
0018-9162/98/$10.00 © 1998 IEEE January 1998 77

Engineering
an Education
for the Future

F
aced with rapid and unremitting change in the
disciplines of electrical and computer engi-
neering (ECE), some educators argue that we
should deliberately not respond aggressively.
Rather, we should focus on fundamentals that

will serve the students well for an entire career.
Although we strongly agree, this approach largely begs
the question of what those fundamentals are. Of course
it is desirable to impart all feasible fundamentals, but
that seems impossible given the expanding breadth of
knowledge required in the ECE field. Thus the question
we address is: What are the fundamental skills and
knowledge that are important for a future career in
ECE? What should be the educational priorities?

In this context, electrical engineering encompasses
integrated circuit and device design, microelectro-
mechanics, electromagnetics, and so on. Computer
engineering includes the design of computer systems
hardware (such as processors, network switches, and
peripherals) and related software (such as compilers,
operating systems, and networking software).
Somewhere in the midst of ECE are topics like signal
processing, communications, control, application-spe-
cific hardware design, and the broad terrain of het-
erogeneous systems (including hardware, software,
and physical channels). In the future there will be (or
should be) considerable overlap between these curric-
ula, and also an overlap with computer science.

CHANGES IN TECHNOLOGY
Engineering within the general domain of electricity,

magnetism, electronics, and computers has undergone
major shifts in emphasis over the past century. One of
these was the shift from power transmission and rotat-
ing machinery to electronics. A second was the shift
from vacuum tubes to semiconductors, from discrete
circuits to integrated circuits. A third was the shift from
analog to digital electronics. A fourth was program-

mable digital hardware.
Of course, none of these transitions was hard,

absolute, or quick. Indeed, none of them is yet com-
plete, and the fourth is in its early stages. Nevertheless,
they all had watershed implications for the nature of
an education. Our primary concern here is with the
shift in emphasis from analog to digital, and from fixed
to programmable. Is this as important a shift as the
earlier ones, from the perspective of its impact on edu-
cation? We believe so. This shift is similar to the shift
from power to electronics and from vacuum tubes to
semiconductors.

The shift from power to electronics hardly shifted
fundamental knowledge and skills at all, but did pro-
foundly change the nature of the design process and
the character of the systems built on those fundamen-
tals. The shift from vacuum tubes to semiconductors
had an almost opposite effect: The essential funda-
mentals shifted profoundly (from free-space electron
motion to holes and electrons in a semiconductor) and
the design skills changed substantially, but the nature
of the systems being realized didn’t change in a dis-
continuous way. The shift from analog to digital, and
from fixed to programmable, changes the most impor-
tant fundamental knowledge, the skills used, and the
nature of the systems being designed.

This latest shift raises three questions: What remains
necessary, fundamental knowledge for all engineers
designing digital, programmable systems? What design
skills must engineers be taught? What are the charac-
teristics of the systems being designed, and how must
they be addressed in the curriculum?

Advances in performance
Advances in electronic technology have been sim-

ply extraordinary. As embodied in Moore’s law, an
underlying exponential increase in capability at a fixed
price has profound implications over time. It implies

Electrical and computer engineering has undergone rapid change and will
continue to do so for the foreseeable future. These changes will have a
profound effect on ECE education. In this article, we describe some
changes in the practice of engineering and speculate on the educational
implications.

Edward A.
Lee
David G.
Messerschmitt
University of
California at
Berkeley

Co
ve

r F
ea

tu
re

.

Edward A. Lee
Copyright 1998 IEEE.

Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

.

78 Computer

a trend away from performance limitations to limita-
tions caused by our incomplete understanding of how
to realize an application. For example, many signal
processing investigations were not long ago criticized
as being impractical to implement, but now Moore’s
law has consumed most of our algorithm and theo-
retical knowledge in these areas. Now much of the

needed progress is constrained by shortcomings in our
understanding of the task or application, rather than
implementation feasibility or cost.

A clear implication is that performance and effi-
ciency are somewhat less critical design issues than
they used to be. There are, of course, notable excep-
tions, such as wireless communications, where traffic

Figure A. The interaction between electrical engineering and computer science is not only the interaction between elec-
tronics and computer hardware, but also between what electrical engineers call “systems” (here labeled EIS for
“electronic information systems”) and computer science theory and software. In this diagram, we list some topics in the
core and overlap areas. The orange area is entirely behind the red area.

Architecture
CAD for VLSI
Configurable systems

Linear systems
Control

 Nonlinear systems

Multimedia
Robotics, vision
Discrete-event systems
Simulation
Real-time systems
Concurrent software

 Networks

EIS

Communications
Information
Queueing theory
Signal processing

Circuits
Electronics
Devices
Process technology
E & M
Power systems
Plasmas
Quantum & optical

Languages
Complexity
Automata
Software engineering
Compilers
Operating systems
Algorithms
Graphics
User interfaces
Databases
Artificial intelligence

Communications
Information
Queueing theory
Signal processing

EE
CS

EIS

Multimedia
Robotics, vision
Discrete-event systems
Simulation
Real-time systems
Concurrent software

 Networks
Linear systems
Control

 Nonlinear systems

Architecture
CAD for VLSI
Configurable systems

An Integrated Curriculum
Raising the level of abstraction in the design of elec-

tronic systems has a major effect on the relationship
of traditional electrical engineering with computer
science. The classical overlap area, often called “com-
puter engineering,” captures only certain aspects of
this relationship. In particular, it focuses on hardware,
correctly viewing such disciplines as architecture, dig-
ital design, and computer-aided VLSI design as over-
lap areas. However, there is an equally important
overlap area that deals with systems at a higher level
of abstraction, and centers more on their application
than on their hardware.

We view EECS as consisting of three core areas and
three overlap areas, as illustrated in Figure A. The

three core areas are:

1. Electronics (E, red)
2. Electronic information systems (EIS, yellow)
3. Computer science (CS, blue)

Some subtopics (which are meant to be suggestive,
not exhaustive) are also shown in Figure A. The over-
lap areas are

1. Computer hardware (E and CS, purple)
2. Electronic systems (E and EIS, orange, which

does not show because it rests behind the red)
3. Computer information systems (EIS and CS,

green)

.

capacity depends on efficient use of the scarce radio
spectrum. But in a widening circle of applications, the
goal of minimizing manufacturing cost or making the
most efficient use of a resource is eclipsed by the desire
to minimize design cost or time to market.

In certain cases, a design may not even be
attempted because its complexity cannot be managed.

Most software today would not be designed without
high-level languages, regardless of efficiency con-
cerns. Thus, methodologies and tools that manage
complexity, even if they sacrifice efficiency, become
not just desirable but essential. In summary, the crit-
ical issue in the development of many products
becomes not, “how do we design circuitry with suf-
ficient speed?” but rather, “is it feasible to manage
the complexity of the design?” and “how do we
reduce the time to market?”

Importance of abstraction
While fundamental limits in electrical engineering

were formerly always physical, today they are as likely
to be complexity (and its cousins, decidability and
computability). Carefully conceived architecture is
necessary to manage complexity, sometimes at the
expense of efficiency. An important tool for com-
plexity management is abstraction. One of the most
dramatic successes of abstraction is digital design,
where circuits are modeled as Boolean functions.
Another example is synchronous design, where time
becomes discrete.

Of course, the synchronous and digital abstractions
are not always successful. If a design is pushing the per-
formance limits of the circuit technology, we may have
to revert to an analog design that abandons these
abstractions (as in RF and microwave frequencies
today). It is also clear that the abstractions used in dig-
ital design will have to be changed for deep submicron
technologies, where nonidealities like crosstalk and
wire delays will have to be taken into account.
However, this will have to be done by modifying the
set of abstractions, rather than abandoning abstraction
per se.

Many designs today simultaneously use multiple
abstractions. For example, a microcontroller may be
conceived as a synchronous digital circuit and then
abstracted as an instruction set. The instruction set
may be further abstracted by a compiler, in which case
designs are carried out in a higher level language such
as C, C++, or Java. Operating systems, software com-
ponents (Java Beans or ActiveX), and middleware
(such as CORBA or DCOM), offer still higher levels
of abstraction for system design.

In some situations, the performance penalty incurred
by basing designs on higher levels of abstraction can
be substantial. This penalty, however, becomes perfectly
acceptable when we realize that the design could not
be conceptualized well at lower levels of abstraction,
or that the cost or time to carry out the design would
be excessive. A design carried out at too low a level of
abstraction is likely to be poor, late, or both.

In other situations, performance and efficiency may
actually improve by using higher levels of abstraction.
A user interface for a microwave oven, for example,

January 1998 79

The overlap between EIS and CS forms a substantial
part of the current dynamism in our field. Yet it is
poorly served by most ECE, CS, and EECS curricula.

The choice of term “electronic information sys-
tems” is debatable, but more traditional terms fail to
serve our purposes. We note that there is a strong
overlap between the area we have described and what
electrical engineers call “systems” or “systems the-
ory.” Use of these terms, however, conflicts with the
use of the term “systems” in computer science, where
it refers to software systems and operating systems.
Since our discussion focuses on overlap areas, we
have to choose an alternative term. Why not the sim-
pler “information systems,” since the intellectual
underpinnings of EIS really do not depend on the
implementation in electronics? We avoid this term to
distinguish the subject from what a business school
would call “information systems” or what a library
school would call “information systems.”

Any taxonomy of intellectual activities can be end-
lessly debated. Nevertheless, to design a curriculum, we
have to take a stand on the specific content of each of
these disciplines. We believe that the unifying principle
of EIS is its formal approach to modeling systems. Such
a formal approach has always been a strength of both
traditional electrical engineering systems theory and
computer science theory. That it becomes logical to
reclassify these traditional approaches is a consequence
of the rising level of abstraction in the design of elec-
tronic systems.

The fundamental ideas in EIS might include such tra-
ditional EE concepts as discrete-time and continuous-
time signals, frequency domain, and feedback control,
as well as overlap concepts such as discrete events,
streams, state, automata, concurrency, and random-
ness. This differs from a purely EE view of systems in
that continuous-time signals are merely one of many
types of signals. At the opposite extreme in abstraction
we have streams, which are discrete and possibly infi-
nite sequences of values with no underlying notion of
time. In between are events, in which values occur in
time but irregularly. Most systems-oriented under-
graduate EE curricula cover continuous-time signals,
treat discrete-time signals as an advanced topic, and
ignore the rest.

.

80 Computer

has very modest speed requirements. If it is
designed directly in digital hardware, the result-
ing design will very likely be capable of handling
user interactions at superhuman speeds, quite
unnecessarily. A programmable microcontroller,
in contrast, achieves effective reuse of hardware
modules to reduce hardware complexity and
allow for better features, all the while reducing
design effort.

Increasingly, designs combine elements better
matched to programmability with elements bet-
ter matched to custom hardware. The essential
difference today is that software is sequential and
hardware is concurrent, but this distinction is
blurring. Technologies such as behavioral com-
pilers are introducing a more sequential style into
hardware design. Meanwhile, concurrent pro-
gramming languages are introducing more con-
currency into software design. The essential
question becomes one of choosing the right

abstraction, not one of choosing between hardware and
software; in fact, it is arguable that the latter choice is
nonsensical since every software design, when viewed
at another level of abstraction, is a hardware design.

There are two consequences for curriculum devel-
opment. First, we must prepare students to select
abstractions, not just technologies. Second, just as
designs can be built on top of higher level abstractions,
so can courses. A course in synchronous digital design,
for example, can build up from that abstraction, rele-
gating the study of the underlying circuits to another
part of the curriculum.

Advances in design technology
The design of today’s multimillion-transistor chips

would be very difficult to accomplish without com-
puter-aided design tools. These tools manage evolving
design information, aid the coordination of multiple
designers, automate certain optimization tasks, and
allow the designer to work with higher levels of
abstraction. It is arguable that the latter role, while
being the most important, is the slowest to evolve. In
the context of digital design, the Mead-Conway
approach and hardware design languages (now
notably VHDL and Verilog) are two key milestones
where new, higher level abstractions were made avail-
able to designers.

The prevalence of such tools has implications to the
engineering curriculum. These tools, with their
strengths and weaknesses, can change the relative pri-
orities of subjects, all of which might be considered
fundamental by many. Tasks that are routinely auto-
mated, such as Boolean logic minimization, should be
relegated to more specialized courses where the prin-
cipal concern is the design of the design tools, not the
design of digital circuits.

New subjects are also made fundamental by the
tools. Verilog and VHDL, for instance, are concurrent
programming languages with a discrete-event model
of computation. An informed consumer of design
tools, therefore, needs to have some fundamental
understanding of concurrency and discrete-event mod-
eling. These subjects are entirely absent from most
electrical engineering undergraduate curricula.

Given the inherent tension between depth and
breadth, managing this change in education is diffi-
cult. We do not want to neglect fundamentals, includ-
ing those fundamentals embedded deep within tools,
where they are necessary to understand the tools and
to use them more effectively. On the other hand, we do
not want to waste precious classroom time on topics
that are better delegated to the tools. It is difficult to
draw generalizations in this area, but we believe that
education has followed an appropriate middle ground.
If there is a problem, it is in having inadequate instruc-
tional computing facilities and staff support for a cur-
riculum that fully embraces design technology.

CHANGES IN THE ENVIRONMENT
We believe that the external environment for engi-

neering employment for ECE graduates is changing
in some fundamental ways. For some time, we have
been discussing the need for more communications
skills, cultural awareness, and group project experi-
ences to better align education with the needs of the
workplace. Taking this as a given, there are now other
aspects of the outside environment that should be
taken into account. Again, we don’t intend to argue in
favor of teaching overtly vocational skills, but rather
to ask whether there is a more fundamental mismatch
between the fundamentals of our educational experi-
ence and the workplace.

Organizational changes
Large, vertically integrated corporations are increas-

ingly rare. Industries are reorganizing around a hori-
zontal integration model, in which the application and
the infrastructure supporting that application are
unbundled. The new organization is the reality in com-
puting, and is becoming the reality in communica-
tions. Chief among the reasons for this is the lower
incremental investment in deploying new applications,
where they leverage an existing infrastructure shared
by many applications. The model also rewards the
customer with greater competition in the industry,
leading to lower prices, higher quality, and more fea-
tures. Another, more technical reason, is integrated
services and multimedia, where applications need to
integrate many capabilities.

Even in the absence of horizontal integration, the
industry is becoming more fragmented. No market
displays this more than the home environment, where

Aside from the needs
that have been
discussed for
years—better

communication
skills, cultural
awareness, and

team skills—there is
now an even more

fundamental
mismatch

between education
and the workplace.

the telephone, cable, consumer electronics, and com-
puter industries are vying to find a niche at the expense
of other players. With horizontal integration, each
organization becomes at the same time more focused
(concentrating on one horizontal layer) and less
focused (not concentrating on any particular applica-
tion, but rather trying to service them all).

No matter how this industry fragmentation occurs,
it implies that many products can no longer be
designed in isolation, and it is less frequent that one
product provides value to the consumer in isolation.
Rather, designers must be acutely aware of comple-
mentary, as well as competing, products. Often, there
is the need for two, and often many, companies to col-
laborate opportunistically in designing, manufactur-
ing, and marketing a product.

This industry fragmentation means that not only
managers, but also designers, must be cognizant of
many factors that impact their design choices. These
factors include coordination with complementary
products, standards, and available design tools. They
also include basic considerations impacting the suc-
cess of their designs, such as economics, human fac-
tors, standardization, regulation, and the basic
strategic goals of the organization, such as minimizing
time to market at the expense of manufacturing cost.

Changes impacting engineers
Many engineers will be working in smaller organi-

zations, working on more narrowly focused markets.
In that environment, each individual engineer must
assume a broader role, encompassing areas like mar-
keting, standardization, contractual relationships, and
so on. Engineers who insist on remaining “strictly
technical” are not as valued in such organizations.

There will always be an important role for engineers
who choose to specialize in highly technical job skills.
Current examples include analog circuit design,
extremely high-speed digital design, device design,
operating system and compiler design, and many oth-
ers. Successful engineers in this category will more
than likely have a graduate degree, often a PhD. We
will call them the “technical experts.”

Those engineers whose contribution remains largely
technical, but who do not fall into the technical expert
category are likely to find themselves designing digi-
tal systems consisting of some mixture of hardware
and software. We call them the “designers,” to con-
trast them with the technical experts. These designers
are more likely to have a BS or possibly an MS.

For these designers, the traditional, formal, math-
ematical electrical engineering background has less
value than it once did. These engineers do not need to
design circuits, but rather systems. The hardware por-
tion of their design task is actually more similar to
programming than to circuit design. They are most

concerned with underlying abstractions like
events and concurrency. When they do
encounter applications in which the perfor-
mance cannot be achieved through standard
design tools (increasingly rare), they will fall
back on the technical experts.

As design tools increasingly take care of rou-
tine design tasks, there is less value added by
routine design decisions, and more value added
by overall system architecture, complexity man-
agement, and, most of all, relating the needs of
the application to the design. Increasingly, rou-
tine designs of well-specified modules can be
outsourced to design groups in other countries,
where the engineers are willing to work at a fraction
of the salaries US students wish to command. If our
students wish to command high salaries, they will
need to focus on the aspects of the design that will be
tightly held in this country, including relating to appli-
cation needs, system architecture, and management
of the design process. Alternatively, they can become
the technology pioneers and experts who are expand-
ing the frontiers, should they choose to pursue a grad-
uate education.

FUNDAMENTAL KNOWLEDGE AND SKILLS
We now turn to the question of what fundamental

skills and knowledge come to the fore in this new
world of programmable digital system design.

System modeling
A traditional strength in electrical engineering has

been its formal approach to system modeling. Well-
developed mathematical frameworks, such as Laplace
and Fourier transforms, differential equations, ran-
dom processes, and linear algebra, have provided the
foundation for modeling of circuits, signal process-
ing, feedback control, and the communication phys-
ical layer. All of these areas, however, have become
the domain of the technical experts and are increas-
ingly out of the purview of the designers.

To address the needs of the designers while pre-
serving the traditional strength in formal modeling, we
have to raise the level of abstraction. The notion of
“signal” should no longer be only “voltage over time”
but should be generalized to include discrete arrival of
messages. The notion of “state” should no longer be
the variables in a differential equation, but should be
generalized to include the state of a finite automaton.
The notion of “system” should no longer be a matrix
defining a linear update, but should be generalized to
include a Turing-complete computational engine.

An undergraduate program should put less empha-
sis on linear time-invariant, continuous-time models,
and instead present a broader range of formal mod-
els for systems. Some institutions have already given

January 1998 81

In smaller
organizations, each

engineer must
assume a broader

role, encompassing
areas like
marketing,

standardization,
and law.

.

82 Computer

equal or greater weight to discrete-time model-
ing compared to continuous-time modeling.
The emphasis, though, is still on linear time-
invariant systems and regular time steps, prob-
ably because the theory is so well developed.
Nonlinear systems theory, unfortunately, is not
well developed. Complete, understandable
models are rare, and apply only to specialized
scenarios. One aspect of nonlinear systems the-
ory—chaotic systems—is valuable in a curricu-
lum because it illustrates dramatically the
fundamental limitations of deterministic formal
analysis. It says, in effect, “this approach is
hopeless.”

Random processes, by contrast, provide a wealth
of analytic techniques that have been applied suc-
cessfully at very high levels of abstraction, such as arti-
ficial intelligence systems and communication
networks. In many engineering curricula, however,
random processes are introduced at the senior or grad-
uate levels, too late to be of much use to the designers.

State space modeling, which originated in the con-
trol systems community, has shown its major strength
with LTI systems. Independently, however, the com-
plementary approach of finite automata theory, which
originated in computer science, simplifies the state space
to be discrete and finite, and exploits this simplification
to develop a rich and powerful theory. That theory is
potentially useful to both the designer and the techni-
cal expert, while the former control systems theory has
become primarily useful only to the technical expert.
Indeed, the control systems community has addressed
some of the limitations in their traditional modeling
techniques, and has married the two state space
approaches to develop a theory of hybrid systems.

A challenge in designing a curriculum around this
broad range of formal system modeling techniques is
that the field is less mature than the tried-and-true LTI
system theory. For example, an emerging area is the
theory of discrete-event systems. Hybrid systems are
part (but only part) of this. This theory could be par-
ticularly challenging to integrate into the curriculum
because it is fundamentally based on an entirely dif-
ferent mathematical foundation than traditional sys-
tem theory. Instead of differential equations, it uses
discrete mathematics, mathematical logic, topology,
and the theory of partial orders. These are not neces-
sarily more difficult or advanced than differential
equations, but they aren’t included (or even hinted at)
in courses entitled “engineering mathematics.”

Architecture and complexity management
Arguably the most important phase of the design

process, after the definition of goals, is the definition of
the architecture. Architecture refers to the partitioning
of functions into modules and the choice of abstraction

defining the interaction of the modules. A successful
architecture makes the internal workings of the mod-
ules as independent of one another as possible.

A successful architecture will exploit or promote
reusability by either applying previously designed com-
ponents or defining components that are sufficiently
configurable to be reused in the future. Failing to reuse
previous designs can cause a project to drown in com-
plexity. Detractors will often argue that making com-
ponents reusable compromises their efficiency or
performance. But failing to do so has much more dire
consequences: It makes only trivial designs feasible.

The design of architectures, with relevant concepts
and theories and many design experiences, should be
a part of every designer’s education.

Hardware and software
Syntactically, hardware and software have com-

pletely merged. While it used to be that logic diagrams
and schematics were used for hardware design, now
it is more often Verilog and VHDL programs. These
programs syntactically look much more like software
than hardware. What makes them hardware is the
concurrent semantics behind that syntax.

Software engineering and hardware engineering
suddenly have a great deal in common. Both are con-
cerned with source code control, interactive debug-
ging, data structures, compilation techniques, and
programming language semantics. Digital system
design is largely a programming task. At the practical
level, digital hardware design in the modern sense of
employing computer-aided design tools and hardware
description languages requires a set of programming
skills remarkably similar to software design, even in
the use of discrete-event models and concurrency.

From an educational perspective, the fundamental
skills required of future digital system designers are
not much differentiated from software designers. Of
course, there remains a need for specialists in “pure
software” (those concentrating on operating system
and higher layers up through the application, the tra-
ditional domain of computer science) and “high-
performance hardware” (those able to tread effectively
below the digital abstraction, tuning performance for
special-purpose designs by sophisticated circuit
designs). But there is a broad middle ground where
the fundamentals are, we believe, essentially the same
for hardware and software, and where the engineers
will have to be equally adept at both.

While one might argue that Moore’s law is generally
driving design from hardware toward software, soft-
ware design is also increasingly benefiting from hard-
ware-like design methodologies. There is today an
increasing emphasis on reusability in software, and
one approach that is gaining momentum is software
components. There is also an increasing interest in

The design of
architectures, with
relevant concepts
and theories and

many design
experiences, should

be a part of every
designer’s
education.

.

concurrency and communication within a software
system.

The sophisticated concurrency model embodied in
synchronous/reactive programming languages like
Esterel and Lustre overtly uses the synchronous hard-
ware metaphor, and compilers for these languages
have borrowed methods from hardware synthesis.
Concurrency in software, however, can assume more
forms than it can in hardware. It need not be bound
by notions of time or distance, for example, and can
introduce the notion of transportable computation,
such as agents or Java applets, that have no counter-
part in hardware.

IMPACT ON EDUCATION
Thus far, our argument might be interpreted as requir-

ing much greater breadth. Are we saying that students
should know not only basic technologies, but also com-
plexity management, design automation, economics,
and human factors? Clearly something has to give.

One answer is to modularize engineering the way
we modularize our engineering systems. If we can seg-
ment the curriculum into distinct and perhaps over-
lapping subcurricula, we can contain the knowledge
explosion to some extent. The key issue is how that
partitioning is to occur.

Another response is to extend the education. In our
view, four years is simply inadequate to train an engi-
neer in this environment, and even five years is mar-
ginal. Certainly this is the case for those aspiring to
be the technical experts.

Our solution
If we designed a curriculum from scratch, we would

• target the undergraduate experience as a prepa-
ration for graduate school, and incidentally also
to serve students who want to enter other fields
(such as law or medicine) or concentrate on man-
agement, sales, and marketing;

• develop the masters program as a time when a
deeper technical knowledge is obtained, preparing
students for design careers. Their broader under-
graduate education will serve them well in the new
work environment we have described; and

• reserve doctoral programs so that, in addition to
producing teachers and researchers, we prepare
technical experts who will work in industry in
frontier and extremely high-performance tech-
nologies. These experts will also carry forward
the infrastructure and core technologies that con-
tinue to form the important foundation of the
industry.

Teaching learning skills
Our students will face incessant change, and thus

one of the most important skills we can impart
is the ability to learn. In our view, too much of
the current curriculum is aimed at covering
everything, attempting to ensure that students
will have collected the necessary background
and skills for any conceivable professional
activity they might encounter. This is, quite sim-
ply, hopeless.

We would argue in favor of an approach where
a set of fundamentals are illustrated by current
application and technology examples. We should
depend on the students to pick up more of the lat-
ter themselves, including assignments in which
they do exploration on the Internet to find cur-
rent relevant examples. This will give them use-
ful vocational knowledge, buttress the principles,
and most importantly leave them with the skills
and habit to pick up vocational knowledge on their own.

The pressure to focus education on vocational skills
is huge. Industrial recruiters complain about students
not having particular programming skills, or not hav-
ing experience using some particular software or hard-
ware tool. We should vigorously and unambiguously
resist such pressure. In a field as dynamic as ours, no
set of vocational skills has any significant longevity.
It is far more important that our graduates be bright,
curious, intellectual, and unafraid of learning new
things.

Unfortunately, many engineering educators who
would agree with this principle in fact preach a double
standard. All too often we hear students being told to
“improve their programming skills,” or worse, “learn
C++.” Most designers should expect to need to learn
several new programming languages during their career.
Frequently, they will not even recognize these as pro-
gramming languages, because they are highly special-
ized (as in a macro language for a spreadsheet) or have
an unusual syntax (as in visual dataflow languages for
signal processing).

Students who have been misled into believing that
taking a course in C++ will give them all the pro-
gramming skills they will ever need will be poorly
equipped to adapt to changing technology. The more
fundamental concepts of data structures, object-ori-
ented design, and functional programming will bet-
ter prepare them.

Using the Internet
Emerging technologies, particularly the Internet, will

have a more profound impact on our education than
we realize. One possible effect is that students will learn
the boundlessness and often contradictory complex-
ity in any particular technical discipline. Traditional
engineering courses often try to circumscribe a body of
material, creating a complete and coherent subject with
consistent notation, and within which every problem

January 1998 83

The pressure
to focus education
on vocational skills
is huge. We should

vigorously and
unambiguously

resist such
pressure—no set of
vocational skills has

much longevity.

.

84 Computer

has a right solution. Although pedagogically use-
ful, when related to the real world this approach
is seriously misleading. One use of the Internet
is to illustrate for students the inconsistent nota-
tion and sometimes conflicting or even contra-
dictory approaches described there.

The Internet will also help make connections
between interrelated ideas without devoting pre-
cious lecture time to establishing connections with
areas that some students will be able to relate to
and others will not.

A third effect is that dynamic behaviors of engi-
neering systems can be much more readily pre-
sented on a computer than on a blackboard or in
a textbook. No longer do we have to rely on the

imagination of students to interpret the dynamics in a
mathematical formula.

What is fundamental
We now arrive at an essential and important ques-

tion. We have identified a number of skills and fun-
damental knowledge that students need to navigate
at higher levels of abstraction. We believe there is no
room for expansion of the current engineering cur-
riculum, and in fact argue that more room should be
left for nontechnical subjects such as economics and
humanities.

Thus we must give up something as well. Are there
topics in the current engineering curriculum that are
not so essential that they can be given up? If we poll
the faculty at any major engineering school about
whether the topic they teach is essential, the answer
will be “of course.” Moreover, they will probably be
right, for a subset of the students.

The conclusion is simple: An undergraduate edu-
cation in electrical and computer engineering will be
different for different students. Some students will
focus on technologies below the digital abstraction,
and we believe most of these students should aspire
to become technical experts and should consider it
essential to go to graduate school. Others will focus
on higher level abstractions, aspiring to be either
designers or technical experts. This is in fact similar
to the partitioning that has already occurred between
electrical and computer engineering and computer
science, where the latter focuses on software and soft-
ware-defined systems as a separable issue. But a new
requirement for the designers is to gain an under-
standing of more applications areas, which will
doubtless become more important throughout their
career.

On the other hand, the core EE areas of semicon-
ductors, circuit design, and manufacturing will focus
on increasingly difficult and sophisticated problems
in both research and practice. The educational require-
ments of highly technical areas will include a virtually

obligatory graduate degree, and, increasingly, a PhD.
Digital systems also have many difficult research

agendas in areas such as algorithms, design systems,
and concurrency management. There will be a con-
tinuing and expanding need for graduate education
and research. At the same time, this area will become
a mainstream topic for undergraduate education, with
many more students to teach than in the core areas.
This will be a difficult process to manage, as digital
systems will require undergraduate teaching resources
out of proportion with the research needs, and the
core areas will be the opposite.

Relation to computer science
Digital systems will increasingly be programmati-

cally similar to some areas of computer science. And
computer science as a discipline has been moving in
the direction of digital systems. Some of the most
exciting developments in networking, like IP and tag
switching, are actually a merger of the traditional ECE
and CS viewpoints, exploiting the strengths of each.
Likewise, mobile computing done correctly becomes
intertwined with signal processing and network pro-
tocols. Multimedia applications in a networked com-
puting environment encounter many issues of source
coding and signal processing that are a traditional
ECE focus.

Even areas of computer science like databases, AI,
and theory, which appear to remain largely distinct
from ECE topics, actually have interesting connec-
tions. Modern AI, for instance, uses stochastic mod-
eling not unlike that commonly used in ECE.
Computer science theory connects to traditional ECE
topics such as coding theory and communications
through its approach to computational complexity.

We believe that a modern curriculum in electrical
and computer engineering cannot be logically sepa-
rated from a computer science curriculum. The levels
of abstraction used to design and model electronic sys-
tems increasingly coincide with those used in com-
puter science, and any artificial separation will
inevitably lead to significant redundancy in the two
curricula.

W e believe that the center of gravity of most
undergraduate curricula today is too far on
the side of attempting to train the small cadre

of technical experts, a hopeless task within a four-
or five-year program. Because of the hopelessness of
the task, we cram too much content into the pro-
gram, thinking it makes it better (and somehow less
hopeless). This shuts out other fundamental knowl-
edge that we believe will be extremely valuable to
them in their design careers. Students have been seri-
ously shortchanged by not understanding the big pic-
ture.

An undergraduate
education in

electrical and
computer

engineering will
be different for

different students.

.

.

We advocate an alternative vision in which the
undergraduate program focuses on a limited and care-
fully chosen set of core ideas, supplemented by real-
world examples and importantly by student
self-exploration and learning. Such an undergraduate
program also emphasizes breadth, an exposure to a
range of technical issues, as well as mathematics, sci-
ence, humanities, and social sciences.

After the undergraduate experience, the students
divide themselves into several groups. One group
chooses to leave with an undergraduate degree, per-
haps returning to school later to obtain a master’s
degree in engineering or business, or perhaps empha-
sizing a career in design management, marketing, or
sales. A second group stays for a master’s degree, leav-
ing with the skills to be long-term design profession-
als. The third group stays for a doctorate, and
becomes the cadre of technical experts who are pre-
pared to tackle the difficult technical challenges and
carry forward the core technologies.

In Abstracting Craft, McCullough reminds us that
crafting things is at the core of humanity: “It is our
talent to bring a mass of raw material into conformity
with a vision. We fashion tools and coax materials.”
He builds a case that this essence of humanity is also
the essence of technology today: “Our use of com-
puters ought not be so much for automating tasks as
for abstracting craft.”

Computers, and more broadly, digital electronics,
offer a new creative medium where “things” are crafted
on top of abstractions, and every aspect of craft, its
humanism and its cultural context, comes into play.

More than any prior human craft, this time we craft
the medium as well as the artifact and the tools. The
engineers that will do this best will be more creative
than technical, and far more comfortable with abstrac-
tion. ❖

Edward A. Lee is professor of electrical engineering
and computer science at the University of California
at Berkeley. Together with Messerschmitt, he was one
of the founders of the Ptolemy project, which cur-
rently serves as the focal point for his research. His
research activities include design methodology for
embedded systems, real-time software, discrete-event
systems, visual programming, and architecture and
software techniques for signal processing. Lee
received a BS from Yale University, an SM from MIT,
and a PhD from UC Berkeley. He won the 1997 Fred-
erick Emmons Terman Award for engineering edu-
cation.

David G. Messerschmitt is Roger A. Strauch profes-
sor of electrical engineering and computer science at
the University of California at Berkeley. His research
interests include the future direction of the merged
network computing and telecommunications infra-
structure, including wireless access, configuration of
quality-of-service attributes, and the interaction of
these functions with signal processing. Messerschmitt
received a BS from the University of Colorado and
MS and PhD degrees from the University of Michi-
gan. He was chair of the EECS Department at UC
Berkeley from 1993 to 1996.

January 1998 85

Further Reading
S.W. Director et al., “Reengineering the Curriculum: Design

and Analysis of a New Undergraduate Electrical and Computer
Engineering Degree at Carnegie Mellon University,” Proc. IEEE,
Sept. 1995, pp.1,246-1,269.

D.A. Fraser, “Electrical Engineering Education: Twenty-Five
Years on the Influence of Developments in Semiconductor
Technology,” Int’l J. Electrical Eng. Education, July 1988, pp.
219-227.

M.G. Hartley, “Trends in Electrical Engineering Education—
A 25-Year Retrospective,” Int’l J. Electrical Eng. Education, July
1988, pp. 209-217.

J.G. Harris, “The National Science Foundation Workshop on
Undergraduate Education in Electrical Engineering,” Proc. 1987
Frontiers in Education Conf., IEEE Press, Piscataway, N.J.

W. Kline, “World War II: A Watershed in Electrical Engineering
Education,” IEEE Technology and Society, Summer 1994, pp.17-23.

J.Z. Lavi, B. Melhart, I. Pyle, “Engineering of Computer-Based
Systems—A Proposed Curriculum for a Degree Program at
Master Level,” Proc. Int’l Conf. and Workshop on Engineering

of Computer-Based Systems, IEEE CS Press, Los Alamitos, Calif.,
1997, pp. 54-63.

J.H. McClellan et al., “Using Multimedia to Teach the Theory
of Digital Multimedia Signals,” IEEE Trans. Education, Aug.
1996, pp. 336-341.

M. McCullough, Abstracting Craft, MIT Press, Cambridge,
Mass., 1996.

S.K. Mitra, “Re-Engineering the Electrical Engineering
Curriculum,” Proc. 1997 IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, IEEE CS Press, Los Alamitos, Calif., 1997.

D.C. Munson Jr., “Elements of a New Electrical Engineering
Curriculum at Illinois: A Shift from Circuits to Signal Processing,”
Proc. 1995 IEEE Symp. Circuits and Systems, Vol. 1, 1995, pp.
1-4Sf.

J. L. Pokoski, “Technological Evolution, Social Revolution, or Old
Fogeyism (Electrical Engineering Education),” Proc. 1989 Frontiers
in Education Conf., IEEE Press, Piscataway, N.J., 1989, pp. 248-253.

A.B. Tucker et al., “Strategic Directions in Computer Science
Education,” ACM Computing Surveys, Dec. 1996. pp.836-
45.

