
Process Networks in Ptolemy II

by

Mudit Goel

mudit@eecs.berkeley.edu

Technical Memorandum UCB/ERL M98/69

Electronics Research Laboratory, Berkeley, CA 94720 December 16, 1998

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

1998

1

Abstract

Process Networks in Ptolemy II

by

Mudit Goel

Master of Science in Electrical Engineering

University of California at Berkeley

Professor Edward Lee, Chair

To model hardware and embedded applications, a highly concurrent model of computation

is required. We present a mechanism to model concurrency using the Kahn process net-

works model of computation. The process networks model of computation has a dataow

avor to it. This makes it well suited for modeling embedded dataow applications and

hardware architectures. Java provides a low level mechanism for constructing concurrent

systems using threads and synchronizing monitors. We provide an implementation of pro-

cess networks that is based on Java threads and is part of a heterogeneous modeling and

design environment called Ptolemy II. The process networks model of computation has been

extended to enable mutations of networks in a non-deterministic way. This can be used to

model applications with migrating code, agents, and arrivals and departures of customers

and services.

iii

Contents

List of Figures iv

1 Introduction 1

1.1 Kahn Process Networks - The Semantics . 2

1.1.1 Denotational Semantics . 2

1.1.2 Operational Semantics . 5

1.2 Bounded Memory Execution and Termination 5

2 Implementation 7

2.1 Construction of a Graph . 8

2.2 The Execution Sequence . 10

2.2.1 Director . 11

2.2.2 Execution of Actors . 12

2.3 Message Passing . 13

2.4 Detection of Deadlocks and Termination . 15

2.4.1 Deadlocks . 15

2.4.2 Termination of a simulation . 18

2.5 Mutations of a graph . 19

2.6 Important Issues in the Implementation . 22

2.6.1 Mutual Exclusion using Monitors . 22

2.6.2 Undetected Deadlocks . 25

3 Examples 29

3.1 The basic structure . 29

3.2 Mutating Graphs . 34

4 Future Work 39

4.1 Timed PN . 39

4.2 Nondeterminism in PN . 40

Bibliography 41

iv

List of Figures

2.1 UML static structure diagram of classes involved directly in the implemen-

tation of the PN domain in Ptolemy II . 9

2.2 get() method of the PNQueueReceiver . 14

2.3 put() method of the PNQueueReceiver . 16

2.4 setFinish() method of the PNQueueReceiver 18

2.5 The queueTopologyChangeRequest() method of the director in PN 20

2.6 The processTopologyRequests() method of the director in PN that han-

dles mutations . 21

3.1 Graphical representation of a process network constructed with the processes

de�ned in �gs. 3.2, 3.3, 3.4. 30

3.2 A process - Commutator - that interleaves various input streams into one. . 31

3.3 A process - Distributor - that distributes elements of input streams to the

output streams in a cyclic order. 32

3.4 A process - PNRedirect - that inserts an element at the head of its output

stream and redirects elements from its input to its output. 33

3.5 Graphical representation of a process network that models the Sieve of Er-

atosthenes algorithm for generating primes. 34

3.6 A process - Ramp - generating increasing integer tokens 35

3.7 A process - Sieve - that detects primes using the Sieve of Eratosthenes. The

part of the code except for the makeMutation() method is shown. 36

3.8 The part of code of Sieve responsible for mutations 37

v

To my parents.

vi

Acknowledgements

I would like to thank my advisor Edward A. Lee for introducing me to the wonderful

world of research in this �eld. I thank him for providing me with valuable support and

encouragement throughout the duration of my project.

I would also like to thank John Davis, John Reekie, Christopher Hylands and other mem-

bers of the Ptolemy research group for their immense help and the valuable, thoughtful

discussions that I had with them.

I especially thank my parents for their unagging support for my education. Without their

support, this report would have been a distant dream.

Chapter 1

Introduction

Embedded applications often have a high level of concurrency. These applications

normally run on separate hardware components which run in parallel and cooperate with

each other to achieve the functionality intended by the system as a whole. To design these

embedded systems, a model of computation that can model the concurrency in a system is

required. Process networks is a model of computation that has a high degree of concurrency

and is well suited for embedded system software and for hardware implementations.

We provide the user with an implementation of process networks in a heteroge-

neous modeling and design framework called Ptolemy II [1]. This is implemented in Java.

Java provides a low level mechanism to model concurrent behavior using threads and syn-

chronizing monitors [2]. Getting the synchronization correct and using the threads safely

is quite di�cult. Our implementation of process networks uses this low level mechanism

and provides an additional layer of abstraction over it. This makes it easier for the user to

model and design concurrent systems correctly.

2

This chapter gives an overview of the theory behind the process networks model

of computation. The second chapter provides a description of the software environment

for process networks in Ptolemy II. The third chapter uses a few examples to demon-

strate the way of modeling applications using the process networks model of computation

in Ptolemy II. The last chapter has some discussion on possible extensions to the process

network model of computation and their applications.

1.1 Kahn Process Networks - The Semantics

1.1.1 Denotational Semantics

A Kahn process network [3] is a network of processes that communicate only

through unidirectional, single input single output FIFO channels with unbounded capacities.

Each FIFO channel carries a possibly in�nite sequence of data values called tokens. Any

token in a channel can be read only once from the channel.

A description of the denotational semantics can be found in [3] and [4]. A brief

summary is provided here. We start by de�ning some notation.

Pre�x Ordering

Consider a set of tokens S. Let S1 be the set of all possible sequences of tokens

from S, and SM be the set of all sequences of M -tuples of tokens from S. S1 includes the

empty sequence � and SM includes the empty sequence �.

For X; Y 2 S
1, the sequence X precedes the sequence Y (written as X v Y), if

X is a pre�x (initial segment) of or is equal to Y . For example, x1x2 v x1x2x3. Now

3

consider X;Y 2 S
M where X = fX1; X2; : : : ; XMg and Y = fY1; Y2; : : : ; YMg. We say

X v Y if Xi v Yi; 8i 2 1; : : : ;M . (Note that Xi; Yi 2 S
1; 8i 2 1; : : : ;M:) This de�nes a

pre�x ordering of sequences from S
M . Also, � v X; 8X 2 S

M .

Partial Order

We next de�ne a partial order [5] on a set R. A binary relation � is a partial

ordering relation on R if 8x; y; z 2 R, we have:

1. Reexivity: x � x

2. Antisymmetry: x � y and y � x imply x = y

3. Transitivity: x � y and y � z imply x � z

As can be shown easily, the pre�x ordering operator, v, de�nes a partial ordering relation

on SM .

Complete Partial Order and Continuous Mapping

Consider a set R with a partial ordering relation, �. ? 2 R is said to be a bottom

element of R if ? � x for every x 2 R.

Now, let D be a non-empty subset of R. It is said to be directed if, for every �nite

subset F of D, there exists a z 2 D, such that x � z; 8x 2 F .

A partially ordered set R is a set with a partial ordering relation. It is a complete

partial order (cpo) if

1. R has a bottom element, ?.

4

2. For each directed subset D of R, there exists a lowest upper bound tD 2 R.

In the case of the partial order de�ned above for SM , � is an element of SM . This

is the bottom element in SM . Thus SM satis�es the �rst of the two conditions for being

a cpo. In S
M , if for any increasing chain of sequences, � : X1 v X2 v � � � v Xn v � � �,

the limit with n ! 1 exists, then the chain has a least upper bound (possibly an in�nite

sequence) denoted by t�, where t� 2 S
M . Now the elements of any directed subset of

S
M will form an increasing chain as above and thus have a lowest upper bound in SM .

This satis�es the second of the two conditions for a cpo, making SM a cpo with the binary

relation v.

A mapping from a cpo A into a cpo B is said to be continuous if, for any increasing

chain a of A,

f(lim
A
a) = lim

B
f(a)

Kahn Process Networks

We interpret Kahn process networks as follows. For every process P in the network,

we associate a set SP , which contains all the di�erent types of tokens that the input channels

may carry. Similarly, we associate a set TP with the output channels of P , which contains

all the di�erent types of tokens that the output channels may carry. Also denote the number

of input channels to the process by N , and the number of output channels by M .

The history of all the input channels to the process P forms a cpo SN
P

with the

partial ordering relation v, and the history of all the output channels from the process

forms a cpo T M
P

with the partial ordering relation v. Note that SN
P

and T M
P

are sequences

5

of N -tuples and M -tuples of tokens from SP and TP respectively. A Kahn process P is a

continuous mapping fP such that

fP : SN
P
! T

M

P

Denotational semantics are good for describing a model of computation, but one

requires the operational semantics to arrive at an implementation.

1.1.2 Operational Semantics

The most common operational semantics used is the Kahn MacQueen [6] seman-

tics. According to this, each process executes a sequential program. Processes communicate

with each other only through unbounded, unidirectional FIFO channels. A process can read

from an input channel or write to an output channel at any time, with an additional con-

straint that it cannot poll a channel for the presence of data. If a process tries to read from

an input channel that has no data, the read blocks and the process waits until a token is

available on that channel. The above constraints (sequential processes and blocking reads)

make the processes monotonic. Monotonic processes can be shown to make a network

of processes deterministic. This implies that the sequence of tokens passing through the

channels depends only on the topology and not on its implementation.

1.2 Bounded Memory Execution and Termination

The high level of concurrency in process networks makes it an ideal match for

embedded system software and for hardware implementations. But the Kahn MacQueen

semantics do not guarantee bounded memory execution of process networks even if it is

6

possible for the application to execute in bounded memory. Most real-time embedded

applications and hardware processes are intended to run inde�nitely with a limited amount

of memory. Thus bounded memory execution of process networks becomes crucial for its

usefulness for hardware and embedded software.

Parks [7] addresses this aspect of process networks and provides an algorithm to

make a process networks application execute in bounded memory whenever possible. He

provides an implementation of the Kahn MacQueen semantics that assigns a �xed capacity

to each FIFO channel. In addition to blocking on a read from a channel, a process can

block on a write to a channel if the FIFO channel has reached its capacity. Deadlocks can

now occur when all processes are blocked either on a read or on a write to a channel. On

detection of a deadlock, if there are some processes blocked on a write to a channel, Parks

chooses the channel with the smallest capacity among the channels on which processes are

blocked on a write and increases its capacity to break the deadlock. If all the processes

are blocked on a read from a channel, then the network cannot execute further and can be

terminated.

Chapter 2

Implementation

Ptolemy 0.x [8] is a tool for heterogeneous modeling and design of concurrent sys-

tems. It provides a highly exible, extensible, object oriented foundation for specifying,

simulating and synthesizing systems. Its main strength is in modeling complex heteroge-

neous systems at various levels of abstraction. It is divided into domains, each of which

implements a model of computation. A system can be designed using an appropriate domain

or combination of domains. Some of the models of computation in Ptolemy are untimed

dataow like the Synchronous Dataow (SDF), and the timed Discrete Event (DE) models

of computation.

Ptolemy II [1] is a complete redesign of Ptolemy 0.x in Java. The underlying

structure of Ptolemy 0.x is tailored to the dataow models of computation, and is not very

natural for implementing other models of computation. Also the mutations of networks

(dynamically changing graphs) that it permits are extremely limited. These are some of the

issues being addressed in the redesign. In addition, the use of Java makes the Ptolemy II

8

software appletable and platform independent.

The Kahn process networks model of computation is implemented in both Ptolemy 0.x

and Ptolemy II as the Process Networks (PN) domain. The implementation is based on the

bounded memory execution algorithm proposed by Parks [7]. In Ptolemy II, a mechanism

of detecting deadlocks proposed by Laramie, et. al. [9] is used to determine the termination

condition in the PN domain. Partial non-determinism in the form of dynamically changing

or mutating graphs is also supported in the PN domain in Ptolemy II.

Ptolemy II is modular and is divided into packages, each of which provide separate

functionalities. The abstract syntax is separated from the mechanisms that attach seman-

tics. In PN, the package that attaches the process networks semantics is

ptolemy.domains.pn.kernel. A UML static structure diagram [10] of the classes and

methods directly related to the PN domain in Ptolemy II is shown in �g.2.1. The following

sections discuss the implementation in detail. Some examples of applications written in the

PN domain in Ptolemy II are presented in the next chapter.

2.1 Construction of a Graph

A graph or a topology in Ptolemy II consists of entities and relations. Entities have

ports which are normally used for transfer of tokens between entities. Relations connect the

di�erent ports.

Ptolemy II supports topological hierarchy using clustered graphs. Thus an entity

in a graph can contain a subgraph (entities and relations). This feature not only facilitates

representation of large graphs in a more concise and understandable way but also makes

9

Figure 2.1: UML static structure diagram of classes involved directly in the implementation

of the PN domain in Ptolemy II

10

the graph more modular, by letting each cohesive part of the graph be represented as a

separate subgraph. Every such subgraph is represented as a single entity at the level of

hierarchy above it.

An executable entity is called an actor. If it contains a graph, then it is a com-

posite actor and is an instance of ptolemy.actor.CompositeActor or of a derived class.

If it is atomic and does not contain a graph, then it is an atomic actor and is an in-

stance of ptolemy.actor.AtomicActor or a derived class. The relations are instances of

ptolemy.actor.IORelation and the ports are instances of ptolemy.actor.IOPort. An

IOPort can be an input port, an output port or both. An input port has receivers embed-

ded in it. These receivers are capable of receiving tokens from distinct channels. In the PN

domain, each receiver contains a FIFO queue in it.

Thus in a process networks graph, the nodes (processes) correspond to actors.

The FIFO channels are embedded in the receivers in the input ports. The entire graph

is constructed in an instance of a composite actor, called the top-level composite actor.

It contains actors (both atomic actors and composite actors) and relations. More details

about constructing a topology in Ptolemy II can be found in the design document [11].

2.2 The Execution Sequence

In Ptolemy II, a manager governs the overall execution of a model. This interacts

with the top-level composite actor and calls the execution methods on it. A director is

responsible for the execution of a composite actor. It performs any scheduling or any other

actions that might be necessary for the execution of the components in the composite actor.

11

The execution methods on the director are called from the methods in the corresponding

composite actor.

2.2.1 Director

In process networks, each node of the graph is a separate process. In the PN

domain in Ptolemy II, this is achieved by letting each actor (node) have its own separate

thread of execution. These threads are based on the native Java threads [12] and are

instances of ptolemy.actors.ProcessThread.

In the PN domain, the director is an instance of

ptolemy.domains.pn.kernel.PNDirector. It starts a separate thread for every actor in

the topology in the beginning of the simulation. Each thread acts as a dataow process by

calling the execution methods of the dataow actor repeatedly.

The �rst step in the execution is the call to the initialize() method of the

director. This method creates the receivers in the input ports of the actors for all the

channels and creates a thread for each actor. It initializes all the actors in the graph. It

also sets the count of active actors in the model, which is required for detection of deadlocks

and termination, to the number of actors in the composite actor.

The next stage is the iterations. It starts with a call to the prefire() method

of the director. This method starts all the threads that were created for the actors in the

initialize() method of the director. In PN, this method always returns true.

The fire() method of the director is called next. In PN, the fire() method is

responsible for handling deadlocks (both real and arti�cial), as explained later in sec. 2.4.1.

It is also responsible for making all the mutations in PN as described in sec. 2.5.

12

The last stage of the iteration cycle of the director is the call to the postfire()

method. This method returns true unless a real deadlock is detected. A real deadlock is

when no actor in the composite actor associated with the director has any token that it can

read and process. That implies that unless some new data is to be provided to the graph,

the simulation can be terminated. The new data can come from the topology at a higher

level in the hierarchy if the deadlocked composite actor is not the top-level composite actor.

In case there is a real deadlock at the top-level composite actor and the simulation

cannot proceed, the manager calls the wrapup() method of the top-level composite actor.

This in turn calls the wrapup() method of the director. The director then terminates the

simulation. Details of termination are discussed in sec. 2.4.1.

2.2.2 Execution of Actors

As mentioned earlier, a separate thread is responsible for the execution of each

actor in PN. This thread is started in the prefire() method of the director. After starting,

this thread repeatedly calls the prefire(), fire(), and postfire() methods of the actor.

This sequence continues until the postfire() or the prefire() method returns false.

The only way for an actor to terminate gracefully in PN is by returning from the fire()

method and returning false in the postfire() or prefire() method of the actor. If an

actor �nishes execution as above, then the thread calls the wrapup() method of the actor.

Once this method returns, the thread informs the director about the termination of this

actor and �nishes its own execution. This actor is not �red again unless the director creates

and starts a new thread for the actor. Also, if an actor returns false in its prefire()

method the �rst time it is called, then it is never �red in PN.

13

2.3 Message Passing

In Ptolemy II, data transfer between entities is achieved using ports and the re-

ceivers embedded in the input ports. Each receiver in an input port is capable of receiving

messages from a distinct channel.

An actor calls the send() or broadcast()method on its output port to transmit a

token to a remote actor. The port obtains a reference to a remote receiver (via the relation

connecting them) and calls the put() method of the receiver, passing it the token. The

destination actor retrieves the token by calling the get() method of its input port, which

in turn calls the get() method of the designated receiver.

Both the get() and send() methods of the port take an integer index as an

argument, which the actor uses to distinguish between the di�erent channels that its port is

connected to. This index speci�es the channel to which the data is being sent or from which

the data is being received. If the ports are connected to a single channel, then the index

is 0. But if the port is connected to more than one channel (a multiport), say N channels,

then the index ranges from 0 to N � 1. The broadcast() method of the port does not

require an index as it transmits the token to all the channels to which it is connected.

In the PN domain, these receivers are instances of

ptolemy.domains.pn.kernel.PNQueueReceiver. These receivers have a FIFO queue in

them to provide the functionality of a FIFO channel in a process networks graph. In

addition to this, these receivers are also responsible for implementing blocking reads and

blocking writes. They handle this using the get() and the put() methods. These methods

are as shown in �gs. 2.2 and 2.3. The get() method checks whether the FIFO queue has

14

public Token get() {

IOPort port = getContainer();

Workspace workspace = port.workspace();

Actor actor = (Actor)port.getContainer();

PNDirector director = (PNDirector)actor.getDirector();

Token result = null;

synchronized (this) {

while (!_terminate && !super.hasToken()) {

director._readBlock();

_readpending = true;

while (_readpending && !_terminate) {

workspace.wait(this);

}

}

if (_terminate) {

throw new TerminateProcessException("");

} else {

result = super.get();

if (_writepending) {

director._writeUnblock(this);

_writepending = false;

notifyAll(); //Wake up threads waiting on a write;

}

}

while (_pause) {

director.increasePausedCount();

workspace.wait(this);

}

return result;

}

}

Figure 2.2: get() method of the PNQueueReceiver

15

any tokens. If not, then it increases the count tracking the number of actors blocked on a

read in the director and sets its _readpending ag to true. Then it suspends the calling

thread until some actor puts a token in the FIFO queue and sets the _readpending ag

of this receiver to false. (This is done in the put() method as described later.) When the

calling thread is resumed, the get() method reads the �rst token from the FIFO queue. In

case some actor is blocked on a write to this receiver (the FIFO queue is full to capacity),

it unblocks that actor, noti�es all the threads that are blocked, and returns. This method

also handles the termination of the simulation as is explained later in sec. 2.4.2.

The put() method of the receiver is responsible for implementing blocking writes.

This method checks whether the FIFO queue is full to capacity. If it is, then it sets

its _writepending ag to true and informs the director that an actor is blocked on a

write. Then it suspends its calling thread until another thread wakes it up after setting the

_writepending ag to false. After this, it puts the token into the FIFO queue and checks

whether some actor is blocked on a read from this receiver. If an actor is blocked on a read,

it unblocks it and noti�es all blocked threads. Then it returns.

2.4 Detection of Deadlocks and Termination

2.4.1 Deadlocks

The mechanism for detecting deadlocks in the Ptolemy II implementation of PN

is based on the mechanism suggested in [9]. This mechanism requires keeping count of the

number of threads currently active, paused, and blocked in the simulation. The number of

threads that are currently active in the graph is set by a call to the _increaseActiveCount()

16

public void put(Token token) {

IOPort port = getContainer();

Workspace workspace = port.workspace();

Actor actor = (Actor)port.getContainer();

PNDirector director = (PNDirector)actor.getDirector();

synchronized(this) {

if (!super.hasRoom()) {

_writepending = true;

director._writeBlock(this);

while(_writepending) {

workspace.wait(this);

}

}

super.put(token);

if (_readpending) {

director._readUnblock();

_readpending = false;

notifyAll();

}

while (_pause) {

director.increasePausedCount();

workspace.wait(this);

}

}

}

Figure 2.3: put() method of the PNQueueReceiver

17

method of the director. This method is called whenever a new thread corresponding to an

actor is created in the simulation. The corresponding method for decreasing the count of

active actors (on termination of a process) is _decreaseActiveCount() in the director.

Whenever an actor blocks on a read from a channel, the count of actors blocked on

a read is incremented by calling the _readBlock() method in PNDirector. Similarly, the

number of actors blocked on a write is incremented by a call to the _writeBlock() method

of the director. The corresponding methods for decreasing the count of the actors blocked on

a read or a write are _readUnblock() and _writeUnblock(), respectively. These methods

are called from the instances of the PNQueueReceiver class when an actor tries to read from

or write to a channel.

Every time an actor blocks on a read or a write, the director checks for a deadlock.

If the total number of actors blocked (on a read or a write) equals the total number of

actors active in the simulation, a deadlock is detected. On detection of a deadlock, if one

or more actors are blocked on a write, then this is an arti�cial deadlock. The channel with

the smallest capacity among all the channels with actors blocked on a write is chosen and

its capacity is incremented. This implements the bounded memory execution as suggested

by Parks [7].

If there are no actors blocked on a write, then the deadlock detected is a real

deadlock. If a real deadlock is detected at the top-level composite actor, then the manager

terminates the execution.

18

public synchronized void setFinish() {

_terminate = true;

notifyAll();

}

Figure 2.4: setFinish() method of the PNQueueReceiver

2.4.2 Termination of a simulation

A simulation can be ended (on detection of a real deadlock) by calling the wrapup()

method on either the toplevel composite actor or the corresponding director. This method

is normally called by the manager on the top-level composite actor. In PN, this method

traverses the topology of the graph and calls the setFinish() method of the receivers in

the input ports of all the actors. Since this method is called only when a real deadlock is

detected, one can be sure that all the active actors in the simulation are currently blocked

on a read from a channel and are waiting in the call to the get() method of a receiver. This

fact is used to wrap up the simulation. The setFinish() method of the receiver sets the

termination ag to true, and wakes up all the threads currently waiting in the get()method

of the receiver (�g. 2.4). This is implemented using the wait()-notifyAll() mechanism

of Java [2],[12]. Once these threads wake up, they see that the termination ag is set.

This results in the get() method of the receivers throwing a TerminateProcessException

(a runtime exception in Ptolemy II). This exception is never caught in any of the actor

methods and is eventually caught by the process thread. The thread catches this runtime

exception, calls the wrapup() method of the actor and �nishes its execution. Eventually

after all threads catch this exception and �nish executing, the simulation ends.

19

2.5 Mutations of a graph

The PN domain in Ptolemy II allows graphs to mutate during execution. This

implies that old processes or channels can disappear from the graph and new processes and

channels can be created during the execution. This is demonstrated with an example in

sec. 3.2.

Though other domains, like SDF, also support mutations in their graphs, there is

a big di�erence between the two. In domains like SDF, mutations can occur only between

iterations. This keeps the simulation determinate as changes to the topology occur only at

a �xed point in the execution cycle. In PN, the execution of a graph is not centralized,

and hence, the notion of an iteration is quite di�cult to de�ne. Thus, in PN, we let

mutations happen as soon as they are requested. This form of mutations is generally

non-deterministic as they can occur at any point during a simulation. The point in the

execution where mutations occur would normally depend on the schedule of the underlying

Java threads. Under certain conditions where the application can guarantee a �xed point

in the execution cycle for mutations, or where the mutations are localized, mutations can

still be determinate.

An actor can request a mutation by creating an instance of a class derived from

ptolemy.kernel.event.TopologyChangeRequest. It should override the method

constructEventQueue() and include the commands that it wants to use to perform mu-

tations in this method. It should also list all the commands needed to inform the topology

listeners about the changes made to the topology because of the mutations that the actor

wishes to perform. This is demonstrated using an example in sec. 3.2. Further details can

20

public void queueTopologyChangeRequest(TopologyChangeRequest req) {

super.queueTopologyChangeRequest(req);

synchronized(this) {

_urgentMutations = true;

notifyAll();

}

}

Figure 2.5: The queueTopologyChangeRequest() method of the director in PN

be found in the Ptolemy II design document [11].

After creating the above class, the actor calls the method,

queueTopologyChangeRequest(TopologyChangeRequest req) on the director. This method

(�g. 2.5) queues the requested mutations, and noti�es the director, currently waiting in its

fire()method, and asks it to take over the control. On detecting the request for mutations,

the director calls its _processTopologyRequests() method to perform the mutations.

The _processTopologyRequests() method pauses the simulation and performs

all the mutations. Then, it creates receivers and threads for all the new actors, if any, and

starts the threads. It then resumes all the actors and returns. This method (called from

the fire() method of the director) is shown in �g. 2.6.

The above sections summarize most of the implementation details of PN. But a

developer should be cautious about a few issues while attempting to extend the PN domain

in Ptolemy II. If not handled properly, these issues could result in errors in simulation.

They are discussed in the next section.

21

protected void _processTopologyRequests()

throws IllegalActionException, TopologyChangeFailedException {

Workspace worksp = workspace();

pause();

super._processTopologyRequests();

LinkedList threadlist = new LinkedList();

Enumeration newactors = _newActors();

while (newactors.hasMoreElements()) {

Actor actor = (Actor)newactors.nextElement();

actor.createReceivers();

actor.initialize();

ProcessThread pnt = new ProcessThread(actor, this);

threadlist.insertFirst(pnt);

_addNewThread(pnt);

}

resume();

Enumeration threads = threadlist.elements();

while (threads.hasMoreElements()) {

ProcessThread pnt = (ProcessThread)threads.nextElement();

pnt.start();

}

}

Figure 2.6: The processTopologyRequests() method of the director in PN that handles

mutations

22

2.6 Important Issues in the Implementation

There are two main issues that a developer should be aware of while extending

PN. The �rst one is to get the mutual exclusion right and the second is to avoid undetected

deadlocks.

2.6.1 Mutual Exclusion using Monitors

In PN, threads interact in various ways for message passing, deadlock detection,

etc. This requires various threads to access the same data structures. Concurrency can

easily lead to inconsistent states as threads could access a data structure while it is being

modi�ed by some other thread. This can result in race conditions and undesired dead-

locks [13]. For this, Java provides a low-level mechanism called a monitor to enforce mutual

exclusion. Monitors are invoked in Java using the synchronized keyword. A block of code

can be synchronized on a monitor lock as follows:

synchronized (obj) {

... //Part of code that requires exclusive lock on obj.

}

This implies that if a thread wants to access the synchronized part of the code, then it has

to grab an exclusive lock on the monitor object, obj. Also while this thread has a lock on

the monitor, no thread can access any code that is synchronized on the same monitor.

There are many actions (like mutations) that could a�ect the consistency of more

than one object, such as the director and receivers. Java does not provide a mechanism

to acquire multiple locks simultaneously. Acquiring locks sequentially is not good enough

as this could lead to deadlocks. For example, consider a thread trying to acquire locks on

objects a and b in that order. Another thread might try to obtain locks on the same objects

23

in the opposite order. The �rst thread acquires a lock on a and stalls to acquire a lock on

b, while the second thread acquires a lock on b and waits to grab a lock on a. Both threads

stall inde�nitely and the application is deadlocked.

The main problem in the above example is that di�erent threads try to acquire

locks in conicting orders. One possible solution to this is to de�ne an order or hierarchy of

locks and require all threads to grab the locks in the same top-down order [2]. In the above

example, we could force all the threads to acquire locks in a strict order, say a followed by

b. If all the code that requires synchronization respects this order, then this strategy can

work with some additional constraints, like making the order on locks immutable. Although

this strategy can work, this might not be very e�cient and can make the code a lot less

readable. Also Java does not permit an easy and straightforward way of implementing this.

We follow a similar but easier strategy in the PN domain of Ptolemy II. We de�ne

a three level strict hierarchy of locks with the lowest level being the director, the middle

level being the various receivers and the highest level being the workspace. The rule that

all threads have to respect after acquiring their �rst lock is to never try acquiring a lock at

a higher or at the same level as their �rst lock. Speci�cally, a block of code synchronized

on the director should not try to access a block of code that requires a lock on either the

workspace or any of the receivers. Also, a block of code synchronized on a receiver should

not try to call a block of code synchronized on either the workspace or any other receiver.

Some discussion about these locks in PN is presented in the following section.

24

Hierarchy of locks

The highest level in the hierarchy of locks is the Workspace, which is a class de�ned

speci�cally for this purpose. This level of synchronization though is quite di�erent from the

other two forms. This synchronization is modeled explicitly in Ptolemy II and is another

layer of abstraction based on the Java synchronization mechanism. The principle behind

this mechanism is that if a thread wants to read the topology, then it wants to read it

only in a consistent state. Also if a thread is modifying the topology, then no other thread

should try to read the topology as it might be in an inconsistent state. To enforce this, we

use a reader-writer mechanism to access the workspace [11]. Any thread that wants to read

the topology but does not modify it requests a read access on the workspace. If the thread

already has a read or write access on the workspace, it gets another read access immediately.

Otherwise if no thread is currently modifying the topology, and no thread has requested

a write access on the workspace, the thread gets the read access on the workspace. If the

thread cannot get the read access currently, it stalls until it gets it. Similarly, if a thread

requests a write access on the workspace, it stalls until all other threads give up their read

and write access on the workspace. Thus though a thread does not have an exclusive lock

on the workspace, the above mechanism provides a mutual exclusion between the activities

of reading the topology and modifying the topology. This way of synchronizing on the

workspace is distinctly di�erent from possessing an exclusive lock on the workspace.

Once a thread has a read or write access on the workspace, it can call methods or

blocks of code that are synchronized on a single receiver or the director.

The receivers form the next level in the hierarchy of locks. These receivers are

25

once again accessed by di�erent threads (the reader and the writer to the queue) and need

to be synchronized. For example, a writer thread might try to write to a receiver while

another token is being read from it. This could leave the receiver in an inconsistent state.

The state of a receiver might include information about the number of tokens in the queue,

the information about any process blocked on a read or a write to the receiver and some

other information. These methods or blocks of code accessing and modifying the state of

the receivers are forced to get an exclusive lock on the receiver. These blocks might call

methods that require a lock on the director, but do not call methods that require a lock on

any other receiver.

The lower-most lock in the hierarchy is the PNDirector object. There are some

internal state variables, such as the number of processes blocked on a read, that are accessed

and modi�ed by di�erent threads. For this, the code that modi�es any internal state variable

should not let more than one thread access these variables at the same time. Since access

to these variables is limited to the methods in director, the blocks of code modifying these

state variables obtain an exclusive lock on the director itself. These blocks should not try

to access any block of code that requires an exclusive lock on the receivers or requires a

read or a write access on the workspace.

2.6.2 Undetected Deadlocks

Undetected deadlocks should be avoided while extending the PN domain in Ptolemy II.

We discuss a signi�cant but subtle issue that a developer should be aware of when trying

to extend the PN domain. This concerns the release of locks from a suspended thread.

In Java, when a thread with an exclusive lock on multiple objects suspends by

26

calling wait() on an object, it releases the lock only on that object and does not release

other locks. For example, consider a thread that holds a lock on two objects, say a and b.

It calls wait() on b and releases the lock on b alone. If another thread requires a lock on a

to perform whatever action the �rst thread is waiting for, then deadlock will ensue. That

thread cannot get a lock on a until the �rst thread releases its exclusive lock on a, and the

�rst thread cannot continue until the second thread gets the lock on a from the �rst and

performs whatever action it is waiting for.

This sort of scenario is currently avoided in PN by following some simple rules. The

�rst of them being that a method or block synchronized on the director never calls wait()

on any object. Thus once a thread grabs a lock on director, it is guaranteed to release it.

The second is that a block of code with an exclusive lock on a receiver does not call the

wait() method on the workspace. (Note that the code should never synchronize directly

on the workspace object and should always use the read and write access mechanism.)

The third rule is that a thread should give up all the read permissions on the workspace

before calling the wait() method on the receiver object. Note that in case of workspace,

we require this because of the explicit modeling of mutual exclusion between the read and

write activities on the workspace. If a thread does not release the read permissions on the

workspace and suspends, while a second thread requires a write access on the workspace to

perform the action that the �rst thread is waiting for, a deadlock results. Also to be in a

consistent state with respect to the number of read accesses on the workspace, the thread

should regain those read accesses after returning from the call to the wait() method. For

this a wait(Object obj) method is provided in the class Workspace that releases all the

27

read accesses to the workspace, calls wait() on the argument obj, and regains all the read

accesses on waking up.

The above rules guarantee that a deadlock does not occur in the PN domain

because of contention for various locks.

Chapter 3

Examples

This chapter demonstrates examples of applications using the PN domain in

Ptolemy II.

3.1 The basic structure

Let us consider the example shown in �g. 3.1, taken from Parks [7]. The two

instances of the process PNRedirect, produce initial tokens 0 and 1 that allow the program

graph to execute. The process Commutator reads tokens alternately from the two input

channels it is connected to, X and Y , and redirects those tokens to the output channel Z.

The process Distributor reads tokens from channel Z and writes tokens to channels S0 and

S1 alternately. The instances of process PNRedirect read tokens from channels S0 and S1

and write them to channels X and Y respectively.

This simple network as can be seen does not do much. But this example is ideal

to demonstrate the basics of modeling applications in PN. This example is modeled in PN

30

X Y

S0 S1

Commutator

Distributor

Z
PNRedirect(0) PNRedirect(1)

Figure 3.1: Graphical representation of a process network constructed with the processes

de�ned in �gs. 3.2, 3.3, 3.4.

using three di�erent processes. The de�nition of these processes is shown in �gs. 3.2, 3.3,

and 3.4. These de�nitions are as coded in Java in the Ptolemy II framework. For clarity,

the exception handling code has been removed.

The constructor de�nes the number of input and output ports that an actor or

process has. For example the process PNRedirect, has a single input and a single output.

They are de�ned as

_input = new IOPort(this, "input", true, false);

_output = new IOPort(this, "output", false, true);

An input port, by default, can be connected to only one channel. In case an actor wants

to read tokens from more than one input channel and treat them similarly, independent of

the number of input channels it is connected to, as in the case of Commutator, it can make

a port multiport and connect it to multiple channels. The syntax for that is

31

public class Commutator extends AtomicActor {

public Commutator(CompositeActor container, String name) {

super(container, name);

_input = new IOPort(this, "input", true, false);

_input.makeMultiport(true);

_output = new IOPort(this, "output", false, true);

}

public void fire() {

for (int i=0; i<_input.getWidth(); i++) {

_output.broadcast(_input.get(i));

}

}

private IOPort _input;

private IOPort _output;

}

Figure 3.2: A process - Commutator - that interleaves various input streams into one.

_input = new IOPort(this, "input", true, false);

_input.makeMultiport(true);

The default for an output port is the same as the input port and it can be connected

to only one channel. In case an actor wants to provide di�erent tokens on di�erent channels

connected to the same port, as in the case of Distributor, it can make an output port

multiport with the same syntax as for an input port.

_output = new IOPort(this, "output", false, true);

_output.makeMultiport(true);

This implies that all the channels that are connected to this port will now receive di�erent

tokens in a cyclic order. The distributor reads tokens from its input and sends them in a

cyclic order to all the di�erent output channels that its output port is connected to. For

this, it iterates through all the di�erent channels connected to the port (the number of

which is given by the getWidth() method of the port) and use the send() method to send

32

public class Distributor extends AtomicActor {

public Distributor(CompositeActor container, String name) {

super(container, name);

_input = new IOPort(this, "input", true, false);

_output = new IOPort(this, "output", false, true);

_output.makeMultiport(true);

}

public void fire() {

for (int i=0; i<_output.getWidth(); i++) {

_output.send(i, _input.get(0));

}

}

private IOPort _input;

private IOPort _output;

}

Figure 3.3: A process - Distributor - that distributes elements of input streams to the output

streams in a cyclic order.

a token to each of those channels, as done in the Commutator code.

for (int i=0; i<_output.getWidth(); i++) {

_output.send(i, _input.get(0));

}

If an actor wants to send the same token to all the channels that a particular port is

connected to, then it uses the broadcast() method as shown:

_output.broadcast(data);

The idea for the input port is similar with one di�erence. An equivalent to the broadcast()

method does not exist on the input side. So if the actor knows that it is going to read from

only one channel on the input, it uses the get() method of the input port, with the index

0 as an argument.

data = _input.get(0);

If it wants to read from all the channels on the input port, then it iterates through the list

of channels and uses the index to read tokens from them one after the other as in:

33

public class PNRedirect extends AtomicActor{

public PNRedirect(CompositeActor container, String name) {

super(container, name);

_input = new IOPort(this, "input", true, false);

_output = new IOPort(this, "output", false, true);

new Parameter(this, "Initial value", new IntToken(0));

}

public void fire() {

Parameter param = (Parameter)getAttribute("Initial value"));

IntToken init = (IntToken)param.getToken();

_output.broadcast(init);

while (true) {

_output.broadcast(_input.get(0));

}

}

private IOPort _input;

private IOPort _output;

}

Figure 3.4: A process - PNRedirect - that inserts an element at the head of its output

stream and redirects elements from its input to its output.

for (int i=0; i<_input.getWidth(); i++) {

_output.broadcast(_input.get(i));

}

Each instance of the above process runs independently of the others and the only

place where it interacts with them in any way is through the get(), send() or broadcast()

methods of the ports. There is no sharing of information using shared variables or in

any other way with other processes. This is a concrete example of the modularity in the

implementation of Ptolemy II.

34

Ramp (2 +) Sieve (2) Sieve (3)

Figure 3.5: Graphical representation of a process network that models the Sieve of Eratos-

thenes algorithm for generating primes.

3.2 Mutating Graphs

Another slightly more complicated example is the Sieve of Eratosthenes, which

detects prime numbers. The network in this example (�g. 3.5) is not a static graph as in

the previous example. The graph here is a mutating network and grows over time.

The Ramp, with code shown in �g. 3.6 produces a stream of increasing integers.

The �rst and the last token (if any) produced by the ramp are both parameters of the actor.

For this example, we choose the parameter as 2, the smallest prime number.

Each sieve process corresponds to a distinct prime number. The �rst sieve (con-

nected to the ramp) corresponds to the smallest prime, 2. Each sieve reads an integer

token from the input channel and checks whether the integer in it is divisible by the prime

number corresponding to the sieve. If it is, then it discards the number. If the number is

not divisible and the current sieve corresponds to the largest known prime, then the sieve

has discovered a new prime. It creates a new instance of sieve corresponding to the new

prime and connects it to its output channel.

In case it is not the largest known prime and the new integer is not divisible by

the current sieve's prime, it puts the new integer, encapsulated as a token, to the output

channel for the next sieve to read. The code for the Sieve is as shown in �gs.3.7, 3.8.

The new aspect of this actor is the mutations in the form of creation of a new

35

public class Ramp extends AtomicActor {

public Ramp(CompositeActor container, String name) {

super(container, name);

_output = new IOPort(this, "output", false, true);

new Parameter(this, "Initial value", new IntToken(0));

new Parameter(this, "Run Forever?", new BooleanToken(true));

new Parameter(this, "Maximum value", new IntToken(100));

}

public void fire() {

Parameter param = (Parameter)getAttribute("Maximum value"));

int max = ((IntToken)param.getToken()).intValue();

param = (Parameter)getAttribute("Run Forever?"));

boolean ever = ((BooleanToken)param.getToken()).booleanValue();

if(ever || _seed <= max) {

_output.broadcast(new IntToken(_seed));

_seed++;

} else {

_notdone = false;

}

}

public void initialize() throws IllegalActionException {

Parameter param = (Parameter)getAttribute("Initial value"));

_seed = ((IntToken)param.getToken()).intValue();

}

public boolean postfire() {

return _notdone;

}

private boolean _notdone = true;

private int _seed;

private IOPort _output;

}

Figure 3.6: A process - Ramp - generating increasing integer tokens

36

public class Sieve extends AtomicActor {

public Sieve(CompositeActor container, String name) {

super(container, name);

_input = new IOPort(this, "input", true, false);

_output = new IOPort(this, "output", false, true);

new Parameter(this, "Prime", new IntToken(2));

}

public void fire() {

boolean islargestprime = true;

while (true) {

int value = ((IntToken)_input.get(0)).intValue();

if (value%_prime != 0) {

if (islargestprime) {

TopologyChangeRequest m = makeMutation(value);

PNDirector director = (PNDirector)getDirector();

director.queueTopologyChangeRequest(m);

islargestprime = false;

} else {

_output.broadcast(data);

}

}

}

}

public void initialize() throws IllegalActionException {

Parameter param = (Parameter)getAttribute("Prime"));

_prime = ((IntToken)param.getToken()).intValue();

}

private IOPort _input;

private IOPort _output;

private int _prime = 2;

}

Figure 3.7: A process - Sieve - that detects primes using the Sieve of Eratosthenes. The

part of the code except for the makeMutation() method is shown.

37

private TopologyChangeRequest makeMutation(final int value) {

TopologyChangeRequest request = new TopologyChangeRequest(this) {

public void constructEventQueue() {

Sieve newSieve = null;

Relation newRelation = null;

IOPort input = null;

IOPort output = null;

IOPort outport = null;

CompositeActor container = (CompositeActor)getContainer();

newSieve = new Sieve(container, value + "_sieve");

Parameter param = (Parameter)getAttribute("Prime"));

param.setToken(new IntToken(value));

Enumeration relations = _output.linkedRelations();

LinkedList rellist = new LinkedList();

if (relations.hasMoreElements()) {

Relation relation = (Relation)relations.nextElement();

_output.unlink(relation);

outport = (IOPort)newSieve.getPort("output");

outport.link(relation);

rellist.insertLast(relation);

}

input = (IOPort)newSieve.getPort("input");

newRelation = container.connect(input,_output,value+"_Q");

queueEntityAddedEvent(container, newSieve);

Enumeration temprel = rellist.elements();

if (temprel.hasMoreElements()) {

relation = (Relation)temprel.nextElement();

queuePortUnlinkedEvent(relation, _output);

queuePortLinkedEvent(relation, outport);

}

queueRelationAddedEvent(container, newRelation);

queuePortLinkedEvent(newRelation, _output);

queuePortLinkedEvent(newRelation, input);

}

};

return request;

}

Figure 3.8: The part of code of Sieve responsible for mutations

38

instance of the sieve actor and the dynamically changing connections. For this, a new

instance of an object derived from the class topologyChangeRequest is created. This object

implements a method, constructEventQueue(). The method contains all the commands

needed to make the mutations and the commands needed to inform any topology listeners,

i.e, objects observing any changes to the graph (for visualization or some other purpose).

The constructEventQueue() method of the Sieve object is shown in �g. 3.8.

For clarity, the code handling exceptions has been removed. The constructEventQueue()

method creates a new instance of Sieve, and sets the parameter corresponding to the prime

number for this instance. Then it disconnects all the channels from its output port, attaches

them to the output port of the new sieve and attaches its output port to the input port of

the new sieve. In the end, the method reports all its activities to the listeners that might

be attached to the graph. To inform the topology listeners of the changes to the graph,

it has calls to the corresponding commands de�ned in the base TopologyChangeRequest

class. Further details about this can be found in the Ptolemy II design document [11].

Chapter 4

Future Work

This chapter talks about a few extensions to the Kahn process networks and dis-

cusses their usefulness for various applications.

4.1 Timed PN

The process networks model of computation lacks a notion of time. Thus, though

it can e�ectively model the functional behavior of systems and can test them for functional

correctness, it is unable to model their real-time behavior.

For example, because of its concurrency, PN is well suited for modeling hardware

architectures. In some real-time systems and embedded applications, the real-time behavior

of a system is as critical as the functional correctness. Due to this, developers often have to

write their applications in PN to test them for functional correctness and use some other

timed model of computation, such as DE, for testing their timing behavior. An example of

this can be found in [14]. Introducing a notion of time to the process networks model of

40

computation will thus be a natural extension of PN. Similar timed models of computation

have been implemented in some software packages like Pamela [15].

Adding a notion of time would make it easier for PN to interact with other timed

domains in Ptolemy II and to interact with hardware.

4.2 Nondeterminism in PN

Process networks as de�ned by Kahn is a deterministic model of computation.

Though this is su�cient and desired for modeling applications in signal processing and

similar �elds, it might not be the best to model things like resource contention. In many

applications, non-determinism in a limited and controlled way might be desirable. Lee

and Parks [4] suggest �ve di�erent ways of introducing non-determinism to Kahn process

networks. They are (1) polling on channels, or allowing processes to check for presence

of data on the channels, (2) allowing processes to be inherently non-determinate, (3) non-

deterministic merge, or allowing more than one process to write to a channel, (4) non-

deterministic split, or allowing more than one process to consume data from a channel, and

(5) shared memory, or allowing processes to share variables.

Some of these mechanisms can be extremely useful for modeling certain appli-

cations. Let us consider hardware architectures. Non-deterministic split and merge are

useful for this. Non-deterministic splits can be used to model resource pooling, while non-

deterministic merge can be used to model resource contention and interrupts. Future work

on process networks could involve studying these forms of non-determinism and evaluating

their expressiveness.

41

Bibliography

[1] The Ptolemy II project, http://ptolemy.eecs.berkeley.edu/ptolemyII.

[2] D. Lea, Concurrent Programming in Java. Addison-Wesley, 1997.

[3] G. Kahn, \The semantics of a simple language for parallel programming," Info. Proc.

74, vol. 4, pp. 471{5, 1974.

[4] E. A. Lee and T. M. Parks, \Dataow process networks," Proc. of IEEE, vol. 83,

pp. 773{801, May 1995.

[5] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge

University Press, 1990.

[6] G. Kahn and D. B. MacQueen, \Coroutines and networks of parallel processes," Info.

Proc. 77, vol. 7, pp. 993{8, 1977.

[7] T. M. Parks, Bounded Scheduling of Process Networks. PhD thesis, Univ. of California

at Berkeley, 1995.

[8] The Ptolemy project, http://ptolemy.eecs.berkeley.edu.

42

[9] P. Laramie, R. S. Stevens, and M. Wan, \Kahn process networks in Java," ee290n class

project report, Univ. of California at Berkeley, 1996.

[10] M. Fowler and K. Scott, UML Distilled. Addison-Wesley, 1997.

[11] E. A. Lee, \Design document of Ptolemy II," tech. rep., Univ. of California at Berkeley,

1998.

[12] S. Oaks and H. Wong, Java Threads. O'Reilly, 1997.

[13] G. R. Andrews, Concurrent Programming. The Benjamin/Cummings Publishing co.,

inc., 1991.

[14] P. Lieverse, P. V. Wolf, E. Deprettere, and K. Vissers, \A methodology for architecture

exploration of heterogeneous systems," to be presented at DAC, 1999.

[15] A. van Gemund, \Performance prediction of parallel processing systems: The Pamela

methodology," in Proc. 7th ACM Int. Conf. on Supercomputing, (Tokyo), pp. 318{327,

July 1993.

[16] E. A. Lee and D. G. Messerschmitt, \Synchronous data ow," Proc. of the IEEE,

vol. 75, pp. 1235{45, Sept. 1987.

[17] N. A. Lynch and E. W. Stark, \A proof of the Kahn principle for input/output au-

tomata," Information and Computation 82, pp. 81{92, 1989.

