
Chapter 13. CG Domain

Authors: Joseph T. Buck
Soonhoi Ha
Christopher Hylands
Edward A. Lee
Praveen Murthy
Thomas Parks
José Luis Pino
Kennard White

13.1 Introduction
The Code Generation (CG) domain and its derivative domains, such as the CG56

domain (Motorola DSP56000) and the C language (CGC) domain, are used to generate code
rather than to run simulations. Only the derivative domains are of practical use for generating
code. The stars in the CG domain itself can be thought of as “comment generators”; they are
useful for testing and debugging schedulers and for little else. The CG domain is intended as a
model and a collection of base classes for derivative domains. This section documents the
common features and general structure of all code generation domains.

All the code generation domains that are derived from the CG domain in this release
obey SDF semantics and can thus be scheduled at compile time. Internally, however, the CG
only assumes that stars obey data flow semantics. Currently, we have implemented two
approaches for data-dependent execution, CGDDF, which recognizes and implements certain
commonly used programming constructs [Sha92], and BDF (“Boolean dataflow” or the token-
flow model) [Buc93c]. Even when these are implemented, the vast majority of stars in any
given application should obey the SDF rules to permit efficient multiprocessor code genera-
tion.

A key feature of code generation domains is the notion of a target architecture. Every
application must have a user-specified target architecture, selected from a set of targets sup-
ported by the user-selected domain. Every target architecture is derived from the base class
Target , and controls such operations as scheduling, compiling, assembling, and download-
ing code. Since the target controls scheduling, multiprocessor architectures can be supported
with automated task partitioning and synchronization.

Another feature of the code generation domains is the ability to use different schedul-
ers. A key idea in Ptolemy is that there is no single scheduler that is expected to handle all sit-
uations. We have designed a suite of specialized schedulers that can be mixed and matched for
specific applications. Some targets in the CG domain, in addition to serving as base classes for
derived domains, allow the user to experiment with these various schedulers.

13.2 Targets
A code generation Domain is specific to the language generated, such as C (CGC) and

13-2 CG Domain

U. C. Berkeley Department of EECS

DSP56000 assembly code (CG56). In previous versions of Ptolemy, we released code genera-
tion domains for the Sproc assembly language [Mur93], the DSP96000 assembly language,
and the Silage language. Each code generation domain has a default target which defines rou-
tines generic to the target language. These targets are derived from targets defined in the CG
domain.

A Target object has methods for generating a schedule, compiling the code, and run-
ning the code (which may involve downloading code to the target hardware and beginning its
execution). There also may be child targets (for representing multiprocessor targets) together
with methods for scheduling the communication between them. Targets also have parameters
that are user specified. There are four targets in the CG domain; these are described below.

13.2.1 default-CG

This target is the default target for the CG domain. It allows the user to experiment
with the various uniprocessor schedulers. Currently, there is a suite of schedulers that generate
schedules of various forms of optimality. For instance, the default SDF scheduler generates
schedules that try to minimize the amount of buffering required on arcs, while the loop sched-
ulers try to minimize the amount of code that is generated. Refer to the schedulers section in
this chapter for a discussion on these schedulers. There are only two parameters for this target:

directory (STRING) Default =$HOME/PTOLEMY_SYSTEMS
This is the directory to which all generated files will be written
to.

looping Level (STRING) Default =ACYLOOP
The choices are DEF, CLUST, SJS, or ACYLOOP. Case does
not matter; ACYLOOP is the same as AcyLoOP. If the value is
DEF, no attempt will be made to construct a looped schedule.
This can result in very large programs for multirate systems,
since inline code generation is used, where a codeblock is
inserted for each appearance of an actor in the schedule. Setting
the level to CLUST invokes a quick and simple loop scheduler
that may not always give single appearance schedules. Setting it
to SJS invokes the more sophisticated SJS loop scheduler
[Bha93c], which can take more time to execute, but is guaran-
teed to find single appearance schedules whenever they exist.
Setting it to ACYLOOP invokes a scheduler that generates sin-
gle appearance schedules optimized for buffer memory usage
[Mur96][Bha96], as long as the graph is acyclic. If the graph is
not acyclic, and ACYLOOP has been chosen, then the target
automatically reverts to the SJS scheduler. For backward com-
patibility, “0” or “NO”, “1”, and “2” or “YES” are also recog-
nized, with “0” or “NO” being DEF, “1” being CLUST, and “2”
or “YES” being SJS. NOTE: Loop scheduling only applies to
uniprocessor targets; hence, this parameter does not appear in
theFullyConnected target.

In addition to these parameters, there are a number of parameters that are in this target

The Almagest 13-3

Ptolemy Last updated: 12/1/97

that are not visible to the user. These parameters may be made visible to the user by derived
targets. The complete list of these parameters follows:

host (STRING) Default =
The default is the empty string. This is the host machine to com-
pile or assemble code on. All code is written to and compiled
and run on the computer specified by this parameter. If a remote
computer is specified here thenrsh commands are used to
place files on that computer and to invoke the compiler. You
should verify that your .rhosts file is properly configured so that
rsh will work.

file (STRING) Default =
The default is the empty string. This represents the prefix for
file names for all generated files.

display? (INT) Default =YES
If this flag is set toYES, then the generated code will be dis-
played on the screen.

compile? (INT) Default =YES
If this flag is set toYES, then the generated code will be com-
piled (or assembled).

load? (INT) Default =YES
If this flag is set toYES, then the compiled code will be loaded
onto a chip.

run? (INT) Default =YES
If this flag is set toYES, then the generated code is run.

13.2.2 bdf-CG

This target demonstrates the use of BDF semantics in code generation. It uses the BDF
scheduler to generate code. See the BDF domain documentation for more information on
BDF scheduling. There is only one target parameter available to the user; thedirectory
parameter above. This parameter has the same functionality as above.

13.2.3 FullyConnected

This target models a fully connected multiprocessor architecture. It forms the base-
class for all multiprocessor targets with the fully connected topology. Its parameters are
mostly to do with multiprocessor scheduling.

The parameters for FullyConnected are:

nprocs (INT) Default =2
Number of processors in the target architecture.

sendTime (INT) Default =1
This is the time required, in processor cycles, to send or receive
one datum in the multiprocessor architecture. Sending and
receiving are assumed to take the same amount of time.

13-4 CG Domain

U. C. Berkeley Department of EECS

oneStarOneProc (INT) Default =NO
If this is YES, then all invocations of a star are scheduled onto
the same processor.

manualAssignment (INT) Default =NO
If this is YES, then the processor assignment is done manually
by the user by setting theprocId state in each star.

adjustSchedule (INT) Default =NO
If this isYES, then the automatically generated schedule is over-
ridden by manual assignment. This feature requires improve-
ments in the user interface before it can be implemented; hence,
the default isNO.

childType (STRINGARRAY) Default =default-CG
This parameter specifies the names of the child targets, sepa-
rated by spaces. If the number of strings is fewer than the num-
ber of processors specified by thenprocs parameter, the
remaining processors are of type given by the last string. For
example, if there are four processors, andchildType is set to
default-CG56[2] default-CGC , then the first two child
targets will be of typedefault-CG56 , and the next two of type
default-CGC .

resources (STRINGARRAY) Default =
The default is the empty string. This parameter defines the spe-
cific resources that child targets have, separated by “;”. For
example, if the first processor has I/O capabilities, this would be
specified asSTDIO. Then, stars that requestSTDIO would be
scheduled onto the first processor.

relTimeScales (INTARRAY) Default =1
This defines the relative time scales of the processors corre-
sponding to child targets. This information is needed by the
scheduler in order to compute scheduling costs. The number of
entries here should be the same as the number of processors; if
not, then the last entry is used for the remaining processors. The
entries reflect the relative computing speeds of different proces-
sors, and are expressed as relative cycle times. For example, if
there is a DSP96000 (32Mhz) and a DSP56000 (20Mhz), the
relative cycle times are 1 and 1.6. The default is 1 (meaning that
all processors have the same computing speed).

ganttChart (INT) Default =YES
If this is YES, then the Gantt chart containing the generated
schedule is displayed.

logFile (STRING) Default =
This is the name of the file to which a log will be written of the
scheduling process. This is useful for debugging schedulers. If

The Almagest 13-5

Ptolemy Last updated: 12/1/97

no file name is specified, no log is generated.

amortizedComm (INT) Default =NO
If this is YES, the scheduler will try to reduce the communica-
tion overhead by sending multiple samples per send. This has
not really been implemented yet.

schedName(DL,HU,DC,HIER,CGDDF)
(STRING) Default =DL
Using theschedName parameter, a user can select which paral-
lel scheduling algorithm to use. There are three basic SDF par-
allel scheduling algorithms. The first two can be used for
heterogeneous processors, while the last can only be used for
homogeneous processors.

HU selects a scheduling algorithm based on the classical work
by T. C. Hu [Hu61]. This scheduler ignores the interprocessor
communication cost (IPC) during scheduling and thus may
result in unrealistic schedules. The next two scheduling algo-
rithms take into IPC.

DL selects Gil Sih's dynamic level scheduler [Sih93a] (default).

DC selects Gil Sih's declustering algorithm [Sih93b]. This
scheduler only supports homogeneous multiprocessor targets. It
is more expensive than theDL andHU schedulers, so should be
used only if theDL andHU schedulers produce poor schedules.

HIER selects a preliminary version of José Luis Pino’s hierar-
chical scheduler [Pin95]. With this scheduler, the user can spec-
ify a top-level parallel scheduler from the three listed above and
also specify uniprocessor schedulers for individual galaxies.
The default top-level scheduler isDL; to specify another use the
following syntax:HIER(HU) or HIER(DC) . To specify a uni-
processor scheduler for a galaxy, add a new galaxy string
parameter namedScheduler and set it to eitherCluster (loop-
ing level 1),Loop (looping level 2) orSDFScheduler (looping
level 0). See section 13.3.1 for more information on the unipro-
cessor schedulers.

CGDDF1 selects Soonhoi Ha’s dynamic construct scheduler
[Ha92]. A dynamic construct, clustered as a star instance, can
be assigned to multiple processors. In the future, we may want
to schedule a star exploiting data-parallelism. A star instance

1. Note that in Ptolemy0.6, the CGDDF scheduler is not compiled into the default binaries. See “Bugs
in pigi” on page A-34 for details.

13-6 CG Domain

U. C. Berkeley Department of EECS

that can be assigned to multiple processors is called a “macro”
actor.MACRO scheduler is expected to allow the macro actors.
For now, however,MACRO scheduler is not implemented.

13.2.4 SharedBus

This third target, also a multiprocessor target, models a shared-bus architecture. In this
case, the scheduler computes the cost of the schedule by imposing the constraint that more
than one send or receive cannot occur at the same time (since the communication bus is
shared).

13.3 Schedulers
Given a Universe of functional blocks to be scheduled and a Target describing the

topology and characteristics of the single- or multiple-processor system for which code is to
be generated, it is the responsibility of the Scheduler object to perform some or all of the fol-
lowing functions:

 • Determine which processor a given invocation of a given Block is executed on (for
multiprocessor systems).

 • Determine the order in which actors are to be executed on a processor.

 • Arrange the execution of actors into standard control structures, like nested loops.

If the program graph follows SDF semantics, all of the above steps are done statically
(i.e. at compile time). A dataflow graph with dynamic constructs uses the minimal runtime
decision making to determine the execution order of actors.

13.3.1 Single-Processor Schedulers

For targets consisting of a single processor, we provide three different scheduling tech-
niques. The user can select the most appropriate scheduler for a given application by setting
the loopingLevel target parameter.

In the first approach (loopingLevel = DEF), which is the default SDF scheduler, we
conceptually construct the acyclic precedence graph (APG) corresponding to the system, and
generate a schedule that is consistent with that precedence graph. Note that the precedence
graph is not physically constructed. There are many possible schedules for all but the most
trivial graphs; the schedule chosen takes resource costs, such as the necessity of flushing reg-
isters and the amount of buffering required, into account. The target then generates code by
executing the actors in the sequence defined by this schedule. This is a quick and efficient
approach when the SDF graph does not have large sample-rate changes. If there are large sam-
ple-rate changes, the size of the generated code can be huge because the codeblock for an
actor might occur many times (if the number of repetitions for the actor is greater than one); in
this case, it is better to use some form ofloop scheduling.

The second approach we callJoe’s scheduling. In this approach (loopingLevel =
CLUST), actors that have the same sample rate are merged (wherever this will not cause dead-
lock) and loops are introduced to match the sample rates. The result is a hierarchical cluster-
ing; within each cluster, the techniques described above can be used to generate a schedule.
The code then contains nested loop constructs together with sequences of code from the

The Almagest 13-7

Ptolemy Last updated: 12/1/97

actors.

Since the second approach is a heuristic solution, there are cases where some looping
possibilities go undetected. By setting theloopingLevel to SJS, we can choose the third
approach, calledSJS (Shuvra-Joe-Soonhoi) scheduling after the inventor’s first names. After
performing Joe’s scheduling at the front end, it attacks the remaining graph with an algorithm
that is guaranteed to find the maximum amount of looping available in the graph. That is, it
generates a single appearance schedule whenever one exists.

A fourth approach, obtained by settingloopingLevel to ACYLOOP, we choose a
scheduler that generates single appearance schedules optimized for buffer memory usage.
This scheduler was developed by Praveen Murthy and Shuvra ‘Bhattacharyya [Mur96]
[Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the universe is not
acyclic, it automatically resets theloopingLevel target parameter to SJS. Basically, for a given
SDF graph, there could be many different single appearance schedules. These are all opti-
mally compact in terms of schedule length (or program memory in inline code generation).
However, they will, in general, require differing amounts of buffering memory; the difference
in the buffer memory requirement of an arbitrary single appearance schedule versus a single
appearance schedule optimized for buffer memory usage can be dramatic. In code generation,
it is essential that the memory consumption be minimal, especially when generating code for
embedded DSP processors since these chips have very limited amounts of on-chip memory.
Note that acyclic SDF graphs always have single appearance schedules; hence, this scheduler
will always give single appearance schedules. If thefile target parameter is set, then a sum-
mary of internal scheduling steps will be written to that file. Essentially, two different heuris-
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one of
the two is selected. The generated file will contain the schedule generated by each algorithm,
the resulting buffer memory requirement, and a lower bound on the buffer memory require-
ment (called BMLB) over all possible single appearance schedules.

If the second, third, or fourth approaches are taken, the code size is drastically reduced
when there are large sample rate changes in the application. On the other hand, we sacrifice
some efficient buffer management schemes. For example, suppose that star A produces 5 sam-
ples to star B which consumes 1 sample at a time. If we take the first approach, we schedule
this graph as ABBBBB and assign a buffer of size 5 between star A and B. Since each invoca-
tion of star B knows the exact location in the allocated buffer from which to read its sample,
each B invocation can read the sample directly from the buffer. If we choose the second or
third approach, the scheduling result will be A5(B). Since the body of star B is included inside
a loop of factor 5, we have to use indirect addressing for star B to read a sample from the
buffer. Therefore, we need an additional buffer pointer for star B (memory overhead), and one
more level of memory access (run-time overhead) for indirect addressing.

13.3.2 Multiple-Processor Schedulers

The first step in multiprocessor scheduling, or parallel scheduling, is to translate a
given SDF graph to an acyclic precedence expanded graph (APEG). The APEG describes the
dependency between invocations of blocks in the SDF graph during execution of one iteration.
Refer to the SDF domain documentation for the meaning of one iteration. Hence, a block in a
multirate SDF graph may correspond to several APEG nodes. Parallel schedulers schedule the
APEG nodes onto processors. Unfortunately, the APEG may have a substantially greater (at

13-8 CG Domain

U. C. Berkeley Department of EECS

times exponential) number of nodes compared to the original SDF graph. For this a hierarchi-
cal scheduler is being developed that only partially expands the APEG [Pin95].

We have implemented three basic scheduling techniques that map SDF graphs onto
multiple-processors with various interconnection topologies: Hu’s level-based list scheduling,
Sih’s dynamic level scheduling [Sih93a], and Sih’s declustering scheduling [Sih93b]. The tar-
get architecture is described by its Target object. TheTarget class provides the scheduler
with the necessary information on the number of processors, interprocessor communication
etc., to enable both scheduling and code synthesis.

The hierarchical scheduler can use any one of the three basic parallel schedulers as the
top-level scheduler. The current implementation supports user-specified clustering at galaxy
boundaries. These galaxies are assumed to compose into valid SDF stars in which the SDF
parameters are derived from the internal schedule of the galaxy. During APEG expansion,
these compositions are opaque; thus, the entire galaxy is treated as a single SDF star. Using
hierarchical scheduling techniques, we have realized multiple orders of magnitude speedup in
scheduling time and multiple orders of magnitude reduction of memory usage. See [Pin95] for
more details.

The previous scheduling algorithms could schedule SDF graphs, theCGDDF scheduler
can also handle graphs with dynamic constructs. See section 13.5 for more details.

Whichever scheduler is used, we schedule communication nodes in the generated
code. For example, if we use Hu’s level-based list scheduler, we ignore communication over-
head when assigning stars to processors. Hence, the generated code is likely to contain more
communication code than with the other schedulers that do not ignore the IPC overhead.

There are other target parameters that direct the scheduling procedure. If the parameter
manualAssignment is set toYES, then the default parallel scheduler does not perform star
assignment. Instead, it checks the processor assignment of all stars (set using theprocId state
of CG and derived stars). By default, theprocId state is set to -1, which is an illegal assign-
ment since the child target is numbered from 0. If there is any star, except theFork star, that
has an illegalprocId state, an error is generated saying that manual scheduling has failed. Oth-
erwise, we invoke a list scheduler that determines the order of execution of blocks on each
processor based on the manual assignment. We do not support the case where a block might
require more than one processor. ThemanualAssignment target parameter automatically sets
theoneStarOneProc state toYES; this is discussed next.

If there are sample rate changes, a star in the program graph may be invoked multiple
times in each iteration. These invocations may be assigned to multiple processors by default.
We can prevent this by setting theoneStarOneProc state toYES. Then, all invocations of a star
are assigned to the same processor, regardless of whether they are parallelizable or not. The
advantage of doing this is the simplicity in code generation since we do not need to splice in
Spread/Collect stars, which will be discussed later. Also, it provides us another possible
scheduling option,adjustSchedule; this is described below. The main disadvantage of setting
oneStarOneProc to YES is the performance loss of not exploiting parallelism. It is most severe
if Sih’s declustering algorithm is used. Therefore, Sih’s declustering algorithm is not recom-
mended with this option.

In this paragraph, we describe a future scheduling option that this release does not sup-
port yet. Once automatic scheduling (withoneStarOneProc option set) is performed, the pro-

The Almagest 13-9

Ptolemy Last updated: 12/1/97

cessor assignment of each star is determined. After examining the assignment, the user may
want to override the scheduling decision manually. It can be done by setting theadjustSched-
ule parameter. If that parameter is set, after the automatic scheduling is performed, theprocId
state of each star is automatically updated with the assigned processor. The programmer can
override the scheduling decision by changing the value of theprocId state. TheadjustSchedule
parameter cannot beYES before any scheduling decision has been made previously. Again,
this option is not supported in this release.

Regardless of which scheduling options are chosen, the final stage of the scheduling is
to decide the execution order of stars including send/receive stars. This is done by a simple list
scheduling algorithm in each child target. The final scheduling results are displayed on a Gantt
chart.

The Gantt Chart Display

Demos that use targets derived fromCGMultiTarget can produce an interactive
Gantt chart display for viewing the parallel schedule.

The Gantt chart display involves a single window for displaying the Gantt chart, which
provides scroll bars and zoom buttons for controlling how much of the Gantt chart is shown in
the display canvas.

The display canvas represents each star schedule as a box drawn through the time
interval over which it is scheduled. If the name of a star can fit in its box, it is printed inside. A
vertical bar inside the canvas identifies stars which cannot be labeled. The names of the stars
which this bar passes through are printed alongside their respective processor numbers. The
bar can be moved horizontally by pressing the left mouse button while on the star to be identi-
fied. The stars which the bar passes through are identified by having their icons highlighted in
thevem window.

Here is a summary of commands that can be used while the Gantt chart display is
active:

To change the area of the Gantt chart inside the display canvas:

Use the scroll bars to move along the Gantt chart in the direction desired.

Click on the zoom buttons to increase or decrease the size of the Gantt chart.

To move the vertical bar to the mouse inside the display window:

Depress and drag the left mouse button inside the display window. The left and right
cursor keys move the bar by one time interval; shift-left and shift-right move the bar by ten
time intervals.

To exit the Gantt chart display program:

Type control-D inside the display window or click on the dismiss button.

The Gantt chart can also be run as a standalone program to display a schedule previ-
ously saved by the Gantt chart:

gantt schedule_filename

A number of limitations exists in the Gantt chart display widget. There are a fixed
(hard-coded) number of colors available for coloring processors and highlighting icons. The
print function does not work because the font chosen by the font manager is not guaranteed to

13-10 CG Domain

U. C. Berkeley Department of EECS

be Postscript convertible. The save function saves the schedule in the Ptolemy 0.5 format
which is different from the Ptolemy 0.6 format generated by the various domains.

13.4 Interfacing Issues
For the 0.6 release, we have developed a framework for interfacing code generation

targets with other targets (simulation or code generation). The concepts behind this new infra-
structure are detailed in [Pin96]. Currently, only a few of our code generation targets support
this new infrastructure including: CGCTarget (CGC Domain), S56XTarget (CG56 Domain),
SimVSSTarget (VHDL Domain).

The code generation targets that support this infrastructure can be mixed arbitrarily in
an application specification, and can also be embedded within simulation wormholes (i.e. a
CG domain galaxy embedded within a simulation-SDF galaxy).

This infrastructure requires that each target provide CGC communication stars that can
be targeted to the Ptolemy host workstation. The current implementation does not support spe-
cialized communication links between two individual code generation targets, but rather
builds the customized links from the communication primitives written in C. To learn how to
support a new target in this infrastructure, refer to theCode Generation chapter in thePro-
grammer’s Manual.

13.4.1 Interface Synthesis between Code Generation Targets

To interface multiple code generation targets, you must set the target parameter for the
top-level galaxy to CompileCGSubsystems. The target parameters for CompileCGSubsystems
are identical to those of the FullyConnected target, detailed in section 13.2.3. You must
declare each individual target in thechildType CompileCGSubsystems target parameter list.
The first of these child targets must be a CGC target whose code will be run on the Ptolemy
host workstation. The processor mapping of each star is user-specified by setting either the
procId star parameter or setting the domain for the current galaxy. The interconnect between
the stars to be mapped onto different targets can be totally arbitrary. A demonstration
(included in the release) which mixes targets in the VHDL, CG56 and CGC domains is shown
in figure 13-1.

13.4.2 Interface Synthesis between Code Generation and Simulation Domains

The interfacing of code generation targets with simulation targets is more restricted
than interfacing only code generation targets. Unlike the previous case, where the star inter-
connect could be arbitrary, we require that the simulation targets be used at a higher level in
the user-specification than all of the code generation targets. This restriction enables us to cre-
ate simulation SDF star wrappers for each of the code generation subsystems. This generated
star can then be added to the user star palette by creating an icon for it using the pigimake-star
command (See “Editing Icons” on page 2-34.).

The top-level galaxy for each code generation subsystem should have its target set to
either CompileCGSubsystems or CreateSDFStar. The CompileCGSubsystems target should
be used if more than one code generation target is used. ThechildType target parameter
(described in the previous section) should list the child targets to use. The first child target
listed must be the CreateSDFStar target. The CreateSDFStar is actually a CGC target that gen-

The Almagest 13-11

Ptolemy Last updated: 12/1/97

erates ptlang code for all of the communication between the various targets and Ptolemy.

If only CGC stars are being used in a code generated subsystem, we have no need for
the multiprocessor target CompileCGSubsystems, but rather can use the uniprocessor CGC
target CreateSDFStar.

13.5 Dynamic constructs in CG domain
All multiprocessor code generation domains included in previous releases assumed

that the dataflow graph is synchronous (or SDF)—that is, the number of tokens consumed and
produced by each star does not vary at run time. We also assumed that the relative execution
times of blocks was specified, and did not allow blocks with dynamic behavior, such as the
case construct, data-dependent iteration, and recursion. In simulation, however, data-depen-
dent behavior was supported by the DDF (Dynamic Dataflow) domain. The current release
allows data-dependent constructs in the code generation domains, by a new clustering tech-
nique and a new scheduler called the CGDDF scheduler1.

13.5.1 Dynamic constructs as a cluster

Dynamic construct are specified using predefined graph topologies. For example, anif-
then-else construct is represented as a galaxy that consists of two DDF stars,Case andEnd-
Case, and two SDF galaxies to represent the bodies of theTRUE or FALSE branches. The
dynamic constructs supported by the CGDDF scheduler arecase, for, do-while, andrecursion.
Thecase construct is a generalization of the more familiarif-then-else construct. The topology
of the galaxy is matched against a set of pre-determined topologies representing these
dynamic constructs.

1. In version 0.4 of Ptolemy, dynamic constructs were supported with a separate domain called the
CGDDF domain. We have since designed a mechanism for wormhole interfaces to support the
CGDDF domain inside the CG domain. By using clustering instead of wormholes, we were able to
clean up the code significantly in this release

DSP VHDL

Sparc

FIGURE 13-1: Eight channel perfect reconstruction filter bank demonstration using a DSP card, a
VHDL simulator and a UNIX workstation. The generated GUI for the application is
shown on the right.

13-12 CG Domain

U. C. Berkeley Department of EECS

Galaxy is a hierarchical block for structural representation of the program graph.
When an APEG is generated from an SDF graph for parallel scheduling, galaxies are flat-
tened. To handle a dynamic construct as a unit of parallel scheduling, we make a cluster,
called agalaxy cluster, for each dynamic construct. The programmer should indicate the gal-
axies to be clustered by creating a galaxy parameterasFunc and setting its value to YES. For
example, the galaxies associated with the TRUE and the FALSE branch of acase construct
will have theasFunc parameter as well as the galaxy of the construct itself.

13.5.2 Quasi-static scheduling of dynamic constructs

We treat each dynamic construct as a special SDF star and use a static scheduling algo-
rithm. This SDF star is special in the sense that it may need to be mapped onto more than one
processor, and the execution time on the assigned processor may vary at runtime (we assume
it is fixed when we compute the schedule). The scheduling results decide the assignment to
and ordering of blocks on the processors. At run time, we will not achieve the performance
expected from the compile time schedule, because the dynamic constructs behave differently
to the compile-time assumptions. The goal of the CGDDF scheduler is to minimize the
expected makespan of the program graph at run time.

The type of the dynamic construct and the scheduling information related to the
dynamic constructs are defined as galaxy parameters. We assume that the run-time behavior of
each dynamic construct is known or can be approximated with a certain probability distribu-
tion. For example, the number of iterations of afor or do-while construct is such a variable;
similarly, the depth of recursion is a variable of the recursion construct. The parameters to be
defined are as follows:

constructType (STRING) Default =
There is no default, the initial value is the value of the galaxy
parameter.
Type of the dynamic construct. Must be one ofcase , for ,
doWhile , or recur (case insensitive).

paramType (STRING) Default =geometric
Type of the distribution. Currently, we supportgeometric dis-
tribution, uniform distribution, and ageneral distribution
specified by a table.

paramGeo (FLOAT) Default =0.5
Geometric constant of a geometric distribution. Its value is
effective only if the geometric distribution is selected byparam-
Type. If constructType is case , this parameter indicates the
probability of branch 1 (the TRUE branch) being taken. If there
are more than two branches, useparamFile to specify the prob-
abilities of taking each branch.

paramMin (INT) default =1
Minimum value of the uniform distribution, effective only when
theuniform distribution is chosen.

paramMax (INT) default =10

The Almagest 13-13

Ptolemy Last updated: 12/1/97

Maximum value of the uniform distribution, effective only
when theuniform distribution is chosen.

paramFile (STRING) default =defParams
The name of a file that contains the information on the general
distribution. If the construct is acase construct, each line con-
tains the probability of taking a branch (numbered from 0). Oth-
erwise, each line contains the integer index value and the
probability for that index. The indices should be in increasing
order.

Based on the specified run-time behavior distribution, we determine the compile-time
profile of each dynamic construct. The profile consists of the number of processors assigned
to the construct and the (assumed) execution times of the construct on the assigned processors.
Suppose we have afor construct. If the loop body is scheduled on one processor, it takes 6
time units. With two processors, the loop body takes 3 and 4 time units respectively. More-
over, each iteration cycle can be paralleled if skewed by 1 time unit. Suppose there are four
processors: then, we have to determine how many processors to assign to the construct and
how many times the loop body will be scheduled at compile time. Should we assign two pro-
cessors to the loop body and parallelize two iteration cycles, thus taking all 4 processors? Or
should we assign one processor to the loop body and parallelize three iteration cycles, thus
taking 3 processors as a whole? The CGDDF scheduler uses a systematic approach based on
the distribution to answer these tricky scheduling problems [Ha92]. We can manually deter-
mine the number of assigned processors by defining afixedNum galaxy parameter. Note that
we still have to decide how to schedule the dynamic construct with the given number of pro-
cessors. The Gantt chart display will show the profile of the dynamic construct.

13.5.3 DDF-type Stars for dynamic constructs

A code generation domain should have DDF stars to support dynamic constructs with
the CGDDF scheduler. For example, theCase andEndCase stars are used in thecase, do-
while, andrecursion constructs, which differ from each other in the connection topology of
these DDF stars and SDF galaxies. Therefore, if the user wants to use one of the above three
dynamic constructs, there is no need to write a new DDF star. Like a DDF star, theCase star
has dynamic output portholes as shown in theCGCCase.pl file. For example:

 outmulti {
name { output }
type { =input }
num { 0 }

}

The for construct consists of anUpSample type star and aDownSample type star,
where UpSample and DownSample are not the star names but the types of the stars: if a star
produces more than it consumes, it is called an UpSample star. In the preprocessor file, we
define a methodreadTypeName , as shown below.

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "UpSample"; }

13-14 CG Domain

U. C. Berkeley Department of EECS

}

Examples of UpSample type stars areRepeater andDownCounter . These stars have
a data input and a control input. The number of output data tokens is the value of the integer
control input, and is thus data-dependent. Conversely, we can design a DownSample star that
has the following method:

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "DownSample"; }

}

Examples of DownSample type stars areLastOfN , andSumOfN. These stars have a
data input and a control input. The number of input tokens consumed per invocation is deter-
mined by the value of the control input.

As explained above, all customized DDF-type stars for dynamic constructs will be
either an UpSample type or a DownSample type. We do not expect that a casual user will need
to write new DDF stars if we provide some representative UpSample and DownSample stars
in the corresponding code generation domains. Currently, we have DDF stars in the CGC code
generation domain only.

13.6 Stars
As mentioned earlier, stars in the CG domain are used only to test and debug schedul-

ers. Thus the stars in the palette shown in figure 13-2 on page 13-15 act generate only com-
ments, and allow the user to model star parameters that are relevant to schedulers such as the
number of samples produced and consumed on each firing, and the execution time of the star.
By default, any star that is derived fromCGStar (the base class for all code generation stars),
including all the stars in the CG domain, have the stateprocId. This state is used during man-
ual partitioning to specify the processor that the star should be scheduled on. The default value
of the state is-1 which specifies to the scheduler that automatic partitioning should be used.
Processors are numbered 0,1,2,...; hence, if the state is set to1, then the star will be scheduled
on the second processor in the architecture. Note that the target parametermanualAssignment
should beYES for this to work; ifmanualAssignment is NO, then the value ofprocID will be
ignored (due to a bug in the current implementation). If the user wants to specify a processor
assignment for only a subset of the stars in the system, and do automatic assignment for the
remaining stars, then this is currently not possible. It can be done in a roundabout manner
using theresources parameter. This is done by defining aresources state in the star. The value
of this state is a number that specifies the processor on which this star should go on. The target
parameterresources is left empty. Then, the scheduler will interpret the value of theresources
state as the processor on which the star should be scheduled; stars that do not specify any
resources are mapped automatically by the scheduler.

The resources state just described is used mainly for specifying any special resources
that the star might require in the system. For example, an A/D converter star might require an
input port, and this port is accessible by only a subset of all the processors in the system; in
this case, we would like the A/D star to be scheduled on a processor that has access to the
input port. In order to specify this, theresources state in the star is defined and set to a string

The Almagest 13-15

Ptolemy Last updated: 12/1/97

containing the name of the resource (e.g.,input_port). Use commas to delimit multiple
resources (e.g.,input_port,output_port). The target parameterresources is specified
using the same resource names (e.g.,input_port) as explained in section 13.2.3 on page 13-
3. The scheduler will then schedule stars that request certain resources on processors that have
them. By default, stars do not have theresources state.

The following gives an overview of CG domain stars.

MultiIn Takes multiple inputs and produces one output.

MultiInOut Takes multiple inputs and produces multiple outputs.

MultiOut Takes one input and produces multiple outputs.

RateChange Consumesconsume samples and producesproduce samples.

Sink Swallows an input sample.

Source Generic code generator source star; produces a sample.

Switch This star requires a BDF scheduler. It switches input events to
one of two outputs, depending on the value of the control input.

Through Passes data through. The run time can be set to reflect computa-
tion time.

TestMultirate (five icons) TheTestMultirate stars parallel those in the
SDF domain. These stars are useful for testing schedulers. The
number of tokens produced and consumed can be specified for
each star, in addition to its execution time.

13.7 Demos
There are four demos in the CG domain, shown in figure 13-3; these are explained

SourceSink Through

MultiIn MultiOut RateChangeMultiOut Select

Switch

TestMultirate TestMultirate TestMultirate

output#1

output#2

TestMultirate TestMultirate

input#1

input#2

Experimental Domain
Included for Demonstration Only

These TestMultirate stars parallel those in the SDF domain and are useful
for testing schedulers. The number of tokens produced and consumed can be

specified for each star, in addition to its execution time.

FIGURE 13-2: The CG stars palette.

13-16 CG Domain

U. C. Berkeley Department of EECS

below.

pipeline This demo demonstrates a technique for generation of pipelined
schedules with Ptolemy's parallel schedulers, even though
Ptolemy's parallel schedulers attempt to minimizemakespan
(the time to compute one iteration of the schedule) rather than
maximize the throughput (the time for each iteration in the exe-
cution of a very large number of iterations). Toretime a graph,
we simply add delays on all feedforward arcs (arcs that are not
part of feedback loops). We must not add delays in feedback
loops as that will change the semantics. The effect of the added
delays is to cause the generation of a pipelined schedule. The
delays marked as “(conditional)” in the demo are parameterized
delays; the delay value is zero if the universe parameterretime
is set toNO, and is 100 if the universe parameter is set toYES.
The delay in the feedback loop is always one. Schedules are
generated in either case for a three-processor system with no
communication costs. If this were a real-life example, the pro-
grammer would next attempt to reduce the “100” values to the
minimum values that enable the retimed schedule to run; there
are other constraints that apply as well when there are parallel
paths, so that corresponding tokens arrive at the same star. If the
system will function correctly with zero values for initial values
at points where the retiming delays are added, the generated
schedule can be used directly. Otherwise, apreamble, or partial
schedule, can be prepended to provide initial values.

schedTest This is a simple multiprocessor code generation demo. By
changing the parameters in the RateChange star, you can make
the demo more interesting by observing how the scheduler man-
ages to parallelize multiple invocations of a star.

Sih-4-1 This demo allows the properties of the parallel scheduler to be
investigated, by providing a universe in which the run times of
stars, the number of processors, and the communication cost
between processors can be varied. The problem, as presented by
the default parameters, is to schedule a collection of dataflow
actors on three processors with a shared bus connecting them.
Executing the demo causes a Gantt chart display to appear,
showing the partitioning of the actors onto the three processors.
Clicking the left mouse button at various points in the schedule

Sih-4-1pipeline schedTest useless

FIGURE 13-3: Code Generation demonstrations

The Almagest 13-17

Ptolemy Last updated: 12/1/97

causes the associated stars to be highlighted in the universe pal-
ette. After exiting from the Gantt chart display, code is written
to a separate file for each processor (here the “code” is simply a
sequence of comments written by the dummy CG stars). It is
interesting to explore the effects of varying the communication
costs, the number of processors, and the communication topol-
ogy. To do so, execute theedit-target command (type 'T'). A
display of possible targets comes up. Of the available options,
only SharedBus andFullyConnected will use the parallel
scheduler, so select one of them and click on "Ok". Next, a dis-
play of target parameters will appear. The interesting ones to
vary arenprocs, the number of processors, andsendTime, the
communication cost. Try using two or four processors, for
example. Sometimes you will find that the scheduler will not
use all the processors. For example, if you make the communi-
cation cost very large, everything will be placed on one proces-
sor. If the communication cost is 1 (the default), and four
processors are provided, only three will be used.

useless This is a simple demo of the dummy stars provided in the CG
domain. Each star, when executed, adds code to the target. On
completion of execution for two iterations, the accumulated
code is displayed in a popup window, showing the sequence of
code produced by the three stars.

13-18 CG Domain

U. C. Berkeley Department of EECS

