of the precedence graph are mapped into parallel groups of EXUs and reg-

isters in the architecture. By doing the mapping in this way, grouped operations are syn-

chronized together in a way that they are usually not in the general resource-sharing

approach. This group mapping has a direct impact in limiting scheduling freedom. The

potential benefit is that the regularity of the architecture can result in a simpler, less expen-

sive implementation by reducing the cost in interconnect, multiplexors, and registers.

95

Since hardware cost is an important driving factor in design once performance require-

ments have been met, it may prove worthwhile to trade some of the broad flexibility in

scheduling that comes with the general resource-sharing approach in exchange for the

reduced cost of the sequenced group approach.

In a certain sense, in designing an implementation of an SDF graph in a hardware

architecture, we are seeking to find an appropriate structure to connect actor firings and

data tokens with a reasonable interconnect overhead. Without having a fully-connected

architecture, the control structure must rearrange the available connections, or move the

data around the architecture, or do some of both. If a token, once latched into a register, is

not shifted around, then for it to be accessible to destination firings, the control structure

must shift the input connections of the EXUs that perform those firings to read from the

correct register. To reconnect the inputs and outputs of EXUs with various registers, multi-

plexors with additional control signals can be employed.

In contrast, it may be more appropriate instead to shift the token data through registers

in order to get the required tokens to line up with the inputs to the correct EXUs. For larger

numbers of registers, an addressable memory can be more compact but has a slower access

time. Data can be shifted around through chains of connected registers, or it can be moved

through more complicated register interconnections. There are two advantages in using

shift registers to implement these connected storage groups. One is that efficient imple-

mentations of shift registers exist, which can yield savings over general connections

between individual registers. Another advantage for SDF is that the movement of data is

analogous to the movement of data in the model, and that having data shift through

sequential register structures allows the consumer firing EXUs to “scan” through the

stream of data emanating from the source firing EXU.

For these reasons, and because of specific instances of reduced hardware cost that will

be seen in Section 2.7.5, resource sharing of sequenced groups shows promise as an

96

approach to hardware design from SDF. At the same time, we will want to reserve the

option of using general resource sharing when scheduling requirements demand it.

To implement sequenced groups of tokens on dataflow arcs, FIFO register structures

would seem to be a natural first choice. The adjacency of sequenced token data in writing

to a FIFO and in reading from it is favored by the token index ordering of SDF. In the fol-

lowing section, we will look at ways of using FIFOs and similar regular register structures

to implement SDF semantics.

2.7.4 Using FIFOs to Implement Dataflow Arcs

Since one intuitive model of communication in SDF that preserves token ordering is

the FIFO queue, using hardware implementations of FIFOs seems like a natural choice.

However, while FIFOs can provide a straightforward implementation of SDF graph edges,

they also impose some significant restrictions on the overall implementation. An interface

model of a hardware FIFO is shown in Figure 2.19. The FIFO has single input and output

ports for data, and its use may considerably simplify the interconnect in comparison to

having an equal number of individual buffer registers. Individually, each register would

need separate input, output, and clock connections, as well as an input MUX in the case of

resource sharing. Like a single buffer register, the FIFO requires an input signal

QUEUE_DATA for controlling the loading of new values into the queue. At the output

end, there is also a DEQUEUE_DATA signal for when data is read so that it can be

Figure 2.19 An interface model of a hardware FIFO.

DATA_IN

QUEUE_DATA DEQUEUE_DATA

DATA_OUT

HARDWARE FIFO

97

removed from the queue. These two signals may be generated by the controller, or they

may come from the source and sink hardware actors connected to the FIFO in the asyn-

chronous design case. For an implementation of the FIFO that uses a shift register, the

QUEUE_DATA and DEQUEUE_DATA signals are tied together and connected as the

clock inputs to all the internal registers, causing a shift by one on each clock edge.

For asynchronous design, the source actor and the sink actor of the FIFO may operate

asynchronously. Because the FIFO is of a finite size, it can become full if the source actor

fires a sufficient number of times without the sink actor firing and pulling data from the

FIFO to free up space. To handle this circumstance, a mechanism is needed to throttle the

production of data by the source actor. One way of achieving this is to have an additional

status signal from the FIFO back to the source actor that indicates when the FIFO is full so

that the source actor will wait and not attempt to overflow the FIFO buffer.

The use of hardware FIFOs to implement SDF graph edges imposes certain restric-

tions on the rest of the implementation. The most natural completion of the implementa-

tion style is to have also individual hardware elements implement each of the SDF actors

in the graph. This choice of one hardware element for each SDF actor and each SDF edge

is a restrictive, literal translation of the SDF graph structure into an analogous hardware

structure. This mapping is but one choice of resource allocation, and it may not be the

most efficient one. In the following sections, we explore a range of options for synchro-

nously-clocked FIFOs. Some of these variations allow a wider range of freedom in the rest

of the design, and the most flexible options may bear only a slight resemblance to the ini-

tial conception of a hardware FIFO shown in Figure 2.19.

2.7.4.1 Single-Input, Single-Output

We begin by considering a simple FIFO register queue, with one input data port and

one output data port. Figure 2.20 shows a two-actor SDF graph with a single edge, trans-

98

ferring 10 tokens in one schedule iteration period. Figure 2.21 shows an implementation of

this SDF graph using a single-input, single-output FIFO. A clock input provides the mech-

anism for controlling the shifting of data forward in the queue. On each rising edge to the

clock input, the first register location is loaded from the data input and all the data already

in the FIFO is shifted by one location in the direction of the output port. The value that

was at the last location before the shift is overwritten and lost when the shift occurs.

The use of this structure imposes certain restrictions on the execution units that are

connected at the input and output ports of the FIFO. Because this structure has only one

input and one output port, only one data item can be shifted into or out of the FIFO during

any single clock cycle. For SDF actor firings that produce or consume multiple tokens at a

time, this means that groups of tokens must be shifted into or out of the FIFO over the

course of multiple clock cycles, which may in turn restrict the scheduling of firings on the

EXUs. If the FIFO is clocked periodically, then the source EXU must maintain periodic

output of data in order to keep the queue full of valid data. Similarly, the sink EXU must

keep up with the periodic reading of input data in order to prevent data from being lost by

spilling from the end of the FIFO without being read.

Figure 2.20 A simple SDF graph, with its dataflow parameters and repeti-
tions counts.

A B

5 2

qA 2= qB 5=

Figure 2.21 An implementation using a single-input/single-output FIFO.

EXU A EXU B

length = 10

CLK

99

Both the limitations on data ports and the pattern of clocking, while natural choices for

a first concept of FIFO hardware for SDF, restrict designs that use such FIFOs. In the sec-

tions that follow, we adopt modifications to this restricted case that improve the utility of

FIFOs while only moderately increasing their hardware and control cost.

2.7.4.2 Multi-Input, Multi-Output

If we allow multiple, parallel inputs to the FIFO as well as multiple outputs, then the

input/output pattern of the EXUs can be more freely defined. Firings that produce and

consume multiple inputs and outputs simultaneously can be implemented and connected

to such a FIFO without the requirement that each token be shifted in or out on an individ-

ual clock cycle. This allows more flexibility in scheduling firings for execution by EXUs.

The use of this type of FIFO to implement the SDF graph from Figure 2.20 is shown in

Figure 2.22. In this example, five token values can be loaded into the first five locations at

the same time.

This flexibility comes at the cost of greater hardware area, since the routing of more

input and output lines is required, as well as a wider spacing between the registers within

the FIFO that have the additional input and output connections to the outside. If we are

willing to take on this added cost for the sake of the benefits in timing, we may want to

allow the design of FIFOs with inputs and outputs at arbitrary locations (Figure 2.23), and

Figure 2.22 An implementation with multiple inputs and outputs to the
FIFO.

A

B
CLK

LOAD

LOAD

100

not just in single blocks at the extreme ends. This can allow not only the reading and writ-

ing of the tokens for an entire firing simultaneously, but also the reading and writing of the

tokens for multiple firings on varying cycles.

2.7.4.3 FIFO Size Reduction

An important consideration in minimizing the cost of the FIFOs is that they need not

be of a length sufficient to store the full number of tokens for an entire iteration of the

schedule. With continuously available input and output in the FIFO structure, the size of

the FIFO can be made much smaller than the total number of tokens transferred on the

SDF arc in one iteration. The size of the FIFO must be at least as large as the largest num-

ber of tokens simultaneously written to or read from the FIFO on any one cycle. The same

EXU allocation and mapping of firings to EXUs that is used in Figure 2.23 is used again in

Figure 2.24, only with a FIFO of size 6 instead of 10. The minimum size of 5 is set by the

number of tokens transferred in either firing of actor A, but we use a FIFO of size 6. In

practice, we will see that it can be helpful to have a certain amount of additional capacity

above this minimum. This allows us to carry over remaining tokens from previous write

Figure 2.23 Multiple EXUs have access to various locations within the FIFO.

A1,2

B1,4

B2,5

B3

101

operations and include them in succeeding read operations, along with other tokens pro-

duced at later times.

2.7.4.4 FIFO Clocking

Another modification to our initial concept of a FIFO for use in SDF implementations

is in the clocking scheme. Because all of the data rates within an SDF graph are synchro-

nized with one another, in terms of the relative rates of data flow, it may seem natural to

continuously clock each FIFO with a fixed periodic clock of a rate proportional to the rate

of data flow on the arc. In practice, this results in restrictions on the scheduling of the

EXUs that write to and read from the FIFO. The effect is like that of a continuously-mov-

ing conveyor belt that relentlessly rolls forward and requires the entities at either end to

time their actions to the pace of the belt. In order to read multiple tokens from the FIFO,

additional registers must be added to the input of the consumer EXU. This must be done

so that the data can be “grabbed” as it shifts by, and then held for longer than one cycle as

may be necessary in order to satisfy the hold time of the EXU inputs.

Figure 2.24 With appropriate arrangement of the output lines from the FIFO,
the FIFO size can be reduced.

A1,2

B1,4

B2,5

B3

102

If we design the control of the clock input in a more sophisticated way, we can time the

inputs and outputs more carefully. An additional benefit of not clocking the FIFO continu-

ously is in the savings of power that results from not needlessly shifting data more than is

necessary. In doing so, the FIFO becomes less of a periodically-clocked queue, and

instead is used as an intermittently-clocked shift register, as emphasized by the view in

Figure 2.25.

2.7.4.5 Comparison to Other Approaches

An example of work that deals with similar issues in generating hardware from data-

flow graphs is by Zepter and others, which resulted in the ADEN program for VHDL gen-

eration and the ComBox library of components [Zepter94]. This is discussed in more

detail in Section 2.5. In the technique put forward by these authors, the implementation

style uses single-input, single-output FIFO register chains between EXUs that implement

actor firings. An additional constraint is that each actor in the dataflow graph is always

mapped to an individual EXU dedicated to that one actor. The timing of the input and out-

put of each FIFO, and also the inputs and outputs of each EXU, must be fixed and peri-

Figure 2.25 By rearranging the view for a top-to-bottom flow, the full set of
dependencies is seen, which covers multiple firings on the
EXUs. The FIFO behavior is de-emphasized.

B1,4B2,5B3

A1,2

103

odic. The authors worked within these constraints to carefully describe specific timing and

buffer requirements, but also state in more recent work that these restrictions may limit the

implementation more than is necessary [Horstmannshoff97]. While this method preserves

the concurrency of dataflow at the functional level across actors, it does not take advantage

of the data concurrency across repeated firings of the same actor, and it does not allow for

resource sharing among firings of different actors.

2.7.4.6 Resource Sharing of Sequential Firings and Tokens

Resource sharing of sequential groups of firings and tokens to EXUs and registers,

respectively, is promising as an intermediate approach. This approach lies between the

general resource sharing approach and the constrained mapping used in ADEN/ComBox.

The general resource sharing approach maps all firings and tokens individually and

attempts to minimize hardware and interconnect by discovering a favorable mapping. The

ADEN/ComBox approach constrains each actor to be mapped to its own EXU and each

arc to be mapped to its own single-input/single-output FIFO.

In the next section, we will look at a series of design examples and see how general

resource sharing and resource sharing of sequential groups compare. Comparisons will be

made in terms of interconnect and resource usage as well as comparisons of timing.

2.7.5 Comparison Examples / Case Study

In this section, we look at a specific, small example of implementing an SDF graph

with both a FIFO style and with general register sharing. Observations that are made along

the way will guide improvements to these designs. These changes ultimately lead to a

design style that shares aspects of both original styles, which is the mapping of sequential

groups.

104

In Figure 2.26, the same SDF system as in Figure 2.20 is shown again. The SDF

parameters of the actors are 5 and 2. Since these numbers are mutually prime, the repeti-

tions rates are determined to be 2 and 5, with a total of 10 tokens transferred per schedule

iteration. In Figure 2.27, a first cut at a hardware design is shown that uses a FIFO of full

Figure 2.26 A small multirate SDF system.

A B

5 2

qA 2= qB 5=

Figure 2.27 An initial design that uses a full-length FIFO, along with the
schedule and resource requirements.

A1,2

B1,2

B3,4

B5

A1

A2

B1

B2 B4

B3 B5

0

10

15

5

4 ctl lines
11 data lines
0 muxes
16 regs
15 latency

resources

tim
e

105

length, having 10 register locations. In this design, the FIFO is multi-input, multi-output,

so the EXUs have access to locations throughout the length of the FIFO.

In this example, we assume that one firing of A takes 5 cycles to compute, and that all

five of the data results are produced at the end of the 5 cycles. We also assume that one fir-

ing of B takes two cycles to compute, and that both input values must be present at the

beginning of the two cycles. The EXUs are allocated with one for actor A and three for

actor B. One particular mapping is shown, and other mappings will be used in later

designs.

The EXUs for firings of B must hold their inputs for at least two clocks, but the FIFO

is clocked on every cycle, so additional registers at the inputs to these EXUs must be

added to capture the input token data and hold it steady for the duration of each firing of B.

This also results in an additional clock cycle of latency.

The schedule of this implementation is also shown in Figure 2.27, with some of the

available concurrency of the precedence graph used. The firings A1 and A2 must be per-

formed sequentially since both are mapped onto the same EXU. After the first firing of A,

5 output tokens go into the FIFO and are shifted to the right on successive clock cycles.

Once the first 5 tokens have cleared the left half of the FIFO, the second 5 tokens resulting

from firing A2 can be latched in. At that time, firings B1, B3, and B5 can all latch in

tokens 1, 2, 5, 6, 9, and 10. Two clock cycles later, these firings are completed, and the

input tokens to firings B2 and B4 have shifted over by two, lining them up with the correct

input registers. Once these remaining tokens are latched, firings B2 and B4 can proceed.

Already it can be seen that while an intuitive design using a FIFO is possible, this par-

ticular one has some inefficiencies. Since EXUs can read tokens from any point in the

FIFO, there is no need to use a full 10 locations. Sampling tokens from earlier in the queue

will also allow firings of B to begin sooner and shorten the schedule latency.

106

For comparison purposes, we will modify this design to use a shorter FIFO. The map-

ping of firings to EXUs will remain the same. This is in order to keep the comparison as

close as possible, even though more efficient mappings can be applied, as will be seen in

other designs discussed below. In Figure 2.28, a revised design that uses a FIFO of length

6 is shown. The input data lines to the EXU of firings B1 and B2 are moved over, and the

timing of reading the input tokens to these firings is moved up to an earlier point in the

schedule. The control for this design is slightly increased since the latching of inputs to the

Figure 2.28 A modified design that uses a shorter FIFO, along with the
schedule and resource requirements.

A1,2

B1,2

B3,4

B5

A1

A2 B1

B2

B4

B3 B5

0

10

15

5

4 ctl lines
11 data lines
0 muxes
12 regs
15 latency

107

EXUs for actor B are no longer all simultaneous. Firings of A produce 5 tokens at a time,

but a 6th register is used to hold token 5 over until token 6 is also present.

This design uses a more efficient FIFO and avoids using multiplexors. It is an

improvement over the first design, but the use of a FIFO imposes timing constraints. It

might be worthwhile to look at a more general register-sharing approach.

As a starting point for register sharing, we look at a design with no register sharing in

Figure 2.29.For comparison purposes, the mapping of firings of actors A and B are the

same as in the previous designs. In this design, 10 registers are arranged, one for each of

the tokens transferred in one iteration of the schedule. The registers are loaded in banks of

5, one for each firing of actor A. To route multiple tokens to the inputs of EXUs that per-

form more than one firing, multiplexors are used. The resulting schedule has a shorter

Figure 2.29 A design that uses a register bank with no register sharing.
This is the shortest possible schedule with this mapping of fir-
ings to EXUs.

B1,2

B3,4

B5

A1

A2
B1

B2

B4

B3 B5

0

10

15

5

4 ctl lines
20 data lines
2 muxes
10 regs
14 latency

A1,2

108

latency, by one cycle, since input registers to the EXUs are not needed. The resource

requirements, however, are considerably more than before in terms of data lines and multi-

plexors. From this starting point, the design size can be reduced by looking at register

sharing.

To see where the opportunities for register sharing are, we can apply register lifetime

analysis. Figure 2.30 shows the same schedule of the design in Figure 2.29 side-by-side

with range bars showing the lifetime of each of the 10 tokens transferred through registers.

Each token has a time range starting when it is latched from the source firing and ending

when the consumer firing completes. It is clear that the lifetimes of tokens 1-4 expire

before tokens 6-10 are created. This means that up to four of tokens 6-10 are eligible to re-

use the registers of tokens 1-4. By re-using these registers, we can reduce the total number

of registers to 6.

Figure 2.31 shows a new design that uses register sharing. The choice of register re-

use that is made is to map tokens 7-9 to the same registers as tokens 2-4 since both of these

sets align with the same outputs of actor A. This will simplify the interconnect between

EXU A1,2 and the registers. This leaves token 10 to be mapped to the register for token 1.

Figure 2.30 Lifetime analysis showing each of the ten tokens that are
exchanged. Any four of the last five tokens can re-use the regis-
ters of the first four tokens, since their lifetimes are non-over-
lapping.

A1

A2
B1

B2

B4

B3 B5

0

10

15

5
1 2 3 4 5

6 7 8 9 10

109

This is just one of many re-use choices, some of which may have smaller interconnect

than this choice. The use of register sharing complicates the interconnect, but it does not

affect the schedule. The first register needs an input multiplexor to draw inputs from both

tokens 1 and 10 at different times, which come from different outputs of EXU A1,2. Over-

all, there are slightly more control lines, fewer data lines and registers, and more multi-

plexors than in the previous design.

Even though we might be able to find a register mapping that would improve on this

design, it can be observed that the EXU mapping we have been using is limiting the con-

currency that is available by requiring firings B1 and B2 to be sequentialized. To compare

the FIFO style and the register-sharing style further, we will change the mapping and see

how the two design styles are affected.

Figure 2.31 A design that uses register sharing, resulting in fewer registers
but more multiplexors and control lines.

B1,2

B3,4

B5

5 ctl lines
17 data lines
3 muxes
6 regs
14 latency

A1,2

A1

A2
B1

B2

B4

B3 B5

0

10

15

5
1 2 3 4 5

6

7 8

910

110

Figure 2.32 shows a new design using a FIFO where the allocation of one EXU for

actor A and three EXUs for actor B is the same, but the mapping has been changed. Now

the firings of B are mapped across the EXUs in sequence, with firings B1, B2, and B3 on

each of the EXUs, and firings B4 and B5 mapped in a similar manner. The size of the

FIFO has been reduced from 6 to 5. Firing B3 is special in that it uses one token from each

of the first and second firings of actor A. To support this with a FIFO that has only 5 regis-

ters, we have de-coupled the input registers to EXU B3 so that they can be loaded at differ-

Figure 2.32 A design using a different mapping of firings to EXUs. The shift
property of the FIFO is only used in one cycle, and an additional
control line is needed for the two tokens used by firing B3.

A1,2

B1,4

B2,5

B3

A1

A2 B1 B2

B4
B3

B5

0

10

15

5

5 ctl lines
11 data lines
0 muxes
11 regs
14 latency

111

ent times. Since firings B1 and B4 use input token pairs that are offset by one location

when they are first latched into the FIFO, the second firing, B4, must wait an additional

clock cycle while tokens 7 and 8 are shifted over to line up with the inputs. The same is

true with firings B2 and B5. This type of situation is inherent to designs where an odd

number of tokens are written to the FIFO, but the tokens are read in groups of even size.

The overall result of the new mapping and shortening the FIFO in comparison to the previ-

ous FIFO design is that there are more control lines, the latency is reduced by one cycle,

and there is one fewer register.

112

In Figure 2.33 a design is shown that uses the same mapping as for the FIFO design,

but with register sharing. The mapping of firings A1 and A2 is the same, so the intercon-

nect between EXU A1,2 and the registers is the same. The schedule is now changed to

properly use the concurrency of the DAG, and this implementation gives the shortest pos-

sible schedule latency given this mapping of firings to execution units. The hardware cost

is about the same as for the previous register-sharing design. It is still more expensive than

the FIFO design in terms of data lines and multiplexors, but there are fewer registers. The

input multiplexors to the EXUs for actor B are now alternating between two adjacent pairs

of input registers, and the structure of the input multiplexors of EXU B1,2 is similar to that

Figure 2.33 A design that uses the new mapping with register sharing.
Once again, there are fewer registers than in the FIFO case, but
there are extra multiplexors and data lines.

B1,4

B2,5

B3

5 ctl lines
17 data lines
3 muxes
6 regs
12 latency

A1,2

A1

A2
B1 B2

B4 B3B5

0

10

15

5
1 2 3 4 5

67 8 910

113

of EXU B2,5. This leads us to ask, can we do a better job in saving on interconnect and

registers if we use register sharing with more of the regularity of the FIFO designs?

In Figure 2.34 we try a slightly different approach to register sharing. The orientation

of the flow of data is now from top-to-bottom instead of from left-to-right. The indexes of

each of the tokens produced and consumed is now noted on the output and input ports of

the EXUs that produce and consume those tokens. The numbering shows the adjacency of

sequenced groups of tokens and helps in tracing where each token flows in the design. In

this design it is apparent that the structure of the registers and multiplexors that are inputs

to EXUs B1,4 and B2,5 are identical. The number of registers is the same and the schedule

latency is unchanged, but the number of multiplexors and data lines are slightly reduced.

Figure 2.34 A design that uses multiplexors to select from adjacent regis-
ters. This design has a more regular interconnect topology.

5 ctl lines
16 data lines
2 muxes
6 regs
12 latency

A1

A2
B1 B2

B4 B3B5

0

10

15

5 1 2 3 4 5

6 7 8 9 10

A1,2
1
6

2
7

3
8

4
9

5
10

1
7

2
8

3
9

4
10

5 6

B1,4 B2,5 B3

114

The multiplexors sample their inputs from adjacent pairs of registers in each case, leading

to a more regular interconnect that coincides with the sequencing of dataflow firings and

tokens. Firing B3 is still distinguished from the other firings of actor B since it reads input

tokens from two separate firings of actor A. One register is set apart on the right end to

hold token 5 until token 6 also becomes available. Overall, it appears that what is accom-

plished in this design with multiplexors and adjacent registers could also be achieved with

a lateral shift operation, such as with a FIFO.

A new design in Figure 2.35 uses a cyclic shift register instead of the registers and

multiplexors of the previous design. The result is that there are fewer data lines and the

1
7

2
8

3
9

4
10

5 6

B1,4 B2,5 B3

A1,2

3 ctl lines
13 data lines
0 muxes
6 regs
13 latency

A1

A2
B1 B2

B4 B3B5

0

10

15

5 1 2 3 4 5

67 8 9 10

1
6

2
7

3
8

4
9

5
10

6 7 8 9 10

5

Figure 2.35 A design that uses a FIFO to cyclically rotate among registers.
This design style eliminates the multiplexors, while adding a
clock cycle to the total latency for a lateral shift operation.

115

multiplexors have been eliminated. The number of registers is the same, and the schedule

latency is increased by one clock cycle to allow for the shift operation. The sixth register is

distinct from the shift register group, and is allocated to hold token 5 over until token 6 is

available, as before.

To bring the sixth register into the shift register, in the hope of saving space, Figure

2.36 shows a design that moves the shift register and the EXUs of actor B to the left by

one position with respect to EXU A1,2. The interconnect is now more regular for EXU

B3, which can result in an increased layout density. The cost of this design change is that

now four extra shift operations are required to move token 5 out of the way before firing

A2, followed by two additional shift operations to put tokens 5 and 6 at the inputs to EXU

1
7

2
8

3
9

4
10

5 6

B1,4 B2,5 B3

A1,2

3 ctl lines
12 data lines
0 muxes
6 regs
15 latency

A1

A2
B1 B2

B4 B3B5

0

10

15

5 1 2 3 4 5

1
6

2
7

3
8

4
9

5
10

67 8 9 10 5

Figure 2.36 This design shifts the inputs of the B EXUs one position to the
left, and includes the 6th register in the cyclic shift register. The
interconnect is reduced slightly, but the latency increases.

1 latch
shift1

shift1
shift1
shift1
shift1/latch
shift1
shift1

116

B3. Fortunately, a number of these shifts can be done concurrently with the computations,

so that the latency increases by only 2 cycles overall to a total of 15 cycles.

The significant number of shift operations seems to be a roundabout way of moving

tokens 5 and 6 into position, but it is a consequence of the EXU mapping that is being

used. Figure 2.37 shows a design that uses a different mapping that allows the cyclic shift

line to be eliminated. By moving firing B3 to the leftmost EXU, there is no need to cycli-

cally shift token 5 back around again. There is no loss of parallelism from the previous

design, since firing B3, which was mapped onto its own EXU, still needed to wait for exe-

cution at the same time as firings B4 and B5.

Now we observe that the firing mapping and token production seem to line up more

naturally, giving a more regular and intuitive design pattern. Given that we had three

1
5

2
6

3
7

4
8 9 10

B1,3 B2,4 B5

A1,2

3 ctl lines
11 data lines
0 muxes
6 regs
13 latency

A1

A2
B1 B2

B4B3 B5

0

10

15

5 1 2 3 4 5

1
6

2
7

3
8

4
9

5
10

6 7 8 9 105

Figure 2.37 This design improves on the previous one by changing the
mapping. No cyclic shift data line is needed, and two shift oper-
ations are eliminated.

1 latch
shift1

shift1
shift1
shift1
shift1/latch

117

EXUs allocated for the five firings of actor B, we could have arrived at this mapping by

assigning firings to EXUs from left to right based on token availability. Since firing B3

requires tokens 5 and 6 to fire, rather than assigning it to the third EXU for actor B, it is

assigned to the leftmost EXU, so that token 6 will be made available at the correct loca-

tion. To support this, token 5 must be shifted over, but only to the left. There is no need for

any cyclic shift operations. Firings B4 and B5 are assigned consecutively to the remaining

EXUs after that. Also as a result of this remapping, two shift operations are eliminated and

the latency is reduced to 13 cycles. As compared to the earlier design in Figure 2.35, there

is no cyclic shift, there are fewer data lines, the interconnect is more regular, and there is

no increase in latency.

This last design represents a middle ground between general register sharing and a rig-

idly clocked FIFO design. The use of shift registers where shifts occur at controlled times

and the mapping of firings and tokens in consecutive groups simplifies the structure while

keeping the scheduling reasonable. The restrictions on the mapping of firings and tokens is

closely tied to the number of allocated EXUs and registers, which restricts the scheduling

flexibility. Overall, the design style is an intuitive fit with the inherent structure of syn-

chronous dataflow.

2.7.6 Initial Tokens on Arcs

Initial tokens on communication arcs are represented by the notation shown at the top

of Figure 2.38, where a diamond on the arc denotes initial tokens, and the number indi-

cates how many there are. The absence of a number denotes a single initial token. The

effect of initial tokens is that tokens written to the channel will be moved further back in

the token ordering than if there were no initial tokens. Initial tokens are commonly

referred to as delay tokens, but will only result in a time delay if token reads are mapped

sequentially to an ordered series of time tags. If initial tokens are present on the channel,

118

any tokens written to the channel by the source actor will not be the first tokens in the total

ordering of the signal. Instead, the delay tokens will be first in the ordering, followed by

the tokens produced by the actor. In the buffer numbering view of this situation, we adopt

the convention that tokens are still numbered in the order in which they would be written

during the execution of a sequential schedule, starting from zero. However, the read win-

dow begins earlier, at the start of the initial tokens. These buffer locations are numbered

negatively, for reasons that will become obvious later.

Because of the requirements of balance in scheduling an iteration of the SDF graph,

the channels must be returned to a state of having the same numbers of initial tokens at the

end of an iteration. If there are initial tokens on the arc, then the end of an iteration of the

Figure 2.38 Delay on an arc is implemented as tokens already in the queue
at the start of execution, indicated by the shaded buffer loca-
tions. The consumer node reads these tokens first, and the pro-
ducer node writes into the positions after the delay tokens.

A B
m n

A B
m n

2

-2

-1

0

1

...

m-1

m

m+1

{
{

}
}A 1

A 2

B 1

B 2

m

m

n

n

...

1

2

119

schedule must find the arc with the same number of tokens remaining on the arc, uncon-

sumed by downstream actors, in order to remain in balance. Figure 2.39 represents this

case, showing that the effect of initial tokens is to shift the write-window and read-window

into the buffer relative to one another. The amount of shift equals the number of initial

tokens, and the shift results in the same number of tokens being unconsumed at the end of

the iteration.

The tokens remaining on an arc after an iteration are symmetric to the tokens present

on the arc at the beginning of an iteration. Tokens in the second iteration can be numbered

in the same way as tokens in the first iteration, starting from zero for produced tokens, and

back into negative integers for initial tokens. In Figure 2.40 we see that the initial tokens

on the arc are the same as the remaining tokens on the arc from the previous iteration. The

numbering of the firings of each actor continues from where the numbering ended in the

Figure 2.39 At the end of the execution of a PASS, the number of unread
tokens equals the number of initial delay tokens, both by defini-
tion, and by observation of the read-window shifting.

-2

-1

0

1

...

m-1

m

m+1

{
{

}
}A 1

A 2

B 1

B 2

m

m

n

n

...

1

2

-2

-1

0

1

...

...

Mm-2

Mm-1{
}
}

AM

BN-1

B Nm

n

n

1

2

{AM-1

m

......

120

previous iteration, and the write-windows and read-windows of the next iteration pick up

where the windows of the previous iteration leave off.

If we are planning to generate a data structure that can execute a single iteration of the

schedule at a time, but is repeatable, we must handle the transition from one iteration to

the next. This means that the data in buffer locations corresponding to remaining tokens on

the SDF arc must be moved into the buffer locations for the next iteration that correspond

to the initial data tokens. In addition, we need to be able to manage the special case at star-

tup that has the initial tokens taking on specific initial values. These values may be zero or

some null value in the data type of the arc, or they may be specific initial values in the case

of initializable delay tokens, where the designer wishes to set specific initial conditions for

the execution of the graph. The general control structure for these requirements is shown

in Figure 2.41, where a multiplexor selects either the initial values or the values from the

Figure 2.40 The first firing of actor B in the second iteration depends on
data from the current iteration and from the previous iteration.

...

-3{
}
}m

n

n{AM-1

m

-2

-1

0

1

...

m-1

m

m+1

{
{

}
}

m

m

n

n

First
Iteration

Second
Iteration

...

...

A M

AM+1

AM+2

BN-1

B N

BN+1

BN+2

121

previous iteration for the initial token buffer positions, depending on the number of the

iteration to be executed.

2.7.7 Actors With State

In analyzing the inputs and outputs to each firing, so far we have discussed the treat-

ment of explicit SDF inputs and outputs, and how their realization may vary. Implicit to

SDF semantics is the possibility that actors may also have state, which may be updated

from firing to firing. What distinguishes states of SDF actors is that they represent values

that are not communicated from one SDF actor to another, but instead they are values that

are communicated from each actor firing to the next firing of the same actor. As a result,

SDF actor states do not result in data arcs between SDF actors, but they do result in depen-

dency arcs between successive firings of the same actor in the precedence DAG. This

Figure 2.41 Buffering delay tokens. During the first iteration, they are
tokens with initial values. At the transition between iterations,
they are the remaining tokens from the previous iteration,
which must be carried over to the next iteration. Multiplexor and
circular shift register implementations are shown.

initial token values

previous

iteration

1

>1
token
values

I1
I2

SHIFT

INIT

number

122

requires us to track state inputs and outputs in order to understand the full set of data

dependencies present in the DAG.

Generally, state may be modeled as internal storage in an SDF actor that is generated

locally and used locally within the actor. This is represented in a series of views in Figure

2.42. We are considering state that is set in one firing and used in the next firing, and not

state that is temporary and used only during single firing. Such firing-to-firing state propa-

gation can be similarly modeled as being stored externally, where the actor reads the state

as another input and writes out the new state at the conclusion of each firing. This view is

equivalent to having a feedback arc connecting the state input and output of the actor,

where an initial token on the arc represents the storage of the state value between firings.

The initial state token holds the initialization value of the state for the first firing of the

actor.

We can represent the series of state updates during an iteration as a set of dependency

arcs between successive firings of an actor. This view is represented in Figure 2.43. The

Figure 2.42 An actor with state. In the top view, the state is internal to the
actor. The middle view is equivalent, with the state stored exter-
nally. The bottom view shows the state as an initial delay token
on the feedback arc.

state

A

state

A

A

123

need to propagate state between graph iterations is also considered. Since state is modeled

as a delay token on a feedback arc, a similar action is taken in propagating state between

iterations as is done for delay tokens on data arcs between actors. An initial value is pro-

vided, as well as a path for updating the first state value with the last state value from the

previous iteration. The selection of the source for the first state value will be chosen

according to which iteration is being executed, either the first iteration, or a later one.

Because state is analogous to a single delay token on a feedback arc to an actor, it can

be seen that such state results in tight interdependencies in the precedence DAG. For a

Figure 2.43 Memory model for actor state (top). State is initialized, updated
by each firing, propagated to successive firings, and fed back
between successive iterations. For such tight feedback loops, a
more compact realization is possible (bottom).

state_0

state_1

state_2

state_3

A 2

A 1

initial state value

previous state value

1

> 1

iteration number

data inputs

data outputs

A 3

A

1

> 1

initial state value

firing number
data in/out

state in/out

124

schedule iteration that includes three firings of such an actor with state, the precedence

relations are shown in Figure 2.44. The solid arrows represent the immediate data depen-

dencies within one schedule iteration. From these alone, it would appear to be advanta-

geous to unroll the firings in sequence so that some speedup could be achieved through

pipelining. However, the dashed arrow represents the additional data dependency from the

last firing in one iteration to the first firing in the next, which must be honored. Because of

this tight interdependency between successive firings, including firings adjacent to the iter-

ation border, there is a severe limitation on the ability to gain speedup through pipelining.

The loop bound for even a simple graph with one source actor, one sink actor, and a single

actor A intervening is

(2-11)

where is the loop bound of the graph, is the computation time of one firing of actor

A, and is the total number of delays in the loop. If actor A has a lengthy computation

time, then the graph will be limited in how fast it can be executed.

2.7.8 Actors That Use Past Input Values

An important class of SDF actor state is that of past values read from inputs. These

past input values can be remembered as state values and used in subsequent invocations of

an SDF actor. These hidden inputs to SDF firings are not evident in the original SDF graph

specification, although they may be discovered by examining the internal function of each

actor, provided that the hidden input and output behavior of the firing function is not data

dependent.

Tc

CA

ND

CA

1
------- CA= = =

Tc CA

ND

125

Figure 2.45 shows the case of a single SDF actor that takes a single input value and

remembers the previous input value. Both values are used in computing the firing function

of the actor. This means that the memorized previous input can be equivalently drawn as a

delay token on a feedback arc, just as was shown for any other kind of state variables.

Figure 2.44 Acyclic precedence graph model. The tight interdependency
between successive firings limits the pipelining that can be per-
formed. The dashed arrow represents the inter-iteration state
update.

A 3

A 2

A 1

state

data outdata in

Figure 2.45 An SDF actor with references to past values of inputs. This is
equivalent to taking input from a state that is updated by stor-
ing the external input value. As such, the state can be external-
ized.

previous
input

new
input

A

A’

126

Since the previous input value comes directly from the same input arc, there is no need

to pass it through the actor before delaying it and feeding it back in. Instead, it makes more

sense to draw a branch off of the original input arc, and put the delay on that branch. Both

the input and the delayed input are then fed in to the redefined SDF actor, as is shown in

Figure 2.46. The lower part of Figure 2.46 shows the logical extension of this representa-

tion when more than one delayed input value is needed. The delayed branch can be

delayed again repeatedly to produce any number of delayed inputs, which are equivalent

to previous values of the undelayed input. In this way, the SDF actor itself is memoryless,

not needing to store past values internally, and all of its data dependencies are explicitly

shown.

A common example from DSP that uses this form of delayed inputs is an FIR filter,

which has a tapped delay line as a significant feature of its structure, in the Direct Form

realization. Figure 2.47 shows two views of such an FIR filter structure, for the 4-tap case.

The top structure is the usual signal flow graph representing the internal structure of the

Figure 2.46 Since the reference to a past input comes from input data, there
is no need to pass it through the actor. Instead, it is a delayed
branch of the input as another input. This can be extended to
multiple delayed input values.

in(n)

in(n-1)

in(n)

in(n-1)

in(n-2)

in(n-3)

127

FIR filter, with delays represented as transfer functions. The lower part of the figure

shows the primary and delayed inputs together and outside of the arithmetic core of the

FIR function.

Bringing delayed input samples that are remembered as state to the outside of the fir-

ing function is not significantly different for just a single firing. When there are multiple

firings involved, it becomes clearer how it can give an advantage in the sharing of commu-

nicated data. Figure 2.48 shows the case of two successive firings of a 3-tap FIR filter SDF

actor. The firings occur in succession, with both firings having the same function but oper-

ating on slightly different data. If both firings have their own internal state for storing past

values of the input, as in the upper part of the figure, then more storage is implied in the

implementation than is necessary. Instead, in the lower part of the figure, the data can be

held in common in the communication buffer, or in whatever storage is allocated to hold

the input stream values. Then each firing can tap into the subset of values that are of inter-

est to the given firing, sharing references to some tokens with each other. The firing func-

Z
1–

Figure 2.47 An example of externalizing past input values. Above, the Direct
Form 1 signal flow graph realization of an FIR filter. Below, the
filter where inputs and delayed inputs are separated from the
arithmetic core.

+ + +

in(n)

in(n-1)

in(n-2)

in(n-3)

out(n)

FIR

in(n) in(n-1) in(n-2) in(n-3)

out(n)

Z 1– Z 1– Z 1–

128

tions are identical, but with different input data. This view allows the decision to be made

for the implementation level whether or not the two firings should be executed by the same

hardware resource for efficiency, or by two different hardware resources for performance

reasons. This would not be as immediately obvious if each firing were required to main-

tain its own local state, which would be in conflict with the local state of other firings. The

cost of changing the view from local storage to shared storage is that the complexity of the

interconnect outside of the hardware resources is increased, but the interconnect within

each functional hardware resource is simplified.

As in the case of data on arcs with delays, or explicit state data, provisions need to be

made for the inter-iteration propagation and consistency of data that is associated with

Figure 2.48 Multiple firings reading past values. Rather than such firings
duplicating local storage for use from iteration to iteration, they
can share storage of inputs in common.

FIR1

...

...

FIR1

FIR2

...

...

n-2

n-1

n+1

n

n-2

n-1

n+1

n

n-2

n-1

n

FIR2

n-1

n

n+1

129

SDF actors that use past data from inputs. Past data values share in common with delayed

data and state data the fact that they can be represented in SDF graphs with delayed arcs.

They also have some properties that are distinct from the other two cases. The example in

Figure 2.49 serves to illustrate this. The SDF graph at the top of the figure consists of a

single source actor with an output sample count of 1, feeding an FIR filter with an input

sample also of 1. Their repetitions rates are both 1, as is shown above each actor. Because

the FIR filter uses past input values as part of the computation of its firing function, provi-

sion needs to be made to derive those values for the implementation. The schedule of the

graph is simply {A, FIR}, and the first two iterations of this schedule are shown in the Fig-

ure 2.49. The first firing of actor A, called A1, produces a token with index 0. This is fed to

the first firing of the FIR actor, FIR1. This firing also requires three past input samples that

would be available if the system had been executing for some time already. Since this is

the first time the FIR is being invoked, suitable initial values, such as zero-valued tokens,

should be supplied. In the second iteration of the schedule, firing A2 produces a token

with index 1, and FIR2 requires tokens -2, -1, 0, and 1. Token 0 is carried over from the

previous iteration, and tokens -2 and -1 are also carried over from the initialized values.

The inter-iteration update pattern is easily understood as a single-position shift in the data

buffer, and is shown at the bottom of Figure 2.49.

In many cases the inter-iteration pattern is more complex than a simple one-shift. We

consider the case in Figure 2.50 where actor A now produces two tokens on its output

instead of one. This results in a schedule where the FIR filter is fired twice in order to keep

the data arc in balance in the long term. The first iteration has firing A1 producing tokens

with indices 0 and 1. The first firing of the FIR filter only uses token 0, but it also needs

tokens -1, -2, and -3. Hypothetically, if the system had been running for an indefinite

period of time in the past already, these additional tokens would have been produced by

firings A0 and A(-1), which are not executed when we start our system from an initial

130

state. Instead, these tokens are supplied from initial values, preferably zero. The second

firing of the FIR actor, FIR2, requires tokens 0 and 1, both produced during the first and

current iteration, as well as tokens -2 and -1.

The lower part of Figure 2.50 shows the second iteration, and the associated data

dependencies. Rather than being able to simply repeat the execution of the data pattern of

the first iteration, the data must be shifted appropriately to keep it consistent with the syn-

chronous dataflow model of execution. The single firing of actor A in this iteration, A2,

produces tokens with indices 2 and 3. The first firing of the FIR actor in this iteration,

FIR3, requires tokens -1, 0, 1, and 2. The second firing, FIR4, requires tokens 0, 1, 2, and

3. The key consideration in designing the hardware structure for a single iteration is how

Figure 2.49 Past samples shared between iterations. When a firing refers to
more past samples than are created in one iteration, they must
be carried over between iterations.

11
q=1 q=1

A FIR

A1

FIR1

0

-1

-2

-3

A2

FIR2

1

0

-1

-2

A

FIR

inter-iteration
updates

First
Iteration

Second
Iteration

n

n-1

n-2

n-3

131

to update the data between iterations so that consistency is maintained. The lower struc-

ture in Figure 2.50 shows that since two tokens are produced and consumed on each itera-

tion of the schedule, the degree of shift in the data is two instead of one. An

implementation of this structure that does a direct update of these locations will be more

expensive because the connections must route around the intervening locations. A more

area-efficient version would shift the data to adjacent locations in two stages, but this

would take an extra cycle to complete. It does preserve consistency in the data from itera-

tion to iteration, however, and allows the same hardware resources to be used for corre-

sponding firings from iteration to iteration.

In the most general case, not only will SDF actors in the specification graph refer to

past data values on inputs, but there will also potentially be initial delay tokens on those

input arcs. We can examine what happens in this general case by adding a delay token to

the arc in the graph of Figure 2.50 This case is shown in Figure 2.51. The repetitions count

of the two SDF actors remains the same, but note that since the FIR actor only needs one

token to fire, it is already enabled at the start of execution because of the extra delay token.

The upper part of the figure shows the data dependencies in the first iteration of the sched-

ule, independent of the order of firing of the actors. Actor A produces tokens 0 and 1, and

the delay token has index -1, suggesting that it was already there before the first token was

produced in execution. The first firing of the FIR actor uses the first available token, -1,

and the three tokens that would have preceded it, -4, -3, and -2. The second firing of the

FIR actor uses tokens -3, -2, -1, and 0.

Just as in the case of data arcs where no past tokens are read by the downstream actors,

the effect of a delay token on the arc is similarly to shift the read window of the communi-

cation buffer by the number of initial delay tokens. The lower part of Figure 2.51 shows

the data dependencies for the second iteration. With two tokens produced and consumed in

one iteration to keep the arc in balance, both the read and write windows shift up by two

132

for the next iteration. The token with index 1 from the first iteration is produced by actor

A, but is not consumed by the FIR actor in that iteration. It is instead the “replacement” for

the initial delay token that had been present at the start of the iteration, which serves to

return the arc to its initial state at the end of the iteration. This new delay token serves as

the initial delay token in the next iteration, and is shifted by two to reflect the buffer index-

ing of the second iteration relative to the first.

Figure 2.50 If multiple tokens are written to the communication buffer in
one firing, it increases the degree of shifting between iterations.
In order to use the same memory locations and interconnect in
each iteration, a 2-position shift is performed between itera-
tions.

A1

FIR1
-1

-2

-3

0

1

FIR2

A0

A(-1)

A1

next iter, prev iter

write window:
{0, 1}

read window:
{-3, -2, -1, 0, 1}

A2

A0

FIR3

FIR4

write window:
{2, 3}

read window:
{-1, 0, 1, 2, 3}

First
Iteration

Second
Iteration

12
q=1 q=2

A FIR

-1, -3

0, -2

1, -1

2, 0

3, 1

inter-iteration
updates

133

Even though the delay token is considered an actual data item present on the arc in the

SDF semantic interpretation, the additional past values that the FIR actor requires are also

maintained and shifted in the buffer. We could also represent the past values as additional

tokens that are queued in front of the delay token, which would agree with our earlier

interpretation of past values as delayed versions of the input arc. We could also think of

the delay token as another past value. However, preserving the separate identity of buffer

locations implied by delay tokens and buffer locations implied by SDF actors that read

past values helps to keep these two distinct effects separate in the dependency graph repre-

sentation.

The read window of the first FIR firing is anchored by the location of the first available

token on the arc, which is the delay token. If there were no delay token, it would be the

first token produced by the upstream actor A. The read window extends upward in index

range by the number of additional tokens required for the actor to fire, but in this case it

only needs 1. The read window extends downward in range by the number of past values

of the input that are required by the firing function of the FIR actor. The read window of

subsequent firings of the FIR actor is shifted upward by the number of tokens that are

“consumed” by one firing of the actor, in this case 1. The second firing still has access,

however, to the previous, consumed delay token, which the second firing treats as a past

input value. This is shown in the diagram in Figure 2.51.

In order for all the data that is read in a given iteration but not produced in the same

iteration to be ready, it must be updated from the data in the previous iteration. If we know

the range of token indices that need to be read in a given iteration, we can state the inter-

iteration update action as is shown in Figure 2.52. In this algorithm, a buffer holds the

token data, andloReadandhiReadare the lower and upper index bounds of the tokens that

are read during one iteration.numWriteTokensis the number of tokens that are produced

134

and consumed during one iteration on the arc. Note that it is not necessarily equal to the

number of tokens read, since past input values may also be read, as in our example.

Figure 2.51 Adding a delay shifts the read window by one. Note that the
maximum amount of buffer space that would be needed to
simultaneously store all of the data that is read, written, and
updated during a single iteration also increases by one.

A1

FIR1

-1

-2

-3

0

1

FIR2

A0

A(-1)

write window:
{0, 1}

read window:
{-4, -3, -2, -1, 0}

First
Iteration

A1

next iter, prev iter

A2

A0

FIR3

FIR4

write window:
{2, 3}

read window:
{-2, -1, 0, 1, 2}

Second
Iteration

12
q=1 q=2

A FIR

-4

-2, -4

-1, -3

0, -2

1, -1

2, 0

3, 1

inter-iteration
updates

Figure 2.52 A simple algorithm for the inter-iteration update of the buffered
token data.

for (index = loRead upto hiRead) {
buffer(index) = buffer(index + numWriteTokens);

}

135

In all of the previous examples shown, the read and write windows had at least some

overlap. In Figure 2.53 the same graph is shown, but the number of initial delay tokens on

the arc has been increased to 3. Since the downstream FIR actor only needs two tokens in

order to fire twice, the tokens produced by actor A in an iteration are not consumed by the

FIR actor in the same iteration. In addition, not all of the initial delay tokens are consumed

in one iteration. Since two tokens are produced and consumed on the arc in one iteration, it

12
q=1 q=2

A FIR

3

Figure 2.53 If there are enough initial tokens between actors, the read and
write windows may not overlap at all. The downstream actor fir-
ings are independent of the upstream actor firings within a
given iteration.

A1

FIR1

FIR2

A0

A(-1)

write window:
{0, 1}

read window:
{-6, -5, -4, -3, -2}

First
Iteration

A(-2)

A1

next iter, prev iter

A2

A0

FIR3

FIR4

write window:
{2, 3}

read window:
{-4, -3, -2, -1, 0}

Second
Iteration

-6

-5

-4

-3

-2

-1

0

1

A(-1)
-4, -6

-3, -5

-2, -4

-1, -3

0, -2

1, -1

2, 0

3, 1

inter-iteration
updates

136

can be seen in the lower part of Figure 2.53 that the third delay token present at the start of

one iteration becomes the first delay token at the start of the following iteration. Because

of this, it is clear that the inter-iteration update window needs to be extended not just up to

the top of the read window, but up to just below the bottom of the write window. This must

be done in order to account for tokens that are neither read nor written in a given iteration.

The second token written by actor A becomes the third delay token in the next iteration,

but it is not actually read by the downstream actor until the second iteration after it was

created.

The modified algorithm for updating the buffer data between iterations is shown in

Figure 2.54. The difference between this algorithm and the one shown in Figure 2.52 is

that the upper end of the index update range is now (loWrite - 1), or one buffer location

below the location where the first token written by the source actor is written. In our token

indexing scheme, the first token written is always given index 0, so (loWrite - 1) evaluates

to -1.

The bounds of the buffer index are given by

. (2-12)

All of the bounds of the read and write windows into the buffer are listed in Eq. 2-13

through Eq. 2-16.

(2-13)

for (index = loRead upto (loWrite - 1)) {
buffer(index) = buffer(index + numWriteTokens);

}

Figure 2.54 The modified algorithm for the inter-iteration update of the buff-
ered token data.

loRead index hiWrite≤ ≤

loWrite 0=

137

(2-14)

(2-15)

(2-16)

In these definitions, A and B are respectively the source and sink actors on a given arc.

Their production and consumption rates on the arc are and . The repetitions counts of

actors A and B in one iteration are and . The number of past samples that actor B

refers to in its firing function is . The number of initial delay tokens on the arc is .

From these bounds, we can state the maximum number of storage locations that would

be needed to simultaneously store all of the data that is read, written, and updated during a

single iteration. This is shown in Eq. 2-17 through Eq. 2-19.

(2-17)

(2-18)

(2-19)

For the case shown in Figure 2.53, this evaluates to , which is the number

of buffer locations shown in the figure. The actual number of storage locations in the

implementation may be less than this if communication buffer resource sharing is used.

2.8 The RTL Code Generation Process

Our procedure for synthesizing an RTL hardware description from an SDF behavioral

description has four major phases. The first phase, which is based in the SDF semantics, is

hiWrite qA m⋅ 1–=

loRead 0 NP– ND– NP ND+()–= =

hiRead qB n⋅ 1–() ND– qA m⋅ 1–() ND–= =

m n

qA qB

NP ND

bufSize hiWrite loRead– 1+=

qA m⋅ 1–() NP ND+() 1+ +()=

qA m⋅ NP ND+ +()=

2 1⋅ 3 3+ + 8=

138

to compute a valid schedule for the SDF graph specification of the application. The next

phase is to step through a run of the schedule and to construct the precedence graph as

each actor is fired, noting the function that is executed and the inputs, outputs, and states

that are referenced. The third phase is to synthesize a parallel hardware architecture by

performing scheduling, allocation, and mapping on the precedence graph. In the fourth

phase, the RTL code representation is generated, which can then be passed on to tools that

input RTL code and synthesize a gate-level representation of the design. Our procedure

lies on top of RTL synthesis, but extensions to the methodology employ feedback of infor-

mation from RTL synthesis to guide the RTL code generation process.

2.8.1 Determining a Valid SDF Schedule

The first phase of hardware synthesis from an SDF graph is to compute a valid sched-

ule for executing the graph. The schedule is simulated and information from individual fir-

ings of the SDF actors is used to determine the full precedence graph of firings and their

dependencies. The schedule is valid, so we are guaranteed that the system does not dead-

lock, and that the dependency graph is a DAG. We could construct a methodology that

merely examined the SDF graph and determined the number of firing repetitions for each

actor, along with the interface properties of each actor. If such a methodology only exam-

ined the input and output ports and states of each SDF actor, it would miss the additional

opportunities for data concurrency that arise when past values are referenced. By also

examining the firing function of each actor for references to past values of inputs, the full

precedence graph, with all of its concurrency exposed, can be used in our synthesis meth-

odology.

This concurrency may come at a price, however. Depending on the degree of sample-

rate changes in the SDF graph, and the interrelationships among them, the number of fir-

ings in the precedence graph can grow exponentially in the number of nodes in the SDF

139

graph, as was shown in Section 2.3. The severity of this depends on the application type.

Operations that involve large differences in SDF token transfer rates include video encod-

ing/decoding, time/frequency transforms, or sample rate changes between large, mutually

prime rates. An example of this is shown in Figure 2.55

An actor that produces one token and feeds an FFT requiring 256 tokens would need

to be fired 256 times for each firing of the FFT. The precedence graph has 256 firings of

actor A all feeding the FFT actor in parallel, but this is very unlikely to be literally trans-

lated into a similar hardware realization. Instead, the 256 firings of A will be mapped onto

some smaller number of execution units that will be iterated in order to produce the full

256 tokens (Figure 2.56).

If multiple firings can be grouped together in advance, it can simplify the scheduling

and mapping stages. It may well be advantageous to define a new actor in place of A that

produces 8 tokens on each firing, and is fired fewer times. This hides some of the parallel-

Figure 2.55 Example of a large difference in SDF token transfer rates (top).
Even though the schedule calls for 256 repetitions of actor A, it
is unlikely that a practical realization will use 256 instances of A
in the hardware (bottom). Instead, some resource sharing will
be applied to the firings of A in order to map them onto a
smaller number of execution units.

2561
q=256 q=1

A FFT

A1

A2

A3

A4

A5

A6

A7

A256

.

.

.

FFT1

140

ism of the original version, but it reduces the complexity of the precedence graph specifi-

cation, and it does so in a way that stays within SDF semantics (Figure 2.56).

2.8.2 Running the Schedule

In the second phase of hardware synthesis, the schedule determined in the first phase is

simulated. This schedule is simulated firing by firing, and multiple firings may be exe-

cuted concurrently, so long as no token availability requirements are violated. For each fir-

ing, the input and output token references are noted, as well as references to input tokens

from previous firings, and state references and updates. All of these are used to construct

precedence relations for each firing as it is added to the dependency graph.

A1

A2

A3

A4

A5

A6

A7

FFT1

A8

256

256
BUFFER

32 repetitions

Figure 2.56 Realization of the graph shown in Figure 2.55. To reduce hard-
ware size, a smaller grouping of instances of A is executed
repeatedly to produce the necessary number of tokens (a). This
can be scaled according to considerations of how many firings
of the composite A actor will be needed, and how many tokens
will be transferred at a time to the buffer (b).

N x A

FFT

N
q = 256 / N

(a)

(b)

.

141

In order to obey SDF semantics, each firing of an SDF actor must consume fixed num-

bers of tokens on its inputs and produce a fixed number of tokens on its outputs. Beyond

that restriction, any internal functionality may be considered valid in the semantics of

SDF. This includes the possibilities that the operations that are applied to the inputs

depend on the values of those inputs, or that one or more of the inputs is ignored. Outputs

may or may not be computed from operations on inputs.

An important restriction on the body of the individual firings is that they use only sin-

gle assignment between clock events. The reason for this is that the code generated for

each firing must be valid as input to the RTL synthesis tool downstream in the design flow.

In sequential RTL code, multiple assignment of variables is usually not acceptable as

input. This is because such code implies that a single storage location is repeatedly

updated during the execution of the firing. This in turn implies a register, which in RTL

design requires the designer to specify additional clocking information explicitly. Single

assignment of a variable can be synthesized as signal traces that are the output of combi-

national logic operations, which need no additional clocking. For all of the RTL synthesis

methodologies we’ve seen, multiple assignment of variables without clocking is disal-

lowed and is treated as invalid input.

2.8.3 Mapping the Precedence Graph Onto an Architecture

Once all of the actors in the schedule have been fired, based on the previous step we

have a completed connected graph of all firings and their data dependencies. These data

dependencies include both data inputs and outputs as derived from the SDF graph for each

firing, as well as state inputs, and also outputs where firings result in the updating of state

values.

This resulting graph is an acyclic graph of firings and dependencies. It may also be

viewed as a homogeneous dataflow graph, since all firings have single values that are input

142

and output on each connection with other firings. Such a homogeneous SDF graph has a

straightforward schedule where every actor is fired exactly once, and the order of firings is

determined by the precedences in the graph. This graph is more complex than the original,

generally inhomogeneous, SDF graph. It will have at least as many nodes and edges as the

SDF graph, and if there are large numbers of repetitions for any SDF actors, it will have

many more nodes and edges than the original SDF graph.

If each firing is resolved into its fine-grain level arithmetic and logical operations, then

the graph becomes considerably more complex. This increase in complexity will depend

on the size of the computations represented by the SDF actor firings. Such a fine-grain

graph is the usual input to behavioral synthesis methodologies, which are sensitive in their

execution time to the size of the input graph. Exhaustive search methods are computation-

ally prohibitive for most designs. Even with heuristic methods, computational complexity

can grow as for list scheduling and for partitioning in the number of

nodes in the input graph [McFarland90] [Lagnese91], and is exacerbated when operating

at the arithmetic level of granularity. In our method, we do not take the graph to arith-

metic-level behavioral synthesis, but rather we translate each firing into a block of RTL

code suitable for RTL synthesis, and merge firings at the RTL level. This allows easier pre-

diction of performance and cost prior to synthesis, but it only allows hardware sharing at a

large-grain level. As a method of design exploration, our approach allows the study of

high-level tradeoffs, measuring the costs and benefits in terms of the impact on RTL syn-

thesis.

Once we have a connected dependency graph where each firing is mapped to a seg-

ment of synthesizable RTL code, the architectural selection process can begin. During the

design of the architecture, decisions are made about how firings should be mapped onto

actual synthesized hardware resources. Multiple firings can share hardware units. This can

open opportunities for resource sharing in a variety of ways. If two firings are identical

O N Nlog() O N
3()

143

computations of the same SDF actor, and if there are no constraints that prevent the firings

from being executed sequentially, then the same piece of hardware can be executed twice,

with each firing’s source data fed in through multiplexors, and each firing’s results stored

in the appropriate memory units. If the firings are not identical, but are similar, then a sin-

gle hardware unit that is capable of performing both firing functions can be synthesized,

and extra control signals can be input to cause the hardware unit to switch between multi-

ple firing functions. If the differences are only in fixed parameters, or slight differences in

structure, then the effect of resource sharing is that a little more than half as much compu-

tation hardware will be necessary after sharing. If the inputs of the merged firings are

arriving from different sources, then the interconnect will increase significantly more than

if the inputs are coming from the same hardware unit in succession. The controller will

only increase slightly in complexity, in order to switch the hardware unit between one of a

limited set of firing functions in a fixed sequence, selecting each one at the appropriate

time.

If the firing functions are completely different, then there may be no advantage to hav-

ing them share the same hardware resources. There is a penalty in scheduling due to exe-

cuting the two firings in sequence, and if there is no advantage in sharing hardware in

terms of resource area, then the penalty is not worth the cost. Where there can be savings,

however, there is a tradeoff that arises from having firings share hardware units or execute

on independent resources.

At one extreme end, all firings could be mapped onto separate hardware resources, and

the interconnect between them could be generated from the dependencies in the prece-

dence graph. This represents a greedy scheme for synthesis. Unless the graph is a feedfor-

ward graph that is fully pipelined, this scheme is likely to be inefficient in terms of

resource utilization, since each hardware unit will be completely idle before its firing is to

take place and also once its firing is completed. For long chains of dependencies that must

144

be executed during each iteration, the separate hardware units in those chains would be

highly underutilized. This scheme does represent, however, a way of finding an architec-

ture that is close to the minimum in terms of execution latency. In general, though, designs

that exceed the basic performance requirements for periodic deadlines of producing com-

putation results will be doing so at the expense of increasing the area needlessly.

At the other extreme of mapping the firings onto hardware units, all firings are mapped

to the same hardware unit. One hardware unit would be responsible for being able to per-

form all the various firings of the system in a purely sequential order. Such a uniprocessor-

style implementation would be capable of many possible firing computations, and would

perform each one as instructions were received from the controller. The controller would

function as an instruction sequencer that runs through a single-process routine, as in the

case of a software program for a custom-designed processor.

Depending on the functionality needed, the single hardware unit could be synthesized

from the requirements of all the firings, or it could be implemented as a pre-designed pro-

cessor core that is capable of computing all firings. Synthesizing a single hardware unit

would be considerably more difficult than synthesizing separate hardware units due to the

increased functionality that would be required of it. A single hardware unit would poten-

tially be smaller than any equivalent set of two or more synthesized hardware units, since

it would have the most opportunity for hardware sharing among all firings.

If separate registers were used for all data values exchanged, this would result in a high

fanin and fanout to the hardware unit, with a very complex interconnect. As noted in Sec-

tion 2.4, the muxes that feed the hardware units will grow as in the number of

input sources they are required to switch. Because of this, all storage would likely need to

be mapped to a small number of memory blocks instead. While the access time might be

longer for a memory block than for an internal register, the serial execution pattern of fir-

ings would mean that memory accesses would also be serialized, making a combined

O n nlog⋅()

145

memory more appropriate than separate registers. Using memory blocks requires the

inclusion of an address generator in the control logic.

With a single hardware unit, controller, and memory, this would effectively be a con-

trol/datapath/memory processor architecture. The execution time of an architecture that

performs all firings in a purely sequential order would generally be longer than that of any

parallel architecture. Because of this, the execution time would potentially be longer than

that allowed by the timing requirements of the application. If the timing is still acceptable

for a single synthesized hardware unit, then a lower-cost solution that meets the timing

would be an existing available special-purpose processor core running a single sequential

program, with an address generator and a bank of RAM synthesized on the same die.

Between these two extremes of fully-parallel and fully-sequential designs lie many

possibilities for grouping firings together and synthesizing hardware units for each group.

Each hardware unit will be able to perform a single firing at a time, and so the set of hard-

ware units behaves like a multi-threaded execution on multiple processors. In this case,

however, the processors are the synthesized hardware units.

For firings that are merged together onto a single hardware unit, it is critical to main-

tain the correct ordering between the execution of firings on the unit. In order to avoid

introducing deadlock into the system, firings with well-defined orderings from the prece-

dence graph must maintain those orderings with respect to the other firings on the same

synthesized hardware unit. If two firings have no direct or indirect partial ordering, but

instead share a common source node or a common sink node, then they are unconstrained

as far as their relative execution order. This opens flexibility in scheduling firings within a

single hardware unit, which may allow optimizations by exchanging the order of firings

where allowed.

Another issue in resource sharing is the appropriateness of sharing hardware units for

functions that operate on different precisions of inputs and outputs. For heterogeneous

146

precision widths, synthesizing a single structure to perform multiple precision computa-

tions will be increasingly difficult, and potentially inefficient. Fortunately, a finite number

of different precisions can usually be selected for a given design, so that opportunities for

merging firings that share datapath precision can more easily be found.

2.8.4 Generating the RTL-Code Specification

In order to make effective use of available tools for RTL synthesis, the output RTL

code from the previous steps must be tailored to the synthesis tool in use. To synthesize

multiple firings into a single hardware unit, use is made of the VHDL case statement. The

case statement is conditioned upon the control inputs that determine which firing function

is to be performed at any given time. For each firing function, a different path of combina-

tional logic can be synthesized. In order to achieve true resource sharing, however, sec-

tions of combinational logic from multiple firings must be shared. The Design Compiler

from Synopsys, which we have used in our design flow, makes use of such opportunities to

share combinational logic groups. This is done internally to the synthesis tool, by recog-

nizing similar operations from the RTL code and grouping them together in logic synthe-

sis and mapping. Since the firing functions are exclusive, never executing at the same time,

logic shared in common by two or more firing functions can be implemented by the same

logic circuitry. This is how the savings in hardware area is realized at the implementation

level of RTL synthesis.

The overall architecture specified in the generated RTL code has a single controller

unit, fed by a system clock, and multiple hardware units fed by multiplexed inputs. The

outputs of hardware units are sent to registers that are latched and whose outputs are fed

back to the various hardware units. The controller is responsible for generating the correct

signals to actuate the datapath in the right sequence. These control signals include the con-

147

trol for the multiplexors, the signals that select the firing functions for the hardware units,

and the signals that trigger the data latches.

The timing of the control signals is based on a parallel schedule of the firings executed

on the hardware units. The exact timing of the firings depends on the time required for

each hardware unit to allow valid results to propagate through to the latches. This informa-

tion is not precisely known until the actual implementation is built, but reasonable esti-

mates can be made in advance. The control timing can be specified based on these

estimates, and then verified after a low-level layout has been prepared through more pre-

cise analysis within the synthesis tool. This is comparable to how circuit timing is vali-

dated in single-clock processor designs to ensure that no sub-net of logic gates and

interconnect exceeds specified latency limits.

2.9 The Hardware Synthesis Design Flow

For our implementation of the hardware synthesis design flow, we were informed by

the many issues discussed throughout this chapter. The software architecture of the syn-

thesis flow in the VHDL domain within Ptolemy is described in Chapter 5. Here we

describe the general structure of the synthesis flow.

A number of practical decisions were made for our implementation, given the finite

resources available in terms of development. We achieved a core synthesis flow, but there

are a number of features that remain for the future to be added into the implementation.

One of the most significant of these is the full implementation of the sequenced groups

architecture style. The current implementation focuses on the general resource-sharing

architectural style. The sequenced groups architectural style, intended to simplify the

mapping process and reduce the interconnect complexity and cost, is not currently auto-

mated. It is possible for the user to achieve the sequenced groups architectural style

148

through manual mapping of firings to resources in the general resource sharing approach,

but this is currently time-consuming, and some elements, such as shift registers, are not

automatically inferred. To enable the sequenced groups approach in a practical way, we

need to allow the user to specify the sequenced groups of firings and tokens that are to be

mapped together, and to specify the banks of EXUs and registers that they will be mapped

to. This specification issue applies both to the non-interactive mode and to the interactive

tool that is discussed in Chapter 4. Another key issue is to determine if there is a natural

choice for a default mapping by the tool to use as a starting point for the sequenced group

mapping approach. This may arise due to the issue of balancing the flow from one block of

grouped EXUs to the next, and it may depend on the limits on concurrency in the prece-

dence graph and on specified limits on how many EXUs are to be allocated.

Another issue in the current flow is that the sequential processor synthesis mode is not

specifically treated. For a sequential schedule of firings, with longer latency but lower area

than most other mapping options, a natural choice is to synthesize a core processor along

with a memory and controller, as was discussed in Section 2.8.3. This calls for a different

mode within the synthesis flow, since this will not be a suitable architectural style for the

general case, but only for highly sequential implementations. We currently implement the

case of general resource sharing, and do not automatically synthesize memory units and

address generation. The general case is given priority since it applies to the majority of

implementations we wish to explore, which contain more parallelism than the core/mem-

ory/controller style.

Another relevant feature that is not fully implemented is the optimization of fixed

point precision representations within the synthesized architecture. A full treatment of this

issue would call for variations of precision throughout the architecture, depending on local

arithmetic functions and the expected dynamic ranges of values to be computed. Optimi-

zation can be applied in such designs to seek to select fixed point precisions of the various

149

hardware elements that trade off the noise power of the roundoff errors against the other

goals of the design, such as area, which increases with increasing precision widths. The

approach currently implemented allows the user to select a single precision that is used for

all elements throughout the architecture. This simplifies the design process, but requires

the selection of a worst-case precision that is likely to be wider than what is necessary at

some points within the synthesized hardware.

The overall synthesis flow proceeds along the lines discussed in the previous section.

The flow that is used is shown in Figure 2.57.The first step is the creation of the SDF graph

specification with functionality defined in SDF actors and the setting of the SDF parame-

ters that determine the numbers of tokens produced and consumed on each port of each

actor. For algorithmic-level simulation, this specification can be simulated repeatedly and

refined until the structure and parameters of the algorithm are sufficiently defined to war-

rant proceeding with the rest of the synthesis flow. The next step in the synthesis flow is

the same as that in SDF simulation, which is to determine a valid schedule for the SDF

graph. The same scheduler that is used in simulation is also used in the synthesis flow.

From this schedule, the precedence graph representation is constructed. It is not necessary

to have a schedule in order to construct the precedence graph, but following a valid sched-

ule is a convenient way to serialize the operations that are performed as the precedence

graph is constructed. It also guarantees that as each firing in the precedence graph is

added, the predecessor firings and input tokens to the firing will already be logged and will

have been added to the precedence graph.

As the precedence graph is constructed, information is gathered about each firing,

including the firing function, inputs and their sources, outputs and their destinations, and

state information. This information is used in the next stage, which is the precedence

graph mapping of firings to execution units. The default mapping is to allocate an EXU for

each firing in the automatic mode. The use of the interactive tool TkSched allows the user

150

to specify other mappings. These alternative mappings allow any firing to share an EXU

with any other set of firings in the precedence graph. The effects on the estimated execu-

tion time and area are displayed within the interactive tool TkSched.

Figure 2.57 The hardware synthesis design flow.

SDF Graph

SDF Graph
Algorithm

Design

Automated
Mapping

Scheduler

Interactive
Mapping

(TkSched)

Precedence

RTL Code

Graph

Architecture
Information

RTL Code
Generation

SDF Graph
Simulation

Circuit
Layout

Area/Timing
Information

VHDL Code
Simulation /

Synopsys
Design

Cosimulation Analyzer

(Chapter 4)

(Chapter 3)

151

Once the architectural mapping has been selected, the resulting set of architectural

information is used to construct the final RTL VHDL code specification of the chosen

architecture. This involves instantiation within the code of all execution units and their fir-

ings, and all interconnect and registers for communication. The RTL code generation pro-

cess also inserts correct code for state value initialization, as well as inter-iteration updates

of register locations where tokens or states are held from one schedule iteration to the

next.

The next stage in the synthesis process invokes the Synopsys Design Analyzer synthe-

sis tool from within Ptolemy. The generated RTL code is passed to the synthesis tool along

with a command file that guides the synthesis process. The design is analyzed for synthe-

sizability, and if it passes, the RTL synthesis process begins. This process can take any-

where from one minute to several minutes to the better part of an hour depending on the

complexity of the design and the platform the synthesis tool is being executed on. In our

environment, we were running on a Sun SPARCStation-20 with the Solaris 2.5 operating

system and 155MB of RAM and 324MB of swap space.

Once the synthesis process is completed, the results are presented within the tool for

the user to examine. From this point, the user may continue to adjust the design within the

RTL synthesis tool and continue with the layout stages of design. In our flow, we issue

commands through the synthesis script to gather information from the synthesis tool about

the area and performance of the synthesized implementation. By using the interactive

design tool TkSched, described in Chapter 4, these values can be imported back into

Ptolemy and presented to the user. This allows improvements to be made to the mapping

and iterations through RTL synthesis to be applied. An alternative design path is to apply

the simulation approach described in Chapter 3 to test the generated code for functional

correctness. The user can also construct simulations of mixed systems consisting of the

generated VHDL code within an SDF simulation testbed with input signals and output

152

traces observed, or simulate a mixed system of VHDL code with other subsystems gener-

ated into other realizations, such as C code and Motorola DSP 56000 assembly code.

2.10 Summary

In this chapter we have presented an approach to synthesizing hardware from SDF

specifications. This approach allows greater flexibility in the scheduling of communica-

tion and in the sharing of resources than previous approaches. Efficient communication, in

terms of register allocation, is possible, but results in limitations on scheduling freedom.

The notions of token queueing, token feedback, and dependencies on past token values are

taken into account. The generation of a register-transfer level architecture in VHDL is the

result, with RTL synthesis as the target of this process. While we have described the

implementation of SDF graphs entirely in hardware, many useful systems are imple-

mented in both hardware and software, and from specifications with mixed semantics.

Simulating such mixed systems that are synthesized partly in VHDL is necessary for

design validation. Cosimulation of generated VHDL specifications with other subsystems

is the subject of the next chapter.

153

3

Cosimulation

VHDL is a language that has found much use in synthesis, but it has also proven to be

effective in simulation for validation of designs. The semantics of VHDL support specifi-

cation, simulation, and synthesis at the RTL and behavioral levels, and each of these are

discussed in Section 3.1. While simulation exclusively in VHDL is not unreasonable, it is

often advantageous to perform cosimulation of VHDL with other non-VHDL design spec-

ifications. In order to do so, we need a thorough understanding of the simulation semantics

of VHDL and how the simulation cycle defines those semantics. These are described in

detail in Section 3.2. Understanding the semantics is important in synchronizing VHDL

simulation with other simulation or emulation engines. The synchronization problem, and

various cases of cosimulation with VHDL are the subjects of Section 3.3. In Section 3.4

we describe the details of the VHDL Foreign Language Interface. In Section 3.5 the simu-

lation design flow is presented, and finally we summarize in Section 3.6.

3.1 VHDL For Specification, Simulation, and Synthesis

The VHDL language came about as the result of a long effort to standardize the way in

which digital hardware systems are described. Visual representations, such as circuit dia-

154

grams and system architecture drawings, had been in long use and still are today, but

lacked any broadly-accepted standardization that would make them reliable as complete

and objective documentation of designs. Another reason for formulating text-based hard-

ware description languages such as VHDL was so that modern programming language

techniques could be applied to hardware descriptions, in an attempt to realize the benefits

achieved with text-based software specification languages. The uses of VHDL as a lan-

guage for specification, simulation, and synthesis are described in this section.

3.1.1 VHDL For Specification

The VHSIC (Very High Speed Integrated Circuit) Hardware Description Language,

VHDL [Armstrong93] had its beginnings in 1983 as a U.S. Department of Defense (DoD)

initiative to create a text-based language for specifying digital hardware designs. One goal

was to create a standard interchange format, with a purpose similar to EDIF [EIA87], so

that design descriptions could be easily exchanged between and within organizations. It

was also created with high-level specification capability in mind so that components and

systems that would be used over many years, particularly by the DoD, would have stable,

well-defined specifications from which multiple, successively refined implementations

could be manufactured, as technology changes were expected to outpace the rate of

change of defense systems needs.

3.1.2 VHDL For Simulation

It was later decided that the language would be of much more utility if it became pos-

sible to actually simulate descriptions written in VHDL, rather than merely having them

serve as static design documents. Provisions were made for simulation semantics, which

take on a form of discrete-event (DE) semantics [Banks96] [Cassandras93] [Delaney89]

[Fishman73] [Fishman78] with a well-defined simulation cycle and an event-driven basis

155

for the advancement of a global time clock. General DE semantics consist of blocks con-

nected by signals that communicate with one another at exact instances in time. These

communications, orevents, may or may not have values associated with them. Events have

timestampsthat denote the time of their occurrence. Time is a single, global value in DE

simulation, and is updated throughout the simulation, increasing monotonically. All events

in the system can be totally ordered according to their timestamps, except those with iden-

tical timestamps. When events have the same timestamp, they can be further ordered

according to some criterion, such as their location in the graph topology, or they can sim-

ply be processed in an unspecified order. Events that are awaiting processing are stored in

a queue according to their order. This queue can be a single priority queue, but the access

time can be long for large numbers of events. The access time to enqueue and dequeue an

event for a linear list implementation of a priority queue is where is the number of

events. For tree structures, the access time is . The discrete-event domain in the

Ptolemy system uses a multiple-list calendar queue data structure [Brown88] which has

fast access time. In any discrete-event simulation, events are processed in chronolog-

ical order, and blocks may react to events on their inputs by producing events immediately

or at later times on their outputs. The specific simulation semantics of VHDL are

described in detail in Section 3.2.

These semantics are non-inclusive of analog signal circuit simulation techniques such

as what is used in various forms of SPICE. As such, the language avoids physical circuit

simulation issues for the most part. Some openings for admitting physical circuit effects

were included, in the form of resolution functions that can modify the timing and values of

signal assignments based on multiple signal sources or parameterized behaviors. Simi-

larly, parameterization of design block behaviors can allow the modeling of physical

effects. This is accomplished through parameters to blocks that may include temperature

O n() n

O nlog()

O 1()

156

or technology data. These parameters may be used by the models internal to blocks to

modify their behavior to reflect timing or thermal effects, for example.

With the success of VHDL for modeling and simulation of discrete-time electronic

systems, similar efforts have been mounted to approach the design of continuous-time sys-

tems through the use of Analog Hardware Description Languages (AHDLs). MAST

(which is not an acronym), the third-generation AHDL from Analogy [Analogy97] has

found usefulness in modeling both continuous-time electronic systems as well as electro-

mechanical and other physical systems. This language also has the capability of event-

driven modeling, which is why it is also referred to as a Mixed-Signal Hardware Descrip-

tion Language (MSHDL) [Mantooth95]. Recently, IEEE Working Group 1076.1 has final-

ized analog extensions to VHDL (IEEE Standard 1076). These extensions are intended to

allow VHDL to support the description and simulation of circuits that exhibit continuous

behavior over time and over amplitude. This superset of VHDL is informally called

VHDL-AMS (for Analog and Mixed-Signal) or VHDL 1076.1. A ballot before the IEEE

was initiated in 1997 [IEEE-DASC97].

At the same time as more features were being incorporated into VHDL, proprietary

languages for gate-level simulation were also being put forward. The most prominent one

of these was Verilog. Verilog began as a proprietary specification and simulation language

aimed at gate-level design. It became an open standard in the early 1990s, and more

recently, standardization efforts have turned Verilog into IEEE Standard 1364. Today, Ver-

ilog is generally acknowledged as being the dominant hardware description language

(HDL) in use in North America, while VHDL dominates in Europe. Worldwide, their use

is roughly equal, and most simulation and synthesis vendors support both languages rather

than one exclusively. This interchangeability is often aided by front-end compilers that can

translate either VHDL or Verilog into an equivalent internal format for use throughout the

remainder of simulation and synthesis.

157

3.1.3 VHDL For RTL Synthesis

Most HDLs find broad use as simulation languages, but a crucial task for designers

after validating designs through simulation is to find a pathway to synthesize their designs.

Formerly, this task required translation of designs specified in simulation languages into a

logic-level specification for which tools existed that could create internal gate models for

synthesis. In order to avoid the costly and error-prone process of manually re-encoding

designs, synthesizable subsets of HDLs were defined so that designs written within those

subsets could be simulated for verification and then automatically synthesized so as to

proceed down the design flow toward implementation. Further extensions allowed the

specification of designs at the register-transfer level (RTL), where each variable could be

mapped to an individual register in the final implementation, and assignments to variables

could be implemented through the latching of the outputs of combinational logic into reg-

isters at specified clock times.

Due to the overwhelming popularity of general-purpose programming languages such

as C and C++, some synthesizable subsets of these general-purpose languages were also

defined, often with extensions to the language that provided special constructs for specify-

ing concurrent and clocked behaviors [Ku90]. In these cases, the advantage is meant to be

that designers who aren’t familiar with HDLs such as VHDL and Verilog but who have

significant experience programming in C would find a shorter learning curve in moving to

C-based synthesizable languages in comparison to learning new languages like VHDL and

Verilog. One other prominent case is Silage [Hilfinger85], which is specific to the domain

of DSP, and has constructs for specifying signals, signal assignments, and temporal rela-

tionships between signals in terms of sample indexes. Silage was supported by tools such

as Hyper [Rabaey90] for behavioral synthesis, and later in the Cathedral tools developed

at IMEC [DeMan90] that were commercialized in the DSP Station offering from Mentor

158

Graphics [Mentor97], but Silage has not attained widespread use in commercial synthesis,

and remains at a low level of use relative to VHDL and Verilog.

Language subsets appropriate for RTL synthesis are often narrowly specified relative

to the general language semantics from which they are derived. Many general-purpose

constructs are disallowed in subsets for RTL synthesis. Among these are constructs for

allocating and deallocating storage dynamically. Other constructs that are disallowed are

those relating to timing that fall outside of allowed clocking specifications. Specifying

operations to occur at times determined by clock inputs are generally allowed, but specifi-

cations that refer to absolute times or absolute time intervals are not, because they are not

easily implemented in clocked synchronous circuits where clock inputs are provided but

the clock periods are not specified.

3.1.4 VHDL For Behavioral Synthesis

Both to increase the ease of specification and to open up more implementation possi-

bilities, broader subsets of HDLs have been defined for behavioral- or high-level-synthesis

[Camposano91]. In behavioral subsets, it is not necessary to specify exact instantiations of

resources or clock timing in the specification. The scheduling, allocation, and mapping are

determined during the behavioral synthesis process, which strives to make optimized

choices based on more general specifications. In behavioral specifications, expressions are

assigned to variables, with sequential and concurrent behaviors allowed. As a result of the

behavioral synthesis process, assigned variables may be mapped onto shared registers in

the final implementation, or they may become internal values represented at intermediate

points in a sub-netlist of logic. The timing of such assignments is also unspecified in the

input description, and is determined by the behavioral synthesis task.

Language subsets that are synthesizable under behavioral synthesis are much closer to

the style in which high-level general-purpose language programmers are accustomed to

159

specifying algorithms and applications. Creating specifications in such a style leaves open

a broader range of possibilities for the allocation of resources and timing of operations in

the final implementation. However, a much greater burden is on the behavioral synthesis

task to determine optimal implementations, without the benefit of experienced designers

directly determining what efficient computation structures should be used. More balanced

flows can use either mixed-level specifications for partial behavioral/RTL synthesis, or

they can allow greater input from designers in specifying more detailed synthesis con-

straints for portions of the system that are more critical to the overall quality of implemen-

tation.

3.2 Elements of VHDL and the Simulation Cycle

The full syntax of VHDL allows for three classes of statements. These arestructural,

concurrent, andsequentialstatements. All three classes serve specialized purposes for aid-

ing in expressing different types of design intent. Hardware designers who wish to express

the architecture of their designs in terms of separate units connected to one another will

focus on the structural statement language features. Parallel hardware is inherently con-

current, and concurrency can be naturally described by operations taking place within dif-

ferent structural elements. However, to support a direct way of expressing concurrency,

even within a single hardware structure, a syntax for concurrent statements is provided.

Finally, even though structure and concurrency are good matches for the way hardware

designers think of their designs, there is still a large need for expressing behavior as a

sequence, particularly in algorithm design for programmers accustomed to sequential

high-level programming languages. For this purpose, a syntax for sequential statements is

also a part of the VHDL language.

160

3.2.1 Processes, Signals, and Entities

In VHDL, all computation occurs within concurrentprocesses. Communication

between processes occurs throughsignals. One or more processes may be contained in a

singleentity, which specifies a structural unit in a design. Concurrent processes may com-

municate among themselves within an entity through local signals, or they may communi-

cate through signals between entities. A representation of these structural relationships is

shown in Figure 3.1. Processes may be as simple as a single assignment of an expression

to an output signal, or they may be large and complicated algorithmic procedures, with

local variables, conditionals, branching, and many of the language features found in high-

level programming languages such as C.

Figure 3.1 Processes, signals, and entities. Processes perform computa-
tion, signals communicate information, and entities provide
structure and hierarchy.

entity

entity

entity

process

process

processsignal

signal

signal

161

3.2.2 Process Execution

Processes may execute continuously unless and until they suspend themselves. There

are no forced interrupts in VHDL. Processes cannot cause simulation time to advance on

their own, however. Statements within processes are treated as though they execute instan-

taneously with respect to the global simulation time. If a statement within a process speci-

fies that the process should wait for a given amount of time or until a specific absolute

time, then the process suspends and other processes are allowed to execute. A process

resumes execution either when an event occurs on an input signal to which the process is

sensitive, or when the simulation time advances to the time when the process had sched-

uled itself to resume prior to its suspension.

Processes can output events on their output signals through assignment statements.

These assignments can also be made to occur at some time in the future of the simulation.

This feature can be used to simulate latency through an entity or process, as input signals

result in outputs at some finite time in the future. This is efficient for simulation, as input

signals will trigger a process to execute, and the process can execute “instantaneously”

without advancing the simulation time. When the process is finished, it can schedule out-

put events to occur at some time in the future and then suspend itself, allowing other ele-

ments in the simulation to continue.

3.2.3 Signals, Transactions, and Events

Signals communicate the events in the system simulation among the entities and pro-

cesses that are connected to those signals. All signals have acurrent valuethat is associ-

ated with them at all times during a simulation. This is the value that is obtained if the

signal is read. Atransactionis an update of the current value of a signal, whether that

value changes or not. If a signal experiences a transaction during a given simulation cycle,

then that signal is said to beactive. While a transaction is any update of the current value

162

of a signal, aneventis defined as a transaction that results in a change of the current value.

Many transactions may result in updates that do not change the value, and so to the

observer of such a signal, no events have taken place, and the signal appears to be con-

stant. Events define some change in the signal state of the system, which may indicate that

some action should take place as a result of the change. The distinction between a transac-

tion and an event is shown in Figure 3.2.

Processes can only schedule transactions to take place on their output signals causally.

That is, transactions may be scheduled to take place at non-negative times in the future,

which may include zero-valued time differences. Such zero-delay or immediate assign-

ments are used to model the instantaneous response of a process to input events.

Figure 3.2 Signals, transactions, and events. Signals carry the values
communicated between entities and processes. A transaction
is any update of a signal value. An event is a transaction that
results in a change of a signal value. When a signal experiences
a transaction, that signal is active, even if the transaction does
not result in an event.

time

signal trace $4C$4C$01$01$00$FF

events

transactions

163

3.2.4 Simulation Time

The simulation time within VHDL is a single, global value for an entire simulated sys-

tem. The simulation time is indexed by an integer value, but the simulation time does not

need to take on all sequential integer values as it proceeds. The units of time that are spec-

ifiable in VHDL are those that are comparable to timescales typical in hardware system

design, such as nanoseconds, picoseconds, femtoseconds, and so on. If multiple timescales

are specified, then they are all calculated as multiples of a single, smallest base time scale.

Simulation time begins at zero and takes on equal or increasing values at each new simula-

tion cycle.

VHDL simulations are one-sided, discrete-event simulations, but they are not discrete-

event in the strictest sense. As will be explained in Section 3.2.6, VHDL can be used to

specify systems that do not advance in time. In comparing various models of computation,

Lee and Sangiovanni-Vincentelli [Lee97] define adiscrete-event model of computationto

be a timed model of computation where all time tags of each signal are order-isomorphic

to a subset of the integers. Atimed model of computationis defined as one where the time

tags aretotally ordered. That is, for any distinct and in , either or . Two

sets areorder-isomorphicif there exists an order-preserving bijection from one to the

other. Two consequences of this definition of discrete-event systems are that the time tags

of any behavior can be enumerated in chronological order, and that between any two finite

time tags there will be a finite number of time tags. VHDL can be used to specify systems

where there are an unbounded number of time tags between two finite time tags of the

behavior. Because of this, VHDL is a timed model of computation, but not truly discrete-

event according to these definitions.

T t t' T t t'< t' t<

164

3.2.5 The VHDL Simulation Cycle

Simulation time is advanced by the repeated execution of the simulation cycle. The

simulation cycle governs the overall execution of a VHDL simulation, and is executed in a

loop until the simulation terminates. Termination can occur either when a certain pre-spec-

ified simulation time is reached, or when there are no more scheduled events or process

resumptions left to execute.

There are five major steps in the VHDL simulation cycle, which are summarized in

Figure 3.3. The first is that at the beginning of a new simulation cycle, the current time is

assigned the next scheduled simulation time. Second, each signal that is active during the

current cycle is updated with its new value. A signal is active during a given simulation

cycle if it has a transaction taking place on it. Some of these signals, through changes in

their value, will experience events. In the third step, all processes that are sensitive to sig-

nals that have just experienced events are marked to resume during the current simulation

Figure 3.3 Steps in the VHDL simulation cycle.

1. The current time is assigned the next scheduled simulation time.

2. Active signals are updated with their new values.

3. Processes that were previously scheduled to resume at the current time,

or that are sensitive to signals that have just experienced events, are

marked to resume during the current cycle.

4. Each of the marked processes is executed until it suspends.

5. The next scheduled simulation time is calculated to be the earliest time

a signal is to become active or a process is to resume.

165

cycle. In addition, any processes that were previously scheduled to resume during the cur-

rent cycle, regardless of any input events, are also marked to resume.

In the fourth step, each of the processes that has been marked to resume is executed,

but in no defined order. Each such process is executed until it suspends itself, which may

or may not happen. If a process does not suspend itself, then the simulation stalls and time

does not advance. Processes themselves are not capable of advancing simulation time.

Processes cause temporal effects by scheduling signal transactions and process resump-

tions at future times, and then suspending themselves. In the fifth and final step in the sim-

ulation cycle, the next simulation time is calculated according to the earliest time a signal

is scheduled to become active or a process is scheduled to resume. This next scheduled

simulation time may or may not be different from the current time, but it cannot be earlier

than the current time.

3.2.6 Delta Cycles

If the next scheduled simulation time is equal to the current simulation time, then the

next simulation cycle is called a delta cycle. In a delta cycle, there is an infinitesimally

small advance in time, which is sometimes referred to as a delta step. In actuality, delta

cycles do not result in any measurable advance in simulation time, and an arbitrarily large

accumulation of delta cycles still amounts to a simulation time advance of zero. Delta time

provides a second tier of time tags for events in the simulation. These delta time tags form

a series of sub-tags within a single simulation time instant, as shown in Figure 3.4. An infi-

nite number of delta cycles may occur between advances in the current simulation time. If

this does occur, then the simulation time does not advance, and the overall simulation

stalls, even if delta cycle simulation activity continues. The notion of “which delta cycle”

is being executed is not accessible in any language construct. Any statement within a pro-

cess that commands the simulation to “do something immediately” will mean “do it dur-

166

ing the very next cycle, which will be a delta cycle.” Even though delta cycles are not

counted or visible outside the simulator internals, they provide a means of putting an

ordering between events in the simulation and the subsequent events that immediately fol-

low them.

As mentioned above, the order in which processes that resume at the same time are

executed is not specified in the language. As a result, there could be a potential nondeter-

minacy in the execution of a VHDL simulation, where different simulators or different

invocations of the same simulator might yield different results. However, because of the

construct of delta time, this potential nondeterminacy is avoided. To illustrate this point,

we examine a simple case that is shown in Figure 3.5. In this example, two processes are

connected to each other through signals. Each process is sensitive to events on signals

originating from the other process.

If, on a given simulation cycle, both processes are scheduled to resume at the same

simulation time, the overall behavior of the system could depend on which process is actu-

ally executed first in the simulator. If process A executes first, it may generate an instanta-

neous event on its output signal, which feeds directly to process B. When process B

executes, if it sees the event just generated by process A, it could alter the behavior of pro-

cess B from what might have occurred if process B had been executed first. However, pro-

cess B will not see the output event of process A during this simulation cycle, because of

delta time. Even if process A generates events to occur right away, they will not actually

Figure 3.4 Delta time steps in between simulation time steps.

simulation time

δ δ δ δ δ δδ
0 ns 25 ns 40 ns 55 ns

167

occur until the current simulation cycle is concluded. As a result, the behavior of process

B is independent of any events generated during the current cycle, and is independent of

the order of execution of processes. Whether the order is {A, B} or {B, A}, process B will

finish executing during the current cycle and will only experience any new input events on

the next simulation cycle.

Because of delta time, there are no truly instantaneous events. Delta time means that

the execution of processes that generate events and the execution of processes that are sen-

sitive to those events are always separated by at least one simulation cycle. As a result,

there are no true zero-delay feedback loops in a VHDL simulation, even though they may

appear to be zero-delay in terms of the overall simulation time. In addition, there is no loss

of determinacy in executing a VHDL simulation even though the order of simultaneous

process execution is not specifiable. While VHDL simulations are usually executed on a

single-processor platform, the construct of delta time makes it possible to execute VHDL

as a parallel, distributed simulation. Processes that execute during the same simulation

cycle may be simulated on separate processors or platforms in parallel, so long as such

parallel simulations are synchronized by a single simulation cycle. The value of such a

Figure 3.5 Two tightly interdependent processes. There is a closed cycle
of dependencies passing through both A and B.

A

B

168

parallel simulation will be determined by the amount of computation needed to execute

concurrent processes relative to the cost of communication among those process simula-

tions. This will vary based on the VHDL specification being simulated and the parallel

simulation platform being used.

3.3 The Simulation Synchronization Problem

VHDL is a language with broad-based semantics that allows many kinds of systems to

be modeled and simulated at multiple levels of abstraction. However, often the need arises

to model heterogeneous systems that are only partially specified in VHDL. Rather than

translate all parts of a specification into VHDL, a process that could result in coding errors

or differences in functional behavior, it is desirable to have a means of co-simulating

VHDL specifications with non-VHDL specifications.

One of the problems in performing cosimulation with VHDL as a part of the system is

the issue of synchronization. This is necessary in order to preserve the correct behavior of

the overall simulation when synchronous communication is required. This is not an issue

when working within a single VHDL simulator, but can become one when coordinating

VHDL with other simulations. Data that is dropped or communicated out of order can

change the results of the system simulation, introducing nondeterminacy and possibly

incorrect functionality. Also, uncoordinated communication can lead to deadlock between

processes that hang while waiting for communication from one another. Proper synchroni-

zation is important not only during the run but also during initialization, where communi-

cation links are set up between the VHDL simulation process and other processes.

In this section we discuss the problem by beginning with distributed simulation of

VHDL specifications and the issues involved. Following that is a discussion of the more

restricted case of cosimulating dataflow implemented in VHDL with dataflow imple-

169

mented in another specification language. This combination is useful in moving from

specifications in SDF to implementations in hardware and software. Following this, we

describe a means of synchronizing SDF simulations with “imported” VHDL models that

are not derived from SDF specifications. These imported models may have synchronous or

asynchronous interfaces, and so appropriate synchronization must be added for each case.

We conclude with comments about general system-level simulation.

3.3.1 Synchronization of Distributed VHDL Simulation

Given a single VHDL simulation process consisting of several entities that communi-

cate, the synchronization occurs within the execution of the simulation cycle. All transac-

tions in the system are given time tags based on a single, global clock. Some time tags

may be identical, and the simulator resolves the issue of which transactions should be pro-

cessed first by requiring all of the previously existing transactions with identical time tags

to be processed before any new transactions are processed. A single simulation process

has a single simulation time, as shown in Figure 3.6.

Figure 3.6 VHDL simulation under a single simulation process.

VHDL Simulation Process

Simulation time T

170

If a single VHDL system is partitioned onto two or more communicating VHDL simu-

lators, the synchronization problem becomes more difficult. Each VHDL simulation pro-

cess has its own list of transactions to process. The only communication between

simulators is through signals. If signals flow in both directions between two simulators,

then the simulations are tightly dependent upon one another. If one simulator finishes pro-

cessing all of its pending transactions, it may still need to wait for transactions that will be

received from the other simulation process that have the same time tag. Each simulation

appears as a black box to the others, so there is no means, in general, of determining

whether another simulator has advanced to a new simulation time. This prevents any sim-

ulator from proceeding forward in simulation time without further synchronization. The

case of two communicating VHDL simulations is shown in Figure 3.7.

VHDL Simulation Process 1

Simulation time T1

VHDL Simulation Process 2

Simulation time T2

Figure 3.7 Two communicating VHDL simulators. Transactions may origi-
nate within one simulator and propagate to the other, with no
restrictions on timing. Without further synchronization, each
simulator has no way of knowing the simulation time of the
other.

171

3.3.1.1 Scatter/Gather

Because of this multiple-simulation-clock problem, coordinating multiple VHDL sim-

ulations is not easily done without modifications to the simulator that add the needed syn-

chronization. The same is generally true of any parallel simulation that uses multiple

clocks for different parts of the system. One way to exploit the parallelism in a VHDL

simulation on a concurrent platform is to do so within the simulation cycle, in ascatter/

gatherapproach. During each VHDL simulation cycle, all processes that are scheduled to

resume are executed, but in no particular order. These processes may just as well be exe-

cuted concurrently, with no loss of correctness in the simulation. The process in charge of

the simulation cycle, when it is time to execute resuming processes, can scatter them to

available concurrent processors for execution, as shown in Figure 3.8. Each process exe-

cutes until it suspends, and then any transactions generated by each process are gathered

back into the centralized list of pending transactions.

This method of parallelization is limited to the number of processes that are simulta-

neously activated during a given simulation cycle. The requirement for a central transac-

tion list update means that any concurrent threads of simulation must be synchronized on

every simulation cycle. This limitation, in addition to the overhead associated with scatter-

ing and gathering processes and transactions means that the advantage to such a scheme

will depend heavily on how much computation is done by each activated process before it

suspends.

3.3.1.2 Speculative Simulation

If concurrent VHDL processes do not communicate during every simulation cycle,

then it is not necessary for them to synchronize on every cycle, as is required by the scat-

ter/gather approach. A method for performing parallel VHDL simulation that permits sep-

172

arate partitions to advance in time as long as there is no communication among them is

desirable. The problem is that it cannot be decided, in general, whether one partition needs

to block execution and wait for incoming transactions until the other partitions have com-

pleted their simulation cycles, which effectively requires them to synchronize on every

simulation cycle whether they actually communicate or not.

One approach that is used in commercial simulation backplanes such as SimMatrix,

developed by Precedence [Precedence97], isspeculative simulation, shown in Figure 3.9.

This technique is analogous to speculative execution in pipelined processors, including

pipelined DSPs, where branches are partially executed based on a likely choice and the

pipeline is flushed if the branch condition turns out otherwise [Lapsley96]. It is also simi-

lar to partial transaction processing, with backup and recovery, in distributed database sys-

tems [Shuey97]. In speculative simulation, each simulation partition advances forward in

simulation time without a guarantee that all transactions with the local current time tag

have already been received from the other partitions. If the simulation clock of a partition

advances forward in time and the partition subsequently receives an input transaction with

Figure 3.8 A scatter/gather approach to concurrent VHDL simulation. The
simulation cycle process is a bottleneck, synchronizing all
threads once per cycle.

Simulation Cycle Process

Global Simulation Time T

Active VHDL Process Threads

scatter gather

173

an earlier time tag, the partition’s simulation state is possibly already inconsistent with the

effects of the newly received input transaction. In this case, the only way to ensure the cor-

rectness of the simulation is for the partition to back up in time, reverting to a correct,

saved state from a simulation time at or before the time tag of the received transaction.

After backing up, the partition can again proceed forward, processing the additional trans-

action at the correct time.

In order for speculative simulation to be possible, each partition must be able to revert

to a valid, saved state when input transactions arrive late. To avoid having to back up too

far, the simulation state of the partition must be saved sufficiently often. The disadvantage

is that it is costly to save and restore simulation state, especially for large simulations with

many signals and variables. It is also costly to be forced to back up very far in simulation

time, wasting the already-performed, but possibly incorrect, simulation cycles. A tradeoff

Figure 3.9 Speculative simulation, for the case of two partitions. When the
transition arrives “late”, after Partition 1 has already advanced
beyond the time tag of the transition, Partition 1 must revert to a
prior, saved state and resume simulation from that point.

simulation
time Partition 1 Partition 2

“Late” transaction

saved state

saved state
saved state

revert to
saved state

174

must be made between the cost of saving state and the cost and frequency of losing simu-

lation cycles in determining how often to “back up” the state data. This tradeoff will

depend on the individual system being simulated, and may best be set dynamically

throughout the simulation as inter-partition communication patterns change.

3.3.1.3 Topologically Sorted Simulation Partitions

Another technique for improving concurrency in simulation is dependent on the topol-

ogy of the partitioning that is chosen. For the case of partitionings where partitions do not

have mutual dependencies, but instead form a directed chain of dependencies, the parti-

tions can be topologically sorted. Tightly interdependent sets of entities, which are mutu-

ally reachable through their directed signal connections, are clustered together inside

partitions. Figure 3.10 shows a VHDL design and its topologically sorted partitioning.

In this situation, once the partition that is first in the topological ordering has passed a

certain point in simulation time, it can send an additional signal on a separately provided

connection. This signal will indicate to the next partition in the topological ordering that it

is free to proceed with simulation up until the indicated time, without the concern that

additional transactions will be received that would force it to revert to an earlier simulation

time. The second partition, after reaching the given time, could in turn pass that timing

signal to the next partition in the topology, and each successive partition could do the

same.

Such a scheme could require additional timing signals to be connected between simu-

lation partitions. Alternatively, the original data signal connections themselves could be

used to indicate to successive partitions up to what time to proceed forward with simula-

tion. The timestamp of the next signal transaction transmitted from one partition to

another indicates how far forward the downstream partition can safely proceed with simu-

lation. The potential difficulty with this method is that a downstream partition must wait

175

for an actual data signal transaction in order to proceed, and such transactions may not be

generated at regular intervals. An explicit additional timing signal allows downstream par-

titions to continue internal simulation even when the next data signal transaction will not

be arriving until some time in the future.

The more significant constraint would be the requirement that a simulation partition-

ing be topologically sorted in such a chain of dependencies, which would not be possible

for VHDL designs with only tightly interdependent entities. Because of this, such a

method would not be a reliable means of obtaining improved concurrent simulation per-

formance, but it would allow improvements in simulation time for a subset of designs.

Figure 3.10 A VHDL design to be sorted topologically (top). The resulting
topologically sorted partitioning (bottom).

A

C

B

E

D

A

C

B

E

D1

2

3

4

176

3.3.2 Hierarchically Composed VHDL Systems

An alternative to having separate partitions of VHDL subsystems communicating with

one another is to embed one simulation within another, hierarchically. In this form, parti-

tions are no longer of equivalent status. The top level simulation is in control of the overall

simulation process. Hierarchically contained simulations are subordinated, and their

scheduling is under the supervision of the top-level simulation. This arrangement is repre-

sented in Figure 3.11. One problem that arises with timed-in-timed simulations such as

this is the coordination of the scheduling of the inner and outer systems. The brute force

approach is simply to flatten the simulation and place all blocks under the control of a sin-

gle scheduler. This will immediately sacrifice any potential benefit from the concurrent

semantics or simulation performance from joining multiple simulators. An existing

approach which maintains the hierarchy in simulation is used in the discrete-event domain

in Ptolemy.

Figure 3.11 A hierarchically composed VHDL simulation.

E

D

FA

C

B

G

H

TOP

BOTTOM

177

The discrete-event domain in Ptolemy supports DE-in-DE system simulation, with

some controls on synchronization. When the outer DE system sends an event to the inner

system, the inner system is scheduled to be executed at the timestamp of the transmitted

event. When the inner system is executed, it is given a stop time by the outer system,

which is the current time in the outer system. The inner system must not simulate past this

stop time internally, because it would potentially simulate past the time of future events

that would be sent from the outer system to the inner system. The inner DE system can

produce events with a timestamp of the current stop time, and these events are processed

by the outer system when it resumes execution. The inner system can also schedule events

in the future, which are held in the inner scheduler event queue. The inner system will then

schedule itself with the outer system to be re-awakened at the timestamp of the future

event. When the current time of the outer scheduler reaches that future time, the event is

processed by the inner scheduler and is sent to the outer system for processing.

This approach allows for proper synchronization between top-level and subordinate

timed simulators, while maintaining their distinct identities. Due to this tight synchroniza-

tion, there is some computational overhead in re-awakening the inner system at every time

increment. The inner system must run not only when it receives each input event, but also

at the times when its output events are scheduled. This is in contrast to top-level DE blocks

that only need run when they receive input events, and can schedule output events to take

place in the future without re-awakening. The simulation result, however, will be correct,

and multiple DE simulators can be coordinated in this way.

3.3.3 Cosimulation of Dataflow in VHDL with Other Dataflow

While simulation of a general VHDL specification in distributed form or in cosimula-

tion with a non-VHDL description is complicated by the synchronization, advance knowl-

edge of the communication pattern can simplify the problem. The difficulty with

178

cosimulating two timed partitions is that either one may generate transactions at any time

that the other partition must respond to consistently. This requires special mechanisms to

maintain synchronization between the simulation cycles in both partitions. For specifica-

tions in SDF, the data dependencies can be determined in advance, and the computation

can be organized on each partition so as to allow loose synchronization.

As discussed in Chapter 2, the SDF scheduling process results in information that can

be used to construct the dependency graph of all firings of all actors in a complete itera-

tion. For non-deadlocking graphs, the dependency graph is a directed acyclic graph (DAG)

of precedence relations. The precedence relations determine a partial ordering of the fir-

ings in the computation.

This partial ordering of firings must be mapped to a total ordering for any statically-

scheduled implementation. For SDF implemented in an RTL VHDL description, the

VHDL must obey the ordering of data dependencies in the original precedence graph, but

there is freedom in determining the exact timing in the implementation within the prece-

dence constraints. Because the precedence DAG can be executed in a topological order

that precludes deadlock, any implementation that conforms to this ordering will also be

non-deadlocking.

This also includes concurrent implementations where multiple firings are being com-

puted simultaneously. The main restriction is that no firing can proceed if its input data is

not yet available. This applies whether the inputs to a firing come from the same concur-

rent computation resource or from another one. This restriction means that for communi-

cation among the concurrent resources, either read operations on the communication

channels must be blocking, or control timing must be such that downstream firings only

proceed when valid data is known to be available. If the data required to compute a given

firing is not yet available, then the computation resource must halt until the data becomes

available.

179

In order to avoid introducing deadlock in the partitioning and sequencing of the paral-

lel computation resources, indirect precedence relationships must also be obeyed. As

shown in the example in Figure 3.12, firings that are not directly related by a precedence

relation, but that do have an indirect precedence relation by virtue of intervening firings,

must have that precedence preserved even when they are partitoned across multiple com-

putation resources. Otherwise, deadlock can be introduced into a non-deadlocking prece-

dence graph. The process of partitioning the graph in two can be thought of as dividing it

into three subsets. One subset consists of the subgraph of all nodes and edges in the origi-

nal graph that lie entirely on one side of the partitioning line. A second set is the subgraph

that lies entirely on the other side of the partitioning line. The third set consists of the

edges that are intersected by the partitioning line. In scheduling the computations for an

individual execution unit, using only the subgraph within the corresponding partition is

not sufficient to guarantee that indirect precedence relations are honored, and that dead-

lock is avoided, as the example shows.

One method to guarantee that indirect precedence relations are honored is to perform a

topological sorting of the full precedence DAG. This will ensure that any firing that has an

indirect dependency on another firing will occur later in the sorted order. After partition-

ing, the firings within one partition can be executed in the order of the sorting and no pre-

cedences will be violated. This is restrictive, however, since two firings with no direct or

indirect dependencies may end up having an artificial ordering in the topological sort. This

would imply a precedence relationship when there is none. Other, more computationally

expensive means of testing for indirect precedence relationships can be used, such as an

explicit enumeration of predecessors and successors of firings, so that firings can be cor-

rectly scheduled when the graph is partitioned.

By using the known partial ordering of firings, each partition of the simulation can

simulate forward in between reading data from its inputs. A partition only needs to halt

180

simulation and wait if the input data is not yet available. Since the graph is non-deadlock-

ing, there will always be at least one live, executing partition in simulation until the entire

simulation is completed. This is true even if the simulation within one partition is a timed

VHDL simulation, because the synchronization is guaranteed by the dataflow analysis. It

also holds for a partitioned VHDL simulation where all VHDL partitions have been

derived from a common SDF graph specification, and indirect precedence relationships

are once again maintained within partitions to avoid deadlock.

The strategy just described for a partitioned simulation of an SDF specification is

essentially what is described in [Lee89b] as a method of arriving at a self-timed (ST)

Figure 3.12 Obeying precedence relationships across partitionings. The
partitioned precedence DAG (a) and the resulting three subsets
of the original graph (b) along with a correct sequencing (c) and
an incorrect one causing deadlock (d).

A

C

B

Partition 2Partition 1

indirect
precedence

relation

C

Deadlock

Execution
Ordering

(a)

(d)

direct
precedence

relation

direct
precedence

relation

A

C

B

Subgraph 2Subgraph 1(b) Intersected
Edges

W1

R2

W2

R1

A

B

C

Correct

(c)

W1

R2

W2

R1

A

B

181

schedule for a multiprocessor DSP implementation. An adaptation of this scheduling strat-

egy for minimizing synchronization and communication arbitration costs was proposed in

[Lee90] and [Bier90]. A hardware architecture that implements this strategy, the Ordered

Memory Access (OMA) architecture, is described in [Sriram95]. This strategy was

adapted for use in simulating SDF graphs across arbitrary partitionings of heterogeneous

simulation and execution engines in [Pino96].

Following on the work presented in [Pino96], we have extended this approach to work

with partitioned simulation of VHDL code derived from an SDF graph specification. This

is presented in Figure 3.13 for the case of a 5-way partitioning of a perfect reconstruction

wavelet filterbank. Even though all five partitions are separate VHDL simulations, tight

synchronization among them is not required due to the guarantees provided by the looser

synchronization requirements of the SDF precedence relations. This approach has been

implemented in the VHDL domain in the Ptolemy environment.

Figure 3.13 An SDF perfect reconstruction wavelet filterbank partitioned for
VHDL simulation. The six hierarchical blocks (three for analysis
and three for synthesis) are mapped to five separate concurrent
VHDL simulation processes. The partitioning and coordination
are performed automatically by the target classes in Ptolemy.

VHDL-Sim 1

VHDL-Sim 2

VHDL-Sim 3

VHDL-Sim 4

VHDL-Sim 5

VHDL-Sim 1

182

If we use not just a simple topological ordering, but instead realistic estimates of the

simulation time of various firings, then we can adjust the partitioning to attempt to mini-

mize the iteration cycle time. This is less crucial in simulation environments than it is in

embedded systems implementations, but minimizing simulation time for large designs is

important in reducing simulation verification time. More complete test coverage can be

obtained in a fixed amount of time if each test simulation takes less time to perform.

3.3.4 Cosimulating Imported VHDL Models with Dataflow

In Section 3.3.3, we discussed cosimulation of VHDL and non-VHDL code that has

been generated from a partitioned SDF graph specification. Frequently, designers wish to

cosimulate VHDL code that was generated by some means other than from an SDF graph,

such as a hand-written model or VHDL code output from another design tool. By cosimu-

lating such models with a dataflow simulation, simulation verification can be performed

where often the dataflow portion is used to model an environment or a high-level specifi-

cation of an undesigned component (Figure 3.14).

There are two broad classes of interfaces to such imported VHDL models. These two

classes are asynchronous and synchronous interfaces. In the case of asynchronous inter-

Figure 3.14 Cosimulation of an imported VHDL model within an SDF simu-
lation environment. The data source, data visualization, trans-
mitter and channel environment are all modeled as SDF actors.
The receiver model, which is written in VHDL, is imported from
a third-party source or from the output of a design flow.

data transmitter channel receiver
source

data
visualiza-

tion

SDF SDF SDF VHDL SDF

1 1 11111 1

183

faces, cosimulation can operate similarly to what is done when cosimulating dataflow with

VHDL that is generated from a dataflow specification. The communication entity within

the VHDL simulator interfaces to the VHDL design through a set of handshaking signals.

On the dataflow simulation side, the communication entity interacts with processes out-

side the VHDL simulation through socket connections or some other appropriate buffering

structure (Figure 3.15).

In the case of cosimulation with VHDL models that have a synchronous interface, it is

necessary to know what the timing and protocol of that interface is. If the interface is

timed by some clock signal, then an additional I/O control entity is needed within the

VHDL simulation to handle the handshaking functions that would be performed by the

VHDL model itself in the asynchronous interface case. The I/O control module observes

the clock signal and actuates the handshaking signals with the communication entity at the

correct times according to the predefined timing protocol. The communication entity still

sees the same handshaking and data signals from inside the VHDL simulation, but now

the handshaking signals are exchanged with the I/O controller instead of with the main

Figure 3.15 Adapting an imported VHDL model with an asynchronous inter-
face to an SDF simulation, through a communication entity.

socket

socket

ack

send

data

ack

send

data

SDF
block

SDF
block

comm.
entity

comm.
entity

imported
VHDL
design

SDF simulation VHDL simulation

184

VHDL model. The dataflow communication side is the same, through buffered I/O such as

a socket interface (Figure 3.16).

In this way, the imported VHDL model is always provided with a suitable interface,

either asynchronous or synchronous, while the dataflow simulation always sees the inter-

face as an untimed, queued stream of data, which matches the SDF communication

semantics. One limitation is that since the interface of each imported VHDL model can be

slightly different, the communication interface must also be customized to fit the VHDL

model interface. Fortunately, since the VHDL models will be of the type that produce or

consume regular streams of data, to fit with the style appropriate for SDF modeling, such

Figure 3.16 Adapting an imported VHDL model with a synchronous inter-
face to an SDF simulation, through a communication entity. The
same communication entity can be used as for the asynchro-
nous case if the send and ack signals are provided by an addi-
tional I/O control entity synchronized to the clock.

socket

socket

data

data

SDF
block

SDF
block

comm.
entity

comm.
entity

imported
VHDL
design

SDF simulation VHDL simulation

I/O ctl

I/O ctl

clk

acksend

acksend

185

interfaces will be tend to be of the simpler variety. These interfaces can be categorized into

a smaller number of classes where much of the details can be parameterized, and so it will

not be necessary to hand-code the interface every time. For more advanced interfaces,

interface logic can be specified using signal transition graphs or event graphs for the asyn-

chronous case, and modified control-dataflow graphs for behavioral synthesis. From these

and other graph forms, interfaces can be synthesized automatically [Sun92]

[vanBerkel92].

3.3.5 General System-Level Cosimulation

Since different system components can be derived from a variety of sources, simula-

tion of the integrated system often involves linking together models whose semantics do

not match. If the semantics do all match, as in the case of heterogeneous implementations

of SDF specifications, then this fact can help to simplify the cosimulation effort. If not,

then there is a need for a connective simulation fabric that has semantics that are compati-

ble with all of the heterogeneous models of interest. We also would like to use a semantics

that has a notion of time, since we plan to model real systems and we want to be able to

include components with time-dependent behavior, in general. Untimed models can be

mapped to timed behaviors, and this mapping is often necessary for real implementations

of untimed specifications where the implementation has deterministic timing. Continuous-

time models are computationally expensive and are not appropriate for digital hardware

and software systems and semantic models that make instantaneous transitions. The

broadest, most inclusive timed semantics for general transition system simulation short of

continuous-time models is discrete-event simulation.

The VHDL language provides expressiveness for full discrete-event semantics. As a

result, it can be convenient to use VHDL as a general simulation platform for both VHDL

models generated from SDF and other, more restricted semantics, as well as general

186

VHDL models imported from other tools and designers. With existing capabilities of

cosimulation of VHDL from SDF with other SDF-derived implementations, as described

in Section 3.3.3, and the methods described in Section 3.3.4 for interfacing non-SDF

VHDL models with dataflow simulation, general cosimulation capabilities are possible.

These have not been fully implemented in Ptolemy, but the likely starting point would be

with the VHDLB domain, which supports the specification of designs with general VHDL

semantics.

Related efforts to construct simulation backplanes have been made in both research

and in commercial products. Backplanes, borrowing a term from computing systems

where printed circuit boards plug into bus backplanes, provide a software framework for

integrating multiple simulation engines. One motivation for the creation of backplanes is

so that VHDL simulators from multiple vendors can be operated together in a single envi-

ronment. A similar motivation is to enable both VHDL and Verilog simulators to simulate

different parts of a system, since both languages remain popular and many legacy models

exist, but translations between the two languages are nontrivial. An increasingly common

motivation for creating simulation backplanes is to allow mixed simulation with both ana-

log and digital simulation engines. This aids the validation of mixed-signal systems in a

unified framework.

Research-based backplane designs have been in support of both mixed-signal systems

and efficient simulation of systems at mixed levels of abstraction, including the circuit,

switch, gate, register-transfer, and behavioral levels [Zwolinski95] [Saleh96] [Todesco96].

Other efforts have focused on efficient concurrent cosimulation of both open-loop and

closed-loop control [Schmerler95a] [Schmerler95b]. Commercial products include Sim-

Bus from Viewlogic (now Synopsys) [Goering93], OpenSim and Analog Workbench from

Cadence Design Systems [Donlin93], and SimMatrix and SimPrism from Precedence.

Vertue, from Synopsys, is based on the SimMatrix backplane and allows cosimulation of

187

Verilog with circuit-level simulators for timing and power analysis. Mentor Graphics,

which owns Precedence, has recently decided to disband the unit and to discontinue the

SimMatrix backplane [Santarini98a].

Simulation backplanes, while allowing the mixing of disparate, often separately-devel-

oped, simulation engines with disparate semantics, have disadvantages as an approach to

mixed system simulation. One is the need to define a common denominator model that all

participating simulators are compatible with. Another is creating a software infrastructure

that has all the relevant features of the individual simulation interfaces. Extending the

backplane interface or modifying a simulator interface when adding a new simulator to the

backplane can be difficult software engineering tasks. Other difficulties arise with the need

for very tight synchronization among multiple timed models, especially when both analog

and digital systems are being cosimulated. This tight synchronization is a limits the con-

currency and makes it difficult to obtain efficient simulation performance [Zwolinski95].

A different approach to the system-level specification and simulation problem is the

creation of new languages and new semantics for interaction among existing languages

and systems for specification, simulation, and synthesis. The EDA Industry Council’s

Project Technical Advisory Board began an effort in 1996 to define a system-level descrip-

tion language (SLDL) which would overcome the current limitations of standard lan-

guages such as VHDL and Verilog. SLDL was at first envisioned as a common

replacement for VHDL and Verilog, or as a set of extensions to those languages for large

system specifications [Goering97b]. More recent notions of SLDL would define it as a

meta-language above VHDL, Verilog, and other languages and models, coordinating their

interactions at a high level [Goering97c]. Other features of SLDL that are being discussed

include the ability to describe hardware, software, and mechanical systems, to convey for-

mal constraints and properties, and to define time in mixed, abstracted terms [SLDL97].

188

3.4 Interfacing VHDL Simulators to Other Processes

In Section 3.3 we discussed the issues involved in synchronizing distributed simula-

tions. That discussion covered both partitioned VHDL simulations and cosimulations of

SDF mapped to both VHDL and other execution engines. In this section we describe the

mechanisms available within the VHDL language for interfacing to other languages and

implementations, and how the necessary synchronization can be implemented by using

these available mechanisms.

3.4.1 Origins of the VHDL Foreign Interface

The first VHDL language standard of 1987 [IEEE88] did not provide a specification

for interfaces to foreign languages and programs. This was partly because VHDL was

originally seen as a “complete” language for modeling hardware, and the need was not

obvious to the original framers of the language to include such an interface. Users of

VHDL found that they wished to perform mixed simulations where the VHDL simulator

was a part of an overall system simulation or where hardware and environment models

written in other languages such as C could be used, with minimal modification, within a

VHDL simulation. Several vendors of VHDL simulators provided their own foreign lan-

guage interfaces on an ad-hoc basis, but when the second revision of the language stan-

dard was written in 1993 [IEEE94], a standard foreign language interface was included.

3.4.2 Foreign Architectures and Foreign Subprograms

According to the ANSI/IEEE Standard 1076-1993 of VHDL, two means of interfaces

to VHDL are permitted. The first is foreign architectures coded in other languages, and the

second is foreign subprograms coded in other languages. Whileentitiesin VHDL specify

the interfaceto blocks,architecturesspecify theimplementationof blocks. Multiple archi-

tectures may be used for a single entity defined in VHDL. This is so that multiple, alterna-

189

tive implementations that share a common interface can be used in place of a given block,

which allows for many models and levels of abstraction to be used. For example, a simple

high-level behavioral model can be used in one architecture for efficient simulation. Alter-

natively, a complicated hierarchical architecture with its own sub-entities and structure can

be used in order to allow detailed simulation at a level closer to actual hardware, as shown

in Figure 3.17.

With foreign language architectures, a language such as C may be used to execute the

internal behavior of an entity, while maintaining the same interface to the rest of the simu-

lation through VHDL ports and signals.

Figure 3.17 Multiple VHDL architectures may be used for the same entity in
different VHDL simulation runs. In this system design example,
there is a choice of a cycle-accurate or a gate-level VHDL archi-
tecture.

cycle-accurate
architecture

model

gate-level
architecture

model

DSP
processor

entity

RAM
module
entity

FPGA
device
entity

190

With the second type of foreign language interface to VHDL, foreign subprograms, a

subprogram call within a block of sequential VHDL statements can be a call to a routine

written in another language, instead of a call to a VHDL subprogram. Arguments can be

passed to, and values returned from, routines that are included in the simulation. This is

convenient where special library functions or procedures are available in languages such

as C but are not a part of the standard VHDL language, or where more efficient implemen-

tations are possible for algorithms written in C and compiled to efficient object code.

The two types of foreign language interfaces are fundamentally different in their syn-

chronization properties. With foreign subprograms, the sequencing of calls to the foreign

language interface can be made explicit in the code by the ordering of the statements in a

block of sequential VHDL statements. Where the ordering of communication transactions

between simulators is necessary for proper synchronization, calls to foreign subprograms

embedded within a series of sequential statements provide a means of guaranteeing the

synchronization order on the VHDL side.

In the case of foreign architectures, the foreign language interface is the set of signals

and ports leading into and out of a foreign entity. These signals can be active at any time

during the simulation and in any order with respect to the other entities in the simulation.

Because the semantics of signals in VHDL are unconstrained in their timing, synchroniz-

ing communication between a VHDL simulation partition and other simulation partitions

is more difficult when using foreign architectures than when using the manifest control

sequencing of foreign subprogram calls within sequential statements. Fortunately, the

needed synchronization can still be obtained, but with some additional effort and a slightly

more complicated VHDL design specification.

191

3.4.3 Using Foreign Architectures as a Cosimulation Interface

When foreign architectures are used in VHDL simulation, at the outer level of simula-

tion, the design appears to be a group of VHDL entities that are connected through their

ports to signals over which events are communicated. Underlying each of these entities is

an architecture specified for the simulation. One or more of these architectures may be a

foreign architecture coded in a language other than VHDL, usually C. In the case of the

Synopsys VHDL System Simulator (VSS) [Synopsys95], a C-Language Interface (CLI) is

provided. This allows the use of foreign architectures coded in C. The designer is required

to provide a set of four functions written in C to support a single foreign architecture.

These four include a function for initialization, a function for executing the body of the

architecture during each process activation, an error-handling function, and a function for

wrapping up at the end of simulation. The CLI interface provides a set of routines that can

be called from within these four functions. These support routines provide functionality

for reading values from input ports, writing values to output ports, and for establishing

timing of inputs, outputs, and rescheduling the foreign architecture for later execution.

In order to use foreign architectures coded in C, VSS provides a means of linking in

the object code compiled from the C source that defines the four routines for each foreign

architecture. Once these have been linked into the simulator, the foreign architecture can

be instantiated in any design that runs on that simulator. The simulator, along with the

linked-in code, runs as a single process on the operating system of the computing plat-

form. Within the linked-in routines written in C, arbitrary C code can be included, which

opens the possibility of communication outside the VHDL simulation process. In our case,

calls to UNIX socket routines permit inter-process communication between the VHDL

simulator and other processes running on the operating system.

When generating distributed simulations from SDF specifications, communication

events can be determined at compile time. As a result, it can be shown that preserving the

192

order of communications (send or receive) within any execution engine relative to the

original precedence graph is sufficient to guarantee that correct synchronization is pre-

served. That ordering can be guaranteed in a number of ways on the VHDL side. One is by

generating all function code within a single sequential process, and then transferring con-

trol to send and receive entities within the VHDL simulation whenever communication

needs to take place. These entities can process communication actions asynchronously rel-

ative to the other simulation engines, and return control to the main VHDL function code

when a communication action completes. Another way to enforce the correct ordering of

communication is to generate a controller that actuates the send and receive entities within

the VHDL simulation in the correct order. The functional blocks within the VHDL simu-

lation then will not need to be in sequential code, but can be in distributed entities simulat-

ing concurrently, as long as the controller preserves the communication sequence.

3.5 The Simulation Design Flow

For our implementation of the simulation design flow, we were interested in two main

modes of use for simulation. The first is in standalone simulation of generated designs,

and the second is in cosimulation. The software architecture of the simulation flow in the

VHDL domain within Ptolemy supports both modes, and is described in Chapter 5. Here

we describe the general structure of the simulation flow.

The overall simulation flow is shown in Figure 3.18.The first step is always the cre-

ation of the SDF graph specification with functionality defined in SDF actors and the set-

ting of the SDF parameters that determine the numbers of tokens produced and consumed

on each port of each actor. This specification can be simulated and refined by itself in pure

SDF simulation until the structure and parameters of the algorithm are sufficiently defined

to allow continuing with the rest of the simulation flow. When the SDF graph is finalized,

193

the next step is to determine a valid schedule for the SDF graph for purposes of generating

the simulation code. The same scheduler that is used in SDF simulation is also used in the

simulation flow.

The next decision in the simulation flow is the selection of the style of code that is to

be generated. The options supported are sequential code generation and structural code

generation. Sequential code generation creates a single VHDL process where SDF firing

functions communicate through VHDL variables. Structural code generation refers to the

code that is generated from the hardware synthesis flow, where firings are mapped to sepa-

rate entities or in groups, and entities communicate through VHDL signals. The main dif-

Figure 3.18 The simulation design flow.

SDF Graph

SDF Graph
Algorithm

Design

Standalone
Simulation

VHDL
Code

SDF Graph
Simulation

Partitioned
VHDL

Mixed Code
Subsystem

Simulation

Cosimulation

Choice of
Sequential or

Structural

Cosimulation

MTI

LeapFrog

VSS

VSS

194

ference between these two classes of code styles is that the sequential code simulates

faster due to the avoidance of VHDL signals and the accompanying scheduling overhead

they require. The value of such a simulation is that the functionality of the VHDL code-

blocks can still be checked even though a simplified form of communication is being used

in the form of VHDL variables.

For sequential code generation, an option is supported to choose from three commer-

cial VHDL simulation tools. These are VSS from Synopsys, LeapFrog from Cadence, and

the VHDL simulator from Model Technology. Each of these tools has its own set of fea-

tures and simulation tracing capabilities that may be of interest to various users, who may

also have their own preferred simulation engine. Other simulation engines can be incorpo-

rated into our flow for standalone simulation with a modest effort, since the invocation of

standalone simulation is relatively simple on a UNIX platform. Within standalone simula-

tion we can also specify signal sources to be used as inputs, which will be generated as a

part of the VHDL code, as well as paths for logging output values and plotting them using

the Ptplot signal plotter within Ptolemy.

Cosimulation of VHDL is supported in two modes. The first is in cosimulation of

VHDL subsystems with other subsystems generated from common SDF graph specifica-

tions. The second is in partitioned simulation where multiple VHDL subsystems are

cosimulated together on multiple VHDL simulation processes. Both of these applications

of VHDL cosimulation are described in Section 3.3.3. In order to accomplish this form of

cosimulation, a more open interface to the VHDL simulation engine is necessary, and it

must be programmed to add the necessary sequencing and synchronization. For these rea-

sons, we have only supported the Synopsys VSS simulator for cosimulation, since a C-lan-

guage interface is provided with this tool. Other VHDL simulation tools also support

similar interfacing, and with a sizable effort, could be incorporated into our design flow in

195

the future. The approach we took to interfacing the VSS simulator is described in Section

3.4.3.

3.6 Summary

We have explored the simulation semantics of VHDL and how they can be applied to

cosimulation with other models of computation. VHDL is applicable to specification, sim-

ulation, and synthesis at multiple levels of design, but often mixtures of VHDL specifica-

tion with other forms of specification are required. We have presented the simulation

synchronization problem, and various approaches to maintaining synchronization in both

distributed VHDL simulation and mixed VHDL / non-VHDL simulation. This latter form

is particularly useful for the cosimulation of mixed implementations of SDF specifica-

tions. The use of the VHDL System Simulator from Synopsys and the accompanying C-

Language Interface for mixed simulation have been described. Cosimulation is one means

of validating designs after they have been partitioned and partially synthesized, and can

yield useful information about design metrics of interest. Even before synthesis takes

place, useful design quality information can be generated and represented to the designer

through the use of interactive design tools. These tools and their application to the design

of parallel hardware implementations are the subject of the next chapter.

196

4

Interactive Design Tools

As methodologies for the design of embedded electronic systems continue to evolve

toward higher levels of abstraction, design tools must continue to adapt to increased

expectations of their capabilities and new possibilities for their use. The continuing

progress in speed and features in graphical user interfaces is raising the level of expecta-

tion for the responsiveness and flexibility of graphical design tools. Design activities at

higher levels of abstraction open many possibilities for design exploration, making non-

interactive batch operation of tools less appropriate. In addition, the designer or design

team manager who is skeptical of a new design methodology has an ever-increasing desire

for an understanding of the internals of the methodology as well as for the ability to have

fine control over the methodology.

In the sections that follow, we describe elements of interactive design visualization and

how they can be applied to the improvement of the design process. In Section 4.1 we

describe the Object-Action Interface Model as a way of describing an interactive design

tool at both the task and interface levels. In Section 4.2 we describe a set of properties that

we desire in an interactive visual design tool for hardware synthesis from dataflow graphs.

Following that, in Section 4.3 we elaborate on some of the benefits that such a design tool

can potentially bring. In Section 4.4 we present the design of TkSched, the interactive tool

197

that is used within Ptolemy during the hardware synthesis design process. Following that,

in Section 4.5 we describe some areas of future extensions to interactive tool design, fol-

lowed by a summary in Section 4.6.

4.1 The OAI Model

In a complex undertaking such as creating interactive tools for electronic design auto-

mation, it is helpful to manage and understand the complexity by categorizing the ele-

ments of the problem and the proposed solution in a taxonomy. By bringing in a logical

structure and defining some additional terms, we have a framework and a way of naming

the parts of the problem that makes the discussion clearer. For general problems of human-

computer interaction (HCI), Shneiderman defines an Object-Action Interface Model (OAI

Model) that provides a formal way of describing the problem and solution and how they

relate to one another [Schneiderman97]. In this section we describe the motivations

behind the OAI model, and then describe the model itself and some of its consequences.

4.1.1 The Interface versus the Task

In some discussions of user interfaces, the tendency may be to talk about the elements

of the user interface, such as the icons and symbols presented on the display, and how they

are applied as though they are entirely the same as the elements of the problem being

solved. This can be misleading and confusing, and fails to recognize that the user interface

and the problem domain are separate things. It may also constrain designers’ thinking by

guiding them to begin designing a user interface before the problem domain is properly

understood. This is not unexpected, as a user interface designer will seek to relate familiar

user interface elements to an unfamiliar task in order to understand the task, but it does not

necessarily lead to good understanding of the task or to a good user interface design. Fred

Brooks notes that it is critically important for computer scientists who wish to develop

198

tools to serve in other disciplines such as chemistry, physics, medicine, architecture, and

engineering to first take time to study the “using disciplines” before rushing to construct a

solution to a problem that is yet to be properly appreciated [Brooks96].

4.1.2 Objects versus Actions

In any useful system for doing work or describing how work is done, we can roughly

divide the discussion into two complementary sets, which are theobjectsof interest and

the actions that are performed. For construction, cooking, office systems, or electronic

design, we can speak of tools and materials, utensils and ingredients, documents and data,

or schematics and libraries as the objects of interest. Broad categories of actions are then

identifiable as homebuilding, baking, publishing, or synthesis. Programmers have long

realized the distinction between programs and data, even when data structures and proce-

dures appear within the same block of code, or when code becomes data, as in the area of

compilers. Object-oriented programming (OOP) has shifted the emphasis to objects more

than was formerly the case with strictly procedural programming styles, which emphasize

actions. In procedural programming, the system is described as procedures and data struc-

tures. In OOP, the system is described as objects and methods. In designing a user inter-

face to a system, we want to help the user to refer to objects and to invoke actions. Objects

may be individual or collective, and actions may be single steps or entire activities. The

user interface should present both objects and actions in an understandable and controlla-

ble way.

4.1.3 Elements of the OAI Model

The OAI model [Schneiderman97] is a hierarchy that includes both the task and the

interface (Figure 4.1). The top level includes two sub-hierarchies, one for the task and one

for the interface. Each of these two branches contains paired hierarchies of objects and

199

actions. The goal of the interface designer is to understand the task objects and actions,

and to define and limit the scope of task objects and actions that will be observable and

controllable from the interface. The interface design involves constructing interface

objects and actions that can be used to access the task objects and to accomplish the task

actions.

To manage complexity, the task objects, task actions, interface objects, and interface

actions are all represented as hierarchies. In Figure 4.1, the hierarchy for the task encom-

passes the entire universe at the top level down to individual atoms at the bottom level. For

a city planning task, the hierarchy might divide a city into wards or districts, then zones,

then city blocks and down to individual buildings. A different set of goals might have the

hierarchy be decomposed into separate subsystems of roadways, gas and electric lines,

Figure 4.1 The OAI Model, from [Shneiderman97].

universe

atoms steps

intentionuniverseuniverse planmetaphor

clickspixels

Objects Actions

InterfaceTask

ActionsObjects

200

sanitary and storm sewers, phone and cable networks, and so on. For electronic design

automation (EDA), the task objects can include multiple sub-hierarchies, including a set of

alternative specifications, an implementation architecture, and a database of library com-

ponents. An individual specification may be program code with sub-entities, procedures,

or objects, or it might be a graph structure such as a dataflow graph with hierarchical

nodes and internal code within the leaf nodes. The architecture has a connected structure

of blocks, with each block containing other blocks, and each lowest-level block consisting

of logic gates, transistor netlists, and layout polygons. A library of components can be

organized by technology type, vendor source, functional classification, and so on.

The task action hierarchy strives to put a structure on a set of activities. An overall

intention is at the top level, and individual steps that can be applied to achieve that inten-

tion are at the bottom level. In EDA, for the intention of behavioral synthesis, some high

level sub-steps are behavioral programming, simulation and debugging, control-dataflow

schematic graph capture, high-level estimation, scheduling, allocation, binding, RTL code

generation, and then RTL synthesis. Each of these high-level sub-steps has its own sets of

procedures and algorithms, which can be resolved down to individual program or algorith-

mic steps. Not all of these smaller sub-steps should be exposed in the interface.

The interface object and action hierarchies will be planned according to which objects

and actions will be controllable and observable from the interface, through appropriate

analogies, either textual or graphical (Figure 4.2). The interface design will be driven by

the task structure and goals, but it will also be constrained by the tools and knowledge

available to the interface designer. The interface will likely be a good match to the task if

the task is first understood, and the relationships between the task and interface are firmly

established before coding begins. Even with this understanding, the interface design can

be significantly shaped by the tools and techniques applied to designing the interface. The

interface will have a different structure and may have a different feature set if it must be

201

constructed using a command-line interpreter style, as compared to an interface built up

from a standard library of graphical widgets for buttons, menus, textboxes, and so on.

4.1.4 Direct Manipulation and The Disappearance of Syntax

Shneiderman refers to a trend through the history of computers that has tended toward

thedisappearance of syntax. The first interactive interfaces involved keyboard commands

with specialized syntax that varied from application to application and machine to

machine. Right up to the present day, many tools still support, if not require, the use of

control characters, escape sequences, and function keys for some features, with an accom-

panying learning curve barrier and extra memorization load. Fortunately, with graphical

interfaces these platform-specific key sequences are more likely to be one alternative

mechanism among others, instead of the only way to achieve the desired results, but they

Figure 4.2 Another view of the OAI model. The interface designer must
understand the principal task-level objects and actions, and
then create analogous interface-level objects and actions.

Task

analogy

Interface

Actions

User

System

Objects

202

are still a source of confusion and sometimes inconsistencies among tools and platforms.

They are not easily learned except through rote memorization or repeated trials, and they

are not easily retained over time by most users with anything less than frequent use.

Interface styles that are supported within graphical environments provide the ability to

create interface objects and actions that match more closely the user’s understanding of

the task-level objects and actions. This is possible through the use of icons to pictorially

represent items or tools to be applied to items. It is also helped through the use of spatial

relationships to present sets of objects or sequence flows of actions. These kinds of repre-

sentations are not possible through command-line interfaces, and may be possible through

ASCII screen displays, but only at low resolution. When objects and actions are presented

visually to the user, the need for memorizing arcane or infrequently-used syntax is obvi-

ated. This is not to say that syntax goes away, because even in visual representations there

is still a strong need for a syntax that is unambiguous, understandable, and easily retained.

Menus, buttons, and entry boxes also aid in providing obvious relationships between inter-

face-level and task-level objects and actions. These components are finding common use

and are being applied with common syntax in interface-building toolkits, and in both com-

mercial and freely distributable software.

When there is a closer match between interface-level objects and actions and the

underlying task-level objects and actions that they represent, the user is presented with the

capability ofdirect manipulationof the items of interest through on-screen proxies pre-

sented in the interface. Direct manipulation is discussed in greater detail in the following

section, which also describes several other desired aspects of interactive design tools.

203

4.2 Desired Properties of Interactive Design Tools

The movement toward higher levels of abstraction in design is directed at bringing

electronic system design up to the levels at which algorithm and system designers think

about problems. With the increase in abstraction, there are also opportunities for bringing

forth new ways of looking at design problems, as well as making enhancements to more

traditional design visualization methods. In each of the subsections that follow, we exam-

ine some of the most essential properties that we seek for design tools to embody.

4.2.1 Visual Representations

Ben Schneiderman, in discussing information visualization, summarizes the powerful

human abilities that visual display and interaction makes use of [Shneiderman97, Ch.15]:

The attraction of visual displays, when compared to textual displays, is

that they make use of the remarkable human perceptual ability for visual

information. Within visual displays, there are opportunities for showing

relationships by proximity, by containment, by connected lines, or by color

coding. Highlighting techniques (for example, boldface text or brightening,

inverse video, blinking, underscoring, or boxing) can be used to draw atten-

tion to certain items in a field of thousands of items. Pointing to a visual

display can allow rapid selection, and feedback is apparent. The eye, the

hand, and the mind seem to work smoothly and rapidly as users perform

actions on visual displays.

The foremost property of interactive design tools that makes them relevant is their

visual nature. Problems that are suited to being solved through interactive design are by

their nature not best approached by completely automated means. Problems with auto-

204

mated solutions can be worked on behind the scenes, although visualization can be

employed to display the progress of an automated algorithm to the user, as well as to dis-

play the algorithmic results. In many cases the designer works within a space that is

defined by a problem domain, some inputs or constraints from which to begin, and a range

of techniques or procedures that are applied to the design data at each stage to add to the

data, refine it, or transform it through a series of steps. These steps can be conceptually

simple, but may require many detailed steps to be executed. The designer might be able to

work them out with pencil and paper on her own, but the strengths of a digital computing

platform can facilitate this process by managing the large volume of design information.

The design data may be input and output in various forms, such as binary data or text

files. The commands used to effect steps in the design process may have a specific syntax

in text or through mouse movements and button presses. The bottleneck, however, comes

with the desire to receive frequent and detailed feedback on the progress of the design pro-

cess throughout the sequence of design steps, and channels such as text, speech, and audio

are inherently serial in nature. Tactile interfaces with haptic or force feedback are a prom-

ising area of research, but are not yet at a practical stage of development for widespread

use. For many design tasks they may be natural and intuitive as pointing devices, but too

limited in their precision and information bandwidth. Some forms of visualization are

grouped by dimensionality in Table 4.1.

Visual displays of information have advantages in both input and in output. For input,

designers have the ability to randomly access, or jump to, any point in the display. In out-

put, visual displays have a much higher bandwidth of useful information than what is pos-

sible with serial sensory channels. This allows a greater volume of information to be

displayed concurrently, as well as the ability to relate more detailed information rapidly.

Multivariate relationships can be illustrated in two- and three-dimensional displays, giving

insight into interdependencies of design parameters. However, even though a great deal of

205

information can be conveyed rapidly in a visual display, that does not mean that the user

should be inundated with the full bandwidth that is available through the display. An

improved understanding and productivity is possible if an appropriate density and rate of

change in information is shown to the user, and if the user can adjust the tool to adapt to

higher density and speed of information as the skill level improves with use.

Often, the first design tools deployed in support of a given design activity will mimic

the conventional diagrams and views that designers were accustomed to before the tool

came into use. This eases acceptance of new design tools, but it does not necessarily

change the way engineers look at the activity of design. Standard forms of information

that are captured in design tools include system schematics, circuit diagrams, flow dia-

grams, code listings, and Gantt charts/reservation tables for scheduling. Often these views

are static and are for display purposes only, but they may have some additional set of capa-

bilities for selecting portions of the design information for further inquiry, for zooming in

on a particular section, for looking at parameters and attributes, and for inspecting hierar-

chy. Schneiderman [Schneiderman97] lists seven major tasks in data visualization, which

include those just mentioned. These are summarized in Table 4.2.

Table 4.1.Some visualizations of design data in one or more dimensions.

Dimensionality Examples

1D, serial program code, mathematical equations,
descriptive text, audio signal

2D, planar circuit schematic, block diagram,
two-axis data graph, Gantt chart, planar projection of

a physical model

3D, spatial time evolution of a 2D system, three-axis data graph,
physical model

4+D, hyperspatial time evolution of a 3D system, rotating physical
model, function of three or more variables

206

Once these conventional views are mastered, there are opportunities for expanding the

types of views available beyond familiar diagrams. The possibility exists of exploring

forms of visualization that have not been common previously. One example of this is mov-

ing from two-dimensional to three-dimensional representations of designs and data. The

rendering of such views is more challenging, as is the immediate understanding of them

by new users. However, software to assist in displaying three-dimensional images on a

two-dimensional screen is more widely available now, and users of computers are more

accustomed to seeing sophisticated visuals with unconventional views. The VRML lan-

guage has become an accepted standard for the interchange of descriptions of three-

dimensional objects and data [Broll96], and a range of viewers and other software tools

for creating, managing, and viewing VRML data have become available [SDSC97]. With

3D rendering comes the possibility for views not previously explored, such as 3D rotation

of designs, and translation through space in both the physical design space and the abstract

design space of area, timing, and power. Complex visuals can be burdensome to the

designer as well, however, so the tendency to use more sophisticated visuals must be bal-

Table 4.2. Seven major data visualization tasks, from [Schneiderman97].

Task Description

Overview Gain an overview of the entire collection.

Zoom Zoom in on items of interest.

Filter Filter out uninteresting items.

Details-on-demand Select an item or group and get details when needed.

Relate View relationships among items.

History Keep a history of actions to support undo, replay,
and progressive refinement.

Extract Allow extraction of subcollections and of the query
parameters.

207

anced against the need to keep representations clean and well-defined for ease of under-

standing.

Dynamism is also a part of conveying more information in a visual representation.

Adding a temporal dimension to displays can show the designer how properties of interest

evolve over time, and can simplify a display in comparison to the alternative of simply

adding another spatial dimension to represent time. What may be lost is the ability to see

the data at all times of its evolution simultaneously, as is possible in a static display with a

time axis, but not in a sequentially evolving dynamic display.

4.2.2 Graphical Data Structures

Interactive design tools should be graphical, not simply in the sense of computer

graphics, but in the graph data structure sense of the term. A graph can represent objects

that are associated with an arbitrary number of other objects, but there are several special-

izations that are of interest, such as hierarchical trees and directed acyclic graphs, among

others. Graphs of objects and their direct associations with one another are common in the

underlying data structures and algorithms of hardware and software design, at many levels

of abstraction. These include transistor netlists, gate-level netlists, register-level schemat-

ics, architecture and system block diagrams, control-dataflow graphs, precedence graphs,

and UML diagrams showing object-oriented software inheritance and associations (Figure

4.3).

Graphs show the objects of interest and their relationships with one another. Such

many-to-many relationships cannot be shown effectively with purely sequential code or

diagrams. Interactive design tools should be adept at graph visualization and manipula-

tion. Ideally, the user of such a tool would be able to construct and manipulate graphs and

the objects they contain as easily as arranging physical objects on a workbench.

208

Figure 4.3 Visualizations of graphical data structures used in hardware
and software design. (a) Synchronous dataflow graph (b) Regis-
ter-transfer level schematic (c) Logic gate-level schematic.

(a)

(b)

(c)

209

4.2.3 Interactivity

Of course, interactive design tools should be interactive by definition. More specifi-

cally, they should strive for a high level of interactivity where appropriate. Being highly

interactive means bringing closer together the actions by the designer and their conse-

quences, both in the reaction time of the design tool and in the form of the reaction so that

consequences are as obvious as possible. The design process is hindered when the

designer is required to go through a lengthy process to effect change, or when the designer

must interpret consequences through a text-based interaction.

Design is also hindered when designers are not provided with access or “handles” to

the abstract objects that they wish to manipulate. In the early 1980s, examples of computer

systems emerged in several application areas that had user interfaces that fostered rapid

learning and mastery of those systems as well as retention over time [Shneiderman83].

Systems like these are characterized by three principles:

1. Continuous representation of the objects and actions of interest with meaningful visual

metaphors.

2. Physical actions or presses of labeled buttons, instead of complex syntax.

3. Rapid incremental reversible operations whose effect on the object of interest is visible

immediately.

These principles can be summarized by the termdirect manipulationbecause the

objects and actions of interest are visible, and the interaction is with the visual metaphors

themselves, and not through some other command line or menu interface, although these

other interfaces may certainly be supported. Among the beneficial attributes of these sys-

tems as observed by Shneiderman are:

• Novices can learn basic functionality quickly, usually through a demonstration by a

more experienced user.

210

• Experts can work rapidly to carry out a wide range of tasks, even defining new func-

tions and features.

• Knowledgeable intermittent users can retain operational concepts.

• Error messages are rarely needed.

• Users can immediately see whether their actions are furthering their goals, and, if the

actions are counterproductive, they can simply change the direction of their activity.

• Users experience less anxiety because the system is comprehensible and because

actions can be reversed easily.

• Users gain confidence and mastery because they are the initiators of action, they feel in

control, and they can predict the system responses.

When the interface supports direct manipulation of task objects and actions through

analogous interface objects and actions, layers of excess syntax are removed, allowing the

designer to focus on the problem instead of on the menu commands and key sequences

that are required to achieve a desired outcome. The design tool becomes more transparent,

as the metaphor presented to the user matches closely their concept of the problem domain

at the task level. In the OAI model, as discussed in Section 4.1, this occurs when the inter-

face-level objects and actions are closely matched with the relevant task-level objects and

actions, and when the syntax knowledge required just to use the interface is minimized.

The design process is a mixture of thought and action from the point of view of the

designer. The goal of the interface design should be to minimize that part of the cognitive

load on the designer that does not directly relate to design issues. Slow or confusing inter-

faces require more of the designer in terms of focusing on action to interact with the tool

in the right way or waiting for the tool to react. This makes the tool the bottleneck in the

design process, rather than enabling the designer to think and act as freely as possible, and

to effect their changes and observe the consequences rapidly.

211

Along with this goal of interactive tools must be the realization that designers’ habits

and abilities change over time as they become accustomed to the use of a design tool and

learn more about it. One of the first principles observed by Hansen in performing user

engineering for interactive systems is to know the user [Hansen71]. This means knowl-

edge of the range of users in terms of their abilities, experience, education, and expecta-

tions of the interactive system being designed for use. An important part of knowing the

users’ characteristics is that they are not singular, but cover a range in most cases, particu-

larly as users move from their first-time use of an interactive system through to being users

with some knowledge and experience and on to becoming expert frequent users.

Because of this, multiple modes of interaction should be provided. In the early stages

of tool use, a designer may want to learn at a fine level of interaction. Alternatively, new

users may wish to learn at a comprehensive level of interaction, having many parameters

use defaults, without worrying about controlling fine details until their level of sophistica-

tion increases. Advanced users may want to encode frequently used procedures or com-

mand sequences in scripts, or they may wish to use command accelerators, which increase

productivity once designers are more sure of the actions they wish to take.

Some experienced users will find that command-line interfaces with powerful macros

and abbreviations for frequently used commands will be more productive than an all-

graphical approach. There is also a training and self-documenting advantage to having

some redundancy and repetition among commands issued through command-line, menu,

and pointing-device interfaces. Users who master one style of interface will find it easier

to migrate to other styles if many of the same commands are supported, and experienced

users can select their preference of interface for each of their task actions depending on the

needs of each situation.

Another motivation for continuing to provide a diversity of interaction styles is that not

every task is suitable for direct manipulation. For a design containing a number of compo-

212

nents, some design task actions will be suitable for a direct-manipulation interface when

the number of components is small, but unsuitable when that number becomes sufficiently

large. If the tool is intended to be used for both large and small designs, then it may be

necessary to support both styles. Even for large designs, advanced users may find that they

can achieve the bulk of their design intentions through an indirect interface, but that for the

final adjustments or fine-tuning and experimentation, a direct manipulation style is more

comfortable and better suited to exploration and learning.

EDA tasks such as scheduling or coarse layout, for example, can be performed using

commands to invoke heuristic algorithms that operate on a set of task-level objects.

Adjustments to the resulting schedule or fine-scale placement can subsequently occur

through the use of direct manipulation on a select number of task-level objects. Requiring

the user to perform the entire task action with the heuristic may prevent them from achiev-

ing satisfactory results, while the alternative of only allowing direct manipulation is likely

to make the task action exceedingly tedious. Providing both styles of interface is a closer

match to the two variations of the task that are both essential for satisfactory design.

4.2.4 Multiple Views

Designers are often confronted with multiple, sometimes conflicting, design goals.

Progress on each of these goals may be of interest to the designer throughout the design

process. However, combining information about multiple design goals into a single view

can lead to views that are cluttered with dense information. In the domain of software

architecture design, Rumbaugh [Rumbaugh96] notes that there is a tension between show-

ing all relevant details and keeping displays of information understandable, so that leaving

some information hidden and showing different aspects of designs in separate views is an

inherent part of the Object Modeling Technique (OMT) [Rumbaugh97]. In the area of

behavioral synthesis, the Interactive Synthesis Environment (ISE) from U.C. Irvine

213

[Gajski96] presents the designer with views at the behavioral, structural, and physical lev-

els. At each of these levels there is a set of quality metrics and tasks that can be performed

manually or automatically.

Informally, the idea of succinct specification is captured by a quotation attributable to

Mark Ardis of Bell Labs, who has worked in formal methods for software specification:

“A specification that will not fit on one page of 8.5-by-11 inch paper cannot be under-

stood” [Bentley85]. Clearly there are numerous specifications, indeed most, that exceed

the One Page Principle, but they do so at the expense of succinct clarity. There is a ten-

dency toward diminishing returns from increasing the amount of information that is

required for any specification to be understood, but the only way to provide sophisticated,

detailed specifications is to exceed this limit. One way to manage this is to provide an

overviewin one page or in a principle view, and to offerdetails on demandin other sup-

porting views or documents. This draws directly from two of the major visualization tasks

as shown in Table 4.2.

Much of the detailed information is not required to be available continuously. Some of

the information may pertain to the same design elements as other groups of information,

but it may not be helpful for these groups to be displayed simultaneously next to one

another. Other information pertains to entirely different ways of looking at the design,

either from a different level of abstraction, or from a different domain, such as temporal,

frequency, or spatial. Displays that attempt to combine multiple such domains in one view

may not make much sense, but may be of high value in separate, individual views.

For these reasons, multiple views within an interactive design tool can be of great use,

not only in viewing different portions of the same system, but in viewing the same designs

from different perspectives. A simple example of this in mechanical CAD would be a dis-

play that shows three projection views of the same part or building design: front, top, and

side. In signal analysis, views of both the time trace of a signal and the frequency spectrum

214

of a signal can give mutual insight (Figure 4.4). Similarly, in embedded system design,

views of the algorithm, at multiple levels of refinement, and the architecture, also at multi-

ple levels of refinement, can show properties of interest with different emphases.

With three or more variables, unless one or more of the variables are a function of the

others, it is difficult to clearly show relationships among them in two-dimensional dis-

plays. The major macroscopic properties of interest in embedded system design are often

enumerated as area, timing, and power. Views that simultaneously capture aspects of both

area and timing are common, such as Gantt charts and control-dataflow graphs where

resources are shown on one axis and time spent in execution is shown on another. To show

relationships between power and each of the other two variables, new views suggest them-

selves. The correlation between timing and power may be represented as a simulation

trace of power consumption as a function of time during the execution of an algorithm,

leading to a pinpointing of the most energy-costly operations, or the peak levels of power

consumption. Similarly, the relationship between area and power may be shown as a two-

dimensional display of a layout or architecture, where color is an overlay that shows

power usage distributed over the design. Hot colors such as red can show sections of high

power usage, and cool colors such as blue may be used to indicate low-power sections. For

the cases mentioned here, it would be difficult to conceive of a single representation of the

design that could simultaneously capture all three of these aspects of a design and still

clearly convey the interactions between various design attributes.

4.2.5 Cross-Connected Views

Having multiple views of design information is one way of increasing the designer’s

understanding of the problem at hand. Separate views alone, however, do not realize the

full potential of working with distinct but related subsets of information. Connections

among views can show relationships that would be difficult to convey succinctly in a sin-

215

Figure 4.4 Views of an SDF schematic, and the resulting impulse
response, frequency spectrum amplitude, and phase of the sig-
nal of interest.

216

gle view that attempted to combine all information in one presentation. In addition when

the two views represent design data upstream and downstream from one another in a

design flow, cross-connections between views can pinpoint areas where changes upstream

can result in changes downstream. This type of cross-connection can be used in reverse,

by focusing on problem areas downstream, and by showing what design data upstream

specifically impacts the problem area, and in doing so limit the scope of exploration

needed to effect change. An example of the use of cross-highlighting for this purpose is in

the RTL Analyzer from Synopsys [Synopsys97] for improving the quality of synthesis

results from HDL source code.

4.2.5.1 Cross-Highlighting

There are at least two broad types of cross-connections that can be used to relate mul-

tiple views. These are cross-highlighting and hyperlinks. Cross-highlighting is a display

technique where selecting or highlighting objects in one display view causes related

Figure 4.5 A view of power consumption distributed over a system archi-
tecture layout.

HIGH

LOW

217

objects in other views to also be highlighted. The focus remains with the view where high-

lighting was initiated, and other elements in the same view can be highlighted to see how

highlighting changes in the related views. Highlighting persists so that the focus can be

switched to another view and exploration can begin at the newly highlighted sections.

Highlighting can be bi-directional, so that if the underlying relationships are defined in

both directions, highlighting in any of multiple views will result in cross-highlighting of

the related information in the remaining views. A common form of highlighting in soft-

ware debugging tools such as GNU gdb/emacs is that when a breakpoint is reached or an

error occurs, a window showing the source code centers on the point in the code at which

the program execution stopped.

4.2.5.2 Hyperlinking

The second type of cross-connection considered here is the hyperlink. Hyperlinking is

a way of viewing information non-sequentially, and traversing associations from one piece

of information to another. This was first proposed in a basic form by Vannevar Bush in a

visionary article for the Atlantic Monthly [Bush45][Simpson96]. Bush proposed a new

device, called thememex,which would use microfilm and eye-tracking technology. The

memex would be used for browsing “new forms of encyclopedias” with “a mesh of asso-

ciative trails running through them” where the organizers of information would perform

work in “establishing useful trails through the enormous mass of the common record.”

This was inspired as a way of dealing with the rapid proliferation of printed matter and the

information overload that was already being experienced by some in research activities.

The modern termhypertextrefers to networks of documents that are connected by

links that can be traversed by activation, orhyperlinks. The termhypertextwas coined by

Ted Nelson in the 1960s as he wrote philosophically about the potential of the digital com-

puter as a “literary machine” [Johnson97].Hypermediaor hyperlinked multimedia refers

218

to documents containing other media besides text, including images, audio, and video.

Hyperlinks are an important part of Engelbart’s “human augmentation” systems, which he

first developed at SRI during the 1960s for assisting work in planning, analyzing, and

designing in complex problem domains [Engelbart84]. These concepts were later devel-

oped into production systems, including NoteCards from Xerox PARC, and eventually

were used in commercial products such as Bill Atkinson’s HyperCard for the Apple Mac-

intosh [Shneiderman97].

When the World Wide Web was first proposed in 1989, Tim Berners-Lee described the

hyperlinks as “hot spots” embedded directly in the text [Berners-Lee94]. This eliminated

the overhead of menus, typing codes, or having marker symbols throughout documents.

Hyperlinks and hypermedia are now familiar to any user of an HTML browser such as

Mosaic, Netscape Navigator, or Microsoft Internet Explorer. Hyperlinking is also used in

documentation systems such as Interleaf WorldView [Interleaf97]. When information,

usually text or an icon, is clicked on using a pointing device, another view or document is

opened. The focus may switch to the new view, or it may remain with the previous view if

the new view has appeared in a separate window. Hyperlinks are also used in software pro-

filing tools such as Quantify from Rational (formerly Pure Atria) [Rational97] in order to

allow the user to rapidly traverse a call-chain of nested routines. A simple but common use

of hyperlinks is in file browsers, where clicking on the name of a directory causes the con-

tents of the directory to be displayed.

The distinction made here between cross-highlighting and hyperlinks is that cross-

highlighting is used mainly to highlight information in other views while keeping the

focus in the current view, while hyperlinks are used in support of traversing relationships

and changing the focus. Because the focus is usually singular in most user interfaces,

hyperlinks are used when relationships are one-to-one. An object or phrase in one view

leads to a particular new display or document through a hyperlink. When many new docu-

219

ments or displays can be related to a single source link, then usually they are grouped

together in a single view or meta-page that contains each of their individual hyperlinks,

forming one level of indirection through which the user makes a single sub-selection. An

alternative to this is to have the hyperlink lead to a chain of views, which is appropriate

when the related information is sequential in nature but not conveniently displayed in a

single view.

Cross-highlighting can serve in showing one-to-one relationships, but it is most pow-

erful in showing one-to-many relationships. Clicking on one dataflow actor in a dataflow

graph view can cause multiple firings to be highlighted in a precedence graph view (Figure

4.6). Sometimes these cross-highlighting relationships are not symmetrical, as in the rela-

tionships among tasks and processors for multiprocessor programming. The case of two

views, showing a task graph and a multiprocessor architecture, is considered (Figure 4.7).

If tasks may be distributed among multiple processors, then highlighting a task may cause

multiple processors to be cross-highlighted. Similarly, since multiple tasks may be exe-

cuted by one processor, highlighting a processor may cause multiple tasks to be high-

lighted (Figure 4.8). Highlighting multiple elements in one view would naturally result in

Figure 4.6 Cross-highlighting from a dataflow graph to a precedence
graph, and from a precedence graph to a dataflow graph.

3 1 1 3 3 1 1 3

220

the union of the related sets in the other view to be cross-highlighted. A further refinement

of this action would be to highlight the intersection of the cross-highlighted sets in a dis-

tinct color, with the remaining elements being highlighted in the default color (Figure 4.9).

These kinds of many-to-many relationships would not be as easily understood through a

single view showing both graphs simultaneously with edges connecting the related ele-

ments, even though the underlying relationships may be encoded in a single graph data

structure (Figure 4.10).

Figure 4.7 A task graph, a multiprocessor architecture, and a mapping of
tasks onto processors.

T1 T2

T3 T4

T5 T6

P1 P2

P3 P4

MAPPINGS

T1 -> P3 T2 -> P1

T3 -> P4 T4 -> P1

T5 -> P1 T6 -> P4

Figure 4.8 Cross-highlighting of multiple tasks mapped to one selected
processor.

T1 T2

T3 T4

T5 T6

P1 P2

P3 P4

221

4.2.6 Presentation of Tradeoffs

Tradeoffs are a part of almost any complex design problem. Common tradeoffs in elec-

tronic system design include area vs. timing, area vs. power, and timing vs. power. Each of

these relationships can be displayed as multiple design options are developed by plotting

estimates of area, timing, and power for many design points. Views showing any two of

these estimates in relation to one another are common, but views showing three or more,

while entirely possible, are less common due to the difficulty of interpreting such figures.

Figure 4.9 Cross-highlighting of intersecting sets of processors from map-
pings of multiple tasks. Processor P4 is mapped to by two
selected tasks, T3 and T6.

T1 T2

T3 T4

T5 T6

P1 P2

P3 P4

Figure 4.10 A single view of both the task graph and the processor architec-
ture, with all associations shown.

T1 T2

T3 T4

T5 T6

P1 P2

P3 P4

222

Rather than only plotting such views after many candidate designs have been devel-

oped, it can be helpful to maintain such views during automatic or manual design space

exploration. For automated exploration, the designer can observe progress as the design

space is explored, and even steer the automated effort based on information that is

revealed about the design space along the way, guiding the algorithms away from portions

of the space that appear to be unlikely to produce useful results (Figure 4.11), or highlight-

ing areas of particular interest for more detailed exploration (Figure 4.12). The same is

true for manual design space exploration, so that a designer can observe how particular

choices or transformations to their design can result in movements in a particular direction

in the design space (Figure 4.13). It can be of even greater use if the design space is

labeled with known bounds, so that the designer doesn’t expend effort unknowingly trying

to exceed them, but instead is able to work by approaching them as closely as possible.

Figure 4.11 Design space exploration where multiple trajectories are tested,
and periodically one new starting point is selected from among
them.

DESIGN ITERATION

COST FUNCTION

NUMBER

223

Views of design tradeoffs can also be useful in forming a navigable abstraction of

many designs and their data. Data for each design candidate can be maintained, so that

after many design points have been logged on a tradeoff view, the designer can use those

design points as hyperlinks and jump directly to those that appear to be closest to the opti-

mal for the needed requirements. At that time, the design data for a promising candidate

design could be restored to the current editing views so that the selected design could be

used as a starting point for further improvement through transformations or small varia-

tions. The tradeoff view makes it easy to refer to a particular candidate design and its data

through direct manipulation, without having to work through the indirect manipulation of

data stored as files or named sets. These latter methods should still be maintained as

Figure 4.12 Design space exploration through successive zooming in on a
progressively smaller region of interest.

224

options because they will continue to be useful for design data management apart from

design space views.

4.3 Perceived Benefits

The desired attributes of interactive design tools discussed in the previous section are

aimed at improving the ways in which designers use tools in the design process. This is

expected to happen in at least two major ways. The first is in opening up the range of pos-

sibilities of how the tools are used. The second is in building confidence in and acceptance

of the tools so that portions of design can be automated without the designer being con-

cerned about losing too much control.

The first way in which a more open interactive design process can improve design is in

leading users to discover new ways of using design tools. By inviting exploration and pro-

viding multiple paths of feedback of information on design progress, intuition is built up

Figure 4.13 A view of manual design space exploration, showing how each
of several alternative actions results in varying movements
within the design space.

AREA

POWER

START

FRONTIER

225

about the design process. From this increased intuition, ideas for new algorithms or heu-

ristics can arise, and then it becomes useful to have a scripting capability for common pat-

terns of interaction. Once experience is gained in a hands-on design activity, learned skills

or decision making can be encoded in automation or a new heuristic to speed the design

process in comparison to what the designer could do manually. This can take place in

another form by taking design strategy ideas to the next logical step after applying them

once and seeing if results improve with repeated application on the same design, or with

general application to other designs.

The second way in which the use of design tools can be improved is in changing the

designer’s view of the tools. By fostering open and detailed feedback, highly interactive

design tools can lead to confidence in letting some activities be automated. Instead of sim-

plifying the scope of information available to designers and not letting them see where

they are sitting in the design space, a more informative approach leads to a deeper under-

standing and a clearer perspective. By visualizing the relationship of one design with other

design alternatives, and what is gained or lost by trading off, the designer can know that

the tool has put them in the right zone in the design space. If the tool has missed some

opportunity that appears obvious to the designer, then that understanding can be used in

order to go back and modify the automated phase. Without open feedback of information,

the designer must blindly trust that the tool has done the right thing, even when the limited

information coming out of the tool appears questionable. With a sufficient amount of

information presented and exploration permitted, the inquisitive designer will soon be

convinced that it is the design problem, and not the design tool, that is the cause of diffi-

culty. This is helpful in furthering the goal of having the design tool becoming perceptu-

ally a transparent layer between the designer and the design problem.

226

4.4 TkSched and TkSched-Target

To aid in the process of designing hardware from SDF specifications, we have created

an interactive design tool that is used within Ptolemy. This interactive tool, TkSched, uses

the Tk graphical toolkit to present the schedule and other views of the design process to

the user. TkSched runs under the supervision of TkSched-Target, one of several targets in

the VHDL domain in Ptolemy. More specifics on the VHDL domain and Ptolemy are

described in Chapter 5. This section describes the design of TkSched. Not all of the fea-

tures listed have been fully implemented, but the Schedule view is the central view of the

tool and has been fully implemented.

TkSched presents schedule, architecture, and quality estimate information to the user

about the firings and dependencies resulting from the analysis of an SDF graph in the

VHDL domain. An initial architecture is selected by TkSched-Target, and control is

passed to TkSched for further modifications. The user can leave the design as is, or inter-

actively modify the design by manipulating individual firings or by applying operations to

the entire graph. There are three main views that are presented in TkSched. The first view

is the Schedule view, which displays an execution schedule of tasks on hardware units

over time, based on the precedence graph and estimates of timing. This view has been

fully implemented within TkSched. The second view is the Topology view, which displays

information about the hardware units and their interconnections, based on the assignment

of firings to hardware units. This view has not yet been implemented in TkSched. The

third view is the Design Space view, which displays information about multiple design

instances, placing them in a design space of performance (latency) in one dimension and

cost (area) in another. Like the Topology view, this view has not yet been implemented in

TkSched.

227

Each of these views presents a different subset of the total design information that is

available in the tool, filtered for a particular purpose. The views are visual representations

of underlying design data maintained internally by TkSched-Target. The data consist of

graphical data structures with annotations, and the data are updated as a result of actions

that the user initiates. The views are interactive, allowing objects presented to be directly

manipulated by the user in a number of ways. The views are cross-connected, as actions in

one view can affect what is presented in the other views. The Design Space view is

arranged to present tradeoffs in the ongoing design process. The other views present

tradeoffs indirectly, through what is learned during interaction with the visual design rep-

resentations.

TkSched is arranged as multiple views of a common set of data. The views can be used

to observe representations of the data, or to modify and extend the data. This is repre-

sented in Figure 4.14. In the following subsections, we describe the specifics of each view,

including the objectives it is intended to serve, the design based on the OAI model, and

details of its use.

Figure 4.14 TkSched presents multiple views of a common set of data.

Schedule

Topology Design Space

Design Data

228

4.4.1 The Schedule View

The Schedule view is the main view of the design process within TkSched. In the

Schedule view, all of the firings and their precedences are shown, along with the hardware

resources of the design. The firings and precedences are arranged as an annotated prece-

dence graph where the vertical axis represents system clock time and columns along the

horizontal axis represent hardware resources. The presence of a firing in a given column

signifies that the execution of that firing is mapped to that hardware resource, during the

time interval extending from the top horizontal edge of the firing to the bottom horizontal

edge. In addition to the schedule itself, the Schedule view shows estimates of performance

and utilization. Within the Schedule view, the user can observe properties about the cur-

rent state of the design, and make modifications. The user can move individual firings

from one hardware resource to another, or apply operations which affect all the firings col-

lectively. This view has been implemented in TkSched and is shown in Figure 4.15.

The principles of the OAI model have been applied to the design of the Schedule view.

Among these are the definition of task-level objects and actions, and their association with

corresponding interface-level objects and actions. The task-level objects include the entire

schedule and the time and hardware unit grid against which the schedule is laid out. The

schedule is in turn composed of firings and directional dependencies that connect the fir-

ings. The schedule represents one iteration of the SDF graph, and there is the possibility

that tokens are carried over from one iteration to the next. These are represented by tokens

that are read at the beginning of the schedule iteration or written at the end of the iteration.

The schedule begins at a time marker of zero, and each iteration is to end by a given dead-

line, measured in system clocks. Based on the duration of tasks on each hardware unit,

estimates of utilization as a percentage can be made for each hardware unit. The overall

229

speed of the system, as a maximum throughput based on the time from the earliest firing

start to the last firing finish, can also be estimated from the schedule.

The user is able to make modifications to the schedule, both on an individual firing

basis and on the entire schedule graph. The user may select a firing, then move and drop it,

at a new location in time, or on a different hardware unit, or both. The new scheduling of

the firing must comply with the precedence relations that are associated with the firing, so

that the firing does not get scheduled before the end of a preceding firing or after the

beginning of a succeeding firing. Each time a change is made in the schedule, the esti-

Figure 4.15 The Schedule view of the TkSched interactive design tool.

230

mates of speed and utilization are recalculated, so that the effects of each change are

immediately known. The user may also operate on the entire schedule through a number

of operations. Among these are to take the current mapping of firings onto hardware units

and to apply as-soon-as-possible (ASAP) or as-late-as-possible (ALAP) scheduling

according to the precedences while maintaining the existing occupancies of firings on

hardware units. The user may also change the mappings for the entire graph by moving all

firings to the lowest or highest possible index resource, while avoiding resource contention

in the occupied timeslots. This reduces the number of resources that need to be allocated

while maintaining the current schedule timing. An additional operation allows the user to

spread out all firings among resources sequentially, to create space among the firings so

that other group and individual operations may be applied more easily than when firings

are scheduled closely together.

4.4.2 The Topology View

The Topology view is a supporting view which shows time-invariant properties of the

design, such as the number of resources and their interconnections, along with connec-

tions to input and output. This view is a spatial arrangement, but is only meant to represent

an abstract topology and not a final architecture or layout. The resources and connections

are arranged spatially, with no temporal information such as what is seen in the Schedule

view. Utilization estimates and other general design estimates are shown. The user can

select individual resources and highlight them, resulting in highlighting of the correspond-

ing firings in the Schedule view. This view has not yet been implemented in TkSched. A

representation of what the view would look like is shown in Figure 4.16.

The task-level objects of the Topology view include the entire topology, which is com-

posed of individual hardware units and their interconnections. Input and output ports and

their connections to the hardware units are also represented. The hardware units have utili-

231

zations associated with them, the same as in the Schedule view, and utilizations are indi-

cated on each hardware unit. The interconnection between any two hardware units is

either present or absent, depending on whether or not any communication is needed

between those two hardware units. If an interconnection is present, it also has associated

with it an indication of how heavily used the interconnection is, according to the number

of communication transactions that use the interconnection. There are also task objects for

P1

P5P4

P8

P2

P6

P3

P7

Figure 4.16 A conceptual representation of the design for the Topology
View.

i1 i2 i3

o1 o4o3o2

TkSched: Topology

P4 Selected Utilization: 52%
Links: P1, P5, o3
Firings: FIR2(35:50), Mult1(50:70), Quant1(88:104)

T1

T4

T3

T2

Procs Used: 8

232

the inter-iteration tokens, which have their own interconnections with the hardware units

that read and write them.

Among the operations that may be performed, the user can select a hardware unit

which will indicate its selection, and a connection with the Schedule view will also indi-

cate each of the firings that are mapped to the given hardware unit. Each hardware unit in

the Topology view can be queried for the identities of each of the firings that are associ-

ated with it, and their start and finish times. For each interconnection, the user can query

what the bandwidth is in terms of communication transactions. As the schedule is changed

in the Schedule view, the interconnections and other design estimates are automatically

updated in the Topology view as a direct result.

4.4.3 The Design Space View

The Design Space view is a supporting view for overseeing abstracted data from a set

of designs as well as the current design. The design space is represented as a two-dimen-

sional plane with latency along one axis and area along another. Multiple design points are

shown with markers located at their estimated latency and area. The current design point is

represented as a similar marker which relocates as the properties of the current design

change. The user can save the current design as a marker which will persist, or restore pre-

viously saved designs from any one of the existing marker points. This view has not yet

been implemented in TkSched. A representation of what the view would look like is

shown in Figure 4.17.

The task-level objects in the Design Space view include the spatial axes of latency and

area, which are fixed, marked on the design space. The bounds of the design space are

based on estimates from the initial design representation, but may need to be recalculated

during the design process. Marked in the design space at any time are a set of saved design

points and the current design point, which is distinct and is not saved unless requested.

233

Each design point has estimates of latency and area associated with it, as well as a full set

of design data. The current design’s latency and area are presented directly to the user. To

assist in framing the design space for the user, the extremes of the current set of design

points, including minimum and maximum values, are marked by additional vertical and

horizontal boundaries.

The user may be informed of the current design point within the design space by the

location of the current design point marker. Saved design points are noted by distinct

Figure 4.17 A conceptual representation of the design for the Design Space
View.

TkSched: Design Space

Design Rev: 3.4 Latency: 510 ns
Area: 332 mm2

Procs Used: 8

Save Restore

1370

83

332

510 2244128 LATENCY

AREA

234

markers in the space, and do not move as they represent fixed data sets. The user may save

the current design data point at any time, which will keep all of the data necessary to com-

pletely specify the design at that point. At any time, the user may select a saved design

point, and it can be restored. This will result in the design data from that saved point being

restored as the current design, and the previous current design is lost unless the user first

saves it as well. Once the design data is restored, the Schedule and Topology views are

updated to reflect the newly restored design. As the latency and area of the current design

move throughout the design space, the design extreme markers are updated whenever they

are exceeded.

4.4.4 Summary

The three views of the design data are Schedule, Topology, and Design Space. Of these

three, the Schedule view is the primary view and has been fully implemented. An example

of a multirate design that was created using TkSched with TkTarget, generated into VHDL

code, and synthesized through Synopsys Design Compiler, is shown in Figure 4.18. There

are many possible useful features of these views, as well as additional design views. The

current version of TkSched is a prototype, useful for exploring both the design of hard-

ware from SDF graphs, and for exploring the use of this type of interactive design tool.

Some possible extensions are described in the next section.

4.5 Future Extensions

The usefulness of an interactive design tool depends on the responsiveness of the

machine on which it is implemented. Since responsiveness is inherently tied to execution

speed, and since execution speed is continually improving, it is reasonable to expect that

the scope of interactive capabilities in design tools will track the growth of performance

235

over time. This will allow more features and more design information to be included as

time progresses. There will come a time, which may well already be here, when perfor-

mance allows the delivery of more information than most designers can reasonably han-

dle. This must be dealt with by performing more data distillation prior to visualization

with the increased available computation capacity. This will allow useful overviews to be

presented, with details available on demand.

There are a number of features that are not currently a part of TkSched, but would

extend its usefulness. One extension is to allow the size of firings to change dynamically

as they are dragged across different hardware units. The variations in size would reflect the

variations in timing that occur when a firing is implemented on each of the hardware units.

Currently, the time is based on an estimate that is updated after an iteration of synthesis.

Another extension would be more general, applying this type of interactive tool to the

design of embedded software, or to mixed hardware/software systems. Both types of

Figure 4.18 An example of a multirate SDF design that was created using
TkSched, and here is synthesized using Synopsys Design
Compiler.

236

implementations can be derived from SDF specifications, and both types have analogous

scheduling issues. Other extensions include the extended use of color to denote functional-

ity. Similar firings may be grouped by coloration into classes, such as arithmetic opera-

tions, filter types, and larger-scale firings. The VHDL code that is produced could also be

visualized, as is already done in a number of tools that take code as their input. In this

case, the code that is to be produced as output could be updated dynamically as the design

changes, with cross-connections between the other views and the changing code listing.

4.6 Summary

As design methodologies for electronic systems change with time, human interfaces to

those methodologies will be expected to improve as well. Expectations of greater levels of

interaction and decision-making, along with options for either hands-on exploration or

automatic operation will grow as designers become accustomed to improved interfaces, as

well as bring their raised expectations from other software interface experiences to the

domain of electronic system design. At low levels of abstraction, the rapidly increasing

quantity of design data calls for better ways to visualize and navigate through design data.

At high levels of abstraction, interactivity and feedback of estimates based on design

trade-offs will permit more informed decisions and greater exploration of options to be

conducted. We have presented ways of approaching these challenges, in part through the

use of the OAI model for relating design task objects and actions to the objects and actions

presented to the designer through the interface. A set of preferred attributes of interfaces to

design tools was also presented, some of which are partly embodied by available tools and

some of which have yet to be fully employed. The benefits intended include opening up

tools to new modes of use, while improving designers’ understanding of the overall design

process. We have presented an interactive tool, TkSched, for use in the VHDL domain of

237

Ptolemy for the design of hardware structures from dataflow graphs. The interface has

been designed with the improvement of the design process at a high level in mind.

238

5

Implementation in Ptolemy

The preceding chapters discussed various aspects of working with high-level abstrac-

tions in developing embedded system designs. Each of these activities spans a number of

levels in a design flow. In order to perform these activities in a coherent and organized

manner, design environments that provide support for the activities of modeling, simula-

tion, and synthesis are a great help. In this chapter, we discuss the details of supporting

such activities, and focus on the Ptolemy environment, which has been used to achieve

these goals.

We begin in Section 5.1 by discussing a number of simulation and prototyping envi-

ronments that have been developed, including some that were predecessors to Ptolemy, as

well as others that have derived much benefit from work done in Ptolemy. In Section 5.2

we describe the basic elements of Ptolemy that support simulation and synthesis of mixed

system descriptions. Each of the three activities described in Chapters 2 - 4 havebeen

implemented in Ptolemy and are described in Section 5.3. Finally, in Section 5.4 we sum-

marize some opportunities for future work based on the tools described in this chapter.

239

5.1 Background Tools

In many areas of study within engineering, the general tendency is to study fundamen-

tal principles of physical behavior and mathematical models, standardize operations or

processes that transform and relate quantities of interest, and then encapsulate such opera-

tions and abstract them into monolithic elements that can be re-used and built upon. Any

activity that involves flows of information, energy, or matter is open to such block abstrac-

tion. Such areas include communications, networking, signal processing, optics, chemical

engineering, particle physics, and so on. From abstract blocks that represent individual

operations, complex systems can be constructed by interconnecting instances of such

blocks. The use of block elements that are well-defined and whose properties are known

eases the difficulty of designing and building larger systems. If certain rules are obeyed by

the particular abstraction being applied, then unlimited compositions of such blocks may

also guarantee certain properties of interest, avoiding the need to individually analyze

every system constructed from fundamental blocks.

While engineers have long designed systems manually on paper using block diagrams

to specify their design intent, a productivity improvement is realized through the auto-

mated simulation and analysis of such systems. This has been possible using digital com-

puters for some decades, but has become particularly attractive in recent years with the

rapid improvement in graphical user interfaces to such computers. Some of the first block

diagram simulation systems were designed or implemented during the 1960’s and 1970’s

[Dertouzous69] [Gold69] [Karafin65] [Kelley61] [Crystal74] [Korn77] [Henke75].

Many systems with richer user interfaces were enabled by the computing technology

that became more widely available in the 1980’s [Shanmugan87] [Zissman86]

[Covington87]. One effort during this period to apply block diagram simulation to com-

munications and signal processing came about with BLOSIM [Messerschmitt84] from

240

U.C. Berkeley. This system allows general block diagram simulation without many

restrictions on block functionality. Blocks are written in C, and they may also be specified

hierarchically. Blocks communicate through first-in, first-out buffers, and scheduling is

done dynamically at run time. However, simulation performance and resource require-

ments are not easily determined from systems specified with the broad semantics that are

allowed in BLOSIM.

In order to design applications with timing constraints to be executed on embedded

signal processors with finite resources, some restrictions on block semantics are necessary.

In exchange for accepting the limits of synchronous dataflow (SDF) semantics, static

scheduling of software execution is possible, allowing the determination of code size and

memory requirements in advance. At the same time, the semantics of SDF are general

enough that many practical systems of interest in DSP can be concisely expressed. Follow-

ing on BLOSIM, the Gabriel system [Lee89a] for DSP code generation from SDF seman-

tics demonstrates the value of this approach in the design of embedded DSP software.

Each SDF block corresponds to a segment of hand-optimized program code. These code

segments are arranged together at compile time according to the SDF semantics. Schedul-

ing decisions are flexible, allowing the possibility for code generation to be optimized for

various goals, including minimum code size, minimum memory requirements, or a joint

minimization of both [Murthy97].

With an increased understanding of models of computation (MoCs) other than SDF,

including discrete-event (DE), boolean dataflow (BDF), dynamic dataflow (DDF), process

networks (PN), and so on, the value of a more general software system for studying many

MoCs was clear. The Ptolemy Project was initiated in 1990 [Buck91] to support such

research. Additional insight not available in other single-MoC simulation tools is possible

in Ptolemy through the application of multiple MoCs to specify a single, heterogeneous

application. More general facilities for code generation than what was possible in Gabriel

241

are also supported in Ptolemy. These include code generation in languages other than DSP

assembly code from SDF semantics, as well as some work in code generation from seman-

tics other than SDF.

Around the same time, similar commercial tools came into being, which have special-

ized in a few areas of semantics or code generation, optimized for the needs of specific

commercial users. Tools such as SPW from Comdisco Systems (now Cadence)

[Cadence97] and COSSAP from Cadis (now Synopsys) [Synopsys97] have implemented

slightly different semantics from SDF in order to include modeling of synchronous digital

hardware in their algorithmic-level simulation capabilities. Code generation in these tools

has focused on languages such as C for efficient simulation, as well as DSP assembly lan-

guages for embedded software and VHDL and Verilog for hardware synthesis. The

BONeS simulator from Cadence is a separate tool which uses a form of DE semantics, and

is specialized for network simulation. Only recently has this DE simulator been more

closely integrated with the synchronous simulation available in SPW. The design of

Ptolemy was such that from the beginning it has been built around supporting a mixture of

semantics like SDF and DE in a single environment, provided that the interaction seman-

tics are well-defined.

Another block-oriented tool worthy of mention is the Khoros system from the Univer-

sity of New Mexico [Williams90]. This tool was originally designed for block diagram

specification of information flows, particularly in the area of image processing. As a

result, the semantics were originally limited to homogenous SDF, with single-input, sin-

gle-output ports on blocks corresponding to transformations on image data. The modern

version of Khoros, commercialized by Khoral Research [Khoral97], employs an event-

driven scheduler, where icons correspond to whole processes on the host machine, and

processes can be run atomically, or with parameter updates during process execution if

required.

242

In the next section, we focus on the Ptolemy environment. We describe its applicabil-

ity, and examine the components that support the VHDL design activities described in the

remainder of this chapter.

5.2 The Ptolemy Environment

The Ptolemy Project [Buck94] has centered around the Ptolemy software system for

simulation and prototyping of DSP, communications, and embedded systems, and for the

formal study of semantics and models of computation and their interactions. Ptolemy was

designed from its inception with the support of diverse models of computation in mind.

Out of this intent, the basic software architecture is organized as a set of object-oriented

kernel classes written in C++ and modulardomainsderived from the kernel classes. The

kernel classes support general notions of block diagram specification semantics, with hier-

archy, simulation support, and support for interactions between derived domains. Each

domain corresponds to a specific model of computation (MoC), with its own classes

derived from kernel base classes defining its blocks and connections, as well as classes for

scheduling and managing simulation and other operations on the specification. An entire

subset of domains is derived for code generation, adding support for maintaining streams

of text to organize generated code, and such common needs as unique symbol list manage-

ment and control construct generation, as well as support for generating variable declara-

tions and initialization, and program wrapup.

The following subsections, 5.2.1 through 5.2.8, describe the key classes within the ker-

nel and how they serve within the overall environment.

5.2.1 Domain

In Ptolemy, adomainrefers to a set of classes that define the functionality necessary to

support a distinct model of computation. Each new domain defines one or more classes

243

derived from the kernel classes which add functionality particular to the domain. Among

these may be classes derived from Star, PortHole, Geodesic, and Target. In addition, there

may be subdomain relationships between domains. The SDF domain defines synchronous

token transfer relationships between blocks in the system, while the DDF domain allows

dynamic relationships. Because the SDF semantics are a subset of the DDF semantics,

SDF can be declared as a subdomain of DDF, so that SDF systems may be run within the

DDF domain without modification. The semantics modeled in a domain refer to the block-

diagram semantics. The internal functionality of blocks in a domain is usually written in

C++ as a set of sequential methods. The model of computation is implemented at the inter-

faces to the blocks, and governs their communication behavior. In certain cases, such as

the synchronous/reactive domain, requirements are also placed on the functions internal to

blocks, such as that they be monotonic, etc.

Domains have a slightly different meaning in the case of code generation from what

they mean in simulation. In the case of code generation, a domain supports code genera-

tion in a particular programming or specification language. For example, the CGC domain

supports generation of code in the C language. A code generation domain may support

implementations of one or more models of computation, but the main one supported in

Ptolemy is synchronous dataflow (SDF). Extensions are possible so that multiple models

of computation may be supported in a single code generation domain. The CGC domain

supports SDF implemented in C by default, but can be extended so that DDF is imple-

mented in standalone C code. This would require a run-time scheduler to also be included

in the generated C code, along with facilities for allocating and deallocating memory as

tokens are produced and consumed throughout execution.

244

5.2.2 Stars

The block-oriented nature of system description in Ptolemy is contained in the Star

class. Instances of classes derived from Star contain the actual computation functionality

that is encapsulated and re-used. Stars may be implemented as operations described in

C++ for simulation, or they may contain code in other languages which is to be assembled

together in the case of code generation domains. The interfaces to stars occur through

PortHoles. PortHoles, described below, mediate communication of data and events into

and out of stars. The code within stars is written to refer to its input and output PortHoles,

without assuming anything further about its connections. This is so that Stars can be

designed independently of any assumptions about the context within which they will be

used. Stars also may have members called States, which serve two kinds of roles. States

may provide initial parameters that affect the configuration of an instance of a Star, allow-

ing them to be defined generically in terms of parameters for variable functionality. States

may also be used as actual run-time states, holding important values that are updated

throughout the execution of the system from firing to firing of each Star.

5.2.3 Galaxies

In order to support hierarchical descriptions of systems, groups of stars with local con-

nections and overall inputs and outputs may be defined. These are called Galaxies in

Ptolemy, as they are groupings of Stars. They are useful as a way of encapsulating com-

plex or commonly used sub-graphs of Stars. They are also a convenient way of assigning

State parameters to groups of Stars, as the States of a Star may refer to the States of a par-

ent (containing) Galaxy. In terms of the semantics of a block diagram description, Galax-

ies may not be interchangeable semantically with Stars, as the model of computation may

not be compositional. This is true in the case of SDF, where arbitrary sub-graphs of SDF

stars do not generally satisfy SDF semantics at their border. This is not an issue in

245

Ptolemy, since no such assumptions are made about Galaxies. Instead of imposing seman-

tic assumptions, Galaxies are merely a convenient means of simplifying system descrip-

tions through the use of hierarchy.

5.2.4 PortHoles

The members of Stars, and also Galaxies, that mediate communication into and out of

such blocks are PortHoles. PortHoles in Ptolemy are assigned to a parent Star or Galaxy

and define the behavior of a block at its boundary, along with any semantic restrictions.

PortHoles in actual systems are usually designated to be of a specific directionality, either

input or output (although bidirectional PortHoles are potentially useful in certain situa-

tions). PortHoles are unique within the context of a Star, and the code that describes the

functionality of the Star will refer to individual PortHoles by their unique names, which

determines their identity and role within the Star. By requiring all inputs and outputs to

Stars to be through PortHoles, a limitation is made which is intended to prevent side

effects in the operation of a Star, as there are no other shared or global variables to use for

communication between stars, by default.

5.2.5 Geodesics

Communication of data and events into and out of Stars occurs through PortHoles. The

communication between PortHoles of connected stars occurs through specialized classes

derived from Geodesic. A Geodesic corresponds to a particular connection between two

PortHoles. The Geodesic mediates the communication between PortHoles, and handles

any data management issues, such as queueing, buffer sizing, and delivering and receiving

data to and from the connected PortHoles.

246

5.2.6 States

As mentioned above in describing Stars, States are members which can hold state and

update values throughout execution, or they can be used to parameterize the configuration

of a particular block. Not only may they be used to hold state information for Stars and

Galaxies, but also for Universes and Targets. A Universe is an entire runnable system, and

a Target, described below, manages the execution of a system. States of universes serve a

similar function to states of galaxies. These states parameterize one or more blocks within

the larger entity the same way that the states of a single Star instance parameterize that

individual star. States of a Target are somewhat different, in that they affect the execution

behavior of the Target that manages the system simulation or code generation in the case

of code generation domains. Target States may control what scheduler the target uses,

where it looks for certain system resources, or what other child targets it should instanti-

ate.

5.2.7 Targets

Once a system is specified with Stars, Galaxies, and connections over Geodesics, it

can be simulated or code may be generated from the description. The class where these

actions are organized and controlled from is the Target class. Simulation targets provide

for simulation initialization and usually either static or run-time scheduling, depending on

the model of computation. The target manages execution by controlling the invocation of

individual Stars as they are scheduled, or according to a statically determined scheduling

order. Code generation targets also may perform scheduling, but instead of the stars hav-

ing an execution phase, when a code generation Star is executed, code for an invocation of

that star is generated. Code generation targets also provide support for assembling the

complete code file or files, as well as compiling the code, downloading it to a target plat-

form if necessary, and causing the compilation result to be executed on the target platform.

247

5.2.8 The VHDL Domain

The VHDL domain in Ptolemy has been implemented for code generation in VHDL

from specifications with SDF semantics. The SDF semantics are a fundamental part of the

VHDL domain, and they help determine how the VHDL code should be generated from a

given SDF specification. This occurs both through the specific meaning of correct behav-

ior that results, as well as through the decision making that is possible in advance of code

generation because there is static scheduling and static storage allocation.

There are several targets available for the VHDL domain. These are summarized in

Table 5.1. The two major groupings of these are a set of targets for simulation and a set of

targets for synthesis. The default target is for generation of code only, and that code is

sequential, communicating results of computations through variables. There are three tar-

gets for simulation of generated VHDL code. Each of them corresponds to an external

vendor-supplied tool for simulating VHDL. Since Ptolemy does not contain an execution

Table 5.1. The Targets of the VHDL domain and their purposes.

Target Description

default-VHDL Sequential code generation only

SimVSS-VHDL Simulate with Synopsys VSS

SimLF-VHDL Simulate with Cadence LeapFrog

SimMT-VHDL Simulate with Model Technology VHDL Simulator

Struct-VHDL Synthesizable code generation only

Synth-VHDL Synthesize with Synopsys Design Analyzer

Arch-VHDL Architectural tradeoffs, code generation only

SynthArch-VHDL Architectural tradeoffs, synthesize with Synopsys

TkSched-VHDL Architectural tradeoffs, interactive design, synthesis

248

engine for simulating VHDL code, another simulation program is required in order to sim-

ulate the VHDL code that is generated from the VHDL domain.

Each of the specialized targets provides support for communicating with a particular

external simulation tool. The SimLF-VHDL target supports the Cadence Leapfrog VHDL

simulator. The SimVSS-VHDL target supports the Synopsys VHDL System Simulator.

The SimMT-VHDL target supports the Model Technology VHDL simulator. Each of these

targets operates in a similar fashion. Once the code has been generated, it is written to a

file and then compiled or prepared for the given simulator. The target then invokes the

external simulator as another process on the host machine running Ptolemy, and passes the

compiled VHDL program to it. Certain VHDL stars, such as for data display, may write

results to data files, which can be read back into Ptolemy and graphed for visual analysis.

For synthesis of digital hardware from VHDL code, there are a number of specialized

targets in the VHDL domain. All of them currently use the HDL Compiler and the Design

Compiler from Synopsys. These tools provide RTL synthesis of the generated RTL VHDL

code, and they can provide reporting of metrics such as delay and area for design feedback

into Ptolemy to guide successive code generation. The basic target for synthesis is the

Struct-VHDL target. This target generates code only, without passing it to synthesis. The

code that is generated represents a flat structure, where each firing of the dataflow graph is

mapped into an entity in VHDL, containing the functionality for that firing. The intercon-

nect, clocking, and control for the structure are all generated automatically. The Synth-

VHDL target, derived from the Struct-VHDL target, adds functionality for passing the

generated code to the Synopsys synthesis tools. When this target is used, the synthesis tool

is invoked as another process on the host machine where Ptolemy is running. Following

synthesis, control of the synthesis tool is transferred to the user, allowing further explora-

tion, analysis, and resynthesis within the external tool, along with providing displays of

the resultant netlist.

249

Because the Struct-VHDL target only provides one method of generating the RTL

VHDL code, it has limited flexibility. In order to study the change in synthesis results as

the RTL VHDL code is changed, a different target is included in the VHDL domain. The

Arch-VHDL target is for exploring architectural tradeoffs at the RTL synthesis level.

Instead of only allowing a flat structure like the Struct-VHDL target, the Arch-VHDL tar-

get allows tradeoffs of the form of grouping firings into hardware units that are synthe-

sized together, trading off parallelism in exchange for reductions in design area. The Arch-

VHDL target generates code only, doing nothing further. The SynthArch-VHDL target is

derived from it and adds the necessary functionality for using the external synthesis tool.

This permits the target to synthesize the RTL code and obtain information about timing

and area and return it back to the code generation stage for further refinement. The

TkSched-VHDL target is an extension of the SynthArch-VHDL target that allows the user

to interactively group firings together before the code is generated, using a display compa-

rable to a Gantt chart to show resource and timing tradeoffs. Once the code is generated

and passed to synthesis, the timing and area results are returned to the target so that further

iterations may be performed in order to improve the results.

5.3 Design Using the VHDL Domain

The facilities provided by Ptolemy and the VHDL domain support each of the design

activities described in earlier chapters. Synthesizing parallel hardware from synchronous

dataflow graphs is supported through the targets that generate an RTL architecture and

work on top of RTL synthesis. Verification through simulation can be performed in an

environment mixed with other implementation choices, such as software executing on a

digital signal processor. Interactive visualization and control of the architecture design are

supported through a target that mixes the structural code generation features with an inter-

250

active display. Each of these design activities will be described in Section 5.3.1 - Section

5.3.3 below.

5.3.1 Generation of VHDL from SDF for RTL Synthesis

For the purpose of synthesizing hardware descriptions from SDF application specifica-

tions, the VHDL domain in Ptolemy provides a specialized code generation capability.

Synthesis within the VHDL domain is implemented so as to work “on top” of RTL synthe-

sis. The synthesis capability in the VHDL domain is designed to work with Design Com-

piler from Synopsys, one of the most commonly used commercial RTL synthesis tools in

industry. The VHDL synthesis capability works with firings as the basic unit of computa-

tion. It allows the adjustment of the generated VHDL code to create many codefiles that

implement the same SDF graph semantics. Additional information about the synthesis

capability in the Ptolemy VHDL domain is described in [Williamson96].

There are four targets within the VHDL domain in Ptolemy that support the main

hardware synthesis capability. The Struct-VHDL target generates RTL code from the SDF

graph specification. The code specifies an entity allocated in hardware for each firing of

each actor in the dataflow graph. Communication paths and control signals are automati-

cally generated. A more flexible target that allows tradeoffs in how firings are mapped to

shared hardware is the Arch-VHDL target. This target supports architectural tradeoffs

between parallelism and implementation area by grouping multiple SDF actor firings to

shared hardware units. Each of these targets contains the functionality for generating code,

but not for carrying out synthesis. The Synth-VHDL target is derived from the Struct-

VHDL target and adds the necessary functionality to deliver the generated code to the

Synopsys RTL synthesis tools and to bring up the Synopsys Design Analyzer to visualize

the results. Similarly, the SynthArch-VHDL target is derived from the Arch-VHDL target

251

and adds functionality that is mostly the same, with some additional modifications aimed

at interactive design, discussed in Section 5.3.3.

5.3.2 Cosimulation of VHDL with Other CG Subsystems

The automated synthesis of hardware from high-level dataflow models has a strong

applicability in the area of embedded systems design. However, it is not a complete capa-

bility. Embedded systems design usually involves designs that are specified in multiple

models of computation, where each is used for specialized functionality. Embedded sys-

tems design also typically results in heterogeneous implementations in not just hardware,

but also software elements, and frequently multiple components within both categories. In

prototyping such systems, an important capability is informal verification through simula-

tion. For the restriction of systems specified in SDF, a capability exists in Ptolemy which

allows cosimulation of heterogeneous implementations of SDF graphs. The VHDL

domain, which generates code from SDF graphs, supports this capability in its design and

works with commercial VHDL simulators from Cadence (LeapFrog), Model Technology

(MT VSim), and Synopsys (VSS). Additional information about VHDL in hardware/soft-

ware cosimulation is found in [Pino96].

There are three targets in the VHDL domain that support the simulation of generated

VHDL code. These are the SimVSS-VHDL, SimMT-VHDL, and SimLF-VHDL targets.

These targets interface with VHDL simulation tools from Synopsys, Model Technology,

and Cadence, respectively. In addition to simulation of generated code, a special target

exists in the CGC domain for C-code generation which supports co-simulation of sub-

systems generated from graphs with SDF semantics in different implementation lan-

guages. This target is the CompileCGSubsystems target, which uses the scheduling that is

possible with SDF graphs to generate heterogeneous systems that preserve correct execu-

tion order and do not deadlock. The SimVSS-VHDL and SimLF-VHDL targets may be

252

used as child targets within CompileCGSubsystems to generate VHDL code for portions

of SDF systems. Additional send and receive actors within the CGC and VHDL domains

provide the necessary communication functionality at the boundaries between implemen-

tation language partition boundaries.

5.3.3 Interactive Design in the VHDL Domain

Interactive design is increasingly important in practical systems design, as some activ-

ities do not have straightforward optimal algorithms or near-optimal heuristics that can be

applied hidden from the designer’s view. In order to bring out the internal details of hard-

ware synthesis in the VHDL domain for the designer to observe and manipulate, an inter-

active design capability is included. This capability is in the form of an interactive tool

which runs in the design loop within RTL VHDL code generation and RTL synthesis from

SDF graphs. This tool provides views of the timing and resource constraints and depen-

dencies of the generated hardware. It also provides the designer with the ability to interac-

tively control the code generation process in order to guide the results in a desired

direction. The inspiration for this capability and the motivation behind some of the main

features are described in Chapter 4.

The interactive hardware synthesis capability is provided in the VHDL domain

through a special target. The TkSched-VHDL target is derived from the SynthArch-

VHDL target. It allows similar architectural tradeoffs for controlling the code generation

process, but it does so by providing an interactive interface to the internals of code genera-

tion planning. This is accomplished by the execution of TkSched, an application written in

the Tcl scripting language and using the Tk graphical user interface toolkit extensions.

The TkSched-VHDL target proceeds with computing the schedule of the SDF semantics,

and invokes TkSched to present the firings and dependencies to the designer. This allows

the designer to see the structure of the precedence graph and the candidate grouping of fir-

253

ings into hardware mappings. Commands allow the user to manipulate individual firings

or groups of firings to modify the schedule and planned hardware allocation, while pre-

serving the correct ordering of firings and communication. The code generation stage that

follows the invocation of TkSched will create code that matches the designer’s specifica-

tions for functional grouping, while still creating the communication and control automat-

ically.

5.4 Summary

There are numerous steps and tasks on the path from a design conceptualization to an

implementation. A single design environment that is able to support many of those tasks is

a valuable resource. We have described such an environment, Ptolemy, and some of the

work that it inherited from. The VHDL domain has been implemented in Ptolemy to sup-

port the specification, simulation, and synthesis of hardware realizations from SDF graph

specifications. Targets have been implemented in the VHDL domain for supporting the

tasks of code generation, interactive design, interfacing to synthesis, and cosimulation.

The VHDL domain design is derived directly from the object-oriented structure of the

Ptolemy kernel and code generation classes, and benefits from this design by being able to

interface well with simulation and other code generation domains within Ptolemy.

254

6

Conclusions and Future Directions

Synthesis, in its many forms, has proven to be an invaluable tool to numerous design-

ers of digital systems. Methodologies work best when they assist designers selectively, by

unburdening them from certain details and problems of design for which reasonable solu-

tions exist, and allowing them to focus on design problems that are best tackled through

the training and experience of each designer. Human capacity is inherently limited, and so

transferring as much of the burden as is reasonable to automation, while maintaining con-

trol over key decision-making steps, is likely to ultimately produce better results than

either fully automated or fully manual approaches.

Certain models of computation, such as SDF and related dataflow models, have inher-

ent strengths in specification of applications in DSP and other algorithmic-intensive

designs. The static analysis that is possible with SDF models makes SDF a good candidate

for synthesis and simulation methods. While existing behavioral synthesis methods are

proving valuable with use that continues to grow, the tendency toward fine-grain resource

sharing makes it worthwhile to investigate other possible approaches. These alternatives

may use coarser granularity to cope with complexity in the synthesis process, and to main-

tain valuable structural information in transforming an algorithmic specification into an

implementation.

255

6.1 Conclusions

We have presented an approach to synthesizing hardware implementations from syn-

chronous dataflow specifications. Resource sharing of computation and communication

elements is a central focus of design, due to the high concurrency that is typical of SDF

specifications. Extremes of resource sharing will result in inefficient schedules, and so

must be balanced against the goal of reducing hardware cost. The communication of data

through tokens in SDF results in opportunities for resource sharing of registers in the

implementation. Token queueing on arcs, the referencing of past token values by actors,

and the feedback of tokens as state all have effects on the structure that is synthesized. The

structure is synthesizable as a register-transfer level description, and VHDL is the lan-

guage we have chosen for this implementation, which is suitable for RTL synthesis.

The representation of the design that is created in VHDL can be checked for validity

through simulation, particularly in a testbench with expected input data and known output

data. Often, a design synthesized is only a part of a larger design, and cosimulation is a

valuable tool for validating the mixed system, whether with other hardware designs or

with software implementations. The semantics of VHDL in simulation need to be man-

aged for cosimulation so that correct results can be obtained. Knowing that the VHDL

model being simulated implements SDF semantics can help to simplify the cosimulation

problem greatly. Synchronizing multiple simulations is a key problem with many solu-

tions. We have presented a solution for the SDF-in-VHDL case, and we have proposed

other approaches for general VHDL cosimulation as well. The cosimulation technique

described has been implemented using the C-Language Interface of the Synopsys VHDL

System Simulator.

Many early design tools emphasized noninteractive automation in the hopes that the

strengths of software compilers could be replicated in hardware design. More recently,

256

designers have become aware of the value of interactivity in design tools, particularly at

higher levels of abstraction where changes can have a large impact in the ultimate quality

of the design result. We have sought to describe the properties of interactive design tools

that have the most likelihood of improving their usefulness. We have been informed by

previous work in human-computer interaction, and the use of the OAI model as a valuable

abstraction in designing the user interface itself. One such design tool, TkSched, has been

created using these principles to aid the design of hardware from SDF graphs. The use of

multiple views, cross-connected, and allowing exploration of tradeoffs at a high level is

intended to bring improvements to the design process over methodologies that keep much

of their internal representations hidden.

6.2 Future Directions

We have touched on a number of distinct areas in the design flow from specification to

implementation. These include interactive design, synthesis, and cosimulation of the

resulting designs. Each of these areas holds the potential for extensions to this work. We

have sought to provide a synthesis path from SDF graphs to an RTL representation for

synthesis. While we have sought an alternative to existing behavioral synthesis

approaches, integrating our approach with behavioral synthesis as the target could prove to

be of greater value. Performing coarse-grain resource sharing through SDF analysis, fol-

lowed by fine-grain resource sharing in behavioral synthesis is likely to yield better results

than attempting to make all resource sharing decisions at the highest level of abstraction.

The techniques for hardware synthesis are directly informed by the structure of the

precedence graph that comes from analyzing the SDF graph. This precedence graph struc-

ture is the same whether the eventual implementation is in hardware or in software.

Because of this, it would be worthwhile to see how the goals of hardware synthesis and

257

those of software synthesis could be coupled in a unified design flow. Hardware/software

codesign from SDF for a general hardware and software architecture would increase the

value of either hardware or software synthesis techniques alone.

A limitation of the techniques described here is the emphasis on SDF alone. Most

practical systems require the specification of branching control or modal changes. The

SDF approach can be encapsulated in larger systems that handle the control outside of the

synthesized hardware, but this keeps a barrier between control and dataflow in both speci-

fication and in synthesis. Applying broader dataflow models such as BDF can lead to the

loss of analyzability for general graphs. Approaches that mix models of computation, such

as SDF with finite state machines (FSM), may be a direction worth pursuing. Both the

SDF and FSM models are synthesizable in either hardware or software, but methods to do

co-synthesis from such mixed models of computation are likely to find value over methods

that synthesize separately from each.

The cosimulation capabilities that have been described here are based on SDF seman-

tics, but real design flows call for the use of broader VHDL semantics, especially when

cosimulating synthesized VHDL models with imported VHDL models with different

semantics. The use of VHDL as a cosimulation platform for multiple, known semantic

subsets can be a flexible route to system simulation that may hold efficiencies over simu-

lating with general VHDL semantics. The interface provided in VHDL to other programs

and simulations makes VHDL a reasonable choice for general system simulation.

The interactive design tool TkSched allows design work at a high level of abstraction

with a number of views. The Tycho syntax manager of Ptolemy is an appropriate candi-

date for a reimplementation of TkSched, through the use of provided classes for handling

interactions as well as showing multiple views based on shared data. The close integration

of Tycho with Ptolemy also makes it a good choice for gaining further interactivity at

other stages in the design process.

258

References

[Allerton84] D.J. Allerton, A.J. Currie,SCHOLAR: Another Approach to silicon Com-

pilation, Proc. IEEE Intl. Conf. on Computer-Aided Design, ICCAD-84, Santa Clara, CA,

Nov 1984, pp. 119-121.

[Analogy97] Analogy, Inc., 9205 S.W. Gemini Drive, Beaverton, OR 97008, USA,

http://www.analogy.com.

[Andrews88] W. Andrews,Silicon Compilers Still Struggling Toward Widespread

Acceptance, Computer Design, Feb 15 1988, pp. 37-43.

[Armstrong93] J.R. Armstrong, F.G. Gray,Structured Logic Design with VHDL, Pren-

tice-Hall, Upper Saddle River, NJ, 1993.

[Ayres79] R. Ayres,Silicon Compilation: A Hierarchical Use of PLAs, Proc. 16th

Design Automation Conference, DAC-79, San Diego, CA, Jun 1979, pp. 314-326.

[Balakrishnan88] M. Balakrishnan, A.K. Majumdar, D.K. Banerji, J.G. Linders, J.C.

Majithia, Allocation of Multiport Memories in Data Path Synthesis, IEEE Trans. on Com-

puter-Aided Design, Vol. 7, No. 4, Apr 1988, pp. 536-540.

[Banks96] J. Banks, J.S. Carson II, B.L. Nelson,Discrete-Event System Simulation,

Prentice-Hall, Upper Saddle River, New Jersey, 1996.

[Beedie84] M. Beedie,On the European Front, Silicon Compilers Focus on Design

Languages, Electronic Design, Oct 31 1984, pp. 99-104.

[Beerel91] P.A. Beerel, T.H. Meng,Testability of Asynchronous Timed Control Cir-

cuits with Delay Assumptions, Proc. 28th ACM/IEEE Design Automation Conference,

San Francisco, CA, Jun 1991, pp. 446-451.

[Benini97] L. Benini, P. Vuillod, A. Bogliolo, G. DeMicheli,Clock Skew Optimization

for Peak Current Reduction, J. VLSI Signal Processing Systems for Signal, Image, and

Video Technology, Vol. 16, No. 2-3, Jun-Jul 1997, pp. 117-130.

259

[Bentley85] J. Bentley, ed., Programming Pearls: Bumper-Sticker Computer Science,

Communications of the ACM, Vol. 28, No. 9, Sep 1985, pp. 896-901.

[Berners-Lee94] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, et. al.,

The World-Wide Web, Communications of the ACM, Vol. 37, No. 8, Aug 1994, pp. 76-82.

[Bhattacharyya96] S.S. Bhattacharyya, P.K. Murthy, E.A. Lee,Software Synthesis

from Dataflow Graphs,Kluwer, Norwell, MA, 1996.

[Bier90] J. Bier, S. Sriram, E.A. Lee,A Class of Multiprocessor Architectures for

Real-Time DSP, VLSI DSP IV, ed. H. Moscovitz, IEEE Press, Nov 1990.

[Brodersen92] R.W. Brodersen, ed.,Anatomy of a Silicon Compiler, Boston, MA: Klu-

wer Academic Publishers, 1992.

[Broll96] W. Broll, T. Koop, VRML: Today and Tomorrow, Computers and Graphics,

Vol. 20, No. 3, May-Jun 1996, pp. 427-434.

[Brooks96] F.P. Brooks, Jr., The Computer Scientist as Toolsmith: II, Communications

of the ACM, Vol. 39, No. 3, Mar 1996, pp. 61-68.

[Brown88] R. Brown,Calendar Queues: A Fast O(1) Priority Queue Implementation

for the Simulation Event Set Problem, Communications of the ACM, Vol. 31, No. 10, Oct

1988, pp. 1220-1227.

[Buck91] J.T. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt,Multirate Signal Process-

ing in Ptolemy, Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing, Tor-

onto, Canada, Apr. 1991.

[Buck93] J.T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory

Using the Token Flow Model, Ph.D. Dissertation, UC Berkeley, Electronics Research

Laboratory Memorandum No. UCB/ERL M93/69, 10 September 1993.

[Buck94] J.T. Buck, S.Ha, E.A. Lee, D.G. Messerschmitt,Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems, Int. Journal of Computer Simulation,

special issue onSimulation Software Development, Vol. 4, Apr 1994, pp. 155-182.

260

[Bush45] V. Bush, As We May Think, Atlantic Monthly, Vol. 76, No. 1, Jul 1945, pp.

101-108.

[Cadence97] Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA

95134, USA, http://www.cadence.com.

[Camposano91] R. Camposano, L.F. Saunders, R.M. Tabet,VHDL As Input for High-

Level Synthesis, IEEE Design & Test of Computers, Vol. 8, No. 1, Mar 1991, pp. 43-49.

[Camposano96] R. Camposano,Behavioral Synthesis, 33rd Design Automation Con-

ference, Las Vegas, NV, Jun 1996, pp. 33-34.

[Cassandras93] C.G. Cassandras,Discrete Event Systems: Modeling and Performance

Analysis, Irwin, Boston, MA, 1993.

[CFI97] CAD Framework Initiative,CAD Framework Initiative Changing Its Name to

SI2, Electronic News, Vol. 43, No. 2172, Jun 16 1997, p. 21.

[Cheng84] E.K. Cheng,Verifying Compiled Silicon, VLSI Design, Oct 1984, pp. 70-

74.

[Chou95] N. Chou, C. Cheng,On General Zero-Skew Clock Net Construction, IEEE

Trans. on VLSI Systems, Vol. 3, No. 1, Mar 1995, pp. 141-146.

[Ciesielski84] M.J. Ciesielski,A New Approach to Routing in Irregular Channels for

the SILC Silicon Compiler, Proc. IEEE Intl. Conf. on Computer-Aided Design, ICCAD-

84, Santa Clara, CA, Nov 1984, pp. 66-68.

[Collett84] R. Collett,Silicon Compilation: A Revolution in VLSI Design, Digital

Design, Aug 1984, pp. 88-95.

[Corazao96] M.R. Corazao, M.A. Khalaf, L.M. Guerra, M. Potkonjak, J.M. Rabaey,

Performance Optimization Using Template Mapping for Datapath-Intensive High-Level

Synthesis, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 15, No. 8, Aug 1996, pp. 877-888.

261

[Covington87] C.D. Covington, G.E. Carter, D.W. Summers,Graphic Oriented Signal

Processing Language--GOSPL, presented at ICASSP-87, Dallas, TX, 1987.

[Crystal74] T. Crystal, L. Kulsrud,Circus, CRD Working Paper, Inst. Def. Analysis,

Princeton, NJ, Dec. 1974.

[Delaney89] W. Delaney, E. Vaccari,Dynamic Models and Discrete Event Simulation,

Marcel Dekker, New York, 1989.

[DeMan90] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen, S.

Note, J. Huisken,Architecture-Driven Synthesis Techniques for VLSI Implementation of

DSP Algorithms, Proc. of the IEEE, Vol. 78, No. 2, Feb 1990, pp. 319-335.

[DeMicheli90] G. De Micheli, D. Ku, F. Mailhot, T. Truong,The Olympus Synthesis

System, IEEE Design & Test of Computers, Oct 1990, pp. 37-53.

[DeMicheli96] G. De Micheli, M. Sami, eds.,Hardware / Software Co-Design, Klu-

wer, The Netherlands, 1996, pp. 367-396.

[Denyer83] P.B. Denyer, D. Renshaw,Case Studies in VLSI Signal Processing Using a

Silicon Compiler, Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing,

ICASSP-83, Boston, MA, Apr 1983, Vol. 2, pp. 939-942.

[Dertouzous69] M. Dertouzous, M. Kaliske, K. Polzen,On Line Simulation of Block-

Diagram Systems, IEEE Trans. Comput., Vol. C-18, Apr 1969.

[Donlin93] M. Donlin, Backplane Binds Digital and Mixed-Signal Simulators, Com-

puter Design, Vol. 32, No. 7, Jul 1993, p. 107.

[Dorsch95] J. Dorsch,Costello: We Need One Design Language, Electronic News,

Vol. 41, No. 2059, Apr 3 1995, pp. 52(2).

[EIA87] Electronic Design Interchange Format, Version 2 0 0, EIA Interim Standard

No. 44, Electronic Industries Association, Engineering Department, Washington, D.C.,

1987.

262

[Engelbart84] D.C. Engelbart, Authorship Provisions in AUGMENT, Proc. 28th IEEE

Computer Science International Conference, COMPCON Spring ‘84, Feb-Mar 1984, pp.

465-472.

[Ercanli96] E. Ercanli, C. Papachristou,A Register File and Scheduling Model for

Application Specific Processor Synthesis, Proc. 33rd Design Automation Conference, Las

Vegas, NV, Jun 1996, pp. 35-40.

[Eurich90] J.P. Eurich, G. Roth,EDIF Grows Up, IEEE Spectrum, Vol. 27, No. 11,

Nov 1990, pp. 68(5).

[Fishman73] G.S. Fishman,Concepts and Methods in Discrete Event Digital Simula-

tion, Wiley, New York, 1973.

[Fishman78] G.S. Fishman,Principles of Discrete Event Simulation, Wiley, New

York, 1978.

[Fox83] J.R. Fox,The MacPitts Silicon Compiler: A View From the Telecommunica-

tions Industry, VLSI Design, May/Jun 1983, pp. 30-37.

[Gajski82] D.D. Gajski,The Structure of a Silicon Compiler, Proc. IEEE Intl. Conf. on

Circuits and Computers, ICCC-82, New York, NY, Sep-Oct 1982, pp. 272-276.

[Gajski84] D.D. Gajski,Silicon compilers and Expert Systems for VLSI, Proc. 21st

Design Automation Conference, DAC-84, Albuquerque, NM, Jun 1984, pp. 86-87.

[Gajski94] D.D. Gajski, F. Vahid, S. Narayan, J. Gong,Specification and Design of

Embedded Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

[Gajski96] D.D. Gajski, T. Ishii, V. Chaiyakul, H. Juan, T. Hadley, A Design Method-

ology end Environment for Interactive Behavioral Synthesis, Department of Information

and Computer Science, University of California, Irvine, Technical Report #96-29, July 15,

1996.

263

[Gao92] G.R. Gao, R. Govindarajan, P. Panangaden,Well-Behaved Dataflow Pro-

grams for DSP Computation, Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal

Processing, ICASSP-92, San Francisco, CA, Mar 1992, Vol. 5, pp. 561-564.

[Garey79] M.R. Garey, D.S. Johnson,Computers and Intractability, W.H. Freeman

and Company, New York, 1979.

[Genin90] D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, and others,DSP Specification

Using the Silage Language, Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Pro-

cessing, ICASSP-90, Albuquerque, NM, Apr 1990, Vol. 2, pp. 1056-1060.

[Glover98] R. Glover,EDA Companies Crossing the Chasm: From a Small to a Large

Company, Transcript of the EDAC Emerging Companies Committee Meeting, Mar 17

1998, http://www.edac.org/EDAC/EDACHOME/MOnly/ECC/CHASM/Chasm.html.

[Goering88] R. Goering,Silicon Compilers Automate Layout and Testability, Com-

puter Design, Mar 1 1988, p. 28.

[Goering93] R. Goering,Backplane Can Use Multiple Simulators, Electronic Engi-

neering Times, No. 729, Jan 18 1993, p. 46.

[Goering97a] R. Goering,Upheaval Looms for IC Design Methodologies, Electronic

Engineering Times, No. 951, Apr 28 1997, pp. 1(3).

[Goering97b] R. Goering,Systems-on-Silicon Designs Talk In New Languages, Elec-

tronic Engineering Times, No. 957, Jun 9 1997, pp. 61(3).

[Goering97c] R. Goering,Design Language Will Speak Many Tongues, Electronic

Engineering Times, No. 963, Jul 21 1997, pp. 1(2).

[Goering98] R. Goering,No Near-Term Exit Seen for Corporate CAD, Electronic

Engineering Times Online, Apr 8 1998, http://techweb.cmp.com/eet/823/.

[Gold69] B. Gold, C. Rader,Digital Processing of Signals, New York: McGraw-Hill,

1969.

264

[Gray79] J.P. Gray,Introduction to Silicon Compilation, Proc. 16th Design Automa-

tion Conference, DAC-79, San Diego, CA, Jun 1979, pp. 305-306.

[Grotker95] T. Grotker, P. Zepter, H. Meyr,ADEN: An Environment for Digital

Receiver ASIC Design, 1995 Int. Conf. on Acoustics, Speech, and Signal Processing,

Detroit, MI, May 1995, Vol. 5, pp. 3243-3246.

[Hadley92] T. Hadley, A.C. Wu, D.D. Gajski,An Efficient Multi-View Design Model

for Real-Time Interactive Synthesis, Technical Report 92-35, Dept. of Information and

Computer Science, UC Irvine, April 1992.

[Hansen71] W.J. Hansen, User Engineering Principles for Interactive Systems, Proc.

Fall Joint Computer Conference, AFIP Fall ‘71, Vol. 39, Nov 1971, pp. 523-532.

[Harding88] B. Harding,EDA Vendors Cooperate on EDIF and Proposed CAD

Framework Standard, Computer Design, Vol. 27, No. 15, Aug 15 1988, pp. 31(3).

[Harding89] B. Harding,EDA Vendors Race to Support Open Systems, VHDL, Com-

puter Design, Vol. 28, No. 12, Jun 12 1989, pp. 21(16).

[Hawley96] R.A. Hawley, B.C. Wong, T. Lin, J. Laskowski, H. Samueli,Design Tech-

niques for Silicon Compiler Implementations of High-Speed FIR Digital Filters, IEEE J.

Solid-State Circuits, Vol. 31, No. 5, May 1996, pp. 656-666.

[Hedges82] T.S. Hedges, K.H. Slater, G.W. Clow, T. Whitney, The Siclops Silicon

Compiler, Proc. IEEE Intl. Conf. on Circuits and Computers, ICCC-82, New York, NY,

Sep-Oct 1982, pp. 277-280.

[Henke75] W. Henke,MITSYN--An Interactive Dialogue Language for Time Signal

Processing, MIT Res. Lab. Electron., Cambridge, MA, Memo. RLE-TM-1, Feb 1975.

[Hilfinger85] P. Hilfinger,A High-Level Language and Silicon Compiler for Digital

Signal Processing, Proc. of the IEEE 1985 Custom Integrated Circuits Conference, Port-

land, OR, USA, May 1985, pp. 213-216.

265

[Horstmannshoff97] J. Horstmannshoff, T. Grotker, H. Meyr,Mapping Multirate

Dataflow to Complex RT Level Hardware Models, IEEE Int. Conf. on Application Specific

Systems, Architectures and Processors, Zurich, Switzerland, Jul 1997, pp. 283-92.

[Hung90] A. Hung, T.H. Meng,Asynchronous Self-Timed Circuit Synthesis with Tim-

ing Constraints, Proc. 1990 Intl. Symp. on Circuits and Systems, New Orleans, LA, May

1990, pp. 1126-1130.

[IEEE88] IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076-1987,

IEEE, New York, 1988.

[IEEE94] IEEE Standard VHDL Language Reference Manual, ANSI/IEEE Std. 1076-

1993, IEEE, New York, 1994.

[IEEE-DASC97] IEEE Design Automation Standards Committee 1076.1 Working

Group, http://www.vhdl.org/analog/.

[Interleaf97] Interleaf, Inc., 62 Fourth Avenue, Waltham, MA 02154, USA, http://

www.interleaf.com.

[Jagadisch91] H.V. Jagadisch, T. Kailath,Obtaining Schedules for Digital Systems,

IEEE Trans. on Signal Processing, Vol. 39, Oct 1991, pp. 2296-2316.

[Jeng93] L. Jeng, D. Bai, L. Chen,Graphical Block-Diagram Based Programming

Environment for a DSP Silicon Compiler, IEE Proceedings G (Circuits, Devices, and Sys-

tems), Vol. 140, No. 5, Oct 1993, pp. 313-318.

[Johannsen79] D. Johannsen,Bristle Blocks: A Silicon Compiler, Proc. 16th Design

Automation Conference, DAC-79, San Diego, CA, Jun 1979, pp. 310-313.

[Johnson84] S.C. Johnson,Silicon Compiler Lets System Makers Design Their Own

VLSI Chips, Electronic Design, Oct 4 1984, pp. 167-181.

[Johnson97] S. Johnson, Interface Culture: How New Technology Transforms the Way

We Create and Communicate, Harper-Collins, San Francisco, 1997.

266

[Karafin65] B. Karafin,The New Block Diagram Compiler for Simulation of Sampled-

Data Systems, AFIPS Conf. Proc., Vol. 27, Washington, D.C.: Spartan, 1965, pp. 55-61.

[Katz83] R.H. Katz,Managing the Chip Design Database, IEEE Computer, Dec 1983,

pp. 26-36.

[Kelley61] J.L. Kelley, Jr., C. Lochbaum, V.A. Vyssotsky,A Block Diagram Compiler,

Bell Syst. Tech. J., Vol. 40, May 1961.

[Khoral97] Khoral Research, Inc., 6001 Indian School Rd. N.E., Suite 200, Albuquer-

que, NM 87110-4139, USA, http://www.khoral.com.

[Korn77] G. Korn, High-Speed Block-Diagram Languages for Microprocessors and

Minicomputers in Instrumentation, Control, and Simulation, Comput. Elec. Eng., Vol. 4,

1977, pp. 143-159.

[Ku90] D. Ku, G. De Micheli,HardwareC: A Language for Hardware Design, Version

2.0, Tech. Rep. CSL-90-419, Computer Systems Laboratory, Stanford Univ., Aug. 1990.

[Kurdahi87] F.J. Kurdahi, A.C. Parker,REAL: A Program for REgister ALlocation,

Proc. 24th ACM/IEEE Design Automation Conference, Jun 1987, pp. 210-215.

[Lagnese91] E.D. Lagnese, D.E. Thomas,Architectural Partitioning for System Level

Synthesis of Integrated Circuits, IEEE Trans. on Computer-Aided Design, Vol. 10, No. 7,

Jul 1991, pp. 847-860.

[Lambrette95] U. Lambrette, P. Zepter, R. Mehlan, H. Meyr,Rapid Prototyping of a

DMSK Transceiver, 1995 IEEE 45th Vehicular Technology Conference, Chicago, IL, Jul

1995, Vol. 1, pp. 504-508.

[Lapsley96] P. Lapsley, J. Bier, A. Shoham, E.A. Lee,DSP Processor Fundamentals:

Architectures and Features, p. 108, Berkeley Design Technology, Inc., Fremont, CA, http:/

/www.bdti.com, 1996.

[Lee84] B. Lee, D. Ritzman, W. Snapp,Silicon Compiler Teams With VLSI Worksta-

tion to Customize CMOS ICs, Electronic Design, Nov 15 1984, pp. 149-162.

267

[Lee87] E.A. Lee, D.G. Messerschmitt,Synchronous Data Flow, Proc. of the IEEE,

Vol. 75, No. 9, Sep 1987, pp. 1235-1245.

[Lee89a] E.A. Lee, W.-H. Ho, E.E. Goei, J.C. Bier, et. al.,Gabriel: A Design Environ-

ment for DSP, IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 37, No. 11,

Nov 1989, pp. 1751-1762.

[Lee89b] E.A. Lee, S. Ha,Scheduling Strategies for Multiprocessor DSP, Proc. IEEE

Global Telecommunications Conference and Exhibition, Dallas, Texas, Vol. 2, Nov 1989,

pp. 1279-1283.

[Lee90] E.A. Lee, J. Bier,Architectures For Statically Scheduled Dataflow, Journal on

Parallel and Distributed Systems, Vol. 10, Dec 1990, pp. 333-348.

[Lee97] E.A. Lee and A. Sangiovanni-Vincentelli,A Denotational Framework for

Comparing Models of Computation, Tech. Report UCB/ERL M97/11, Dept. of EECS,

University of California, Berkeley, CA 94720, Sep 1992.

[Leiserson83] C.E. Leiserson, F. Rose, J. Saxe,Optimizing Synchronous Circuitry for

Retiming, Proc. of the 3rd Caltech Conf. on VLSI, Pasadena, CA, Mar 1983, pp. 87-116.

[Manaresi96] N. Manaresi, R. Rovatti, E. Franchi, R. Guerrieri, G. Baccarani,A Sili-

con Compiler of Analog Fuzzy Controllers: From Behavioral Specifications to Layout,

IEEE Trans. on Fuzzy Systems, Vol. 4, No. 4, Nov 1996, pp. 418-428.

[Mantooth95] H.A. Mantooth, M. Fiegenbaum,Modeling With an Analog Hardware

Description Language, Kluwer, Boston, 1995.

[Martinez84] A. Martinez, S. Nance,Methodology for Compiler Generated Silicon

Structures, Proc. 21st Design Automation Conference, DAC-84, Albuquerque, NM, Jun

1984, pp. 689-691.

[McFarland90] M.C. McFarland, A.C. Parker, R. Camposano,The High-Level Synthe-

sis of Digital Systems, Proc. of the IEEE, Vol. 78, No. 2, Feb 1990, pp. 301-318.

268

[Mcleod89] J. Mcleod,Synopsys: The Right Tools at the Right Time, Electronics, Vol.

62, No. 11, Nov 1989, pp. 108(2).

[Mead80] C.A. Mead, L.A. Conway,Introduction to VLSI Systems, Reading, MA:

Addison-Wesley, 1980.

[Mead82] C.A. Mead, G. Lewicki,Silicon Compilers and Foundries Will Usher In

User-Designed VLSI, Electronics, Aug 11 1982, pp. 107-111.

[Meng87] T.H. Meng, R.W. Brodersen, D.G. Messerschmitt,Asynchronous Logic Syn-

thesis for Signal Processing from High Level Specifications, Proc. IEEE Intl. Conf. on

Computer-Aided Design: ICCAD-87, Santa Clara, CA, Nov 1987, pp. 514-517.

[Meng88] T.H. Meng, G.M. Jacobs, R.W. Brodersen, D.G. Messerschmitt,Asynchro-

nous Processor Design for Digital Signal Processing, Proc. IEEE Intl. Conf. on Acoustics,

Speech, and Signal Processing: ICASSP-88, New York, NY, Apr 1988, pp. 2013-2016.

[Meng89a] T.H. Meng, R.W. Brodersen, D.G. Messerschmitt,Design of Clock-Free

Asynchronous Systems for Real-Time Signal Processing, Proc. IEEE Intl. Conf. on Acous-

tics, Speech, and Signal Processing: ICASSP-89, Glasgow, UK, May 1989, pp. 2532-

2535.

[Meng89b] T.H. Meng, R.W. Brodersen, D.G. Messerschmitt,Automatic Synthesis of

Asynchronous Circuits from High-Level Specifications, IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 8, No. 11, Nov 1989, pp. 1185-1205.

[Meng90] T.H. Meng,Asynchronous Implementation of Parallel Architectures, Proc.

1990 Intl. Symp. on Circuits and Systems, New Orleans, LA, May 1990, pp. 2609-2612.

[Meng91a] T.H. Meng, R.W. Brodersen, D.G. Messerschmitt,Asynchronous Design

for Programmable Digital Signal Processors, IEEE Trans. on Signal Processing, Vol. 39,

No. 4, Apr 1991, pp. 939-952.

[Mentor97] Mentor Graphics Corporation, 8005 S.W. Boeckman Road, Wilsonville,

Oregon 97070-7777, http://www.mentorg.com.

269

[Messerschmitt84] D.G. Messerschmitt,A Tool for Structured Functional Simulation,

IEEE J. Selected Areas in Communications, Vol. SAC-2, No. 1, Jan 1984, pp. 137-147.

[Miyazaki93] T. Miyazaki, T. Nishitani, M. Edahiro, I. Ono,DCT/IDCT Processor for

HDTV Developed with DSP Silicon Compiler, J. VLSI Signal Processing, Vol. 5, No. 2-3,

Apr 1993, pp. 151-158.

[Murthy97] P.K. Murthy, S.S. Bhattacharyya, E.A. Lee, Joint Minimization of Code

and Data for Synchronous Dataflow Programs, Journal of Formal Methods in System

Design, Vol. 11, No. 1, Jul 1997, pp. 41-70.

[Myers93] C.J. Myers, T.H. Meng,Synthesis of Timed Asynchronous Circuits, IEEE

Trans. on VLSI Systems, Vol. 1, No. 2, Jun 1993, pp. 106-119.

[Nash84] J.H. Nash, S.G. Smith,A Front End Graphic Interface to the FIRST Silicon

Compiler, Proc. European Conf. on Electronic Design Automation, EDA-84, Warwick,

UK, Mar 1984, pp. 120-124.

[Note91] S. Note, W. Geurts, F. Catthoor, H. De Man,Cathedral-III: Architecture-

Driven High-Level Synthesis for High Throughput DSP Applications, 28th ACM/IEEE

Design Automation Conference, 1991, pp. 597-602.

[Nourani84] C.F. Nourani, K.J. Lieberherr,Ultra High Correct Silicon Compilation:

Synthesis with ZEUS, Proc. Intl. Conf. on Industrial Electronics, Control, and Instrumenta-

tion, IECON-84, Tokyo, Japan, Oct 1984, Vol. 1, pp. 254-258.

[Panasuk84] C. Panasuk,Silicon Compilers Make Sweeping Changes in the VLSI

Design World, Electronic Design, Sep 20 1984, pp. 67-74.

[Perryman88] N. Perryman,When Enthusiasm Overshadows the Need: Silicon Com-

pilers Can’t Help ASICs Until Suppliers Sell Smarter, EDN, Vol. 33, No. 23A, Nov 17

1988, pp. S60(2).

270

[Pino95] J.L. Pino, E.A. Lee,Hierarchical Static Scheduling of Dataflow Graphs onto

Multiple Processors, 1995 Int. Conf. on Acoustics, Speech, and Signal Processing,

Detroit, MI, Vol. 4, May 1995, pp. 2643-2646.

[Pino96] J.L. Pino, M.C. Williamson, E.A. Lee, Interface Synthesis in Heterogeneous

System-Level DSP Design Tools, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing, Atlanta, GA, May 1996, Vol. 2, pp. 1268-1271.

[Potkonjak95] M. Potkonjak, W. Wolf,Cost Optimization in ASIC Implementation of

Periodic Hard-Real Time Systems using Behavioral Synthesis Techniques, 1995 IEEE/

ACM International Conference on Computer-Aided Design, Nov 1995, pp. 446-451.

[Powell83] P.A.D. Powell, M.I. Elmasry,The ICEWATER Silicon Compiler, Proc.

IEEE Intl. Symp. on Circuits and Systems, ISCS-83, Newport Beach, CA, May 1983, Vol.

2, pp. 526-529.

[Precedence97] Precedence, Inc., 1700 Dell Avenue, Campbell, CA 95008, http://

www.precedence.com.

[Rabaey90] J. Rabaey, M. Potkonjak,Resource Driven Synthesis in the HYPER Sys-

tem, IEEE Int. Symposium on Circuits and Systems, New Orleans, LA, pp. 2592-2595,

May 1990.

[Rational97] Rational Software Corp., 18880 Homestead Road, Cupertino, CA 95014,

USA, http://www.rational.com.

[Rumbaugh96] J. Rumbaugh,OMT Insights: Perspectives on Modeling from the Jour-

nal of Object-Oriented Programming, SIGS Books, New York, 1996, p. 168.

[Rumbaugh97] J. Rumbaugh,Modeling Through the Years, Journal of Object-Ori-

ented Programming, Vol. 10, No. 4, Jul-Aug 1997, pp. 16-19.

[Saleh96] R.A. Saleh, B.A.A. Antao, J. Singh,Multilevel and Mixed-Domain Simula-

tion of Analog Circuits and Systems, IEEE Trans. on Computer-Aided Design of Inte-

grated Circuits and Systems, Vol. 15, No. 1, Jan 1996, pp. 68-82.

271

[Santarini98a] M. Santarini,Mentor Closing Precedence Unit, Discontinuing SimMa-

trix Backplane, Electronic Engineering Times, No. 996, Mar 9 1998, p. 10.

[Santarini98b] M. Santarini,EDA Revenue Topped $2.70 Billion in 1997, Report

Shows, Electronic Engineering Times Online, Apr 8 1988, http://techweb.cmp.com/eet/

823/.

[Schmerler95a] S. Schmerler, Y. Tanurhan, K.D. Muller-Glaser,A Backplane for

Mixed-Mode Cosimulation, Proc. 1995 EUROSIM Conference, EUROSIM-95, Vienna,

Austria, Sep 1995, pp. 499-504.

[Schmerler95b] S. Schmerler, Y. Tanurhan, K.D. Muller-Glaser,A Backplane

Approach for Cosimulation in High-Level System Specification Environments, Proc. 1995

European Design Automation Conference, EURO-DAC-95, Brighton, UK, Sep 1995, pp.

262-267.

[Schneider91] K. Schneider,Standards the Key to That Old EDA Magic, Electronics

Weekly, No. 1566, Sep 18 1991, p. 21.

[SDSC97] The VRML Repository of the San Diego Supercomputer Center, http://

www.sdsc.edu/vrml/.

[Shanmugan87] K.S. Shanmugan, G.J. Minden, E. Komp, T.C. Manning, E.R.

Wiswell, Block-Oriented System Simulator (BOSS), Telecommun. Lab., Univ. Kansas, Int.

Memo., 1987.

[Sheikh96] F. Sheikh,Visualizing Architecture and Algorithm Interaction in Embed-

ded Systems, U.C. Berkeley Memorandum UCB/ERL M96/60, Masters report, Sep 1996.

[Shneiderman83] B. Shneiderman, Direct Manipulation: A Step Beyond Programming

Languages, Computer, Vol. 16, No. 8, Aug 1983, pp. 57-69.

[Shneiderman97] B. Shneiderman,Designing the User Interface: Strategies for Effec-

tive Human-Computer Interaction, 3rd ed., Addison Wesley, Reading, MA, 1997.

272

[Shuey97] R.L. Shuey, D.L. Spooner, O. Frieder,The Architecture of Distributed Com-

puter Systems, p. 227, Addison-Wesley, Reading, MA, 1997.

[SIA97] Silicon Industry Association,The National Technology Roadmap for Semi-

conductors, 1997 Edition, SEMATECH, 1997, http://www.sematech.org/public/roadmap/

index.htm.

[Simpson96] R. Simpson, A. Renear, E. Mylonas, A. van Dam, 50 Years After ‘As We

May Think’: The Brown / MIT Vannevar Bush Symposium, Interactions, Vol. 3, No. 2,

Mar 1996, pp. 47-67.

[SLDL97] Silicon Integration Initiative,Proceedings of the First Workshop on Systems

Design Languages, http://www.si2.org/SLD/sldl/.

[Southard83] J.R. Southard,MacPitts: An Approach to Silicon Compilation, IEEE

Computer, Dec 1983, pp. 74-82.

[Southard84] J.R. Southard,Silicon Compiler Demands No Hardware Expertise to

Fashion Custom Chips, Electronic Design, Nov 15 1984, pp. 187-200.

[Sriram95] S. Sriram,Minimizing Communication and Synchronization Overhead in

Multiprocessors for Digital Signal Processing, Tech. Report UCB/ERL 95/90, Ph.D. Dis-

sertation, Dept. of EECS, University of California, Berkeley, CA 94720, Nov 1995.

[Sun92] J.S. Sun,Design of System-Level Interfaces, Tech. Report UCB/ERL M92/

105, Ph.D. Dissertation, Dept. of EECS, University of California, Berkeley, CA 94720,

Sep 1992.

[Synopsys95]VSS Expert Interfaces V3.2b, Synopsys, Inc., 700 East Middlefield Rd.,

Mountain View, CA 94043, Document Order Number 1US01-10062, 1995.

[Synopsys97] Synopsys, Inc., 700 East Middlefield Rd., Mountain View, CA 94043,

USA, http://www.synopsys.com.

273

[Tellez97] G.E. Tellez, M. Sarrafzadeh,Minimal Buffer Insertion in Clock Trees with

Skew and Slew Rate Constraints, IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 16, No. 4, Apr 1997, pp. 333-342.

[Todesco96] A.R.W. Todesco, T.H. Meng,Symphony: A Simulation Backplane for

Parallel Mixed-Mode Co-Simulation of VLSI Systems, Proc. 33rd Design Automation

Conference, DAC-96, Las Vegas, NV, Jun 1996, pp. 149-154.

[Tsay93] R. Tsay,An Exact Zero-Skew Clock Routing Algorithm, IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, Vol 12, No. 2, Feb 1993, pp.

242-249.

[vanBerkel92] K. van Berkel,Handshake Circuits: An Intermediary Between Commu-

nicating Processes and VLSI, Ph.D. Dissertation, Technical University of Eindhoven, May

1992.

[vanDerWolf94] P. van der Wolf,CAD Frameworks: Principles and Architecture, Bos-

ton, MA: Kluwer Academic Publishers, 1994.

[VanMeerbergen90] J. Van Meerbergen, J. Huisken, P. Lippens, O. McArdle, R. Seg-

ers, G. Goossens, J. Vanhoof, D. Lanneer, F. Catthoor, H. De Man,An Integrated Auto-

matic Design System for Complex DSP Algorithms, J. VLSI Signal Processing, 1990, pp.

265-278.

[VanMeerbergen92] J. Van Meerbergen, P. Lippens, B. McSweeney, W. Verhaegh, A.

van der Werf,A Design Strategy for High-Throughput Applications, VLSI Signal Process-

ing V, 1992, pp. 150-165.

[VLSIStaff84a] VLSI Design Staff,Silicon Compilers: Part 1: Drawing a Blank,

VLSI Design, Sep 1984, pp. 54-58.

[VLSIStaff84b] VLSI Design Staff,Silicon Compilers: Part 2: Casting an Image,

VLSI Design, Oct 1984, pp. 65-68.

274

[Weiss88] R. Weiss,Tool Pushes Beyond the Gates, Electronic Engineering Times,

No. 488, May 30 1988, pp. 1(2).

[Weiss89a] R. Weiss, L. Wirbel,Whither Silicon Compilers?, Electronic Engineering

Times, No. 536, May 1 1989, pp. 1(2).

[Weiss89b] R. Weiss,Broad-Based Tools Sweep Design Automation Conference, Elec-

tronic Engineering Times, No. 544, Jun 26 1989, pp. 49(3).

[Werner83a] J. Werner,Progress Toward the Ideal Silicon Compiler: Part 1: The Front

End, VLSI Design, Sep 1983, pp. 38-41.

[Werner83b] J. Werner,Progress Toward the Ideal Silicon Compiler: Part 2: The Lay-

out Problem, VLSI Design, Oct 1983, pp. 78-81.

[Wicks95] T. Wicks, M. Nigri, P. Treleaven,Efficient Fuzzy Logic Architectures Suit-

able for Silicon Compilation, Proc. 3rd Intl. Symp. Uncertainty Modeling and Analysis

and Annual Conf. No. Am. Fuzzy Information Processing Society, College Park, MD, Sep

1995, pp. 363-368.

[Wieclawski84] A. Wieclawski, M. Perkowski,Optimization of Negative Gate Net-

works Realized in Weinberger-Like Layout in a Boolean Level Silicon Compiler, Proc. 21st

Design Automation Conference, DAC-84, Albuquerque, NM, Jun 1984, pp. 703-704.

[Williams90] C.S. Williams, J.R. Rasure,A Visual Language for Image Processing,

Proc. of the 1990 IEEE Workshop on Visual Languages, Skokie, IL, Oct 1990, pp. 86-91.

[Williamson96] M.C. Williamson, E.A. Lee,Synthesis of Parallel Hardware Imple-

mentations from Synchronous Dataflow Graph Specifications, 30th Asilomar Conference

on Signals, Systems, and Computers, Pacific Grove, CA, Nov 1996.

[Wirbel89] L. Wirbel, Mentor Opens Up, Electronic Engineering Times, No. 544, Jun

26 1989, pp. 1(2).

275

[Xi97] J. Xi, W. Dai, Useful-Skew Clock Routing with Gate Sizing for Low-Power

Design, J. VLSI Signal Processing Systems for Signal, Image, and Video Technology, Vol.

16, No. 2-3, Jun-Jul 1997, pp. 163-179.

[Yoffa97] E.J. Yoffa,Design Automation: A Continuous Evolution, Electronic Engi-

neering Times, No. 957, Jun 9 1997, p. 22.

[Zepter94] P. Zepter, T. Grotker,Generating Synchronous Timed Descriptions of Digi-

tal Receivers from Dynamic Data Flow System Level Configurations, European Design

and Test Conference, Paris, France, Feb-Mar 1994, p. 672.

[Zepter95a] P. Zepter, T. Grotker, H. Meyr,Digital Receiver Design Using VHDL

Generation from Data Flow Graphs, 32nd Design Automation Conference, San Fran-

cisco, CA, Jun 1995, pp. 228-233.

[Zepter95b] P. Zepter, T. Grotker, O. Joeressen, H. Meyr,A Design System for High

Throughput Digital Signal Processing, Proc. GME Fachtagung Mikroelektronik 1995,

Baden-Baden, Germany, 1995.

[Zissman86] M.A. Zissman, G.C. O’Leary, D.H. Johnson,A Block Diagram Compiler

for a Digital Signal Processing MIMD Computer, DSP Workshop Presentation, Chatham,

MA, Oct. 1986.

[Zwolinski95] M. Zwolinski, C. Garagate, Z. Mrcarica, T.J. Kazmierski, and others,

Anatomy of a Simulation Backplane, IEE Proceedings - Computers and Digital Tech-

niques, Vol. 142, No. 6, Nov 1995, pp. 377-385.

