
References

DATAFLOW PROCESS NETWORKS 63 of 63

[82] H. Printz, “Automatic Mapping of Large Signal Processing Systems to a Parallel Machine,” Memorandum
CMU-CS-91-101, School of Computer Science, Carnegie Mellon University, Ph.D. Thesis, May 15, 1991.

[83] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping of Datapath-Intensive Architectures,”IEEE
Design and Test of Computers, pp. 40-51, June 1991.

[84] J. Rasure and C. S. Williams, “An Integrated Visual Language and Software Development Environment”,Jour-
nal of Visual Languages and Computing, Vol 2, pp 217-246, 1991.

[85] H. J. Reekie, “Toward Effective Programming for Parallel Digital Signal Processing,” Research Report 92.1,
University of Technology, Sydney, PO Box 123, Broadway NSW 2007, May 1992.

[86] H. J. Reekie, “Integrating Block-Diagram and Textual Programming for Parallel DSP,”Proc. 3d Int. Symp. on
Signal Processing and its Applications, Queensland, Australia, August 1992.

[87] H. J. Reekie and J. Potter, “Transforming Process Networks,” presented at the Massey Functional Programming
Workshop, Massey University, Parmerston North, New Zealand, August 1992.

[88] H. J. Reekie and J. M. Potter, “Generating Efficient Loop Code for Programmable DSPs,”Proc. of ICASSP `94,
Adelaide, Australia, April 1994.

[89] K. S. Shanmugan, G. J. Minden, E. Komp, T. C. Manning, and E. R. Wiswell, “Block-Oriented System Simula-
tor (BOSS),” Telecommunications Laboratory, University of Kansas, Internal Memorandum, 1987.

[90] G. C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heteroge-
neous Processor Architectures”,IEEE Trans. on Parallel and Distributed Systems,Vol. 4, No. 2, February,
1993.

[91] G. C. Sih and E. A. Lee, “Declustering: A New Multiprocessor Scheduling Technique,”IEEE Trans. on Paral-
lel and Distributed Systems,June 1993.

[92] D. B. Skillcorn, “Stream Languages and Data-Flow,” inAdvanced Topics in Data-Flow Computing, ed. J.-L.
Gaudiot and L. Bic, Prentice-Hall, 1991.

[93] V. Srini, “An Architectural Comparison of Dataflow Systems,”Computer,19(3), March 1986.

[94] P. A. Suhler, J. Biswas, K. M. Korner, J. C. Browne, “TDFL: A Task-Level Dataflow Language”,J. on Parallel
and Distributed Systems, 9(2), June 1990.

[95] J. Vuillemin,Proof Techniques for Recursive Programs, Ph. D. Thesis, Computer Science Department, Stanford
University, USA, 1973.

[96] W. W. Wadge and E. A. Ashcroft,Lucid, the dataflow programming language, London Academic Press, 1985.

[97] A. L. Wendelborn, H. Garsden, “Exploring the Stream Data Type in SISAL and other Languages,” to appear in
Advanced Topics in Dataflow Computing and Multithreading, ed. Lubomir Bic, Guang Gao, and Jean-Luc
Gaudiot, IEEE Computer Society Press, 1994.

References

62 of 63 DATAFLOW PROCESS NETWORKS

[62] P. J. Landin, “A Correspondence Between Algol 60 and Church’s Lambda Notation,”Communications of the
ACM, Vol. 8, 1965.

[63] R. Lauwereins, P. Wauters, M. Adé, J. A. Peperstraete, “Geometric Parallelism and Cyclo-Static Dataflow in
GRAPE-II”, Proc. 5th Int. Workshop on Rapid System Prototyping, Grenoble, France, June, 1994.

[64] E. A. Lee, “Consistency in Dataflow Graphs”,IEEE Transactions on Parallel and Distributed Systems”, Vol. 2,
No. 2, April 1991.

[65] E. A. Lee, “Representing and Exploiting Data Parallelism Using Multidimensional Dataflow Diagrams,”Proc.
of ICASSP ‘93, Minneapolis, MN, April, 1993.

[66] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Programs for Digital Signal
Processing,”IEEE Transactions on Computers, January, 1987.

[67] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,”IEEE Proceedings, September, 1987.

[68] P. Le Guernic, T. Gauthier, M. Le Borgne, C. Le Maire, “Programming Real-Time Applications with SIGNAL,”
Proceedings of the IEEE, Vol. 79, No. 9, September 1991.

[69] O. Maffeïs and P. Le Guernic, “From Signal to Fine-Grain Parallel Implementations,” inInt. Conference on
Parallel Architectures and Compilation Techniques, IFIP A-50, North-Holland, pp. 237-246, August 1994.

[70] D. McAllester, P. Panagaden, V. Shanbhogue, “Nonexpressibility of Fairness and Signaling,” to appear inJCSS,
1993.

[71] J. McCarthy, “Recursive Functions of Symbolic Expressions and the computation by machine, Part I”, Comm.
of the ACM, V. 3, No. 4 (April 1960).

[72] J. McCarthy, “A Basis for a Mathematical Theory of Computation,” inComputer Programming and Formal
Systems, North-Holland, pp. 33-70, 1978.

[73] J. McGraw, “Sisal: Streams and Iteration in a Single Assignment Language”,Language Reference Manual,
Lawrence Livermore National Laboratory, Livermore, CA 94550.

[74] R. Milner,Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[75] M. A. Najork, E. Golin, “Enhancing Show-and-Tell with a Polymorphic Type System and Higher-Order Func-
tions,” inProc. IEEE Workshop on Visual Languages, Skokie, Illinois, October 4-6, 1990, pp. 215-220.

[76] T. J. Olson, N. G. Klop, M. R. Hyett, S. M. Carnell, “MAVIS: a visual environment for active computer vision,”
Proc. IEEE Workshop on Visual Languages, Seattle, WA, USA, 15-18 Sept. 1992, IEEE Comput. Soc. Press,
1992, p. 170-6.

[77] J. S. Onanian, “A Signal Processing Language for Coarse Grain Dataflow Multiprocessors,” MIT/LCS/TR-449,
545 Technology Sq., Cambridge, MA 02139, June 14, 1989.

[78] P. Panagaden and V. Shanbhogue, “The Expressive Power of Indeterminate Dataflow Primitives,”Information
and Computation, Vol. 98, No. 1, May 1992.

[79] J. L. Pino, T. M. Parks, E. A. Lee, “Mapping Multiple Independent Synchronous Dataflow Graphs onto Hetero-
geneous Multiprocessors”,Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers,
November 1994.

[80] J. L. Pino, S. Ha, E. A. Lee, J. T. Buck, “Software Synthesis for DSP Using Ptolemy”,Journal of VLSI Signal
Processing, Vol. 9, No. 1, pp 7-21, January 1995.

[81] D. G. Powell, E. A. Lee, W. C. Newman, “Direct Synthesis of Optimized DSP Assembly Code from Signal
Flow Block Diagrams,”Proceedings of ICASSP,San Francisco, March, 1992.

References

DATAFLOW PROCESS NETWORKS 61 of 63

[40] J. B. Dennis, “Stream Data Types for Signal Processing,” unpublished memorandum, September 28, 1992.

[41] D. Desmet and D. Genin, “ASSYNT: Efficient Assembly Code Generation for DSP’s starting from a Data Flow-
graph,”Trans. of ICASSP ‘93, Minneapolis, April, 1993.

[42] E. W. Dijkstra,A Discipline of Programming, Prentice Hall, Englewood Cliffs, New Jersey, 1976.

[43] J. Franco, D. P. Friedman, and S. D. Johnson, “Multi-Way Streams in Scheme,”Comput. Lang., Vol. 15, No. 2,
pp. 109-125, 1990.

[44] D. K. Gifford and J. M. Lucassen, “Integrating Functional and Imperative Programming,” inProc. 1986 ACM
Conf. on Lisp and Functional Programming, pp. 28-38, 1986.

[45] S. Ha, “Compile-Time Scheduling of Dataflow Program Graphs with Dynamic Constructs,” Ph.D. Dissertation,
EECS Dept., University of California, Berkeley, CA 94720, April 1992.

[46] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, “The Synchronous Data Flow Programming Language LUS-
TRE,” Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp. 1305-1319.

[47] N. Halbwachs,Synchronous Programming of Reactive Systems, Kluwer Academic Publishers, Dordrecht, 1993.

[48] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithms,”The Computer Journal, Vol. 35, No. 6,
1992.

[49] J. Hicks, D. Chiou, B. S. Ang, and Arvind, “Performance Studies of Id on the Monsoon Dataflow System,”J. of
Parallel and Distributed Computing, Vol. 18, No. 3, pp. 273-300, July, 1993.

[50] P. Hilfinger, “A High-Level Language and Silicon Compiler for Digital Signal Processing”, Proceedings of the
Custom Integrated Circuits Conference, IEEE Computer Society Press, Los Alamitos, CA 1985, pp 213-216.

[51] D. D. Hills, “Visual Languages and Computing Survey: Data Flow Visual Programming Languages,”J. of
Visual Languages and Computing, Vol. 3, p. 69-101.

[52] C. A. R. Hoare, “Communicating Sequential Processes,”Communications of the ACM, Vol. 21, No. 8, August
1978.

[53] P. Hudak, “Introduction to Haskell and functional programming”,ACM Computing Surveys, Sept. ‘89.

[54] J. Hughes, “Compile-time Analysis of Functional Programs,” in Turner, ed.,Research Topics in Functional Pro-
gramming, Addison-Wesley, 1990.

[55] T. Ida and J. Tanaka, “Functional Programming with Streams,”Information Processing ‘83, Elsevier Science
pubs.(North-Holland), 1993.

[56] R. Jagannathan, “Parallel Execution of GLU Programs,” presented at2nd International Workshop on Dataflow
Computing,Hamilton Island, Queensland, Australia, May 1992.

[57] R. Jaganathan and E. A. Ashcroft, “Eazyflow: A Hybrid Model for Parallel Processing,” InProc. Int. Conf. on
Parallel Processing, pp 514-523, IEEE, August, 1984.

[58] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,”Proc. of the IFIP Congress 74,
North-Holland Publishing Co., 1974.

[59] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,”Information Processing 77, B.
Gilchrist, editor, North-Holland Publishing Co., 1977.

[60] D. J. Kaplan,et al., “Processing Graph Method Specification Version 1.0,” Unpublished Memorandum, The
Naval Research Laboratory, Washington D.C., December 11, 1987.

[61] R. M. Karp, R. E. Miller, “Properties of a Model for Parallel Computations: Determinacy, Termination, Queue-
ing,” SIAM Journal, Vol. 14, pp. 1390-1411, November, 1966.

References

60 of 63 DATAFLOW PROCESS NETWORKS

[19] F. Boussinot, “Reseaux de Processus Avec Melange Equitable: Une Approche du Temps Reel,” Thèse d’Etat
(Ph.D. thesis, in French), Université P. et M. Curie, CNRS, and Université Paris 7, 2, Place Jussieu, 75221 Paris
Cedex 05, FRANCE, June, 1981.

[20] F. Boussinot, “Reseaux de Processus Reactifs,” Rapport de Recherche No. 12/91, INRIA, Sophia-Antipolis,
France, November 1991 (in French).

[21] J. D. Brock and W. B. Ackerman, “Scenarios, a Model of Non-Determinate Computation,”,Proc. Conf. on For-
mal Definition of Programming Concepts, LNCS 107, pp. 252-259, Springer-Verlag, Berlin, 1981.

[22] J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model, Tech.
Report UCB/ERL 93/69, Ph. D. Dissertation, Dept. of EECS, University of California, Berkeley, CA 94720,
1993.

[23] J. Buck and E. A. Lee, “The Token Flow Model,” presented atData Flow Workshop, Hamilton Island, Austra-
lia, May, 1992. Also inAdvanced Topics in Dataflow Computing and Multithreading, ed. Lubomir Bic, Guang
Gao, and Jean-Luc Gaudiot, IEEE Computer Society Press, 1994.

[24] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Processing in Ptolemy”,Proc. of the Int.
Conf. on Acoustics, Speech, and Signal Processing, Toronto, Canada, April, 1991.

[25] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a Framework for Simulating and Prototyping Heter-
ogeneous Systems”,International Journal of Computer Simulation, April, 1994.

[26] W. H. Burge, “Stream Processing Functions,”IBM J. of Research and Development, Vol. 19, No. 1, January,
1975.

[27] R. M. Burstall and J. Darlington, “A Transformation System for Developing Recursive Programs,” JACM, Vol.
24, No. 1, 1977.

[28] N. Carriero and D. Gelernter, “Linda in Context,”Comm. of the ACM,Vol. 32, No. 4, pp. 444-458, April 1989.

[29] P. Caspi, “Clocks in Dataflow Languages,”Theoretical Computer Science, Vol. 94, No. 1, March 1992.

[30] P. Caspi, “Lucid Synchrone,” Proc. OPOPAC, HERMES (Paris) pp. 79-93, 1993.

[31] M. J. Chen, “Developing a Multidimensional Synchronous Dataflow Domain in Ptolemy”,MS Report, ERL
Technical Report UCB/ERL No. 94/16, University of California, Berkeley, CA 94720, May 6, 1994.

[32] A. Church,The Calculi of Lambda-Conversion, Princeton University Press, Princeton, NJ, 1941.

[33] F. Commoner and A. W. Holt, “Marked Directed Graphs,”Journal of Computer and System Sciences,Vol. 5,
pp. 511-523, 1971.

[34] C. Consel and O. Danvy, “Tutorial Notes on Partial Evaluation,”20th ACM Symp. on Principles of Program-
ming Languages, pp. 493-501, January, 1993.

[35] A. L. Davis, “Data Driven Nets: A Maximally Concurrent, Procedural, Parallel Process Representation for Dis-
tributed Control Systems,” Technical Report, Department of Computer Science, University of Utah, Salt Lake
City, Utah, July 1978.

[36] A. L. Davis and R. M. Keller, “Data Flow Program Graphs”,Computer, 15(2), February, 1982.

[37] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen, S. Note, J. Huisken, “Architecture-driven
synthesis techniques for mapping digital signal processing algorithms into silicon,”Proceedings of the IEEE,
Vol. 78, No. 2, pp. 319-335, February, 1990.

[38] J.B. Dennis, “First Version Data Flow Procedure Language”, Technical Memo MAC TM61, May, 1975, MIT
Laboratory for Computer Science.

[39] J. B. Dennis, “Data Flow Supercomputers,”IEEE Computer, Vol 13, No. 11, November, 1980.

References

DATAFLOW PROCESS NETWORKS 59 of 63

6.0 References

[1] H. Abelson and G. J. Sussman,Structure and Interpretation of Computer Programs, The MIT Press, Cam-
bridge, MA, 1985.

[2] S. Abramsky, “Reasoning About Concurrent Systems,” in F. B. Chambers, D. A. Duce, and G. P. Jones, editors,
Distributed Computing, Academic Press, London, 1984.

[3] W. B. Ackerman, “Data Flow Languages,”Computer, Vol. 15, No. 2, February 1982.

[4] K. R. Apt and G. D. Plotkin, “Countable Nondeterminism and Random Assignment,”J. of the ACM, Vol. 33,
No. 4, pp. 724-767, 1986.

[5] Arvind, L. Bic, T. Ungerer, “Evolution of Data-Flow Computers,” inAdvanced Topics in Data-Flow Comput-
ing, ed. J.-L. Gaudiot and L. Bic, Prentice-Hall, 1991.

[6] Arvind and J. D. Brock, “Resource Managers in Functional Programming,”J. of Parallel and Distributed Com-
puting, Vol. 1, No. 5-21, 1984.

[7] Arvind and K. P. Gostelow, “Some Relationships between Asynchronous Interpreters of a Dataflow Language,”
In Formal Description of Programming Languages, IFIP Working Group 2.2, 1977.

[8] Arvind and K. P. Gostelow, “The U-Interpreter”,Computer, 15(2),February 1982.

[9] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: Data Structures for Parallel Computing,”ACM Transactions
on Programming Languages & Systems, vol. 11, no. 4, pp. 598-633, Oct, 1989.

[10] E. A. Ashcroft and R. Jagannathan, “Operator Nets,” inProc. IFIP TC-10 Working Conf. on Fifth-Generation
Computer Architectures, North-Holland, The Netherlands, 1985.

[11] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Systems,”Proceedings of
the IEEE, Vol. 79, No. 9, 1991, pp. 1270-1282.

[12] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Language,”IEEE Tr.
on Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990.

[13] A. Benveniste, P. Caspi, P. Le Guernic, N. Halbwachs, “Data-flow Synchronous Languages,” in J. W. de Bakker
W.-P. de Roever, and G. Rozenberg, eds.,A Decade of Concurrency — Reflections and Perspectives, Lecture
Notes in Computer Science no. 803, Springer-Verlag, Berlin, 1994.

[14] G. Berry, “Bottom-Up Computation of Recursive Programs,”Revue Française d’Automatique, Informatique et
Recherche Opérationnelle, vol. 10, no. 3, pp. 47-82, March, 1976.

[15] S. Bhattacharyya and E. A. Lee, “Memory Management for Synchronous Dataflow Programs,” to appear in
IEEE Tr. on Signal Processing, May 1994.

[16] S. Bhattacharyya and E. A. Lee, “Looped Schedules for Dataflow Descriptions of Multirate Signal Processing
Algorithms,” to appear in Formal Methods in System Design, (updated from UCB/ERL Technical Report, May
21, 1993).

[17] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static Scheduling of Multi-rate and Cyclo-Static
DSP Applications”,Proc. 1994 Workshop on VLSI Signal Processing, IEEE Press, 1994.

[18] A. Bloss and P. Hudak, “Path Semantics,” inProc. of the Third Workshop on the Mathematical Foundations of
Programming Language Semantics, Lecture Notes in Computer Science No. 298, pp. 479-489, Springer-Verlag
1987.

Conclusions

58 of 63 DATAFLOW PROCESS NETWORKS

guages. An example (a recursive specification of an FFT) is given above in figure 13. In situations

where the recursion cannot be evaluated during the setup phase, as in the sieve of Eratosthenes in

figure 12, it is much more difficult to exploit the parallelism at compile time.

4.0 Conclusions

Signal processing software environments are domain-specific. Some of the techniques

they use, including (and maybe especially) their visual syntax has only been proven in this

domain-specific context. Nonetheless, they have (or can have) the best features of the best modern

languages, including natural and efficient recursion, higher-order functions, data abstraction, and

polymorphism.

This paper presents a theory of design that has been (at least partially) put into practice by

the signal processing community. In the words of Milner [74], such a theory “does not stand or

fall by experiment in the conventional scientific sense.” It is the “pertinence” of a theory that is

judged by experiment rather than its “truth”.

5.0 Acknowledgments

We would like to thank the entire Ptolemy team, but especially Joe Buck, Soonhoi Ha,

Alan Kamas, and Dave Messerschmitt, for conceiving and building a magnificent infrastructure

for the kinds of experiments described here. We would also like to gratefully acknowledge helpful

comments and suggestions from Albert Benveniste, Gerard Berry, Shuvra Bhattacharyya, John

Reekie, Vason Srini, Juergen Teich, and the anonymous reviewers. The inspiration for this paper

came originally from Jack Dennis, who pointed out the need to relate the work with dataflow in

signal processing with the broader computer science community.

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 57 of 63

3.9 Parallelism

For functional languages, the dominant view appears to be that parallelism must be explic-

itly defined by the programmer by annotating the program with the processor allocation [53].

Moreover, as indicated by Harrison [48], the ubiquity of recursion in functional programs sequen-

tializes what would otherwise be parallel algorithms. Harrison proposes using higher-order func-

tions to express parallel algorithms in a functional language, in place of recursion. The parallel

implementation is accomplished by mechanized program transformations from the higher-order

function description. This is called “transformational parallel programming,” and has also been

explored by Reekie and Potter [87] in the context of process networks. The transformations could

also be interactive, supported by “meta-programming”. One transformation methodology is the

unfold/fold method of Burstall and Darlington [27], which is based on partial (symbolic) evalua-

tion and substitution of equal expressions.

In the dataflow community, by contrast, parallelism has always been implicit. This is, in

part, due to the scarce use of recursion. A dataflow graph typically reveals a great deal of parallel-

ism that can be exploited either by run-time hardware [5] or, if the firing sequence is sufficiently

predictable, a compiler [45][82][90][91].

Dataflow process networks can combine the best of these. Parallelism can be implicit, and

higher-order functions can be used to simplify the syntax of the graphical specification. The

phased execution, in which the static higher-order functions are evaluated during a setup phase, is

analogous to the fold/unfold method of Burstall and Darlington [27], but there is no need for a

specialized transformation tool that “understands” the semantics of the higher-order functions.

Thus, parallelism is exploited equally well with user-defined higher-order functions as with those

that are built into the language.

Moreover, in a surprising twist, the use of statically evaluated higher-order functions

enables the use of recursionwithout compromising parallelism. The recursion is evaluated during

the setup phase, before the parallelizing scheduler is invoked. Thus, the scheduler sees only the

fully expanded graph, not the recursion. It can fully exploit at compile time the parallelism in this

graph. Thus, we regain much of the elegance that the use of recursion lends to functional lan-

Experimenting with Language Design

56 of 63 DATAFLOW PROCESS NETWORKS

enabling it. It consumes these tokens and outputs the first one (logically). Thus the output of the

downsampler isN!.

Note that although this might appear to be an unduly complicated way to compute a facto-

rial, it nonetheless demonstrates that enabling out-of-order execution does increase the expres-

siveness in the language. Of course, this has limited value if its only use is to represent obscure

and unnecessarily complicated algorithms.

3.8 Data types and polymorphism

A key observation about our dataflow process networks so far is that the only data type

represented visually is the stream. The tokens on a stream can have arbitrary type, so this

approach is more flexible than it sounds like at first. For instance, we can embed arrays into

streams directly by sequencing the elements of the array, or by encapsulating each array into a sin-

gle token, or by generalizing to multidimensional streams [65][92]. In Ptolemy, tokens can con-

tain arbitrary C++ objects, so the actors can operate on these tokens in rather sophisticated ways,

making effective use of data abstraction.

Ptolemy networks are strongly typed. Each actor port (input or output) has a type, and type

consistency is statically checked. Polymorphism, in which a single actor can operate on any of a

variety of data types, is supported in a natural way.

Hudak distinguishes two types of polymorphism,parametric andad-hoc (or overloading)

[53]. In the former, a function behaves the same way regardless of the data type of its arguments.

In the latter, the behavior can be different, depending on the type. Although in principle both are

supported in Ptolemy, we have made more use of parametric polymorphism in the visual pro-

gramming syntax. The way that parametric polymorphism is handled is that actors declare their

inputs or outputs to be of type “anytype”. The actors then operate on the tokens via abstracted

type handles.

Polymorphic blocks in Ptolemy include all those that perform control functions on

streams, like thedistributor in figure 13. TheMap actor is also polymorphic, although in a some-

what more complicated way.

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 55 of 63

enabled, because there are no tokens on thefalse input. But notice that at that time, the queue at

the control input (B) of theselect hasN false tokens followed by onetrue token. Thefalse tokens

still cannot be consumed. If out-of-order execution is not allowed, then theselect will never be

able to fire. However, since theselect has no state, there is no reason to prohibit out-of-order exe-

cution.

Out-of-order execution requires bookkeeping like that provided by the tagged-token

model. The consumption of thetrue token is by the (N+1)-th firing (logically) of theselect. Thus,

the 1 produced at its output is (logically) the (N+1)-th output produced by theselect. Hence, at C,

we show the 1 output as thelastentry in the table, even though it is the first one produced tempo-

rally. The logical ordering must be preserved.

Recall that a delay is an initial token on a channel. The delay at the left is an ordinary

delay, where the initial token is initialized to valueN. The delay on the right, however, is some-

thing new, anegative delay. Instead of an initial token, this delay discards the first token that

enters the channel. It can be implemented in a variety of ways, one of which is shown in figure 26.

The effect of the negative delay is shown in column D: the first token (logically, not temporally)

produced by theselect is discarded by the negative delay. Thus, the 1 produced by the (N+1)-th

firing (logically) of theselect must be consumed by theN-th firing of the multiply at the upper

right. The other input of the multiply has a value “1” as itsN-th input (A), so theN-th output (log-

ically) or first output (temporally) of the multiply is . This makes available theN-th

token (logically) of theselect false input, which can now be consumed by theN-th firing (logi-

cally) of theselect. The “1” produced here will be multiplied by 2, enabling the (N-2)-th firing of

theselect. We continue until the first firing (logically) of theselect producesN!. At this point,

there areN +1 tokens at thedownsampler input (the icon at the bottom with the downward arrow),

 Figure 26. One way to implement a negative delay, which discards the first
token that arrives on the input stream.

T SWITCH
T F

F

1 1× 1=

Experimenting with Language Design

54 of 63 DATAFLOW PROCESS NETWORKS

semantics are non-strict, and theIfThenElseactor can be used to implement recursion. The recur-

sion is completely evaluated during the setup phase of execution (or at compile time), so the

recursion imposes no run-time overhead during the run phase. This is analogous to the unrolling

style of partial evaluation [34], and could be calledmanifest recursion.

The higher order functions above have a key restriction: the replacement actor is specified

by a parameter, not by an input stream. Thus, we avoid embedding unevaluated closures in

streams. In Ptolemy, since tokens that pass through the channels are C++ objects, it would not be

hard to implement the more general form. It warrants further investigation.

3.7 The tagged-token execution model

Recall that the tagged-token execution model developed by Arvind and Gostelow [7][8]

allows out-of-order execution. This allows some dataflow graphs to produce output that would

deadlock under the FIFO channel model. An example is shown in figure 25. This graph computes

N! if out-of-order execution is allowed, but deadlocks without producing an output under the

FIFO model. The sequence of values on the labeled arcs is given in the table in the figure.

The loop at the left counts down fromN to 0, since the delay is initialized toN and the

value circulating in the loop is decremented by 1 each time around. The test (diamond shape)

compares the value atA to 1. WhenA<1, it outputs atrue. Until that time, theselect is not

N
<

1

1

1

SELECT
T F

N+1,0

A

B

C

-1

D

 Figure 25. This factorial program deadlocks without out-of-order execution, as
provided for example by the tagged token model.

A B C D

N F N! (N-1)!

N-1 F (N-1)! (N-2)!

N-2 F (N-2)! (N-3)!

...

2 F 2 1

1 T 1 1

0 T 1

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 53 of 63

provide the arguments for each instance of the specified actor. For example, if the replacement

actor has two inputs, and there are 12 input streams, then six instances of the actor will be created.

The first instance will process the first two streams, the second the next two streams, etc.

Since theMap actor always creates at least one instance of the replacement actor, it cannot

be used directly for recursion. Such a recursion would never terminate. A variant of theMap actor

can be defined that instantiates the replacement actor(s) only at run time. This is (essentially) what

we used in figure 12 to implement recursion. Using dynamic dataflow, thedynamic Map actor

fires conditionally. When it fires, it creates an instance of its replacement actor (which may be a

hierarchical node recursively referenced), and self-destructs.

The dynamicMap was the first higher-order function implemented in Ptolemy (it was

implemented under a different name by Soonhoi Ha). Its run-time operation is quite expensive,

however, requiring dynamic creation of a dataflow graph. So there is still considerable motivation

for recursion that can be statically unrolled, as done in figure 13. In fact, that system is imple-

mented using another higher-order function,IfThenElse, which is derived fromMap. The

IfThenElse actor takes two replacement actors as parameters plus a predicate. The predicate spec-

ifies which of the two replacement actors should be used. That actor is expanded into a graph

instance and spliced into the position of theIfThenElse actor. TheIfThenElse actor, like theMap

actor, then self-destructs. Since the unused replacement actor argument is not evaluated, the

 Figure 24. A program equivalent to that in figure 22 except that the
replacement actors for the two higher-order actors are specified
visually rather than textually.

XMgraph

bus

MapGr

888
888
888
888
888
888
888

888
888
888
888
888
888
888

etc.

distribute collect

SrcGr

888
888
888
888
888
888
888

collect

etc.

bus

Impulse

�
�

�
�
�
�

RaisedCosine
3

parameter_map: excessBW = 1.0/instance_number

3

parameter_map:

Experimenting with Language Design

52 of 63 DATAFLOW PROCESS NETWORKS

be more easily modified to include more or fewer instances of theRaisedCosine actor. It is only

necessary to modify the parameters of the bus icons, not the visual representation.

The left-most actor in figure 22 is a variant of theMap actor calledSrc. It has no inputs. In

this case, the number of instances of the replacement actor that are created must match the num-

ber ofoutput streams.

In the visual programming languages ESTL [75] and DataVis [51], higher-order functions

use a “function slots” concept, visually representing the replacement function as a box inside the

icon for the higher-order function. We have implemented in Ptolemy a conceptually similar visual

representation. Variants of theMap andSrc actors, calledMapGr andSrcGr, have the icons

shown in figure 23. It is important to realize that figure 23 contains only two icons, each repre-

senting a single actor. The complicated shape of the icon is intended to be suggestive of its func-

tion when it is found in a block diagram. TheMapGr andSrcGr actors work just like theMap and

Src actors, except that the programmer specifies the replacement block visually rather than textu-

ally. For example, the system in figure 22 can be specified as shown in figure 24. Notice that

replacement actorsImpulse andRaisedCosine each have one instance shown visually. TheMapGr

andSrcGr actors have only a single parameter, calledparameter_map. The other parameters of

Map andSrc are now represented visually (the replacement block and input/output mapping).

Note that the same effect could be accomplished by tricks in the graphical user interface,

as done for instance in GRAPE II [63]. However, this then requires modifying the GUI to support

new capabilities.

A number of additional variations are possible. First, the replacement actor may have

more than one input, in which case the input streams are grouped in appropriately sized groups to

MapGr

888
888
888
888
888
888

888
888
888
888
888
888

etc.

distribute collect

SrcGr

888
888
888
888
888
888

collect

etc.

 Figure 23. Icons for the MapGr and SrcGr higher-order functions in Ptolemy.

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 51 of 63

The program in figure 19 is equivalent to that in figure 21. Indeed, after the setup phase of

execution, the topology of the process network will be exactly as in figure 21. TheMap actor

itself will not appear in the topology.

In both figures 19 and 21, the number of instances of theRaisedCosine actor is specified

graphically. In figure 19, it is specified by implication, through the number of instances of the

Impulse actor. In figure 21 it is specified directly. Neither of these really takes advantage of

higher-order functions. The program in figure 22 is equivalent to both figures 19 and 21, but can

 Figure 21. A program equivalent to that in figure 19, but without higher-
order functions.

Impulse

�
�

�
�
�
�

Impulse

�

�
�
�
�

Impulse

�
�

�
�
�
�

XMgraph

RaisedCosine

RaisedCosine

RaisedCosine

 Figure 22. A program equivalent to that in figures 19 and 21, except that the
number of instances of the RaisedCosine and Impulse actors can
be specified by a parameter.

Map XMgraph

bus

Src

bus

3

blockname: RaisedCosine
where_defined:
parameter_map: excessBW = 1.0/instance_number
input_map: signalIn
output_map: signalOut

3

blockname: Impulse
where_defined:
parameter_map:
output_map: output

Experimenting with Language Design

50 of 63 DATAFLOW PROCESS NETWORKS

The diagonal slash through the last connection on the right in figure 19 is aBus. Its single

parameter specifies the number of logical connections that the single visual connection represents.

Here, the bus width is three. This must be so because there are three inputs to theMap actor, so

three instances of theRaisedCosineactor will be created. The three outputs from these three

instances need somewhere to go. The result of running this system is shown in figure 20.

excessBW=1.0

excessBW=0.5

excessBW=0.33

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.00 20.00 40.00 60.00

 Figure 20. The plot that results from running the program in figure 19.

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 49 of 63

Our implementation ofMap is simple but effective. It creates one or more instances of a the spec-

ified actor (which may itself be a hierarchical node) and splices those instance into its own posi-

tion in the graph. Thus, we call the specified actor thereplacement actor, since it takes the place

of theMap actor. TheMap actor then self-destructs. This is done in the setup phase of execution

so that no overhead is incurred for the higher order function during the run phase of execution,

which for signal processing applications is the most critical. This replacement can be viewed as a

form of partial evaluation of the program [34].

Consider the example shown in figure 19. The replacement actor is specified to beRaised-

Cosine, a built-in actor in the signal processing environment in Ptolemy. Since this is built-in,

there is no need to specify where it is defined, so thewhere_defined parameter is blank. The

RaisedCosineactor has a single input namedsignalInand a single output namedsignalOut, so

these names are given as the values of theinput_map andoutput_map parameters. The

parameter_map parameter specifies the values of theexcessBWparameter for each instance of the

replacement block to be created. This parameter specifies the excess bandwidth of the raised

cosine pulse generated by this actor. The value of theexcessBWparameter will be 1.0 for the first

instance of theRaisedCosineactor, 0.5 for the second, and 0.33 for the third.

Impulse

��

�
�
�
�

Impulse

��
��

�
�
�
�

Impulse

��
��

�
�
�
�

Map XMgraph

bus

3

blockname: RaisedCosine
where_defined:
parameter_map: excessBW = 1.0/instance_number
input_map: signalIn
output_map: signalOut

 Figure 19. An example of the use of the Map actor to plot three different
raised cosine pulses.

Experimenting with Language Design

48 of 63 DATAFLOW PROCESS NETWORKS

Recall our proposed syntactic sugar for representing feedback loops such as that in figure

17 using actors with state. Typically the initial value of the state (a) will be a parameter of the

node. In fact, dataflow processes with state cover many of the commonly used higher-order func-

tions in Haskell.

The most basic use of icons in our visual syntax may therefore be viewed as implementing

a small set of built-in higher-order functions. More elaborate higher-order functions will be more

immediately recognizable as such, and will prove extremely useful. Pioneering work in the use of

higher-order functions in visual languages was done by Hills [51], Najork and Golin [75], and

Reekie [85]. We will draw on this work here.

We created an actor in Ptolemy calledMap that generalizes the Haskellmap. Its icon is

shown in figure 18. It has the following parameters:

blockname The name of the replacement actor.

where_defined The location of the definition of the actor.

parameter_map How to set the parameters of the replacement actor.

input_map How to connect the inputs.

output_map How to connect the outputs.

 Figure 17. Visual syntax for the dataflow process network equivalent of the
Haskell “scanl f a xs” higher-order function.

f
a

xs

Map

 Figure 18. Icon for the Map higher-order function in Ptolemy.

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 47 of 63

often represent such processes using higher order functions. For example, in Haskell,

map f xs

applies the functionf to the listxs. Every single-input process in a dataflow process network con-

stitutes an invocation of such a higher order function, applied to a stream rather than a list. In a

visual syntax, the function itself is specified simply by the choice of icon. Moreover, Haskell has

the variant

zipWith f xs ys

where the functionf takes two arguments. This corresponds simply to a dataflow process with two

inputs. Similarly, the Haskell function

scanlf a xs

takes a scalara and a listxs. The functionf is applied first toa and the head ofxs. The function is

then applied to the first returned value and the second element ofxs. A corresponding visual syn-

tax for a dataflow process network is given in figure 17.

F

QMF

2
1

1

2

1

1
QMFFB(D=D-1)

F

FB(D > 0)

FB(D=0)

 Figure 16. A recursive representation of the filter bank application. This
representation uses template matching.

FB(D=3)

Experimenting with Language Design

46 of 63 DATAFLOW PROCESS NETWORKS

stream (such as quantization). The QMF boxes to the right of these reconstruct the signal using

matching polyphase interpolating FIR filters.

There are four distinct sample rates in figure 15 with a ratio of 8:1 between the largest and

the smallest. This type of application typically needs to be implemented in real time at low cost,

so compile-time scheduling is essential.

The graphical representation in figure 15 is useful for developing intuition, and exposes

exploitable parallelism, but it is not so useful for programming. The depth of the filter bank is

hard-wired into the visual representation, so it cannot be conveniently made into a parameter of a

filter-bank module. The representation in figure 16 is better. A hierarchical node called “FB”, for

“filterbank” is defined, and given a parameterD for “depth”. ForD > 0 the definition of the block

is at the center. It contains a self-reference, with the parameter of the inside reference changed to

D - 1. WhenD=0, the definition at the bottom is used. The system at the top, consisting of just one

block, labeled “FB(D = 3)”, is exactly equivalent to the representation in figure 15, except that the

visual representation does not now depend on the depth. The visual recursion in figure 16 can be

unfolded completely at compile time, exposing all exploitable parallelism, and incurring no

unnecessary run-time overhead.

3.6 Higher-Order Functions

In dataflow process networks, all arcs connecting actors represent streams. The icons rep-

resent both actors and the processes made up of repeated firings of the actor. Functional languages

 Figure 15. An analysis/synthesis filter bank under the SDF model. The depth of
the filter bank, however, is hard-wired into the representation.

QMF

QMF

QMF F

F

F

F

2
1

1

QMF

2

1

1

QMF

QMF

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 45 of 63

order without duplicating the computation. Theexpgen block at the bottom simply generates

the sequence. The sequence might be precomputed, or computed on the fly.

A more traditional visual representation of an FFT is shown in figure 14. This representa-

tion is extremely inconvenient for programming, however, since it cannot represent FFTs of the

size typically used (128 to 1024 points). Moreover, any such visual representation has the order of

the FFT and the granularity of the specification hard-wired into the specification. It is better to

have both parameterized, as in figure 13. Moreover, we argue that the visual representation in fig-

ure 13 is more intuitive, since it is a more direct representation of the underlying idea.

An interesting generalization of the conditional used in the recursion in figure 13 would

use templates on the parameter values to select from among the possible implementations for the

node. This would make the recursion stylistically identical to that found in functional languages

like Haskell, albeit with a visual syntax. This can be illustrated with another practical example of

an application of recursion.

Consider the system shown in figure 15. It shows a multirate signal processing applica-

tion: an analysis/synthesis filter bank with harmonically spaced subbands. The stream coming in

at the left is split by matching highpass and lowpass filters (labeled “QMF” for “quadrature mirror

filter”). These are decimating polyphase finite impulse response (FIR) filters, so for every two

tokens consumed on the input, one token is produced on each of two outputs. The left-most QMF

only is labeled with the number of tokens consumed and produced, but the others behave the same

way. The output of the lowpass side is further split by a second QMF, and the lowpass output of

that by a third QMF. The boxes labeled “F” represent some function performed on the decimated

N/2

WN
k

x(0)

x(2)

x(1)

x(3)

X(0)

X(1)

X(2)

X(3)

 Figure 14. A fourth-order decimation-in-time FFT shown graphically. The order
of the FFT, however, is hard-wired into the representation.

Experimenting with Language Design

44 of 63 DATAFLOW PROCESS NETWORKS

This is the key step in the derivation of the so-called “decimation-in-time FFT”; the first summa-

tion is the order DFT of the even samples, while the second is the order DFT of

odd samples. Thus, in general, we can write

. (34)

Recall that is periodic with period , so is periodic with period

.

From this, we arrive at the recursive specification shown in figure 13. The first actor is a

distributor, which collects two samples each time it fires, routing the first one to the top output

and the second one to the lower output. The recursive invocation of this block accomplishes the

decimation in time. The outputs of the distributor are connected to twoIfThenElse blocks, repre-

senting one of two possible replacement subsystems. When theorder parameter is larger than

some threshold, theIfThenElse block replaces itself with a recursive reference to the galaxy

within which it sits, implementing an FFT of half the order. When theorder parameter gets below

some threshold, then theIfThenElse block replaces itself with some direct implementation of a

small order FFT. TheIfThenElse block is another example of a higher-order function, and will be

discussed in more detail below. Therepeat block takes into account the periodicity of the DFTs of

N/2() N/2()

DFTN x n()() DFTN/2 x 2n()() WN
k

DFTN/2 x 2n 1+()()+=

DFTN x n()() N DFTN/2 x 2n()()

N/2

 Figure 13. A recursive specification of an FFT implemented in the SDF domain
in Ptolemy. The recursion is unfolded during the setup phase of the
execution, so that the graph can be completely scheduled at
compile time.

IfThenElse

distributor

repeat

expgen

FFT of half
the order
(recursive
reference)

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 43 of 63

Queen [59] and in TLDF [94]. Mutability, however, considerably complicates compile-time anal-

ysis of the graph. The compile-time scheduling methods in [22] and [66] have yet to be extended

to recursive graphs. This raises the interesting question of whether recursion precludes compile-

time scheduling. We find, perhaps somewhat surprisingly, that often it does not. To illustrate this

point, we will derive a recursive implementation of the fast Fourier transform (FFT) in the syn-

chronous dataflow domain in Ptolemy, and show that it can be completely scheduled at compile

time. It can even be statically parallelized, with the recursive description imposing no impedi-

ment. The classic derivation of the FFT leads directly to a natural and intuitive recursive represen-

tation. For completeness, we repeat this simple derivation here.

The -th order discrete Fourier transform (DFT) of a sequence is given by

(29)

for . To get the values for other , simply periodically repeat the values given above,

with period . Define

(30)

and note the following properties:

 and . (31)

Using this we can write

(32)

By change of variables on the summations, this becomes

. (33)

N x n()

Xk x n() e
j–

2π
N

 kn

n 0=

N 1–

∑=

0 k N<≤ k

N

WN e
j–

2π
N

=

WN
2

WN/2= WN
N k+

WN
k

=

Xk x n() WN
kn

n 0=

N 1–

∑ x n() WN
kn

n 0=

n even

N 2–

∑ x n() WN
kn

n 1=

n odd

N 1–

∑+= =

Xk x 2n() WN/2
kn

n 0=

N/2() 1–

∑ x 2n 1+() WN/2
kn

n 0=

N/2() 1–

∑

WN
k

+=

Experimenting with Language Design

42 of 63 DATAFLOW PROCESS NETWORKS

direct expression of recursion is not yet supported by the Ptolemy graphical interface, although it

is supported in the underlying kernel. Ptolemy implements this in a simple, and rather expensive

way; it dynamically expands the graph when the recursive block is invoked. More efficient imple-

mentations are easy to image, however.

Note that recursion in figure 12 expresses a “mutable graph”, in that the structure of the

graph changes as the program executes. Such dynamics are also permitted by Kahn and Mac-

 Figure 12. A recursive implementation of the sieve of Eratosthenes in the
dynamic dataflow domain in Ptolemy. The top-level system (with just
three actors) produces all the integers greater than 1, filters them for
primes, and displays the results. Other icons are explained once
each.

generate constant stream
value: 1

delay
initial value: 0

Pass first arriving token through to the output.
Remaining input tokens traverse the lower path.

recursive reference to “sift”

sift

eratosthenes

filter

value: 1

initial value: 0

store first arriving value
in this feedback loop.

“true” if top input
is a multiple of the
bottom input

discard non-primes

filter

fork (replicate a stream)

discard

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 41 of 63

All three dataflow domains in Ptolemy have non-strict hierarchical nodes. To implement

this, most schedulers used in these domains take a simple approach: they flatten the hierarchy

before constructing a schedule. This approach may be expensive for large programs with repeated

use of the same hierarchical nodes, particularly if in-line code is generated. It also precludes

incremental compilation of hierarchical nodes. But it appears to be necessary to support graphs

like that in figure 11. At least one more sophisticated scheduler [16] constructs strict hierarchical

nodes (when this is safe) through a clustering process, in order to build more compact schedules.

It ignores the user-specified hierarchy in doing this.

3.5 Recurrences and Recursion

Functional languages such as Haskell commonly use recursion to carry state. The compa-

rable mechanism for dataflow process networks is feedback loops, usually with initial tokens, as

shown in figure 7a and 7b. These feedback loops specify recurrence relations, but are not self-ref-

erential in the usual sense of recursion. Ida and Tanaka [55] and Abramsky [2] have also noted the

advantages of this representation. A consequence of this is that recursion plays a considerably

reduced role in dataflow process networks compared to functional languages. But this does not

mean that recursion is not useful.

Consider the “sieve of Eratosthenes,” an algorithm considered by Kahn and MacQueen

[59], among others. It computes prime numbers by constructing a chain of “filters”, one for each

prime number it has found so far. Each filter removes from the stream any multiple of its prime

number. The algorithm starts by creating a single filter for the prime number 2 in the chain and

runs each successively larger integer through the chain of filters. Each time a number gets through

to the end of the chain, it must be prime, so a new filter is created and added to the chain. A recur-

sive implementation of this algorithm is concise, convenient, and elegant, although of course we

can express any recursive algorithm iteratively [53].

A recursive implementation in the dynamic dataflow domain of Ptolemy is shown in fig-

ure 12. The icon with the concentric squares is actually a higher-order function (explained further

below) that invokes a named hierarchical node (sift) when it fires. In this case, the named hierar-

chical node is a recursive reference to the very hierarchical node in which the icon appears. More

Experimenting with Language Design

40 of 63 DATAFLOW PROCESS NETWORKS

The next natural question is whether hierarchical nodes should be strict. In particular, for

those hierarchical nodes for which there exists a well-defined firing, should that firing be strict?

The example shown in figure 11 suggests a definitive “no” for the answer. A hierarchical node A

is composed of subprocesses B and C as shown in the figure. A firing of the expanded definition

in figure 11b might consist of a firing of B followed by C. However, when connected as shown in

figure 11a, the network deadlocks, quite unnecessarily, if we insist that the hierarchical node have

both inputs available before firing.

 Figure 10. Switch and Select actors in the dynamic dataflow domains of
Ptolemy. These are determinate actors that merge or split streams
under the control of a Boolean stream.

A

 Figure 11. A hierarchical node A in a simple subnetwork (a) and its expanded
definition (b). If the actor A is strict, the subnetwork in (a) deadlocks.

B

C

A

(a)

(b)

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 39 of 63

Referential transparency for source actors is also preserved, as long as the parameters are consid-

ered. Thus, the transformation shown in figure 6 is now possible only if the actors or subgraphs

being consolidated have identical parameters. Thus, with these syntactic devices (actors with

state, the notationF = map (f), delays, and actors with parameters as well as inputs), referential

transparency is still possible. We call such actorsgeneralized functional actors.

3.4 Firing rules and strictness

A function is strict if it requires that all its arguments be present before it can begin com-

putation. A dataflow process, viewed as a function applied to a stream, clearly should not be strict,

in that the stream should not have to be complete for the process to begin computation. The pro-

cess is in fact defined as a sequence of firings that consume partial input data and produce partial

output data. But in our context, this is a rather trivial form of non-strictness.

A dataflow process is composed of a sequence of actor firings. The actor firings them-

selves might be strict or non-strict. This is determined by the firing rules. For example, an actor

formed from the McCarthyf1 function in section 2.4.4 is clearly non-strict, since it can fire with

only one of the two arguments available. A process made with this actor, however, is not continu-

ous, and the process is non-determinate.

It is possible to have a determinate process made of non-strict actors. Recall theselect

actor from figure 2a.

select(x, ⊥, T) = x

select(⊥, y, F) = y

The firing rules implied by this definition are sequential, since a token is always required for the

third argument, and the value of that argument determines which firing rule applies. Moreover,

select is functional, so a process made up of repeated firings of this actor is determinate. The

Ptolemy icon for this process is shown in figure 10. This function, however, is clearly not strict,

since the function does not require that all three arguments be present. Moreover, we will see that

this non-strictness is essential for the most general form of recursion. The fact that non-strictness

is essential for recursion in functional languages has been observed before, of course [53] (at least

the if-then-else must be non-strict in the consequent and the alternative).

Experimenting with Language Design

38 of 63 DATAFLOW PROCESS NETWORKS

In Ptolemy, when compiled mode is used for implementation, code generation occursafter the

parameters have been evaluated, thus allowing highly-optimized, application-specific code to be

generated. For example, instead of a single telephone channel simulator subroutine capable of

simulating any combination of impairments, optimized code that takes advantage of the fact that

the third harmonic distortion is set to zero (see figure 9) can be synthesized. This becomes partic-

ularly important when the implementation is via hardware synthesis, as is becoming increasingly

common in signal processing systems.

Sometimes, all of the arguments to a function are parameters, in which case we call the

actor asource, since it has no dynamic inputs (see, for example, the A and B actors in figure 4).

 Figure 9. Top: A typical parameter screen in Ptolemy for a hierarchical node
that models a telephone channel. The first parameter is given as a
reference to a file. The icon for the node is shown to the right. The
next level down in the hierarchy is shown in the lower right window.
At the lower left, the parameter screen shows that the parameter for
the Gain actor inherits its value from the “noise” parameter above it
in the hierarchy. Parameter values can also be expressions.

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 37 of 63

3.3 Function arguments — parameters and input streams

In Ptolemy, as in many software environments of this genre, there are three phases to the

execution of a program. Thesetup phase makes a pass over the hierarchical program graph initial-

izing delays, initializing state variables, evaluatingparameters, evaluating whatever portion of

the schedule is pre-computed, and performing whatever other setup functions the program mod-

ules require. Therun phase involves executing either the pre-computed schedule or a dynamic

schedule that is computed on-the-fly. If the run is finite (it often is not), there is awrapup phase, in

which allocated memory is freed, final results are presented to the user, and any other required

cleanup code is executed.

Theparameters that are evaluated during the setup phase are often related to one another

via an expression language. Thus, parameters represent the part of the computation that does not

operate on streams, in which values that might be used during stream processing are computed.

Some simple examples are the gain values associated with the triangular icons in figure 8 or the

initial values of the delays in the same figure. In principle, these values may be specified as arbi-

trarily complex expressions.

The gain blocks in figure 8 may be viewed as functions with two arguments, the multiply-

ing constant and the input stream. But unlike functional languages, a clear syntactic distinction is

made betweenparameter arguments andstream arguments. In functional languages, if the dis-

tinction is made at all, it is made through the type system. The syntax in Ptolemy is to use a tex-

tual expression language to specify the value of the parameters, using a parameter screen like that

in figure 9. This expression language has some of the trappings of standard programming lan-

guages, including types and scoping rules. It could be entirely replaced by a standard program-

ming language, although preferably one with declarative semantics.

Parameters are still formally viewed as arguments to the function represented by the actor.

But the syntactic distinction between parameters and stream arguments is especially convenient in

visual programming. It avoids cluttering a diagrammatic program representation with a great

many arcs representing streams that never change in value. Moreover, it can make the job of a

compiler or interpreter simpler, obviating the optimization step of identifying such static streams.

Experimenting with Language Design

36 of 63 DATAFLOW PROCESS NETWORKS

The basic observation is that internal state in a primitive or a hierarchical node issyntactic

sugar (a convenient syntactic shorthand) for delays on feedback loops at the top level of the

graph. In other words, there is no reason to actually put all such feedback loops at the top level if

semantics can be maintained with a more convenient syntax. With this observation, we can now

allow actors with state. These become more likeobjects thanfunctions, since they represent both

data and methods for operating on the data. The (implicit) feedback loop around any actor or hier-

archical node with state also establishes a precedence relationship between successive firings of

the actor. This precedence serializes the actor firings, thus ensuring proper state updates.

Once we allow actors with state, it is a simple extension to allow actors with other side

effects, such as those handling I/O. The inherently sequential nature of an actor that outputs a

stream to a file, for example, is simply represented by a feedback loop that does not carry any

meaningful data, but establishes precedences between successive firings of the actor.

If actors have state, the notationF = map(f) is no longer directly valid. With a little adap-

tation, however, we can still use it. If we wish to model an actor withp inputs andq outputs, plus

state, we can defineF: → based on an actor functionf: → , where the

extra argument carries the state from one firing to the next.

With this device, notice that the firing rules can now depend on the state. For example, in

the cyclo-static dataflow model of Lauwereins,et al. [63], an actor can consume a cyclically vary-

ing number of tokens on an input. For instance, a dataflow process with one input and one output

might consume one token on its odd-numbered firings and two tokens on even-numbered firings.

In this case, a binary-valued state variable will have value zero on even-numbered firings and one

on odd-numbered firings. Thus, the firing rules become

R1 = { [0], [*] } (27)

R2 = { [1], [*,*] } (28)

where the first argument is the state. Any cyclo-static actor can be modeled in this way. In fact, fir-

ing rules that change over the course of several firings can be modeled in the same way even if

they do not vary cyclically, as long as the firing rules for the firing can be determined during

the firing.

S
p 1+

S
q 1+

S
p 1+

S
q 1+

n
th

n 1–() th

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 35 of 63

integratexs = scanl (+) 0xs

wherescanlis a higher order function with three arguments, a function, a number, and a list. It is

defined as follows (taking certain liberties with Haskell syntax):

scanlf q ⊥ = [q]

scanlf q (x:xs) = q : scanlf f (q,x) xs

These two definitions use template matching; the first is invoked if the third argument is an empty

stream. Theq first gives the initial value for the sum, equivalent to the value of the initial token in

a delay, and later carries the running summation. The syntax (x:xs) divides a list into the first ele-

ment (x) and the rest (xs). The syntaxq : expr represents a list whereq is the head andexpr defines

the rest, just as we have done above for sequences. For example,

scanl (+) 0 [1,2,3,4]

produces [0,1,3,6,10].

The program above uses recursion to carry state, via the higher-order functionscanl. It has

been observed that for efficiency this recursion must be translated into an iterative implementa-

tion [55][40][43]. For streams this is mandatory, since otherwise the depth of the recursion could

become extremely large.

Delays in a hierarchical node can make a single firing of the node non-functional even if it

is not in a feedback loop. Consider the example in figure 7a. The balance equations tell us that a

complete cycle consists of one firing of and one of . But under this policy, state will have

to be preserved between firings on the arc connecting the two actors, making a firing of the hierar-

chical node non-functional.

Some of the problems with state could be solved by requiring all delays to appear only at

the top level of the hierarchy, as was done for example in the BOSS system [89]. This is awkward,

however, and anyway provides only a partial solution. A better solution is simply to reconcile the

desire for functional behavior with the desire to maintain state. This can be done simultaneously

for hierarchical nodes and primitives, greatly increasing the flexibility and convenience of the lan-

guage, while still maintaining the desirable properties of functional behavior.

A1 A2

Experimenting with Language Design

34 of 63 DATAFLOW PROCESS NETWORKS

Side effects and state

Even when a hiearchical node has a complete cycle, a second problem arises in our

attempt to define its mapping in terms ofF = map(f). Even if all actors within the node are func-

tional, the hiearchical node may not be.

Consider the example in figure 7b. A single firing of actorB obviously defines a complete

cycle. The feedback loop is used to implement a recurrence, so the feedback channel will store

tokens from one firing of the hierarchical node for use in the next firing. With this usage, the hier-

archical node has state, and is therefore not functional even iffB is. In this case, the feedback loop

must be initialized with tokens in order to avoid deadlock.

The shaded diamond is called adelay, which is typically implemented as an initial token

in the channel. It cannot be described byF = map(f), wheref is functional, but its behavior is eas-

ily defined byF(X) = i : X, whereX is the input sequence,i is the initial token, and “:” is the con-

catenation operator. The initial token enables the first firing of actorB if it requires a token on the

top input. It is called a “delay” because for any channel with a unit delay, then-th token read from

the channel is the (n − 1)-th written to it. A feedback loop with delay effectively stores state, mak-

ing any single firing of the hierarchical node non-functional.

The delay shown in figure 7b is typically implemented using the “cons” operator to initial-

ize streams when streams are based on the recursive-cons model [62]. It is roughly equivalent to

the “D” operator in the tagged-token model [8]. It is the visual equivalent of “fby” (followed-by)

in Lucid [92] and the “pre” operator in Lustre [47]. In the single assignment language Silage,

developed for signal processing [50], a delay is written “x@1”. This expression refers to the

stream “x” delayed by one token, with the initial token value defined by a declaration like

“x@@1 =value.” For example,

x = 1 + x@1;
x@@1 = 0;

defines a stream consisting of all non-negative integers, in order.

In functional languages, instead of using a recurrent construct like a delay, state is usually

carried in the program using recursion. Consider, for example, the following Haskell program:

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 33 of 63

implementation that does not generate such duplications (and hence does not need to eliminate

them) is given in figure 8b. It is also inconsistent. Neither of these can be implemented with

bounded memory.

The second, more fundamental problem is that the existence of complete cycles for

dynamic dataflow graphs isundecidable [22]. Thus, no algorithm will be able to identify a com-

plete cycle for all graphs that have one.

A third problem is that the actors in a hierarchical node may not form aconnected graph

without considering as well the graph within which the hiearchical node sits. In this case, the bal-

ance equations for the hiearchical node alone will have more than one solution. There is no way to

select among these solutions.

When a hiearchical node has a complete cycle that can be identified, then we may be able

to definef to be the mapping performed by this complete cycle. In this case,F = map(f) captures

the behavior of the hiearchical node. Unfortunately, there are still difficulties.

MERGE

MERGE

1

2 3 5

 Figure 8. Two inconsistent dataflow graphs that compute an ordered sequence of
integers of the form 2 a3b5c. The triangular icons multiply their inputs by
the indicated constant. The delay icon (a diamond) represents an initial
token with value 1, 3, or 5, as annotated.

MERGE

MERGE

1

2

3

5

3

5

(b)

(a)

result

result

Experimenting with Language Design

32 of 63 DATAFLOW PROCESS NETWORKS

of means that it consumes one token when it fires. A “reasonable” firing of the hierarchical

node would therefore consist of one firing of and one of . The single balance equation for

this example is

, (23)

where is the number of firings of . This equation simply says that should be such that

the number of tokens produced on the arc should equal the number consumed, thus keeping it “in

balance”. Any “firing” of the hierarchical node that invokes thei-th actor times (for alli) will

therefore return the subsystem to its original state. For dynamic dataflow graphs, these balance

equations are a bit more complicated, but often lead to definitive conclusions about the relative

number of firings of the actors that are required to maintain balance.

A nonempty set of firings that returns a subsystem to its original state is called acomplete

cycle [64]. Unfortunately, three problems arise. First, some useful systems have balance equations

with no solution [22][23]. Such systems are said to beinconsistent, orunbalanced, and have no

complete cycle, and usually have unbounded memory requirements. A simplified (and probably

not useful) example is shown in figure 7c. The balance equations for this subsystem are (one for

each arc)

, (24)

, (25)

. (26)

These equations have no solution. Indeed, any set of firings of these actors will leave the sub-

system in a new state.

To hint that unbalanced systems are sometimes useful, consider an algorithm that com-

putes an ordered sequence of integers of the form for all . This problem has

been considered by Dijkstra [42] and Kahn and MacQueen [59]. A dataflow implementation

equivalent to the first of two by Kahn and MacQueen is shown in figure 8a. The “merge” block is

an ordered merge [64]; given a nondecreasing sequence of input values on two streams, it merges

them into a single stream of nondecreasing values, and removes duplicates. A more efficient

A2

A1 A2

rA1
1× rA2

1×=

rAi
Ai rAi

rAi

rC1
1× rC2

1×=

rC1
1× rC3

1×=

rC2
2× rC3

1×=

2
a
3

b
5

c
a b c, , 0≥

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 31 of 63

describe the behavior of a hierarchical node byF = map(f), wheref constitutes a single, func-

tional firing of the hierarchical node. This is not always possible. Two problems arise:f may not

be well defined, and when it is, it may not be functional. Note that no problem arises in defining

the hierarchical node to be a mappingF from input sequences to output sequences.F will be func-

tional if the actors in the hierarchial node have functional firings and sequential firing rules.

Firing subgraphs — the balance equations

Examples that have more than one actor, such as in figure 7a and 7c, raise the question of

how to determine how many firings of the constituent actors make up a “reasonable” firing of a

hierarchical node. One approach would be to solve thebalance equations of [64][66][67] to deter-

mine how many firings of each actor are needed to return a subsystem to its original state. By

“original state” we mean that the number of unconsumed tokens on each internal channel (arc)

should be the same before and after the firing.

Consider the example in figure 7a. Following Lee and Messerschmitt [66], the “1” symbol

next to the output of means that it produces one token when it fires. The “1” next to the input

(b)

 Figure 7. Hierarchical nodes in a dataflow process network may not be
functional even if the primitives they contain are functional. The
large arrowheads indicate input and output for the hierarchical
node.

(c)

B

1

1

1 2
1

1

(a)

A1 A2

1 1

C1 C3

C2

1

1 1

1

A1

Experimenting with Language Design

30 of 63 DATAFLOW PROCESS NETWORKS

gross program structure is described visually. The visual equivalent of an expression, of course, is

a subgraph. Subgraphs can be encapsulated into a single node, thus forming a larger dataflow pro-

cess by composing smaller ones. This is analogous to procedural abstraction in imperative lan-

guages and functional abstraction in functional languages.

3.2.1 Determinacy and referential transparency

To make the dataflow process network determinate, as discussed above, it is sufficient for

the actors to have two properties: their mappings from input tokens to output tokens should be

functional (free from side effects), and the firing rules for each actor should be sequential, in the

technical sense given in section 2.4. If our actors have these properties, then our language has ref-

erential transparency, meaning that syntactically identical expressions have the same value

regardless of their lexical position in the program.

With referential transparency, the two subgraphs shown in figure 6 are equivalent. The two

inputs to the identical dataflow processesA are identical streams, so the outputs will be identical.

If the primitive actors are functional, then hierarchical actors may be functional as well, but there

are some complications due to scheduling, directed loops in the graph, anddelays.

3.2.2 Functional behavior and hierarchy

In modern languages, it is often considered important that abstractions be semantically lit-

tle different from language primitives. Thus, if the primitive actors are functional, the hierarchical

nodes should be functional. If the primitive actors have firing rules, then the hierarchical nodes

should have firing rules. We will find this goal problematic.

A hierarchical node in a dataflow process network has a subnetwork and input/output

ports, as shown in the examples in figure 7. To reach the above ideal, we should be able to

 Figure 6. Referential transparency implies that these two dataflow process
networks are equivalent.

A

A

A

Experimenting with Language Design

DATAFLOW PROCESS NETWORKS 29 of 63

• It does not have any model of computation built into the kernel, and hence can be used to

experiment with different models of computation, and interactions between the models.

• Three dataflow process network “domains” have already been built in Ptolemy, precisely to

carry out such experiments.

• The set of primitive actors is easily extended (using C++ as the host language). This gives us

more than enough freedom to test the limits of the dataflow process network model of compu-

tation.

A domain in Ptolemy is a user-defined subsystem implementing a particular model of computa-

tion. Three Ptolemy domains have been constructed with dataflow semantics, and one with more

general process network semantics. Thesynchronous dataflow domain (SDF) [66][67] is particu-

larly well suited to signal processing [24], where low-overhead execution is imperative. The SDF

domain makes all scheduling decisions at compile time. Thedynamic dataflowdomain (DDF)

makes all scheduling decisions at run-time, and is therefore much more flexible. TheBoolean

dataflow domain (BDF) attempts to make scheduling decisions for dynamic dataflow graphs at

compile time, using the so-called token-flow formalism [22][64]. It resorts to run-time scheduling

only when its analysis techniques break down. Theprocess networkdomain (PN) uses a multi-

tasking kernel to manage process suspension and resumption. It permits non-blocking reads, and

hence allows nondeterminism.

Ptolemy supports two distinct execution models,interpretedandcompiled. Compilation

can be implemented using a simple code generation mechanism, allowing for quick experimenta-

tion, or it can be implemented using more sophisticated transformation and optimization tech-

niques. Such optimization may require more knowledge about the primitives than the simple code

generation mechanism, which simply stitches together code fragments defining each actor [80].

3.2 Visual hierarchy — the analog to procedural abstraction

In keeping with the majority of signal processing programming environments, we will use

a visual syntax for the interconnection of dataflow processes. In fact, in Ptolemy, a program is not

entirely visual, since the actors and data structures are defined textually, using C++. Only the

Experimenting with Language Design

28 of 63 DATAFLOW PROCESS NETWORKS

struct dataflow graphs that would deadlock under the FIFO scheme but not under the tagged-

token scheme. We will consider a detailed example below, after developing a usable language.

3.0 Experimenting with Language Design

The dataflow process network model, as defined so far, provides a framework within

which we can define a language. To define a complete language, we would need to specify a set of

primitive actors. Instead, we will outline a coordination language, leaving the design of the primi-

tives somewhat arbitrary. There are often compelling reasons to leave the primitives unspecified.

Many graphical dataflow environments rely on a host language for specification of these primi-

tives, and allow arbitrary granularity and user extensibility. Depending on the design of these

primitives, the language may or may not be functional, may or may not be able to express nonde-

terminism, and may or may not be as expressive other languages.

Granular Lucid, for example, is a coordination language with the semantics of Lucid [56].

Coordination languages with dataflow semantics are described by Suhleret al. [94], Gifford and

Lucassen [44], Onanian [77], Printz [82], and Rasure and Williams [84]. Contrast these to the

approach of Reekie [85] and the DSP Station from Mentor Graphics [41], where new actors are

defined in a language with semantics identical to those of the visual language. There are compel-

ling advantages to that approach, in that all compiler optimizations are available down to the level

of the host language primitives. But the hybrid approach, in which the host language has impera-

tive semantics, gives the user more flexibility. Since our purpose is to explore the dataflow pro-

cess network model fully, this flexibility is essential.

3.1 The Ptolemy system

To make the discussion concrete, we will use the Ptolemy software environment [25] to

illustrate some of the trade-offs. It is well suited for several reasons:

• It has both a visual (“block diagram”) and a textual interface; the visual interface is similar in

principle to many of those used in other signal processing software environments.

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 27 of 63

In addition to scheduling, efficient compilation requires that memory allocation be done

statically, if possible. Despite the Kahn process network model of infinite FIFO channels, it is

usually possible to construct bounded memory implementations with statically allocated memory

for the channels [22]. Unfortunately, since the Boolean dataflow model is Turing complete, it is

undecidable whether an arbitrary dataflow graph can be executed in bounded memory, so static

memory allocation for the channels is not always possible. But for most programs, it is, so the

cost of dynamically allocated memory for the channels only needs to be incurred when the static

analysis techniques break down.

To address the same problems, Benveniste, et al., argue in [13] for the so-called synchro-

nous approach to dataflow, where clocks are associated with tokens carried by the channels. A

major part of the motivation is to guarantee bounded memory. There are other compelling advan-

tages to this approach as well. The clocks impose atotal order on tokens in the system, compared

to thepartial order specified in a process network. This makes it easy to implement, for example,

adeterminate merge operation. Viewed another way, actors can test their inputs forabsence of

data, something that would cause nondeterminism in process networks. However, the synchro-

nous approach alone does not make the critical questions decidable. So further restrictions on a

language are required if all programs are to be “executable” [13]. Moreover, one could argue that

the total ordering in a synchronous specification is in fact an overspecification, reducing the

implementation options. However, this can be at least partially ameliorated bydesynchronizing

the implementation, as explored by Mafeïs and Le Guernic [69].

2.5.5 The tagged-token model

An execution model developed by Arvind and Gostelow [7][8] generalizes the dataflow

process network model. In this model, each token has a tag associated with it, and firing of actors

is enabled when inputs with matching tags are available. Outputs to a given stream are produced

with distinct tags. An immediate consequence is that there is no need for a FIFO discipline in the

channels. The tags keep track of the ordering. More importantly, there is no need for the tokens to

be produced or consumed in order. The possibility for out-of-order execution allows us to con-

Formal Underpinnings

26 of 63 DATAFLOW PROCESS NETWORKS

usually used with actors that have larger granularity. The scheduler tracks the availability of

tokens on the inputs to the actors, and fires actors that are enabled.

2.5.3 Static scheduling of dataflow process networks

For many signal processing applications, the firing sequence can be determined statically

(at compile-time). The class of dataflow process networks for which this is always possible is

calledsynchronous dataflow [61][66][67]. In synchronous dataflow, the solution to a set ofbal-

ance equations relating the production and consumption of tokens gives the relative firing rates of

the actors. These relative firing rates combined with simple precedence analysis allows for the

static construction of periodic schedules. Synchronous dataflow is used in COSSAP (for code

generation, not for simulation), in the multirate version of SPW from the Alta Group of Cadence

(formerly Comdisco), and in several domains in Ptolemy.

Balance equation methods have recently been extended to cover most dynamic dataflow

graphs [22][64] and have been implement in the Boolean dataflow and CGC (code generation in

C) domains in Ptolemy. However, Buck has shown that the addition of only theselect actor of fig-

ure 2 and aswitch actor (which routes input data tokens to one of two outputs under the control of

a Boolean input) to the synchronous dataflow model is sufficient to make it Turing complete [22].

This means that one can implement a universal Turing machine using this programming model. It

also means that many critical questions become undecidable. For this reason, Buck’s methods

cannot statically schedule all dynamic dataflow graphs. For Turing complete dataflow models, it

is still necessary for some programs to have some responsibilities deferred to a run-time sched-

uler.

2.5.4 Compilation of dataflow graphs

The static schedules that emerge from Buck’s Boolean dataflow scheduler are finite

sequential representations of an infinite execution of a dataflow graph. Given such a schedule, the

dataflow graph can be translated into a lean sequential program, a process we normally call com-

pilation. (Parallel implementations are briefly discussed below in section 3.9).

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 25 of 63

computation. If a “get” operation suspends a process, and the source process is already suspended

waiting for an input, then deadlock has been detected.

In the Kahn and MacQueen schema, configuration of the network on the fly is allowed.

This allows for recursive definition of processes. Recursive definition of streams (data) is also

permitted in the form of directed loops in the process graph.

The repeated task suspension and resumption in this style of execution is relatively expen-

sive, since it requires a context switch. It suggests that the granularity of the processes should be

relatively large. For dataflow process networks, the cost can be much lower than in the general

case, and hence the granularity can be smaller.

2.5.2 Dynamic scheduling of dataflow process networks

Dataflow process networks have other natural execution models due to the breakdown of a

process into a sequence of actor firings. A firing of an actor provides a different quantum of exe-

cution than a process that suspends on blocking reads. Using this quantum avoids the complexi-

ties of task management (context switching and scheduling) that are implied by Kahn and

MacQueen [59] and explicitly described by Franco,et al. [43]. Instead of context switching, data-

flow process networks are executed by scheduling the actor firings. This scheduling can be done

at compile time or at run time, and in the latter case, can be done by hardware or by software.

The most widely known execution models for dataflow process networks have emerged

from research into computer architectures for executing dataflow graphs [5][93]. This association

may be unfortunate, since the performance of such architectures has yet to prove competitive

[49]. In such architectures, actors are fine-grained, and scheduling is done by hardware. Although

there have been some attempts to apply these architectures to signal processing [77], the widely

used dataflow programming environments for signal processing have nothing to do with dataflow

architectures.

Some signal processing environments, for example COSSAP from Cadis (now Synopsys)

and the dynamic dataflow domain in Ptolemy, use a run-time scheduler implemented in software.

This performs essentially the same function performed in hardware by dataflow machines, but is

Formal Underpinnings

24 of 63 DATAFLOW PROCESS NETWORKS

2.4.7 Relationship to Kahn Process Networks

Dataflow process networks with sequential firing rules and functional actors are a special

case of Kahn process networks. They construct a processF as a sequencemap(f) of atomic actor

invocationsf. Instead of suspending a process on a blocking read or non-blocking write, processes

can be freely interleaved by ascheduler, which determines the sequence of actor firings. Since the

actors are functional, no state needs to be stored when one actor terminates and another fires. The

biggest advantage, therefore, is that the context switch overhead of process suspension and

resumption is entirely avoided.

There is still the cost of scheduling. However, for most programs, this cost can be entirely

shifted to the compiler [66] [22]. While it is impossible to always shift all costs to the compiler

[22], large clusters within a process network can be scheduled at compile time, greatly reducing

the number of dataflow processes that must be dynamically scheduled. As a consequence of this

efficiency, much finer granularity is practical, with processes often being as simple as to just add

two streams. We will now consider execution models in more detail.

2.5 Execution models

Given a dataflow process network, a surprising variety of execution models can be associ-

ated with it. This variety is due, in no small part, to the fact that a dataflow process network does

not over specify an algorithm the way non-declarative semantics do. Execution models have dif-

ferent strengths and weaknesses, and there is, to date, no clear winner.

2.5.1 Concurrent processes

Kahn and MacQueen propose an implementation of Kahn process networks using multi-

tasking with a primarily demand-driven style [59]. A single “driver” process (one with no out-

puts) demands inputs. When it suspends due to an input being unavailable, the input channel is

marked “hungry” and the source process is activated. It may in turn suspend, if its inputs are not

available. Any process that issues a “put” command to a hungry channel will be suspended and

the destination process restarted where it left off, thus injecting also a data-driven phase to the

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 23 of 63

The question naturally arises whether there are non-sequential functions that are continu-

ous (and thus guarantee determinacy). In fact, a rather trivial example of such a function is the

identity function with two inputs,

. (21)

It is easy to see that it is not sequential (extending either input extends the output). It is also

straightforward to prove that it is continuous. In order to defineF = map (f), we need a set of fir-

ing rules. A reasonable set of firing rules for the identity function isR1 = { [*], ⊥ } andR2 = { ⊥,

[*] }. Even though these are the same firing rules used earlier for the nondeterminate merge, the

identity function is clearly determinate. In this casef is continuous andF = map (f) is also contin-

uous.

The question naturally arises whether the above theorem extends to continuous functions.

That is, given thatf is continuous, can we conclude thatF = map(f) is continuous? The answer is

no, as demonstrated by the following counterexample. LetY be some non-empty finite sequence.

Define

 = { Y : X1, Y : X2 }. (22)

The colon “:” again means concatenation of two sequences. This function is similar to the identity

function, with the simple difference that it prepends a prefix to each of two input sequences. It is

easy to show that this is continuous. However,F = map(f) is not continuous if we use the firing

rules we defined for the identity function. In fact, it is not monotonic, nor even functional. That is,

for any input sequences and , there is more than one possible output. This is because the

functionf produces a copy of the prefix onboth outputs when it fires. On the output streams there

can be any number of copies of the sequenceY inserted between tokens from the corresponding

input stream.

Berry [14] has defined a class of functions calledstable functions that may not be sequen-

tial but are always continuous. This class is not as broad as the class of continuous functions, but

in certain circumstances, is easier to work with. But this is beyond the scope of this paper.

f X1 X2,() X1 X2,{ }=

f X1 X2,()

X1 X2

Formal Underpinnings

22 of 63 DATAFLOW PROCESS NETWORKS

2.4.6 Sequential Processes

Vuillemin [95] has given a mathematical definition of sequential functions that is entirely

consistent with the notion given here of sequential firing rules. Both our actor functions and the

processes made from them are sequential in his sense. The definition and its relationship to conti-

nuity and monotonicity is summarized in figure 5.

A process : → is sequential if it is continuous and if for anyX = { X1, X2, ... ,

Xp }, there exists an , , such that for anyX' whereX X' andXi = X'i , F(X) = F(X').

This is intuitively easy to understand in the context of process networks if one considersX' to be

simply a more evolved state of the input streams thanX. In other words,X' extends the streams in

X, except the one streamXi , which is not extended. The process is sequential because it needs for

the streamXi to be extended before it can extend any output stream. Moreover, for anyX, there is

an i such that the process needsXi to be extended before it can extend the output. Notice that this

definition of sequentiality can be applied just as easily to an actor functionf as to a processF =

map(f). Given this, the following theorem is obvious.

Theorem If an actor functionf has sequential firing rules, then the processF = map (f) is

sequential.

 Figure 5. Summary of function class definitions and their relationships for the

function : → .F S
p

S
q

sequential⇒ continuous⇒ monotonic

monotonic X Y ⇒ F (X) F (Y).

continuous
∀ = { X0, X1, ... } such thatX0 X1 … ,

F() = F ().

sequential
∀ X = { X1, X2, ... , Xp }, ∃ i, 1 ≤ i ≤ p, such that

∀ Y X whereYi = Xi, F(Y) = F(X), whenF is continuous.

χ
χ χ

F S
p

S
q

i 1 i p≤ ≤

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 21 of 63

lems addressed above, in this context, refer to the relative timing of token production at A and B

compared to the timing of the firings of theF4 = map(f4) process. In dataflow process network

semantics, this timing is not specified.

2.4.5 Firing rules and template matching

Some functional languages use template matching in function definitions the way we have

been using firing rules. Consider the following Haskell example (with slightly simplified syntax):

fac 0 = 1

facn = n fac(n-1)

This defines a factorial function. If the argument is 0, the result is 1. If the argument isn, the result

is n fac(n-1). These are not ambiguous because the semantics of Haskell gives priority to the

first template, removing any ambiguity. The second template is really a shorthand for “anyn

except 0.” These two templates, therefore, viewed as firing rules, are naturally sequential, since

each rule consumes one token and implicitly states: “use me if no previously declared firing rule

applies and the inputs match my pattern.” Of course, this does not remove ambiguities due to

function arguments where no data is needed. (Haskell has lazy semantics, deferring the evaluation

of function arguments until the data is needed, so a function may be invoked that will decide it

does not need data from one its arguments).

Embedding this example, the factorial function, in a dataflow process network introduces

new and interesting problems. ConsiderF(X), whereF = map(fac) andX is a stream. Each firing

of the actor can trigger the creation of new streams, so this process network is not static. We will

consider more interesting recursive examples than this in considerable detail below, so we defer

further discussion.

A

B

f4

 Figure 4. A variant of McCarthy’s ambiguous function embedded in a dataflow
process network.

X

Y

C
F4 X Y,()

×

×

Formal Underpinnings

20 of 63 DATAFLOW PROCESS NETWORKS

the dataflow process made with actor functionf4. It is easy to show that the process is not mono-

tonic. In fact, it is not even a function, since for some inputs, it can take on more than one possible

output value. Consider and where

, , and , , (17)

where is the empty sequence. Clearly, and . However,

. (18)

We get , while can take on any of the following possible val-

ues: , , , , or . This is clearly nondeterminate (and non-

functional). Only three of the five possible outcomes satisfy the monotonicity constraint. And

these choose rather arbitrarily from among the firing rules. If we were to make a policy of these

choices, it would be easy to construct other example inputs that would violate monotonicity.

One might argue for a different interpretation of the firing rules, in which a⊥ in a firing

rule pattern matches only an empty input (no tokens available). Under this interpretation, we get

 and . While not monotonic, this might appear to be

determinate (recall that we’ve only argued that continuity issufficient for determinacy, not that it

is necessary). But further examination reveals that we have made some implicit assumptions

about synchronization between the input streams. To see this, consider the prefix ordered

sequences

, , , and , , . (19)

It would seem reasonable to argue that these are in fact exactly the same sequences as in (17). We

are just looking at the value of the sequences more often. However, under the same implicit syn-

chronization assumptions, the output is different:

, , . (20)

These outputs are not prefix ordered, as they would be for a monotonic process.

This issue becomes much clearer if one considers a more complete dataflow process net-

work, as shown in figure 4. The dataflow processes A and B have no inputs, so their firing rule is

simple; they are always enabled. They produce at their outputs the streams and . The prob-

F4 X1 Y1,() F4 X2 Y2,()

X1 1[]= X2 1 1,[]= Y1 ⊥= Y2 2[]=

Y1 X1 X2 Y1 Y2

F4 X1 Y1,() F4 X2 Y2,()

F4 X1 Y1,() 1[]= F4 X2 Y2,()

2 1,[] 1 2,[] 1 2 1, ,[] 1 1 2, ,[] 2 1 1, ,[]

F4 X1 Y1,() 1[]= F4 X2 Y2,() 2 1,[]=

X1 1[]= X2 1[]= X3 1 1,[]= Y1 ⊥= Y2 2[]= Y3 2[]=

F4 X1 Y1,() 1[]= F4 X2 Y2,() 2[]= F4 X3 Y3,() 2 1,[]=

X Y

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 19 of 63

f1 (x, y) = x or y chosen randomly

These three declarations define the output of thef1 function under three firing rules:R1 = { [*],

⊥}, R2 = { ⊥, [*]} and R3 = { [*], [*] }. A dataflow process could be constructed by repeatedly

firing this function on stream inputs.

McCarthy points out that the expressionf1 (1, 2) +f1 (1, 2) could take on the value 3, and

uses this to argue that nondeterminism implies a loss of referential transparency1. However, when

used to create a dataflow process, this example actually mixes two distinct causes for nondeter-

minism. Random behavior in an actor acting alone is sufficient to lose determinacy and referential

transparency. The simpler definition:

f2 (x, y) = x or y chosen randomly

is sufficient forf2 (1, 2) +f2 (1, 2) to take on the value 3. If the choice of random number is made

using a random number generator, then normally the random number generator has state, initial-

ized by a seed. Perhaps the seed should be shown explicitly as an argument to the function:

f3 (x, y, s) = x or y chosen by generating a random number from seeds.

Suddenly, we regain referential transparency and determinacy. It would not be possible for

f3 (1, 2, 3) +f3 (1, 2, 3) to equal 3, for example. Without giving the seed as an argument,f3 is not

functional.

Consider the simplified definition:

f4 (x, ⊥) = x

f4 (⊥, y) = y

f4 (x, y) = y

This definition has no random numbers in it, but in a dataflow process network, it is still possible

for f4 (1, 2) +f4 (1, 2) to equal 3. The firing rules are not sequential. The output depends on how

the choice between firing rules is made, something not specified by the language semantics.

We can show directly that an attempt to construct a dataflow process from the functionf4

yields a process that is not monotonic, and hence is not continuous. Let =map (f4) represent

1. A basic notion used in the lambda calculus [32], referential transparency means that any two identical expressions have identi-
cal values. Iff1(1,2)+f1(1,2)=3, then clearly the two instances off1(1,2) cannot have taken on the same value.

F4

Formal Underpinnings

18 of 63 DATAFLOW PROCESS NETWORKS

4. The procedure repeats trivially for each subset, and in step 3, the modified firing rules become

empty.

For the nondeterminate merge, the procedure fails immediately, in the first application of step 1.

2.4.3 Relationship to higher-order functions

Constraining the actors to be functional makes a dataflow process roughly equivalent to

the function “maps” used by Burge [26] and Reekie [85]. It is similar to the “map” function in

Haskell and the “mapcar” function in Lisp, except that it introduces the notion of consuming the

tokens that match the firing rule, and hence easily deals with infinite streams.

All of these variants of “map” arehigher-order functions, in that they take functions as

arguments and return functions [71]. We defineF = map (f), where : → is a function, to

return a function : → that appliesf to each element of a stream when one of a set of firing

rules is enabled. More precisely,F = map (f), where

F(R:X) = f(R) : F(X) (16)

andR is any firing rule off . The colon “:” indicates concatenation of sequences. That is, ifX and

Y are each in , thenX:Y is a new set of sequences formed by appending each sequence inY to

the end of the corresponding sequence inX. Following the notation in Haskell, (16) defines the

sequences returned byF when the input sequences haveR as a prefix.

Notice that definition (16) is recursive. The recursion terminates when the argument toF

no longer has any firing rule as a prefix.

The functionf will typically require only some finite number of tokens on each input,

while the function returned bymap (f) can take infinite stream arguments. Thus,F = map (f) is a

dataflow process, where each firing consists of one application of the dataflow actor functionf.

2.4.4 A nondeterminate example

An example that combines many of the points made so far can be constructed using the

nondeterminate operator introduced by McCarthy [72] and used by Hudak [53]:

f1(x, ⊥) = x

f1 (⊥, y) = y

f S
p

S
q

F S
p

S
q

S
p

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 17 of 63

figure 3b, a blocking read of the bottom input will never unblock. In both cases, the behavior is

incorrect. Note that with any correct implementation of the nondeterminate merge, both networks

in figure 3 are nondeterminate. It is unspecified how many times a given token will circulate

around the feedback loop between arrivals of tokens from the left.

2.4.2 Identifying sequential firing rules

In general, a set of firing rules is sequential if the following procedure does not fail1:

1. Find an input such that [*] for all . That is, find an input such that all the

firing rules require at least one token from that input. If no such input exists, fail.

2. For the choice of input , divide the firing rules into subsets, one for each specific token value

mentioned in the first position of for any . If = [*, ...], then the firing

rule should appear in all such subsets.

3. Remove the first element of for all .

4. If all subsets have empty firing rules, then succeed. Otherwise, repeat these four steps for any

subset with any non-empty firing rules.

The first step identifies an input where a token is required by all firing rules. The idea of the sec-

ond step is that reading a token from that particular input will often at least partially determine

which firing rules apply. Observing its value, therefore, will often reduce the size of the set of

applicable firing rules.

Consider theselect actor in figure 2. The above steps become

1. .

2. The firing rules divide into two sets, {R1 } and { R2 }, each with only one rule.

3. The new firing rules becomeR1 = { [*], } in the first subset andR2 = { , [*], } in the

second subset.

1. In (8), we imply that the number of firing rules is finite. John Reekie has pointed out in a personal communication that if we
relax this constraint, then for some sequential firing rules corresponding to determinate actors, this procedure will not fail, but will
also never terminate. Thus, as a practical matter, we may need the additional restriction that the procedure terminate. His example
is an actor with two inputs, one of which is an integer specifying the number of tokens to consume from the other. The firing rules
take the form { {[0], }, {[1], [*]}, {[2], [*, *]}, ... }.⊥

j Ri j, i 1 ... N, ,=

j

Ri j, i 1 ... N, ,= Ri j,

Ri

Ri j, i 1 ... N, ,=

j 3=

⊥ ⊥, ⊥ ⊥

Formal Underpinnings

16 of 63 DATAFLOW PROCESS NETWORKS

R1 = { [*], } (12)

R2 = { , [*], } (13)

where and matchtrue andfalse-valued Booleans, respectively. The behavior of this actor is

to read a Boolean control input, then read a token from the specified data input and copy that

token to the output. The firing rules are sequential, in that a blocking read of the control input, fol-

lowed by a blocking read of the appropriate data input, will invoke the appropriate firing rule.

The nondeterminate merge with two inputs, also shown in figure 2b, also has two firing

rules

R1 = { [*], } (14)

R2 = { , [*] }. (15)

These rules are not sequential. A blocking read of either input fails to produce the desired behav-

ior, as illustrated in figure 3. In figure 3a, a blocking read of the top input will never unblock. In

 Figure 2. The select and nondeterminate merge actors each combine two
data streams into one, but the select actor uses a Boolean control
signal to determine how to accomplish the merge.

M
E

R
G

E

S
E

LE
C

T1. TRUE DATA INPUT

2. FALSE DATA INPUT

3. CONTROL INPUT

1. DATA INPUT

2. DATA INPUT

(a) (b)

⊥ T[],

⊥ F[]

T F

⊥

⊥

 Figure 3. Illustration that the firing rules of the nondeterminate merge are not
sequential. A blocking read of either input will cause one of these
two networks to deadlock inappropriately.

M
E

R
G

E

M
E

R
G

E

(a) (b)

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 15 of 63

A pattern is a (finite) sequence. For firing rule to be satisfied, each pattern must form

a prefix of the sequence of unconsumed tokens at input . An actor with input streams is

always enabled.

For some firing rules, some patterns might be empty lists, =⊥. This means that any

available sequence at input is acceptable, because⊥ X for any sequenceX. In particular, it

doesnot mean that input must be empty.

To accommodate the usual dataflow firing rules, we need a generalization of the prefix

ordering algebra. The symbol “*” will denote a token wildcard. Thus, the sequence [*] is a prefix

of any sequence with at least one token. The sequence [*,*] is a prefix of any sequence with at

least two tokens. The only sequence that is a prefix of [*] is⊥, however. Notice therefore, that the

statement [*] isnot saying that any one-token sequence is a prefix of . All it says is that

has at least one token.

Let , for , denote the sequence of available unconsumed tokens on the

input. Then the firing ruleRi is enabled if

, for all . (10)

We can write condition (10) using the partial order on sets of sequences

Ri A (11)

whereA = .

For many actors, the firing rules are very simple. Consider an adder with two inputs. It has

only one firing rule,R1 = { [*], [*] }, meaning that each of the two inputs must have at least one

token. More generally, synchronous dataflow actors [66][67], always have a single firing rule, and

each pattern in the firing rule is of the form [*, *, ... , *], with some fixed number of wildcards. In

other words, an SDF actor is enabled by a fixed number of tokens at each input.1

A more interesting actor is theselect actor in figure 2a, which has the firing rules

{ R1, R2 }, where

1. An SDF actor also produces a fixed number of tokens when it fires, but this is not captured in the firing rules. An interesting
variant, calledcyclo-static dataflow [17], permits the number of tokens produced and consumed to vary cyclically. Modeling this
with firing rules requires a straightforward generalization. We will give this generalization below in section 3.2.2.

Ri j, i Ri j,

j p 0=

Ri j,

j

j

X X X

Aj j 1 ... p, ,= j
th

Ri j, Aj j 1 ... p, ,=

A1 A2 ... Ap, , ,{ }

Formal Underpinnings

14 of 63 DATAFLOW PROCESS NETWORKS

actor to fire. A firingconsumes input tokens andproduces output tokens. A sequence of such fir-

ings is a particular type of Kahn process that we call adataflow process. A network of such pro-

cesses is called adataflow process network.

More specialized dataflow models, such as Dennis’ static dataflow [39] or synchronous

dataflow [66][67] can be described in terms of dataflow processes. The models used by most sig-

nal processing environments mentioned above can also be described in terms of dataflow pro-

cesses. The tagged token model of Arvind and Gostelow [7][8] is related, but not identical, as we

will show. Signal [12] and Lustre [46], which are called “synchronous dataflow languages,” do

not form dataflow processes at all because they lack the FIFO queues of the communication chan-

nels. They can, however, be implemented using dataflow process networks, with certain benefits

to parallel implementation [69].

A sufficient condition for a dataflow process to be continuous, as defined in equation (1),

is that each actor firing befunctional, and that the set of firing rules besequential. Here, “func-

tional” means that an actor firing lacks side effects and that the output tokens are purely a function

of the input tokens consumed in that firing. This condition is stronger than the Kahn condition that

aprocess be functional, meaning that the outputsequencesare a function of the input

sequences[58]. With Kahn’s condition, actors can have and manipulate state. We later relax this

constraint so that actors can have and manipulate state as well. “Sequential” means that the firing

rules can be tested in a pre-defined order using only blocking reads. A little notation will help

make this rather technical definition precise.

2.4.1 Firing rules

An actor with input streams can have firing rules

R = { R1, R2, ... ,RN}. (8)

The actor can fire if and only if one or more of the firing rules is satisfied, where each firing rule

constitutes a set ofpatterns, one for each of inputs,

Ri = . (9)

p 1≥ N

p

Ri 1, Ri 2, ... Ri p,, , ,{ }

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 13 of 63

In [85][86][87], Reekieet al. consider the problem of supporting streams in the functional

programming language Haskell [53]. They propose some interesting extensions to the language,

and motivate them with a convincing discussion of the information needed by a compiler to effi-

ciently implement streams. To do this, they use the Kahn process network model for Haskell pro-

grams, and classify them intostatic anddynamic. In static networks, all streams are infinite. In

dynamic networks, streams can come and go, and hence the structure of the network can change.

Mechanisms for dealing with these two types of networks are different. Static networks are much

more common in signal processing, and fortunately much easier to implement efficiently,

although we will consider both types below.

For efficiency, Reekieet al. wish to evaluate the process networks eagerly, rather than

lazily as normally required by Haskell [87]. They propose eager evaluation whenever strictness

analysis [54] reveals that a stream is “head strict”, meaning that every element in the stream will

be evaluated. This is similar to the optimization embodied in the Eazyflow execution model for

dataflow graphs, which combines data-driven and demand-driven evaluation of operator nets by

partitioning the net into subnets that can be evaluated eagerly without causing any wasteful com-

putation [57]. This, in effect, translates the recursive-cons view of streams into a channel view.

Reekie,et al. also point out that if analysis reveals that a subgraph is synchronous (in the

sense of “synchronous dataflow” [66][67]), then very efficient evaluation is possible. While this

latter observation has been known for some time in signal processing circles, putting it into the

context of functional programming has been a valuable contribution. To clarify this point, we can

establish a clear relationship between dataflow, functional languages, and Kahn process networks.

Streams can be generalized to higher dimensionality, as done in Lucid [92] and Ptolemy

[65][31]. This, however, is beyond the scope of this paper.

2.4 Dataflow, functional languages, and process networks

A dataflowactor, when it fires, maps input tokens into output tokens. Thus, an actor,

applied to one or more streams, will fire repeatedly. A set offiring rules specify when an actor can

fire. Specifically, these rules dictate precisely what tokens must be available at the inputs for the

Formal Underpinnings

12 of 63 DATAFLOW PROCESS NETWORKS

the program executes in bounded memory [30]. A different solution to the same problem is given

by Buck [22], who uses the so-called balance equations, described below in section 2.5.3.

The difference between the two models for streams need not be important in practice,

except that the choice of model may lead to unfortunate choices in language design. We prefer the

channel model for a number of reasons. Stylistically, unlike the recursive-cons model, it puts

equal emphasis on destruction (consumption of data from the stream) as construction (production

of data onto the stream). Moreover, it does not suggest costly lazy evaluation. While a demand-

driven style of control is popular among theoreticians, no established signal processing program-

ming environment uses it, partly because of the cost, and partly because the same benefits (avoid-

ing unnecessary computation) can usually be obtained more efficiently through compile-time

analysis [22][66]. The same objectives are addressed bypath analysis, used to reduce the cost of

lazy evaluation in functional languages through compile-time analysis [18].

In the channel model for streams, unlike the streams in the synchronous languages Silage,

Lustre, and Signal, there is no concept of simultaneity of tokens (tokens in different streams lining

up). Instead, tokens are queued using a FIFO discipline, as done in early dataflow schema [36].

It is especially important in signal processing applications to recognize that streams can

carry truly vast amounts of data. A real-time digital audio stream, for instance, might carry 44,100

samples per second per channel, and might run for hours. Video sequences carry much more.

Viewing a stream as a conventional data structure, therefore, gets troublesome quickly. It may

require storing forever all of the data that ever enters the stream. Any practical implementation

must instead store only a sliding window into the stream, preferably a small window. But just by

providing a construct for random access of elements of a stream, for example, the language

designer can make it difficult or impossible for a compiler to bound the size of the window.

A useful stream model in this context must be as good at losing data (and recycling its

memory) as it is at storing data. The prefix-ordered sequences carried by the channels in the Kahn

process networks are an excellent model for streams because the blocking reads remove data from

the stream. However, special care is still required if the memory requirements of the channels in a

network are to remain bounded. This problem will be elaborated below.

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 11 of 63

Another camp sees streams as channels, just like the channels in a Kahn process network.

A channel is not functional, because it is modified by appending new elements to it. Kahn and

MacQueen outline in [59] a demand-driven multitasking mechanism for implementing such chan-

nels. Ida and Tanaka argue for the channel model for streams, observing that it algorithmically

transforms programs from a recursive to an iterative form [55]. Dennis, by contrast, argues for the

recursive-cons representation of streams in Sisal 2 for program representation, but suggests trans-

lating them into non-recursive dataflow implementations using the channel model [40]. Franco,et

al. also argue in [43] for using the channel model, with a demand-driven execution style, and pro-

pose an implementation in Scheme. The channels are implemented using a “call with current con-

tinuation” mechanism in Scheme. This mechanism essentially supports process suspension and

resumption, although the authors admit that at the time of their writing, no Scheme implementa-

tion supported this without the considerable expense of a control-stack copy.

A unique approach implemented in the language Silage [50] blends the benefits of a

declarative style with the simplicity of the channel model. In Silage, a symbol “x” represents an

infinite stream. The language has the notion of a global cycle, and a simple reference to a symbol

“x” can be thought of as referring to the “current value” of the stream x. An implicit infinite itera-

tion surrounds every program. This language is being used successfully for both software and

hardware synthesis in the Mentor Graphics DSP Station, the Cathedral project at IMEC [37], and

in the Hyper project at U. C. Berkeley [83]. The use of a global cycle in a process network context

has also been studied by Boussinot [20], who observes that it permits suspension and interruption

of processes in a predictable way.

A more general approach is to associate with each stream a “clock,” as done in Lustre [46]

and Signal [12]. A clock is a logical signal that defines the alignment of tokens in different

streams. For example, one could have a streamy where only every second token iny aligns with a

token in another streamx. Although both streams may be infinite, one can viewx as having twice

as many tokens asy. A powerful algebraic methodology has been developed to reason about rela-

tionships between clocks, particularly for the Signal language [12][68]. Caspi has described a pre-

liminary attempt to abstract the notion of clocks so that it applies to process networks [29]. He has

applied this abstraction to the Lucid language to solve certain problems like determining whether

Formal Underpinnings

10 of 63 DATAFLOW PROCESS NETWORKS

We have been using the term “determinate” loosely. If we now formally define determin-

ism in the context of process networks, then the main result of this section follows immediately.

Define thehistory of a channel to be the sequence of tokens that have traversed the channel (i.e.

have been both written and read). A Kahn process network is said to bedeterminate if the histo-

ries of all the internal and output channels depend only on the histories of the input channels. A

monotonic process is clearly determinate. Since a network of monotonic processes is monotonic

[78], then a network of monotonic processes is also determinate.

2.3 Streams

The graphical programming environments that we are concerned with are most often used

to design or simulate real-time signal processing systems. Real-time signal processing systems

are reactive, in that they respond to a continual stream of stimuli from an environment with which

they cannot synchronize [11]. Skillcorn [92] argues that streams and functions on them are a natu-

ral way to model reactive systems. Streams are such a good model for signals that the signal pro-

cessing community routinely uses them even for non-real-time systems.

Wendelborn and Garsden [97] observe that there are different ideas in the literature of

what a stream is. One camp defines streams recursively, using cons-like list constructors, and usu-

ally treats them functionally using lazy semantics. This view is apparently originally due to Lan-

din [62]. Lazy semantics ensure that the entire stream need not be produced before its consumer

operates on it. For example, Burge [26] describes streams as the functional analog of coroutines

that “may be considered to be a particular method of representing a list in which the creation of

each list element is delayed until it is actually needed.” As another example, in Scheme, streams

are typically implemented as a two-element cell where one element has the value of the head of

the stream and the other has the procedure that computes the rest of the stream [1]. Recursive

operations on streams require use of a special “delay” operator that defers the recursive call until

access to the “cdr” of the stream element is attempted. This ad-hoc mechanism makes recursive

streams possible in a language without lazy semantics. Another mechanism that avoids laziness is

the so-calledI-structures used in some dataflow languages [9].

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 9 of 63

PGM specification [60] in the form of what are called “graph variables.” A similar use of shared

variables with “peek” and “poke” nodes appears in [79].

If B and C share a variable as described above, then they are potentially nonmonotonic.

Knowing that , , and is not enough to conclude that

 because the extended inputs might somehow affect the order in which the shared variable is

accessed. However, they could be monotonic if, for example, the discipline used to access the

shared variable is equivalent to implementing a Kahn channel.

As a rather different example, suppose that actor D in figure 1 is anondeterminate merge

(any of the three variants discussed by Panagaden and Shanbhogue [78]). Its behavior is that if a

data value (atoken) is available on either input, it can immediately move that token to its output.

Now, the output depends on the order in which B and C produce their outputs, and on the timing

with which D examines its inputs. It has been shown that a nondeterminate merge must be either

unfair or nonmonotonic, and hence not continuous [21]. Although rather involved technically,

unfair intuitively means that it favors one input or the other.

Arvind and Brock [6] argue that the nondeterminate merge is practically useful for

resource management problems. A resource manager accepts requests for a resource (e.g. money

in a bank balance), arbitrates between multiple requests, and returns a grant or deny, or some

related data value. It is observed that such a resource manager can be used to build a memory cell,

precisely the type of resource that functional programming is trying to get away from. Abramsky

[2] points out that the functionality of a nondeterminate merge is widely used in practice in time-

dependent systems, despite unsatisfactory formal methods for reasoning about it.

A network with a nondeterminate merge clearly might be nondeterminate, but it might

also be determinate. For example, suppose that C in figure 1 never actually produces any outputs.

Then the nondeterminate merge in D will not make the network nondeterminate.

The nondeterminate merge does not satisfy one of Kahn’s conditions for a process net-

work, that reads from channels be blocking. This constraint makes it impossible for a process to

test an input for the presence of data. Thus, if D is a nondeterminate merge, then the graph in fig-

ure 1 is not, strictly speaking, a Kahn process network.

F X0() Y0= F X1() Y1= X0 X1 Y0

Y1

Formal Underpinnings

8 of 63 DATAFLOW PROCESS NETWORKS

Taking a Bayesian perspective, a system is random if the informationknown about the sys-

tem and its inputs is not sufficient to determine its outputs. The semantics of the programming

language may determine what is known, since some properties of the execution may be unspeci-

fied. However, since most graphical programming environments do not define complete lan-

guages, it is easy (and dangerous) to circumvent what semantics there are by using the host

language. In fact, the common principle of avoiding over specifying programs leaves aspects of

the execution unspecified, and hence opens the door to nondeterminate behavior. Any behavior

that depends on these unspecified aspects will be nondeterminate.

Nondeterminism can be added to Kahn networks by any of five methods: (1) allowing pro-

cesses to test inputs for emptiness, (2) allowing processes to be internally nondeterminate, (3)

allowing more than one process to write to a channel, (4) allowing more than one process to con-

sume data from a channel, and (5) allowing processes to share variables. Boussinot argues that (3)

can implement (1) and (2), and gives the semantics of such extended process networks [19].

Shared variables, however, form a particular pitfall in a coordination language, since they are so

easy to implement using the host language.

For example, in the process network shown in figure 1, nothing in the graph specifies the

relative timing of the processing in nodes B and C. Suppose that nodes B and C each modify a

variable that they share. Then the order in which they access this variable could certainly affect

the outcome of the program. The problem here is that the process network semantics, which spec-

ify a communication mechanism, have been circumvented using a shared variable in the host lan-

guage. While this may be a powerful and useful capability, it should be used with caution, and in

particular, it should not surprise the unwary programmer. Such a capability has been built into the

 Figure 1. This process network does not specify the relative timing of the
processing in nodes B and C. If D is a nondeterminate merge, it does
not specify in which order the results should appear at E.

B

A

C

D E

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 7 of 63

. (4)

Only two outputs are possible, both finite sequences. To show that this is monotonic, note that if

the sequence is infinite and , then = , so

 = = . (5)

If is finite, then = = , which is a prefix of all possible outputs. To show that it is

not continuous, consider the increasing chain

 = { , , … }, where … , (6)

where each has exactly elements in it. Then is infinite, so

F() = [0,1]≠ = [0]. (7)

Iterative computation of this function is clearly problematic.

A useful property is that a network of monotonic processes itself defines a monotonic pro-

cess. This property is valid even for process networks with feedback loops, as is formally proven

using induction by Panagaden and Shanbhogue [78]. It should not be surprising given the results

so far that one can formally show that networks of monotonic processes aredeterminate.

2.2 Nondeterminism

A useful property in some modern languages is an ability to express nondeterminism. This

can be used to construct programs that respond to unpredictable sequences of events, or to build

incomplete programs, deferring portions of the specification until more complete information

about the system implementation is available. Although this capability can be extremely valuable,

it needs to be balanced against the observation that for the vast majority of programming tasks,

programmers need determinism. Unfortunately, by allowing too much freedom in the interaction

between nodes, some graphical programming environments can surprise the user with nondeter-

minate behavior. Nondeterminate operations can be a powerful programming tool, but they

should be used only when such a powerful programming tool is necessary. The problems arise

because, as shown by Apt and Plotkin [4], nondeterminism leads to failures of continuity.

F X()
0[] if X is a finite sequence;

0 1,[] otherwise;

=

X X X′ X X′

Y F X() Y′ F X′()
X Y F X() 0[]

χ X0 X1 X0 X1

Xi i χ

χ F χ()

Formal Underpinnings

6 of 63 DATAFLOW PROCESS NETWORKS

cessing, it provides a useful abstract analog to causality that works for multirate discrete-time sys-

tems without requiring the invocation of continuous time. Given an increasing chain , a

monotonic process will map this set into another increasing chain .

For completeness, we now prove Kahn’s claim that a continuous process is monotonic

[58]. To do this, we prove that if a process is not monotonic, then it cannot be continuous. If the

process is not monotonic, then there existX andX' whereX X' , but (X) (X'). Let

 = { X0 X1 ... } be any increasing chain such thatX0 = X and =X' . Then note that

() = (X'). But this cannot be equal to becauseX ∈ and (X) (X'). This

concludes the proof.

A key consequence of these properties is that a process can be computed iteratively [70].

This means that given a prefix of the final input sequences, it may be possible to compute part of

the output sequences. In other words, a monotonic process is non-strict (its inputs need not be

complete before it can begin computation). In addition, a continuous process will not wait forever

before producing an output (i.e., it will not wait for completion of an infinite input sequence).

A network of processes is, in essence, a set of simultaneous relations between sequences.

If we letX denote all the sequences in the network, including the outputs, andI the set of input

sequences, then a network of functional processes can be represented by a mapping where

X = (X,I) (3)

Any X that forms a solution is called afixed point. Kahn argues in [58] that continuity of

implies that there will be exactly one “minimal” fixed point (where minimal is in the sense of pre-

fix ordering) for any inputsI . Thus, we can get an execution of the network by first settingI = ⊥

and finding the minimal fixed point. Other solutions can then be found from this one by iterative

computation, where the inputs are gradually extended; this works because of the monotonic prop-

erty.

Note that continuity implies monotonicity, but not the other way around. One process that

is monotonic but not continuous is :→ given by

χ

Ψ

F F F

χ χ

F χ F F χ() χ F F

F

F

F

F S S

Formal Underpinnings

DATAFLOW PROCESS NETWORKS 5 of 63

empty sequence is denoted⊥ (bottom), and is obviously a prefix of any other sequence. Consider

a (possibly infinite) increasing chain of sequences = { , , … }, where … .

Such an increasing chain of sequences has one or more upper bounds , where for all

. Theleast upper bound is an upper bound such that for any other upper bound ,

. The least upper bound may be an infinite sequence.

Let S denote the set of finite and infinite sequences. This set is acomplete partial order

(cpo) with the prefix order defining the ordering. The “complete” simply means that every

increasing chain has a least upper bound inS. Let denote the set ofp-tuples of sequences as in

X = { X1, X2, ... ,Xp } ∈ . The set⊥ ∈ is understood to be the set of empty sequences.

Such sets of sequences can be ordered as well; we writeX X' if Xi X'i for each i, 1 ≤

i ≤ p. A set ofp-tuples of sequences = {X0, X1, ... } always has agreatest lower bound

(possibly⊥), but it may or may not have aleast upper bound . If it is an increasing chain, =

{ X0, X1, ... }, whereX0 X1 ..., then it has a least upper bound, so is a cpo for any integer

.

A functional process : → maps a set of input sequences into a set of output

sequences. Given an increasing chain of sets of sequences , it will map this set into another set

of sequences that may or may not be an increasing chain. Let denote the least upper bound

of the increasing chain . Then is said to becontinuous if for all such chains , () exists

and

() = (). (1)

This is analogous to the notion of continuity for conventional functions, if the least upper bound is

interpreted as a limit, as in

 = { X0 X1 ... } = X i. (2)

Kahn sketches a proof that networks of continuous processes have a more intuitive prop-

erty calledmonotonicity[58]. A process is monotonic ifX X' ⇒ (X) (X'). This can

be thought of as a form of causality, but one that does not invoke time. Moreover, in signal pro-

χ X0 X1 X0 X1

Y Xi Y

Xi χ∈ χ Y

χ Y

S
p

S
p

S
p

χ χ

χ χ

S
p

p

F S
p

S
q

χ

Ψ χ

χ F χ F χ

F χ F χ

χ lim

i → ∞

F F F

Formal Underpinnings

4 of 63 DATAFLOW PROCESS NETWORKS

tions of silicon implementations [37]. Often, considerable effort is put into optimized compilation

(see for example [15][41][81][88]).

2.0 Formal Underpinnings

In most graphical programming environments, the nodes of the graph can be viewed as

processes that run concurrently and exchange data over the arcs of the graph. However, these pro-

cesses and their interaction are usually much more constrained than those of CSP [52] or SCCS

[74]. A better (and fortunately much simpler) formal underpinning is the Kahn process network

[58].

2.1 Kahn Process Networks

In a process network, concurrent processes communicate only through one-way FIFO

channels with unbounded capacity. Each channel carries a possibly infinitesequence (astream)

that we denote , where each is an atomic data object, ortoken drawn from

some set. Each token is written (produced) exactly once, and read (consumed) exactly once.

Writes to the channels arenon-blocking (they always succeed immediately), but reads areblock-

ing. This means that a process that attempts to read from an empty input channel stalls until the

buffer has sufficient tokens to satisfy the read. Lest the reader protest, we will show that this

model of computation does not actually require either multitasking or parallelism, although it is

certainly capable of exploiting both. It also usually does not require infinite queues, and indeed

can be much more efficient in its use of memory than comparable methods in functional lan-

guages, as we will see.

A process in the Kahn model is a mapping from one or more input sequences to one or

more output sequences. The process is usually constrained to becontinuous in a rather technical

sense. To develop this idea, we need a little notation.

Consider aprefix ordering of sequences, where the sequenceX precedesthe sequenceY

(writtenX Y) if X is a prefix of (or is equal to)Y. For example, . IfX

Y, it is common to say thatX approximates Y, since it provides partial information aboutY. The

X x1 x2 ..., ,[]= xi

x1 x2,[] x1 x2 x3, ,[]

Motivation

DATAFLOW PROCESS NETWORKS 3 of 63

flow languages for other applications is given by Hills [51]. These software environments all

claim variants of dataflow semantics, but a word of caution is in order. The term “dataflow” is

often used loosely for semantics that bear little resemblance to those outlined by Dennis in 1975

[38] or Davis in 1978 [35]. A major motivation of this paper is to point out a rigorous formal

underpinning for dataflow graphical languages, to establish precisely the relationship between

such languages and functional languages, and to show that such languages benefit significantly

from such modern programming concepts as polymorphism, strong typing, and higher-order

functions. Although it has been rarely exploited in visual dataflow programming, we also show

that such languages can make effective use of recursion.

Most graphical signal processing environments do not define a language in any strict

sense. In fact, some designers of such environments advocate minimal semantics [76], arguing

that the graphical organization by itself is sufficient to be useful. The semantics of a program in

such environments is determined by the contents of the graph nodes, either subgraphs or subpro-

grams. Subprograms are usually specified in a conventional programming language such as C.

Most such environments, however, including Khoros, SPW, and COSSAP, take a middle ground,

permitting the nodes in a graph or subgraph to contain arbitrary subprograms, but defining precise

semantics for the interaction between nodes. Following Halbwachs [47], we call the language

used to define the subprograms in nodes thehost language. Following Jagannathan, we call the

language defining the interaction between nodes thecoordination language [56].

Many possibilities have been explored for precise semantics of coordination languages,

including for example the computation graphs of Karp and Miller [61], the synchronous dataflow

graphs of Lee and Messerschmitt [66], the cyclo-static dataflow of Lauwereins,et al. [63][17], the

Processing Graph Method (PGM) of Kaplan,et al. [60], Granular Lucid [56], and others

[3][28][33][56][94]. Many of these limit expressiveness in exchange for considerable advantages

such as compile-time predictability.

Graphical programs can be either interpreted or compiled. It is common in signal process-

ing environments to provide both options. The output of compilation can be a standard procedural

language, such as C, assembly code for programmable DSP processors [80], or even specifica-

Motivation

2 of 63 DATAFLOW PROCESS NETWORKS

1.0 Motivation

This paper concerns programming methodologies commonly called “graphical dataflow

programming” that are used extensively for signal processing and experimentally for other appli-

cations. In this paper, “graphical” means simply that the program is explicitly specified by a

directed graph where the nodes represent computations and the arcs represent streams of data. The

graphs are typically hierarchical, in that a node in a graph may represent another directed graph.

The nodes in the graph can be either language primitives or subprograms specified in another lan-

guage, such as C or FORTRAN.

It is common in the signal processing community to use a visual syntax to specify such

graphs, in which case the model is often called “visual dataflow programming.” But it is by no

means essential to use a visual syntax. A few graphical programming environments allow an arbi-

trary mixture of visual and textual specification, both based on the same language. For example,

the Signal [12][68], Lustre [46], and Silage [50] languages all have a visual and a textual syntax,

the latter available in the commercial Mentor Graphics DSP Station as DFL. Other languages

with related semantics, such as Sisal [73], are used primarily or exclusively with textual syntax.

The language Lucid [92][96], while primarily used with textual syntax, has experimental visual

forms [10].

Hierarchy in graphical program structure can be viewed as an alternative to the more usual

abstraction of subprograms via procedures, functions, or objects. It is better suited than any of

these to a visual syntax, and also better suited to signal processing.

Some examples of graphical dataflow programming environments intended for signal pro-

cessing (including image processing) are Khoros, from the University of New Mexico [84] (now

distributed by Khoral Research, Inc.), Ptolemy, from the University of California at Berkeley

[25], the signal processing worksystem (SPW), from the Alta Group at Cadence (formerly Com-

disco Systems), COSSAP, from Synopsys (formerly Cadis), and the DSP Station, from Mentor

Graphics (formerly EDC). MATLAB from The MathWorks, which is popular for signal process-

ing and other applications, has a visual interface called SIMULINK. A survey of graphical data-

March 27, 1995

1 of 63

Department of Electrical Engineering
and Computer Sciences

University of California

Berkeley, California 94720

A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T

DATAFLOW PROCESS NETWORKS

Edward A. Lee
Thomas M. Parks

ABSTRACT

We review a model of computation used in industrial practice in signal processing software envi-
ronments and experimentally in other contexts. We give this model the name “dataflow process
networks,” and study its formal properties as well as its utility as a basis for programming lan-
guage design. Variants of this model are used in commercial visual programming systems such as
SPW from the Alta Group of Cadence (formerly Comdisco Systems), COSSAP from Synopsys
(formerly Cadis), the DSP Station from Mentor Graphics, and Hypersignal from Hyperception.
They are also used in research software such as Khoros from the University of New Mexico and
Ptolemy from the University of California at Berkeley, among many others.

Dataflow process networks are shown to be a special case of Kahn process networks, a model of
computation where a number of concurrent processes communicate through unidirectional FIFO
channels, where writes to the channel are non-blocking, and reads are blocking. In dataflow pro-
cess networks, each process consists of repeated “firings” of a dataflow “actor”. An actor defines
a (often functional) quantum of computation. By dividing processes into actor firings, the consid-
erable overhead of context switching incurred in most implementations of Kahn process networks
is avoided.

We relate dataflow process networks to other dataflow models, including those used in dataflow
machines, such as static dataflow and the tagged-token model. We also relate dataflow process
networks to functional languages such as Haskell, and show that modern language concepts such
as higher-order functions and polymorphism can be used effectively in dataflow process net-
works. A number of programming examples using a visual syntax are given.

This research is part of the Ptolemy project, which is supported by the Advanced Research Projects Agency and the U.S. Air Force
(under the RASSP program, contract F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National
Science Foundation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of California, and
the following companies: Bell Northern Research, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rock-
well, Sony, and Synopsys.

Published in Proceedings of the IEEE , May, 1995.
 1995, IEEE — All Rights Reserved

