
COMMUNICATING SEQUENTIAL PROCESSES
DOMAIN IN PTOLEMY II

by

Neil Smyth

Memorandum No. UCB/ERL M98/70

15 December 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720
Masters Report

Ptolemy II

em as
. The
ro-
 non-
s an
and
ular,
odel-

mbed-
of
ABSTRACT

The Communicating Sequential Processes (CSP) domain in Ptolemy II models a syst
a network of processes communicating with messages through unidirectional channels
communication between processes is rendezvous based: both the reading and writing p
cesses block until the other side is ready to communicate. This model of computation is
deterministic and is also highly concurrent due to the nature of the model. This report give
overview of the semantics of the model of computation of the CSP domain, the algorithms
software infrastructure used in implementing the domain, and some applications. In partic
applications for the CSP domain include resource management and high level system m
ing early in the design cycle. Resource management is often required when modeling e
ded systems, and to further support this, a notion of time has been added to the model
computation used in the domain.
Masters Report

nce

prob-

 dis-

e
ola,
ACKNOWLEDGEMENTS

I would first like to thank my advisor, Professor Edward Lee, for his support and guida
during my time in the Ptolemy group. I really enjoyed my interactions with him, and will
always be grateful for showing me that there are many different ways to view the same
lem.

Secondly, I would like to say thanks to all the members of the Ptolemy group, for the
cussions and interactions that made my time in Berkeley such an enjoyable one.

This research is sponsored by the Defense Advanced Research Programs Agency
(DARPA), the State of California MICRO program, and the following companies: cadenc
design Systems, Hewlett Packard, Hitachi, Hughes Space and Communications, Motor
NEC, and Philips.

Finally, this report is dedicated to my parents and family, without whom none of this
would have been possible.
Ptolemy II

1. Introduction 1
2. Semantics of the Ptolemy II CSP Model 2

2.1.Rendezvous 2
2.2.Conditional communication constructs 3

2.2.1. CIF: 3
2.2.2. CDO: 4
2.2.3. Example using a CDO 4

2.3.Deadlock 4
2.4.Time 4
2.5.Differences from original CSP model as proposed by Hoare 5

3. Software infrastructure 6
3.1.Modeling in Ptolemy II 6
3.2.CSP Domain 7
3.3.Messages 9

4. Using the CSP domain in Ptolemy II 10
4.1.Rendezvous 10
4.2.Conditional communication constructs 10
4.3.Time 13

5. Model setup and control 14
5.1.Starting the model 14
5.2.Detecting deadlocks: 15
5.3.Terminating the model: 16
5.4.Pausing/resuming the model 17

6. Controlling communication between Threads 18
6.1.Brief introduction to threads in Java 18

6.1.1. Approaches to locking used in the CSP domain 18
6.2.Rendezvous algorithm 19
6.3.Conditional Communication Algorithm 21

6.3.1. Built on top of rendezvous: 21
6.3.2. Choosing which branch succeeds 22
6.3.3. Algorithm used by each branch: 22

6.4.Modification of rendezvous algorithm: 24
7. Demos and Examples 26

7.1.Dining Philosophers. 26
7.2.M/M/1 27
7.3.Pausing M/M/1 27
7.4.Sieve of Eratosthenes 27

8. Changes to the Topology during the Execution of a Model 28
8.1.How to write an actor that uses Topology Changes 28
8.2.Sieve of Eratosthenes example 28

9. Composing CSP with other domains 30
9.1.CSP inside another domain 30

9.1.1. CSP within CSP 31
9.2.Another domain inside CSP 31
Masters Report

10. Design decisions 33
10.1.Time: distributed relative time versus centralized absolute time 33
10.2.Choice of locks used and locking points 33
10.3.Making all the communication mechanisms symmetric 33
10.4.Conditional communication mechanisms upon rendezvous 33
10.5.Points in the model when changes to the topology are allowed 34

11. Conclusion and Future Work 35
Ptolemy II

nt sys-
nified

may
sed, to

a net-
s ready
ess is
unica-

until the
ss can
ue to

odel-
ed sys-
sed in

do not
[6]. It
imed
s the

g how
. For
1. Introduction

Ptolemy II is an environment that supports heterogeneous modeling and design of concurre
tems. Its focus is on embedded systems, particularly those that mix technologies. It offers a u
infrastructure for modeling systems using a number of models of computation. Adomainexecutes a
model of a system with the semantics of a particular model of computation. A model of a system
be designed using one domain, or it may choose to use several domains, hierarchically compo
achieve greater accuracy or efficiency.

The Communicating Sequential Processes (CSP) domain in Ptolemy II models a system as
work of processes communicating with messages through unidirectional channels. If a process i
to send a message, it blocks until the receiving process is ready to accept it. Similarly if a proc
ready to accept a message, it blocks until the sending process is ready to send it. Thus the comm
tion between processes is rendezvous based as both the reading and writing processes block
other side is ready to communicate. This model of computation is non-deterministic as a proce
be blocked waiting to send or receive on any number of channels. It is also highly concurrent d
the nature of the model.

The applications for the CSP domain include resource management and high level system m
ing early in the design cycle. Resource management is often required when modeling embedd
tems, and to further support this, a notion of time has been added to the model of computation u
the domain. This differentiates our CSP model from those more commonly encountered, which
typically have any notion of time, although several versions of timed CSP have been proposed
might thus be more accurate to refer to the domain using our model of computation as the “T
CSP” domain, but since the domain can be used with and without time, it is simply referred to a
CSP domain.

This report is written to be as self contained as possible, but invariably some details regardin
it builds upon the infrastructure in the Ptolemy II kernel and actor packages had to be omitted
more details on these aspects, and on Ptolemy II in general, please refer to [13].
Masters Report 1 of 33

sed by
ng via
re is no
the send-
rocess
’ book

hronous

t also
annels.
g end,
e FIFO

also dif-
ication

cept it.
to send
writing

ne pro-
tion in

process
cide to

.

2. Semantics of the Ptolemy II CSP Model

The model of computation used in the CSP domain is based on the CSP model first propo
Hoare[7] in 1978. In this model, a system is modeled as a network of processes communicati
messages along unidirectional channels. This in the only way processes can communicate, the
shared state. The transfer of message between processes is via rendezvous, which means both
ing and receiving of a messages from a channel are blocking: i.e. the sending or receiving p
stalls until the message is transferred. Some of the notation used here is borrowed from Andrews
on concurrent programming [1], which refers to rendezvous-based message passing as sync
message passing.

Process Networks (PN)[9] is a model of computation that has much in common with CSP. I
consists of a network of processes communicating via message passing along unidirectional ch
However, in PN, each channel has an unbounded first-in-first-out (FIFO) queue at the receivin
so that the sending of messages along a channel is non-blocking. If there are no messages in th
queue, then the receiving process stalls until a message is sent to the channel. The two models
fer in that PN is determinate whereas CSP is non-determinate due to the conditional commun
constructs described below in section 2.2.

2.1 RENDEZVOUS

If a process is ready to send a message, it blocks until the receiving process is ready to ac
Similarly if a process is ready to accept a message, it blocks until the sending process is ready
it. Thus the communication between processes is rendezvous based as both the reading and
processes block until the other side is ready to communicate. Figure 1 shows the case where o
cess is ready to send before the other process is ready to receive. The communication of informa
this way can be viewed as a distributed assignment statement.

The sending process places some data in the message that it wants to send. The receiving
assigns the data in the message to a local variable. Of course, the receiving process may de
ignore the contents of the message and only concern itself with the fact that a message arrived

Process A Process B

send(B, msg)

receive(A, var)

progress

blocked

transfer of data

FIGURE 1. Illustrating how processes block waiting to rendezvous
2 of 33 Ptolemy II

rmin-

state

not be
con-

ecuted.
ments

state-
-
rded
in

hich
nch is
an one
e non-

xecuted
g state-

ncur-
e nota-

nstruct
progress
2.2 CONDITIONAL COMMUNICATION CONSTRUCTS

A lot of the expressiveness in the CSP model comes from the being able to perform nondete
istic rendezvous. Nondeterministic rendezvous is based uponguarded communication statements.

A guarded communication statement has the form

guard; communication => statements;

Theguard is only allowed to reference local variables, and its evaluation cannot changes the
of the process. For example it is not allowed to assign to variables, only reference them. Thecommuni-
cationmust be a simple send or receive, i.e. another conditional communication statement can
placed here. Thestatementspart can contain any arbitrary sequence of statements, including more
ditional communications.

If the guard is false, then the communication is not attempted and the statements are not ex
If the guard is true, then the communication is attempted, and if it succeeds, the following state
are executed. The guard may be omitted, in which case it is assumed to be true.

There are two conditional communication constructs built upon the guarded communication
ments:CIF andCDO. These are analogous to theif andwhile statements in most programming lan
guages. They should be read as “conditional if” and “conditional do”. Note that each gua
communication statement represents onebranchof the CIF or CDO. The communication statement
each branch can be either a send or a receive, and they can be mixed freely.

2.2.1 CIF:

The form of a CIF is

For each branch in the CIF, the guard (G1, G2,...) is evaluated. If it is true (or absent, w
implies true), then the associated communication statement is enabled. If one or more bra
enabled, then the entire construct blocks until one of the communications succeeds. If more th
branch is enabled, the choice of which enabled branch succeeds with its communication is mad
deterministically. The successful communication is carried out, the associated statements are e
and the process continues. If all of the guards are false, then the process continues executin
ments after the end of the CIF.

It is important to note that, although this construct is analogous to the commonif programming
construct, its behavior is very different. In particular all guards of the branches are evaluated co
rently, and the choice of which one succeeds does not depend on its position in the construct. Th
tion “[]” is used to hint at the parallelism in the evaluation of the guards. In a commonif the branches
are evaluated sequentially and the first branch that is evaluated to true is executed. The CIF co
also depends on the semantics of the communication between processes, and can thus stall the

CIF {
G1;C1 => S1;

[]
G2;C2 => S2;

[]
...

}

Masters Report 3 of 33

d the
CDO
s

but has
at in

orever.

either
adlock

, and

ime,
of the thread if none of the enabled branches is able to rendezvous.

2.2.2 CDO:

The form of the CDO is

The behavior of the CDO is similar to the CIF in that for each branch the guard is evaluated an
choice of which enabled communication to make is taken nondeterministically. However the
repeats the process of evaluating and executing the branches untilall the guards return false. When thi
happens the process continues executing statements after the CDO construct.

2.2.3 Example using a CDO

An example use of a CDO is in a buffer process which can both accept and send messages,
to be ready to do both at any stage. The code for this would look similar to that in figure 2. Note th
this case both guards can never be simultaneously false so this process will execute the CDO f

2.3 DEADLOCK

A deadlock situation is one in which none of the processes can make progress: they are all
blocked trying to rendezvous or they are delayed (see the next section). Thus two types of de
can be distinguished:

real deadlock - all active processes are blocked trying to communicate
time deadlock - all active processes are either blocked trying to communicate or are delayed
at least one processes is delayed.

2.4 TIME

In the CSP domain,time is centralized. That is, all processes in a model share the same t

CDO {
G1;C1 => S1;

[]
G2;C2 => S2;

[]
...

}

CDO {
(room in buffer?); receive(input, beginningOfBuffer) => update pointer to beginning of buffer;

[]
 (messages in buffer?); send(output, endOfBuffer) => update pointer to end of buffer;

}

FIGURE 2. Example of how a CDO might be used in a buffer
4 of 33 Ptolemy II

rrent
ose to
wait-

nded
delays
f the

ached.
an have
ed, any
using

ous,
occurs,

dvanced
process
time

cution,
d time,
using

la[5],

two
ough
ossible
llowed
low both

pro-
t was
S[3]

mes-
uction
Sim-
that
referred to as thecurrent model time. Each process can only choose todelay itself relative for some
period from the current model time, or a process can wait for time deadlock to occur at the cu
model time. Even though a process can be aware of the current model time, it should not cho
wait until the current model time reaches some value as the model time could change while it is
ing. It both cases, a process is said to bedelayed.

When a process delays itself for some length of time from the current model time, it is suspe
until time has sufficiently advanced, at which stage it wakes up and continues. If the process
itself for zero time, this will have no effect and the process will continue executing. An example o
use of time in this manner can be seen below in section 7.2.

A process can also choose to delay its execution until the next occasion a time deadlock is re
The process resumes at the same model time at which it delayed, and this is useful as a model c
several sequences of actions at the same model time. The next occasion time deadlock is reach
processes delayed in this manner will continue, and time will not be advanced. An example of
time in this manner can be found in section 8.2.

Time may beadvancedwhen all the processes are delayed or are blocked trying to rendezv
and at least one process is delayed. If one or more processes are delaying until a time deadlock
these processes are woken up and time is not advanced. Otherwise, the current model time is a
just enough to wake up at least one process. Note that there is a semantic difference between a
delaying for zero time, which will have no effect, and a process delaying until the next occasion a
deadlock is reached.

Note also that time, as perceived by a single process, cannot change during its normal exe
only at rendezvous points or when the process delays. A process can be aware of the centralize
but it cannot influence the current model time except by delaying itself. One of reasons behind
this model for time is given in 10.1. The choice for modeling time was in part influenced by Pame
a run time library that is used to model parallel programs.

2.5 DIFFERENCES FROM ORIGINAL CSP MODEL AS PROPOSED BY HOARE

The model of computation used by the CSP domain differs from the original CSP[7] model in
ways. First, a notion of time has been added. The original proposal had no notion of time, alth
there have been several proposals for timed CSP[6]. Second, as mentioned in section 2.2, it is p
to use both send and receive in guarded communication statements. The original model only a
receives to appear in these statements, though Hoare subsequently extended their scope to al
communication primitives[8].

One final thing to note is that in much of the CSP literature, send is denoted using a “!”,
nounced “bang”, and receive is denoted using a “?”, pronounced “query”. This syntax was wha
used in the original CSP paper[6] by Hoare. For example, the languages OCCAM[2] and LOTO
both follow this syntax. In the CSP domain in Ptolemy II we usesendandget, the choice of which is
influenced by the desire to maintain uniformity of syntax across domains in Ptolemy II that use
sage passing. This supports the heterogeneity principle in Ptolemy II which enables the constr
and interoperability of executable models that are built under a variety of models of computation.
ilarly, the notation used in the CSP domain for conditional communication constructs differs from
commonly found in the CSP literature.
Masters Report 5 of 33

he
ompu-

d rela-
on-

set of

y
ths of
input

A dia-
own in

cture
mod-
[13].

d
channel
nds or
iagram

ses that
3. Software infrastructure

3.1 MODELING IN PTOLEMY II

In Ptolemy II an executable model consists of a top-levelCompositeActorwith an instance of
Director and an instance ofManagerassociated with it. The manager provides overall control of t
execution (starting, stopping, pausing). The director implements the semantics of the model of c
tation that governs the execution ofactors contained by the CompositeActor.

The actors in the CompositeActor are connected toRelationsvia Ports. A relation connects one or
more ports together. A particular collection of actors connected to each other through ports an
tions is called atopology. The choice of the actors, the director controlling them and how they are c
nected defines what the model will do.

An actor under control of a director may be either anAtomicActor, which means it is indivisible, or
it may be a CompositeActor, in which case it too can have its own director and contain a new
actors. This is illustrated in figure 4(a).

Messages are passed between actors along relations. A relation has awidth, greater than or equal to
one. The width of a relation is the number of datachannelsrepresented by it. A port may have an
number of relations connected to it, and the width of the port is defined to be the sum of the wid
the relations connected to it. If the port is an input port, it contains a set of receivers, one for each
channel. The receivers contained by a port are determined by the director controlling the model.
gram illustrating how a message is transferred across a relation with one and two channels is sh
figure 4(b).

Obviously what has just been described is a very rough overview of the software infrastru
provided by Ptolemy II, though hopefully it is enough to allow the reader to understand the CSP
els which are built on top of it. For a much more thorough description of Ptolemy II in general see

3.2 CSP DOMAIN

In a CSP model, the director is an instance ofCSPDirector. Since the model is controlled by a
CSPDirector, all the receivers in the ports areCSPReceivers. The combination of the CSPDirector an
CSPReceivers in the ports gives a model CSP semantics. The CSP domain associates each
with exactly one receiver, located at the receiving end of the channel. Thus any process that se
receives to any channel will rendezvous at a CSPReceiver. Figure 5 shows the static structure d
of the five main classes in the CSP kernel, and a few of their associations. These are the clas
provide all the infrastructure needed for a CSP model.

Ptolemy II Syntax OCCAM syntax

send !

get ?

CIF ALT

CDO ALT wrapped in a while loop.

FIGURE 3. Comparison of syntaxes used in CSP domain and in OCCAM
6 of 33 Ptolemy II

ntrols/
neces-

nec-

by
CSPDirector: gives a model CSP semantics. It takes care of starting all the processes and co
responds to both real and time deadlocks. It also maintains and advances the model time when
sary.

CSPReceiver:ensures that communication of messages between processes is via rendezvous.

CSPActor: adds the notion of time and the ability to perform conditional communication.

ConditionalReceive, ConditionalSend:used to construct the guarded communication statements
essary for the conditional communication constructs.

3.3 MESSAGES

All messages in Ptolemy II are represented byTokens. The data carried in a message is defined

P2
P1

E1

E2

send(0,t)
receiver.put(t) get(0)

token t
R1

P2P1E1 E2

send(0,t0) get(0), get(1)

token t0, t1
R1send(1,t1)

2

receiver.put(t0)
receiver.put(t1)

2 2

P6 P3P2 P5P1

E1

E2

E4

E0

M: Manager

D1: local director

D2: local director

P4 P7

E3

E5

(a)

(b)

FIGURE 4. (a) Example of a topology illustrating the control of a model and how the model may be
hierarchically composed, (b) Detailed view of a relation with one and two channels in Ptolemy II.
Masters Report 7 of 33

evelop
tokens
the type of token used. The tokens available are shown in figure 6, though the user is free to d
new token classes. For more information on the token classes refer to [13]. For most models the
supplied should be sufficient.

ConditionalBranch

+ConditionalBranch(guard : boolean, port : IOPort, branchID : int)
+getID() : int
+getGuard() : boolean
+getParent() : CSPActor
+getReceiver() : CSPReceiver
+getToken() : Token
+isAlive() : boolean
+setAlive(value : boolean)
#_checkAndWait()

-_alive : boolean
-_branchNumber : int
-_guard : boolean
-_parent : CSPActor
#_receiver : CSPReceiver
#_token : Token

ConditionalReceive

+ConditionalReceive(guard : boolean, port : IOPort, channel : int, id : int)
+run()

ConditionalSend

+ConditionalSend(guard : boolean, port : IOPort, channel : int, id : int, t : Token)
+run()

CSPActor

+CSPActor()
+CSPActor(ws : Workspace)
+CSPActor(cont : CompositeActor, name : String)
+chooseBranch(branches : ConditionalBranch[]) : int
+delay()
+delay(delta : double)
+terminate()
#_branchBlocked()
#_branchFailed(branchNumber : int)
#_branchSucceeded(branchNumber : int)
#_branchUnblocked()
#_continue()
#_isBranchFirst(branchNumber : int) : boolean
#_releaseFirst(branchNumber : int)

-_blocked : boolean
-_branchesActive : int
-_branchesBlocked : int
-_branchesDelayed : int
-_branchTrying : int
-_delayed : boolean
-_internalLock : Object
-_successfulBranch : int
-_threadList : LinkedList

CSPReceiver

+CSPReceiver()
+CSPReceiver(p : IOPort)
+get() : Token
+put(token : Token)
+getContainer() : Nameable
+hasRoom() : boolean
+hasToken() : boolean
+setContainer(parent : IOPort)
+setFinish()
+setPause(newValue : boolean)
#_getOtherParent() : CSPActor
#_isConditionalReceiveWaiting() : boolean
#_isConditionalSendWaiting() : boolean
#_isGetWaiting() : boolean
#_isPutWaiting() : boolean
#_setConditionalRecieve(v : boolean, parent : CSPActor)
#_setConditionalSend(v : boolean, parent : CSPActor)
#_checkAndWait()

-_conditionalReceiveWaiting : boolean
-_conditionalSendWaiting : boolean
-_container : IOPort
-_getWaiting : boolean
-_putWaiting : boolean
-_otherParent : CSPActor
-_rendezvousComplete : boolean
-_simulationPaused : boolean
-_simulationFinished : boolean
-_token : Token

CSPDirector

+CSPDirector()
+CSPDirector(name : String)
+CSPDirector(name : String, ws : Workspace)
+getCurrentTime() : double
+setCurrentTime(newTime : double)
+setUntimed(value : boolean)
#_actorBlocked()
#_actorDelayed(delta : double, actor : CSPActor)
#_actorUnblocked()

-_actorsBlocked : int
-_actorsDelayed : int
-_currentTime : double
-_delayedActorList : LinkedList
-_mutationsPending : boolean
-_simulationUntimed : boolean

IOPort

ProcessDirector

0..1

0..n

controls

0..n

1..1

creates for conditional rendezvous

performs conditional rendezvous for

1..1
0..n contains

1..1

0..n

contained

contains

FIGURE 5. Static structure diagram for classes in the CSP kernel.
8 of 33 Ptolemy II

BooleanMatrixToken
BooleanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken
DoubleToken
IntMatrixToken
IntToken
LongMatrixToken
LongToken
ObjectToken
StringToken

FIGURE 6. Tokens available in ptolemy.data package.
Masters Report 9 of 33

s that
esses is
p-

g on

PAc-

state-
g from
IF.
tes the
e identi-
4. Using the CSP domain in Ptolemy II

For a model to have CSP semantics, it must have a CSPDirector controlling it. This ensure
the receivers in the ports are CSPReceivers, so all communication of messages between proc
via rendezvous. Note that eachactor in the CompositeActor under the control of the CSPDirector re
resents a separateprocess in the model.

4.1 RENDEZVOUS

Since the ports contain CSPReceivers, the basic communication statementssend(channel, token)
and get(channel)will have rendezvous semantics. Thus the fact that a rendezvous is occurrin
every communication is transparent to the actor code.

4.2 CONDITIONAL COMMUNICATION CONSTRUCTS

In order to use the conditional communication constructs, an actor must be derived from CS
tor. There are three steps involved:

1) Create a ConditionalReceive or ConditionalSend branch for each guarded communication
ment, depending on the communication. Pass each branch a unique integer identifier, startin
zero, when creating it. The identifiers only need to be unique within the scope of that CDO or C

2) Pass the branches to the chooseBranch() method in CSPActor. This method evalua
guards, and decides which branch gets to rendezvous, performs the rendezvous and returns th
fication number of the branch that succeeded. If all of the guards were false, -1 is returned.

3) Execute the statements for the guarded communication that succeeded.

boolean continueCDO = true;
while (continueCDO) {

// step 1:
ConditionalBranch[] branches = new ConditionalBranch[#branchesRequired];
// Create a ConditionalReceive or a ConditionalSend for each branch
// e.g. branches[0] = new ConditionalReceive((guard), input, 0, 0);

// step 2:
int result = chooseBranch(branches);

// step 3:
if (result == 0) {

// execute statements associated with first branch
} else if (result == 1) {

// execute statements associated with second branch.
} else if ... // continue for each branch ID

} else if (result == -1) {
// all guards were false so exit CDO.
continueCDO = false;

} else {

FIGURE 7. Template for executing a CDO construct.
10 of 33 Ptolemy II

ed in
s, the
annel to
h. The
muni-

munica-
e Token
ard is
A sample template for executing a CDO is shown in figure 7. The code for the buffer describ
figure 7 is shown in figure 8. In creating the ConditionalSend and ConditionalReceive branche
first argument represents the guard. The second and third arguments represent the port and ch
send or receive the message on. The fourth argument is the identifier assigned to the branc
choice of placing the guard in the constructor was made to keep the syntax of using guarded com
cation statements to the minimum, and to have the branch classes resemble the guarded com
tion statements they represent as closely as possible. This can give rise to the case where th
specified in a ConditionalSend branch may not yet exist, but this has no effect as once the gu
false, the token in a ConditionalSend is never referenced.

boolean guard = false;
boolean continueCDO = true;
ConditionalBranch[] branches = new ConditionalBranch[2];
while (continueCDO) {

// step 1
guard = (_size < depth);
branches[0] = new ConditionalReceive(guard, input, 0, 0);
guard = (_size > 0);
branches[1] = new ConditionalSend(guard, output, 0, 1, _buffer[_readFrom]);

// step 2
int successfulBranch = chooseBranch(branches);

// step 3
if (successfulBranch == 0) {

_size++;
_buffer[_writeTo] = branches[0].getToken();
 _writeTo = ++_writeTo % depth;

 } else if (successfulBranch == 1) {
_size--;
_readFrom = ++_readFrom % depth;

 } else if (successfulBranch == -1) {
 // all guards false so exit CDO

// Note this cannot happen in this case
 continueCDO = false;
 } else {
 throw new TerminateProcessException(getName() + ": " +
 "branch id returned during execution of CDO.");
 }
}

FIGURE 8. Code used to implement the buffer process described in figure .
Masters Report 11 of 33

op is
volved
w the

on-
very

lained
m the
. The

elf for
uiva-

etCur-
es are
o a time
ich is

ile it is
l time,
nce.

not
cution
The other option considered was to wrap the creation of each branch as follows:

if (guard) {
// create branch and place in branches array

} else {
// branches array entry for this branch is null

}

However this leads to longer actor code and what is happening is not as syntactically obvious.
The code for using a CIF is similar to the that in figure 7 except that the surrounding while lo

omitted and the case when the identifier returned is -1 does nothing. At some stage the steps in
in using a CIF or a CDO may be automated using a pre-parser, but for now the user must follo
approach described above.

It is worth pointing out that if most channels in a model are buffered, it may be worthwhile c
sidering implementing the model in the PN domain which implicitly has an unbounded buffer on e
channel.

4.3 TIME

If a process wishes to use time, the actor representing it must derive from CSPActor. As exp
in section 2.4, each process in the CSP domain is able to delay itself, either for some period fro
current model time or until the next occasion time deadlock is reached at the current model time
two methods to call are delay(double) and waitForDeadlock(). Recall that if a process delays its
zero time from the current time, the process will continue immediately. Thus delay(0.0) is not eq
lent to waitForDeadlock()

If no processes are delayed, it is also possible to set the model time by calling the method s
rentTime(newTime) on the director. However, this method can only be called when no process
delayed, as the state of the model may be rendered meaningless if the model time is advanced t
beyond the earliest delayed process. It is primarily for composing CSP with other domains, wh
explained below in section 10.1.

As mentioned in section 2.4, as far as each process is concerned, time can only increase wh
blocked waiting to rendezvous or when delaying. A process can be aware of the current mode
but it should only ever affect the model time by delaying its execution, thus forcing time to adva
The method setCurrentTime(newTime) should never be called from a process.

By default every model in the CSP domain is timed. To use CSP without a notion of time, do
use the delay(double) method. The infrastructure supporting time does not affect the model exe
if the delay(double) method is not used.
12 of 33 Ptolemy II

rt a
Second,
se and

also
efire()
r is an
r until

umption
main-

omain

ished
iting
5. Model setup and control

The job of the CSPDirector in controlling the model is two fold. First, it must create and sta
thread for each actor under its control. Each of these threads represents a process in our model.
it is responsible for detecting and responding to both real and time deadlocks. It can also pau
resume the model, and terminate all the processes when real deadlock is detected.

5.1 STARTING THE MODEL

The director creates a thread for each actor under its control in its initialize() method. It
invokes the initialize() method on each actor at this time. The director starts the threads in its pr
method, and detects and responds to deadlocks in its fire() method. The thread for each acto
instance of ProcessThread, which invokes the prefire(), fire() and postfire() methods for the acto
it finishes or is terminated. It then invokes the wrapup() method and the thread dies.

Figure 10 shows the code executed by the ProcessThread class. Note that it makes no ass
about the actor it is executing, so it can execute any domain-polymorphic actor as well as CSP do
specific actors. In fact any other domain actor that does not rely on the specifics of its parent d
can be executed in the CSP domain by the ProcessThread.

5.2 DETECTING DEADLOCKS:

For deadlock detection, the director maintains three counts:
•the number ofactive processes which are threads that have started but have not yet fin
•the number ofblocked processes which is the number of processes that are blocked wa

to rendezvous, and

director.initialize() => create a thread for each actor
update count of active processes with the director
call initialize() on each actor

director.prefire() => start the process threads => calls actor.prefire()
calls actor.fire()
calls actor.postfire()
repeat.

director.fire() => handle deadlocks until a real deadlock occurs.

director.postfire() => return a boolean indicating if the execution of the model should continue for
 another iteration

director.wrapup() => terminate all the processes => calls actor.wrapup()
decrease the count of active processes
 with the director

FIGURE 9. Sequence of steps involved in setting up and controlling the model.
Masters Report 13 of 33

del

eadlock
umber
yed, then
at the
erwise
e and
up at

.
model
is rela-
d dies.
es the
reased
•the number ofdelayed processes which is the number of processes waiting for time to
advance plus the number of processes waiting for time deadlock to occur at the current mo
time.

When the number of blocked processes equals the number of active processes, then real d
has occurred and the fire method of the director returns. When the number of blocked plus the n
of delayed processes equals the number of active processes, and at least one process is dela
time deadlock has occurred. If at least one process is delayed waiting for time deadlock to occur
current model time, then the director wakes up all such process and does not advance time. Oth
the director looks at its list of processes waiting for time to advance, chooses the earliest on
advances time sufficiently to wake it up. It also wakes up any other processes due to be woken
the new time. The director checks for deadlock each occasion a process blocks, delays or dies

For the director to work correctly, these three counts need to be accurate at all stages of the
execution, so when they are updated becomes important. Keeping the active count accurate
tively simple, the director increase it when it starts the thread, and decreases it when the threa
Likewise the count of delayed processes is straightforward: when a process delays, it increas
count of delayed processes, and the director keeps track of when to wake it up. The count is dec
when a delayed process resumes.

public void run() {
try {

boolean iterate = true;
while (iterate) {

// container is checked for null to detect the termination
// of the actor.
iterate = false;
if ((Entity)_actor).getContainer() != null && _actor.prefire()) {

_actor.fire();
iterate = _actor.postfire();

}
}

} catch (TerminateProcessException t) {
// Process was terminated early

} catch (IllegalActionException e) {
_manager.fireExecutionError(e);

} finally {
try {

_actor.wrapup();
} catch (IllegalActionExeption e) {

_manager.fireExecutionError(e);
}
_director.decreaseActiveCount();

}
}

FIGURE 10. Code executed by ProcessThread.run()
14 of 33 Ptolemy II

urate
d when

then
hen an
k of all
zvous,
ous, the

eth-

d then
fire()
ile loop
ses the

hannel
Pro-

o-
essEx-

ly any
tion of
y, this
r that

ception

rmi-
aph in
l state.
d after
l has
n. It

odel,
pause()

has

ed with
, paused
r This
However, due to the conditional communication constructs, keeping the blocked count acc
requires a little more effort. For a basic send or receive, a process is registered as being blocke
it arrives at the rendezvous point before the matching communication. The blocked count is
decreased by one when the corresponding communication arrives. However what happens w
actor is carrying out a conditional communication construct? In this case the process keeps trac
of the branches for which the guards were true, and when all of those are blocked trying to rende
it registers the process as being blocked. When one of the branches succeeds with a rendezv
process is registered as being unblocked.

5.3 TERMINATING THE MODEL:

A process can finish in one of two ways: either by returning false in its prefire() or postfire() m
ods, in which case it is said to have finishednormally, or if it is terminatedearlyby a TerminateProces-
sException being thrown. For example, if a source process is intended to send ten tokens an
finish, it would exit its fire() method after sending the tenth token, and return false in its post
method. This causes the ProcessThread, see figure 10, representing the process, to exit the wh
and execute the finally clause. The finally clause calls wrapup() on the actor it represents, decrea
count of active processes in the director, and the thread representing the process dies.

A TerminateProcessException is thrown whenever a process tries to communicate via a c
whose receiver has itsfinishedflag set to true. When a TerminateProcessException is caught in
cessThread, the finally clause is also executed and the thread representing the process dies.

To terminate the model, the director sets thefinishedflag in each receiver. The next occasion a pr
cess tries to send to or receive from the channel associated with that receiver, a TerminateProc
ception is thrown. This mechanism can also be used in a selective fashion to terminate ear
processes that communicate via a particular channel. When the director controlling the execu
the model detects real deadlock, it returns from its fire() method. In the absence of hierarch
causes the wrapup() method of the director to be invoked. It is the wrapup() method of the directo
sets the finished flag in each receiver. Note that the TerminateProcessException is a runtime ex
so it does not need to be declared as being thrown.

There is also the option of abruptly terminating all the processes in the model by calling te
nate() on the director. This method differs from the approach described in the previous paragr
that it stops all the threads immediately and does not give them a chance to update the mode
After calling this method, the state of the model is unknown and so the model should be recreate
calling this method. This method is only intended for situations when the execution of the mode
obviously gone wrong, and for it to finish normally would either take too long or could not happe
should rarely be called.

5.4 PAUSING/RESUMING THE MODEL

Pausing and resuming a model does not affect the outcome of a particular execution of the m
only the rate of progress. The execution of a model can be paused at any stage by calling the
method on the director. This method is blocking, and will only return when the model execution
been successfully paused. To pause the execution of a model, the director sets apausedflag in every
receiver, and the next occasion a process tries to send to or receive from the channel associat
that receiver, it is paused. The whole model is paused when all the active processes are delayed
or blocked. To resume the model, the resume() method can similarly be called on the directo
Masters Report 15 of 33

er lock.
se and
method resets the paused flag in every receiver and wakes up every process waiting on a receiv
If a process was paused, it sees that it is no longer paused and continues. The ability to pau
resume the execution of a model is intended primarily for user interface control.
16 of 33 Ptolemy II

of the

to be
t dead-

read
imulta-
nitor

th that

ecified
cquire
locks,
an lead

ad can
the

h that
act in

cks
e code

fyAll()
6. Controlling communication between Threads

6.1 BRIEF INTRODUCTION TO THREADS IN JAVA

The CSP domain, like the rest of Ptolemy II, is written entirely in Java and takes advantage
features built into the language. In particular, the CSP domain depends heavily onthreadsand onmon-
itors for controlling the interaction between threads. In any multi-threaded environment, care has
taken to ensure that the threads do not interact in unintended ways, and that the model does no
lock. Note deadlock in this sense is a bug in themodeling environment, which is different from the
deadlock talked about before which may or may not be a bug in themodel being executed.

A monitor is a mechanism for ensuring mutual exclusion between threads. In particular if a th
has a particular monitor, acquired in order to execute some code, then no other thread can s
neously have that monitor. If another thread tries to acquire that monitor, it stalls until the mo
becomes available. A monitor is also called alock, and one is associated with every object in Java.

Code that is associated with a lock is defined by thesynchronizedkeyword. This keyword can
either be in the signature of a method, in which case the entire method body is associated wi
lock, or it can be used in the body of a method using the syntax:

synchronized(object) {
// synchronized code goes here

}

This causes the code inside the brackets to be associated with the lock belonging to the sp
object. In either case, when a thread tries to execute code controlled by a lock, it must either a
the lock or stall until the lock becomes available. If a thread stalls when it already has some
those locks are not released, so any other threads waiting on those locks cannot proceed. This c
to deadlock when all threads are stalled waiting to acquire some lock they need.

A thread can voluntarily relinquish a lock when stalling by callingobject.wait()whereobjectis the
object to relinquish and wait on.This causes the lock to become available to other threads. A thre
also wake up any threads waiting on a lock associated with an object by calling notifyAll() on
object. Note that to issue a notifyAll() on an object it is necessary to own the lock associated wit
object first. By careful use of these methods it is possible to ensure that threads only inter
intended ways and that deadlock does not occur.

6.1.1 Approaches to locking used in the CSP domain

One of the key coding patterns followed is to wrap each wait() call in a while loop that che
some flag. Only when the flag is set to false can the thread proceed beyond that point. Thus th
will often look like

synchronized(object) {
...
while(flag) {

object.wait();
}
...

}

The advantage to this is that it is not necessary to worry about what other thread issued the noti
on the lock; the thread can only continue when the notifyAll() is issuedand the flag has been set to
false.
Masters Report 17 of 33

ssible,
y must
e order.

hreads
locks,
m[10].

cquire
is
SP
ing the
. This
f the

ure the
t pro-

ith the
lgo-
process
nel can
rrently

n
kes the
trolling
at put
es at a
Another approach used is to keep the number of locks acquired by a thread as few as po
preferably never more than one at a time. If several threads share the same locks, and the
acquire more than one lock at some stage, then the locks should always be acquired in the sam
To see how this prevent deadlocks, consider two threads,thread1andthread2, that are using two locks
A and B. If thread1obtains A first, then B, andthread2obtains B first then A, then a situation could
arise wherebythread1owns lock A and is waiting on B, andthread2owns lock B and is waiting on A.
Neither thread can proceed and so deadlock has occurred. This would be prevented if both t
obtained lock A first, then lock B. This approach is sufficient, but not necessary to prevent dead
as other approaches may also prevent deadlocks without imposing this constraint on the progra

Finally, deadlock often occurs even when a thread, which already has some lock, tries to a
another lock only to issue a notifyAll() on it. To avoid this situation, it is easiest if the notifyAll()
issued from anew threadwhich has no locks that could be held if it stalls. This is often used in the C
domain to wake up any threads waiting on receivers, for example after a pause or when terminat
model. The class NotifyThread, in the ptolemy.actor.process package, is used for this purpose
class takes a list of objects in a linked list, or a single object, and issues a notifyAll() on each o
objects from within a new thread.

The CSP domain kernel makes extensive use of the above patterns and conventions to ens
modeling engine is deadlock free. However for a much more thorough introduction to concurren
gramming Java, a very good starting point is [10].

6.2 RENDEZVOUS ALGORITHM

In CSP, thelocking pointfor all communication between processes is thereceiver. Any occasion a
process wishes to send or receive, it must first acquire the lock for the receiver associated w
channel it is communicating over. Two key facts to keep in mind when reading the following a
rithms are that each channel has exactly one receiver associated with it and that at most one
can be trying to send to (or receive from) a channel at any stage. The constraint that each chan
have at most one process trying to send to (or receive from) a channel at any stage is not cu
enforced, but an exception will be thrown if such a model is not constructed.

The rendezvous algorithm isentirely symmetricfor the put() and the get(), except for the directio
the token is transferred. This helps reduce the deadlock situations that could arise and also ma
interaction between processes more understandable and easier to explain. The algorithm con
how a get() proceeds is shown in figure 11. The algorithm for a put() is exactly the same except th
and get are swapped everywhere. Thus it suffices to explain what happens when a get() arriv
receiver i.e. when a process tries to receive from the channel associated with the receiver.
18 of 33 Ptolemy II

Both
imulta-
ume a
a put()
When a get() arrives at a receiver, a put() is either already waiting to rendezvous or it isn’t.
the get() and put() methods are entirely synchronized on the receiver so they cannot happen s
neously (only one thread can possess a lock at any given time). Without loss of generality ass
get() arrives before a put(). The rendezvous mechanism is basically three steps: a get() arrives,
arrives, the rendezvous completes.

get arrives

put waiting? get waiting = trueNo

notifyAll

_checkAndWait
get

waiting?

register actor
blocked

register actor
unblocked

rendezvous
complete = true

notifyAll

No

Yes

put waiting = false

rendezvous
complete = false

_checkAndWait

notifyAll

rendezvous
complete?

No

Yes

Wakes up
CondSend if one
is waiting

Yes

wakes up

wakes up

FIGURE 11. Rendezvous algorithm
Masters Report 19 of 33

its on

the put

ezvous
aking
cessary
t, except

the
the get
eiver.
en the

anch

a new
l these
threads
scribed
e con-
unica-
design
s prone
(1) When the get arrives it sees that it is first and sets a flag saying a get is waiting. It then wa
the receiver lock while the flag is still true,(2) When a put arrives, it sets thegetWaitingflag to false,
wakes up any threads waiting on the receiver (including the get), sets therendezvousCompleteflag to
false and then waits on the receiver while therendezvousCompleteflag is false,(3) The thread execut-
ing the get wakes up, sees that a put has arrived, sets therendezvousCompleteflag to true, wakes up
any threads waiting on the receiver and returns thus releasing the lock. The thread executing
then wakes up, acquires the receiver lock, sees that the rendezvous is complete and returns.

Following the rendezvous, the state of the receiver is exactly the same as before the rend
arrived, and it is ready to mediate another rendezvous. It is worth noting that the final step, of m
sure the second communication to arrive does not return until the rendezvous is complete, is ne
to ensure that the correct token gets transferred. Consider the case again when a get arrives firs
now the put returns immediately if a get is already waiting. A put arrives, places a token in
receiver, sets the get waiting flag to false and returns. Now suppose another put arrives before
wakes up, which will happen if the thread the put is in wins the race to obtain the lock on the rec
Then the second put places a new token in the receiver and sets the put waiting flag to true. Th
get wakes up, and returns with the wrong token! This is known as arace condition, which will lead to
unintended behavior in the model.

6.3 CONDITIONAL COMMUNICATION ALGORITHM

There are two steps involved in executing a CIF or a CDO: first deciding which enabled br
succeeds, then carrying out the rendezvous.

6.3.1 Built on top of rendezvous:

When a conditional construct has more than one enabled branch (guard is true or absent),
thread is spawned for each enabled branch. The job of the chooseBranch() method is to contro
threads and to determine which branch should be allowed to successfully rendezvous. These
and the mechanism controlling them are entirely separate from the rendezvous mechanism de
in section 6.2, with the exception of one special case, which is described in section 6.4. Thus th
ditional mechanism can be viewed as being built on top of basic rendezvous: conditional comm
tion knows about and needs basic rendezvous, but the opposite is not true. Again this is a
decision which leads to making the interaction between threads easier to understand and is les
to deadlock as there are fewer interaction possibilities to consider.

rendezvous

which branch should succeed?

FIGURE 12. Conceptual view of how conditional communication is built on top of rendezvous.
20 of 33 Ptolemy II

oose-
e false,
forms
resting
h branch
t gets
ll the
cessful
ully per-

ting a

the
n the

goes
ks if it
ing

check
dition-
er and
with
tries

nch to
first to

at the
ro-
r aware

p, it
failed
e if a
ranch
a get. If
6.3.2 Choosing which branch succeeds

The manner in which the choice of which branch can rendezvous is worth explaining. The ch
Branch() method in CSPActor takes an array of branches as an argument. If all of the guards ar
it returns -1, which indicates that all the branches failed. If exactly one of the guards is true, it per
the rendezvous directly and returns the identification number of the successful branch. The inte
case is when more than one guard is true. In this case, it creates and starts a new thread for eac
whose guard is true. It then waits, on an internal lock, for one branch to succeed. At that point i
woken up, sets a finished flag in the remaining branches and waits for them to fail. When a
threads representing the branches are finished, it returns the identification number of the suc
branch. This approach is designed to ensure that exactly one of the branches created successf
forms a rendezvous.

6.3.3 Algorithm used by each branch:

Similar to the approach followed for rendezvous, the algorithm by which a thread represen
branch determines whether or not it can proceed is entirelysymmetricalfor a ConditionalSend and a
ConditionalReceive. The algorithm followed by a ConditionalReceive is shown figure 13. Again
locking point is the receiver, and all code concerned with the communication is synchronized o
receiver. The receiver is also where all necessary flags are stored.

Consider three cases.
(1) a conditionalReceive arrives and a put is waiting.
In this case, the branch checks if it is the first branch to be ready to rendezvous, and if so, it is

ahead and executes a get. If it is not the first, it waits on the receiver. When it wakes up, it chec
is still alive. If it is not, it registers that it has failed and dies. If it is still alive, it starts again by try
to be the first branch to rendezvous. Note that a put cannot disappear.

(2) a conditionalReceive arrives and a conditionalSend is waiting
When both sides are conditional branches, it is up to the branch that arrives second to

whether the rendezvous can proceed. If both branches are the first to try to rendezvous, the con
alReceive executes a get(), notifies its parent that it succeeded, issues a notifyAll() on the receiv
dies. If not, it checks whether it has been terminated by chooseBranch(). If it has, it registers
chooseBranch() that it has failed and dies. If it has not, it returns to the start of the algorithm and
again. This is because a ConditionalSend could disappear. Note that the parent of the first bra
arrive at the receiver needs to be stored for the purpose of checking if both branches are the
arrive.

This part of the algorithm is somewhat subtle. When the second conditional branch arrives
rendezvous point it checks thatboth sides are the first to try to rendezvous for their respective p
cesses. If so, then the conditionalReceive executes a get(), so that the conditionalSend is neve
that a conditionalReceive arrived: it only sees the get().

(3) a conditionalReceive arrives first.
It sets a flag in the receiver that it is waiting, then waits on the receiver. When it wakes u

checks if it has been killed by chooseBranch. If it has it registers with chooseBranch that it has
and dies. Otherwise it checks if a put is waiting. It only needs to check if a put is waiting becaus
conditionalSend arrived, it would have behaved as in case (2) above. If a put is waiting, the b
checks if it is the first branch to be ready to rendezvous, and if so it is goes ahead and executes
Masters Report 21 of 33

condi-
gister
end is
stered

ge to
it is not the first, it waits on the receiver and tries again.

6.4 MODIFICATION OF RENDEZVOUS ALGORITHM:

Consider the case when a conditional send arrives before a get. If all the branches in the
tional communication which the conditional send is a part of are blocked, then the process will re
itself as blocked with the director. Then the get comes along, and even though a conditional s
waiting, it too would register itself as blocked. This leads to one too many processes being regi
as blocked, which could lead to premature deadlock detection.

To avoid this, it is necessary to modify the algorithm used for rendezvous slightly. The chan

conditional receive
arrives

put waiting? No

get!!
branchSucceeded

Yes

conditional
send waiting?

first branch to
rendezvous?

Yes

branchFailed No

Return

_checkAndWait

No
Return

still alive?

a put cannot
dissappear

Yes
first branch to
rendezvous?

_checkAndWaitNo

a conditionalSend
CAN dissappear

Yes

still alive?

Yes

other side
first branch to
rendezvous?

notifyAllNo

No

Yes

get!!
branchSucceeded

Return

No

conditional receive
waiting = true

_checkAndWait

branchFailed No

Return

still alive?

Yes

put waiting?
get!!

branchSucceeded
Yes

Return

No

Yes

branchFailed No

Return

Case 1 Case 2Case 3

first branch to
rendezvous?

Yes

No

FIGURE 13. Algorithm used to determine if a conditional rendezvous branch succeeds or fails
22 of 33 Ptolemy II

in the
ss that
ndi-
al send
ous. If
All()

r before
the algorithm is shown in the dashed ellipse in figure 14. It does not affect the algorithm except
case when a conditional send is waiting when a get arrives at the receiver. In this case the proce
calls the get should wait on the receiver until the conditional send waiting flag is false. If the co
tional send succeeded, and hence executed a put, then the get waiting flag and the condition
waiting flag should both be false and the actor proceeds through to the third step of the rendezv
the conditional send failed, it will have reset the conditional send waiting flag and issued a notify
on the receiver, thus waking up the get and allowing it to properly wait for a put.

The same reasoning also applies to the case when a conditional receive arrives at a receive
a put.

FIGURE 14. Modification of rendezvous algorithm, section 6.4, shown in ellipse

get waiting = true

notifyAll

_checkAndWait
get

waiting?

register actor
blocked

register actor
unblocked

No

Yes

_checkAndWaitconditional
send waiting?

No

Yes
Masters Report 23 of 33

onal
ood in
ds both
hile,

uts the
being
. This

can eat

assic
ming:

s can

rs

pstick
er and
used by

aiting
s next
inter-
ssages
tained

se it,
absence
lock
7. Demos and Examples

7.1 DINING PHILOSOPHERS.

This implementation of the Dining Philosophers problem illustrates both time and conditi
communication in the CSP domain. Five philosophers are seated at a table with a large bowl of f
the middle. Between each pair of philosophers is one chopstick, and to eat, a philosopher nee
the chopsticks beside him. Each philosopher spends his life in the following cycle: thinks for a w
gets hungry, picks up one of the chopsticks beside him, then the other, eats for a while and p
chopsticks down on the table again. If a philosopher tries to grab a chopstick but it is already
used by another philosopher, then the philosopher waits until that chopstick becomes available
implies that no neighboring philosophers can eat at the same time and at most two philosophers
at a time.

The Dining Philosophers problem was first dreamt up by Edsger W. Dijkstra in 1965. It is a cl
concurrent programming problem that illustrates the two basic properties of concurrent program

Liveness.How can we design the program to avoid deadlock, where none of the philosopher
make progress because each is waiting for someone else to do something?

Fairness. How can we design the program to avoid starvation, where one of the philosophe
could make progress but does not because others always go first?

This implementation uses an algorithm that lets each philosopher randomly chose which cho
to pick up first (via a CDO), and all philosophers eat and think at the same rates. Each philosoph
each chopstick are represented by a separate process. Each chopstick has to be ready to be
either philosopher beside it at any time, hence the use of a CDO. After it is grabbed, it blocks w
for a message from the philosopher that is using it. After a philosopher grabs both the chopstick
to him, he eats for a random time. This is represented by calling delay(double) with the random
val to eat for. The same approach is used when a philosopher is thinking. Note that because me
are passed by rendezvous, the blocking of a philosopher when it cannot obtain a chopstick is ob
for free.

This algorithm is fair, as any time a chopstick is not being used, and both philosophers try to u
they both have an equal chance of succeeding. However this algorithm does not guarantee the
of deadlock, and if it is let run long enough this will eventually occur. The probability that dead
occurs sooner increases as the thinking times are decreased relative to the eating times.

= chopstick

= philosopher

FIGURE 15. Illustration of the Dining Philosophers problem
24 of 33 Ptolemy II

val of
, and the
at the

e rates
arious
d and

r could

ame as
oon as
(). The
model
or the

ed in
7.2 M/M/1

This demo illustrates a simple M/M/1 queue. It has three actors, one representing the arri
customers, one for the queue holding customers that have arrived and have not yet been served
third representing the server. Both the inter-arrival times of customers and the service times
server are exponentially distributed, which of course is what makes this a M/M/1 queue.

FIGURE 16. Actors involved in M/M/1 demo

This demo makes use of basic rendezvous, conditional rendezvous and time. By varying th
for the customer arrivals and service times, and varying the length of the buffer, you can see v
trade-offs. For example if the buffer length is too short, customers may arrive that cannot be store
so are missed. Similarly if the service rate is faster than the customer arrival rate, then the serve
spend a lot of time idle.

7.3 PAUSING M/M/1

This example demonstrates how pausing and resumption works. The setup is exactly the s
in the M/M/1 demo, except that the thread executing the model calls pause() on the director as s
the model starts executing. It then waits two seconds, as arbitrary choice, and then calls resume
purpose of this demo is to show that the pausing and resuming of a model does not affect the
results, only its rate of progress. The ability to pause and resume a model is primarily intended f
user interface.

7.4 SIEVE OF ERATOSTHENES

This demo illustrates changes to the topology during the execution of a model. It is explain
detail in the section on topology changes, section 8.2.

server
customers
arriving

buffer
Masters Report 25 of 33

rse of
l exe-

have
contin-
ucing

t cre-
must be
t any
the pro-
ock().
This is
topology

ceiver
y that
zvous

this
ezvous

process

nts the
lly in a
sing an
e idea
cessed,
e made

that

ed dur-
tion in

ut all
o filter
mber
e sieve
8. Changes to the Topology during the Execution of a Model

For some models it may be necessary to change the topology of the model during the cou
executing the model. This is supported in the CSP domain, but only at specific points of the mode
cution. In particular, changes to the topology are only allowed at deadlock points.

When the director detects deadlock, real or timed, it then checks if any topology changes
been queued with it. If one or more topology change has been queued, it carries them out and
ues. Note that the result of a topology change might remove an otherwise real deadlock by introd
new processes.

8.1 HOW TO WRITE AN ACTOR THAT USES TOPOLOGY CHANGES

The procedure for making a topology change is relatively straightforward. First the actor mus
ate a TopologyChangeRequest object representing the topology change. Second, the request
queued with the director by calling queueTopologyChange(). If the topology change will not affec
channels or ports the process is communicating with, then the process can proceed. Otherwise
cess should delay itself until the next occasion a time deadlock occurs by calling waitForDeadl
Then, when the process wakes up again, the director will already have performed the mutation.
because topology changes get processed when a deadlock is detected, and any queued
changes are done before waking up delayed processes or advancing time.

The reason for delaying is that it is important that no process be waiting to rendezvous at a re
in a port affected by the topology change. When a port is affected by a topology change, it is likel
it will abandon its old receivers and create new ones. This will leave the process trying to rende
with a dangling receiver, which will eventually cause the model to terminate early. To get around
problem, it is necessary to delay the execution of any processes that may be affected by a rend
until the next occasion a time deadlock occurs. For example in the CSPSieve process, each
calls waitForDeadlock() immediately after queueing the mutation.

To create a TopologyChangeRequest, it is necessary to create a subclass that impleme
abstract method constructEventQueue(). This is most easily done using an inner class, norma
private method of the actor. The code in CSPSieve contains an example of this. The reason for u
inner class with a method that creates the topology change is to avoid potential deadlocks. Th
behind avoiding the deadlocks is that the topology changes only happen when the request is pro
which is when the constructEventQueue() method gets invoked. Thus the topology changes ar
from within the thread that the director is running in, and not the thread running the process
requested the change.

For a more detailed explanation of how changes to the topology are constructed and execut
ing the execution of a model, and the changes that are allowed, try reading the appropriate sec
the Ptolemy II design document[13].

8.2 SIEVE OF ERATOSTHENES EXAMPLE

This example implements theSieve of Eratosthenes. It is an algorithm for generating a list of
prime numbers. It originally consists of a source generating integers, and one sieve filtering o
multiples of two. When the end sieve sees a number that it cannot filter, it creates a new sieve t
out all multiplies of that number. Thus after the sieve filtering out the number two sees the nu
three, it creates a new sieve that filters out the number three. This then continues with the thre
26 of 33 Ptolemy II

ill be
ll the
is cre-

. Each
e chain
eventually creating a sieve to filter out all multiples of five, and so on. Thus after a while there w
a chain of sieves each filtering out a different prime number. If any number passes through a
sieves and reaches the end with no sieve waiting, it must be another prime and so a new sieve
ated for it.

This demo is an example of how changes to the topology can be made in the CSP domain
topology change here involves creating a new CSPSieve actor and connecting it to the end of th
of sieves.

2

3

3

4

5

5
5

printer ramp

sieve(2)

sieve(3)

7

6

7

7
7

sieve(5)

8

9

9

10

11

11

11

11

12

sieve(7)

11
sieve(11)13

13

13

13

13
13

FIGURE 17. Illustration of Sieve of Eratosthenes for obtaining first six primes.
Masters Report 27 of 33

f the
f these
f CSP
ed in
d other
P with

an iter-
to the
when

e and

com-
he out-
thread
e been
n input
dez-

el up
hes to
on each

output

n the
inputs
9. Composing CSP with other domains

In Ptolemy the mixing of domains is achieved through the use of hierarchy. At any level o
hierarchy, all the actors obey the same semantics (model of computation), but inside any one o
actors there may be another domain using a different model of computation. The composition o
with other domains has not yet been fully explored, but a considerable amount of the effort involv
designing the domain was aimed at ensuring smooth interaction between the CSP domain an
domains. In this chapter I have placed some of the thoughts that may be useful in composing CS
other domains.

9.1 CSP INSIDE ANOTHER DOMAIN

In this case, real deadlock no longer ends the model execution, but instead marks the end of
ation one level up in the hierarchy. The director transfers any tokens from the inside CSP domain
outside domain. Control then returns to the outside domain, which continues its execution. Then
fire() is called again on the CSPDirector it transfers any inputs from the outside domain insid
continues until real deadlock is reached again.

The transferring of inputs from the outside domain and inside domain should probably be ac
plished using a separate TransferThread object. These threads would simply get a Token from t
side domain, and send it to the channel inside the CSP model. This would be repeated until the
blocks because there are no more Tokens at the outside level, or when “enough” tokens hav
transferred. The director would create one of these threads for each channel that represents a
from one level up in the hierarchy. The director thread will not block as it is not performing the ren
vous directly.

Similarly, when the director is transferring outputs from the CSP model to the model one lev
in the hierarchy, it also creates a TransferThread to perform the transfer. If the CSP model wis
transfer more than one message per iteration up the hierarchy, a CSPBuffer should be placed
output channel that transfers more than one message. This is to allow the process sending to the
channel to continue after sending the first message.

For example if a CSP domain inside a CompositeActor is represented by figure 18(a), the
CSP model inside might have the form shown in (b). The dashed arrows show the transfer of

2

3
2

2

(a) (b)

FIGURE 18. Exploded view of what a CSP subsystem might look like inside a composite
actor in another domain.
28 of 33 Ptolemy II

ows the
itera-

l pro-
l execu-
shown
ut the
l of pro-
process

l be to
esses

0. Due
th the
l one

is up
also
t to the
input
and outputs between the two levels of the hierarchy.
Each occasion real deadlock occurs, it is guaranteed that no processes are delayed. This all

time for the CSP model to be set, by the director one level up in the hierarchy, at the start of each
tion. This should make composing CSP with other timed domains reasonably straightforward.

9.1.1 CSP within CSP

The CSP model of computation is not compositional. This means that composing severa
cesses into a single process one level up in the hierarchy may impact the semantics of the mode
tion. To see this, consider two processes that each simply read an input, then send it on. This is
in figure 19. If a stream of messages is sent along the input channel of process A, then it will outp
same stream of messages on its output channel. No messages are sent along the input channe
cess B. If the two processes are then composed as shown by the dashed box, and the composed
reads alternately from the two input channels, then the behavior of the composed process wil
block waiting for a message on the second channel, which is different from that of the two proc
separately.

9.2 ANOTHER DOMAIN INSIDE CSP

Recall that each actor in a CSP model is executed by a ProcessThread, as shown in figure 1
to the semantics of the CSP model of computation, the inside model is executed in parallel wi
other processes. This has implications for the availability of Tokens at the input ports of the mode
level down in the hierarchy. If the inside model requires a certain set of Tokens in order to fire, it
to the director controlling the inside model to ensure this before it executes. This director is
responsible for obtaining any Tokens at each CSPReceiver so that another Token could be sen
receiver if necessary. This is how the inside domain acquires more than one Token on any given
channel.

A

B

FIGURE 19. Example showing how CSP is not compositional
Masters Report 29 of 33

he key

d was
each

, if no
of an
e time
hierar-

disad-
or.

ility.
r con-

ved,
ve to be
ntrol-
ion of

re is
k sim-
these

olling
n actor

nchro-

s are
aking
interac-
ation

echa-
10. Design decisions

In designing the CSP domain, many design choices had to be made. Below are some of t
design decisions that were made and the motivation for the implementation chosen.

10.1 TIME: DISTRIBUTED RELATIVE TIME VERSUS CENTRALIZED ABSOLUTE TIME

One of the key decisions that had to be made was what model of time to use. The model use
chosen primarily to make composing CSP domains with other timed domains possible. Since
actor only deals with delays relative to the current model time, or at the current model time, then
actors are delayed, the current model time can be arbitrarily set. This works well with the notion
iteration in CSP which is when real deadlock is reached, i.e. when no actors are delayed. Thus th
of a CSP subsystem could be set at the start of each iteration by the director one level up in the
chy.

The model also has the added advantage that it is relatively simple and easy to use. The only
vantage is that time is centralized and so all actions involving time must pass through the direct

10.2 CHOICE OF LOCKS USED AND LOCKING POINTS

The receiver is chosen as the locking point for all communications primarily for scalab
Because the processes involved in a rendezvous lock locally on the receiver involved, the directo
trolling the model is not directly involved in mediating any rendezvous. If the director were invol
then as the models became larger the performance would suffer as each rendezvous would ha
carried out through the director. The receiver is a natural point for storing the flags involved in co
ling a conditional communication. Note that a rendezvous is completely separate from the not
time in the domain.

There are three primary lock types in use in the CSP domain: the director lock, of which the
only one, a lock for each receiver, and an internal lock hidden inside each actor. The hidden loc
ply takes the place of locking on the actor for internal control mechanisms. The use of each of
locks should not be visible when using the domain. The decision to use an internal lock for contr
access to methods of CSPActor was made to avoid using any lock that the code in a user writte
might use. In particular, the actor code should be able tolock on itself.If we had chosen to lock onto
the actor itself, as opposed to a hidden lock, then the model could deadlock if the actor code sy
nized on itself.

10.3 MAKING ALL THE COMMUNICATION MECHANISMS SYMMETRIC

Aside from the fact that a Token is transferred or received in a rendezvous, the two action
symmetric, so I felt that the locking algorithms should also be. This also has the advantage of m
the algorithm easier to understand and less prone to unintended deadlocks as there are fewer
tions to consider. Similarly the choice of making the algorithm used in the guarded communic
threads symmetric is made to keep it as simple, understandable and as robust as possible.

10.4 CONDITIONAL COMMUNICATION MECHANISMS UPON RENDEZVOUS

The reason for building the conditional communication mechanism upon the rendezvous m
30 of 33 Ptolemy II

ecide
oving

nts, or
only at

of the
or are
locks

d when
e model

e rate
as the
odel.

ructs,
nism is that it is logically clearer what is happening when it is separated into two steps: first d
which branch will rendezvous, then do the rendezvous. This also enables tracking down and rem
situations where false deadlocks could arise.

10.5 POINTS IN THE MODEL WHEN CHANGES TO THE TOPOLOGY ARE ALLOWED

The options considered for when to allow changes to the topology are either at deadlock poi
as soon as the model can be paused. The reason for choosing to allow changes to the topology
deadlock points is mainly that these points are intrinsic to the nature of the model. The state
model is well defined at these points: all processes are either blocked trying to communicate
delayed waiting for time to advance. For any execution of a model, the times at which time dead
occur are the times at which topology changes may occur. This allows for a process to be create
another process reaches some state, and the two processes will be continuing from the sam
time.

Pausing and resuming a model does not affect the outcome of a particular model run, only th
of progress. Thus if changes to the topology were allowed to happen immediately (as soon
model is able to pause), this would result in a new nondeterminism being introduced into the m
For CSP we wish to keep all nondeterminism the result of the conditional communication const
so topology changes are only allowed at deadlocks.
Masters Report 31 of 33

lt into
ems at
del to
e CSP
stent

tems.
here
mber of

t yet
nsur-
some

ettable
s used
odify
11. Conclusion and Future Work

The CSP domain in Ptolemy II has been implemented using the concurrency support bui
Java. It builds upon the low level support Java offers to allow the user to design concurrent syst
a much higher level of abstraction. A notion of time has been added to the classical CSP mo
enable modeling of systems where time is relevant, in particular embedded systems. Finally, th
domain allows the topology of a model to change during execution while still maintaining a consi
state.

The composition of CSP with other domains is important for heterogeneous modeling of sys
In particular it is envisioned that the CSP domain will be hierarchically composed in models w
resource contention is a major concern. Some examples include embedded systems where a nu
functions share the same CPU, or in modeling client/server architectures.

The hierarchical composition of the CSP domain with other domains in Ptolemy II has no
been fully explored. However, much of the effort in designing the CSP domain was devoted to e
ing that the CSP domain could be successfully composed with other domains. It should make for
very interesting research defining and exploring the semantics of these interactions. It is regr
that I did not have enough time to start exploring this area. I believe the design and the algorithm
in the domain are sufficiently adaptable/clear that the domain should be fairly easy to extend or m
if necessary.
32 of 33 Ptolemy II

LA

.

95.
References

[1] G. R. Andrews,Concurrent Programming - Principles and Practice, Addison-Wesley, 1991.

[2] A. Burns,Programming in OCCAM 2, Addison-Wesley, 1988.

[3] P. H. J. van Eijk, C. A. Vissers, M. Diaz,The formal description technique LOTOS, Elsevier Sci-
ence, B.V., 1989. (http://wwwtios.cs.utwente.nl/lotos)

[4] M. Fowler and K. Scott,UML Distilled, Addison-Wesley, 1997.

[5] A.J.C. van Gemund,“Performance Prediction of Parallel Processing Systems: The PAME
Methodology,” Proc. 7th Int. Conf. on Supercomputing, pages 418-327, Tokyo, July 1993.

[6] M. G. Hinchey and S. A. Jarvis,Concurrent Systems: Formal Developments in CSP, McGraw-
Hill, 1995.

[7] C. A. R. Hoare,“Communicating Sequential Processes,”Communications of the ACM, Vol. 21,
No. 8, August 1978.

[8] C. A. R. Hoare,Communicating Sequential Processes, Prentice-Hall, 1985.

[9] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,”Proc. of the IFIP
Congress 74, North-Holand Publishing Co., 1974.

[10] D. Lea,Concurrent Programming in JavaTM, Addison-Wesley, MA, 1997.

[11] E. A. Lee and T. M. Parks,“Dataflow Process Networks,”Proceedings of the IEEE, vol. 83, no
5, pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

[12] T. M. Parks,Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105.
Ph.D. Dissertation. EECS department, University of California, CA 94720, December 19
http://ptolemy.eecs.berkeley.edu/papers/parksThesis)

[13] The Ptolemy Project,PtolemyII, http://ptolemy.eecs.berkeley.edu/ptolemyII.
Masters Report 33 of 33

	1. Introduction
	2. Semantics of the Ptolemy II CSP Model
	2.1 Rendezvous
	FIGURE 1. Illustrating how processes block waiting to rendezvous

	2.2 Conditional communication constructs
	2.2.1 CIF:
	2.2.2 CDO:
	2.2.3 Example using a CDO
	FIGURE 2. Example of how a CDO might be used in a buffer

	2.3 Deadlock
	2.4 Time
	2.5 Differences from original CSP model as proposed by Hoare
	FIGURE 3. Comparison of syntaxes used in CSP domain and in OCCAM

	3. Software infrastructure
	3.1 Modeling in Ptolemy II
	FIGURE 4. (a) Example of a topology illustrating the control of a model and how the model may be ...

	3.2 CSP Domain
	FIGURE 5. Static structure diagram for classes in the CSP kernel.
	CSPDirector:
	CSPReceiver:
	CSPActor:
	ConditionalReceive, ConditionalSend:

	3.3 Messages
	FIGURE 6. Tokens available in ptolemy.data package.

	4. Using the CSP domain in Ptolemy II
	4.1 Rendezvous
	4.2 Conditional communication constructs
	FIGURE 7. Template for executing a CDO construct.
	FIGURE 8. Code used to implement the buffer process described in figure .

	4.3 Time

	5. Model setup and control
	5.1 Starting the model
	FIGURE 9. Sequence of steps involved in setting up and controlling the model.
	FIGURE 10. Code executed by ProcessThread.run()

	5.2 Detecting deadlocks:
	5.3 Terminating the model:
	5.4 Pausing/resuming the model

	6. Controlling communication between Threads
	6.1 Brief introduction to threads in Java
	6.1.1 Approaches to locking used in the CSP domain

	6.2 Rendezvous algorithm
	FIGURE 11. Rendezvous algorithm

	6.3 Conditional Communication Algorithm
	6.3.1 Built on top of rendezvous:
	FIGURE 12. Conceptual view of how conditional communication is built on top of rendezvous.

	6.3.2 Choosing which branch succeeds
	6.3.3 Algorithm used by each branch:
	FIGURE 13. Algorithm used to determine if a conditional rendezvous branch succeeds or fails

	6.4 Modification of rendezvous algorithm:
	FIGURE 14. Modification of rendezvous algorithm, section 6.4, shown in ellipse

	7. Demos and Examples
	7.1 Dining Philosophers.
	FIGURE 15. Illustration of the Dining Philosophers problem

	7.2 M/M/1
	FIGURE 16. Actors involved in M/M/1 demo

	7.3 Pausing M/M/1
	7.4 Sieve of Eratosthenes

	8. Changes to the Topology during the Execution of a Model
	8.1 How to write an actor that uses Topology Changes
	8.2 Sieve of Eratosthenes example
	FIGURE 17. Illustration of Sieve of Eratosthenes for obtaining first six primes.

	9. Composing CSP with other domains
	9.1 CSP inside another domain
	FIGURE 18. Exploded view of what a CSP subsystem might look like inside a composite actor in anot...
	9.1.1 CSP within CSP
	FIGURE 19. Example showing how CSP is not compositional

	9.2 Another domain inside CSP

	10. Design decisions
	10.1 Time: distributed relative time versus centralized absolute time
	10.2 Choice of locks used and locking points
	10.3 Making all the communication mechanisms symmetric
	10.4 Conditional communication mechanisms upon rendezvous
	10.5 Points in the model when changes to the topology are allowed

	11. Conclusion and Future Work
	References
	[1] G. R. Andrews, Concurrent Programming - Principles and Practice, Addison-Wesley, 1991.
	[2] A. Burns, Programming in OCCAM 2, Addison-Wesley, 1988.
	[3] P. H. J. van Eijk, C. A. Vissers, M. Diaz, The formal description technique LOTOS, Elsevier S...
	[4] M. Fowler and K. Scott, UML Distilled, Addison-Wesley, 1997.
	[5] A.J.C. van Gemund, “Performance Prediction of Parallel Processing Systems: The PAMELA Methodo...
	[6] M. G. Hinchey and S. A. Jarvis, Concurrent Systems: Formal Developments in CSP, McGraw- Hill,...
	[7] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, Vol. 21, No....
	[8] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
	[9] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP Con...
	[10] D. Lea, Concurrent Programming in JavaTM, Addison-Wesley, MA, 1997.
	[11] E. A. Lee and T. M. Parks, “Dataf low Process Networks,” Proceedings of the IEEE, vol. 83, n...
	[12] T. M. Parks, Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105. Ph.D. ...
	[13] The Ptolemy Project, PtolemyII, http://ptolemy.eecs.berkeley.edu/ptolemyII.

