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We implement a finite state machine (FSM) domain for
specifying and simulating control functionality of a system
within the Ptolemy software environment. The FSM
domain is successfully integrated with synchronous data-
flow (SDF) and discrete-event (DE) concurrency domains
in Ptolemy. In this heterogeneous combination, the seman-
tics of FSM, concurrency and hierarchy are naturally sup-
ported in a manner similar to hierarchical concurrent
FSMs (HCFSMs). Unlike most formalisms that support
HCFSMs, such as Statecharts and its variants, our scheme
decouples the FSM from the concurrency models, enabling
selection of the most appropriate concurrency model for
the problem at hand.

1.  Introduction

Finite state machines (FSMs) are often used to describe
and analyze sequential control problem. Because of their
finite nature, FSMs yield better to analysis than alternative
control models, such as sequential programs withif-then-
elseandgoto. For example, with an FSM, a designer can
verify a system to ensure a safety property that a particular
set of dangerous states will never be reached.

However, the basic FSM model, which is flat and
sequential, has a major weakness: Most practical systems
have a very large number of states and transitions. A com-
mon solution to this problem is hierarchical concurrent
FSMs (HCFSMs). Hierarchy allows a state of the FSM to
be refined into another FSM, i.e. a set of substates. Con-
currency allows a state to be further decomposed into mul-
tiple simultaneously active FSMs that communicate
through messaging of some sort.

The Statecharts formalism [7] is a popular and seminal
representative of the HCFSM model. However, the con-
currency semantics in Statecharts is tightly integrated with
the FSM semantics. A number of variants [10], including
Argos language [9], exhibit different concurrency seman-

(CFSM) model [4] essentially combines FSMs with a dis
crete-event [3] concurrency model.

In this paper, we advocate decoupling the concurren
semantics from the FSM semantics. By equipping th
basic FSM with hierarchy and heterogeneity, hierarchic
combinations of FSMs with various concurrency mode
become feasible. Thus, systems can truly be built up fro
modular components that are separately designed,
each subsystem can be designed using the best su
model.

Ptolemy [2] is a software environment that suppor
heterogeneous system design by allowing diverse mod
of computation to coexist and interact. Two of the mor
mature concurrency domains in the software are synch
nous dataflow (SDF) [8] and discrete-event (DE). W
implement a new FSM domain in Ptolemy and integrate
with the two existing domains.

We begin by adding to a basic FSM hierarchy and he
erogeneity in section 2. In section 3, we explain how th
FSM model is integrated with the SDF and the DE mode
Section 4 describes how the FSM domain is implement
in Ptolemy. We then demonstrate in section 5 an applic
tion example in Ptolemy.

2.  Finite state machines

An FSMM is a tuple of the form

M ::= <I, O, Q, q0, T> (1)

where

• I is a set of input events.

• O is a set of output events.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• T is a set of transitions.

An event is a named variable that is eitherpresentor
absent. Each transitiont ∈ T is

t ::= <qs, guard/action, qd> (2)
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where

• qs ∈ Q is the source state.

• A guardg is a boolean expression generated by the fol-
lowing grammar

g ::= true | false | e | ¬g | g ∨ g | g ∧ g (3)

wheree ∈ I. The evaluation of an evente is eithertrue
or falsewhen the event is either present or absent. The
operators¬, ∨ and∧ correspond to the boolean opera-
torsnot, or andand, respectively.

• An action lists a subset of the output events. I.e. an
actiona is

a ::= nil  | b (4)

b ::= e | b, b (5)

wheree ∈ O and “,” distinguishes two events in the
action.

• qd ∈ Q is the destination state.

In onereactionof the FSM, a subset of the events inI
are present. One transition is triggered when its guard is
true under the current input events. The FSM goes to the
destination state of the triggered transition, and emits each
output event in the action of the triggered transition, mak-
ing these output events present. If the action isnil , it
means that no output event is emitted. An action only lists
the output events to be emitted, and thus all other output
events are absent.

We focus ondeterministicandreactiveFSMs. An FSM
is deterministic if from any state there existsat mostone
triggered transition for the input events. An FSM is reac-
tive if from any state there existsat leastone triggered
transition for the input events. To simplify notation and
ensure that all our FSMs are reactive, every state is
assumed to have animplicit self transition, i.e. going back
to the same state and emitting no event, when there is no
explicit outgoing transition to be triggered for the input
events.

A directed graph, called astate transition diagram, is
popular for describing an FSM. As shown in figure 1, each
elliptic node represents a state and each arc represents a
transition. The arc without a source state points to the ini-
tial state, i.e. stateα. Each transition links a source state
with a destination state and is labeled by either “guard/
action” or “ guard” (an abbreviation of “guard/nil ”). Thus,

for figure 1,I = {a, b}, O = {u, v}, Q = {α, β}, q0 = α and
T = {<α, ¬a∧b/v, β>, <β, a∨¬b/u, α>, <α, a∨¬b/nil , α>,
<β, ¬a∧b/nil , β>}. Note that the last two transitions inT
are implicit self transitions.

2.1.  Hierarchy

In a hierarchical FSM, a state may be refined in
another FSM. Thus, we associate each state with aslave p
that is

p ::= nil  | M (6)

whereM is an FSM. Ifp = nil , the state is anatomicstate
and is not refined; otherwise, the state is ahierarchical
state. With respect to the slaves, the outside FSM is cal
themaster. For example, we can let the stateβ in figure 1
be refined into another FSM but let the stateα not be
refined, as illustrated in figure 2.

The input event set for the slave is a subset of the inp
event set of its master. Similarly, the output event set fro
the slave is a subset of the output event set of its maste

The hierarchy semantics define how the slave reacts
ative to the reaction of its master. A reasonable semant
defines one reaction of the hierarchical FSM as follows:
the current state is an atomic state, the hierarchical FS
behaves just like a basic FSM. If the current state is a hi
archical state, then first the corresponding slave reacts,
then the master reacts. Thus, two transitions are trigger
so two actions are taken. These two actions must be som
how merged into one.

We take an output event to be present if the action
the master or any slave below it emits that output eve
Since an action of the FSM does not explicitly set an eve
absent, no conflict is possible in this syntax. For examp
if the hierarchical FSM of figure 2 is in stateβ and sub-
stateγ and input eventa is present, the triggered action o
the slave is “v” and the triggered action of the master i
“u”. Thus, the output of the hierarchical FSM is “u, v”
(both output eventsu andv are present).

Figure 1.  A basic FSM.

a b¬∨ u⁄
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Figure 2.  A hierarchical FSM.
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2.2.  Heterogeneity

Our hierarchical FSM is easily extended to support het-
erogeneity. The slave of a hierarchical state need not be an
FSM. The key principle is that the slave must have a well-
defined terminating computation that reacts to input events
by (possibly) asserting output events. Therefore, the slave
could be, for example, a Turing machine (that halts), a C
procedure (that eventually returns), a dataflow graph (with
a well-defined iteration), etc. It can even be concurrent. In
this paper, we focus on combinations of FSMs with con-
currency models.

The hierarchy semantics is similarly defined as in pre-
vious section with one subtle modification: If the current
state is a hierarchical state, then first the corresponding
slave is invoked and then the master reacts. When the slave
is invoked, it performs a determinate and finite operation,
called aninvocation of the slave, which reacts to input
events and may assert output events. One invocation of a
slave FSM is one reaction of the FSM.

2.3.  Hierarchical entry and exit

When a slave of a hierarchical state is invoked for the
first time, unambiguously it will start from its initial condi-
tions (e.g. the initial state for an FSM). When it is subse-
quently invoked, we may wish to reinitialize it or allow it
to continue from the last known conditions. Thus, like in
Statecharts [7], we support a transition entering a hierar-
chical state to be eitherhistory entryor initial entry. His-
tory entry permits the slave to resume computation from
the final conditions of the last invocation. Initial entry
starts the slave from the initial conditions like the first
invocation.

Under normal circumstances of a hierarchical FSM, if
the current state is a hierarchical state, the corresponding
slave is invoked prior to taking the transition. However, we
may need to immediately interrupt before the slave is
invoked in some situations. Thus, we support a transition
exiting from a hierarchical state to be eitherpreemptiveor
non-preemptive[10]. If a preemptive transition is trig-
gered, the slave of the current state will not be invoked.
Otherwise, for a non-preemptive transition, the slave is
invoked normally.

2.4.  Simulation algorithm

To accommodate all the features discussed for the
FSM, we come up with the following algorithm for simu-
lating one reaction of the FSM:

1. Check all preemptive transitions of the current state. If
more than one is triggered, flag a non-deterministic

error and go to step 6. If exactly one is triggered, go 
step 4.

2. If the current state is a hierarchical state, perform on
invocation of the slave. Depending on the entry type o
the triggered transition in previous reaction, the slave
either starts from the initial conditions or resumes from
the final conditions of the last invocation.

3. Check all non-preemptive transitions of the current
state. If more than one is triggered, flag a non-deter-
ministic error and go to step 6. If none is triggered, le
the implicit self transition be triggered.

4. Emit the output events in the action of the triggered
transition.

5. Enter the destination state of the triggered transition.
I.e. let it become the current state for the next reactio

6. One reaction is complete.

3.  Integration with concurrency domains

In Ptolemy, we implement the proposed FSM model
a domain. A domain encapsulates a type of model of co
putation, and different domains are nested hierarchica
to work together. Therefore, our objective is the hierarch
cal nesting of the FSM domain with concurrency domain
as shown in figure 3. We schematically illustrate the mo
ules of the concurrency model with rectangular blocks a
the states of the FSM model with elliptic nodes. The dep
and order of the nesting is arbitrary.

To achieve the goal, first we need for an FSM to be ab
to describe a module in a concurrency model. This can
done as long as that model provides a way to determine
input events and when a reaction should occur, and m
Ptolemy domains have such properties. For example,
figure 4, two FSMs are embedded inside the modules o
concurrency model and, most interestingly, they are co
current FSMs based on the concurrency semantics p
vided by that model.

Figure 3. Hierarchical nesting of FSMs
with concurrency models.
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On the other hand, a state of an FSM needs to be able to
be refined into a concurrency subsystem, as explained
above in section 2.2.

Among various existing Ptolemy concurrency domains,
currently we focus on two of the more mature ones, the
synchronous dataflow (SDF) and the discrete-event (DE)
domains.

3.1.  Synchronous dataflow

Under the SDF [8] paradigm, a system consists of a set
of blocks interconnected by directed arcs. The blocks rep-
resent computational functions that map input data into
output data when theyfire, and the arcs represent streams
of data tokens implemented as first-in-first-out queues.
Upon firing, a block consumes a fixed number of tokens
from each input arc and produces a fixed number of tokens
on each output arc. The number of tokens consumed and
produced can be used to unambiguously define anitera-
tion, or minimal set of firings that return the queues to
their original size. Thus, the firing schedule for an iteration
can be determined at compile time. To interact with the
FSM domain, one invocation of an SDF graph is taken to
be one iteration.

A slight subtlety is that the absence of an event in FSM
must appear explicitly as a token in SDF. A simple
approach is to encode presence and absence using bool-
ean-valued tokens. I.e. a true-valued token means the event
present and a false-valued token means absent.

3.2.  Discrete events

The DE domain [3] carries a notion ofglobal timethat
is known simultaneously throughout the system. An event
occurs at a point in time. In a simulation of such a system,
each event needs to carry atime stampthat indicates the
time at which the event occurs. The time stamp of an event
is typically generated by the block that produces the event,

and is determined by the time stamp of input events a
the latency of the block. The DE simulator needs to mai
tain a global event queue that sorts the events by their ti
stamps, and chronologically processes each event by se
ing it to the appropriate block, which reacts to the eve
(fires).

The notion of presence and absence of an event is
same in DE and FSM. However, in DE, every event nee
a time stamp, something not provided by the FSM. W
choose the semantics where the FSM appears to the DE
a zero-delayblock. I.e. the event passed to the DE in
reaction of the FSM is assigned the same time stamp as
input event that triggers that reaction.

4.  Implementation in Ptolemy

4.1.  Ptolemy kernel

4.1.1.  Star and Galaxy

A system in Ptolemy is constructed by interconnectin
blocks. Two types of blocks can be used for interconne
tion: the Star and theGalaxy. A Star is a fundamental
(atomic) block, often containing code segments for sim
lation. A Galaxy is a block that internally contains Star
and possibly other Galaxies.

In the FSM domain, we use a state transition diagram
describe a system. Each state inside the diagram is a f
damental block and thus is implemented as a Star. The d
gram consisting of interconnected states is implemented
a Galaxy.

4.1.2.  Wormhole

In Ptolemy, different domains are intermixed hierarch
cally to work together. In other words, a domain needs
appear as a block inside another domain. Such a mec
nism is a significant feature in Ptolemy and is calle
Wormhole. It encapsulates a subsystem specified in o
domain within a system specified in another. The key id
of a Wormhole is that it must obey the semantics of out
domain at its boundary and the semantics of inner dom
internally.

We generalize the Wormhole mechanism in the FS
domain. Each state of an FSM may be associated with
Wormhole to encapsulate its slave subsystem. Thus, t
subsystem can be defined in any domain, including FSM

4.1.3.  Scheduler

Given a system consisting of a set of blocks in Ptolem
a Schedulermanages the execution of a subsystem with

Figure 4. Two FSMs are embedded inside
the modules of a concurrency model.

a
u

x
α β

a v⁄
v

v

b

u
y

γ δ

v y⁄

b u⁄

u x⁄



n
e,
),
e

n

rs.
us

t

t

ck
ic
w
s,

d
r-

in
n-

ms.
f

m
ing
r,
he

ac-
e
at
a wormhole. For the FSM domain, the Scheduler at each
reaction simply follows the simulation algorithm
described in section 2.4.

4.2.  Graphical user interface

A system in the FSM domain is described by a state
transition diagram. The original visual interface to
Ptolemy, called VEM, is not suitable for drawing the
familiar bubble-and-arc diagram. A new visual editor is
developed based on Tycho, a hierarchical syntax manager,
which is part of the Ptolemy project. In addition to draw-
ing the bubble-and-arc graph, users can click on a state to
create or view its slave subsystem graph. After drawing
the state transition diagram, users can further make an icon
compatible with VEM and simulate it in Ptolemy.

5.  Application example

5.1.  System description

A commonly used example for control-intensive soft-
ware environments is the “reflex game” [1]. Our version of
the reflex game is a two-player game (to introduce more
concurrency). Each player has two buttons to press during
the game:coin andgo buttons for player 1;readyandstop
buttons for player 2.

Normal play proceeds as follows:

1. Player 1 pressescoin to start the game. A status light
turns blue.

2. When player 2 is ready, he pressesready, and the status
light turns yellow.

3. When player 1 pressesgo, the status light turns green
and player 2 pressesstop as fast as he can.

4. The game ends, and the status light turns red.

The game measures the reflex time of player 2 by report-
ing the time between thego andstop events.

There are some situations where the game ends abnor-
mally, and a “tilt” light flashes. These are:

1. After coin is pressed, player 2 does not pressready
within L time units.

2. Player 2 pressesstop before or at the same instant that
player 1 pressesgo.

3. After player 1 pressesgo, player 2 does not pressstop
within L time units.

One additional rule is that if player 1 does not pressgo
within L time units after player 2 pressesready, thengo is
asserted by the system, and the game advances to wait for
player 2 to pressstop.

5.2.  Ptolemy simulation

Our realization of the reflex game in Ptolemy is show
in figure 5. To simulate the real-time behavior of the gam
the DE domain is a good choice for the topmost level (a
modeling the environment of the game (including th
players). In the DE model, the blockClock generates a
sequence of clock ticks and then the blockSynchronize
synchronizes them with real time. The blocksPlayer1and
Player2 create the buttons (coin, go, readyandstop) for
interacting with the players and the blockDisplay creates
the lights and reports the reflex time of player 2, as show
in (f). The blockReflex models the behavior of the game.

At the next level of the hierarchy (b), inside theReflex
block, we have a two state FSM. The states areGame Off
andGame On. Inside theGame Onstate, at level (c), we
use a DE model consisting of the rules for the two playe
These are interconnected with a zero-delay loop, and th
form an instantaneous dialog between the two players.

At level (d), the two rules are refined into concurren
FSMs. Rule2 starts in theWait Ready state, and when
readyis asserted, emits astart event and transitions to the
Wait Go state. This causesRule1 to transition to theWait
state and emit ayellowLtevent. The rest of the behavior a
this level should now be evident from the figure.

In several states, we need to count ticks from the clo
to watch for time outs. This counting is a simple arithmet
computation that can be performed using the dataflo
graph shown at level (e). This graph simply counts tick
compares the count against a constant, and emits atimeout
event when the threshold is exceeded.

6.  Conclusions

We have implemented an FSM domain in Ptolemy, an
have successfully integrated it with two existing concu
rency domains, the SDF and the DE domains.

The FSM, SDF and DE models are best applicable
different situations. FSM is useful for describing seque
tial control functionality. SDF is ideal for computation-
intensive systems, such as most signal processing syste
DE is a natural way for specifying concurrent behavior o
real-time systems.

With these three models combined, a complex syste
can be systematically and modularly designed by choos
the best suited model for each distinct portion. Moreove
the mixed model is far more expressive than any one of t
models alone.

The implementation described here represents a fr
tion of what we hope to accomplish. In particular, th
FSMs currently supported are “pure”, in the sense th
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Figure 5.  Our realization of the reflex game in Ptolemy.
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events cannot carry values other than presence or absence.
In many applications, non-boolean values are more useful.

Also, the instantaneous dialog implemented in figure
5(c) would be better implemented using the synchronous/
reactive (SR) domain [5] in Ptolemy, since this would
yield a description that could be more efficiently imple-
mented in hardware or software. We have not yet inte-
grated the SR domain with the FSM domain, although we
have developed the semantics of the combination [6].

Finally, the reflex game example, which we chose in
order to follow tradition in the HCFSM community, does
not really illustrate the main advantages of our approach.
A signal processing system would be a better illustration,
where FSM subsystems are used for control logic and
dataflow subsystems are used for numeric-intensive signal
processing. We require valued FSMs to construct a suit-
ably interesting example of this type.
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