
[6] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy:
a Framework for Simulating and Prototyping Heteroge-
neous Systems”,to appear in International Journal of
Computer Simulation, special issue on “Simulation Soft-
ware Development,” 1993.

[7] J. T. Buck and E. A. Lee, “Scheduling Dynamic Dataflow
Graphs with Bounded Memory Using the Token Flow
Model,” to appear in Proc. of ICASSP ‘93, Minneapolis,
MN, April, 1993.

[8] J. T. Buck, “The Ptolemy Kernel, A Programmer’s Com-
panion for Ptolemy 0.4,” Memorandum UCB/ERL M93/8,
January 19, 1993.

[9] J. Buck and E. A. Lee, “The Token Flow Model,” pre-
sented atData Flow Workshop, Hamilton Island, Australia,
May, 1992.

[10] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy:
A Mixed-Paradigm Simulation/Prototyping Platform in
C++”, Proc. C++ At Work Conference,Santa Clara, CA,
November, 1991.

[11] S. Ha, “Compile-Time Scheduling of Dataflow Program
Graphs with Dynamic Constructs,”Ph.D. Dissertation,
EECS Dept., University of California, Berkeley, CA
94720, April 1992.

[12] Soonhoi Ha and E.A. Lee, “Compile-Time Scheduling and
Assignment of Dataflow Program Graphs with Data-
Dependent Iteration,”IEEE Transactions on Computers,
November, 1991.

[13] A. Kalavade, E.A. Lee, “Hardware/Software Co-Design
Using Ptolemy - A Case Study”, Proceedings of the IFIP
International Workshop on Hardware/Software Co-Design,
Grassau, Germany, May 19-21, 1992.

[14] A. Kalavade, “Hardware/Software Codesign Using
Ptolemy”, MS Report, Electronics Research Laboratory,
University of California, Berkeley, CA 94720, December,
1991.

[15] P. D. Lapsley, “Host Interface and Debugging of Dataflow
DSP Systems”,MS Report, Electronics Research Labora-
tory, University of California, Berkeley, CA 94720,
December, 1991.

[16] E. A. Lee, “Multidimensional Streams Rooted in Data-
flow”, Proc. IFIP Working Conference on Architectures
and Compilation Techniques for Fine and Medium-Grain
Parallelism, Orlando, FL, January, 1993.

[17] E. A. Lee, “Data Parallelism in Graphical Signal Flow
Representations of Algorithms”, Technical Report UCB/
ERL M92/110, EECS Dept., UC Berkeley, August 13,
1992.

[18] E. A. Lee, “A Design Lab for Statistical Signal Process-
ing,” Proceedings of ICASSP ‘92,San Francisco, March,
1992.

[19] E. A. Lee, “Static Scheduling of Data-Flow Programs for
DSP,” inAdvanced Topics in Data-Flow Computing, ed. J.-
L. Gaudiot and L. Bic, Prentice-Hall, 1991.

[20] E. A. Lee, “Consistency in Dataflow Graphs”,IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 2, No. 2,
April 1991.

[21] E. A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhatta-
charyya, “Gabriel: A Design Environment for DSP”,IEEE
Trans. on ASSP, November, 1989.

[22] E. A. Lee and D. G. Messerschmitt, “Synchronous Data
Flow,” IEEE Proceedings, September, 1987.

[23] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Pro-
cessing,”IEEE Transactions on Computers, January, 1987.

[24] Brian Link, The Waveguide Toolkit, MS Report, EECS
Dept., University of California, Berkeley, CA 94720,
December, 1992.

[25] D. G. Messerschmitt, “A Tool for Structured Functional
Simulation”,IEEE Journal on Selected Areas in Communi-
cations,SAC-2(1), January, 1984.

[26] J. Ousterhout, “Tcl: An Embeddable Command Lan-
guage,”USENIX Conference Proceedings, Winter, 1990.

[27] J. Ousterhout, “An X11 Toolkit Based on the Tcl Lan-
guage,”USENIX Conference Proceedings, Winter, 1991.

[28] J. Pino, S. Ha, E. Lee, J. Buck, “Software Synthesis for
DSP Using Ptolemy”, invited paper in theJournal on VLSI
Signal Processing, special issue on “Synthesis for DSP”,to
appear.

[29] D. G. Powell, E. A. Lee, W. C. Newman, “Direct Synthesis
of Optimized DSP Assembly Code from Signal Flow
Block Diagrams,”Proceedings of ICASSP ‘92,San Fran-
cisco, March, 1992.

[30] G. C. Sih and E.A. Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heterogeneous
Processor Architectures”,to appear, IEEE Trans. on Par-
allel and Distributed Systems,1993.

[31] G. C. Sih and E. A. Lee, “Declustering: A New Multipro-
cessor Scheduling Technique,”to appear in IEEE Trans.
on Parallel and Distributed Systems,1993.

[32] S. Sriram and E. A. Lee, “Design and Implementation of
an Ordered Memory Access Architecture,”to appear in
Proc. of ICASSP ‘93, Minneapolis, MN, April, 1993.

[33] Gregory Walter,ATM, Speech Coding, and Cell Recovery,
MS Report, EECS Dept., University of California, Berke-
ley, CA 94720, December, 1992.

[34] Anthony Wong, “A Library of DSP Blocks and Applica-
tions for the Motorola DSP96000 Family”,MS Report,
Plan II, EECS Dept., UC Berkeley, CA 94720, May, 1992.

uler, and to select schedulers for the SDF domain. End-users can
develop new targets that model their own hardware. We have
developed several workstation targets, including one distributed
simulation target, and targets for the Ariel DSP56x, the CM5, the
AT&T DSP3 (with help from AT&T), and our own OMA [32]. In
addition, targets can be simulated hardware specified in the Thor
domain [13][14]. Both the interpreter and graphical interface
have new commands to manipulate targets.

Ptolemy also now supports “packets”, which are particles of arbi-
trary type. This facility permits stars to exchange arbitrary
objects, not just integer, real, and complex data as before. This
can be used, for example, to support vectors, arrays, images,
video frames, or packets in the simulation of a communication
network. This facility was used for the ATM network simulation
in [33]. Note, however, that vectors and arrays have always been
supported in the SDF domain through the use of SDF principles.
Many of the demos operate on vectors and arrays.

A number of technical improvements have been made to the
code. As a result, Ptolemy now compiles under AT&T cfront, as
ported to Suns, and has been successfully retargeted to HP snake
workstations.

3. CURRENT PROJECTS

The following specific projects are funded by the MICRO pro-
gram in cooperation with the industrial sponsors.

3.1. Wormhole interfaces for heterogeneous targets

When Ptolemy executes synthesized code on an attached proces-
sor, it currently has only rudimentary mechanisms for controlling
that execution. We are generalizing the wormhole interface in
Ptolemy so that a real-time program running on attached hard-
ware will appear to the user as part of the process running on the
workstation. This should make the real-time hardware transpar-
ently accessible, greatly enhancing our ability to rapidly proto-
type systems.

3.2. Extensible graphical interfaces

The graphical interface of Ptolemy is being enhanced by the
incorporation of an interpreted language and associated Motif-
compliant X window toolkit called Tcl/Tk [26][27]. This will
enable, for example, the designer of a custom star to customize
the parameter editing. As a specific demonstration, we have
developed a prototype program called Xpole (done by Kennard
White) that edits digital filter parameters by graphically manipu-
lating pole-zero diagrams. In addition, the designer of a “target”
can customize the control panel that controls the execution of
code on that target, as demonstrated in [15].

3.3. Real-time control

The dataflow capabilities in Ptolemy have advanced much fur-
ther than other models of computation useful for prototyping. We
are developing multithreaded dataflow and hierarchical finite
state machine models for mixing real-time control with signal
processing.

3.4. Run-time dynamics

We are developing scheduling techniques that minimize run-time
overhead while allowing dynamic flow of control. One approach

that we are pursuing is to hierarchically mix diverse scheduling
techniques. Another approach we are pursuing extends the SDF
formal methods to dynamic dataflow graphs.

3.5. Optimized code generation

Synthesizing efficient assembly code for programmable DSPs
has proved to be a rich area for innovation. We are currently
focusing on problems associated with multirate systems that have
radically different sample rates in different parts of the system.
One approach we are pursuing is based on a scheduler invented
at Star Semiconductor, one of our sponsors. It uses a statically
constructed compact representation of the schedule to dynami-
cally invoke blocks in a appropriate order. Another technique we
are pursuing is based on the formalism of synchronous dataflow.
The objective is to construct compact schedules with nested iter-
ation that balance code space and data memory requirements.

3.6. Image and video signal processing in ptolemy

Dataflow representations work well for one-dimensional signal
processing applications because streams of tokens are a natural
representation for signals. However, multidimensional signals
are not so easily represented. The aim of this project is to find
graphical representations for multidimensional signal processing
algorithms that are amenable to automated parallel implementa-
tion. Approaches that are being studied include multidimensional
streams, data-parallel representations, and a variety of graphical
representations for iterated computations. A major objective is to
be able to synthesize real-time implementations on VLIW video
signal processors such as the Philips VSP.

3.7. Heterogeneous system design

We are enhancing Ptolemy’s capability to mix design styles by
incorporating VHDL and Silage code generation domains for
hardware design. The VHDL domain will couple to commercial
VHDL simulators. The Silage domain will couple to high-level
synthesis tools developed at Berkeley in Prof. Rabaey’s group.

4. REFERENCES

[1] S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous
Dataflow Graphs for Efficient Looping,”to appear in J. of
VLSI Signal Processing, 1993.

[2] S. Bhattacharyya, Soonhoi Ha, and E. A. Lee, “Single
Appearance Schedules for Synchronous Dataflow Pro-
grams,” Memorandum UCB/ERL M93/4, January 10,
1993.

[3] S. Bhattacharyya and E. A. Lee, “Memory Management
for Synchronous Dataflow Programs,” Technical Report
UCB/ERL M92/128, EECS Dept., UC Berkeley, Novem-
ber 18, 1992

[4] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and
E.A. Lee, “Gabriel: A Design Environment for DSP,”IEEE
Micro Magazine, October 1990, Vol. 10, No. 5, pp. 28-45.

[5] P. Bitar, “Combining Windows, A Performance Evaluation
of Design Options,”Ph.D. Dissertation, EECS Dept., Uni-
versity of California, Berkeley, CA 94720, December,
1992.

[33] [34] and two Ph.D. dissertations [5][11] completed during
this reporting period.

Soonhoi Ha’s Ph.D. dissertation [11] describes innovative com-
pile-time parallel scheduling heuristics that have been imple-
mented in Ptolemy. Philip Bitar’s Ph.D. dissertation [5] explores
a communication network design for parallel computers, and
makes extensive use of Ptolemy for simulating the system-level
design. Asawaree Kalavade’s masters thesis [14] develops a
Ptolemy-based methodology for hardware/software codesign.
Phil Lapsley describes in his masters thesis [15] a block-dia-
gram-level symbolic debugger for real-time DSP programs. Gre-
gory Walter describes a mixed signal processing and packet-
switched communication network simulation for real-time trans-
mission of speech over ATM networks [33] (see figure 1).
Anthony Wong developed a library of functional blocks for the
Motorola DSP96k processor [34].

Several undergraduate independent study projects were also
based on Ptolemy, including one by Saurav Chatterjee, who
mixed real-time code generated by Ptolemy for a microcomputer
running the VxWorks operating system with workstation and
Macintosh controller programs. Another undergraduate, Mike
Chen, completed a project on Xilinx programming for the Ariel
S56x card, and has now joined our group as a graduate student.
Mei-Tjing Huang worked on a robust implementation of Elliptic
filter design for inclusion in our forthcoming filter design addi-
tion to Ptolemy. Chih-Tsung Huang ported the entire Gabriel
library of code generation stars for the Motorola DSP56k and
DSP96k processors to Ptolemy. Alireza Khazeni has built a pro-
totype fixed-point simulation capability into Ptolemy.

We have made considerable progress on formal and heuristic
techniques for efficient code generation from synchronous data-
flow graphs [1][2][3][28]. We have worked with one of our spon-
sors, Comdisco Systems, who has enhanced and commercialized
some of this technology [29]. We have also made fundamental
advances on code generation from dataflow graphs with run-time
dynamics in the control flow [7][9][12]. Our effort on parallel
scheduling has yielded three useful parallel schedulers imple-
mented in Ptolemy [11][12][30][31]. These use principles out-
lined in [19] to minimize the effort expended at run time by
maximizing the compile-time analysis. We recently devised a

multidimensional extension of synchronous dataflow [16][17]
that promises to significantly improve our ability to exploit data
parallelism.

We have presented or will present Ptolemy-related work at a
number of technical conferences [7][9][10][13][16][18][32]. In
this reporting period, six papers have appeared or been accepted
in archival journals [1][6][12][28][30][31].

In addition, Ptolemy is being used in both our graduate and
undergraduate signal processing classes. In the Spring semester
of 1992, approximately 90 students (half graduate and half
undergraduate) will each perform between 6 and 8 algorithmic
design projects using Ptolemy on a network of DEC worksta-
tions. The graduate experiments are described in [18].

2.2. Status of Ptolemy

In addition to the discrete-event (DE), dynamic dataflow (DDF),
synchronous dataflow (SDF), and the Thor hardware simulation
domain, Ptolemy 0.4 includes a number of “code generation”
domains. Each is intended for prototyping of real-time imple-
mentations. CGC synthesizes C code, and is currently being tar-
geted to the AT&T DSP3, the Thinking Machines CM5, and the
TI TMS320C40. The “Sproc” domain synthesizes parallel imple-
mentations of signal processing systems on the Sproc multipro-
cessor from Star Semiconductor. The CG56 domain synthesizes
assembly code for the Motorola DSP56000 family. We use it
extensively to build real-time implementations on the Ariel
DSP56x s-bus card and a prototype multiprocessor system from
Dolby Laboratories, one of our sponsors. The CG96 domain syn-
thesizes assembly code for the Motorola DSP96000 family and is
currently being targeted to our own four-processor system [32].
A sophisticated parallel scheduler developed by Gil Sih [30][31],
one of our recent graduates, is compatible with all these code
generators. A scheduler that supports run-time dynamics has
been developed and code generation domains compatible with it
are being developed [11].

Ptolemy uses a new facility called a “target” to control the execu-
tion of universes; this facility is used to specify the behavior and
requirements of a system for which code is being generated. It
can be used to configure an abstract target for the parallel sched-

Figure 1: A mixed-domain simulation in
Ptolemy. The schematic at the left
represents a signal processing sub-system
specified in the SDF domain, and the
schematic below represents a network
simulation in the DE domain that uses this
sub-system.

DESIGN METHODOLOGY FOR DSP

Edward A. Lee

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 1991-92, Micro Project #91-085
Industrial Sponsors: Bell Northern Research, Comdisco Systems, Dolby Laboratories,

Motorola, and Star Semiconductor.

ABSTRACT

This project explores design methodology for simulation and
real-time parallel computation for applications using digital sig-
nal processing. The goal is to facilitate rapid prototyping of com-
plex algorithms by developing tools that are both efficient in their
use of hardware and easy for an algorithm designer to learn and
use. In previous years, we have succeeded with a class of appli-
cations with deterministic control structure. This year, we have
focussed on a broader class of applications involving run-time
decisions and asynchronous real-time operations. The overall
research problem divides into investigating human interfaces for
specifying real-time systems (the language), developing algo-
rithms for automated implementation (the compilation), and
developing suitable target architectures (the architecture). The
project has so far been extremely productive. Three versions of
the Ptolemy software system have been widely distributed.

1. MOTIVATION

Digital Signal Processing, traditionally the domain of Govern-
ment labs, large telecommunications companies, and multina-
tional oil companies, has broken out into the much broader
computer-user community. To better integrate computers with
the telecommunications network, and to invent real-time inter-
faces better suited to human perception, DSP is mandatory. The
beginnings of this evolution are evident; workstations and PCs
come with A/D converters, DSPs, telephone and ISDN inter-
faces, and FAX modems. But to those of us who understand DSP,
the evolution is frustratingly slow. What holds it back?

Our opinion, and main motivation for this project, is that general-
purpose computing paradigms do not fit DSP very well. The C
and Unix world cannot alone drive the DSP engine. Fundamen-
tally different approaches to software and hardware design are
required. Intuitively, the DSP community has always known this.
The persistence of DSP assembly languages and Fortran at one
end of a spectrum, and block diagram languages at the other,
speak of a general mismatch with what computer science is offer-
ing as the newest and best computing paradigms. Nonetheless,
modern software engineering techniques, particularly object-ori-
ented programming, enable construction of high-level, applica-
tion-specific environments that encapsulate a great deal of
expertise.

Dataflow techniques have been applied to DSP in the guise of
“block-diagram languages” since its very earliest days. Dataflow

representation of algorithms, in fact, is very natural in DSP,
appealingeven without the motivation of concurrency. Of course,
automatically exploiting concurrency can only increase the
appeal. This project exploits properties of DSP applications to
develop design methodologies for the development of hardware
and software for real-time DSP. A principal focus of the effort is
on scheduling and compilation of parallel computations.

2. RESULTS OF MICRO SUPPORT

Algorithms with predictable control flow have been successfully
addressed using the synchronous dataflow (SDF) model of com-
putation [23] [22]. Recently, however, our effort has broadened
to include applications where control flow is not predictable. The
objective is to preserve the benefits (especially efficiency) of pre-
dictable control flow whenever possible, but to support dynamic
decision making, dynamic real-time response, and asynchrony.
This will broaden the application domain to include telecommu-
nications systems, real-time control, and hardware and software
co-design. To do this, we are pursuing two lines of inquiry that
avoid discarding the SDF model of computation in favor of one
that is more general. The first is to mix models of computations,
gaining generality through heterogeneity. The Ptolemy system is
focussed on supporting this. The second is to extend the analyti-
cal techniques of SDF to dynamic dataflow graphs. Atoken flow
model [20][7][9] has been devised that replaces many numeric
operations that worked under the SDF model with symbolic
operations. The dependence of control-flow on Booleans is rep-
resented symbolically.

Ptolemy is the third generation design environment at Berkeley
for signal processing, after Blosim [25] and Gabriel [4][21]. It is
unique in permittingmulti-paradigm computation. This allows
us to preserve the benefits of the approach taken in Gabriel, while
broadening the application domain. More importantly, it permits
in-depth experimentation with a variety of computational mod-
els, and with the interaction between computational models in a
heterogeneous system.

2.1. Overview of recent publications and software

The most visible concrete output from this group is the Ptolemy
software system, described in detail in [6][8] and in the manual.
Version 0.4 of Ptolemy was released in December of 1992. It is
distributed through our Industrial Liaison Program office and
electronically by anonymous FTP. The manual (calledThe
Almagest) has grown to more than 500 pages. Our strategy of
aggressively automating the documentation has paid off. Perhaps
more importantly, the software has formed the testbed for a num-
ber of research projects, including four masters projects [14] [15]

