
The Almagest 7-1

Ptolemy Last updated: 10/9/97

Chapter 7. Particles and Messages

Authors: Joseph T. Buck

7.1 Class Particle
A Particle is a little package that contains data; they represent the principal communication
technique that blocks use to pass results around. They move through PortHoles and Geodesics;
they are allocated in pools called Plasmas. The class Particle is an abstract base class; all real
Particle objects are really of some derived type. All Particles contain a link field that allows
queues and stacks of Particles to be manipulated efficiently (class ParticleStack is a base class
for everything that does this). Particles also contain virtual operators for loading and accessing
the data in various forms; these functions permit automatic type conversion to be easily per-
formed.

7.2 Particle public members
virtual DataType type() const = 0;

Return the type of the particle. DataType is actually just a typedef forconst char*, but
when we use DataType, we treat it as an abstract type. Furthermore, two DataType values
are considered the same if they compare equal, which means that we must assure that the
same string is always used to represent a given type.

virtual operator int () const = 0;
virtual operator float () const = 0;
virtual operator double () const = 0;
virtual operator Complex () const = 0;

These are the virtual casting functions, which convert the data in the Particle into the
desired form. The arithmetic Particles support all these functions cleanly. Message parti-
cles may return errors for some of these functions (they must return a value, but may also
call Error::abortRun.

virtual StringList print () const = 0;

Return a printable representation of the Particle’s data.

virtual void initialize() = 0;

This function zeros the Particle (where this makes sense), or initializes it to some default
value.

virtual void operator << (int arg) = 0;
virtual void operator << (double arg) = 0;
virtual void operator << (const Complex& arg) = 0;

These functions are, in a sense, the inverses of the virtual casting operators. They load the
particle with data fromarg, performing the appropriate type conversion.

virtual Particle& operator = (const Particle& arg) = 0;

7-2 Particles and Messages

U. C. Berkeley Department of EECS

Copy a Particle. In general, we permit this only for Particles of the same type, and other-
wise assert an error. But the arithmetic particle types invoke type conversion, via the vir-
tual casting operators, so as to allow assignment from other arithmetic particle types.
Without this exception, useful cases such as forking an INT output to INT and FLOAT
inputs would fail in the simulation domains (because the fork stars use particle assign-
ment).

virtual int operator == (const Particle&) = 0;

Compare two particles. As a rule, Particles will be equal only if they have the same type,
and, in a sense that is separately determined for each type, the same value.

virtual Particle* clone() const = 0;

Produce a second, identical particle (as a rule, one is obtained from the Plasma for the par-
ticle if possible).

virtual Particle* useNew() const = 0;

This is similar toclone, except that the particle is allocated from the heap rather than
from the Plasma.

virtual void die() = 0;

Return the Particle to its Plasma.

virtual void getMessage (Envelope&);
virtual void accessMessage (Envelope&) const;
virtual void operator << (const Envelope&);

These functions are used to implement the Message interface. The default implementation
returns errors for them; it is only if the Particle is really a MessageParticle that they suc-
cessfully send or receive a Message from the Particle.

7.3 Arithmetic Particle classes
There are three standard arithmetic Particle classes: IntParticle, FloatParticle, and Complex-
Particle. As their names suggest, each class adds to Particle a private data member of type int,
double (not float!), and class Complex, respectively. When a casting operator or “<<” operator
is used on a particle of one of these types, a type conversion may take place. If the type of the
argument of cast matches the type of the particle’s data, the data is simply copied. If the re-
quested operation involves a “widening” conversion (int to float, double, or Complex; float to
double or Complex; double to Complex), the “obvious” thing happens. Conversion from dou-
ble to int rounds to the nearest integer; conversion from Complex to double returns the absolute
value (not the real part!), and Complex to int returns the absolute value, rounded to the nearest
integer.initialize for each of these classes sets the data value to zero (for the appropriate
domain). The DataTypes returned by these Particle types are the global symbols INT, FLOAT,
and COMPLEX, respectively. They have the string values “INT”, “FLOAT”, and “COM-
PLEX”.

7.4 The Heterogeneous Message Interface
The heterogeneous message interface is a mechanism to permit messages of arbitrary type (ob-

The Almagest 7-3

Ptolemy Last updated: 10/9/97

jects of some derived type of class Message) to be transmitted by blocks. Because these mes-
sages may be very large, facilities are provided to permit many references to the same Message;
Message objects are “held” in another class called Envelope. As the name suggests, Messages
are transferred in Envelopes. When Envelopes are copied, both Envelopes refer to the same
Message. A Message will be deleted when the last reference to it disappears; this means that
Messages must always be on the heap. So that Messages may be transmitted by portholes, there
is a class MessageParticle whose data field is an Envelope. This permits it to hold a Message
just like any other Envelope object.

7.4.1 Class Envelope

class Envelope has two constructors. The default constructor constructs an “empty” Envelope
(in reality, the envelope is not empty but contains a special “dummy message” – more on this
later). There is also a constructor of the form

Envelope(Message& data);
This constructor creates an Envelope that contains the Messagedata, which MUST have
been allocated withnew. Message objects have reference counts; at any time, the refer-
ence count equals the number of Envelope objects that contain (refer to) the Message
object. When the reference count drops to zero (because of execution of a destructor or
assignment operator on an Envelope object), the Message will be deleted. Class Envelope
defines an assignment operator, copy constructor, and destructor. The main work of these
functions is to manipulate reference counts. When one Envelope is copied to another, both
Envelopes refer to the same message.

int empty() const;

Return TRUE if the Envelope is “empty” (points to the dummy message), FALSE other-
wise.

const Message* myData() const;

Return a pointer to the contained Message. This pointer must not be used to modify the
Message object, since other Envelopes may refer to the same message.

Message* writableCopy();

This method produces a writable copy of the contained Message, and also zeros the Enve-
lope (sets it to the empty message). If this Envelope is the only Envelope that refers to the
message, the return value is simply the contained message. If there are multiple references
to the message, theclone method is called on the Message, making a duplicate, and the
duplicate is returned. The user is now responsible for memory management of the result-
ing Message. If it is put into another Envelope, that Envelope will take over the responsi-
bility, deleting the message when there is no more need for it. If it is not put into another
Envelope, the user must make sure it is deleted somehow, or else there will be a memory
leak.

int typeCheck(const char* type) const;
This member function asks the question “is the contained Message of classtype, or
derived fromtype” ? It is implemented by callingisA on the Message. Either TRUE or
FALSE is returned.

7-4 Particles and Messages

U. C. Berkeley Department of EECS

const char* typeError(const char* expected) const;
This member function may be used to format error messages for when one type of Mes-
sage was expected and another was received. The return value points to a static buffer that
is wiped out by subsequent calls.

const char* dataType() const;
int asInt() const;
double asFloat() const;
Complex asComplex() const;
StringList print() const;

All these methods are “passthrough methods”; the return value is the result of calling the
identically named function on the contained Message object.

7.4.2 Class Message

Message objects can be used to carry data between blocks. Unlike Particles, which must all be
of the same type on a given connection, connections that pass Message objects may mix mes-
sage objects of many types on a given connection. The tradeoff is that blocks that receive Mes-
sage objects must, as a rule, type-check the received objects. The base class for all messages,
named Message, contains no data, only a reference count (accordingly, all derived classes have
a reference count and a standard interface). The reference count counts how many Envelope
objects refer to the same Message object. The constructor for Message creates a reference count
that lives on the heap. This means that the reference count is non-const even when the Message
object itself is const. The copy constructor for Message ignores its argument and creates a new
Message with a new reference count. This is necessary so that no two messages will share the
same reference count. The destructor, which is virtual, deletes the reference count. The follow-
ing Message functions must be overridden appropriately in any derived class:

virtual const char* dataType() const;

This function returns the type of the Message. The default implementation returns
“DUMMY”.

virtual Message* clone() const;

This function produces a duplicate of the object it is called on. The duplicate must be
“good enough” so that applications work the same way whether the original Message or
one produced byclone() is received. A typical strategy is to define the copy constructor
for each derived Message class and write something like

Message* MyMessage::clone() const { return new MyMessage(*this);}
virtual int isA(const char*) const;

The isA function returns true if given the name of the class or the name of any base class.
Exception: the base class function returns FALSE to everything (as it has no data at all). A
macroISA_FUNC is defined to automate the generation of implementations of derived
classisA functions; it is the same one as that used for the NamedObj class. The following
methods may optionally be redefined.

virtual StringList print() const;

This method returns a printable representation of the Message. The default implementa-
tion returns a message like

The Almagest 7-5

Ptolemy Last updated: 10/9/97

Message class < type >: no print method
wheretype is the message type as returned by thedataType function.

virtual int asInt() const;
virtual double asFloat() const;
virtual Complex asComplex() const;

These functions represent conversions of the Message data to an integer, a floating point
value, and a complex number, respectively. Usually such conversions do not make sense;
accordingly, the default implementations generate an error message (using the protected
member functionerrorConvert) and return a zero of the appropriate type. If a conver-
sion does make sense, they may be overridden by a method that does the appropriate con-
version. These methods will be used by the MessageParticle class when an attempt is
made to read a MessageParticle in a numeric context. One protected member function is
provided:

int errorConvert(const char* cvttype) const;
This function invokesError::abortRun with a message of the form

Message class < msgtype >: invalid conversion tocvttype
wheremsgtype is the type of the Message, andcvttype is the argument.

7.4.3 Class MessageParticle

MessageParticle is a derived type of Particle whose data field is an Envelope; accordingly, it
can transport Message objects. MessageParticle defines no new methods of its own; it only pro-
vides behaviors for the virtual functions defined in class Particle. The most important such be-
haviors are as follows:

void operator << (const Envelope& env);
This method loads the Message contained inenv into the Envelope contained in the Mes-
sageParticle. Since the Envelope assignment operator is used, after execution of this
method bothenv and the MessageParticle refer to the message, so its reference count is at
least 2.

void getMessage(const Envelope& env);
This method loads the message contained in the MessageParticle into the Envelopeenv,
and removes the message from the MessageParticle (so that it now contains the dummy
message). Ifenv previously contained the only reference to some other Message, that pre-
viously contained Message will be deleted.

void accessMessage(const Envelope& env);
accessMessage is the same asgetMessage except that the message is not removed
from the MessageParticle. It can be used in situations where the same Particle will be read
again. We recommend thatgetMessage be used where possible, especially for very large
message objects, so that they are deleted as soon as possible.

7.5 Example Message types
The kernel provides two simple sample message types for transferring arrays of data. They are

7-6 Particles and Messages

U. C. Berkeley Department of EECS

almost identical except that one holds an array of integers and the other holds an array of single
precision floating point data. The array contents live on the heap. Each is derived from class
Message. Each provides a public data member that points to the data. As a rule, we recommend
against public data members for classes, but an exception was made in this case, perhaps un-
wisely. This section will describe the interface of the FloatVecData class. The interface for In-
tVecData is almost identical. Three constructors are provided:

FloatVecData(int len);
This form creates an uninitialized array of lengthlen in the FloatVecData object. Since
the pointer to the data is public the array may easily be filled in.

FloatVecData(int len ,const float *srcData);
This form creates an array of lengthlen and initializes it withlen elements fromsrc-
Data.

FloatVecData(int len ,const double *srcData);
This form is the same, except that the source data is double precision (it is converted to
single precision). This is the only function for which an analogous function does not exist
in IntVecData (an IntVecData can only be initialized from an integer array). An appropri-
ate copy constructor, assignment operator, and destructor are defined.

int length() const;

Return the length of the array.

float *data;

Public data member; points to the array. It is permissible to read or assign thelen ele-
ments starting atdata; the effect of altering thedata pointer itself is undefined.

const char* dataType() const;

Returns the string"FloatVecData".

int isA(const char* type) const;
TRUE for type equal to"FloatVecData", otherwise false.

StringList print() const;

Returns a comma-separated list of elements enclosed in curly braces.

Message* clone() const;

Creates an identical copy withnew.

