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Abstract tics. For example, the co-design finite state machines
(CFSM) model [4] essentially combines FSMs with a dis-

We implement a finite state machine (FSM) domain forcrete-event [3] concurrency model.
specifying and simulating control functionality of a system In this paper, we advocate decoupling the concurrency
within the Ptolemy software environment. The FSMsemantics from the FSM semantics. By equipping the
domain is successfully integrated with synchronous databasic FSM with hierarchy and heterogeneity, hierarchical
flow (SDF) and discrete-event (DE) concurrency domainsombinations of FSMs with various concurrency models
in Ptolemy. In this heterogeneous combination, the semarbecome feasible. Thus, systems can truly be built up from
tics of FSM, concurrency and hierarchy are naturally sup-modular components that are separately designed, and
ported in a manner similar to hierarchical concurrent each subsystem can be designed using the best suited
FSMs (HCFSMs). Unlike most formalisms that supportmodel.
HCFSMs, such as Statecharts and its variants, our scheme ptolemy [2] is a software environment that supports
decouples the FSM from the concurrency models, enablingeterogeneous system design by allowing diverse models
selection of the most appropriate concurrency model forof computation to coexist and interact. Two of the more
the problem at hand. mature concurrency domains in the software are synchro-
nous dataflow (SDF) [8] and discrete-event (DE). We
implement a new FSM domain in Ptolemy and integrate it
1. Introduction with the two existing domains.

We begin by adding to a basic FSM hierarchy and het-

Finite state machines (FSMs) are often used to describerogeneity in section 2. In section 3, we explain how the
and analyze sequential control problem. Because of theifSM model is integrated with the SDF and the DE models.
finite nature, FSMs yield better to analysis than alternativeSection 4 describes how the FSM domain is implemented
control models, such as sequential programs wthen- in Ptolemy. We then demonstrate in section 5 an applica-
elseandgoto. For example, with an FSM, a designer cantion example in Ptolemy.
verify a system to ensure a safety property that a particular
set of dangerous states will never be reached. 2. Finite state machines

However, the basic FSM model, which is flat and
sequential, has a major weakness: Most pra_c_tical Systems an ESMM is a tuple of the form
have a very large number of states and transitions. A com- M:=<l,0,Q,qy T> Q)
mon solution to this problem is hierarchical concurrent ST S e
FSMs (HCFSMs). Hierarchy allows a state of the FSM towhere
be refined into another FSM, i.e. a set of substates. Cor- | is a set of input events.
currency allows a state to be further decomposed into mule O s a set of output events.
tiple simultaneously active FSMs that communicate, Qis a finite set of states.
through messaging of some sort. . g, 0 Qis the initial state

The Statecharts formalism [7] is a popular and seminal Tois a set of transitions '
representative of the HCFSM model. However, the con- i " o
currency semantics in Statecharts is tightly integrated wit{\" €vent is a named variable that is eithresentor
the FSM semantics. A number of variants [10], including @°Sent Each transition I T is
Argos language [9], exhibit different concurrency seman- t ;1= <gs, guardaction, qs> 2



where for figure 1,1 ={a, b}, O={u, v}, Q={a, B}, gp=a and
* Qg 0 Q is the source state. T= {<CX, -albly, B>, <[3, all-blu, o>, <a, al+b/nil, o>,

« Aguardgis a boolean expression generated by the fol<P. ~ao/nil, B>}. Note that the last two transitions in
lowing grammar are implicit self transitions.

g::=true |false|e|-g|gUg|gOg 3)
wheree [0 |. The evaluation of an eveetis eithertrue
or falsewhen the event is either present or absent. The

operators-, Jand correspond to the boolean opera-
torsnot, or andand, respectively.

2.1. Hierarchy

In a hierarchical FSM, a state may be refined into
another FSM. Thus, we associate each state witlhe p

o that is
» An action lists a subset of the output events. l.e. an =il IM 6
actiona is _ p==nil | _ _ (6)
— i whereM is an FSM. Ifp = nil, the state is aatomicstate
a:=nil |b (4) . . . . .
b=elb b 5 and is not refined; otherwise, the state isiararchical
o e.| oo _( ) state. With respect to the slaves, the outside FSM is called
wheree [J O and “," distinguishes two events in the the master For example, we can let the stgden figure 1
action. be refined into another FSM but let the statenot be
* (gq 0 Qs the destination state. refined, as illustrated in figure 2.

In onereactionof the FSM, a subset of the eventslin The input event set for the slave is a subset of the input
are present. One transition is triggered when its guard igvent set of its master. Similarly, the output event set from
true under the current input events. The FSM goes to thehe slave is a subset of the output event set of its master.
destination state of the triggered transition, and emits each The nierarchy semantics define how the slave reacts rel-
output event in the action of the triggered transition, mak-atjve to the reaction of its master. A reasonable semantics
ing these output events present. If the actiomils it  gefines one reaction of the hierarchical FSM as follows: if
means that no output event is emitted. An action only listghe current state is an atomic state, the hierarchical FSM
the output events to be emitted, and thus all other outpUsehaves just like a basic FSM. If the current state is a hier-
events are absent. archical state, then first the corresponding slave reacts, and

We focus ordeterministicandreactiveFSMs. An FSM  then the master reacts. Thus, two transitions are triggered,
is deterministic if from any state there exissmostone  so two actions are taken. These two actions must be some-
triggered transition for the input events. An FSM is reac-how merged into one.
tive if from any state there existst leastone triggered We take an output event to be present if the action of
transition for the input events. To simplify notation and the master or any slave below it emits that output event.
ensure that all our FSMs are reactive, every state igince an action of the FSM does not explicitly set an event
assumed to have amplicit self transition i.e. going back  apsent, no conflict is possible in this syntax. For example,
to the same state and emitting no event, when there is N the hierarchical FSM of figure 2 is in stafeand sub-
explicit outgoing transition to be triggered for the input statey and input evena is present, the triggered action of
events. the slave is V" and the triggered action of the master is

A directed graph, called atate transition diagramis “u”. Thus, the output of the hierarchical FSM isl,“V”
popular for describing an FSM. As shown in figure 1, each(both output events andv are present).
elliptic node represents a state and each arc represents a
transition. The arc without a source state points to the ini-
tial state, i.e. stater. Each transition links a source state

with a destination state and is labeled by eithgudrd —alb/v
action’ or “guard’ (an abbreviation of uardnil”). Thus, Master
ald-b/u, "
\ —alb/v )/ o R
’ V \\
i’ .
Slave
O CB
al-b/u b/ Vv

Figure 1. A basic FSM. Figure 2. A hierarchical FSM.



2.2. Heterogeneity error and go to step 6. If exactly one is triggered, go to
step 4.

Our hierarchical FSM is easily extended to support het2. If the current state is a hierarchical state, perform one
erogeneity. The slave of a hierarchical state need not be an invocation of the slave. Depending on the entry type of
FSM. The key principle is that the slave must have a well- the triggered transition in previous reaction, the slave
defined terminating computation that reacts to input events either starts from the initial conditions or resumes from
by (possibly) asserting output events. Therefore, the slave the final conditions of the last invocation.

could be, for example, a Turing machine (that halts), a C3. Check all non-preemptive transitions of the current

procedure (that eventually returns), a dataflow graph (with  state. If more than one is triggered, flag a non-deter-
a well-defined iteration), etc. It can even be concurrent. In  ministic error and go to step 6. If none is triggered, let

this paper, we focus on combinations of FSMs with con-  the implicit self transition be triggered.

currency models. 4. Emit the output events in the action of the triggered
The hierarchy semantics is similarly defined as in pre- transition.

vious section with one subtle modification: If the current s Enter the destination state of the triggered transition.

state is a hierarchical state, then first the corresponding | ¢ et it become the current state for the next reaction.
slave is invoked and then the master reacts. When the sla\ée

is invoked, it performs a determinate and finite operation,
called aninvocation of the slave, which reacts to input . . .
events and may assert output events. One invocation of 8- INtegration with concurrency domains
slave FSM is one reaction of the FSM.

One reaction is complete.

In Ptolemy, we implement the proposed FSM model as

2.3. Hierarchical entry and exit a domain. A domain encapsulates a type of model of com-
putation, and different domains are nested hierarchically

When a slave of a hierarchical state is invoked for thet® work together. Therefore, our objective is the hierarchi-
first time, unambiguously it will start from its initial condi- Cal nesting of the FSM domain with concurrency domains,
tions (e.g. the initial state for an FSM). When it is subse-aS Shown in figure 3. We schematically illustrate the mod-
quently invoked, we may wish to reinitialize it or allow it ules of the concurrency model with rectangular blocks and
to continue from the last known conditions. Thus, like in the states of the FSM model with elliptic nodes. The depth

Statecharts [7], we support a transition entering a hierar@nd order of the nesting is arbitrary.

chical state to be eithdristory entryor initial entry. His- To achieve the goal, first we need for an FSM to be able

tory entry permits the slave to resume computation fromto describe a module in a concurrency model. This can be

the final conditions of the last invocation. Initial entry done as long as that model provides a way to determine the

starts the slave from the initial conditions like the first input events and when a reaction should occur, and most

invocation. Ptolemy domains have such properties. For example, in
Under normal circumstances of a hierarchical FSM, iffigure 4, two FSMs are embedded inside the modules of a

the current state is a hierarchical state, the correspondingPncurrency model and, most interestingly, they are con-
slave is invoked prior to taking the transition. However, wecurrent FSMs based on the concurrency semantics pro-
may need to immediately interrupt before the slave isvided by that model.

invoked in some situations. Thus, we support a transition

exiting from a hierarchical state to be eith@eemptiveor

non-preemptive[10]. If a preemptive transition is trig-

gered, the slave of the current state will not be invoked. ) -
Otherwise, for a non-preemptive transition, the slave is g ;}%/]: -

invoked normally. L7

2.4. Simulation algorithm S @D
To accommodate all the features discussed for the AR *D{;:I‘D’

FSM, we come up with the following algorithm for simu-

lating one reaction of the FSM: Figure 3. Hierarchical nesting of FSMs
1. Check all preemptive transitions of the current state. If with concurrency models.

more than one is triggered, flag a non-deterministic




and is determined by the time stamp of input events and

- a’v the latency of the block. The DE simulator needs to main-
th, tain a global event queue that sorts the events by their time
stamps, and chronologically processes each event by send-
T U/ X ing it to the appropriate block, which reacts to the event
g vy (fires).
0:3 The notion of presence and absence of an event is the
o b/u same in DE and FSM. However, in DE, every event needs
) a time stamp, something not provided by the FSM. We
Figure 4. Two FSMs are embedded inside choose the semantics where the FSM appears to the DE as
the modules of a concurrency model. a zero-delayblock. l.e. the event passed to the DE in a

reaction of the FSM is assigned the same time stamp as the
input event that triggers that reaction.

On the other hand, a state of an FSM needs to be able to . .
be refined into a concurrency subsystem, as explainet- Implementation in Ptolemy
above in section 2.2.

Among various existing Ptolemy concurrency domains,4.1. Ptolemy kernel
currently we focus on two of the more mature ones, the
synchronous dataflow (SDF) and the discrete-event (DE}.1.1. Star and Galaxy
domains.
A system in Ptolemy is constructed by interconnecting
3.1. Synchronous dataflow blocks. Two types of blocks can be used for interconnec-
tion: the Star and theGalaxy A Star is a fundamental

Under the SDF [8] paradigm, a system consists of a Se(at_omic) block, of_ten containing F:ode segments. for simu-
of blocks interconnected by directed arcs. The blocks replation. A Galaxy is a block that internally contains Stars
resent computational functions that map input data intd@"d possibly other Galaxies.
output data when thefjre, and the arcs represent streams  Inthe FSM domain, we use a state transition diagram to
of datatokensimplemented as first-in-first-out queues. describe a system. Each state inside the diagram is a fun-
Upon firing, a block consumes a fixed number of tokensdamental block and thus is implemented as a Star. The dia-
from each input arc and produces a fixed number of tokengram consisting of interconnected states is implemented as
on each output arc. The number of tokens consumed ana Galaxy.
produced can be used to unambiguously definéera-
tion, or minimal set of firings that return the queues to4.1.2. Wormhole
their original size. Thus, the firing schedule for an iteration
can be determined at compile time. To interact with the In Ptolemy, different domains are intermixed hierarchi-
FSM domain, one invocation of an SDF graph is taken tocally to work together. In other words, a domain needs to
be one iteration. appear as a block inside another domain. Such a mecha-

A slight subtlety is that the absence of an event in FsMnism is a significant feature in Ptolemy and is called
must appear explicity as a token in SDF. A simple Wormhole It encapsulates a subsystem specified in one
approach is to encode presence and absence using bo§@main within a system specified in another. The key idea
ean-valued tokens. |.e. a true-valued token means the evefit @ Wormhole is that it must obey the semantics of outer

present and a false-valued token means absent. domain at its boundary and the semantics of inner domain
internally.
3.2. Discrete events We generalize the Wormhole mechanism in the FSM

domain. Each state of an FSM may be associated with a
The DE domain [3] carries a notion gfobal timethat Wormhole to encapsulate its slave subsystem. Thus, this

is known simultaneously throughout the system. An evenfUPsSystem can be defined in any domain, including FSM.

occurs at a point in time. In a simulation of such a system,
each event needs to camtime stampthat indicates the 4-1-3- Scheduler
time at which the event occurs. The time stamp of an event

is typically generated by the block that produces the event, GVen a system consisting of a set of blocks in Ptolemy,
a Schedulemanages the execution of a subsystem within



a wormhole. For the FSM domain, the Scheduler at eacls.2. Ptolemy simulation

reaction simply follows
described in section 2.4.

the simulation algorithm

4.2. Graphical user interface

Our realization of the reflex game in Ptolemy is shown
in figure 5. To simulate the real-time behavior of the game,
the DE domain is a good choice for the topmost level (a),
modeling the environment of the game (including the

A system in the FSM domain is described by a stateplayers). In the DE model, the blodRlock generates a

transition diagram. The original visual interface to
Ptolemy, called VEM, is not suitable for drawing the
familiar bubble-and-arc diagram. A new visual editor is

sequence of clock ticks and then the bldgknchronize
synchronizes them with real time. The blod¢ksyerl and
Player2 create the buttonin, go, ready and stop) for

developed based on Tycho, a hierarchical syntax managednteracting with the players and the bloBksplay creates

which is part of the Ptolemy project. In addition to draw-

the lights and reports the reflex time of player 2, as shown

ing the bubble-and-arc graph, users can click on a state tm (f). The blockReflexmodels the behavior of the game.

create or view its slave subsystem graph. After drawing At the next level of the hierarchy (b), inside tReflex
the state transition diagram, users can further make an icosiock, we have a two state FSM. The states@ame Off

compatible with VEM and simulate it in Ptolemy.
5. Application example

5.1. System description

A commonly used example for control-intensive soft-
ware environments is the “reflex game” [1]. Our version of

the reflex game is a two-player game (to introduce more>

concurrency). Each player has two buttons to press durin
the gamecoin andgo buttons for player lreadyandstop
buttons for player 2.

Normal play proceeds as follows:

. Player 1 presse®into start the game. A status light
turns blue.

. When player 2 is ready, he presseady and the status
light turns yellow.

When player 1 pressgs, the status light turns green
and player 2 pressstopas fast as he can.

The game ends, and the status light turns red.

3.

4.

andGame On Inside theGame Onstate, at level (c), we
use a DE model consisting of the rules for the two players.
These are interconnected with a zero-delay loop, and thus
form an instantaneous dialog between the two players.

At level (d), the two rules are refined into concurrent
FSMs. Rule2 starts in theWait Ready state, and when
readyis asserted, emitsstart event and transitions to the
Wait Go state. This causd’ulelto transition to théVait
tate and emit gellowLtevent. The rest of the behavior at
Hﬁis level should now be evident from the figure.

In several states, we need to count ticks from the clock
to watch for time outs. This counting is a simple arithmetic
computation that can be performed using the dataflow
graph shown at level (e). This graph simply counts ticks,
compares the count against a constant, and entiitsemut
event when the threshold is exceeded.

6. Conclusions

We have implemented an FSM domain in Ptolemy, and
have successfully integrated it with two existing concur-

The game measures the reflex time of player 2 by reportrency domains, the SDF and the DE domains.

ing the time between thgo andstopevents.

The FSM, SDF and DE models are best applicable in

There are some situations where the game ends abndfifferent situations. FSM is useful for describing sequen-

mally, and a “tilt” light flashes. These are:

1. Aftercoinis pressed, player 2 does not pressly
within L time units.

. Player 2 pressestopbefore or at the same instant that
player 1 pressego.

. After player 1 pressa, player 2 does not pressp
within L time units.
One additional rule is that if player 1 does not prges

within L time units after player 2 pressesady thengo is

tial control functionality. SDF is ideal for computation-
intensive systems, such as most signal processing systems.
DE is a natural way for specifying concurrent behavior of
real-time systems.

With these three models combined, a complex system
can be systematically and modularly designed by choosing
the best suited model for each distinct portion. Moreover,
the mixed model is far more expressive than any one of the
models alone.

asserted by the system, and the game advances to wait for The implementation described here represents a frac-

player 2 to presstop

tion of what we hope to accomplish. In particular, the
FSMs currently supported are “pure”, in the sense that
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Figure 5. Our realization of the reflex game in Ptolemy.




events cannot carry values other than presence or absen¢gl.
In many applications, non-boolean values are more useful.

Also, the instantaneous dialog implemented in figure
5(c) would be better implemented using the synchronous/
reactive (SR) domain [5] in Ptolemy, since this would (7]
yield a description that could be more efficiently imple-
mented in hardware or software. We have not yet inte-
grated the SR domain with the FSM domain, although we
have developed the semantics of the combination [6].

Finally, the reflex game example, which we chose in
order to follow tradition in the HCFSM community, does g
not really illustrate the main advantages of our approach[. ]
A signal processing system would be a better illustration,
where FSM subsystems are used for control logic and
dataflow subsystems are used for numeric-intensive signal
processing. We require valued FSMs to construct a suit[lo]
ably interesting example of this type.
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