
1

RESYNCHRONIZATION FOR MULTIPROCESSOR DSP IMPLEMENTATION —

PART 1: MAXIMUM THROUGHPUT RESYNCHRONIZATION 1

Shuvra S. Bhattacharyya, Sundararajan Sriram and Edward A. Lee

1. Abstract

This paper introduces a technique, calledresynchronization, for reducing synchronization

overhead in multiprocessor implementations of digital signal processing (DSP) systems. The

technique applies to arbitrary collections of dedicated, programmable or configurable processors,

such as combinations of programmable DSPs, ASICS, and FPGA subsystems. Thus, it is particu-

larly well suited to the evolving trend towards heterogeneous single-chip multiprocessors in DSP

systems. Resynchronization exploits the well-known observation [36] that in a given multiproces-

sor implementation, certain synchronization operations may beredundant in the sense that their

associated sequencing requirements are ensured by other synchronizations in the system. The goal

of resynchronization is to introduce new synchronizations in such a way that the number of addi-

tional synchronizations that become redundant exceeds the number of new synchronizations that

are added, and thus the net synchronization cost is reduced.

Our study is based in the context ofself-timedexecution ofiterative dataflowspecifica-

tions of digital signal processing applications. An iterative dataflow specification consists of a

dataflow representation of the body of a loop that is to be iterated infinitely; dataflow program-

ming in this form has been employed extensively, particularly in the context of software and sys-

tem-level design for digital signal processing applications. Self-timed execution refers to a

1. S. S. Bhattacharyya is with the Department of Electrical Engineering and the Institute for Advanced Com-
puter Studies, University of Maryland, College Park, (ssb@eng.umd.edu).

S. Sriram is with the DSP R&D Research Center, Texas Instruments, Dallas, Texas, (sriram@hc.ti.com).

E. A. Lee is with the Department of Electrical Engineering and Computer Sciences, University of California
at Berkeley, (eal@eecs.berkeley.edu).

This research is part of the Ptolemy project, which is supported by the Defense Advanced Research Projects
Agency (DARPA), the Air Force Research Laboratory, the State of California MICRO program, and the fol-
lowing companies: The Alta Group of Cadence Design Systems, Hewlett Packard, Hitachi, Hughes Space and
Communications, NEC, Philips, and Rockwell.

Technical report, Digital Signal Processing Laboratory, University of Maryland at College Park, July, 1998. Revised
from Memorandum UCB/ERL 96/55, Electronics Research Laboratory, University of California at Berkeley, Octo-
ber, 1996.

2

combined compile-time/run-time scheduling strategy in which processors synchronize with one

another only based on inter-processor communication requirements, and thus, synchronization of

processors at the end of each loop iteration does not generally occur.

After reviewing our model for the analysis of synchronization overhead, we define the

general form of our resynchronization problem; we show that optimal resynchronization is intrac-

table by establishing a correspondence to theset coveringproblem; and based on this correspon-

dence, we develop an efficient heuristic for resynchronization. Also, we show that for a broad

class of iterative dataflow graphs, optimal resynchronizations can be computed by means of an

efficient polynomial-time algorithm. We demonstrate the utility of our resynchronization tech-

niques through a practical example of a music synthesis system.

2. Introduction

This paper is concerned with implementation of iterative, dataflow-dominated algorithms

on embedded multiprocessor systems. In the DSP domain, such multiprocessors typically consist

of one or more CPU’s (micro-controllers or programmable digital signal processors), and one or

more application-specific hardware components (implemented as custom ASICs or on reconfig-

urable logic such as FPGAs). Such embedded multiprocessor systems are becoming increasingly

common today in applications ranging from digital audio/video equipment to portable devices

such as cellular phones and PDA’s. A digital cellular phone, for example, typically consists of a

micro-controller, a DSP, and custom ASIC circuitry. With increasing levels of integration, it is

now feasible to integrate such heterogeneous systems entirely on a single chip. The design task of

such multiprocessor systems-on-a-chip is complex, and the complexity will only increase in the

future.

One of the critical issues in the design of embedded multiprocessors is managing commu-

nication and synchronization between the heterogeneous processing elements. In this paper, we

focus on the problem of minimizing communication and synchronization overhead in embedded

multiprocessors. We propose algorithms that automate the process of designing synchronization

3

points in a shared-memory multiprocessor system with the objective of reducing synchronization

overhead.

Specifically, we develop a technique calledresynchronization for reducing the rate at

which synchronization operations must be performed in a shared-memory multiprocessor system.

Resynchronization is based on the concept that there can be redundancy in the synchronization

functions of a given multiprocessor implementation [36]. Such redundancy arises whenever the

objective of one synchronization operation is guaranteed as a side effect of other synchronizations

in the system. In the context of noniterative execution, Shaffer showed that the amount of run-

time overhead required for synchronization can be reduced significantly by detecting redundant

synchronizations and implementing only those synchronizations that are found not to be redun-

dant; an efficient, optimal algorithm was also proposed for this purpose [36]; and this algorithm

was subsequently extended to handle iterative computations [5]. The objective of resynchroniza-

tion is to introduce new synchronizations in such a way that the number of original synchroniza-

tions that consequently become redundant is significantly more than number of new

synchronizations.

2.1 Iterative synchronous dataflow

We study this problem in the context of self-timed execution of iterativesynchronous

dataflow (SDF) specifications. An iterative SDF specification consists of an SDF representation

of a computation that is to be iterated infinitely. In SDF, an application is represented as a directed

graph in which vertices (actors) represent computational tasks, edges specify data dependences,

and the number of data values (tokens) produced and consumed by each actor is fixed. This form

of “synchrony” should not be confused with the use of “synchronous” in synchronous languages

[3]. The task represented by an actor can be of arbitrary complexity. In DSP design environments,

it typically ranges in complexity from a basic operation such as addition or subtraction to a signal

processing subsystem such as an FFT unit or an adaptive filter.

Although the model is too restricted for many general-purpose applications, iterative SDF

4

has proven to be a useful framework for representing a significant class of digital signal process-

ing (DSP) algorithms, and it has been used as the foundation for numerous DSP design environ-

ments, in which applications are represented as hierarchies of block diagrams. Examples of

commercial tools that employ SDF are the Signal Processing Worksystem (SPW) by Cadence,

COSSAP by Synopsys, and HP Ptolemy by Hewlett-Packard. Research tools developed at univer-

sities that use SDF and related models include DESCARTES [34], GRAPE [21], Ptolemy [8], and

the Warp compiler [32]. A wide variety of techniques have been developed to schedule SDF spec-

ifications for efficient multiprocessor implementation, such as those described in [1, 2, 9, 14, 15,

25, 29, 32, 37, 39]. The techniques developed in this paper can be used as a post-processing step

to improve the performance of implementations that use any of these scheduling techniques.

Each SDF edge has associated a non-negative integerdelay. SDF delays represent initial

tokens, and specify dependencies between iterations of actors in iterative execution. For example,

if tokens produced by the th invocation of actor are consumed by the th invocation of

actor , then the edge contains two delays. We assume that the input SDF graph ishomo-

geneous, which means that the numbers of tokens produced and consumed are identically unity.

However, since efficient techniques have been developed to convert general SDF graphs into

homogeneous graphs [23], our techniques can easily be adapted to general SDF graphs. We refer

to a homogeneous SDF graph as adataflow graph (DFG).

2.2 Self-timed Scheduling Model

Our implementation model involves aself-timedscheduling strategy [24]. Each processor

executes the tasks assigned to it in a fixed order that is specified at compile time (i. e. statically).

Before firing an actor, a processor waits for the data needed by that actor to become available.

Thus, processors are required to perform run-time synchronization when they communicate data.

This provides robustness when the execution times of tasks are not known precisely or when they

may exhibit occasional deviations from their compile-time estimates.

Such a self-timed strategy is well-suited for implementation of signal processing and com-

k A k 2+()

B A B,()

5

munication systems owing to the dataflow nature of the computations involved. Examples of such

systems are high speed modems, image compression and decompression systems, and wireless

communications. The data flow between components in such systems (e.g. between the channel

equalizer and the Viterbi decoder in a high speed modem) tends to be regular and predictable.

Thus communication between processing elements implementing these different components, e.g.

a DSP implementing the equalizer and a dedicated ASIC implementing the Viterbi decoder, will

also be predictable, allowing for a self-timed implementation. The key motivation behind such an

implementation is that no run-time scheduling of tasks is required; this considerably reduces com-

munication and synchronization overhead. In other words, the predictable dataflow in these appli-

cations is leveraged by employing a self-timed strategy to yield highly optimized system

implementations.

Interprocessor communication (IPC) between processors is assumed to take place through

shared memory, which could be global memory between all processors, or it could be distributed

between pairs of processors (for example, hardware first-in-first-out (FIFO) queues or dual ported

memory). Such simple communication mechanisms, as opposed to cross bars and elaborate inter-

connection networks, are common in embedded systems, owing to their simplicity and low cost.

Sender-receiver synchronization is performed by setting and testing flags in shared mem-

ory; Section 4.2 provides details on the assumed synchronization protocols. Interfaces between

hardware and software are typically implemented using memory-mapped registers in the address

space of the programmable processor, which can be viewed as a kind of shared memory. Synchro-

nization of such interfaces is achieved using flags that can be tested and set by the programmable

component, and the same can be done by an interface controller on the hardware side [16]. Thus,

in our context, effective resynchronization results in a significantly reduced rate of accesses to

shared memory for the purpose of synchronization.

The resynchronization techniques developed in this paper are designed to improve the

throughput of multiprocessor implementations. Frequently in real-time signal processing systems,

latency is also an important issue, and although resynchronization improves the throughput, it

6

generally degrades (increases) the latency. In this paper, we address the problem of resynchroni-

zation under the assumption that an arbitrary increase in latency is acceptable. Such a scenario

arises when the computations occur in a feedforward manner, e.g audio/video decoding for play-

back from media such as DVD (Digital Video Disk), and also for a wide variety of simulation

applications. The companion paper [7] examines the relationship between resynchronization and

latency, and addresses the problem of optimal resynchronization when only a limited increase in

latency is tolerable. Such latency constraints are present in interactive applications such as video

conferencing and telephony, where beyond a certain point latency becomes annoying to the user.

Preliminary versions of the material in this paper and the companion paper have been summarized

in [6] and [4], respectively.

3. Background

We represent a DFG by an ordered pair , where is the set of vertices (actors) and

 is the set of edges. We refer to the source and sink actors of a DFG edge by and

, we denote the delay on by , and we frequently represent by the ordered pair

. We say that is anoutput edgeof , and is aninput edgeof .

Edge isdelaylessif , and it is aself loopif .

Given , we say that is apredecessorof if there exists such that

 and ; we say that is asuccessorof if is a predecessor of . A

path in is a finite sequence , where each is a member of , and

, , …, . We say that the path

containseach and each contiguous subsequence of ; is

directed from to ; and each member of

is traversed by . A path that is directed from some vertex to itself is called acycle, and asimple

cycle is a cycle of which no proper subsequence is a cycle.

If is a finite sequence of paths such that , for

V E,() V

E e e()src

e()snk e e()delay e

e()src e()snk,() e e()src e e()snk

e e()delay 0= e()src e()snk=

x y, V∈ x y e E∈

e()src x= e()snk y= x y y x

V E,() e1 e2 … en, , ,() ei E

e1()snk e2()src= e2()snk e3()src= en 1–()snk en()src=

p e1 e2 … en, , ,()= ei e1 e2 … en, , ,() p

e1()src en()snk

e1()src e2()src … en()src en()snk, , , ,{ }

p

p1 p2 … pk, , ,() pi ei 1, ei 2, … ei ni,, , ,()=

7

, and , for , then we define theconcatenationof

, denoted , by

.

Clearly, is a path from to .

If is a path in a DFG, then we define thepath delayof , denoted

, by

. (1)

Since the delays on all DFG edges are restricted to be non-negative, it is easily seen that between

any two vertices , either there is no path directed from to , or there exists a (not nec-

essarily unique)minimum-delay path between and . Given a DFG , and vertices in

, we define to be equal to if there is no path from to , and equal to the path

delay of a minimum-delay path from to if there exist one or more paths from to . If is

understood, then we may drop the subscript and simply write “ ” in place of “ ”. It is easily

seen that minimum delay path lengths satisfy the followingtriangle inequality

, for any in . (2)

By asubgraph of , we mean the directed graph formed by any together

with the set of edges . We denote the subgraph associated with the

vertex-subset by . We say that isstrongly connectedif for each pair of

distinct vertices , there is a path directed from to and there is a path directed from to .

We say that a subset is strongly connected if is strongly connected. A

strongly connected component (SCC)of is a strongly connected subset such that

no strongly connected subset of properly contains . If is an SCC, then when there is no

ambiguity, we may also say that is an SCC. If and are distinct SCCs in

, we say that is apredecessor SCCof if there is an edge directed from some vertex

1 i k≤ ≤ ei ni,()snk ei 1+ 1,()src= 1 i k 1–()≤ ≤

p1 p2 … pk, , ,() p1 p2 … pk, , ,()〈 〉

p1 p2 … pk, , ,()〈 〉 e1 1, … e1 n1, e2 1, … e2 n2, … ek 1, … ek n, k
, , , , , , , , ,()≡

p1 p2 … pk, , ,()〈 〉 e1 1,()src ek n, k
()snk

p e1 e2 … en, , ,()= p

p()Delay

p()Delay ei()delay
i 1=

n

∑=

x y, V∈ x y

x y G x y,

G ρG x y,() ∞ x y

x y x y G

ρ ρG

ρG x z,() ρG z y,()+ ρG x y,()≥ x y z, , G

V E,() V′ V⊆

e E∈ e()src e()snk, V′∈{ }

V′ V′()subgraph V E,()

x y, x y y x

V′ V⊆ V′()subgraph

V E,() V′ V⊆

V V′ V′

V′()subgraph C1 C2

V E,() C1 C2

8

in to some vertex in ; is asuccessor SCC of if is a predecessor SCC of . An

SCC is asource SCC if it has no predecessor SCC; an SCC is asink SCC if it has no successor

SCC; and an SCC is aninternal SCC if it is neither a source SCC nor a sink SCC. An edge is a

feedforward edge if it is not contained in an SCC, or equivalently, if it is not contained in a cycle;

an edge that is contained in at least one cycle is called afeedbackedge.

We denote the number of elements in a finite set by .

4. Synchronization model

In this section, we review the model that we use for analyzing synchronization in self-

timed multiprocessor systems. The model was originally developed in [38] to study the execution

patterns of actors under self-timed evolution, and in [5], the model was augmented for the analysis

of synchronization overhead.

A DFG representation of an application is called anapplication DFG. For each task in

a given application DFG , we assume that an estimate (a positive integer) of the execution

time is available. Given a multiprocessor schedule for , we derive a data structure called the

IPC graph, denoted , by instantiating a vertex for each task, connecting an edge from each

task to the task that succeeds it on the same processor, and adding an edge that has unit delay from

the last task on each processor to the first task on the same processor. Also, for each edge in

 that connects tasks that execute on different processors, anIPC edgeis instantiated in

from to . Figure 1(c) shows the IPC graph that corresponds to the application DFG of Figure

1(a) and the processor assignment / actor ordering of Figure 1(b).

C1 C2 C1 C2 C2 C1

S S

v

G t v()

G

Gipc

x y,()

G Gipc

x y

B

D

F

A

C

E

DDB

D F

A

C

E

Processor Actor ordering
Proc. 1 B, D, F
Proc. 2 A, C, E

Figure 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a) and the processor assign-
ment / actor ordering of part (b). A “D” on top of an edge represents a unit delay.

(a) (b) (c)

9

Each edge in represents thesynchronization constraint

, (3)

where and respectively represent the time at which invocation of actor

begins execution and completes execution.

4.1 The synchronization graph

Initially, an IPC edge in represents two functions: reading and writing of tokens into

the corresponding buffer, and synchronization between the sender and the receiver. To differenti-

ate these functions, we define another graph called thesynchronization graph, in which edges

between tasks assigned to different processors, calledsynchronization edges, representsynchro-

nization constraints only.

Initially, the synchronization graph is identical to . However, resynchronization mod-

ifies the synchronization graph by adding and deleting synchronization edges. After resynchroni-

zation, the IPC edges in represent buffer activity, and are implemented as buffers in shared

memory, whereas the synchronization edges represent synchronization constraints, and are imple-

mented by updating and testing flags in shared memory. If there is an IPC edge as well as a syn-

chronization edge between the same pair of actors, then the synchronization protocol is executed

before the buffer corresponding to the IPC edge is accessed to ensure sender-receiver synchroni-

zation. On the other hand, if there is an IPC edge between two actors in the IPC graph, but there is

no synchronization edge between the two, then no synchronization needs to be done before

accessing the shared buffer. If there is a synchronization edge between two actors but no IPC

edge, then no shared buffer is allocated between the two actors; only the corresponding synchro-

nization protocol is invoked.

4.2 Synchronization protocols

Given a synchronization graph , and a synchronization edge , if is a feed-

forward edge then we apply a synchronization protocol calledfeedforward synchronization

vj vi,() Gipc

start vi k,() end vj k vj vi,()()delay–,()≥

start v k,() end v k,() k v

Gipc

Gipc

Gipc

V E,() e E∈ e

10

(FFS), which guarantees that never attempts to read data from an empty buffer (to prevent

underflow), and never attempts to write data into the buffer unless the number of tokens

already in the buffer is less than some pre-specified limit, which is the amount of memory allo-

cated to that buffer (to prevent overflow). This involves maintaining a count of the number of

tokens currently in the buffer in a shared memory location. This count must be examined and

updated by each invocation of and .

If is a feedback edge, then we use a more efficient protocol, calledfeedback synchroni-

zation (FBS), that only explicitly ensures that underflow does not occur. Such a simplified proto-

col is possible because each feedback edge has a buffer requirement that is bounded by a constant,

called theself-timed buffer bound of the edge, which can be computed efficiently from the syn-

chronization graph topology [5]. In this protocol, we allocate a shared memory buffer of size

equal to the self-timed buffer bound of , and rather than maintaining the token count in shared

memory, we maintain a copy of thewrite pointerinto the buffer (of the source actor). After each

invocation of , the write pointer is updated locally (on the processor that executes),

and the new value is written to shared memory. It is easily verified that to prevent underflow, it

suffices to block each invocation of the sink actor until theread pointer(maintained locally on the

processor that executes) is found to be not equal to the current value of the write pointer.

For a more detailed discussion of the FFS and FBS protocols, the reader is referred to [5].

An important parameter in an implementation of FFS or FBS is theback-off time . If a

receiving processor finds that the corresponding IPC buffer is full, then the processor releases the

shared memory bus, and waits time units before requesting the bus again to re-check the shared

memory synchronization variable. Similarly, a sending processor waits time units between

successive accesses of the same synchronization variable. The back-off time can be selected

experimentally by simulating the execution of the given synchronization graph (with the available

execution time estimates) over a wide range of candidate back-off times, and selecting the back-

off time that yields the highest simulated throughput.

e()snk

e()src

e()src e()snk

e

e

e()src e()src

e()snk

Tb

Tb

Tb

11

4.3 Estimated throughput

If the execution time of each actor is a fixed constant for all invocations of , and

the time required for IPC is ignored (assumed to be zero), then as a consequence of Reiter’s anal-

ysis in [33], the throughput (number of DFG iterations per unit time) of a synchronization graph

 is given by , where

. (4)

If the maximum in (4) is infinite, there exists at least one delay free cycle in , which

means that the schedule modeled by the synchronization graph is deadlocked. In the remainder of

this paper, we are concerned only with synchronization graphs that result from schedules that are

not deadlocked. Thus, we assume the absence of delay-free cycles. In practice, this assumption is

not a problem since delay-free cycles can be detected efficiently [18].

The quotient in (3) is called thecycle mean of the cycle , and the entire quantity on the

RHS of (3) is called themaximum cycle mean of . A cycle in whose cycle mean is equal to

the maximum cycle mean of is called acritical cycle of . Since in our problem context, we

only have execution time estimates available instead of exact values, we replace with the

corresponding estimate in (3) to obtain an estimate of the maximum cycle mean. The recip-

rocal of this estimate of the maximum cycle mean is called theestimated throughput. The objec-

tive of resynchronization is to increase theactual throughput by reducing the rate at which

synchronization operations must be performed, while making sure that the estimated throughput

is not degraded.

4.4 Preservation of synchronization graphs

Any transformation that we perform on the synchronization graph must respect the syn-

chronization constraints implied by . If we ensure this, then we only need to implement the

synchronization edges of the optimized synchronization graph. If and

v t∗ v() v

G 1 λmax G()()⁄

λmax G() max

cycle C in G

t∗ v()
v C∈
∑

C()Delay

 
 
 
 
 

≡

G

C

G G

G G

t∗ v()

t v()

Gipc

G1 V E1,()=

12

 are synchronization graphs with the same vertex-set and the same set of intrapro-

cessor edges (edges that are not synchronization edges), we say that preserves if for all

 such that , we have .

The following theorem, which is developed in [5], underlies the validity of our synchroni-

zation optimizations.

Theorem 1: The synchronization constraints (as specified by (3)) of imply the constraints

of if preserves .

Intuitively, Theorem 1 is true because if preserves , then for every synchronization

edge in , there is a path in that enforces the synchronization constraint specified by .

Definition 1: A synchronization edge is redundant in a synchronization graph if its removal

yields a graph that preserves . The synchronization graph isreduced if contains no

redundant synchronization edges.

For example, in Figure 1(c), the synchronization edge is redundant due to the path

.

In [5], it is shown that if all redundant edges in a synchronization graph are removed, then

the resulting graph preserves the original synchronization graph.

From Definition 1, we have the following fact concerning redundant synchronization

edges.

Fact 1: Suppose that is a synchronization graph and is a redundant synchroniza-

tion edge in . Then there exists a simple path in directed from to such that

 does not contain , and .

Proof: Let denote the synchronization graph that results when we remove

from . Then from Definition 1, there exists a path in directed from to

such that

. (5)

G2 V E2,()=

G1 G2

e E2∈ e E1∉ ρG1
e()src e()snk,() e()delay≤

G1

G2 G1 G2

G1 G2

e G2 G1 e

G

G G G

C F,()

C E,() E D,() D F,(), ,()

G V E,()= s

G p G s()src s()snk

p s p()Delay s()delay≤

G′ V E s{ }–(),()≡ s

G p′ G′ s()src s()snk

p′()Delay s()delay≤

13

Now observe that every edge in is also contained in , and thus, contains the path

. If is a simple path, then we are done. Otherwise, can be expressed as a concatenation

, , (6)

where each is a simple path, at least one is non-empty, and each is a (not necessarily

simple) cycle. Since valid synchronization graphs cannot contain delay-free-cycles (Section 4.3),

we must have for . Thus, since each originates and terminates at the

same actor, the path is a simple path directed from to such

that . Combining this last inequality with (5) yields

. (7)

Furthermore, since is contained in , it follows from the construction of , that must also

be contained in .

Finally, since is contained in , does not contain , and the set of edges contained

in is a subset of the set of edges contained in , we have that does not contain .QED.

5. Related work

Shaffer has developed an algorithm that removes redundant synchronizations in the self-

timed execution of a non-iterative DFG [36]. This technique was subsequently extended to handle

iterative execution and DFG edges that have delay [5]. These approaches differ from the tech-

niques of this paper in that they only consider the redundancy induced by theoriginal synchroni-

zations; they do not consider the addition of new synchronizations.

Filo, Ku and De Micheli have studied synchronization rearrangement in the context of

minimizing the controller area for hardware synthesis of synchronization digital circuitry [11, 12],

and significant differences in the underlying analytical models prevent these techniques from

applying to our context. In the graphical hardware model of [12], called theconstraint graph

model, each vertex corresponds to a separate hardware device and edges have arbitrary weights

G′ G G

p′ p′ p′

q0 C1 q1 C2 … qn 1– Cn qn, , , , , , ,()〈 〉 n 1≥

qi qi Cj

Ck()Delay 1≥ 1 k n≤ ≤ Ci

p″ q0 q1 … qn, , ,〈 〉= s()src s()snk

p″()Delay p′()Delay<

p″()Delay s()delay<

p′ G p″ p″

G

p′ G′ G′ s

p″ p′ p″ s

14

that specify sequencing constraints. When the source vertex has bounded execution time, a posi-

tive weight (forward constraint) imposes the constraint

,

while a negative weight (backward constraint) implies

.

If the source vertex has unbounded execution time, the forward and backward constraints are rel-

ative to thecompletiontime of the source vertex. In contrast, in our synchronization graph model,

multiple actors can reside on the same processing element (implying zero synchronization cost

between them), and the timing constraints always correspond to the case where is positive

and equal to the execution time of .

The implementation models, and associated implementation cost functions are also signif-

icantly different. A constraint graph is implemented using a scheduling technique calledrelative

scheduling[19], which can roughly be viewed as intermediate between self-timed and fully-static

scheduling. In relative scheduling, the constraint graph vertices that have unbounded execution

time, calledanchors, are used as reference points against which all other vertices are scheduled:

for each vertex , an offset is specified for each anchor that affects the activation of , and

 is scheduled to occur once clock cycles have elapsed from the completion of , for each .

In the implementation of a relative schedule, each anchor has attached control circuitry

that generates offset signals, and each vertex has a synchronization circuit that asserts anactivate

signal when all relevant offset signals are present. The resynchronization optimization is driven

by a cost function that estimates the total area of the synchronization circuitry, where the offset

circuitry area estimate for an anchor is a function of the maximum offset, and the synchronization

circuitry estimate for a vertex is a function of the number of offset signals that must be monitored.

As a result of the significant differences in both the scheduling models and the implemen-

tation models, the techniques developed for resynchronizing constraint graphs do not extend in

any straightforward manner to the resynchronization of synchronization graphs for self-timed

multiprocessor implementation, and the solutions that we have developed for synchronization

w e()

start e()snk() w e() start e()src()+≥

start e()snk() w e() start e()src()+≤

w e()

e()src

v f i ai v

v f i ai i

15

graphs are significantly different in structure from those reported in [12]. For example, the funda-

mental relationships that we establish between set covering and our use of resynchronization have

not emerged in the context of constraint graphs.

6. Resynchronization

We refer to the process of adding one or more new synchronization edges and removing

the redundant edges that result asresynchronization (defined more precisely below). Figure 2(a)

illustrates how this concept can be used to reduce the total number of synchronizations in a multi-

processor implementation. Here, the dashed edges represent synchronization edges. Observe that

if we insert the new synchronization edge , then two of the original synchronization

edges — and — become redundant. Since redundant synchronization edges can be

removed from the synchronization graph to yield an equivalent synchronization graph, we see that

the net effect of adding the synchronization edge is to reduce the number of synchroni-

zation edges that need to be implemented by . In Figure 2(b), we show the synchronization

graph that results from inserting theresynchronization edge into Figure 2(a), and then

removing the redundant synchronization edges that result.

Definition 2 gives a formal definition of resynchronization that we will use throughout the

CB

A

FE

D

HG JI D

D

D

D

CB

A

FE

D

D

D

(a) (b)

HG JI D

D

Figure 2. An example of resynchronization.

d0 C H,()

B G,() E J,()

d0 C H,()

1

d0 C H,()

16

remainder of this paper. This considers resynchronization only “across” feedforward edges.

Resynchronization that includes inserting edges into SCCs, is also possible; however, in general,

such resynchronization may increase the estimated throughput (see Theorem 2 at the end of Sec-

tion 7). Thus, for our objectives, it must be verified that each new synchronization edge intro-

duced in an SCC does not decrease the estimated throughput. To avoid this complication, which

requires a check of significant complexity (, where is the modified

synchronization graph — this is using the Bellman Ford algorithm described in [22])for each

candidate resynchronization edge, we focus only on “feedforward” resynchronization in this

paper. Future research will address combining the insights developed here for feedforward resyn-

chronization with efficient techniques to estimate the impact that a givenfeedback resynchroniza-

tion edge has on the estimated throughput.

Opportunities for feedforward resynchronization are particularly abundant in the dedi-

cated hardware implementation of dataflow graphs. If each actor is mapped to a separate piece of

hardware, as in the VLSI dataflow arrays of Kung, Lewis, and Lo [20], then for any application

graph that is acyclic, every communication channel between two units will have an associated

feedforward synchronization edge. Due to increasing circuit integration levels, such isomorphic

mapping of dataflow subsystems into hardware is becoming attractive for a growing family of

applications. Feedforward synchronization edges often arise naturally in multiprocessor software

implementations as well. A software example is presented in detail in Section 10.

Definition 2: Suppose that is a synchronization graph, and is

the set of all feedforward edges in . Aresynchronizationof is a finite set

 of edges that are not necessarily contained in , but whose source and

sink vertices are in , such that a) are feedforward edges in the DFG

; and b) preserves — that is,

for all . Each member of that is not in is called aresynchronization edge

of the resynchronization , is called theresynchronized graphassociated with , and this

graph is denoted by .

O V E log2 V()() V E,()

G V E,()= F e1 e2 … en, , ,{ }≡

G G

R e1′ e2′ … em′, , ,{ }≡ E

V e1′ e2′ … em′, , ,

G∗ V E F–() R+(),()≡ G∗ G ρG∗ ei()src ei()snk,() ei()delay≤

i 1 2 … n, , ,{ }∈ R E

R G∗ R

Ψ R G,()

17

If we let denote the graph in Figure 2, then the set of feedforward edges is

; is a resynchronization of

; Figure 2(b) shows the DFG ; and from Figure 2(b), it is easily veri-

fied that , , and satisfy conditions (a) and (b) of Definition 2.

7. Properties of resynchronization

In this section, we introduce a number of useful properties of resynchronization that we

will apply throughout the developments of this paper.

Lemma 1: Suppose that and are synchronization graphs such that preserves , and

 is a path in from actor to actor . Then there is a path in from to such that

, and , where denotes the set of actors traversed by

the path .

Thus, if a synchronization graph preserves another synchronization graph and is

a path in from actor to actor , then there is at least one path in such that 1) the path

 is directed from to ; 2) the cumulative delay on does not exceed the cumulative delay

on ; and 3) every actor that is traversed by is also traversed by (although may traverse

one or more actors that are not traversed by).

For example in Figure 2(a), if we let , , and ,

then the path in Figure 2(b) confirms

Lemma 1 for this example. Here and .

Proof of Lemma 1:Let . By definition of thepreservesrelation, each that

is not a synchronization edge in is contained in . For each that is a synchronization edge

in , there must be a path in from to such that .

Let , , denote the set of s that are synchronization edges in ,

and define the path to be the concatenation

.

G

F B G,() E J,() E C,() H I,(), , ,{ }= R d0 C H,() E C,() H I,(), ,{ }=

G G∗ V E F–() R+(),()=

F R G∗

G G′ G′ G

p G x y p′ G′ x y

p′()Delay p()Delay≤ tr p() tr p′()⊆ tr ϕ()

ϕ

G′ G p

G x y p′ G′

p′ x y p′

p p p′ p′

p

x B= y I= p B G,() G H,() H I,(), ,()=

p′ B A,() A C,() C H,() H G,() G H,() H I,(), , , , ,()=

tr p() B G H I, , ,{ }= tr p′() A B C G H I, , , , ,{ }=

p e1 e2 … en, , ,()= ei

G G′ ei

G pi G′ ei()src ei()snk pi()Delay ei()delay≤

ei1
ei2

… eim
, , , i1 i2 … im< < < ei G

p̃

e1 e2 … ei1 1–, , ,() p1 ei1 1+ … ei2 1–, ,() p2 … eim 1– 1+ … eim 1–, ,() pm eim 1+ … en, ,(), , , , , , ,〈 〉

18

Clearly, is a path in from to , and since holds whenever is a

synchronization edge, it follows that . Furthermore, from the construction

of , it is apparent that every actor that is traversed by is also traversed by .QED.

The following lemma states that if a resynchronization contains a resynchronization edge

 such that there is a delay-free path in the original synchronization graph from the source of to

the sink of , then must be redundant in the resychronized graph.

Lemma 2: Suppose that is a synchronization graph; is a resynchronization of ; and

 is a resynchronization edge such that . Then is redundant in .

Thus, a minimal resynchronization (fewest number of elements) has the property that

 for each resynchronization edge .

Proof: Let denote a minimum-delay path from to in . Since is a resynchronization

edge, is not contained in , and thus, traverses at least three actors. From Lemma 1, it

follows that there is a path in from to such that

, (8)

and traverses at least three actors. Thus,

(9)

and . Furthermore, cannot properly contain . To see this, observe that if

contains but , then from (8), it follows that there exists a delay-free cycle in

(that traverses), and hence that our assumption of a deadlock-free schedule (Section 4.3) is vio-

lated. Thus, we conclude that is redundant in .QED.

As a consequence of Lemma 1, the estimated throughput of a given synchronization graph

is always less than or equal to that of every synchronization graph that it preserves.

Theorem 2: If is a synchronization graph, and is a synchronization graph that preserves

, then .

p̃ G′ x y pi()Delay ei()delay≤ ei

p̃()Delay p()Delay≤

p̃ p p̃

e e

e e

G R G

x y,() ρG x y,() 0= x y,() Ψ R G,()

ρG x′ y′,() 0> x′ y′,()

p x y G x y,()

x y,() G p

p′ Ψ R G,() x y

p′()Delay 0=

p′

p′()Delay x y,()()delay≤

p′ x y,()()≠ p′ x y,() p′

x y,() p′ x y,()()≠ G

x

x y,() Ψ R G,()

G G′

G λmax G′() λmax G()≥

19

Proof: Suppose that is a critical cycle in . Lemma 1 guarantees that there is a cycle in

such that a) , and b) the set of actors that are traversed by is a subset of

the set of actors traversed by . Now clearly, b) implies that

, (10)

and this observation together with a) implies that the cycle mean of is greater than or equal to

the cycle mean of . Since is a critical cycle in , it follows that .QED.

Thus, any saving in synchronization cost obtained by rearranging synchronization edges

may come at the expense of a decrease in estimated throughput. As implied by Definition 2, we

avoid this complication by restricting our attention to feedforward synchronization edges.

Clearly, resynchronization that rearranges only feedforward synchronization edges cannot

decrease the estimated throughput since no new cycles are introduced and no existing cycles are

altered. Thus, with the form of resynchronization that we address in this paper, any decrease in

synchronization cost that we obtain is not diminished by a degradation of the estimated through-

put.

8. Relationship to set covering

We refer to the problem of finding a resynchronization with the fewest number of ele-

ments as theresynchronization problem. In Section 9, we formally show that the resynchroniza-

tion problem is NP-hard, which means that it is unlikely that efficient algorithms can be devised

to solve the problem exactly, and thus, that for practical use, we should search for good heuristic

solutions [13]. In this section, we explain the intuition behind this result. To establish the NP-

hardness of the resynchronization problem, we examine a special case that occurs when there are

exactly two SCCs, which we call thepairwise resynchronization problem, and we derive a

polynomial-time reduction from the classicset covering problem[10], a well-known NP-hard

problem, to the pairwise resynchronization problem. In the set covering problem, one is given a

finite set and a family of subsets of , and asked to find a minimal (fewest number of mem-

C G C′ G′

C′()Delay C()Delay≤ C

C′

t v()
v is traversed byC′

∑ t v()
v is traversed byC

∑≥

C′

C C G λmax G′() λmax G()≥

X T X

20

bers) subfamily such that . A subfamily of is said tocover if each mem-

ber of is contained in some member of the subfamily. Thus, the set covering problem is the

problem of finding a minimal cover.

Definition 3: Given a synchronization graph , let be a synchronization edge in ,

and let be an ordered pair of actors in . We say that subsumes in if

.

Thus, every synchronization edge subsumes itself, and intuitively, if is a synchro-

nization edge, then subsumes if and only if a zero-delay synchronization edge

directed from to makes redundant.

The following fact is easily verified from Definitions 2 and 3.

Fact 2: Suppose that is a synchronization graph that contains exactly two SCCs, is the set

of feedforward edges in , and is a resynchronization of . Then for each , there exists

 such that subsumes in .

An intuitive correspondence between the pairwise resynchronization problem and the set

covering problem can be derived from Fact 2. Suppose that is a synchronization graph with

exactly two SCCs and such that each feedforward edge is directed from a member of

to a member of . We start by viewing the set of feedforward edges in as the finite set that

we wish to cover, and with each member of , we associate the subset

of defined by . Thus, is the set of feedforward edges of

 whose corresponding synchronizations can be eliminated if we implement a zero-delay syn-

chronization edge directed from the first vertex of the ordered pair to the second vertex of .

Clearly then, is a resynchronization if and only if each is contained in at

least one — that is, if and only if

covers . Thus, solving the pairwise resynchronization problem for is equivalent to finding a

minimal cover for given the family of subsets .

Figure 3 helps to illustrate this intuition. Suppose that we are given the set

Ts T⊆ t
t Ts∈
∪ X= T X

X

G x1 x2,() G

y1 y2,() G y1 y2,() x1 x2,() G

ρ x1 y1,() ρ y2 x2,()+ x1 x2,()()delay≤

x1 x2,()

y1 y2,() x1 x2,()

y1 y2 x1 x2,()

G F

G F′ G e F∈

e′ F′∈ e′()src e′()snk,() e G

G

C1 C2 C1

C2 F G

p x y,() x C1∈ y C2∈,(){ }

F χ p() e F∈ p esubsumes(){ }≡ χ p()

G

p p

e1′ e2′ … en′, , ,{ } e F∈

χ ei ′()src ei ′()snk,()() χ ei ′()src ei ′()snk,()() 1 i n≤ ≤{ }

F G

F χ x y,() x C1∈ y C2∈,(){ }

21

, and the family of subsets , where ,

, and . To construct an instance of the pairwise resynchronization

problem, we first create two vertices and an edge directed between these verticesfor each mem-

ber of ; we label each of the edges created in this step with the corresponding member of .

Then for each , we create two vertices and . Next, for each relation

(there are six such relations in this example), we create two delayless edges — one directed from

the source of the edge corresponding to and directed to , and another directed from

 to the sink of the edge corresponding to . This last step has the effect of making each

pair subsume exactly those edges that correspond to members of ; in other

Figure 3. (a) An instance of the pairwise resynchronization problem that is derived from an
instance of the set covering problem; (b) the DFG that results from a solution to this instance of pair-
wise resynchronization.

D D

D D

x3 x1

vsrc(t1)

vsnk(t1)

D D

D D

x2 x4

vsrc(t3)

vsnk(t3)

D D

D D

vsnk(t2)

vsrc(t2)

D D

D D

vsrc(t1)

vsnk(t1)

D D

D D

vsrc(t3)

vsnk(t3)

D D

D D

vsnk(t2)

vsrc(t2)

(a)

(b)

X x1 x2 x3 x4, , ,{ }= T t1 t2 t3, ,{ }= t1 x1 x3,{ }=

t2 x1 x2,{ }= t3 x2 x4,{ }=

X X

t T∈ t()vsrc t()vsnk xi t j∈

xi t j()vsrc

t j()vsnk xi

ti()vsrc ti()vsnk,() ti

22

words, after this construction, , for each . Finally, for each edge cre-

ated in the previous step, we create a corresponding feedback edge oriented in the opposite direc-

tion, and having a unit delay.

Figure 3(a) shows the synchronization graph that results from this construction process.

Here, it is assumed that each vertex corresponds to a separate processor; the associated unit delay,

self loop edges are not shown to avoid excessive clutter. Observe that the graph contains two

SCCs — the SCC and the SCC — and that

the set of feedforward edges is the set of edges that correspond to members of . Now, recall that

a major correspondence between the given instance of set covering and the instance of pairwise

resynchronization defined by Figure 3(a) is that , for each . Thus, if

we can find a minimal resynchronization of Figure 3(a) such that each edge in this resynchroniza-

tion is directed from some to the corresponding , then the associated 's form a

minimum cover of . For example, it is easy, albeit tedious, to verify that the resynchronization

illustrated in Figure 3(b), , is a minimal resyn-

chronization of Figure 3(a), and from this, we can conclude that is a minimal cover for

. From inspection of the given sets and , it is easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed

(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-

wise resynchronization can easily be converted into a solution of the set covering instance. Our

formal proof of the NP-hardness of pairwise resynchronization, presented in the following sec-

tion, is a generalization of the example in Figure 3.

9. Intractability of resynchronization

In this section, we establish the NP completeness of the resynchronization problem, which

was defined in Section 8. We establish this by reducing an arbitrary instance of the set-covering

problem, a well-known NP-hard problem, to an instance of the pairwise resynchronization prob-

lem, which is a special case of the resynchronization problem that occurs when there are exactly

χ ti()vsrc ti()vsnk,()() ti= i

xi()src{ } ti()vsrc{ }∪() xi()snk{ } ti()vsnk{ }∪()

X

χ ti()vsrc ti()vsnk,()() ti= i

tk()vsrc tk()vsnk tk

X

d0 t1()vsrc t1()vsnk,() d0 t3()vsrc t3()vsnk,(),{ }

t1 t3,{ }

X X T

23

two SCCs. The intuition behind this reduction is explained in Section 8 above.

Suppose that we are given an instance of set covering, where is a finite set, and

 is a family of subsets of that covers . Without loss of generality, we assume that

 doesnotcontain a proper nonempty subset that satisfies . (11)

We can assume this without loss of generality because if this assumption does not hold, then we

can apply the construction below to each “independent subfamily” separately, and then combine

the results to get a minimal cover for .

The following steps specify how we construct a DFG from . Except where stated

otherwise, no delay is placed on the edges that are instantiated.

1. For each , instantiate two vertices and , and instantiate an edge

directed from to .

2. For each

(a). Instantiate two vertices and .

(b). For each

• Instantiate an edge directed from to .

• Instantiate an edge directed from to , and place one delay

on this edge.

• Instantiate an edge directed from to .

• Instantiate an edge directed from to , and place one delay on

this edge.

3. For each vertex that has been instantiated, instantiate an edge directed from to itself, and

place one delay on this edge.

Observe from our construction, that whenever is contained in , there is an

edge directed from () to (), and there is also an edge (having

X T,() X

T X X

T T′ t
t T T′–()∈

∪() t
t T′∈
∪()∩ ∅=

X

X T,()

x X∈ x()vsrc x()vsnk e x()

x()vsrc x()vsnk

t T∈

t()vsrc t()vsnk

x t∈

x()vsrc t()vsrc

t()vsrc x()vsrc

t()vsnk x()vsnk

x()vsnk t()vsnk

v v

x X∈ t T∈

x()vsrc t()vsnk t()vsrc x()vsnk

24

unit delay) directed from () to (). Thus, from the assumption

stated in (11), it follows that forms one SCC,

forms another SCC, and is the set of feedforward edges.

Let denote the DFG that we have constructed, and as in Section 8, define

 for each ordered pair of vertices

such that is contained in the source SCC of , and is contained in the sink SCC of .

Clearly, gives an instance of the pairwise resynchronization problem.

Observation 1: By construction of , observe that

, for all . Thus, for all

, .

Observation 2: For each , all input edges of have unit delay on them. It follows

that for any vertex in the sink SCC of ,

.

Observation 3: For each , the only vertices in that have a delay-free path to are

those vertices contained in . It follows that for any vertex in the sink SCC of

, .

Now suppose that is a minimal resynchronization of . For each

, exactly one of the following two cases must apply

Case 1: for some . In this case, we pick an arbitrary that

contains , and we set and . From Observation 2, it follows that

.

Case 2: for some . We set and .

From Observation 3, we have .

Observation 4: From our definition of the s and s, is a

minimal resynchronization of . Also, each is of the form , where

.

t()vsrc x()vsnk x()vsrc t()vsnk

z()vsrc z X T∪()∈{ } z()vsnk z X T∪()∈{ }

F e x() x X∈{ }≡

G

χ p() e F∈ p e()src e()snk,()subsumes(){ }≡ p y1 y2,()=

y1 G y2 G

G

G

x X∈ t()vsrc t()vsnk,() x()vsrc x()vsnk,()subsumes(){ } t= t T∈

t T∈ χ t()vsrc t()vsnk,() e x() x t∈{ }=

x X∈ x()vsrc

y G

χ x()vsrc y,() e F∈ e()src x()vsrc={ }⊆ e x(){ }=

t T∈ G t()vsrc

x()vsrc x t∈{ } y

G χ t()vsrc y,() χ t()vsrc t()vsnk,()⊆ e x() x t∈{ }=

F′ f 1 f 2 … f m, , ,{ }= G

i 1 2 … m, , ,{ }∈

f i()vsrc x()vsrc= x X∈ t T∈

x vi t()vsrc= wi t()vsnk=

χ f i()src fi()snk,()() e x(){ } χ vi wi,()⊆ ⊆

f i()vsrc t()vsrc= t T∈ vi t()vsrc= wi t()vsnk=

χ f i()src fi()snk,()() χ vi wi,()⊆

vi wi do vi wi,() i 1 2 … m, , ,{ }∈(){ }

G vi wi,() t()vsrc t()vsnk,()

t T∈

25

Now, for each , we define

.

Proposition 1: covers .

Proof: From Observation 4, we have that for each , there exists a such that

. Thus, each is a member of .

Also, since is a resynchronization of , each member of

 must be preserved by some , and thus each must be

contained in some .QED.

Proposition 2: is a minimal cover for .

Proof: (By contraposition). Suppose there exists a cover (among the members

of) for , with . Then, each is contained in some , and from Observation 1,

 subsumes . Thus, is a

resynchronization of . Since , it follows that is not a minimal

resynchronization of .QED.

In summary, we have shown how to convert an arbitrary instance of the set cover-

ing problem into an instance of the pairwise resynchronization problem, and we have shown

how to convert a solution of this instance of pairwise resynchronization into

a solution of . It is easily verified that all of the steps involved in deriving

 from , and in deriving from can be performed in polynomial time.

Thus, from the NP hardness of set covering [10], we can conclude that the pairwise resynchroni-

zation problem is NP hard.

10. Heuristic solutions

10.1 Applying set covering techniques to pairs of SCCs

A heuristic framework for the pairwise resynchronization problem emerges naturally from

i 1 2 … m, , ,{ }∈

Zi x X∈ vi wi,() x()vsrc x()vsnk,()subsumes{ }≡

Z1 Z2 … Zm, , ,{ } X

Zi t T∈

Zi x X∈ t()vsrc t()vsnk,() x()vsrc x()vsnk,()subsumes{ }= Zi T

do vi wi,() i 1 2 … m, , ,{ }∈(){ } G

x()vsrc x()vsnk,() x X∈{ } vi wi,() x X∈

Zi

Z1 Z2 … Zm, , ,{ } X

Y1 Y2 … Ym′, , ,{ }

T X m′ m< x X∈ Yj

Yj()vsrc Yj()vsnk,() e x() Yi()vsrc Yi()vsnk,() i 1 2 … m′, , ,{ }∈(){ }

G m′ m< F′ f 1 f 2 … f m, , ,{ }=

G

X T,()

G

F′ f 1 f 2 … f m, , ,{ }=

Z1 Z2 … Zm, , ,{ } X T,()

G X T,() Z1 Z2 … Zm, , ,{ } F′

26

the relationship that we have established between set covering and pairwise resynchronization in

Section 8. Given an arbitrary algorithm COVER that solves the set covering problem, and given an

instance of pairwise resynchronization that consists of two SCCs C1 and C2, and a set of feed-

forward synchronization edges directed from members of C1 to members of C2, this heuristic

framework first computes the subset

for each ordered pair of actors that is contained in the set

,

and then applies the algorithmCOVER to the instance of set covering defined by the set

together with the family of subsets . If denotes the solution returned

by COVER, then a resynchronization for the given instance of pairwise resynchronization can be

derived by . This resynchronization is the solution returned by the heuris-

tic framework.

From the correspondence between set covering and pairwise resynchronization that is out-

lined in Section 8, it follows that the quality of a resynchronization obtained by our heuristic

framework is determined entirely by the quality of the solution computed by the set covering

algorithm that is employed; that is, if the solution computed byCOVER is X% worse (X% more

subfamilies) than an optimal set covering solution, then the resulting resynchronization will be

X% worse (X% more synchronization edges) than an optimal resynchronization of the given

instance of pairwise resynchronization.

The application of our heuristic framework for pairwise resynchronization to each pair of

SCCs, in some arbitrary order, in a general synchronization graph yields a heuristic framework

for the general resynchronization problem. However, a major limitation of this extension to gen-

eral synchronization graphs arises from its inability to consider resynchronization opportunities

that involve paths that traverse more than two SCCs, and paths that contain more than one feed-

forward synchronization edge.

Thus, in general, the quality of the solutions obtained by this approach will be worse than

S

χ u v,()()= e S∈ ρG e()src u,() 0=() ρG v e()snk,() e()delay≤()+{ }

u v,()

T u′ v′,() u′ is in C1 v′ is in C2and(){ }≡

S

χ u′ v′,()() u′ v′,() T∈(){ } Ξ

d0 u v,() χ u v,()() Ξ∈{ }

27

the quality of the solutions that are derived by the particular set covering heuristic that is

employed, and roughly, this discrepancy can be expected to increase as the number of SCCs

increases relative to the number of synchronization edges in the original synchronization graph.

For example, Figure 4 shows the synchronization graph that results from a six-processor

schedule of a synthesizer for plucked-string musical instruments in 11 voices based on the Kar-

plus-Strong technique. Here, represents the excitation input, each represents the computa-

tion for the th voice, and the actors marked with “+” signs specify adders. Execution time

estimates for the actors are shown in the table at the bottom of the figure. In this example, the only

pair of distinct SCCs that have more than one synchronization edge between them is the pair con-

sisting of the SCC containing {exc, } and the SCC containing , , five addition actors, and

Figure 4. The synchronization graph that results from a six processor schedule of a music
synthesizer based on the Karplus-Strong technique.

v1

exc

v2

v3

+

+

+

+

+

out

D

D

v4

v5

+

D

v6

v7

+

D

v8

v9

+

D

v10

v11

+

D

actor execution time

exc 32

v1, v2, …, v11 51

out 16

+ 04

exc vi

i

v1 v2 v3

28

the actor labeled out. Thus, the best result that can be derived from the heuristic extension for gen-

eral synchronization graphs described above is a resynchronization that optimally rearranges the

synchronization edges between these two SCCs in isolation, and leaves all other synchronization

edges unchanged. Such a resynchronization is illustrated in Figure 5. This synchronization graph

has a total of nine synchronization edges, which is only one less than the number of synchroniza-

tion edges in the original graph. In contrast, we will show in the following subsection that with a

more flexible approach to resynchronization, the total synchronization cost of this example can be

reduced to only five synchronization edges.

10.2 A more flexible approach

In this subsection, we present a more global approach to resynchronization, called Algo-

rithm Global-resynchronize, which overcomes the major limitation of the pairwise approach dis-

cussed in Section 10.1. Algorithm Global-resynchronize is based on the simple greedy

approximation algorithm for set covering that repeatedly selects a subset that covers the largest

number ofremaining elements, where a remaining element is an element that is not contained in

any of the subsets that have already been selected. In [17, 26] it is shown that this set covering

technique is guaranteed to compute a solution whose cardinality is no greater than

D

D

D D D D

Figure 5. The synchronization graph that results from applying the heuristic framework
based on pairwise resynchronization to the example of Figure 4.

X()ln 1+()

29

times that of the optimal solution, where is the set that is to be covered.

To adapt this set covering technique to resynchronization, we construct an instance of set

covering by choosing the set , the set of elements to be covered, to be the set of feedforward

synchronization edges, and choosing the family of subsets to be

, (12)

where is the input synchronization graph. The constraint in (12)

ensures that inserting the resynchronization edge does not introduce a cycle, and thus that

it does not introduce deadlock or reduce the estimated throughput.

Algorithm Global-resynchronize assumes that the input synchronization graph is reduced

(a reduced synchronization graph can be derived efficiently, for example, using the redundant

synchronization removal technique presented in [5]). The algorithm determines the family of sub-

sets specified by (12), chooses a member of this family that has maximum cardinality, inserts the

corresponding delayless resynchronization edge, removes all synchronization edges that it sub-

sumes, and updates the values for the new synchronization graph that results. This entire

process is then repeated on the new synchronization graph, and it continues until it arrives at a

synchronization graph for which the computation defined by (12) produces the empty set — that

is, the algorithm terminates when no more resynchronization edges can be added. Figure 6 gives a

pseudocode specification of this algorithm (with some straightforward modifications to improve

the running time).

To analyze the complexity of Algorithm Global-resynchronize, the following definition is

useful.

Definition 4: Suppose that is a synchronization graph.Thedelayless connectivity of ,

denoted , is the number of distinct ordered vertex-pairs in that satisfy

. That is,

, where . (13)

X

X

T χ v1 v2,() v1 v2,() E∉() ρG v2 v1,() ∞=()and(){ }≡

G V E,()= ρG v2 v1,() ∞=

v1 v2,()

ρG x y,()

G G

DC G() x y,() G

ρG x y,() 0=

DC G() Ŝ G()= Ŝ G() x y,() ρG x y,() 0=(){ }=

30

The following lemma shows that as long as the input synchronization graph is reduced, the

resynchronization operations performed in Algorithm Global-resynchronize always yield a

reduced synchronization graph.

Lemma 3: Suppose that is a reduced synchronization graph; and is an

ordered pair of vertices in such that , , and . Let

function Global-resynchronize
input : a reduced synchronization graph

output: an alternative reduced synchronization graph that preserves .

compute for all actor pairs

 = FALSE

while not

,

for

for

if and

if

end if
end if

end for
end for
if

else

for /* update */

end for

end if
end while
return
end function

G V E,()=

G

ρG x y,() x y, V∈

complete

complete()
best NULL= M 0=

x V∈
y V∈

ρG y x,() ∞=() x y,() E∉

χ* χ x y,()()=

χ* M>()
M χ*=

best x y,()=

best NULL=()
complete TRUE=

E E χ best()– d0 best(){ }+=

G V E,()=

x y, V∈ ρG

ρnew x y,() ρG x y,() ρG x best()src,() ρG best()snk y,()+,{ }()min=

ρG ρnew=

G

Figure 6. A heuristic for resynchronization.

G V E,()= x y,()

G x y,() E∉ ρG y x,() ∞=() χ x y,() 1≥ G′

31

denote the synchronization graph obtained by inserting into and removing all mem-

bers of ; that is, , where . Then is a

reduced synchronization graph. In other words, does not contain any redundant synchroniza-

tions. Furthermore, .

Proof: We prove the first part of this lemma by contraposition. Suppose that there exists a redun-

dant synchronization edge in , and first suppose that . Then from Fact 1, there

exists a path in directed from to such that , and

 does not contain . (14)

Also, observe that from the definition of ,

, (15)

It follows from (14) and (15) that also contains the path .

Now let be an arbitrary member of . Then

. (16)

Since contains the path , we have , and thus, from the triangle inequality (2)

together with (16),

. (17)

We conclude that is redundant in , which violates the assumption that is reduced.

If on the other hand , then from Fact 1, there exists a simple path in

directed from to such that

. (18)

Also, it follows from (15) that contains . Since is reduced, the path must contain the

edge (otherwise would be redundant in). Thus, can be expressed as a concatenation

d0 x y,() G

χ x y,() G′ V E′,()= E′ E χ x y,()–() d0 x y,(){ }+= G′

G′

DC G′() DC G()>

s G′ s x y,()=

G′ x y p()Delay 0=

p x y,()

E′

E′ x y,()–() E⊆

G p

x′ y′,() χ x y,()

ρG x′ x,() ρG y y′,()+ x′ y′,()delay≤

G p ρG x y,() 0=

ρG x′ y′,() ρG x′ x,() ρG x y,() ρG y y′,()+ + x′ y′,()delay≤ ≤

x′ y′,() G G

s x y,()≠ ps s()≠ G′

s()src s()snk

ps()Delay s()delay≤

G s G ps

x y,() s G ps

32

, where either or may be empty, but not both. Furthermore, since

 is a simple path, neither nor contains . Hence, from (15), we are guaranteed that

both and are also contained in .

Now from (18), we have

. (19)

Furthermore, from the definition of and ,

 and . (20)

Combining (19) and (20) yields

, (21)

which implies that . But this violates the assumption that does not contain any

edges that are subsumed by in . This concludes the proof of the first part of Lemma3.

It remains to be shown that . Now, from Lemma 1 and Definition 4, it

follows that

. (22)

Also, from the first part of Lemma 3, which has already been proven, we know that is reduced.

Thus, from Lemma 2, we have

. (23)

But, clearly from the construction of , , and thus,

. (24)

From, (22), (23) and (24), it follows that is a proper subset of . Hence,

. QED.

ps p1 x y,()() p2, ,()〈 〉= p1 p2

ps p1 p2 x y,()

p1 p2 G

p1()Delay p2()Delay+ s()delay≤

p1 p2

ρG s()src x,() p1()Delay≤ ρG y s()snk,() p2()Delay≤

ρG s()src x,() ρG y s()snk,()+ s()delay≤

s χ x y,()∈ G′

x y,() G

DC G′() DC G()>

Ŝ G() Ŝ G′()⊆

G′

x y,() Ŝ G()∉

G′ ρG′ x y,() 0=

x y,() Ŝ G′()∈

Ŝ G() Ŝ G′()

DC G′() DC G()>

33

Clearly from Lemma 3, each time a Algorithm Global-resynchronize performs a resyn-

chronization operation (an iteration of thewhile loop of Figure 6), the number of ordered vertex

pairs that satisfy is increased by at least one. Thus, the number of iterations

of thewhile loop in Figure 6 is bounded above by . The complexity of one iteration of the

while loop is dominated by the computation in the pair of nestedfor loops. The computation of

one iteration of the innerfor loop is dominated by the time required to compute for a spe-

cific actor pair . Assuming is available for all , the time to compute

 is , where is the number of feedforward synchronization edges in the current

synchronization graph. Since the number of feedforward synchronization edges never increases

from one iteration of thewhile loop to the next, it follows that the time-complexity of the overall

algorithm is , where is the number of feedforward synchronization edges in the input

synchronization graph. In practice, however, the number of resynchronization steps (while loop

iterations) is usually much lower than since the constraints on the introduction of cycles

severely limit the number of resynchronization steps. Thus, our bound can be viewed as

a very conservative estimate.

10.3 Unit-subsumption resynchronization edges

At first, it may seem that it only makes sense to continue thewhile loop of Algorithm Glo-

bal-resynchronize as long as a resynchronization edge can be found that subsumes at least two

existing synchronization edges. However, in general it may be advantageous to continue the

resynchronization process even if each resynchronization candidate subsumes at most one syn-

chronization edge. This is because although such a resynchronization candidate does not lead to

an immediate reduction in synchronization cost, its insertion may lead to future resynchronization

opportunities in which the number of synchronization edges can be reduced.

Figure 7 illustrates a simple example. In the synchronization graph shown in Figure 7(a),

there are 5 synchronization edges, , , , , and . Self-loop edges

incident to actors , , , and (each of these four actors executes on a separate processor) are

x y,() ρG x y,() 0=

V
2

χ x y,()

x y,() ρG x′ y′,() x′ y′, V∈

χ x y,() O sc() sc

O s V
4() s

V
2

O s V
4()

A B,() B C,() D F,() G F,() A E,()

A B C F

34

Figure 7. An example in which inserting a resynchronization edge that subsumes only one existing
synchronization edge eventually leads to a reduction in the total number of synchronizations.

A

B D

C

F

E

G

1D

1D

A

B D

C

F

E

G

1D

1D

1D

A

B D

C

F

E

G

1D

1D

A

B D

C

F

E

G

1D

1D

(a)

(b)

(c)

(d)

35

omitted from the illustration for clarity. It is easily verified that no resynchronization candidate in

Figure 7(a) subsumes more than one synchronization edge. If we terminate the resynchronization

process at this point, we must accept a synchronization cost of 5 synchronization edges.

However, suppose that we insert the resynchronization edge , which subsumes

, and then we remove the subsumed edge . Then we arrive at the synchronization

graph of Figure 7(c). In this graph, resynchronization candidates exist that subsume up to two

synchronization edges each. For example, insertion of the resynchronization edge , allows

us to remove synchronization edges and . The resulting synchronization graph,

shown in Figure 7(c), contains only four synchronization edges.

Alternatively, from Figure 7(b), we could insert the resynchronization edge and

remove both and . This gives us the synchronization graph of Figure 7(d), which

also contains four synchronization edges. This is the solution derived by our implementation of

Algorithm Global-resynchronize when it is applied to the graph of Figure 7(a).

10.4 Example

Figure 8 shows the optimized synchronization graph that is obtained when Algorithm Glo-

B D,()

B C,() B C,()

F E,()

G F,() A E,()

C E,()

D F,() A E,()

D

D D D D

D

Figure 8.The optimized synchronization graph that is obtained when Algorithm
Global-resynchronizeis applied to the example of the Figure 4.

36

bal-resynchronize is applied to the example of Figure 4. Observe that the total number of synchro-

nization edges has been reduced from 10 to 5. The total number of “resynchronization steps”

(number of while-loop iterations) required by the heuristic to complete this resynchronization is 7.

Table 1 shows the relative throughput improvement delivered by the optimized synchroni-

zation graph of Figure 8 over the original synchronization graph as the shared memory access

time varies from 1 to 10 processor clock cycles. The assumed synchronization protocol is FFS,

and the back-off time for each simulation is obtained by the experimental procedure mentioned in

Section 4.2. The second and fourth columns show theaverage iteration period for the original

synchronization graph and the resynchronized graph, respectively. The average iteration period,

which is the reciprocal of the average throughput, is the average number of time units required to

execute an iteration of the synchronization graph. From the sixth column, we see that the resyn-

chronized graph consistently attains a throughput improvement of 22% to 26%. This improve-

ment includes the effect of reduced overhead for maintaining synchronization variables and

Memory
access time

Original graph Resynchronized graph Percentage
decrease in
iter. periodIter. period

Memory
accesses/pd

Iter. period
Memory

accesses/pd

1 250 67 195 43 22%

2 292 66 216 43 26%

3 335 64 249 43 26%

4 368 63 273 40 26%

5 408 63 318 43 22%

6 459 63 350 43 24%

7 496 63 385 43 22%

8 540 63 420 43 22%

9 584 63 455 43 22%

10 655 65 496 43 24%

Table 1. Performance comparison between the resynchronized solution and the original
synchronization graph for the example of Figure 4.

37

reduced contention for shared memory. The third and fifth columns of Table 1 show the average

number of shared memory accesses per iteration of the synchronization graph. Here we see that

the resynchronized solution consistently obtains at least a 30% improvement over the original

synchronization graph. Since accesses to shared memory typically require significant amounts of

energy, particularly for a multiprocessor system that is not integrated on a single chip, this reduc-

tion in the average rate of shared memory accesses is especially useful when low power consump-

tion is an important implementation issue.

10.5 Simulation approach

The simulation is written in C making use of a package called CSIM that allows concur-

rently running processes to be modeled. Each CSIM process is “created,” after which it runs con-

currently with the other processes in the simulation. Processes communicate and synchronize

throughevents andmailboxes (which are FIFO queues of events between two processes). Time

delays are specified by the functionhold.Holding for an appropriate time causes the process to be

put into an event queue, and the process “wakes up” when the simulation time has advanced by

the amount specified by the hold statement. Passage of time is modeled in this fashion. In addi-

tion, CSIM allows specification offacilities, which can be accessed by only one process at a time.

Mutual exclusion of access to shared resources is modeled in this fashion.

For the multiprocessor simulation, each processor is made into a process, and synchroni-

zation is attained by sending and receiving messages from mailboxes. The shared bus is made into

a facility. Polling of the mailbox for checking the presence of data is done by first reserving the

bus, then checking for the message count on that particular mailbox; if the count is greater than

zero, data can be read from shared memory, or else the processor backs off for a certain duration,

and then resumes polling.

When a processor sends data, it increments a counter in shared memory, and then writes

38

the data value. When a processor receives, it first polls the corresponding counter, and if the

counter is non-zero, it proceeds with the read; otherwise, it backs off for some time and then polls

the counter again. We used experimentally determined back-off times for each value of the mem-

ory access time. For a send, the processor checks if the corresponding buffer is full or not. For the

simulation, all buffers are sized equal to 5; these sizes can of course be jointly minimized to

reduce buffer memory. Polling time is defined as the time required to access the bus and check the

counter value.

11. Efficient, optimal resynchronization for a class of synchronization graphs

In this section, we show that although optimal resynchronization is intractable for general

synchronization graphs, a broad class of synchronization graphs exists for which optimal resyn-

chronizations can be computed using an efficient polynominal-time algorithm.

11.1 Chainable synchronization graph SCCs

Definition 5: Suppose that is an SCC in a synchronization graph , and is an actor in .

Then is aninput hub of if for each feedforward synchronization edge in whose sink

actor is in , we have . Similarly, is anoutput hub of if for each feed-

forward synchronization edge in whose source actor is in , we have .

We say that islinkable if there exist actors in such that is an input hub, is an output

hub, and . A synchronization graph ischainable if each SCC is linkable.

For example, consider the SCC in Figure 9(a), and assume that the dashed edges represent

the synchronization edges that connect this SCC with other SCCs. This SCC has exactly one input

hub, actor , and exactly one output hub, actor , and since , it follows that the

SCC is linkable. However, if we remove the edge , then the resulting graph (shown in Fig-

ure 9(b)) is not linkable since it does not have an output hub. A class of linkable SCCs that occur

commonly in practical synchronization graphs are those SCCs that correspond to only one proces-

C G x C

x C e G

C ρC x e()snk,() 0= x C

e G C ρC e()src x,() 0=

C x y, C x y

ρC x y,() 0=

A F ρ A F,() 0=

C F,()

39

sor, such as the SCC shown in Figure 9(c). In such cases, the first actor executed on the processor

is always an input hub and the last actor executed is always an output hub.

In the remainder of this section, we assume that for each linkable SCC, an input hub and

output hub are selected such that , and these actors are referred to as theselected

input hub and theselected output hub of the associated SCC. Which input hub and output hub

are chosen as the “selected” ones makes no difference to our discussion of the techniques in this

section as long they are selected so that .

An important property of linkable synchronization graphs is that if and are distinct

linkable SCCs, then all synchronization edges directed from to are subsumed by the single

ordered pair , where denotes the selected output hub of and denotes the selected

input hub of . Furthermore, if there exists a path between two SCCs of the form

, where is the selected output hub of , is the selected

input hub of , and there exist distinct SCCs such that for

, are respectively the selected input hub and the selected output hub of

, then all synchronization edges between and are redundant.

From these properties, an optimal resynchronization for a chainable synchronization graph

can be constructed efficiently by computing a topological sort of the SCCs, instantiating a zero

delay synchronization edge from the selected output hub of the th SCC in the topological sort to

the selected input hub of the th SCC, for , where is the total number

Figure 9. An illustration of input and output hubs for synchronization graph SCCs.

A

B

C

D

E

F

DD D

(a)

A

B

C

D

E

F

DD D

(b)

A

B

C

D

(c)

x

y ρ x y,() 0=

ρ x y,() 0=

C1 C2

C1 C2

l1 l2,() l1 C1 l2

C2 C1′ C2′,

o1 i2,() o2 i3,() … on 1– in,(), , ,() o1 C1′ in

C2′ Z1 Z2 … Zn 2–, , , C1′ C2′,{ }∉

k 2 3 … n 1–(), , ,= i k ok,

Zk 1– C1′ C2′

i

i 1+() i 1 2 … n 1–(), , ,= n

40

of SCCs, and then removing all of the redundant synchronization edges that result. For example,

if this algorithm is applied to the chainable synchronization graph of Figure 10(a), then the syn-

chronization graph of Figure 10(b) is obtained, and the number of synchronization edges is

reduced from to .

This chaining technique can be viewed as a form of pipelining, where each SCC in the

output synchronization graph corresponds to a pipeline stage. Pipelining has been used exten-

sively to increase throughput via improved parallelism (“temporal parallelism”) in multiprocessor

DSP implementations (see for example, [2, 15, 28]). However, in our application of pipelining,

the load of each processor is unchanged, and the estimated throughput is not affected (since no

new cyclic paths are introduced), and thus, the benefit to theoverall throughput of our chaining

technique arises chiefly from the optimal reduction of synchronization overhead.

The time-complexity of our optimal algorithm for resychronizing chainable synchroniza-

tion graphs is , where is the number of synchronization graph actors.

11.2 Comparison to the Global-Resynchronize heuristic

It is easily verified that the original synchronization graph for the music synthesis example

of Section 10.2, shown in Figure 4, is chainable. Thus, the chaining technique presented in Sec-

Figure 10. An illustration of an algorithm for optimal resynchronization of chainable synchroniza-
tion graphs. The dashed edges are synchronization edges.

A

B

C

D

E

F

G

H
D

DD

A

B

C

D

E

F

G

H
D

DD

(a) (b)

4 2

O v
2() v

41

tion 11.1 is guaranteed to produce an optimal resynchronization for this example, and since no

feedback synchronization edges are present, the number of synchronization edges in the resyn-

chronized solution is guaranteed to be equal to one less than the number of SCCs in the original

synchronization graph; that is, the optimized synchronization graph contains synchro-

nization edges. From Figure 8, we see that this is precisely the number of synchronization edges

in the synchronization graph that results from our implementation of Algorithm Global-resyn-

chronize.

However, Algorithm Global-resynchronize does not always produce optimal results for

chainable synchronization graphs. For example, consider the synchronization graph shown in Fig-

ure 11(a), which corresponds to an eight-processor schedule in which each of the following sub-

sets of actors are assigned to a separate processor — , , , , , ,

, and . The dashed edges are synchronization edges, and the remaining edges connect

actors that are assigned to the same processor. The total number of synchronization edges is 14.

Now it is easily verified that actor is both an input hub and an output hub for the SCC

, and similarly, actor is both an input and output hub for the SCC

. Thus, we see that the overall synchronization graph is chainable. It is easily ver-

ified that the chaining technique developed in Section 11.1 uniquely yields the optimal resynchro-

nization illustrated in Figure 11(b), which contains only 11 synchronization edges.

In contrast, the quality of the resynchronization obtained for Figure 11(a) by Algorithm

Global-resynchronize depends on the order in which the actors are traversed by each of the two

nestedfor loops in Figure 6. For example, if both loops traverse the actors in alphabetical order,

then Global-resynchronize obtains the sub-optimal solution shown in Figure 11(c), which con-

tains 12 synchronization edges.

However, actor traversal orders exist for which Global-resynchronize achieves optimal

resynchronizations of Figure 11(a). One such ordering is ; if both

for loops traverse the actors in this order, then Global-resynchronize yields the same resynchro-

nized graph that is computed uniquely by the chaining technique of Section 11.1 (Figure 11(b)). It

6 1– 5=

I{ } J{ } G K,{ } C H,{ } D{ } E L,{ }

A F,{ } B{ }

K

C G H J K, , , ,{ } L

A D E F L, , , ,{ }

K D C B E F G H I J L A, , , , , , , , , , ,

42

is an open question whether or not given an arbitrary chainable synchronization graph, actor tra-

versal orders always exist with which Global-resynchronize arrives at optimal resynchronizations.

Furthermore, even if such traversal orders are always guaranteed to exist, it is doubtful that they

can, in general, be computed efficiently.

11.3 A generalization of the chaining technique

The chaining technique developed in Section 11.1 can be generalized to optimally resyn-

chronize a somewhat broader class of synchronization graphs. This class consists of all synchroni-

zation graphs for which each source SCC has an output hub (but not necessarily an input hub),

each sink SCC has an input hub (but not necessarily an output hub), and each internal SCC is link-

able. In this case, the internal SCCs are pipelined as in the previous algorithm, and then for each

source SCC, a synchronization edge is inserted from one of its output hubs to the selected input

hub of the first SCC in the pipeline of internal SCCs, and for each sink SCC, a synchronization

edge is inserted to one of its input hubs from the selected output hub of the last SCC in the pipe-

line of internal SCCs. If there are no internal SCCs, then the sink SCCs are pipelined by selecting

one input hub from each SCC, and joining these input hubs with a chain of synchronization edges.

Then a synchronization edge is inserted from an output hub of each source SCC to an input hub of

the first SCC in the chain of sink SCCs.

11.4 Incorporating the chaining technique

In addition to guaranteed optimality, another important advantage of the chaining tech-

nique for chainable synchronization graphs is its relatively low time-complexity (versus

for Global-resynchronize), where is the number of synchronization graph actors, and

is the number of feedforward synchronization edges. The primary disadvantage is, of course, its

restricted applicability. An obvious solution is to first check if the general form of the chaining

technique (described above in Section 11.3) can be applied, apply the chaining technique if the

check returns an affirmative result, or apply Algorithm Global-resynchronize if the check returns

a negative result. The check must determine whether or not each source SCC has an output hub,

O v
2()

O sv
4() v s

43

each sink SCC has an input hub, and each internal SCC is linkable. This check can be performed

in time, where is the number of actors in the input synchronization graph, using a

straightforward algorithm.

A useful direction for further investigation is a deeper integration of the chaining tech-

D

D

D
D

D

D

DD

D

A BC D

G

H

LKJ

I

E

F

D

D

D
D

D

D

DD

D

A BC D

G

H

LKJ

I

E

F

D

D

D
D

D

D

DD

D

A BC D

G

H

LKJ

I

E

F

(a)

(b)

(c)

Figure 11. A chainable synchronization graph for which Algorithm Global-resynchronize fails to pro-
duce an optimal solution.

O n
3() n

44

nique with algorithm Global-resynchronize for general (not necessarily chainable) synchroniza-

tion graphs.

12. Conclusions

This paper develops a post-optimization called resynchronization for self-timed, multipro-

cessor implementations of DSP algorithms. The goal of resynchronization is to introduce new

synchronizations in such a way that the number of additional synchronizations that become

redundant exceeds the number of new synchronizations that are added, and thus the net synchro-

nization cost is reduced.

We show that optimal resynchronization is intractable by deriving a reduction from the

classic set covering problem. However, we define a broad class of systems for which optimal

resynchronization can be performed in polynomial time. We also present a heuristic algorithm for

resynchronization of general systems that emerges naturally from the correspondence to set cov-

ering. We illustrate the performance of our implementation of this heuristic on a multiprocessor

schedule for a music synthesis system. The results demonstrate that the heuristic can efficiently

reduce synchronization overhead and improve throughput significantly.

Several useful directions for further work emerge from our study. These include investi-

gating whether efficient techniques can be developed that consider resynchronization opportuni-

ties within strongly connected components, rather than just across feedforward edges. There may

also be considerable room for improvement over our proposed heuristic, which is a straightfor-

ward adaptation of an existing set covering algorithm. In particular, it would be useful to explore

ways to best integrate the proposed heuristic for general synchronization graphs with the optimal

chaining method for a restricted class of graphs, and it may be interesting to search for properties

of practical synchronization graphs that could be exploited in addition to the correspondence with

set covering. The extension of Sakar’s concept of counting semaphores [35] to self-timed, itera-

tive execution, and the incorporation of extended counting semaphores within our resynchroniza-

tion framework are also interesting directions for further work.

45

13. Glossary

: The number of members in the finite set .

: Same as with the DFG understood from context.

: If there is no path in from to , then ; otherwise,
, where is any minimum-delay path from to .

: The delay on a DFG edge .

: The sum of the edge delays over all edges in the path .

: An edge whose source and sink vertices are and , respectively, and
whose delay is equal to .

: The maximum cycle mean of a DFG.

: The set of synchronization edges that are subsumed by the ordered pair of
actors .

: Theconcatenation of the paths .

critical cycle: A cycle in a DFG whose cycle mean is equal to the maximum cycle mean
of the DFG.

cycle mean: The cycle mean of a cycle in a DFG is equal to , where is the
sum of the execution times of all vertices traversed by , and is the sum
of delays of all edges in .

estimated throughput:
Given a DFG with execution time estimates for the actors, the estimated
throughput is the reciprocal of the maximum cycle mean.

FBS: Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph.

feedback edge: An edge that is contained in at least one cycle.

feedforward edge: An edge that is not contained in a cycle.

FFS: Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.

maximum cycle mean:
Given a DFG, the maximum cycle mean is the largest cycle mean over all
cycles in the DFG.

reduced A synchronization graph isreduced if it does not contain any redundant
synchronization edges.

S S

ρ x y,() ρG G

ρG x y,() G x y ρG x y,() ∞=
ρG x y,() p()Delay= p x y

e()delay e

p()Delay p

dn u v,() u v
n

λmax

χ p()
p

p1 p2 … pk, , ,()〈 〉 p1 p2 … pk, , ,

C T D⁄ T
C D

C

46

resynchronization edge:
Given a synchronization graph and a resynchronization , a resynchro-
nization edge of is any member of that is not contained in .

: If is a synchronization graph and is a resynchronization of , then
denotes the graph that results from the resynchronization .

SCC: Strongly connected component.

self loop: An edge whose source and sink vertices are identical.

subsumes: Given a synchronization edge and an ordered pair of actors
, subsumes if

.

: The execution time or estimated execution time of actor .

14. References

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved Scheduling of Signal Flow
Graphs onto Multiprocessor Systems Through an Accurate Network Modeling Technique,”VLSI
Signal Processing VII, IEEE Press, 1994.

[2] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro Pipelining Based Scheduling
on High Performance Heterogeneous Multiprocessor Systems,”IEEE Transactions on Signal
Processing, Vol. 43, No. 6, pp. 1468-1484, June, 1995.

[3] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Sys-
tems,”Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp.1270-1282.

[4] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Latency-Constrained Resynchronization For
Multiprocessor DSP Implementation,”Proceedings of the 1996 International Conference on
Application-Specific Systems, Architectures and Processors, August, 1996.

[5] S. S. Bhattacharyya, S. Sriram, and E. A. Lee. “Optimizing synchronization in multiprocessor
DSP systems.”IEEE Transactions on Signal Processing, vol. 45, no. 6, June 1997.

[6] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Self-Timed Resynchronization: A Post-Opti-
mization for Static Multiprocessor Schedules,”Proceedings of the International Parallel Pro-
cessing Symposium, 1996.

[7] S. S. Bhattacharyya, S. Sriram, and E. A. Lee,Resynchronization for Multiprocessor DSP
Implementation — Part 2: Latency-constrained Resynchronization, Digital Signal Processing
Laboratory, University of Maryland at College Park, July, 1998.

[8] J. T. Buck, S. Ha. E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulat-
ing and Prototyping Heterogeneous Systems,”International Journal of Computer Simulation,
Vol. 4, April, 1994.

G R
R R G

Ψ R G,() G R G
Ψ R G,() R

x1 x2,()
y1 y2,() y1 y2,() x1 x2,()

ρ x1 y1,() ρ y2 x2,()+ x1 x2,()()delay≤

t v() v

47

[9] L-F. Chao and E. H-M. Sha, “Static Scheduling for Synthesis of DSP Algorithms on Various
Models,”Journal of VLSI Signal Processing,pp. 207-223, 1995.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, McGraw-Hill,
1990.

[11] D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, “Interface Optimization for Concur-
rent Systems Under Timing Constraints,”IEEE Transactions on Very Large Scale Integration,
Vol. 1, No. 3, September, 1993.

[12] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the Control-unit through the Resynchro-
nization of Operations,”INTEGRATION, the VLSI Journal, Vol. 13, pp. 231-258, 1992.

[13] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[14] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Opti-
mal Schedules,”Proceedings of the International Conference on Application Specific Array Pro-
cessors, San Francisco, August, 1994.

[15] P. Hoang,Compiling Real Time Digital Signal Processing Applications onto Multiprocessor
Systems, Memorandum No. UCB/ERL M92/68, Electronics Research Laboratory, University of
California at Berkeley, June, 1992.

[16] J. A. Huisken et. al., “Synthesis of Synchronous Communication Hardware in a Multiproces-
sor Architecture,”Journal of VLSI Signal Processing, Vol. 6, pp.289-299, 1993.

[17] D. S. Johnson, “Approximation Algorithms for Combinatorial Problems,”Journal of Com-
puter and System Sciences, Vol. 9, pp. 256-278, 1974.

[18] R. Karp. “A note on the characterization of the minimum cycle mean in a digraph.”Discrete
Mathematics, vol. 23, 1978.

[19] D.C. Ku, G. De Micheli, “Relative Scheduling Under Timing Constraints: Algorithms for
High-level Synthesis of Digital Circuits,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol.11, No.6, pp. 696-718, June, 1992.

[20] S. Y. Kung, P. S. Lewis, and S. C. Lo. “Performance analysis and optimization of VLSI data-
flow arrays.”Journal of Parallel and Distributed Computing, pp. 592–618, 1987.

[21] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
“GRAPE: A CASE Tool for Digital Signal Parallel Processing,”IEEE ASSP Magazine, Vol. 7,
No. 2, April, 1990.

[22] E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, pp. 65-80, 1976.

[23] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal Processing,”IEEE Transactions on Computers, February, 1987.

[24] E. A. Lee, and S. Ha, “Scheduling Strategies for Multiprocessor Real-Time DSP,”Globe-
com, November 1989.

[25] G. Liao, G. R. Gao, E. Altman, and V. K. Agarwal,A Comparative Study of DSP Multipro-

48

cessor List Scheduling Heuristics, technical report, School of Computer Science, McGill Univer-
sity, 1993.

[26] L. Lovasz, “On the Ratio of Optimal Integral and Fractional Covers,”Discrete Mathematics,
Vol. 13, pp. 383-390, 1975.

[27] D. R. O’Hallaron,The Assign Parallel Program Generator, Memorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[28] K. K. Parhi, “High-Level Algorithm and Architecture Transformations for DSP Synthesis,”
Journal of VLSI Signal Processing, January, 1995.

[29] K. K. Parhi and D. G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum Unfolding,”IEEE Transactions on Computers, Vol. 40, No. 2, Feb-
ruary, 1991.

[30] J. L. Peterson,Petri Net Theory and the Modelling of Systems, Prentice-Hall Inc., 1981.

[31] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptolemy,”Jour-
nal of VLSI Signal Processing, Vol. 9, No. 1, January, 1995.

[32] H. Printz,Automatic Mapping of Large Signal Processing Systems to a Parallel Machine,
Ph.D. thesis, Memorandum CMU-CS-91-101, School of Computer Science, Carnegie Mellon
University, May, 1991.

[33] R. Reiter, Scheduling Parallel Computations,Journal of the Association for Computing
Machinery, October 1968.

[34] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing
Systems,”Proceedings of the International Conference on Application Specific Array Proces-
sors, Berkeley, August, 1992.

[35] V. Sarkar, “Synchronization Using Counting Semaphores,” Proceedings of the International
Symposium on Supercomputing, 1988.

[36] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiprocessors with
Shared and Private Memory,”International Conference on Parallel Processing, 1989.

[37] G. C. Sih and E. A. Lee, “Scheduling to Account for Interprocessor Communication Within
Interconnection-Constrained Processor Networks,”International Conference on Parallel Pro-
cessing, 1990.

[38] S. Sriram and E. A. Lee, “Statically Scheduling Communication Resources in Multiproces-
sor DSP architectures,”Proceedings of the Asilomar Conference on Signals, Systems, and Com-
puters, November, 1994.

[39] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor Scheduling with A-priori Node
Assignment,”VLSI Signal Processing VII, IEEE Press, 1994.

