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RESYNCHRONIZATION FOR MULTIPROCESSOR DSP IMPLEMENTATION —

PART 1: MAXIMUM THROUGHPUT RESYNCHRONIZATION 1!
|

Shuvra S. Bhattacharyya, Sundararajan Sriram and Edward A. Lee

1. Abstract
|
This paper introduces a technique, catiesi/nchronizationfor reducing synchronization

overhead in multiprocessor implementations of digital signal processing (DSP) systems. The
technique applies to arbitrary collections of dedicated, programmable or configurable processors,
such as combinations of programmable DSPs, ASICS, and FPGA subsystems. Thus, it is particu-
larly well suited to the evolving trend towards heterogeneous single-chip multiprocessors in DSP
systems. Resynchronization exploits the well-known observation [36] that in a given multiproces-
sor implementation, certain synchronization operations magdwndantin the sense that their
associated sequencing requirements are ensured by other synchronizations in the system. The goal
of resynchronization is to introduce new synchronizations in such a way that the number of addi-
tional synchronizations that become redundant exceeds the number of new synchronizations that
are added, and thus the net synchronization cost is reduced.

Our study is based in the contextseff-timedexecution ofterative dataflowspecifica-
tions of digital signal processing applications. An iterative dataflow specification consists of a
dataflow representation of the body of a loop that is to be iterated infinitely; dataflow program-
ming in this form has been employed extensively, particularly in the context of software and sys-

tem-level design for digital signal processing applications. Self-timed execution refers to a
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combined compile-time/run-time scheduling strategy in which processors synchronize with one
another only based on inter-processor communication requirements, and thus, synchronization of
processors at the end of each loop iteration does not generally occur.

After reviewing our model for the analysis of synchronization overhead, we define the
general form of our resynchronization problem; we show that optimal resynchronization is intrac-
table by establishing a correspondence ts#teoveringproblem; and based on this correspon-
dence, we develop an efficient heuristic for resynchronization. Also, we show that for a broad
class of iterative dataflow graphs, optimal resynchronizations can be computed by means of an
efficient polynomial-time algorithm. We demonstrate the utility of our resynchronization tech-

nigues through a practical example of a music synthesis system.

2. Introduction
|

This paper is concerned with implementation of iterative, dataflow-dominated algorithms
on embedded multiprocessor systems. In the DSP domain, such multiprocessors typically consist
of one or more CPU'’s (micro-controllers or programmable digital signal processors), and one or
more application-specific hardware components (implemented as custom ASICs or on reconfig-
urable logic such as FPGAs). Such embedded multiprocessor systems are becoming increasingly
common today in applications ranging from digital audio/video equipment to portable devices
such as cellular phones and PDA's. A digital cellular phone, for example, typically consists of a
micro-controller, a DSP, and custom ASIC circuitry. With increasing levels of integration, it is
now feasible to integrate such heterogeneous systems entirely on a single chip. The design task of
such multiprocessor systems-on-a-chip is complex, and the complexity will only increase in the
future.

One of the critical issues in the design of embedded multiprocessors is managing commu-
nication and synchronization between the heterogeneous processing elements. In this paper, we
focus on the problem of minimizing communication and synchronization overhead in embedded

multiprocessors. We propose algorithms that automate the process of designing synchronization



points in a shared-memory multiprocessor system with the objective of reducing synchronization
overhead.

Specifically, we develop a technique caltegynchronizatiorior reducing the rate at
which synchronization operations must be performed in a shared-memory multiprocessor system.
Resynchronization is based on the concept that there can be redundancy in the synchronization
functions of a given multiprocessor implementation [36]. Such redundancy arises whenever the
objective of one synchronization operation is guaranteed as a side effect of other synchronizations
in the system. In the context of noniterative execution, Shaffer showed that the amount of run-
time overhead required for synchronization can be reduced significantly by detecting redundant
synchronizations and implementing only those synchronizations that are found not to be redun-
dant; an efficient, optimal algorithm was also proposed for this purpose [36]; and this algorithm
was subsequently extended to handle iterative computations [5]. The objective of resynchroniza-
tion is to introduce new synchronizations in such a way that the number of original synchroniza-
tions that consequently become redundant is significantly more than number of new

synchronizations.

2.1 Iterative synchronous dataflow

We study this problem in the context of self-timed execution of itersyinehronous
dataflow(SDF) specifications. An iterative SDF specification consists of an SDF representation
of a computation that is to be iterated infinitely. In SDF, an application is represented as a directed
graph in which verticesa€tors) represent computational tasks, edges specify data dependences,
and the number of data valuéskens) produced and consumed by each actor is fixed. This form
of “synchrony” should not be confused with the use of “synchronous” in synchronous languages
[3]. The task represented by an actor can be of arbitrary complexity. In DSP design environments,
it typically ranges in complexity from a basic operation such as addition or subtraction to a signal
processing subsystem such as an FFT unit or an adaptive filter.

Although the model is too restricted for many general-purpose applications, iterative SDF



has proven to be a useful framework for representing a significant class of digital signal process-
ing (DSP) algorithms, and it has been used as the foundation for numerous DSP design environ-
ments, in which applications are represented as hierarchies of block diagrams. Examples of
commercial tools that employ SDF are the Signal Processing Worksystem (SPW) by Cadence,
COSSAP by Synopsys, and HP Ptolemy by Hewlett-Packard. Research tools developed at univer-
sities that use SDF and related models include DESCARTES [34], GRAPE [21], Ptolemy [8], and
the Warp compiler [32]. A wide variety of techniques have been developed to schedule SDF spec-
ifications for efficient multiprocessor implementation, such as those described in [1, 2, 9, 14, 15,
25, 29, 32, 37, 39]. The techniques developed in this paper can be used as a post-processing step
to improve the performance of implementations that use any of these scheduling techniques.

Each SDF edge has associated a non-negative inteliger SDF delays represent initial
tokens, and specify dependencies between iterations of actors in iterative execution. For example,
if tokens produced by thle th invocation of ackor are consumed Ik the) th invocation of
actorB , then the eddgeéA, B)  contains two delays. We assume that the input SDF goapb-is
geneouswhich means that the numbers of tokens produced and consumed are identically unity.
However, since efficient techniques have been developed to convert general SDF graphs into
homogeneous graphs [23], our techniques can easily be adapted to general SDF graphs. We refer

to a homogeneous SDF graph atataflow graph (DFG).

2.2 Self-timed Scheduling Model

Our implementation model involvessalf-timedscheduling strategy [24]. Each processor
executes the tasks assigned to it in a fixed order that is specified at compile time (i. e. statically).
Before firing an actor, a processor waits for the data needed by that actor to become available.
Thus, processors are required to perform run-time synchronization when they communicate data.
This provides robustness when the execution times of tasks are not known precisely or when they
may exhibit occasional deviations from their compile-time estimates.

Such a self-timed strategy is well-suited for implementation of signal processing and com-



munication systems owing to the dataflow nature of the computations involved. Examples of such
systems are high speed modems, image compression and decompression systems, and wireless
communications. The data flow between components in such systems (e.g. between the channel
equalizer and the Viterbi decoder in a high speed modem) tends to be regular and predictable.
Thus communication between processing elements implementing these different components, e.g.
a DSP implementing the equalizer and a dedicated ASIC implementing the Viterbi decoder, will
also be predictable, allowing for a self-timed implementation. The key motivation behind such an
implementation is that no run-time scheduling of tasks is required; this considerably reduces com-
munication and synchronization overhead. In other words, the predictable dataflow in these appli-
cations is leveraged by employing a self-timed strategy to yield highly optimized system
implementations.

Interprocessor communicatiolPC) between processors is assumed to take place through
shared memory, which could be global memory between all processors, or it could be distributed
between pairs of processors (for example, hardware first-in-first-out (FIFO) queues or dual ported
memory). Such simple communication mechanisms, as opposed to cross bars and elaborate inter-
connection networks, are common in embedded systems, owing to their simplicity and low cost.

Sender-receiver synchronization is performed by setting and testing flags in shared mem-
ory; Section 4.2 provides details on the assumed synchronization protocols. Interfaces between
hardware and software are typically implemented using memory-mapped registers in the address
space of the programmable processor, which can be viewed as a kind of shared memory. Synchro-
nization of such interfaces is achieved using flags that can be tested and set by the programmable
component, and the same can be done by an interface controller on the hardware side [16]. Thus,
in our context, effective resynchronization results in a significantly reduced rate of accesses to
shared memory for the purpose of synchronization.

The resynchronization techniques developed in this paper are designed to improve the
throughput of multiprocessor implementations. Frequently in real-time signal processing systems,

latency is also an important issue, and although resynchronization improves the throughput, it



generally degrades (increases) the latency. In this paper, we address the problem of resynchroni-
zation under the assumption that an arbitrary increase in latency is acceptable. Such a scenario
arises when the computations occur in a feedforward manner, e.g audio/video decoding for play-
back from media such as DVD (Digital Video Disk), and also for a wide variety of simulation
applications. The companion paper [7] examines the relationship between resynchronization and
latency, and addresses the problem of optimal resynchronization when only a limited increase in
latency is tolerable. Such latency constraints are present in interactive applications such as video
conferencing and telephony, where beyond a certain point latency becomes annoying to the user.
Preliminary versions of the material in this paper and the companion paper have been summarized
in [6] and [4], respectively.

3. Background

|
We represent a DFG by an ordered p¥irE) , Where s the set of veainters) and

E is the set of edges. We refer to the source and sink actors of a DF& edgec(ehpy and
snk(e), we denote the delay @an loiglay(e) , and we frequently represent by the ordered pair
(src(e), snk(€) . We say thae is aoutput edgeof src(e), ande is annput edgeof snk(e).
Edgee isdelaylessf delay(e) = 0, and it is aself loopif src(e) = snk(e).

Givenx, yOV , we say that is@edecessorof y if there existee [1 E such that
src(e) = xandsnk(e) = y; we say that issccessoofy if yis a predecessorof .A
pathin (V, E) is a finite sequencee,, e,, ..., €,) ,where eah isamembErof ,and
snk(e;) = src(e), snk(e,) = src(g), ..., snk(e,_;) = src(g) . We say that the path
p = (e,e, ..., ) containseache, and each contiguous subsequen¢e0é,, ...,e,) p ; is
directed from src(e;) to snk(e,); and each member of

{ src(ey), src(e,), ..., src(e,), snk(e,)}

istraversed by p. A path that is directed from some vertex to itself is callegtte, and asimple
cycleis a cycle of which no proper subsequence is a cycle.

If (P1, P2 ..., Py) is afinite sequence of paths such that= (e 1, € 5 ..., € ) , for



l1sis<k,andsnke ) = src(e,q ) ,forl<is(k—1) ,thenwe define thencatenationof
(P1, Py s Py) » denoted(py, Py, ..., PJU, by
[Py P o P)CE (€ 1 o0 €1 10 €0 11 i €0 ooy € 10 o € ) -
Clearly, L(py, Py, ---» PO is a path fronsrc(e; ;) tsnk(g, nk)
If p = (e,e, ..., e,)is apathin a DFG, then we define thath delay of p, denoted
Delay(p), by

Delay(p) = Z delay( e). Q)

i=1

Since the delays on all DFG edges are restricted to be non-negative, it is easily seen that between
any two verticex, yIV , either there is no path directed fromy to , or there exists a (not nec-
essarily uniquejninimum-delay path betweenx ang . Given a DFG , and vertigeyg in

G, we definepg(x, y) to be equalte if there is no path foom y to , and equal to the path

delay of a minimum-delay path fromm Y0 if there exist one or more paths{frony td&s . If s

understood, then we may drop the subscript and simply wgite in plageof “ . Itis easily

seen that minimum delay path lengths satisfy the followiaggle inequality

Pc(X 2 +pg(z Y) 2 pg(X Y), foranyx, y, z inG . (2)

By asubgraph of (V, E), we mean the directed graph formed by "@hyl V together
with the set of edgefse U E|src(e), snk(e) U V'} . We denote the subgraph associated with the
vertex-subseV' bygubgrapi{V') . We say thaf, E) sisongly connectedif for each pair of
distinct vertices, y , there is a path directed fom yto and there is a path directed from to
We say that a subsgt 0V s strongly connectesiigrapi{V') is strongly connected. A
strongly connected component (SCQ)f (V, E) is a strongly connected subs&t] V such that
no strongly connected subset\6f  properly contsfhs V. If  is an SCC, then when there is no
ambiguity, we may also say thatibgrapi{V') isan SCCCJf  @nd are distinct SCCs in

(V, E), we say thaC, is predecessor SCOf C, if there is an edge directed from some vertex



in C, to some vertex ilC, C; issuccessor SCOfC, if C, is a predecessor SCCGf . An
SCC is asource SCCif it has no predecessor SCC; an SCCss& SCCif it has no successor
SCC; and an SCC is amternal SCC if it is neither a source SCC nor a sink SCC. An edge is a
feedforward edge if it is not contained in an SCC, or equivalently, if it is not contained in a cycle;
an edge that is contained in at least one cycle is cafesetihackedge.

We denote the number of elements in a finiteSset |Soy

4. Synchronization model
|
In this section, we review the model that we use for analyzing synchronization in self-

timed multiprocessor systems. The model was originally developed in [38] to study the execution
patterns of actors under self-timed evolution, and in [5], the model was augmented for the analysis
of synchronization overhead.

A DFG representation of an application is callecdhpplication DFG. For each task in
a given application DF& , we assume that an estitfaje (a positive integer) of the execution
time is available. Given a multiprocessor schedulédor , we derive a data structure called the
IPC graph, denotedGj,. , by instantiating a vertex for each task, connecting an edge from each
task to the task that succeeds it on the same processor, and adding an edge that has unit delay from
the last task on each processor to the first task on the same processor. Also, for gaglyedge in
G that connects tasks that execute on different processdf¥Cagtigeis instantiated irGy.

from x toy . Figure 1(c) shows the IPC graph that corresponds to the application DFG of Figure

1(a) and the processor assignment / actor ordering of Figure 1(b).

(CY o (b)

Processor| Actor orderimg
Proc. 1 B,D, F

9 9 Proc. 2 A CE
e &

Figure 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a) and the processor assign-
ment / actor ordering of part (b). A “D” on top of an edge represents a unit delay.
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Each edggv;, v;) I1G represents gynchronization constraint

ipc
start(v;, k) = end v, k- delay((vj, Vi), 3)

wherestart(v, K andend v B respectively represent the time at which invoclktion of\actor

begins execution and completes execution.

4.1 The synchronization graph

Initially, an IPC edge irGj,;  represents two functions: reading and writing of tokens into
the corresponding buffer, and synchronization between the sender and the receiver. To differenti-
ate these functions, we define another graph callesytiehronization graph, in which edges
between tasks assigned to different processors, cliedhronization edgesrepresensynchro-
nization constraints only

Initially, the synchronization graph is identical®,. . However, resynchronization mod-
ifies the synchronization graph by adding and deleting synchronization edges. After resynchroni-
zation, the IPC edges @,  represent buffer activity, and are implemented as buffers in shared
memory, whereas the synchronization edges represent synchronization constraints, and are imple-
mented by updating and testing flags in shared memory. If there is an IPC edge as well as a syn-
chronization edge between the same pair of actors, then the synchronization protocol is executed
before the buffer corresponding to the IPC edge is accessed to ensure sender-receiver synchroni-
zation. On the other hand, if there is an IPC edge between two actors in the IPC graph, but there is
no synchronization edge between the two, then no synchronization needs to be done before
accessing the shared buffer. If there is a synchronization edge between two actors but no IPC
edge, then no shared buffer is allocated between the two actors; only the corresponding synchro-

nization protocol is invoked.

4.2 Synchronization protocols

Given a synchronization gragh, E) , and a synchronizationedge e ,if is afeed-

forward edge then we apply a synchronization protocol ctkedforward synchronization

9



(FFS), which guarantees thanhk(e)  never attempts to read data from an empty buffer (to prevent
underflow), andsrc(e) never attempts to write data into the buffer unless the number of tokens
already in the buffer is less than some pre-specified limit, which is the amount of memory allo-
cated to that buffer (to prevent overflow). This involves maintaining a count of the number of
tokens currently in the buffer in a shared memory location. This count must be examined and
updated by each invocation sfc(e)  asdk(e)

If eis a feedback edge, then we use a more efficient protocol, éadldldack synchroni-
zation (FBS) that only explicitly ensures that underflow does not occur. Such a simplified proto-
col is possible because each feedback edge has a buffer requirement that is bounded by a constant,
called theself-timed buffer bound of the edge, which can be computed efficiently from the syn-
chronization graph topology [5]. In this protocol, we allocate a shared memory buffer of size
equal to the self-timed buffer bound@®f , and rather than maintaining the token count in shared
memory, we maintain a copy of theite pointerinto the buffer (of the source actor). After each
invocation ofsrc(e) , the write pointer is updated locally (on the processor that exsa(eps ),
and the new value is written to shared memory. It is easily verified that to prevent underflow, it
suffices to block each invocation of the sink actor untirélael pointerimaintained locally on the
processor that executesk(e) ) is found to be not equal to the current value of the write pointer.
For a more detailed discussion of the FFS and FBS protocols, the reader is referred to [5].

An important parameter in an implementation of FFS or FBS isable-off time T,. If a
receiving processor finds that the corresponding IPC buffer is full, then the processor releases the
shared memory bus, and walts  time units before requesting the bus again to re-check the shared
memory synchronization variable. Similarly, a sending processor Waits  time units between
successive accesses of the same synchronization variable. The back-off time can be selected
experimentally by simulating the execution of the given synchronization graph (with the available
execution time estimates) over a wide range of candidate back-off times, and selecting the back-

off time that yields the highest simulated throughput.

10



4.3 Estimated throughput

If the execution time of each acter is a fixed constiafw) for all invocations of , and
the time required for IPC is ignored (assumed to be zero), then as a consequence of Reiter’s anal-
ysis in [33], the throughput (number of DFG iterations per unit time) of a synchronization graph

G is given by1/(A,,,{G)) , where

oy tv) o
max  Oyfrc

Ama)&G) = cycleC in GW

O

(4)

[

If the maximum in (4) is infinite, there exists at least one delay free cy@e in , which
means that the schedule modeled by the synchronization graph is deadlocked. In the remainder of
this paper, we are concerned only with synchronization graphs that result from schedules that are
not deadlocked. Thus, we assume the absence of delay-free cycles. In practice, this assumption is
not a problem since delay-free cycles can be detected efficiently [18].

The quotient in (3) is called tloycle meanof the cycleC , and the entire quantity on the
RHS of (3) is called themmaximum cycle meanof G. A cycle inG whose cycle mean is equal to
the maximum cycle mean @& s calledréical cycle of G. Since in our problem context, we
only have execution time estimates available instead of exact values, we tepiace with the
corresponding estimat¢v) in (3) to obtain an estimate of the maximum cycle mean. The recip-
rocal of this estimate of the maximum cycle mean is calledgtimated throughput The objec-
tive of resynchronization is to increase #wtual throughpuby reducing the rate at which
synchronization operations must be performed, while making sure that the estimated throughput

is not degraded.

4.4 Preservation of synchronization graphs

Any transformation that we perform on the synchronization graph must respect the syn-
chronization constraints implied iy, . If we ensure this, then we only need to implement the

synchronization edges of the optimized synchronization gra@. ¥ (V, E;) and
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G, = (V, E,) are synchronization graphs with the same vertex-set and the same set of intrapro-
cessor edges (edges that are not synchronization edges), we $ay finaservesG, if for all
el E, such thae E; , we haval(src(e), snk(e)) < delay(e)

The following theorem, which is developed in [5], underlies the validity of our synchroni-

zation optimizations.

Theorem 1. The synchronization constraints (as specified by (3§} of imply the constraints

of G, if G, preservess, .

Intuitively, Theorem 1 is true becauseédf  presei@@gs , then for every synchronization

edgee inG, ,thereis apath@®, that enforces the synchronization constraint specéied by

Definition 1: A synchronization edge redundant in a synchronization grap8  if its removal
yields a graph that preserv€s . The synchronization géaplredusedif G contains no

redundant synchronization edges.

For example, in Figure 1(c), the synchronization €dge-) is redundant due to the path
((C, B), (E, D), (D, F)).

In [5], it is shown that if all redundant edges in a synchronization graph are removed, then
the resulting graph preserves the original synchronization graph.

From Definition 1, we have the following fact concerning redundant synchronization

edges.

Fact 1: Suppose thab = (V, E) is a synchronization graph&nd is a redundant synchroniza-
tion edge inG . Then there exists a simple gath Gin  directed &o(s)  SNK®) such that

p does not contais , andelay(p) < delay( 9

Proof: LetG' =(V, (E—{ g)) denote the synchronization graph that results when we resnove
from G. Then from Definition 1, there exists a path Gh directed feor(s)  sntgs)
such that

Delay(p’) < delay( 9. 5)

12



Now observe that every edge @t is also containgd in , and@wus, contains the path

p'.If p' is a simple path, then we are done. Otherwpse, can be expressed as a concatenation
{dp C1, 093, Cy, .., Cr g )0 N1, (6)

where eacly;, is a simple path, at leastgne  is non-empty, and:pach is a (not necessarily
simple) cycle. Since valid synchronization graphs cannot contain delay-free-cycles (Section 4.3),
we must haveDelay(C,) =1 fol<k<n .Thus, since ed¢h originates and terminates at the
same actor, the pa' = [§,,q,, ..., q,00 is a simple path directed Bmfs) snks) such
that Delay(p") < Delay( p) . Combining this last inequality with (5) yields

Delay(p") < delay( 9. (7)

Furthermore, sincg’ is contained@® , it follows from the constructiqei of pthat  must also
be contained ir
Finally, sincep’ is contained i@ G' does notcon&in , and the set of edges contained

in p" is a subset of the set of edges containgal in , we havp'that  does not soQI&EM

5. Related work

Shaffer has developed an algorithm that removes redundant synchronizations in the self-
timed execution of a non-iterative DFG [36]. This technique was subsequently extended to handle
iterative execution and DFG edges that have delay [5]. These approaches differ from the tech-
niques of this paper in that they only consider the redundancy induceddrygihal synchroni-
zations; they do not consider the addition of new synchronizations.

Filo, Ku and De Micheli have studied synchronization rearrangement in the context of
minimizing the controller area for hardware synthesis of synchronization digital circuitry [11, 12],
and significant differences in the underlying analytical models prevent these techniques from
applying to our context. In the graphical hardware model of [12], callecbtistraint graph

model, each vertex corresponds to a separate hardware device and edges have arbitrary weights
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that specify sequencing constraints. When the source vertex has bounded execution time, a posi-
tive weightw(e) {orward constraint imposes the constraint

start(snk(€)) = w(e) + start(src(e)),
while a negative weighbackward constraiptimplies

start(snk( €)) < w(e) + start(src(e)).
If the source vertex has unbounded execution time, the forward and backward constraints are rel-
ative to thecompletiortime of the source vertex. In contrast, in our synchronization graph model,
multiple actors can reside on the same processing element (implying zero synchronization cost
between them), and the timing constraints always correspond to the caseww#)ere is positive
and equal to the execution time sit(e)

The implementation models, and associated implementation cost functions are also signif-
icantly different. A constraint graph is implemented using a scheduling techniquerekitec
schedulind19], which can roughly be viewed as intermediate between self-timed and fully-static
scheduling. In relative scheduling, the constraint graph vertices that have unbounded execution
time, calledanchors are used as reference points against which all other vertices are scheduled:
for each vertew , an offsét is specified for each anahor that affects the activation of , and
v is scheduled to occur onfe  clock cycles have elapsed from the compledjon of , for each

In the implementation of a relative schedule, each anchor has attached control circuitry
that generates offset signals, and each vertex has a synchronization circuit that assevetean
signal when all relevant offset signals are present. The resynchronization optimization is driven
by a cost function that estimates the total area of the synchronization circuitry, where the offset
circuitry area estimate for an anchor is a function of the maximum offset, and the synchronization
circuitry estimate for a vertex is a function of the number of offset signals that must be monitored.

As a result of the significant differences in both the scheduling models and the implemen-
tation models, the techniques developed for resynchronizing constraint graphs do not extend in
any straightforward manner to the resynchronization of synchronization graphs for self-timed

multiprocessor implementation, and the solutions that we have developed for synchronization
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graphs are significantly different in structure from those reported in [12]. For example, the funda-
mental relationships that we establish between set covering and our use of resynchronization have

not emerged in the context of constraint graphs.

6. Resynchronization

We refer to the process of adding one or more new synchronization edges and removing
the redundant edges that resultesyynchronizatiorfdefined more precisely below). Figure 2(a)
illustrates how this concept can be used to reduce the total number of synchronizations in a multi-
processor implementation. Here, the dashed edges represent synchronization edges. Observe that
if we insert the new synchronization edigC, H) , then two of the original synchronization
edges B, G) andE,J) — become redundant. Since redundant synchronization edges can be
removed from the synchronization graph to yield an equivalent synchronization graph, we see that
the net effect of adding the synchronization edge, H) is to reduce the number of synchroni-
zation edges that need to be implemented by . In Figure 2(b), we show the synchronization
graph that results from inserting tresynchronization edge,(C, H) into Figure 2(a), and then
removing the redundant synchronization edges that result.

Definition 2 gives a formal definition of resynchronization that we will use throughout the

@) (b)

Figure 2. An example of resynchronization.
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remainder of this paper. This considers resynchronization only “across” feedforward edges.
Resynchronization that includes inserting edges into SCCs, is also possible; however, in general,
such resynchronization may increase the estimated throughput (see Theorem 2 at the end of Sec-
tion 7). Thus, for our objectives, it must be verified that each new synchronization edge intro-
duced in an SCC does not decrease the estimated throughput. To avoid this complication, which
requires a check of significant complexi®((V||Elog,(|V])) , whéveE) is the modified
synchronization graph — this is using the Bellman Ford algorithm described irid22fch

candidate resynchronization edge, we focus only on “feedforward” resynchronization in this
paper. Future research will address combining the insights developed here for feedforward resyn-
chronization with efficient techniques to estimate the impact that a fgigdbackesynchroniza-

tion edge has on the estimated throughput.

Opportunities for feedforward resynchronization are particularly abundant in the dedi-
cated hardware implementation of dataflow graphs. If each actor is mapped to a separate piece of
hardware, as in the VLSI dataflow arrays of Kung, Lewis, and Lo [20], then for any application
graph that is acyclic, every communication channel between two units will have an associated
feedforward synchronization edge. Due to increasing circuit integration levels, such isomorphic
mapping of dataflow subsystems into hardware is becoming attractive for a growing family of
applications. Feedforward synchronization edges often arise naturally in multiprocessor software

implementations as well. A software example is presented in detail in Section 10.

Definition 2: Suppose thaB = (V, E) is a synchronization graph,ast{e,, e,, ..., €.} is
the set of all feedforward edges@ résynchronizationof G is a finite set
R={¢g', &)/, ...,e,} of edges that are not necessarily containdél in , but whose source and

sink vertices are iV, such thateg), e,’, ..., & are feedforward edges in the DFG

m!
GU=(V, ((E-F) +R)); and b)GU preserve§ — that i src(e), snk(g)) < delay(e;)
foralli0{1, 2 ...,n} . Each member dR thatis notkh is calleagkaynchronization edge
of the resynchronizatioR GU s called tresynchronized graphassociated witlR , and this

graph is denoted b¥W(R, G)

16



If we let G denote the graph in Figure 2, then the set of feedforward edges is
F ={(B,G),(EJ),(EC),(H, N} R ={dy(C, H), (E C),(H,1)} is aresynchronization of
G; Figure 2(b) shows the DFGU = (V, ((E-F) + R)) ; and from Figure 2(b), it is easily veri-
fied thatF ,R , andzll satisfy conditions (a) and (b) of Definition 2.

7. Properties of resynchronization

In this section, we introduce a number of useful properties of resynchronization that we

will apply throughout the developments of this paper.

Lemma l: Supposethat an@'  are synchronization graphs sucfsthat  preGerves , and
p is a path inG from actax to actgr . Then there is a path G'in fomy to such that
Delay(p') < Delay( p), andtr(p) Otr(p") , wherdr(¢) denotes the set of actors traversed by
the pathd .

Thus, if a synchronization gragh’  preserves another synchronization@raphp and is
a path inG from actox to actgr , then there is at least oneathG' in such that 1) the path
p' is directed fromx tg ; 2) the cumulative delay@n  does not exceed the cumulative delay
on p; and 3) every actor that is traversedoby is also traversptl by  (although  may traverse
one or more actors that are not traverseg by ).

For example in Figure 2(a), if we Igt= B y,= | ,apd= ((B, G), (G, H), (H, 1))

then the path’ = ((B, A), (A, C), (C, H), (H, G), (G, H), (H, 1)) in Figure 2(b) confirms
Lemma 1 for this example. Hetgp) = {B, G, H, I} amfp’) = {A/B,C G H [}

Proof of Lemma lLet p = (e, e, ..., €,) . By definition of thepreserveselation, eacle, that
is not a synchronization edge@ is containein . For each  thatis a synchronization edge
in G, there mustbe apafy @&  frosnc(e) sok(e) such thatay(p,) < delay( €)

Lete ,e,....g ,i;<i,<..<iy, denote the set@ s that are synchronization edg@s in

and define the path  to be the concatenation

ey ey i€ 1) P (8 41 €, 1) P2 o (8 410 € 1)) Py (8410 -0 €)0

17



Clearly,p isapathils’ from tg ,and sinBelay(p;) < delay(e) holds wheneyer is a
synchronization edge, it follows thBelay(p) < Delay( p) . Furthermore, from the construction
of p, it is apparent that every actor that is traverseg by is also travergediBD. .

The following lemma states that if a resynchronization contains a resynchronization edge
e such that there is a delay-free path in the original synchronization graph from the sa&urce of to

the sink ofe , there must be redundant in the resychronized graph.

Lemma 2: Suppose thaG is a synchronization graRh; is a resynchronizat®n of ; and
(x, y) is aresynchronization edge such thafx, y) = 0 . Thery) is redund&ditRn G)
Thus, a minimal resynchronization (fewest number of elements) has the property that

pg(X',y") >0 for each resynchronization edf€, y')

Proof: Let p denote a minimum-delay path from yo Gn . Si{kgy) is a resynchronization
edge,(x, y) is not contained , and thps, traverses at least three actors. From Lemma 1, it

follows that there is a pathf W(R, G) fromm Y0 such that

Delay(p’) = O, (8)

andp' traverses at least three actors. Thus,

Delay(p') < delay((x Y) (9)

andp’' £ ((x, y)) . Furthermorep’ cannot properly contginy) . To see this, observe phat if
contains(x, y) bup’' £ ((x,y)) , then from (8), it follows that there exists a delay-free cy@e in
(that traverses ), and hence that our assumption of a deadlock-free schedule (Section 4.3) is vio-
lated. Thus, we conclude th@t, y)  is redundar?(iR, G) QED.

As a consequence of Lemma 1, the estimated throughput of a given synchronization graph

is always less than or equal to that of every synchronization graph that it preserves.

Theorem 2: If G is a synchronization graph, a®@  is a synchronization graph that preserves

G, thenA, . (G') 2 A,,.(G) .
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Proof: Suppose that is a critical cycle@ .Lemma 1 guarantees that there is €'cycl&’ in
such that aPelay(C') < Delay( C) , and b) the set of actors that are traverséd by is a subset of
the set of actors traversed 8y . Now clearly, b) implies that

t(v) > S W), (10)

v is traversed by’ v is traversed byC

and this observation together with a) implies that the cycle me@h of  is greater than or equal to
the cycle mean o€ . Sind@ is a critical cycledn , it follows that (G') = A, (G) QED.

Thus, any saving in synchronization cost obtained by rearranging synchronization edges
may come at the expense of a decrease in estimated throughput. As implied by Definition 2, we
avoid this complication by restricting our attention to feedforward synchronization edges.

Clearly, resynchronization that rearranges only feedforward synchronization edges cannot
decrease the estimated throughput since no new cycles are introduced and no existing cycles are
altered. Thus, with the form of resynchronization that we address in this paper, any decrease in
synchronization cost that we obtain is not diminished by a degradation of the estimated through-

put.

8. Relationship to set covering
|
We refer to the problem of finding a resynchronization with the fewest number of ele-

ments as theesynchronization problem In Section 9, we formally show that the resynchroniza-

tion problem is NP-hard, which means that it is unlikely that efficient algorithms can be devised

to solve the problem exactly, and thus, that for practical use, we should search for good heuristic
solutions [13]. In this section, we explain the intuition behind this result. To establish the NP-
hardness of the resynchronization problem, we examine a special case that occurs when there are
exactly two SCCs, which we call tipairwise resynchronization problem and we derive a
polynomial-time reduction from the classiet covering problerf10], a well-known NP-hard

problem, to the pairwise resynchronization problem. In the set covering problem, one is given a

finite setX and a familyr of subsetsXf , and asked to find a minimal (fewest number of mem-
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bers) subfamilyT ;OT suchthat] t = X . A subfamily®f is saideverX if each mem-
tOT,
ber of X is contained in some member of the subfamily. Thus, the set covering problem is the

problem of finding a minimal cover.

Definition 3: Given a synchronization gragh , (¢, X,)  be a synchronization ed@e in

and let(y,, y,) be an ordered pair of actor&Gn . We say(that/,) subsumegx;, X,) in G if
P(X1, Y1) + P(Y2 %) < delay((Xy, X5)).

Thus, every synchronization edge subsumes itself, and intuitivéky, ix,) is a synchro-
nization edge, thefy,, y,) subsumes, X,) if and only if a zero-delay synchronization edge
directed fromy, toy, make&;, x,) redundant.

The following fact is easily verified from Definitions 2 and 3.

Fact 2: Suppose tha is a synchronization graph that contains exactly two BCCs, s the set
of feedforward edges i@ ,arid  is a resynchronizatiod of . Then foredadh , there exists

e OF' such that(src(€'), snk(€)) subsumes @

An intuitive correspondence between the pairwise resynchronization problem and the set
covering problem can be derived from Fact 2. Supposéxhat is a synchronization graph with
exactly two SCCEL, an@, such that each feedforward edge is directed from a me@bper of
to a member o€, . We start by viewing the Bet  of feedforward edgés in  as the finite set that
we wish to cover, and with each member {©f, y)|(xO C;,yO C,)} , We associate the subset
of F defined byx(p) ={el F|(psubsumes)} . Thusk(p) is the set of feedforward edges of
G whose corresponding synchronizations can be eliminated if we implement a zero-delay syn-
chronization edge directed from the first vertex of the orderecppair to the second vertex of
Clearly then{e,', e, ..., &,'} isaresynchronization if and only if each F is contained in at
least onex((src(e,’), snk(g'))) — thatis, if and only{fx((src(e;"), snk( q')))|1s i<n}
coversF . Thus, solving the pairwise resynchronization probler@for is equivalent to finding a
minimal cover forF given the family of subsgtg(x, y)|(xC C;, y O C,)}

Figure 3 helps to illustrate this intuition. Suppose that we are given the set
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X = { Xy, X5, X3, X4} , @nd the family of subsels = {t;,t,,t;} , whage= {x;, x5}

t, = {x5, X5}, andt; = {X,, X,} . To construct an instance of the pairwise resynchronization
problem, we first create two vertices and an edge directed between these fegrdaeemem-

ber of X ; we label each of the edges created in this step with the corresponding mexhber of

Then foreachi O T , we create two vertioesc(t) asdkt) . Next, for each rekiaiﬁzbq

(there are six such relations in this example), we create two delayless edges — one directed from
the source of the edge corresponding;to  and directesitot j) , and another directed from
vsnl(tj) to the sink of the edge correspondingto . This last step has the effect of making each

pair (vsrc(t;), vsni(t)) subsume exactly those edges that correspond to memibers of ; in other

vsrc(t) vsrc(t)

vsnk(t) vsnk(t)
M) M)

(@)

> -

vsrc(b)

vsrc(t)

vsnk(t) vsnk(t) vsnk(t)

(b)

Figure 3. (@) An instance of the pairwise resynchronization problem that is derived from an
instance of the set covering problem; (b) the DFG that results from a solution to this instance of pair-
wise resynchronization.
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words, after this constructioi((vsrc(t;), vsnk(t))) = t; , for each . Finally, for each edge cre-
ated in the previous step, we create a corresponding feedback edge oriented in the opposite direc-
tion, and having a unit delay.
Figure 3(a) shows the synchronization graph that results from this construction process.
Here, it is assumed that each vertex corresponds to a separate processor; the associated unit delay,
self loop edges are not shown to avoid excessive clutter. Observe that the graph contains two
SCCs — the SCE{ src(x)} O {vsrc(t))}) and the S¢Snk(x)} O {vsnkt)}) —and that
the set of feedforward edges is the set of edges that correspond to mem¥bers of . Now, recall that
a major correspondence between the given instance of set covering and the instance of pairwise
resynchronization defined by Figure 3(a) is thtvsrc(t;), vsnk(t))) = t; , for @ach . Thus, if
we can find a minimal resynchronization of Figure 3(a) such that each edge in this resynchroniza-
tion is directed from somesrc(t,) to the correspondisgkt,) , then the assogjated 's form a
minimum cover ofX . For example, it is easy, albeit tedious, to verify that the resynchronization
illustrated in Figure 3(b) dy(vsrc(t,), vsnK t;)), do(vsrc(ty), vsnk t;))} , is a minimal resyn-
chronization of Figure 3(a), and from this, we can conclude{that,} is a minimal cover for
X. From inspection of the given seXs ahd , it is easily verified that this conclusion is correct.
This example illustrates how an instance of pairwise resynchronization can be constructed
(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-
wise resynchronization can easily be converted into a solution of the set covering instance. Our
formal proof of the NP-hardness of pairwise resynchronization, presented in the following sec-

tion, is a generalization of the example in Figure 3.

9. Intractability of resynchronization
|
In this section, we establish the NP completeness of the resynchronization problem, which

was defined in Section 8. We establish this by reducing an arbitrary instance of the set-covering
problem, a well-known NP-hard problem, to an instance of the pairwise resynchronization prob-

lem, which is a special case of the resynchronization problem that occurs when there are exactly
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two SCCs. The intuition behind this reduction is explained in Section 8 above.
Suppose that we are given an instafXeT) of set covering, Where s a finite set, and

T is a family of subsets of  that coveXs . Without loss of generality, we assume that

T doesnotcontain a proper nonempty sub3ét  that sati¢fies | t)n ([ t) = O .(12)
tO(T-T) toT

We can assume this without loss of generality because if this assumption does not hold, then we
can apply the construction below to each “independent subfamily” separately, and then combine
the results to get a minimal cover fr

The following steps specify how we construct a DFG f(onT) . Except where stated

otherwise, no delay is placed on the edges that are instantiated.

1. For eachx [ X , instantiate two verticesc(X) arsehk( x) , and instantiate areexige
directed fromvsrc(x) tovsnkx) .
2. ForeachOT
(a). Instantiate two verticegsrc(t) angni(t)
(b). For eachx O t
* Instantiate an edge directed framarc(x)  wserc(t)
* Instantiate an edge directed framarc(t)  v®rc(x) , and place one delay
on this edge.
* Instantiate an edge directed frareni(t)  vE&nk(x)
* Instantiate an edge directed frarenk(x)  venkt) , and place one delay on
this edge.
3. For each vertex that has been instantiated, instantiate an edge directed from to itself, and

place one delay on this edge.

Observe from our construction, that whenevér X is contained!in , there is an

edge directed fronvsrc(x) vsnk(t) ) tesrc(t) vénk(x) ), and there is also an edge (having
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unit delay) directed fronvsrc(t) Msnk(x) ) tesrc(x) wvénkt) ). Thus, from the assumption
stated in (11), it follows thdtvsrc(z)| zO ( XO T} forms one SG@snkz)| ZO ( XO T}
forms another SCC, arfl={e(X)|x 0 X} is the set of feedforward edges.

Let G denote the DFG that we have constructed, and as in Section 8, define
X(p) ={el F|(psubsumesgsrc(e), snk(€)))} for each ordered pair of vertices= (Y, ¥,)
such thaty, is contained in the source SCGof ,yand is contained in the sink &CC of

Clearly, G gives an instance of the pairwise resynchronization problem.

Observation 1: By construction ofG , observe that
{x 0O X]((vsrc(t), vsnK t)) subsumesgvsrc(x), vsnk ¥)))} = t, forallt O T. Thus, for all
tOT, x(vsrc(t), vsnk(t)) = {e(x)|xDOt}.

Observation 2: For eachx I X , all input edges wbrc(x)  have unit delay on them. It follows
that for any vertey in the sink SCCGf
X(vsrc(x), y) O{eld F|src(e) = vsrc(X)} = {e(X)}.

Observation 3: For eacht O T , the only vertices @  that have a delay-free pathrogt) are
those vertices contained frvsrc(x)| xOO § . It follows that for any vegtex in the sink SCC of

G, x(vsrc(t), y) O x(vsrc(t), vsnk t)) = {e(X)|xOt}.

Now suppose that = { f,, f,, ..., ;] is a minimal resynchronizatio®Gof . For each
id{1,2 ..., m}, exactly one of the following two cases must apply

Case 1vsrc(f;) = vsrc(¥) forsome X . In this case, we pick an arbitraryr that
containsx , and we sef = vsrc(t) amg = vsnkt) . From Observation 2, it follows that
(((sre(F,), snk( 1)) O{e(3)} O X(v;, ;)

Case 2vsrc(f;) = vsrc(t) forsomel T .We sgt= vsrc(t) anwd= vsnkt)

From Observation 3, we hay§(src(f;), snk( f;))) O x(v;, w;)

Observation 4: From our definition of the, s ana,  §&d,(v;, wi)|(i 0{14,2..,m})} isa
minimal resynchronization && . Also, ea¢ta, w;) is of the farsrc(t), vsnk t)) , Where

tUT.
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Now, for each {1, 2, ..., m} , we define
Z; ={x 0 X](v;, w;) subsumesgvsrc(x), vsnk X))} .
Proposition 1: {Z,, Z,, ..., Z,,} coversX .
Proof: From Observation 4, we have that for edch , there existsa such that
Z; = {x 0O X](vsrc(t), vsnK t)) subsumesvsrc(x), vsnk X))} . Thus, eaclz; is a memberbf
Also, since{ d,(v;, Wi)|(i 0{1 2 ...,m})} isaresynchronization@f , each member of
{ (vsre(x), vsnk(¥)|x O X} must be preserved by sorfe, w;) , and thus eddtX must be

contained in som&; QED.

Proposition 2: {Z,, Z,, ..., Z,,} is a minimal cover foX .

Proof: (By contraposition). Suppose there exists a cp¥grY,, ..., Y} (among the members
of T) for X, withm'<m. Then, eaclk [J X is contained in sowfie and from Observation 1,
(vsre(Y;), vsnk(Y;)) subsume®(x) . Thug(vsrc(Y;), vsnk Yi))|(i 0{1,2..,m})} isa

resynchronization oG . Sina&' <m , it follows that= { f,, f,, ..., f ] is nota minimal

mJ

resynchronization o6 QED.

In summary, we have shown how to convert an arbitrary ins(@cE) of the set cover-
ing problem into an instand@  of the pairwise resynchronization problem, and we have shown

how to convert a solution = { f,, f,, ..., f ] ofthis instance of pairwise resynchronization into

mJ
asolution{ Z,, Z,, ..., Z,,} of(X, T) . Itis easily verified that all of the steps involved in deriving
G from(X, T), and in deriving Z,, Z,, ..., Z,} froniF’ can be performed in polynomial time.
Thus, from the NP hardness of set covering [10], we can conclude that the pairwise resynchroni-

zation problem is NP hard.

10. Heuristic solutions
|

10.1 Applying set covering techniques to pairs of SCCs

A heuristic framework for the pairwise resynchronization problem emerges naturally from
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the relationship that we have established between set covering and pairwise resynchronization in
Section 8. Given an arbitrary algorittBOVERthat solves the set covering problem, and given an
instance of pairwise resynchronization that consists of two SG@sdG, and a se§ of feed-
forward synchronization edges directed from members; &b @embers of & this heuristic
framework first computes the subset
X((u, v))={eD S(pg(src(e), u) = 0) + (pg(v, snk(e)) < delay(e))}

for each ordered pair of actofs, v)  that is contained in the set

T={(u,V)|(uisinC;andV'isinC,)},
and then applies the algorith@OVERto the instance of set covering defined by theSset
together with the family of subsetg((u’, v'))|((u',v') O T)}. If = denotes the solution returned
by COVER then a resynchronization for the given instance of pairwise resynchronization can be
derived by{ dy(u, v|x((u,v) 0=} . This resynchronization is the solution returned by the heuris-
tic framework.

From the correspondence between set covering and pairwise resynchronization that is out-
lined in Section 8, it follows that the quality of a resynchronization obtained by our heuristic
framework is determined entirely by the quality of the solution computed by the set covering
algorithm that is employed; that is, if the solution compute@®¥ERis X% worse X% more
subfamilies) than an optimal set covering solution, then the resulting resynchronization will be
X% worse K% more synchronization edges) than an optimal resynchronization of the given
instance of pairwise resynchronization.

The application of our heuristic framework for pairwise resynchronization to each pair of
SCCs, in some arbitrary order, in a general synchronization graph yields a heuristic framework
for the general resynchronization problem. However, a major limitation of this extension to gen-
eral synchronization graphs arises from its inability to consider resynchronization opportunities
that involve paths that traverse more than two SCCs, and paths that contain more than one feed-
forward synchronization edge.

Thus, in general, the quality of the solutions obtained by this approach will be worse than
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the quality of the solutions that are derived by the particular set covering heuristic that is
employed, and roughly, this discrepancy can be expected to increase as the number of SCCs
increases relative to the number of synchronization edges in the original synchronization graph.
For example, Figure 4 shows the synchronization graph that results from a six-processor
schedule of a synthesizer for plucked-string musical instruments in 11 voices based on the Kar-
plus-Strong technique. Herexc  represents the excitation inputyeach  represents the computa-
tion for thei th voice, and the actors marked with “+” signs specify adders. Execution time
estimates for the actors are shown in the table at the bottom of the figure. In this example, the only
pair of distinct SCCs that have more than one synchronization edge between them is the pair con-

sisting of the SCC containingXc v, } and the SCC containing, v; , five addition actors, and

execution time
32
51
16
04

Figure 4. The synchronization graph that results from a six processor schedule of a music
synthesizer based on the Karplus-Strong technique.
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the actor labeledut Thus, the best result that can be derived from the heuristic extension for gen-
eral synchronization graphs described above is a resynchronization that optimally rearranges the
synchronization edges between these two SCCs in isolation, and leaves all other synchronization
edges unchanged. Such a resynchronization is illustrated in Figure 5. This synchronization graph
has a total of nine synchronization edges, which is only one less than the number of synchroniza-
tion edges in the original graph. In contrast, we will show in the following subsection that with a
more flexible approach to resynchronization, the total synchronization cost of this example can be

reduced to only five synchronization edges.

10.2 A more flexible approach

In this subsection, we present a more global approach to resynchronization, called Algo-
rithm Global-resynchronize, which overcomes the major limitation of the pairwise approach dis-
cussed in Section 10.1. Algorithm Global-resynchronize is based on the simple greedy
approximation algorithm for set covering that repeatedly selects a subset that covers the largest
number ofremaining elementsvhere a remaining element is an element that is not contained in
any of the subsets that have already been selected. In [17, 26] it is shown that this set covering

technique is guaranteed to compute a solution whose cardinality is no greatén (hén + 1)

Figure 5. The synchronization graph that results from applying the heuristic framework
based on pairwise resynchronization to the example of Figure 4.
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times that of the optimal solution, whexXe s the set that is to be covered.
To adapt this set covering technique to resynchronization, we construct an instance of set
covering by choosing the sit , the set of elements to be covered, to be the set of feedforward

synchronization edges, and choosing the family of subsets to be

T E{X(Vl, V2)|(((V1, V2) 0 E) and (pG(Vz, Vl) = ))}, (12)
whereG = (V, E) is the input synchronization graph. The const@giv,, v,) = o in (12)
ensures that inserting the resynchronization €tgev,) does not introduce a cycle, and thus that

it does not introduce deadlock or reduce the estimated throughput.

Algorithm Global-resynchronize assumes that the input synchronization graph is reduced
(a reduced synchronization graph can be derived efficiently, for example, using the redundant
synchronization removal technique presented in [5]). The algorithm determines the family of sub-
sets specified by (12), chooses a member of this family that has maximum cardinality, inserts the
corresponding delayless resynchronization edge, removes all synchronization edges that it sub-
sumes, and updates the valpggXx, y) for the new synchronization graph that results. This entire
process is then repeated on the new synchronization graph, and it continues until it arrives at a
synchronization graph for which the computation defined by (12) produces the empty set — that
is, the algorithm terminates when no more resynchronization edges can be added. Figure 6 gives a
pseudocode specification of this algorithm (with some straightforward modifications to improve
the running time).

To analyze the complexity of Algorithm Global-resynchronize, the following definition is

useful.

Definition 4: Suppose thaG is a synchronization graph.délayless connectivityof G,
denotedDC(G) , is the number of distinct ordered vertex-gairg) G in  that satisfy

Pg(Xx, y) = 0. That s,
DC(G) = |3(G)|, whereS(G) = {(x, ¥)|(pg(x% ¥) = 0)} . (13)
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The following lemma shows that as long as the input synchronization graph is reduced, the
resynchronization operations performed in Algorithm Global-resynchronize always yield a

reduced synchronization graph.

Lemma 3: Suppose that = (V, E) is areduced synchronization graph{>and is an
ordered pair of vertices i@  suchtlfaty) OE (pg(y, X) =) ,antk y)=1 . Get

function Global-resynchronize
input: a reduced synchronization gragh= (V, E)
output: an alternative reduced synchronization graph that presérves

computepg(x, y) for all actor pairs y OV

complete= FALSE
while not (completé
best= NULLM =0
for xOV
for yOV
if (pg(Y, X) = ) and(x, y) UE
X* = x((xy)
it (Ix*[>M)
M = [x*|
best=(xy
end if
end if

end for
end for

if (best= NULLD
complete= TRUE

else
E = E—x(bes) +{dy(bes)}
G =(V,E
for x, yOV [* updatepg */
Prew(X YY) = min({pg(X, y), ps(X, src(bes)) + ps(snk(bes), Y})
end for
pG = pnew
end if
end while
return G

end function

Figure 6. A heuristic for resynchronization.
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denote the synchronization graph obtained by insedj(g, y) Gnto and removing all mem-
bers ofx(x, y) ;thatisG' = (V,E) ,whee' = (E-x(x, ¥)) +{dy(x,y)} .Thé&s isa
reduced synchronization graph. In other wor@s, does not contain any redundant synchroniza-

tions. FurthermoreDC(G') > DC(G)

Proof: We prove the first part of this lemma by contraposition. Suppose that there exists a redun-
dant synchronization edge @' , and first supposestrat( x, y) . Then from Fact 1, there
exists a path i’ directed from Y such tbetlay(p) = O , and

p does not contaigx, y) . (14)
Also, observe that from the definition Bf |
(E'=(x y) UE, (15)

It follows from (14) and (15) thaB also contains the gath

Now let(x', y") be an arbitrary member pfx, y) . Then

Pe(X', X) + pg(y, Y) < delay(x', y'). (16)

SinceG contains the pafh , we hawg(x,y) = 0, and thus, from the triangle inequality (2)
together with (16),

Pe(X, YY) S pg(X, X) +pg(X Y) +pg(y, ¥) < delay(X', y'). (17)

We conclude thafx’, y') is redundant@ , which violates the assumptioGthat is reduced.
If on the other hand# (x y) , then from Fact 1, there exists a simpleppatls) G’ in

directed fromsrc(s) tosnk(s) such that

Delay(p) < delay( 9. (18)

Also, it follows from (15) thalG contains . Sin€  is reduced, the path  must contain the

edge(x, y) (otherwise would be redundanGn ). Thys, can be expressed as a concatenation
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Ps = L(py, ((X Y)), po)U where eithep; op, may be empty, but not both. Furthermore, since
ps is a simple path, neithgr;, npp  conta(xsy) . Hence, from (15), we are guaranteed that
both p, andp, are also contained@

Now from (18), we have
Delay(p,) + Delay( p,) < delay(s). (19
Furthermore, from the definition @f, amd
pg(src(s), X) < Delay(p;) andpg(y, snk(s)) < Delay(p,) . (20)
Combining (19) and (20) yields
pg(sre(s), X) + pg(y, snk(s)) < delay(s), (21)

which implies thas [0 x(X, y) . But this violates the assumption Gat  does not contain any
edges that are subsumed(byy) Gn . This concludes the proof of the first part of Bemma
It remains to be shown th&C(G') >DC(G) . Now, from Lemma 1 and Definition 4, it

follows that

S(G) 0 §(G'). (22)

Also, from the first part of Lemma 3, which has already been proven, we kno@ that  is reduced.

Thus, from Lemma 2, we have
(x,y) O0S(G). (23)
But, clearly from the construction &' pg (X, y) = 0 , and thus,

(x y) 0§G). (24)

From, (22), (23) and (24), it follows th&G) s a proper subs&6f) . Hence,
DC(G') > DC(G). QED.
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Clearly from Lemma 3, each time a Algorithm Global-resynchronize performs a resyn-
chronization operation (an iteration of thkile loop of Figure 6), the number of ordered vertex
pairs(x, y) thatsatisfps(x,y) = 0 isincreased by at least one. Thus, the number of iterations
of thewhile loop in Figure 6 is bounded abovell\)y2 . The complexity of one iteration of the
while loop is dominated by the computation in the pair of nesteldops. The computation of
one iteration of the inndor loop is dominated by the time required to comp(te, y) for a spe-
cific actor pair(x, y) . Assumings(x',y') is available for &lly' OV , the time to compute
X(X,y) is O(s;) , wheres; is the number of feedforward synchronization edges in the current
synchronization graph. Since the number of feedforward synchronization edges never increases
from one iteration of thevhile loop to the next, it follows that the time-complexity of the overall
algorithm isO(s \/|4) , wheres is the number of feedforward synchronization edges in the input
synchronization graph. In practice, however, the number of resynchronizationgtiégpOp
iterations) is usually much lower th*MI2 since the constraints on the introduction of cycles
severely limit the number of resynchronization steps. Thus(,)()sir’\/l4) bound can be viewed as

a very conservative estimate.

10.3 Unit-subsumption resynchronization edges

At first, it may seem that it only makes sense to continualtithe loop of Algorithm Glo-
bal-resynchronize as long as a resynchronization edge can be found that subsumes at least two
existing synchronization edges. However, in general it may be advantageous to continue the
resynchronization process even if each resynchronization candidate subsumes at most one syn-
chronization edge. This is because although such a resynchronization candidate does not lead to
an immediate reduction in synchronization cost, its insertion may lead to future resynchronization
opportunities in which the number of synchronization edges can be reduced.

Figure 7 illustrates a simple example. In the synchronization graph shown in Figure 7(a),
there are 5 synchronization edgés, B) (B,C) (D,F) (G, F) , @RE) . Self-loop edges

incidentto actorsA B C ,and (each of these four actors executes on a separate processor) are
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Figure 7. An example in which inserting a resynchronization edge that subsumes only one existing
synchronization edge eventually leads to a reduction in the total number of synchronizations.

34



omitted from the illustration for clarity. It is easily verified that no resynchronization candidate in
Figure 7(a) subsumes more than one synchronization edge. If we terminate the resynchronization
process at this point, we must accept a synchronization cost of 5 synchronization edges.
However, suppose that we insert the resynchronization (@&jde) , Which subsumes
(B, C), and then we remove the subsumed g@j&C) . Then we arrive at the synchronization
graph of Figure 7(c). In this graph, resynchronization candidates exist that subsume up to two
synchronization edges each. For example, insertion of the resynchronizatidifr eBge , allows
us to remove synchronization eddé€s F) 6AdE) . The resulting synchronization graph,
shown in Figure 7(c), contains only four synchronization edges.
Alternatively, from Figure 7(b), we could insert the resynchronization €GgE) and
remove both(D, F) andA, E) . This gives us the synchronization graph of Figure 7(d), which
also contains four synchronization edges. This is the solution derived by our implementation of

Algorithm Global-resynchronize when it is applied to the graph of Figure 7(a).

10.4 Example

Figure 8 shows the optimized synchronization graph that is obtained when Algorithm Glo-

Figure 8.The optimized synchronization graph that is obtained when Algorithm
Global-resynchronizes applied to the example of the Figure 4.



bal-resynchronize is applied to the example of Figure 4. Observe that the total number of synchro-
nization edges has been reduced from 10 to 5. The total number of “resynchronization steps”
(number of while-loop iterations) required by the heuristic to complete this resynchronization is 7.
Table 1 shows the relative throughput improvement delivered by the optimized synchroni-
zation graph of Figure 8 over the original synchronization graph as the shared memory access
time varies from 1 to 10 processor clock cycles. The assumed synchronization protocol is FFS,
and the back-off time for each simulation is obtained by the experimental procedure mentioned in
Section 4.2. The second and fourth columns showikeage iteration periodbr the original
synchronization graph and the resynchronized graph, respectively. The average iteration period,
which is the reciprocal of the average throughput, is the average number of time units required to
execute an iteration of the synchronization graph. From the sixth column, we see that the resyn-
chronized graph consistently attains a throughput improvement of 22% to 26%. This improve-

ment includes the effect of reduced overhead for maintaining synchronization variables and

Memory Original graph I Resynchronized grapl—l (I;’ercentage
access time Iter. period ag/lc?arssoer)s//ptl Iter. period ag/lc?ersnsoergl 0 l itgﬁrggzi(;n
1 250 67 195 43 22%

2 292 66 216 43 26%
3 335 64 249 43 26%
4 368 63 273 40 26%
5 408 63 318 43 22%
6 459 63 350 43 24%
7 496 63 385 43 22%
8 540 63 420 43 22%
9 584 63 455 43 22%
10 655 65 496 43 24%

Table 1. Performance comparison between the resynchronized solution and the original
synchronization graph for the example of Figure 4.
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reduced contention for shared memory. The third and fifth columns of Table 1 show the average
number of shared memory accesses per iteration of the synchronization graph. Here we see that
the resynchronized solution consistently obtains at least a 30% improvement over the original
synchronization graph. Since accesses to shared memory typically require significant amounts of
energy, particularly for a multiprocessor system that is not integrated on a single chip, this reduc-
tion in the average rate of shared memory accesses is especially useful when low power consump-

tion is an important implementation issue.

10.5 Simulation approach

The simulation is written in C making use of a package called CSIM that allows concur-
rently running processes to be modeled. Each CSIM process is “created,” after which it runs con-
currently with the other processes in the simulation. Processes communicate and synchronize
througheventsandmailboxegwhich are FIFO queues of events between two processes). Time
delays are specified by the functioold. Holding for an appropriate time causes the process to be
put into an event queue, and the process “wakes up” when the simulation time has advanced by
the amount specified by the hold statement. Passage of time is modeled in this fashion. In addi-
tion, CSIM allows specification décilities, which can be accessed by only one process at a time.
Mutual exclusion of access to shared resources is modeled in this fashion.

For the multiprocessor simulation, each processor is made into a process, and synchroni-
zation is attained by sending and receiving messages from mailboxes. The shared bus is made into
a facility. Polling of the mailbox for checking the presence of data is done by first reserving the
bus, then checking for the message count on that particular mailbox; if the count is greater than
zero, data can be read from shared memory, or else the processor backs off for a certain duration,
and then resumes polling.

When a processor sends data, it increments a counter in shared memory, and then writes
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the data value. When a processor receives, it first polls the corresponding counter, and if the
counter is non-zero, it proceeds with the read; otherwise, it backs off for some time and then polls
the counter again. We used experimentally determined back-off times for each value of the mem-
ory access time. For a send, the processor checks if the corresponding buffer is full or not. For the
simulation, all buffers are sized equal to 5; these sizes can of course be jointly minimized to
reduce buffer memory. Polling time is defined as the time required to access the bus and check the

counter value.

11. Efficient, optimal resynchronization for a class of synchronization graphs
|
In this section, we show that although optimal resynchronization is intractable for general

synchronization graphs, a broad class of synchronization graphs exists for which optimal resyn-

chronizations can be computed using an efficient polynominal-time algorithm.

11.1 Chainable synchronization graph SCCs

Definition 5: Suppose tha€ is an SCC in a synchronization g@ph xand is an aCtor in
Thenx is annput hub of C if for each feedforward synchronization edge Gn  whose sink
actor is inC , we have.(x, snk(e)) = 0 . Similarlx  is autput hub of C if for each feed-
forward synchronization edge @&  whose source actor@ in , wehe\sc(e), X) = 0

We say thaC ifinkable if there exist actorg, y i€ suchthat isaninput hub, isan output

hub, andp-(x, y) = 0 . A synchronization graphcisainableif each SCC is linkable.

For example, consider the SCC in Figure 9(a), and assume that the dashed edges represent
the synchronization edges that connect this SCC with other SCCs. This SCC has exactly one input
hub, actorA , and exactly one output hub, a&or , and pi(eF) = 0 , it follows that the
SCC is linkable. However, if we remove the edGeF) , then the resulting graph (shown in Fig-
ure 9(b)) is not linkable since it does not have an output hub. A class of linkable SCCs that occur

commonly in practical synchronization graphs are those SCCs that correspond to only one proces-
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sor, such as the SCC shown in Figure 9(c). In such cases, the first actor executed on the processor
is always an input hub and the last actor executed is always an output hub.

In the remainder of this section, we assume that for each linkable SCC, an ingut hub and
output huby are selected such théx,y) = 0 , and these actors are referred teetected
input hub and theselected output hubof the associated SCC. Which input hub and output hub
are chosen as the “selected” ones makes no difference to our discussion of the techniques in this
section as long they are selected so ifaty) = 0

An important property of linkable synchronization graphs isth@yif @pnd  are distinct
linkable SCCs, then all synchronization edges directed @gm C,to  are subsumed by the single
ordered paifl, |,) ,wherg  denotes the selected output hGh of |,and denotes the selected
input hub ofC,, . Furthermore, if there exists a path between two 8GCE.’ of the form
((04,15), (05,13), ..., (0,_1,1,)) , whereo, is the selected output hub®yf i,,, is the selected
input hub ofC,’" , and there exist distinct SCCsZ,, ..., Z,_,U0{C,', C,'} such that for
k=23..(n-1),i, 0, are respectively the selected input hub and the selected output hub of
Z,_1, then all synchronization edges betwégn @nd are redundant.

From these properties, an optimal resynchronization for a chainable synchronization graph
can be constructed efficiently by computing a topological sort of the SCCs, instantiating a zero
delay synchronization edge from the selected output hub of the th SCC in the topological sort to

the selected input hub of tife+ 1)  th SCC,ifor 1, 2, ..., (n—=1) , Wwhere is the total number

D @

(©)
Figure 9. An illustration of input and output hubs for synchronization graph SCCs.
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of SCCs, and then removing all of the redundant synchronization edges that result. For example,
if this algorithm is applied to the chainable synchronization graph of Figure 10(a), then the syn-
chronization graph of Figure 10(b) is obtained, and the number of synchronization edges is
reduced fromd t@

This chaining technique can be viewed as a form of pipelining, where each SCC in the
output synchronization graph corresponds to a pipeline stage. Pipelining has been used exten-
sively to increase throughput via improved parallelism (“temporal parallelism”) in multiprocessor
DSP implementations (see for example, [2, 15, 28]). However, in our application of pipelining,
the load of each processor is unchanged, and the estimated throughput is not affected (since no
new cyclic paths are introduced), and thus, the benefit tovéirall throughput of our chaining
technique arises chiefly from the optimal reduction of synchronization overhead.

The time-complexity of our optimal algorithm for resychronizing chainable synchroniza-

tion graphs ii)(vz) , Where is the number of synchronization graph actors.

11.2 Comparison to the Global-Resynchronize heuristic

It is easily verified that the original synchronization graph for the music synthesis example

of Section 10.2, shown in Figure 4, is chainable. Thus, the chaining technique presented in Sec-

® © ® D)

-
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D // ® b b ® . ®

'
7
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@:----- ® ©

() (b)

Figure 10. An illustration of an algorithm for optimal resynchronization of chainable synchroniza-
tion graphs. The dashed edges are synchronization edges.
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tion 11.1 is guaranteed to produce an optimal resynchronization for this example, and since no
feedback synchronization edges are present, the number of synchronization edges in the resyn-
chronized solution is guaranteed to be equal to one less than the number of SCCs in the original
synchronization graph; that is, the optimized synchronization graph cofitaihs= 5 synchro-
nization edges. From Figure 8, we see that this is precisely the number of synchronization edges
in the synchronization graph that results from our implementation of Algorithm Global-resyn-
chronize.

However, Algorithm Global-resynchronize does not always produce optimal results for
chainable synchronization graphs. For example, consider the synchronization graph shown in Fig-
ure 11(a), which corresponds to an eight-processor schedule in which each of the following sub-
sets of actors are assigned to a separate procesgby +J} {G, K} {C,H} {D} {E, L}, ,

{ A, F},and{B} . The dashed edges are synchronization edges, and the remaining edges connect
actors that are assigned to the same processor. The total number of synchronization edges is 14.
Now it is easily verified that actd¢  is both an input hub and an output hub for the SCC

{C, G, H, J, K}, and similarly, actot. is both an input and output hub for the SCC

{A, D, E, F L}. Thus, we see that the overall synchronization graph is chainable. It is easily ver-
ified that the chaining technique developed in Section 11.1 uniquely yields the optimal resynchro-
nization illustrated in Figure 11(b), which contains only 11 synchronization edges.

In contrast, the quality of the resynchronization obtained for Figure 11(a) by Algorithm
Global-resynchronize depends on the order in which the actors are traversed by each of the two
nestedor loops in Figure 6. For example, if both loops traverse the actors in alphabetical order,
then Global-resynchronize obtains the sub-optimal solution shown in Figure 11(c), which con-
tains 12 synchronization edges.

However, actor traversal orders exist for which Global-resynchronize achieves optimal
resynchronizations of Figure 11(a). One such orderiigls C,BLEF G H I, J L A ; if both
for loops traverse the actors in this order, then Global-resynchronize yields the same resynchro-

nized graph that is computed uniquely by the chaining technique of Section 11.1 (Figure 11(b)). It
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is an open question whether or not given an arbitrary chainable synchronization graph, actor tra-
versal orders always exist with which Global-resynchronize arrives at optimal resynchronizations.
Furthermore, even if such traversal orders are always guaranteed to exist, it is doubtful that they

can, in general, be computed efficiently.

11.3 A generalization of the chaining technique

The chaining technique developed in Section 11.1 can be generalized to optimally resyn-
chronize a somewhat broader class of synchronization graphs. This class consists of all synchroni-
zation graphs for which each source SCC has an output hub (but not necessarily an input hub),
each sink SCC has an input hub (but not necessarily an output hub), and each internal SCC is link-
able. In this case, the internal SCCs are pipelined as in the previous algorithm, and then for each
source SCC, a synchronization edge is inserted from one of its output hubs to the selected input
hub of the first SCC in the pipeline of internal SCCs, and for each sink SCC, a synchronization
edge is inserted to one of its input hubs from the selected output hub of the last SCC in the pipe-
line of internal SCCs. If there are no internal SCCs, then the sink SCCs are pipelined by selecting
one input hub from each SCC, and joining these input hubs with a chain of synchronization edges.
Then a synchronization edge is inserted from an output hub of each source SCC to an input hub of

the first SCC in the chain of sink SCCs.

11.4 Incorporating the chaining technique

In addition to guaranteed optimality, another important advantage of the chaining tech-
nique for chainable synchronization graphs is its relatively low time-compl@(tyzl versus
O(sv4) for Global-resynchronize), wheke is the number of synchronization graph actoss, and
is the number of feedforward synchronization edges. The primary disadvantage is, of course, its
restricted applicability. An obvious solution is to first check if the general form of the chaining
technique (described above in Section 11.3) can be applied, apply the chaining technique if the
check returns an affirmative result, or apply Algorithm Global-resynchronize if the check returns

a negative result. The check must determine whether or not each source SCC has an output hub,
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each sink SCC has an input hub, and each internal SCC is linkable. This check can be performed
in O(n3) time, wheren is the number of actors in the input synchronization graph, using a
straightforward algorithm.

A useful direction for further investigation is a deeper integration of the chaining tech-

(@)

(b)

()

Figure 11. A chainable synchronization graph for which Algorithm Global-resynchronize fails to pro-
duce an optimal solution.
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nigue with algorithm Global-resynchronize for general (not necessarily chainable) synchroniza-
tion graphs.
12. Conclusions

|
This paper develops a post-optimization called resynchronization for self-timed, multipro-

cessor implementations of DSP algorithms. The goal of resynchronization is to introduce new
synchronizations in such a way that the number of additional synchronizations that become
redundant exceeds the number of new synchronizations that are added, and thus the net synchro-
nization cost is reduced.

We show that optimal resynchronization is intractable by deriving a reduction from the
classic set covering problem. However, we define a broad class of systems for which optimal
resynchronization can be performed in polynomial time. We also present a heuristic algorithm for
resynchronization of general systems that emerges naturally from the correspondence to set cov-
ering. We illustrate the performance of our implementation of this heuristic on a multiprocessor
schedule for a music synthesis system. The results demonstrate that the heuristic can efficiently
reduce synchronization overhead and improve throughput significantly.

Several useful directions for further work emerge from our study. These include investi-
gating whether efficient techniques can be developed that consider resynchronization opportuni-
ties within strongly connected components, rather than just across feedforward edges. There may
also be considerable room for improvement over our proposed heuristic, which is a straightfor-
ward adaptation of an existing set covering algorithm. In particular, it would be useful to explore
ways to best integrate the proposed heuristic for general synchronization graphs with the optimal
chaining method for a restricted class of graphs, and it may be interesting to search for properties
of practical synchronization graphs that could be exploited in addition to the correspondence with
set covering. The extension of Sakar’s concept of counting semaphores [35] to self-timed, itera-
tive execution, and the incorporation of extended counting semaphores within our resynchroniza-

tion framework are also interesting directions for further work.
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13. Glossary

1S
p(X Y):
Pa(X, y):

delay(e):

Delay(p):
d,(u, v):

A

max-*

X(p):

up]_! p2’ LR pk)D

critical cycle

cycle mean

The number of members in the finite Set
Same ap; withthe DFG  understood from context.

If there is no path il from  tg , thea (X, y) = o ; otherwise,
pg(X, y) = Delay(p), wherep is any minimum-delay path from yo

The delay on a DFG edge
The sum of the edge delays over all edges in theppath

An edge whose source and sink verticestare vand , respectively, and
whose delay is equal 1o

The maximum cycle mean of a DFG.

The set of synchronization edges that are subsumed by the ordered pair of
actorsp .

Theconcatenatiorof the pathg,, p,, ..., Py -

A cycle in a DFG whose cycle mean is equal to the maximum cycle mean
of the DFG.

The cycle mean of a cycleé  in a DFG is equal tdD , Wiere is the
sum of the execution times of all vertices traverse@by [and s the sum
of delays of all edges i€

estimated throughput

FBS

feedback edge
feedforward edge

FFS

Given a DFG with execution time estimates for the actors, the estimated
throughput is the reciprocal of the maximum cycle mean.

Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph.

An edge that is contained in at least one cycle.
An edge that is not contained in a cycle.

Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.

maximum cycle mean

reduced

Given a DFG, the maximum cycle mean is the largest cycle mean over all
cycles in the DFG.

A synchronization graph i®ducedif it does not contain any redundant
synchronization edges.
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resynchronization edge
Given a synchronization gragh  and a resynchroniz&ion , a resynchro-
nization edge oR is any memberiRf that is not containésl in

Y(R G): If G is a synchronization graph aiRl  is a resynchronizatid@ of |, then
Y (R, G)denotes the graph that results from the resynchronizRtion

SCC Strongly connected component.

self loop: An edge whose source and sink vertices are identical.

subsumes Given a synchronization edg&,, X,)  and an ordered pair of actors

(Y1 ¥2), (Y1, Y2) subsumegxy, x,) i
P(Xq, Y1) + PV Xy) < delay((Xy, X,)).

t(v): The execution time or estimated execution time of actor
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