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ABSTRACT

Dataflow has proven to be an attractive computational model for graphical DSP design environ-
ments that support the automatic conversion of hierarchical signal flow diagrams into implementations on
programmable processors. The synchronous dataflow (SDF) model is particularly well-suited to dataflow-
based graphical programming because its restricted semantics offer strong formal properties and signifi-
cant compile-time predictability, while capturing the behavior of a large class of important signal process-
ing applications. When synthesizing software for embedded signal processing applications, critical
constraints arise due to the limited amounts of memory. In this paper, we propose a solution to the problem
of jointly optimizing the code and data size when converting SDF programs into software implementa-
tions.

We consider two approaches. The first is a customization to acyclic graphs of a bottom-up tech-
nique, calledpairwise grouping of adjacent nodes (PGAM)at was proposed earlier for general SDF
graphs. We show that our customization to acyclic graphs significantly reduces the complexity of the gen-
eral PGAN algorithm, and we present a formal study of our modified PGAN technique that rigorously
establishes its optimality for a certain class of applications. The second approach that we consider is a top-
down technique, based on a generaliggimum-cutoperation, that was introduced recently in [14]. We
present the results of an extensive experimental investigation on the performance of our modified PGAN
technique and the top-down approach and on the trade-offs between them. Based on these results, we con-
clude that these two techniques complement each other, and thus, they should both be incorporated into
SDF-based software implementation environments in which the minimization of memory requirements is
important. We have implemented these algorithms in the Ptolemy software environment [5] at UC Berke-

ley.
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1 Motivation
|

In this paper, we present efficient techniques to compile graphical DSP programs based on the syn-
chronous dataflow (SDF) model into software implementations that require a minimum amount of memory
for code and data. Numerous DSP design environments, including a number of commercial tools, support
SDF or closely related models [11, 12, 15, 16, 17]. In SDF, a program is represented by a directed graph in
which each vertexactor) represents a computation, edges specify FIFO communication channels, and
each actor produces (consumes) a fixed number of data Vvalkess onto (from) each output (input)
edge per invocation.

A key property of the SDF model is that static schedules can be constructed at compile time. This
removes the overhead of dynamic scheduling and is thus useful for real-time DSP programs where
throughput requirements are often severe. Another constraint that programmable DSPs used in embedded
systems have is the extremely limited amount of on-chip memory. Typically, these processors might only
have around 1000 bytes of program memory and 1000 bytes of data memory. Off-chip memory is usually
undesirable because it often entails a speed penalty, increased system cost, and power consumption.
Hence, it is imperative that the target code fit inside the on-chip memory whenever possible. While the
SDF model is natural for expressing a large class of multirate signal processing algorithms, care must be
taken while scheduling to avoid code and data size blowup. This paper considers the following combinato-
rial optimization problem in SDF scheduling: Given an acyclic SDF graph, amongst the set of possible
schedules for this graph, there is a class of schedules that minimizes code size (in terms of metrics that will
be defined shortly). We would like to pick those schedules from this code-optimal class that also minimize
the data memory required for the buffers on the edges connecting the actors. It should be emphasized that
we concentrate on uniprocessor scheduling in this paper.

Fig. 1 shows a simple SDF graph. This graph contains three actors, labdded € and . Each
edge is annotated with number of tokens produced (consumed) by its source (sink) actor, and the “D” on
the edge fromA t@® specifies a unit delay. Given an SDF edge , we denote the source actor and sink
actor ofe bysrc(e) andsnk(e) , and we denote the delayon délay(e) . Each unit of delay is imple-

mented as an initial token on the edge. Alsod(e) aoio e) respectively denote the number of
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Figure 1. A simple SDF graph.



tokens produced onte ksrc(e) , and the number of tokens consumeda fronsrk (&y

A scheduleis a sequence of actor firings. We compile a properly-constructed SDF graph by first
constructing a finite scheduf that fires each actor at least once, does not deadlock, and produces no net
change in the number of tokens queued on each edge. We call such a schaltthichedule Corre-
sponding to each actor in the schedBle , we instantiate a code block that is obtained from a library of pre-
defined actors, and the resulting sequence of code blocks is encapsulated within an infinite loop to generate
a software implementation of the SDF graph.

SDF graphs for which valid schedules exist are caltetistentSDF graphs. In [13], efficient
algorithms are presented to determine whether or not a given SDF@raph  is consistent, and to determine
the minimum number of times that each actor must be fired in a valid schedule. We represent these mini-
mum numbers of firings by a row vecigg,  , indexed by the actd@ in , and we refgrto  regethe
titions vector of G. We often suppress the subscripGif  is understood from context. More precisely, the

repetitions vector gives the minimum positive integer solution g to the systeataoice equations
x(src(e))prod(e) = x(snk(e))congqe), for each edge B . Q)

A valid schedule is any schedule that does not deadlock, and that invokes eaéh actor  exactly
kgg(A) times for some positive integkr . This positive integer is calletlduking factor of the valid
schedule, and it is denoted By  or ByS) , WhBre is schedule. A schedule thathas is called a
minimal schedule.

Given an edge i , we define ttetal number of samples exchangede , denoted
TNSE;(e), by

TNSE;(e) =qg(src(e)) x prod(e) = gg(snk(e)) x conge). (2)

Thus, TNSE;(e) is total number of tokens produced onto (consumed fom) in any minimal,
valid schedule foG . Note that the equality of the two products in (2) follows from the definitipn of

For Fig. 1, = q(A, B, C) = (3,6, 2 ,andINSH(A, B)) = TNSE( B Q) = 6 . Note that
we adopt the convention of indexing vectors using functional notation rather than subscripts.

One valid schedule for Fig. 1 B(2AB)CA(3B)C . Note tlgat s allowed to fire first because of
the unit delay on the edd#, B) . Here, a parenthesized(le®s,...S,) spacifies  successive firings
of the “subscheduleS;S,...S, , and we may translate such a term into a loop in the target code. Observe
that this notation naturally accommodates the representation of nested loops. We refer to each parenthe-
sized term(nS;S,...S,) as schedule loophavingiteration count n anditerands S;S,...S, .



A looped schedulas a finite sequencg/4, V,, ..., V) , represented/a¥,...V, , Where each
V; is either an actor or a schedule loop. Thus, the “looped” qualification indicates that the schedule in
guestion may be expressed in terms of schedule loops. Since a looped schedule is usually executed repeat-
edly, we refer to eack; as aerand of the associated looped schedule. Henceforth in this paper, by a
“schedule” we mean a “looped schedule.”

A more compact valid schedule for Fig. 1(8A)(2(3B)C) . We call this schedsitegte
appearance schedulsince it contains only one lexical appearance of each actor. To a good first approxi-
mation, any valid single appearance schedule gives the minimum code space cost for in-line code genera-
tion. This approximation neglects second order affects such as loop overhead and the efficiency of data

transfers between actors [3].

Given an SDF grapls , a valid sched@le , and an edgeG in , we dedxeokeng(e, §

(we may suppress the subscripGf is understood) to denote the maximum number of tokens that are

queued ore during an execution®f . For example if for Fig, 1= (3A)(6B)(2C) and
S, = (3A(2B))(2C), thenmax_token§(A, B), S;) = 7 andmax_token§(A, B), S,) = 3 . We define
thebuffer memory requirement of a schedulé&s , denotdalffer_memor¢S) , by

buffer_memoryS) = g max_token§ e )5 whereE s the set of edges@ . Thus,
el E

buffer_memor{S;) = 7+ 6 = 13, andbuffer_memor{S,) = 3+6 = 9.

In the model of buffering implied by our “buffer memory requirement” measure, each buffer is
mapped to an independent contiguous block of memory. Although perfectly valid target programs can be
generated without this restriction, it can be shown that having a separate buffer on each edge is advanta-
geous because it permits full exploitation of the memory savings attainable from nested loops, and it
accommaodates delays without complication [14]. Another advantage of this model is that by favoring the
generation of nested loops, the model also favors schedules that have lower latency than single appearance
schedules that are constructed to optimize various alternative cost measures [14]. Combining the analysis
and techniques that we develop in this paper with methods for sharing storage among multiple buffers is a
useful direction for further study. Existing techniques for sharing buffers usually do not take the scheduling
into account; for example, the common buffer sharing strategy of combining liveness analysis and graph
coloring is used for a given schedule. Also, most existing techniques assume that every buffer being imple-

mented is of the same size. They also do not apply to SDF graphs, where the presence of rate changes com-



plicates matters further. Fabri [7] has studied schemes for overlaying buffers when the buffer sizes are not
all identical but even these techniques only apply to a given schedule, and do not attempt to optimize over
all possible schedules as done in this paper. Finally, as shown in [14], naive techniques for buffer-sharing
can result in sub-optimal schedules, and can be awkward to implement.

In this paper we address the problem of computing a valid single appearance schedule that mini-
mizes the buffer memory requirement over all valid single appearance schedules. We call such a schedule
anoptimal schedule From the discussion above, it should be clear that this scheduling problem of mini-
mizing memory requirements even for a single processor is a challenging, non-trivial problem. We focus
on acyclic graphs. We introduce a customization to acyclic graphs of a bottom-up scheduling technique,
calledpairwise grouping of adjacent nodes (PGANat was proposed in an earlier paper [4] for general
SDF graphs. We call this customizatidayclic PGAN (APGANMWe show that APGAN significantly
reduces the time and space complexity of the general PGAN algorithm; we rigorously establish that
APGAN performs optimally for a certain class of SDF graphs; and we give examples of practical applica-
tions that fall within the class of graphs for which APGAN produces optimal results. We present experi-
mental data on practical applications that verifies that our implementation of APGAN performs optimally
for graphs that fall within the specified class, and suggests that it often performs very well for graphs that
lie outside the class.

We compare APGAN to a top-down heuristic based on recursively partitioning the input graph
using a generalized minimum cut operation, which was introduced recently in [14]. This top-down heuris-
tic is calledRecursive Partitioning Based on Minimum Cuts (RPM@.report on an extensive experi-
mental study in which the performance of both scheduling techniques is evaluated on several practical
applications, and on a diverse collection of complex random graphs. The conclusions that we derive are
that technigues should be investigated for efficiently combining the methods of RPMC and APGAN, and
that in the absence of such a combined solution, or of a more powerful alternative solution, both of these
heuristics should be incorporated into SDF-based DSP prototyping and implementation environments in
which the minimization of memory requirements is important. An algorithm based on APGAN has in fact
been implemented by the Alta group at Cadence Design Systems Inc. in their Signal Processing WorkSys-
tem programming environment. We have implemented APGAN and RPMC in the Ptolemy programming
environment [5] at UC Berkeley and will be making these algorithms available in the next release.

The paper is organized as follows. In Section 2 we first review some graph concepts and establish
notation that will be used throughout the paper. We then prove some facts about clustering in SDF graphs

that will be useful in the development of the APGAN algorithm. We also discuss the problem of construct-
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ing a buffer-optimal loop hierarchy for a given lexical ordering of nodes and present a polynomial-time
algorithm that computes it optimally. In Section 3 we prove a simple lower bound on the memory require-
ment (called BMLB) of any single appearance schedule for an acyclic SDF graph and in Section 4 we
describe the APGAN algorithm. In Section 5 we develop a concept patipdr clustering Section 6

develops one of the main results of this paper; namely, the optimality of APGAN for a particular class of
SDF graphs. Even though this class appears restrictive at first, it is shown in Section 8 that a wide variety
of practical systems fall into this class and hence it is a useful class. Section 7 briefly discusses a different
heuristic that was proposed in [14]; this discussion is given primarily to facilitate the comparison between

the two heuristics in Section 8. Finally we discuss some related work and present our conclusions.

2 Background
|

For reference, a glossary of terminology can be found at the end of the paper.

Given a finite seH , we denote the number of elemerits in |[Hby x .If yand are positive inte-
gers, we say that dividesy if y = kxfor some positive integet . If the membergbf  are positive inte-
gers, then bygcd(H) we mean the largest positive integer that divides all memibers of

Precisely speaking, SDF graphs, as we use them in this paper, are directed multigraphs rather than
directed graphs, since we allow two or more edges to have the same source and sink vertices. However, we
often ignore this distinction. Thus, when there is no ambiguity, we may refer to ar edge as the ordered
pair (src(e), snk(e)) . We frequently represent an SDF gr&h by an orderedgak) , Where is
the set of vertices and  is the set of edges. 8ybgraph of G, we mean the directed graph formed by
anyV' OV and the set of edgés ] E|src(e), snk(e) D V'} . We denote the subgraph associated with
the vertex subset’ bgubgrapiV') .@&onnected componentf G is a subseY' 0V such that
subgraph{V') is connected, and no subsetwf that properly con¥dins  induces a connected subgraph.

Given an SDF grapls = (V, E) , actof ipeedecessomof actorY if thereisae [ E such
thatsrc(e) = X andsnk(e) = Y ,an&K issuccessoof Y if Y is a predecessor of . Two actofsY
areadjacentif X is a predecessor or successoivof , arX, i¥ are distinct{tKeiv} atjaoent
pair. Apathin G from X toY is a finite, nonempty sequer(eg, e,, ..., €,) suchthateach isamem-
ber ofE ,X = src(g) ,Y = snk(g,) , andsnk(e,) = src(e) snkie,) = src(g) ,.. ,
snk(e,_4) = src(e). If (pg, Py, ---, Py) is a finite sequence of paths such that
P = (ei, 168 2 ei’ni) ,forl<ic<k, andsnk(ei’ni) = src( €1 1) »forl<i<(k-1) ,thenwe

define



Py Pos v PIOE (e1, 1 € € 1 B s e B 1y e B nk).

Clearly, L{p4, py, ---, )0 is a path from;rc(el’ 1) tsnk(eK nk) . If there is a path frohid V to

Y OV, thenX is arancestorof Y, andY is alescendantbof X. A path that is directed from a vertex to
itself is acycle. If G is acyclic, aopological sortfor (V, E) is an orderingv,, v, ..., v),) of the mem-
bers ofV such that for ea@l] E ((src(e) = ) and (snk(e) = \ﬁ)) O (i<j)

If eis an SDF edge, then tlielayless versiorof e is an edge’ suchthat = e  |if
delay(e) = 0, and ifdelay(e) # 0 , there’' isthe edge defineddrg(e') = src(€ snk(e') = snk( @ ,
anddelay(e') = 0 .1fG = (V, E) is an SDF graph, th&éh dslaylessf delay(e) = O for all e E,
and thedelayless versiorof G is the SDF graph defined by, E') , where
E' = {the delayless version efe[] B . In words, the delayless version®f is the graph that results
from setting the delays on all edges to zero.

A contiguous sequence of actors and schedule loops in a looped scBedule  isstddbkahad-
ule of S. For example, the schedul€3AB)C (2D(3AB)C) , dd&)(2D(3AB)C) are all subsched-
ules of(4E)(2D(3AB)C) . IfS, is asubschedule 8f ,thgy catained inS, andS, isnestedin S
if S is contained inS and;#S .

We denote the set of actors that appear in a single appearance séhedaletord($) , and given
an A0 actorg(S) , we definanv(A, S to be the number of times Bat  invekes . Similady, if isa
subschedule 08 inv(S,, S) is the number of times that  invékges . For example, if
S = (2(3B(2CD)))(5E), theninv(E, S) = 5, andnv((2CD),S) = 6 .

We defineposition(X, S) to be the number of actors that lexically preéede in the single appear-
ance schedul& . Thus,% = (2(3B)(5C))(7A) ,thg@osition(A, S) = 2 . Also, kxdcal ordering
of a single appearance sched8le , dentgrdrden(S) , is the sequence of(AGtoks, ..., A,)
where{ A}, A,, ..., A} = actor(S) , andoosition(A;, S) = i—1 foreach . Thus,
lexorder((2(3B)(5C))(7A)) = (B G A. We will apply the following obvious fact about lexical order-

ings.
Fact 1: If Sis a valid single appearance schedule for a delayless SDF graph, then whénever is an
ancestor ofY , we havposition(X, S) < position( Y, $
We will also apply the following fact, whose proof can be found in [2].
Fact 2: Supposethat = (V, E) isa consistent, connected SDF g&aph, is a single appearance sched-

ule for G, andk is any positive integer. Then there exists a valid single appearance séhedute  for



suchthatJ(S) = k JexordeS) = lexorder § , andnax_tokenge, S) < max_tokené ,e )S , for each
el E.

Suppose tha is a looped schedule for an SDF géaph Zand is a set of actors. If we remove
from S all actors that are notid , and then we repeatedly remove all null loops (loops that have empty
bodies) until no null loops remain, we obtain another looped schedule, which we padijéotion of S
onto Z , denotedprojection(S, 2) . For examplptojection((2(2B)(5A)), { A, C}) = (2(5A))

Clearly, projection(S, 2) fully specifies the sequence of token populations occurring on each edge in
subgrapi{Z) . More precisely, foramA 0 Z ,any1{1, 2 ...,inv(A, §} ,andany input edge A of
contained insubgrapi{Z) , the number of tokens queuegon just beforie the thinvocafion & in
equals the number of tokens queueceon just before the thinvocatton of in an execution of

projection(S, Z) . Thus, we have the following fact.

Fact 3: If Sis a valid looped schedule for an SDF gragh= (V, E) , and Vv , then
projection(S, 2) is a valid looped schedule fesubgrapt{Z) , and

max_tokenge, projection(S 2)) = max_tokeng ,e )S for each edge isubgrapiZ)

If Z is a subset of actors in a connected, consistent SDF @aph , we define
pPg(Z) = ged({ qG(A)|A O Z}), and we refer to this quantity as tiepetition count of Z. The subscript

may be dropped iG is understood from context.

2.1 Clustering
Given a connected, consistent SDF gr&ph= (V, E) , a subSeY , and adcidr :
clustering Z into Q means generating the new SDF gréph E’') suchvthat V-Z+{Q} and

E' = E-({e|(src(& O Z)or (snkie) O 2}) + EL, whereEU is a “modification” of the set of edges
that connect actors i to actors outsid&of . If for eachE suclsitb@s) O Z siakid) [ Z ,

we definee’ by
src(e') = Q, snk(e') = snk( 9,
delay(e') = delay( §, prod(e’) = prod(€) x (qg(src(e))/pg(Z)), andconge’) = cony 9 ;
and similarly, for eackeJ E such thabk(e) 0 Z aett(e)d Z ,wedeBhe by
src(e') = src(e), snk(e') = Q

delay(e') = delay( 8, prod(e') = prod(e), and



conge') = cong § x (qg(snk(e))/ps(2)),
then, we can specifgl] by
EL = {€'|(src(e) O Zand snk(e) O 2) or (snk(e) O Zand src(e) 0 2)} .

For eache’ 0 EUJ , we say that corresponds toe and vice versag correspondsgo ). The graph that
results from clustering intQ iG is denoteldister;(Z, Q) , or simglyster( 2 . Intuitively, an
invocation ofQ incluster;(Z, Q) corresponds to an invocation of a minimal valid schedule for
subgrapi{Z) in G. We say thaZ islusterableif cluster;(Z, Q) is consistent, and 6 is acyclic, we
say thatZ introduces a cycleif cluster;(Z, Q) contains one or more cycles. Fig. 2 gives an example of
clustering. Here, edgéD, Q)  correspondg @, C) (and vice versa)(@né) corresponds to
(B, A) .

The following fact relates the repetitions vector of an SDF graph obtained by clustering a subgraph

to that of the original SDF graph. The proofs of both parts can be found in [3].
Fact4: (a).If G = (V, E) is a connected, consistent SDF graph] V ,@he cluster;(Z, Q) ,
thenqg (Q) = pg(2) ,and foreacA U (V - 2) qg(A) = qg(A)
(b). If G is a connected, consistent SDF graph &id= (V', E’) is a connected subgraph of
G, then foreacl A V' g5 (A) = dg(A)/ pg(V')
Fact 4(a) together with the definition of clustering immediately yields

Fact5: If GandG' are as in Fact 4(a), then for each egige G'INTNSE;.(e) = TNSE;(€') , Where

€' isthe edge ilG  that correspond<eto

2.2 R-schedules
If A\ is either a schedule loop or a looped schedule, we sajz\that  satiskesdnéition if one

LR @
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Figure 2. An example of clustering. In (b), we have clustei;({ B, C}, Q) , where G denotes the

SDF graph in (a). Here, qg(A, B, C D) = (3,30 20 2 .



of the following two conditions holds: (&) has a single iterand, and this single iterand is aardbfor,

N\ has exactly two iterands, and these two iterands are schedule loops having coprime iteration counts.
A valid single appearance sched@e ifRascheduleif S satisfies the R-condition, and every
schedule loop contained B satisfies the R-condition. The following result on R-schedules is established

in [2].

Theorem 1:  Suppose thaG = (V, E) is a consistent SDF graph@nd is a valid single appearance
schedule forS . Then there exists an R-sche@yle Sfor such that

max_tokenge, ;) < max_token§ ,e )Sfor all e ] E, andlexorden(Sg) = lexorder( § .

2.3 Optimally Reparenthesizing a Single Appearance Schedule
In [14], a dynamic programming algorithm is developed that constructs an optimal schedule for a

well-orderedSDF graph (a graph that has only one topological soCDXir?) time, where is the number

of actors. An adaptation of this technique is also presented for general, delayless, consistent SDF graphs
that computes a single appearance schedule that has minimum buffer memory requirement from among the
single appearance schedules that have a given lexical ordering. We refer to this adajigtiamas
Programming Post Optimization (DPPO)for single appearance schedules. DPPO can be extended effi-
ciently to handle delays and arbitrary topologies [3]. We refer to the extension that we have developed as
Generalized DPPO (GDPPO)

GDPPO gives a post-optimization for any scheduler for general SDF graphs that constructs single
appearance schedules. Applying GDPPO to a single appearance séedule yields a schedule that has a
buffer memory requirement that is less than or equal to the buffer memory requirement of every valid sin-
gle appearance schedule that has the same lexical ordefing as . In the remainder of this paper, we discuss
two heuristics for constructing single appearance schedules, and we present an experimental study that
compares these heuristics — with their schedules post-processed by GDPPO — against each other and
against randomly generated schedules that are post-processed by GDPPO. To enhance our analysis of these
heuristics, we first develop a fundamental lower bound on the buffer memory requirement of a single

appearance schedule.

1. Note that for consistent SDF graptislaylessmpliesacyclic and thus, we are referring here to the class
of consistent, acyclic — but not necessarily well-ordered — SDF graphs such that the delay on each edge is
zero.
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3 A Lower Bound on the Buffer Memory Requirement
|

Given a consistent SDF gra@ |, there is an efficiently computable upper and lower bound on the
buffer memory requirement over all valid single appearance schedules. Our lower bound can be derived

easily by examining a generic two-actor SDF graph, as shown in Fig. 3(a). From the balance equations (see

(1)), it is easily verified that the repetitions vector for this graph is givem(By B) = % g% , Where

g=gcd{ p, q ), and that ifd < %4 , then the only R-schedule for this graph, is- %A%BE . From

Theorem 1 it follows that ifl < 999 , themax_token§(A, B), S)) = 5%9 + d% is a lower bound for the
buffer memory requirement of the graph in Fig. 3(a). Similarlﬁ,?if—%9 , then there are exactly two R-

schedules —S;, an8, = %B%Ag . Singeax_token§(A, B), S,) = d ,we obtdin as a lower

bound for the buffer memory requirement. Thus, given a valid single appearance s€hedule for Fig. 3(a),

we have that

Ej < %JED Efnax_tokene(A, B),S) > %%1 + dDD, and

> %*ED (max_token§( A, B), S) = Ji (3)

Furthermore, if(A, B) is an edge in a general SDF graph, we know from Fact 3 that the projec-

tion of a valid schedul& ontpA, B} , which is a valid schedulestdrgrapi{{ A, B}) , always satisfies
max_token§ A, B), projection(S, { A B)) = max_token§ A BS). 4)
It follows that the lower bound defined by (3) holds whendverB) is an edge in a consistent SDF graph

Figure 3. Examples used to develop the buffer memory lower bound.
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G, S is a valid single appearance scheduleGon prod((A, B)) = p), (cong (A, B)) = 9 , and
g = gcd({ p, g}) . We have motivated the following definition.
Definition 1:  Given an SDF edge , we define thdfer memory lower bound (BMLB) of e,

denotedBMLB(e) , by

BMLB(e) = 5(r](e) + delay(e)) if (delay(e) <n(e)) “where

0 (delay(e)) if (delay(e) =n(e))

prod(e)cong €
ged({ prod(e), cong(€)})

n(e) =
If G = (V, E) is an SDF graph, theﬁg BMLB(e)E is called the BMLB®f , and a valid single
eTE

appearance schedule fGr that satisfiesx_tokenge, § = BMLB( ke foe AlIE is called a

BMLB schedulefor G.

In Fig. 1, we see thaBMLB((A, B)) = 3 ,arBMLB((B, C)) = 3 . Thus, a valid single appear-
ance schedule for Fig. 1 is a BMLB schedule if and only if its buffer memory requirement@quals . Itis
easily verified that only two R-schedules for Fig. 1 exis{3A(2B))(2C) ,(@%h(2(3B)C) ; the
associated buffer memory requirementsa#e6 = 9 and = 10 , respectively. Thus, a BMLB
schedule does not exist for Fig. 1.

In contrast, the SDF graph shown in Fig. 4 has a BMLB schedule. This graph results from simply
interchanging the production and consumption parameters of (®]J&) in Fig. 1. Here,

g(A B, C) = (1, 2 6), the BMLB values for both edges are again identically equal to , and
A(2B(3C)) is a valid single appearance schedule whose buffer memory requirement achieves the sum of
these BMLB values.

The following fact is a straightforward extension of our development of the BMLB.

Fact 6: Suppose thaG is an SDF graph that consists of two verticBs  n afdd edges
e, €, ..., &, directed fromA tdB . Then (a). delay(e;)) =n(e) foralld{1,2 ...,n} ,then

BB ©

Figure 4. An SDF graph that has a BMLB schedule.
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(dg(B)B)(ag(A)A) is a BMLB schedule foG ; (b) otherwisgg;(A)A)(qg(B)B)  is an optimal
schedule — that is, it minimizes the buffer memory requirement over all valid single appearance schedules

— for G, and it is a BMLB schedule if and onlydelay(e,) <n(e) far<i<n

Fact7: If G = (V, E) is a connected, consistent, acyclic SDF graph, @galdy(e) <n(e) for all
el E, thenS is a BMLB schedule for the delayless versio@ of if and oy if is a BMLB schedule for
G.
Proof: Let G' denote the delayless version®f SIf isa BMLB schedul&for ,$en isavalid
schedule foiG  that satisfiesax_tokeng(e, § = max_tokeng.(e, § + delay(e) foralll E . It fol-
lows from Definition 1 thaS is BMLB schedule f& . Similarly3f a BMLB scheduleGor ,t8en s
a valid schedule fo&', andmax_tokeng. (e, § = max_tokeng(e, § —delay(e) . Again, from Defini-
tion 1, S must be a BMLB schedule f& Q.E.D.

A proof of the following fact can be found in [2].

Fact 8: If G is a connected, consistent SDF graph and is an edge in , then

) TNSE;(e)
n(e) = pc({src(e), snk()})”

4 PGAN for Acyclic Graphs
-]
In the originalPairwise Grouping of Adjacent Nodes (PGABQHhnique, developed in [4], a cluster

hierarchy is constructed by clustering exactly two adjacent vertices at each step. At each clusterization
step, a pair of adjacent actors is chosen that maximizes over all clusterable adjacent pairs.

To check whether or not an adjacent pair is clusterable, PGAN maintains the cluster hierarchy on
theacyclic precedence graph (AP{A)3]. Each vertex of the APG corresponds to an actor invocation, and
each edggx, y) signifies that at least one token produced by is consumed by in a valid schedule.
PGAN determines whether or not an adjacent pair is clusterable by checking whether or not its consolida-
tion introduces a cycle in the APG. This check is performed efficiently by applygaglaability matrix
which indicates for any two APG verticesy , whether or not there is a pathxfrorg  to

Unfortunately, the cost to compute and store the APG reachability matrix can be prohibitively high
for some applications [2]. Since a large proportion of DSP applications that are amenable to the SDF

model can be represented as acyclic SDF graphs, we propose an adaptation of PGAN to acyclic graphs,
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calledAcyclic PGAN (APGAN), that maintains the cluster hierarchy and reachability matrix directly on
the input SDF graph rather than on the APG.

In an acyclic SDF grap® , itis easily verified that a suset of actors is not clusterableZonly if
introduces a cycle. This condition is easily checked given a reachability mat@x for  [2]. Since the exist-
ence of a cycle ircluster;(Z, Q) is not a sufficient conditionZor  not to be clusterable, the clusterize-
ability test that we apply in APGAN is nexact it must be viewed as a conservative test. For some graphs,
this imprecision can prevent APGAN from attaining optimal results [2]. In exchange for some degree of
suboptimality in these cases, our clusterization test attains a large computational savings over the exact test
based on the reachability matrix of the APG, and this is our main reason for adopting it.

Fig. 5 illustrates the operation of APGAN. Fig. 5(a) shows the input SDF graph. Here
q(A,B,C D E =(62451,andfori = 1,2 3 4,Q, represents thie th hierarchical actor instan-
tiated by APGAN. Each edge corresponds to a different adjacent pair; the repetition counts of the adjacent
pairs are given bp({ A, B}) = p({A C}) = p({B,C}) =2 ,and
p({C,D}) = p({E,D}) = p({B, E}) = 1. Thus, APGAN will select the one of the three adjacent
pairs { A, B} ,{A C} ,or{B,C} foritsfirst clusterization step. Examination of the reachability matrix
yields that{ A, C} introduces a cycle due to the ddth B), (B, C)) , While the other two adjacent pairs
do not introduce cycles. Thus, APGAN chooses arbitrarily betyée} {Bn@} as the first adja-
cent pair to cluster.

Fig. 5(b) shows the graph that results from clustefiAgB} into the hierarchicalyactor . Here,
q(Q4,C, D, E) = (2,45 1), and{Q,, C} uniquely maximizes over all adjacent pairs. Since
{Q,, C} does not introduce a cycle, APGAN selects this adjacent pair for its second clusterization step.
Fig. 5(c) shows the resulting graph.

In Fig. 5(c), we havey(Q,, D, E) = (2,5, 1) , and thus all three adjacent pairs pavel

(d) (€)

Figure 5. An illustration of APGAN.
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Among these, clearly, on{yQ,, E} add, D} do not introduce cycles, so APGAN arbitrarily selects
among these two to determine the third clusterization pair. Fig. 5(d) shows the graph that results when
{E, D} is chosen. This graph contains only one adjacentj§ajr Q,} , and APGAN will consolidate
this pair in its final clusterization step to obtain the single-vertex graph in Fig. 5(e).

Figs. 5(b-e) specify the sequence of clusterizations performed by APGAN when applied to the
graph of Fig. 5(a). We define thebgraph corresponding toQ; to be the subgraph that is clustered in the
i th clusterization step. Thus, for example, the subgraph corresponding to consists @ actors and
C, and the two edges directed frd@d) Qo . A valid single appearance schedule for Fig. 5(a) can easily
be constructed by recursively traversing the hierarchy induced by the subgraphs correspondiag to the  s.
We start by constructing a schedule for the top-level subgraph, the subgraph correspaiaging to . The
subgraphG; corresponding to ea@h consists of only two aktors Y,and , such that all €gjges in
are directed fronX; t&; . Thus, from Fact 6, it is clear how an optimal schedule can easily be con-
structed for the subgraph corresponding to €ach  : if eacheedg®; in  sakdéig®) = n(e) , then
we construct the schedu@qui(Yi )Y; )(qGi(Xi)Xi) , and otherwise we construct
(qGi(Xi)Xi)(qGi(Yi)Yi). In Fig. 5, This yields the “top-level” schedul2Q,)Q;  (we suppress loops
that have an iteration count of one) for the subgraph corresponding to

Next, we recursively descend one level in cluster hierarchy to the subgraph correspofjingto
and we obtain the schedu{®D)E . Since this subgraph contains no hierarchical &9k, is
immediately returned as the “flattened” schedule for the subgraph correspon@ing to . This flattened
schedule then replaces its corresponding hierarchical actor in the top-level schedule, and the top-level
schedule becomed2Q,)(5D)E

Next, descending tQ, , we construct the sched|¢2C) for the corresponding subgraph. We
then examine the subgraph correspondin@ {o to obtain the scli8dyR . SubstitutingQhis for
the schedule for the subgraph correspondir@ jo becBreB(2C) . This gets substitQted for in

the top-level schedule to yield the schedSIg&‘ (2(3A)B(2C))(5D)E for Fig. 5(a).
From Sp and Fig. 5(a) it is easily verified tHalffer_memorySp) %cg BMLB(e)E , Where
eTE

E is the set of edges in Fig. 5(a), are identically equdBto , and thus in the execution of APGAN illus-

trated in Fig. 5, a BMLB schedule is constructed.

As seen in the above example, the APGAN approach, as we have defined it here, does not uniquely

specify the sequence of clusterizations that will be performed, and thus, it does not in general, result in a
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unique schedule for a given SDF graph. APGAN together with an unambiguous protocol for deciding
between adjacent pairs that are tied for the highest repetition count fé&xRG#N instance which gen-
erates a unique schedule for a given graph. For example, one tie-breaking protocol that can be used when

actors are labelled alphabetically, as in Fig. 5, is to choose that adjacent pair that maximizes the sum of the
“distances” of the actor labels from the letter “A”. If this protocol is used to break the tie befwe&)
(“distance sum” i+ 1 =1 )andB, C} (distance suniis 2 = 3 ) in the first clusterization of step

of Fig. 5, then{ B, C} is chosen.

If an efficient data structure is used to maintain the list of pairwise clustering candidates, then it
can be shown that APGAN instances exist with running times thﬂ(at%E)

We say that an adjacent pair isAPGAN candidateif it does not introduce a cycle, and its repe-
tition count is greater than or equal to all other adjacent pairs that do not introduce cycles. Thus, an
APGAN instance is any algorithm that takes a consistent, acyclic SDF graph as input, repeatedly clusters
APGAN candidates, and then outputs the schedule corresponding to a recursive traversal of the resulting
cluster hierarchy.

In the following two sections, we show that for a consistent, acyclic SDF ¢faph) that has a
BMLB schedule, and that satisfidelay(e) <n(e) for eadh E , any APGAN instance is guaranteed to
obtain a BMLB schedule when applied to this graph.

The following fact, which is easily understood from our discussion of the example in Fig. 5, is fun-

damental to developing our result on the optimality of APGAN instances.
Fact 9: Supposes is a connected, consistent, acyclic SDF graph suatethgte) < n(e) for each

el E; P is an APGAN instance; anl  is the schedule that results ®hen isappBedto . Then

buffer_memoryS) = gE BMLB( ‘¢, whereE is the set of edges that are contained in the subgraphs
€ Q

corresponding to the hierarchical actf€3; } instantiate® by

For the example of Fig. I, is the set of six edges that are enclosed by dashed ovals in Fig. 5(a-
d). It is easily seen that the BMLB values for these edge8 afe 2,1Q 2 , 20and . Thus, Fact 9 states
that the schedule obtained from the sequence of clusterizations shown in Fig. 5 has a buffer memory
requirement equal t8 + 6+ 2+ 10+ 2+ 20= 43 , which we know is correct from the discussion above.

There are two main parts in the development of our optimality result. First, we define a certain

class of “proper” clusterizations; we show that for delayless graphs, such clusterizations have the property
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that they do not increase the BMLB values on any edge; and we show that under the assumption that a
BMLB schedule exists, a clustering operation performed by any APGAN instance is guaranteed to fall in
the class of proper clusterizations. Then we show that clustering an APGAN candidate cannot transform a
graph that has a BMLB schedule into a graph that does not have a BMLB schedule. From these three

developments and Facts 7 and 9, the desired result can be derived easily.

5 Proper Clustering
|

Definition 2:  If G is a connected, consistent SDF graph, &g Y} is an adjacent irin  that does
not introduce a cycle, we say th@x, Y} satisfiegtioper clustering conditionin G if for each actor
ZUO{X, Y} thatis adjacent to a member pX, Y} , we have gi{éz, P}) dividéX, Y}) , for
eachPO{ X, Y} tha¥Z is adjacent to.

InFig. 5(8)q(A,B,C, D E) = (6,245 1 ,andp({B,C}) = 2 isdivisible by
Pp{AC}H) =2,p{A B}) = 2,p({C,D}) = 1,andp({B, E}) = 1 ,andthug,B, C} satisfies the
proper clustering condition. Conversedy{ B, E}) is not divisibleplfy/B, C}) { BpE} does not
satisfy the proper clustering condition.

The motivation for Definition 2 is given by Theorem 2 below, which establishes that when the
proper clustering condition is satisfied, clusterfng, Y} does not change the BMLB on any edge, and
that when the proper clustering condition is not satisfied, clust¢nifor} increases the BMLB on at
least one edge. Thus, a clustering operation that does not satisfy the proper clustering condition cannot be
used to derive a BMLB schedule.

To establish Theorem 2, we will use the following simple fact about greatest common divisors,
which we state here without proof.

Fact 10: Suppose thad, b, ¢ are positive integersged({ a, b}) divides({ a, c}) , then

gced({a, b, ¢t) = ged({ a B); otherwise,gcd({a, b, ¢})<gcd({a ) .

Theorem 2:  Suppose thaG is a consistent, connected, delayless SDF graghXaxgl is a cluster-
able adjacent pair i . ffX, Y}  satisfies the proper clustering condition, then for eack edge in
G.=cluster;({ X, Y}), BMLB(¢e') = BMLB(¢€), wheree' isthe edge @ that corresponds to . If

{ X, Y} does not satisfy the proper clustering condition, then there exists ae edgg, in such that
BMLB(€') < BMLB(€).

For example, in Fig. 6(aBMLB((A, B)) = 2 BMLB((B,C)) =3 ,and
q(A, B, C) = (1, 2 6). Figs. 6(b) and 6(c) respectively shaluster;({ A, B}, Q) and
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cluster;({ B, C}, Q) , whereG denotes the graph of Fig. 6(a). In Fig. 6(b), we see thatdif (B, C)

thene = (Q,C) ,andBMLB(e) = 6 , whildBMLB(¢e') = 3 , and thuBMLB(e) > BMLB(€) .In

contrast, in Fig. 6(c), we see thakif = (A, B) ,ther (A Q) , &MLB(e) = BMLB(€) = 2

These observations are consistent with Theorem 2 giBc€} satisfies the proper clustering condition,
while { A, B} does not.

Proof of Theorem Zirst, suppose thai X, Y}  satisfies the proper clustering conditioe. Let be an edge
in G, and lete’ be the corresponding edgé&in  srif(e), snk(e) # Q , therr € , S0 from Definition
1, it follows thatBMLB(e) = BMLB(€) .

If src(e) = Q, observe thatsnk(e) = snk(é) andsrc(e’) 0{ X Y} ,and observe from
Fact 4(a) thach({ src(e), snk(e)}) = gcd({ag(X), ag(Y), ag(snk(e))}) . Thus, sindeX, Y} satis-
fies the proper clustering condition, it follows from Fact 10 that

Pg ({src(e), snk(€)}) = pg({src(e'), snk(€)}). From Facts 5 and 8, we conclude that

BMLB(e) = BMLB(€). A symmetric argument can be constructed for the tatsi€e) = Q) . Thus, we
have thatBMLB(e) = BMLB(€) whenevefX, Y}  satisfies the proper clustering condition.
If {X, Y} does not satisfy the proper clustering condition, then there exists arzddtpX, Y}

that is adjacent to sonfed { X, Y}  such that
pg({Z, P}) does not dividep({ X, Y}) . (5)
Without loss of generality, suppose tiiat= X ahd is a predecesZor of (the other possibilities can be

handled with symmetric arguments). leé&t  be an edge directedXromZ td& in , &ndlet be the corre-

sponding edge (directed fro@  #I )@, .From Fact 4(a),
pg ({ src(e), snk(€)}) = ged({qg(X), dg(Y), ag(snk(e))}), and thus from (5) and Fact 10, it follows
thatpg ({ src(e), snk(€)}) <pg({ src(e'), snk(€)}) . From Facts 5 and 8, we conclude that

BMLB(e) > BMLB(¢') . Q.E.D.

The following lemma establishes that if there is an adjacenf{pgily} X , isapredecéssorof

(@)

(b) (©)
(A 1BJ3 »(C) @O

Figure 6. An example used to illustrate Theorem 2.
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that introduces a cycle in a delayless SDF graph that has a BMLB schedule, then there exists an actor

V O{X Y} thatis a predecessor¥f and a descendant (recall the distinction béégeendanand
successgrof X, such that the repetition count ¥, Y} is divisible by the repetition coufiXofy}

A simple example is shown in Fig. 7.

Lemma 1: Suppose thaG is a connected, delayless, consistent SDF graph that has a BMLB sched-

ule, ande isanedgei® such tharc(e), snk(e} introduces a cycle. Then there exists ah actor in

G such thatV is a predecessorgiik(e) V, is adescendasrt() p@aHcsre(e), snk(e)})
dividespg({V, snk(e)}) .

Proof: Observe that from Theorem 1, there exists a BMLB schéqyle G for thatis an R-schedule; since
({ src(e), snk(@)}) introduces a cycle, there is a pé, e,, ...,€,) N32 , frero(e)  smd(e) ; and
from Fact 1,position(src(e), ) < position(src( §,), S3) < position(snk( §, ) . Thus, there exists a
schedule loof = (iy(i,1B4)(i,B,)) iN(1Sg) ,whe®; aml  are schedule loop bodies such that (a)
B, containssrc(e) , and, contains bosic(e,)  asdk(e) , Org) contains lsatbe) and
src(e,), andB, containssnk(e) . Observe tHat is simply the innermost schedule IqdiBj) that

containssrc(e) ,src(e,,) , angnk(e)

Without loss of generality, assume that (a) applies — that is, assunigg that ~ centé@)s ,and
B, contains botrsrc(e,,) andnk(e) . Then there is a schedule Idop (i, (i,'B;")(i,'By")) con-
tained in(i,B,) suchthaB," contairsc(e,) ,aBd contasmk(e) . This is the innermost sched-
ule loop that containsrc(e,) andnk(e) , and this loop may(bg,) , Or it may be nested in
(i,B,) .

Let I be the product of the iteration counts of all schedule loo(E3R) that contain

Figure 7. An illustration of Lemma 1. Here, q(V, X, Y) = (2,1, 2) , X(2VY) is a BMLB schedule,
and { X, Y} introduces a cycle. Thus, Lemma 1 guarantees that p({ X, Y}) divides p({V, Y}) ,
and this is easily verified from q.
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(i,B1)(i,B,) . Similarly, letl" be the product of all schedule loops containgd,B,) that contain
(i;'By")(i,'By") . Then, it is easily verified that
max_tokenée, §) = qg(src(e))prod(e)/ | = TNSHe)/ |, and

max_tokenée,,, Sg) = (qg(src(e,))prod(e,))/ (11') = TNSHe,)/( II).

SinceSy is a BMLB schedule, we have from Fact 8 thet{ src(e), snk(e)}) = | , and
pg({src(e,), snk(€}) = 11". Thus,ps({ src(e), snk(e)}) divideps({ src(e,), snk(€)}) . Further-
more, since the patte;, e,, ..., e,) originatessit(e) , we know trete, ) is a descendant of
src(e). Q.E.D.

The following corollary to Lemma 1 states that under the hypotheses of Lemma 1 (a BMLB sched-
ule exists and src(e), snk(€)} introduces a cycle), we are guaranteed the existence of an adjacent pair
{V, snk(e)} suchthaf{V, snk(e)} does not introduce a cycle, and the repetition count of
{ src(e), snk( €} divides the repetition count ¢iV, snk(e)}

Corollary 1:  Assume the hypotheses of Lemma 1. Then, there exists a predétessim(e) of
snk(e) such thaf V, snk(e)} does not introduce a cycle, pifisrc(e), snk(€}) divides

P({V, snkie)}).

Proof: Let X = src(e) andY = snk(e) . From Lemma 1, there exists an adjacent{pady, Y} such
that (a).p({ X, Y}) dividep({W,,Y}) , and (b). there is a path frgm Wp  {W,, Y} intro-
duces a cycle, then again from Lemma 1, we Raig, Y} sucpthe,, Y}) dn(fes,, Y}) ,
andthereis apath, froMv; W, .Furthermdfg,# X , sifwg = X) impliesimt p,)0 is
a cycle, and thus th& is not acyclic.

If ({W,, Y}) introduces a cycle, then from Lemma 1, we hg\/5, Y}) suchptt{aw/,, Y})
dividesp({W3, Y}) , and thereis a pafly ~ fromM, W6, . Furthermétez X , Since otherwise
[Py, Py P3)UIs acycle inG ; similarlyWs # W, , since otherwisép,, p3)0 is a cycle. Continuing
this process, we obtain a sequencdistﬁnctactors(wl, W, ...) .Since th\?!\/i s are distinct and we are
assuming a finite graph, we cannot continue genersi{ng s indefinitely. Thus, eventually, we will arrive at
aW,, suchtha{{ W, Y}) does notintroduce a cycle. Furthermore, by our constrpgtiof,Y})
dividesp({W,, Y}) ,andfor O0{1, 2 ...,(n=1)} p({W,, Y}) dividep({W,, Y}) .Itfollows that
p({ X, Y}) dividesp({W,, Y}) .Q.E.D.
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From Corollary 1, we obtain the following theorem, which states that given an APGAN candidate

in an SDF graph that has a BMLB schedule, no adjacent pair can have higher repetition count.

Theorem 3:  Suppose thaG is a connected, delayless SDF graph that has a BMLB schedple, and is
an APGAN candidate i®e . Then for all adjacent pairs Ginp(p) = p(p")

As an example consider Fig. 8(a), and suppose that the SDF parameters on the graph edges are
such that({ A, B}) is an APGAN candidate — that(i{sA, B}) does not introduce a cycle and maxi-
mizes p(*) over all adjacent pairs that do not introduce cycles. $iig;eC} ) introduces a cycle, the
assumption that{ A, B}) is an APGAN candidate is not sufficient to guarantee that
p({B, C}) <p({A B}). However, Theorem 3 guarantees that under the additional assumption that Fig.
8(a) has a BMLB schedule({B, C}) is guaranteed not to expég4, B})

Fig. 8(b) shows a case where this additional assumption is violated. Here,

g(A B C D) = (24, 8 1). Clearly, four invocations d8 must fire before a single invocatio@ of can
fire, and thus for any valid scheduie max_token§B, C), S) =24 x 2 = 8> BMLB((B, C)) ; conse-
qguently, Fig. 8(b) cannot have a BMLB schedule. It is also easily verified that among the three adjacent
pairs in Fig. 8(b) that do not introduce cycl§s\, B} is the only APGAN candidate, and

(p({B, C}) =4), whilep({A, B}) = 2. Thus, Theorem 3 does not generally hold if we relax the
assumption that the graph in question has a BMLB schedule.

Proof of Theorem 3By contraposition.) Suppose tha¢p’') > p(p) . Then sipce is an APGAN candi-
date,p’ must introduce a cycle. From Corollary 1, there exists an adjacept pair surh that  does not
introduce a cycle, ang(p')  dividgs(p”) . It follows thtp”) > p(p) . Sipce does not introduce

a cycle,p cannot be an APGAN candidaeE.D.

Lemma 2: Suppose thaG = (V, E) is a consistent, connected SDF gRiphy is a subset of

actors such tha€ = subgrapi{R)  is connected, afadv, ZOR . Then

@) G'Q (b)
©

Figure 8. Examples used to illustrate Theorem 3.
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(ged({ ac(X), ac(Y)}) dividesged({ ac(Y), ac(2)}1))0

(ged({ ag(X), ag(Y)}) dividesged({ ag(Y), ag(2)})) -

Proof: This result is a straightforward consequence of Fact 4(b). See [2] for details.

The following lemma states that in a connected SDF graph that contains exactly three actors, and
that has a BMLB schedule, the repetition count can exceed unity for at most one adjacent pair. For exam-
ple, consider the three-actor graph in Fig. 9. He(é, B, C) = (6, 2, 3) (268A)B)(3C) is a
BMLB schedule. The two pairs of adjacent actfws, B} &l C} have repetition couhts of and

1, respectively. Thus, we see that only one adjacent pair has a repetition count that exceeds unity.

Lemma 3: Suppose that ()5 is a connected, consistent, delayless SDF graph that consists of
exactly three distinct actods Y, a@d ;(X). isapredecessorof Z(c). is adjadentf{, Y} ;
(d). pg{ X, Y})2ps({P,Z});and (e)G has a BMLB schedule. Theg({P, Z}) = 1

Proof: For simplicity, assume thd& = Y , and th&at is a success®r of . The other three possible cases
— (P =Y,Zisapredecessordf ), andE X Z, isapredecessor or succedsor of )— can be han-
dled by simple adaptations of this argument.

Let €y be an edge directed frosn Yo anddg be an edge directedvfrord to . From The-
orem 1, there exists a BMLB R-sched@e  @r .SiGce contains only three &tors, has exactly two
R-schedules, and it is easily verified that eitBer is of the foyX) (i,(i5Y)(i,2)) , or it has the form

(12052X)(13Y)(142) -

If Sg = (i1X)(i5(i3Y)(i,Z)), then max_tokeneexy, Sg) = TNSK )8,) , and thus from Fact 8,
we have thafFNSE(eXy) = TNSH Qy)/p({ X, Y}) ,whichimpliestha({ X, Y}) = 1 . From Assump-
tion (d), it follows thatp({Y, Z}) = 1 .

Conversely, suppose th8t = (j1(J,X)(i3Y))(J4Z) - Then
max_token(seyz, Sg) = TNSH ﬁ), so from Fact 8, we have that
TNSE(eyZ) = TNSH 92)/p({ Y, Z}), which implies the desired resuf.E.D.
The following theorem guarantees that whenever an APGAN instance performs a clustering oper-

1 3 3 2

Figure 9. An illustration of Lemma 3.
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ation on a top-level graph that has a BMLB schedule, the adjacent pair selected satisfies the proper cluster-
ing condition in the top-level graph. For example in Fig. 5{(a, B} f#BdC} are APGAN
candidates, and it is easily verified from the repetitions vepiés B, C, D, E) = (6,24 5 ) that both

of these adjacent pairs satisfy the proper clustering condition in Fig. 5(a). Similarly, for Fig. 5(b) we have

q(Q4,C, D, E) = (2,45 1), and thug Q,, C} isthe only APGAN candidate. Thus, Theorem 4 guar-
antees thaf Q,, C}  satisfies the proper clustering condition in Fig. 5(b).

Theorem 4.  SupposeG is a connected, delayless SDF graph that has a BMLB sched(l, af}d
is an APGAN candidate i . ThepX, Y} satisfies the proper clustering condit®n in

Proof: Let ZO{ X, Y} be an actor that is adjacent to sofmeél { X, Y} ; let

C = subgraphi{ X, Y, 4 ), and observe from Fact 3that has a BMLB schedule. From Theorem 3,
pPc{Z, P}) < pg({ X, Y}), and from Fact 4(b), it follows tha@i-({ Z, P}) < p-({ X, Y}) . Applying
Lemma 3 to the three-actor gragh , we seegh&fZ, P}) = 1 , and thus from Lerpe Z, P})
dividespg({ X, Y}) .Q.E.D.

6 The Optimality of APGAN for a Class of Graphs
|

In this section, we use the main the results of Section 5 to show that for an acyclic SDF graph
(V, E) that has a BMLB schedule, and that satisfielay(e) <n(e) , foe dllE , any APGAN
instance is guaranteed to construct a BMLB schedule.

In Section 5, we showed that clustering an adjacent pair that satisfies the proper clustering condi-
tion does not change the BMLB on an edge. However, to derive a BMLB schedule whenever one exists, it
is not sufficient to simply ensure that each clusterization step selects an adjacent pair that satisfies the
proper clustering condition. This is because although clustering an adjacent pair that satisfies the proper
clustering condition preserves the BMLB value on each edge, it does not necessarily preserve the existence
of a BMLB schedule [2].

Fortunately, the assumption that the adjacent pair being clustered has maximum repetition count is

sufficient to preserve the existence of a BMLB schedule. This is established by the following theorem.

Theorem 5:  Suppose thaG = (V, E) is a connected, consistent, delayless SDF graghl|with X
G has a BMLB schedule; a{dX, Y} is an APGAN candidaté in . Thester;({ X, Y}) has a
BMLB schedule.
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Proof: We assume without loss of generality tkat  is a predecesdbr of , and we prove this theorem by

induction on|V| . Clearly, the theorem holds trivially fof = 2, since in this agsster;({ X, Y})

contains no edges. Now suppose that the theorem holfg/fer 2, 3, ..., k , and consider the case
V| = (k+1).

DefineG, = clustei;({ X, Y}, Q) , and leS; be a BMLB R-schedule fér ; the existence of
such a schedule is guaranteed by Theorem 1. Sgce is an R-schedMe>aRdS, , is of the form

(i,B7)(i,B5).
Now suppose thaX, Y [ actors(Bl) , and @1' C, ....C
of subgrapt{actors(B,)) . Observe that from Fact §; = projection((i;B,), C;) is a BMLB schedule

n  denote the connected components

for eachC, . LelCJ- denote that connected component that cottains Y and . The|Cﬁiﬂde , We can
apply Theorem 5 withV| = |Cj| to obtain a BMLB sched®e  é&wuster({ X, Y}, subgrapk(Cj)) :
and from Fact 2, we can assume without loss of generalityl (i8) = J(Sj) . Then, it is easily verified

that 5152---51‘ _1SESJ- + 1SJ- +2--3,(i,B,) is a BMLB schedule fo&, . A similar argument can be
applied to establish the existence of a BMLB schedul&for whend actors(B,)

Now suppose thaX [ actor(B;) and0 actorg(B,) , and &;& be an edge directedXrom
to Y. Also, letE, denote the set of edgedp , and for eddrE, e, let  denote the corresponding
edge inG . Clearlymax_tokeneexy, SR = TNS(EXQ , and thus, sinBg is a BMLB schedule, we
have from Fact 8 thgi({ X, Y}) = 1 . From Theorem 3, it follows fhaf X', Y'} = 1 for all adjacent
pairs { X', Y'} inG . Thus, from Fact 8,

BMLB(e') = TNSE(e') foralle' D E. (6)

Let (X4, X,, ..., X,,) be a any topological sort f@. . Then clearly,

S = (Ag (X)) (ag (X,))...(ag (X,))) is a valid single appearance scheduleGgr  , and

buffer_memor{S,) = gEc TN%EC(e)

= TNSE;(€') (from Fact 5)
Rl

= BMLB(€") (from (6))
P

= BMLB(e). (from Theorems 2 and 4)
P
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Thus,S, is a BMLB schedule fag. Q.E.D.

We are now able to establish our result on the optimality of APGAN.

Lemma 4: Suppose thaG = (V, E) is a connected, consistent, delayless SDF graph that has a

BMLB schedule;P is an APGAN instance; aBg(G) is the schedule obtained by applyinG to
ThenS;(G) is a BMLB schedule fag

Proof: By definition, P repeatedly clusters APGAN candidates until the top-level graph consists of only
one actor. From Theorem 4, the first adjacentpair  clustered®hen is ap@iedto  satisfies the proper
clustering condition, and thus from Theorem 5, the top level gfgph that results from the first clustering
operation has a BMLB schedule. Sincg ~ has a BMLB schedule we can again apply Theorems 4 and 5 to
conclude that the second adjacent ggir  clusterd®l by  satisfies the proper clustering condition, and that
the top-level grapf’, obtained from clusteripg  Tip has a BMLB schedule. Continuing in this man-
ner successively fopg, py, ---, P, ,Where s the total number of adjacent pairs clustere®®when is
applied toG , we conclude that each adjacent pair cluster€d by satisfies the proper clustering condition.
Thus, from Theorem BMLB(e') = BMLB(€) ,whenewdr amd are corresponding edges associated
with a clusterization step & . It follows from Fact 9 tihatfer_memor¢S;(G)) = g BMLB( g ,

and thusS;(G) is a BMLB schedule f@& Q.E.D. eHE

The following theorem gives our general specification of the optimality of APGAN.

Theorem 6:  Suppose that = (V, E) is a connected, consistent, acyclic SDF graph that has a BMLB
scheduledelay(e) <n(e) foraled E P isan APGAN instance; aBd(G) is the schedule obtained
by applyingP toG . ThenS;(G) is a BMLB schedule fGr
Proof: Let G' denote the delayless version®f ,anddet be the APGAN instance that begins by
checking whether or not the input gra@h is equ&to , appliesG toG, # G’ , and applies to
G, if G, #G'. Thus,P" returnsS;(G) iiG, = G' , and returnS;(G,)  otherwise.

Now, since edge delays do not affect the repetition counts of adjacent pairs, the sequence of adja-
cent pairs inG that are clustered By ~ wiegn= G’ is a sequence of maximum repetition-count clus-
terizations ofG' . Thus, clearlp’ is an APGAN instance. From Fact 7, a BMLB schedule exists for

and thus, from Lemma 4 and Fact$,.(G') must be a BMLB schedufé for . But by construction,
S (G') = Sp(G). Q.E.D.

25



To summarize, the BMLB bound is a lower bound on the amount of buffering required by any
valid single appearance schedule for an acyclic SDF graph. However, a schedule that meets this lower
bound may or may not exist. The above theorem says that whenever such a schedule exists, APGAN wiill
find it, provided thadelay(e) <n(e) . If such a schedule does not exist, then there is some schedule that
minimizes the buffering requirement (and this is greater than the BMLB). However, APGAN will not nec-
essarily find this schedule for such a graph. While the result above is of considerable intellectual interest by
itself, we will show in Section 8 that there are in fact a large class of practical SDF graphs that fall into the
class of graphs having BMLB schedules; for this class of graphs, APGAN gives memory-optimal sched-

ules.

7 Recursive Partitioning by Minimum Cuts
|

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with the inner-
most loops and working outward. In [14], we proposed an alternative top-down approach, which we call
Recursive Partitioning by Minimum Cuts (RPM@jat computes the schedule by recursively partitioning
the SDF graph in such a way that outer loops are constructed before the inner loops. The partitions are con-
structed by finding theut (a partition of the set of actors) of the graph across which the minimum amount
of data is transferred and scheduling the resulting halves recursively. The cut that is produced must have
the property that all edges that cross the cut have the same direction. This is to ensure that we can schedule
all actors on the left side of the partition before scheduling any on the right side. In addition, we would also
like to impose the constraint that the partition that results be fairly evenly sized. This is to increase the pos-
sibility of having gcd's that are greater than unity for the repetitions of the actors in the subsets produced
by the partition, thus reducing the buffer memory requirement (see Fact 4). In this section, we give an over-
view of the RPMC technique.

Suppose thaG = (V, E) is a connected, consistent SDF graptt & G is a partition ofv
into two disjoint sets/, an¥p . Defig_ = subgrapi{V ) a@g = subgrapiVy) to be the sub-
graphs produced by the cut. The cuegal if for all edgese crossingthe cut (that is all edges that are not
contained insubgrapiV,) nowsubgrapi{Vg) ), we havarc(e) 0V,  asdk(e) 0 Vz . Givena
bounding constark < |V|, the cut results in bounded sets if it satis|ﬁq§1 <K |V|_| <K . The weight of
an edgee is defined age) = TNSHe)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then is to

find the minimum weight legal cut into bounded sets for the graph with the weights defined as above. Since
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Figure 10. SDF abstraction for satellite receiver application from [Ritz95]

the related problem of finding a minimum cut (not necessarily legal) into bounded sets is NP-complete [8],
and the problem of finding an acyclic partition of a graph is NP-complete [8], we believe this problem to be
NP-complete as well even though we have not discovered a proof. Kernighan and Lin [10] devised a heu-
ristic procedure for computing cuts into bounded sets but they considered only undirected graphs. Methods
based on network flows [6] do not work because the minimum cut given by the max-flow-min-cut theorem
may not be legal and may not be bounded [14]. Hence, we give a heuristic solution for finding legal mini-
mum cuts into bounded sets. See [14] for a description and pseudocode specification of the heuristic.
RPMC proceeds by partitioning the graph by computing the legal minimum cut and forming the
schedule(p(V|)S )(p(VR)SR) . where the schedulgs Sy are obtained recursively by partitening
and Gy, . It can be shown that the running time of RPMC is give@@y|3) [14].

The RPMC algorithm is easily extended to efficiently handle nonzero delays. See [14] for details.

8 Experimental Results
|

Figure 10 shows a practical example of a graph that is in the class of SDF graphs that have a
BMLB schedule. The graph is an abstraction for a satellite receiver implementation and is taken from [18].
The graph is annotated with the produced/consumed numbers wherever they are different from unity. It is
interesting to note that a shared-buffer implementation of the flat single appearance schedule for this graph
would require a buffer of size 2040 [18] while APGAN generates a BMLB schedule having a total buffer-
ing requirement of 1540 (using a buffer on every edge of-course).

Table 1 shows experimental results on the performance of APGAN and RPMC that we have devel-
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oped for several practical examples of acyclic, multirate SDF graphs. The column titled “Average Ran-
dom” represents the average buffer memory requirement obtained by considering 100 random topological
sorts and applying GDPPO (see Subsection 2.3) to each. The data for APGAN and RPMC also includes
the effect of GDPPO. The “BMUB” column gives a simple upper bound on the buffer memory require-
ment. This bound is the sum @fielay(e) + TNSH @)  taken over all edges.

All of the systems shown below are acyclic graphs. The data for APGAN and RPMC also includes
the effect of GDPPO. As can be seen, APGAN achieves the BMLB on 5 of the 10 examples, outperform-
ing RPMC in these cases. Particularly interesting are the last three examples in the table, which illustrate
the performance of the two heuristics as the graph sizes are increased. The graphs represent a symmetric
tree-structured QMF filterbank with differing depths. APGAN constructs a BMLB schedule for each of
these systems while RPMC generates schedules that have buffer memory requirements about 1.2 times the
optimal. Conversely, the third and fourth entries show that RPMC can outperform APGAN significantly on
graphs that have more irregular rate changes. These graphs represent nonuniform filterbanks with differing
depths.

Table 2 shows more detailed statistics for the performance of randomly obtained topological sorts.
The column titled “APGAN < random” represents the percentage of random schedules that had a buffer

memory requirement greater than that obtained by APGAN. The last two columns give the mean number

Table 1. Performance of the two heuristics on various acyclic graphs.

System BMUB| BMLB| APGAN| RPMC| Average Graph
Random | size(nodes/arcs
Fractional decimation 61 47 47 52 52 26/30
Laplacian pyramid 115 95 99 99 102 12/13
Nonuniform filterbank 466 85 137 128 172 27129
(1/3,2/3 splits, 4 channels)
Nonuniform filterbank 4853 224 756 589 1025 43/47
(1/3,2/3 splits, 6 channels)
QMF nonuniform-tree filterbank 284 154 160 171 177 42/45
QMF filterbank (one-sided tree) 162 102 108 110 112 20/22
QMF analysis only 248 35 35 35 43 26/25
QMF Tree filterbank (4 channels 84 46 46 55 53 32/34
QMF Tree filterbank (8 channels 152 78 78 87 93 44/50

QMF Tree filterbank (16 channel§ 400 166 166 200 227 92/106

~
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of random schedules needed to outperform these heuristics. A dash indicates that no random schedules
were found that had a buffer memory requirement lower that obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, we have also tested the heuristics
on a large number of randomly generated 50-actor SDF graphs. These graphs were sparse, having about
100 edges on average. Table 3 summarizes the performance of these heuristics, both against each other,
and against randomly generated schedules. As can be seen, RPMC outperforms APGAN on these random
graphs almost two-thirds of the time. We choose to compare these heuristics against 2 random schedules
because measurements of the actual running time on 50-vertex graphs showed that we can construct and
examine approximately 2 random schedules in the time it takes for either APGAN or RPMC to construct
its schedule and have it post-optimized by GDPPO. The comparison against 4 random schedules shows
that in general, the performance of these heuristics goes down if a large number of random schedules are
inspected. Of course, this also entails a proportionate increase in running time. However, as shown on prac-
tical examples already, it is unlikely that even picking a large number of schedules randomly will give bet-
ter results than these heuristics since practical graphs usually have a significant amount of structure (as
opposed to random graphs) that the heuristics can exploit well. Thus, the comparisons against random
graphs give a worst case estimate of the performance we can expect from these heuristics.

All of our experiments show that APGAN and RPMC complement each other. For the practical

SDF graphs that we examine, APGAN performs well on graphs that have relatively regular topological

Table 2. Performance of 100 random schedules against the heuristics

Comparison with random schedules|| APGAN | APGAN | RPMC | RPMC | avg.to | avg.to
(200 trials) < = < = beat beat
random | random | random| random| APGAN | RPMC
Fractional decimation 92% 8% 54% 13% 3
Laplacian pyramid 74% 26% 74% 26%
Nonunif. filterbank (1/3,2/3 splits, 4, ch 1009 0% 100p6 0% -
Nonunif. filterbank (1/3,2/3 splits, 6 ch 100% 0% 10090 0% -
QMF nonuniform-tree filterbank 100% 0% 81% 7% 8
QMF filterbank (1-sided tree) 100% 0% 779 23%
QMF analysis only 99% 1% 99% 1%
QMF Tree filterbank (4 channels) 1009 0% 16%) 13% 1.
QMF Tree filterbank (8 channels) 1009 0% 87% 3% 9.
QMF Tree filterbank (16 channels) 1009 0% 96% 1% 22,
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structures and rate changes, like the uniform QMF filterbanks, and RPMC performs well on graphs that are
more irregular. Since large random graphs can be expected to consistently have irregular rate changes and
topologies, the average performance on random graphs of RPMC is better than APGAN by a wide margin
— although, from the last two rows of Table 3, we see that there is a significant proportion of random
graphs for which APGAN outperforms RPMC by a margin of over 10%, which suggests that APGAN is a
useful complement to RPMC even when mostly irregular graphs are encountered. However, the main
advantage of adopting both APGAN and RPMC as a combined solution arises from complementing the
strong performance of RPMC on general graphs with the formal properties of APGAN, as specified by

Theorem 6, and the ability of APGAN to exploit regularity that arises frequently in practical applications.

9 Related Work
-]
In [1], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer memory

requirement for certain classes of SDF graphs. Since these bounds attempt to minimize over all valid
schedules, and since single appearance schedules generally have much larger buffer memory requirements
than schedules that are optimized for minimum buffer memory only, these bounds cannot consistently give
close estimates of the minimum buffer memory requirement for single appearance schedules.

In [11], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDdycaled

static dataflowA major advantage of cyclo-static dataflow is that it can eliminate large amounts of token

Table 3. Performance of the two heuristics on random graphs

RPMC < APGAN 63%
APGAN < RPMC 37%
RPMC < min(2 random) 83%
APGAN < min(2 random) 68%
RPMC < min(4 random) 75%
APGAN < min(4 random) 61%
min(RPMC,APGAN) < min(4 random) 87%
RPMC < APGAN by more than 10% 45%
RPMC < APGAN by more than 20% 35%
APGAN < RPMC by more than 10% 23%
APGAN < RPMC by more than 20% 14%
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traffic arising from the need to generate dummy tokens in corresponding (pure) SDF representations.
Although cyclostatic dataflow can reduce the amount of buffering for graphs having certain multirate
actors like explicit downsamplers, it is not clear whether this model can in general be used to get schedules
that are as compact as single appearance schedules for pure SDF graphs but have lower buffering require-
ments than those arising from the techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchronous data-
flow graph in a parallel processing context is explored by Govindarajan and Gao in [9]. Here the goal is to

minimize the buffer cost without sacrificing throughput.

10 Conclusions
|

In this paper, we have addressed the problem of constructing a software implementation of an SDF
graph that requires minimal data memory from among the set of implementations that require minimum
code size. We have developed a fundamental lower bound, called the BMLB, on the amount of data mem-
ory required for a minimum code size implementation of an SDF graph; we have presented an efficient
adaptation to acyclic graphs, called APGAN, of the PGAN technique developed in [4]; and we have shown
that for a certain class of graphs, which includes all delayless graphs, APGAN is guaranteed to achieve the
BMLB whenever it is achievable. We have presented the results of an extensive experimental study in
which we evaluate the performance of APGAN and RPMC, a top-down technique developed in [14] that is
based on recursively applying a generalized minimum-cut operation. Based on this study, we have con-
cluded that APGAN and RPMC complement each other, and thus, techniques should be investigated for
efficiently combining the methods of APGAN and RPMC, and that in the absence of such a combined
solution, or of a more powerful alternative solution, both of these heuristics should be incorporated into
SDF-based DSP prototyping and implementation environments in which the minimization of memory
requirements is important. A version of APGAN has been implemented by Cadence Design Systems Inc.
in their Signal Processing Worksystem and we have implemented both of these algorithms in the Ptolemy
programming environment at UC Berkeley and will be making them available in the next release.

The solutions developed in this paper have focused on acyclic SDF graphs. These techniques can
be applied in a limited way to general SDF graphs [2]. More thorough techniques for jointly optimizing

code and data for general SDF graphs is a topic for further study.
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Glossary

n(e)
p(2)

prod(e) cong €

ged({ prod(e), cong €)})
Given a subset of acto’s p(Z) = gcd(q(A)|AD 2)

Given an SDF edge n(e) =

Blocking factor

BMLB

cluster;(Z, Q)

GDPPO

For each valid schedute for a connected SDF graph, there is a positive integer such
thatS invokes each actét exacthg(A) times. The constant s the called the block-
ing factor ofS .

Buffer memory lower bound. Given an SDF edgeBMLB(e) is a lower bound on
max_tokenge, S over all valid single appearance schedules for any consistent SDF
graph that containe . The BMLB of an SDF grdph is the sum of the BMLB values
over alledges ilc . ABMLB schedule f@& is a valid single appearance schedule whose

buffer memory requirement equals the BMLB®f

The SDF graph that results from clustering the subset of attors  in the SDFEgraph into
the actorQ . We may writeluster;(Z)  when there is no ambiguity.

Generalized dynamic programming post optimization. Applying GDPPO to a single
appearance schedute vyields a schedule that has a buffer memory requirement that is less
than or equal to the buffer memory requirement of every valid single appearance schedule

that has the same lexical orderingSas

Introduces a cycle

39

A subset of actorg in a connected, consistent, acyclic SDF @raph  introduces a cycle if
cluster;(Z) contains one or more cycles.

Denotes the blocking factor of the valid schedsle

max_token§ e )S

TNSH ¢

Given a valid schedul8 and an edganax_tokeng ,e )S  denotes the maximum number
of tokens that are queued en  during an executid of

Given a connected, consistent SDF gr&h  and an ActolG @(A), gives the mini-
mum number of times th&  must be invoked in a valid schedul8 for

Total number of samples exchanged on an SDF edge. Given an SD& edge in a consistent

SDF graph,TNSH ¢ = g(src(e))prod(e) .
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