
Scheduling of dataflow graphs onto parallel processors consists of assigning

actors to processors, ordering the execution of actors within each processor, and firing

the actors at particular times. Many scheduling strategies do at least one of these oper-

ations at compile time to reduce run-time cost of scheduling activities. In this thesis,

we classify four scheduling strategies, (1) fully dynamic, (2) static-assignment, (3)

self-timed, and (4) fully static. These are ordered in decreasing run-time cost. Optimal

or near-optimal compile-time decisions require deterministic, data-independent pro-

gram behavior known to the compiler. Thus, moving from strategy number (1) towards

(4) either sacrifices optimality, decreases generality by excluding certain program con-

structs, or both. This thesis proposes scheduling techniques valid for strategies (2), (3),

and (4) for dataflow graphs with dynamic constructs such as if-then-else, for-loop, do-

while-loop, and recursion; for such graphs, although it is impossible to deterministi-

cally optimize the schedule at compile time, reasonable decisions can be made. For

many applications, good compile-time decisions remove the need for dynamic sched-

uling or load balancing. We assume a known statistical distribution for the dynamic

behavior of the constructs, and show how a compile-time decision about assignment

and/or ordering as well as timing can be made. The criterion we use is to minimize the

expected total idle time due to the construct; in certain cases, this will also minimize

COMPILE-TIME SCHEDULING OF DATAFLOW
PROGRAM GRAPHS WITH DYNAMIC CONSTRUCTS

by

Soonhoi Ha

ABSTRACT

1

the expected makespan of the schedule. We will also show how to determine the num-

ber of processors that should be assigned to the construct. The method is illustrated

with several programming examples, yielding very promising results.

Edward A. Lee
Thesis Committee Chairman

2

i

Praise God, my Heavenly Father! He led me, specially to the completion of this

thesis, leads, and will lead me forever.

Past five years of my graduate work may not be imagined without a chain of

helps and contributions of others. To me, the completion of thesis means how much I

was indebted to others. It was a great blessing to study under Prof. Edward A. Lee. His

encouragement and kindness has kept me pursuing my research with great joy. His

academic zeal has opened up my eye to see what a researcher should be. Words can

not express my thanks to him. I also give special thanks to Prof. David Messerschmitt

and Prof. Jan Rabaey for encouraging my research to fruition.

Several colleagues deserve special appreciation. Shuvra Battacharyya, my best

friend from the first graduate year, has continually cheered me up. Joe buck, Alan

Kamas, Tom Parks, Phil Lapsley, John Barry, Paul Haskell, Phu Hoang, and many oth-

ers have not spared their valuable time and efforts to support my research.

I also thank brothers and sisters in Christ for their prayer and love. Sharing life

with them always leads me to more fruitfulness. Finally, there are some without whom

I would not be what I am: My parents, a brother, a sister, lovely babies Hee-Joo and

Sung-Ho, and my beloved wife Insook. I devote my thesis to them.

ACKNOWLEDGEMENTS

v

Brethren, I do not count myself to have apprehended; but one thing

I do, forgetting those things which are behind and reaching

 forward to those things which are ahead. ---- Phil. 3:13

1 INTRODUCTION 1

1.1 GRANULARITY OF PARALLELISM 4

1.2 ARCHITECTURE FOR DATAFLOW OPERATION 5

1.2.1 Dataflow Machines 6

1.2.2 Multi-threaded Architecture 10

1.2.3 Conventional von Neumann Architecture 12

1.2.4 Interconnection Networks 13

1.3 PARALLEL PROCESSING OVERHEADS 18

1.3.1 Load Balancing 18

1.3.2 Interprocessor Communication 18

1.3.3 Other Factors 21

1.4 TARGET APPLICATION: DIGITAL SIGNAL PROCESSING 21

1.4.1 Synchronous Dataflow Graph 22

1.4.2 Dynamic Dataflow Graph 24

1.5 CONCLUSION 27

2 SCHEDULING 29

2.1 SCHEDULING OBJECTIVES 31

2.1.1 Blocked Schedule 32

2.2 A SCHEDULING TAXONOMY 36

2.2.1 Fully Static Scheduling 39

2.2.2 Self-Time Scheduling 41

2.2.3 Static Assignment Scheduling 43

2.2.4 Fully Dynamic Scheduling 44

2.2.5 Summary 45

ii

TABLE OF CONTENTS

2.3 LIST SCHEDULING 46

2.4 DYNAMIC LEVEL SCHEDULING 47

2.5 SUMMARY 51

3 QUASI-STATIC SCHEDULING 52

3.1 PREVIOUS WORK 55

3.2 PROPOSED SCHEME FOR PROFILE DECISION 58

3.2.1 Assumptions 59

3.3 STATIC ASSIGNMENT AND SELF-TIMED SCHEDULING 60

3.3.1 Static Assignment Scheduling 61

3.3.2 Self-Timed Scheduling 63

3.4 PROPOSED TECHNIQUE 67

4 PROFILE DECISIONS 69

4.1 DATA-DEPENDENT ITERATION 69

4.1.1 Expected Runtime Cost 72

4.1.2 Assumed Execution Time 75

4.1.3 Processor Partitioning 83

4.2 CONDITIONALS 86

4.2.1 Expected Runtime Cost 87

4.2.2 Optimality Of The Proposed Algorithm 89

4.2.3 M-way Branching: Case Construct 95

4.2.4 Processor Partitioning 96

4.3 RECURSION 97

4.3.1 Expected Runtime Cost 99

4.3.2 Assumed Depth Of Recursion And Degree Of Parallelism 102

4.3.3 Processor Partitioning 104

4.3.4 Limitation Of The Assumption 105

4.4 ADDITIONAL IDLE TIMES 106

5 IMPLEMENTATION: PTOLEMY 110

iii

5.1 MIXED-DOMAIN APPLICATION 113

5.1.1 An Example 115

5.2 SCHEDULING PROCEDURE 117

5.3 THE REPRESENTATION ISSUE 120

6 EXPERIMENTS 123

6.1 AN EXAMPLE FROM GRAPHICS 124

6.2 SYNTHETIC EXAMPLES 129

6.2.1 An Example With A Case Construct. 131

6.2.2 An Example With A For Construct 134

6.2.3 An Example With A DoWhile Construct 138

6.2.4 An Example With A Recursion construct. 140

6.2.5 An Example With A Nested Dynamic Construct 143

7 CONCLUSION 146

7.1 FUTURE RESEARCH 149

REFERENCES 151

APPENDIX I 165

iv

1

INTRODUCTION

1

And, you shall know the truth, and the truth shall make you free.

--- John 8:32

To follow the insatiable demands for computing power, such as weather predic-

tion, video processing, and much more, all levels of computer design have been consis-

tently improved. The improvement of device technology has been the major driving force

for fast computation by reducing the clock period to as low as tens of nanoseconds. At the

architecture level, exploiting various forms of concurrence in programs has been an

important technique. At the uniprocessor level, pipelining is the basic technique used to

realize temporal concurrence. Spatial concurrence (parallelism) is exploited by multiple

functional units by issuing multiple instructions at the same time. Since multiple proces-

sors offer more parallel computing power, the use of cooperating multiple processors is

promising for further speed improvement. Currently the range of multiprocessor architec-

2

tures is quite diverse, from small collections of supercomputers to thousands of synchro-

nous single-bit processors.

In spite of significant advances made in the hardware aspects of parallel computa-

tion, the actual progress is far below the expected level because of the software and lan-

guage aspects: synchronization, resource management, and programmability. By

Amdahl’s law, the speedup is limited by the reciprocal of the fraction of computation

which must be performed serially [Amd67]. Therefore, the software for parallel computa-

tion should minimize required serial execution, which comes from the inherent nature of

programs or the unavailability of required resources. Also, the software must be easy to

write and debug.

One approach is to use conventional languages coupled with parallelizing compil-

ers. The advantage of this approach is that existing programs only have to be recompiled

and the programmers need not be concerned about the underlying hardware. The com-

piler, however, must be very complicated; it must check against side effects permitted by

the language and partition a sequential program for execution on a multiprocessor sys-

tem. Except for very regular structures such as a for-loop of array processing, this

approach has proven unsuccessful since a conventional sequential language itself hides a

great deal of potential parallelism.

Another approach is to extend the conventional style of programming with special

primitives for parallel programming: spawning, synchronization, and message passing.

Examples are Ada, CSP [Hoa78], extended Fortran (e.g., HEP, Sequent), Multilisp, and

Occam. For a specific application, the programmer constructs a parallel algorithm which

will uncover the hidden parallelism in a sequential program, and expresses it explicitly.

However, much potential concurrency still may never be uncovered because of the inher-

ent sequential concepts of the language, and debugging becomes more difficult.

It is widely acknowledged that conventional imperative languages are designed

3

for a single von Neumann computer [Bac78] where the concept of a present state is

matched with sequential execution. The principal operations of these languages involve

changing the state of the computation. When applied to a parallel processing system,

there is a major problem with side effects in which a part of the code imposes on another

part of the code unintentionally. The use of global variables and multiple assignments of

the same variable are typical sources of side effects.

On the other hand, dataflow languages1 are based on function applications to

available arguments. As a result, they are free of side effects. Parallelism in dataflow pro-

grams can be detected without a global analysis of the programs since during execution

any two computations not dependent on each other for data are automatically eligible for

concurrent execution. Dataflow languages also seem to offer opportunities for writing

more modular, reliable, and verifiable programs. Examples of dataflow languages include

Val[Mcg82], Id [Nik89] and SILAGE[Hil89].

Dataflow programs can be described by a dataflow graph. The dataflow graph is a

directed graph G(T,E) where each node T (also called an actor or task2) stands for either

an individual program instruction or a group thereof, and the arcsE carry operands

(called tokens or data) from one operator to another (figure 1.1). When data is available

1. The termsfunctional language,applicative language,dataflow language, andreduction lan-
guage have been used somewhat interchangeably in the literature.
2. The termsnode, actor, andtaskare used interchangeably throughout this dissertation.

A

B

C

Figure 1.1 A three node dataflow graph with two inputs and one output. The nodes
represent functions of arbitrary complexity and the arcs represent paths on which
sequences of data flow.

4

on the input arc, actor A can be executed (or fired). Actor B waits for data from actor A

before execution even though its other input arc may already have data. Therefore, arcs of

a dataflow graph also represent precedence relations among actors. A dataflow graph is

usually made hierarchical. In a hierarchical graph, an actor itself may represent another

dataflow graph; it is called amacro actor.

Whether it serves as an intermediate representation which is translated from a tex-

tual language or as a programming language itself, the dataflow graph describes the struc-

ture of a program very effectively for multiprocessor systems. Throughout this

dissertation, dataflow graphs are used to represent application programs regardless of

how they are constructed.

1.1. GRANULARITY OF PARALLELISM

The size of an actor, or the number of primitive instructions in an actor, defines

the granularity of a parallel program. An actor is the schedulable unit of computation

which is executed sequentially. The more finely a program is divided into tasks (actors),

the greater the opportunity for parallel execution. However, there is a commensurate

increase in the frequency of inter-task communication and associated synchronization

demands. For a given machine, there is a fundamental trade-off between the amount of

parallelism that is profitable to expose and the overhead of synchronization.

Most textual dataflow languages aim to translate a program instruction into a sin-

gle actor. A graph in which each node represents a single instruction is called afine-grain

dataflow graph. On the other hand, some hybrid graphical/textual languages have been

developed to have actors contain textual description of functions [Bab84][Lee87b]

[Suh90]. Since conventional programming languages are used for textual description, a

programmer need not learn a wholly new language. These are calledlarge-grain (or

5

coarse-grain) dataflow graphs. Large-grain dataflow graphs can also be made by group-

ing textual dataflow instructions to compose a large actor [Sar87][Ian88]. In this case, the

aggregation of instructions must not introduce any cyclic dependency which can not be

resolved. A fine-grain dataflow graph is obviously a special case of large-grain dataflow

graph.

Which grain size is better? This can not be answered without considering the

architecture of the hardware. The next section will reveal various directions of architec-

ture design for the dataflow paradigm.

1.2. ARCHITECTURE FOR DATAFLOW OPERATION

In spite of all the attractive features of dataflow languages, they do not fit conven-

tional von Neumann multiprocessors very well. Sarkar[Sar87] discusses the effect of the

actor’s total overhead in von Neumann multiprocessors on the actual speedup that can be

attained. The overhead includes scheduling overhead and communication overhead for

the actor’s inputs and outputs. He concludes that the actor size should be large for optimal

performance. Proponents of fine-grain dataflow graphs believe that his conclusion applies

only to the von Neumann architecture.

There are two fundamental issues for scalable, general purpose parallel comput-

ers: latency and synchronization. Latency is the time which elapses between making a

request and receiving the associated response, for example memory access time. Since

von Neumann instruction sets are traditionally designed with instructions whose execu-

tion time is latency dependent, this latency may not be hidden, which results in extra

overhead. Synchronization is the time-coordination of activities within a computation.

Two popular mechanisms for synchronization are interrupts and semaphores, which

respectively require context-switching or busy-waiting overhead. To overcome these dif-

6

ficulties, several architectures have been proposed. Among them, dataflow machines are

fundamentally different from conventional von Neumann processors.

1.2.1 Dataflow Machines

The program instruction format for a dataflow machine is essentially an adjacency

list representation of the program graph. Since the execution of an instruction is depen-

dent on the arrival of operands, the management of token storage and instruction schedul-

ing are intimately related. While the dataflow model assumes unbounded FIFO queues on

the arcs, there are two alternatives for an actual implementation. A static dataflow

machine provides a fixed amount of storage per arc. On the other hand, adynamic data-

flow machine allocates token storage dynamically out of a common pool and assumes

that tokens carry tags to indicate their logical position on the arcs. Comprehensive sur-

veys of early dataflow architectures are given by Vegdahl[Veg84], Arvind and Culler

[Arv86] and Srini [Sri87].

Static Dataflow Machines

In a static machine, memory locations for tokens can be determined prior to exe-

cution. The availability of operands can be monitored by presence flags. Also, detecting

enabled nodes can be done by associating a counter with each node. The first generation

dataflow machines designed in the seventies fall into this category, including the MIT

static dataflow architecture [Den75], the Lau system [Pla76], and TI’s data-driven proces-

sor (DDP) [Cor79].

The basic instruction execution mechanism of a static dataflow machine is shown

in figure 1.2. The activity store contains activity templates of the dataflow program. Each

activity template has a unique address which is entered in the instruction queue when the

instruction is ready for execution. The fetch unit fetches an executable instruction from

7

the activity store addressed by the head entry of the instruction queue. The operation unit

receives the instruction, performs execution and sends the result to the update unit of the

same processor or a remote processor through the output unit. The update unit enters the

received value into the operand field of specified activity templates. This unit also tests

whether the destination instruction is fireable (executable) and, if so, enters the instruc-

tion address in the instruction queue.

This architecture illustrates an important characteristic of dataflow machines;

communication latency between processors is hidden as long as enough enabled nodes

are present in the instruction queue. It also shows that the synchronization primitives are

installed in the essential part of the architecture, the update unit.

There is an interesting departure from this basic model. In the argument fetching

dataflow architecture [Gao88], the data and signaling roles are separated and an instruc-

tion fetches its own argument from a data memory just like in the conventional von Neu-

mann architecture.

Static dataflow machines, however, seem to have a couple of significant short-

comings. First, the amount of parallelism is reduced due to the restriction that an arc has

Operation Unit

Instruction Queue

Activity Store

FetchUpdate

Output

Input

Figure 1.2 Basic instruction execution mechanism of static dataflow machine [Arv86]

8

a fixed amount of storage. Suppose an output arc of a node A has only one storage. Once

the node is executed, the node can not be executed again until the token on the output arc

is consumed by the destination node B. Second, a deadlock free dataflow graph may

become deadlocked with bounded token storage. Suppose node A in the above example

has another output connected to node C. And, node C should consume two tokens from

node A before it generates two tokens to node B. After node A is executed once, no node

can be executed any more since node A waits until node B consumes its output token and

node B can not be executed until node A is executed once more. This is an example of

deadlock due to bounded token storage implementation. These shortcomings motivated

work on the more general dynamic dataflow approach discussed next.

Dynamic Dataflow Machines

In a dynamic dataflow machine, the number of concurrent invocations of an actor

is unlimited. The basic requirement for this feature is that each invocation, calledactivity,

of an actor should be uniquely named so that different invocations of the same node are

distinguished. The unique name assigned to each activity is called atag, so dynamic data-

flow machines are also calledtagged-token dataflow machines. The U-interpreter

[Gos82] shows an example of how to tag activities dynamically and explicitly.

The basic execution model of dynamic dataflow machines is illustrated in figure

1.3. All tokens must carry the tags of their destination. When a token enters the wait-

match stage, its tag is compared against the tags of the activities. With an associative

store or dynamic hashing, tokens with the same tag are collected to make the associated

activity executable. The associative store approach is used in the MIT tagged-token archi-

tecture (TTDA) [Arv88a], and the dynamic hashing approach is used in the Manchester

architecture [Gur85]. Newly runnable activities from the incoming tokens enter into the

instruction fetch unit. The instruction fetch unit delivers the operands and the op-code to

9

the arithmetic unit. The arithmetic unit not only performs the operation but also manipu-

lates the tags. The result is combined with successor instruction addresses specified in the

instruction to yield <tag, data> pairs for the wait-match stage. If an instruction has multi-

ple destinations, parallel computations are initiated by generating a token for each

address.

When a program needs to deal with large data structures, the pure dataflow

semantics is very inefficient since multiple copies of the data structure are required.

Structure memory is a way of introducing a limited notion of state into dataflow graphs,

without compromising parallelism or determinacy. For example, Arvind’s I-structure

supports split-phase memory references via a consumer-producer synchronization mech-

anism.

Performance simulation of dataflow programs on the MIT TTDA architecture is

described in [Arv88b]. Since the machine was not built, Arvind et. al. report the number

of machine instructions compiled for a uniprocessor. They reported that even before opti-

mization, the number of instructions is comparable to that of von Neumann processors.

However, the fundamental problem of dynamic dataflow machines lies in the implemen-

Build
Token

Instr.
Fetch

ALU

Wait
Match

Structure Memory

Figure 1.3 Basic instruction execution mechanism of dynamic dataflow machines
[Arv88b].

10

tation of the wait-match unit. Neither associative memories nor hashing schemes provide

sufficient bandwidth comparable with the ALU. Recently, Papadopoulos at MIT [Pap88]

conceived the idea ofexplicit token store, in which a tag contains the encoded address of

a unique global location. This is just like the von Neumann storage model except that

each location is supplemented with a small number of presence bits.

In principle, dynamic dataflow machines can execute fine-grain dataflow graphs

without any noticeable latency and synchronization overhead. Nonetheless, they are still

far from commercial viability as general purpose multiprocessors. One problem to be

solved is to design a resource management policy that can govern the tremendous amount

of parallelism in case the hardware can not handle it effectively.

1.2.2 Multi-threaded Architecture

The multi-threaded architecture supports the concurrent execution of multiple

threads of control in a processor to tolerate the memory latency and task switching over-

head of von Neumann processors. The Denelcor HEP [Smi85] was the first commercially

available multi-threaded computer. In the HEP, an active thread is put to sleep when it

encounters a long latency operation by a very fast context switching mechanism to

another thread. Even though the HEP mitigates the latency overhead by interleaving mul-

tiple threads, it still suffers the basic problem of latency sensitive operations.

Many researchers have conceived that large-grain dataflow graphs fit the multi-

threaded architecture by viewing each actor as a thread. By the functional nature of

actors, there is no data sharing among threads - a thread communicates with other threads

only via the data produced at its completion. Also, the threads are not interruptible. Merg-

ing the dataflow paradigm into the multi-threaded architecture leads to dataflow / von

Neumann hybrid architectures [Ian88][Hum91]. In both references, they start with a fine-

grain dataflow graph and partition it to make a large-grain dataflow graph. By a split

11

transaction strategy, they avoid latency-sensitive operations, which are split into two parts

that separately initiate and then synchronize. And these two parts are partitioned into dif-

ferent large actors.

Architectural support for synchronization and scheduling of large actors depends

on a number of issues, but the most basic is that ofstrictness. It is likely that the total

input requirements for the actor will exceed that of the first instruction. The architecture

may providestrict scheduling where all actor inputs must be present prior to invoking the

actor [Hum91], ornon-strictscheduling where invocation is based solely on the require-

ments of the instruction to be executed [Ian88]. In the latter scheme, the possibility of

deadlock by partitioning is absent, while the hardware support to suspend actors is neces-

sary.

An example of a processing element in dataflow / von Neumann hybrid architec-

tures is shown in figure 1.4. The Actor Execution Unit (AEU) executes a large actor via a

sequential pipeline of von Neumann style. Upon completion of an active actor, the execu-

tion unit sends a done signal to the Actor Scheduling Unit (ASU) indicating that the actor

has been executed. The ASU, in turn, processes the signals and sends enabled actors to

Long Latency

Actor Scheduling

Actor
Preparation

MEM

other

PEs

Figure 1.4 A Processing Element (PE) of a dataflow / von Neumann hybrid architec-
ture [Hum91].

Actor Execution

12

the Actor Preparation Unit (APU). There the enabled actors are enqueued for entry to

either the execution unit, or the Long-latency actor Execution Unit (LEU). The LEU is

responsible for fetching the long-latency instructions and necessary operands from the

memory and processing the instructions.

The hybrid architectures proposed up to now have not been built even though

their expected behavior has been simulated extensively. Also, it is expected that compil-

ers for hybrid architectures would be more complicated than for pure dataflow machines.

Until an actual machine of this architecture is built, there is no proof of its viability as a

general purpose multiprocessor system.

1.2.3 Conventional von Neumann Architecture

In spite of the aforementioned shortcomings of von Neumann machines, most of

the multiprocessors, existing or being built, are based on von Neumann processors. The

appeal of von Neumann processors is that they are widely available and familiar. The sig-

nificant overhead for synchronization and latency-sensitive operations in von Neumann

processors precludes the use of fine-grain dataflow. Sarkar [Sak87], therefore, partitioned

fine-grain dataflow graphs, based on SISAL [McG83], into a large-grain dataflow graphs

whose optimal grain size is dependent on the overhead factor. The advantage of auto-

matic partitioning is that the program is portable to any degree of parallel hardware. On

the other hand, Suhler et. al. [Suh90] explore large-grain actors whose functions are tex-

tually described in conventional languages. They target the Sequent Balance, Intel iPSC-

1, and a network of IBM PC RTs. Babb [Bab84] claims that even sequential programs are

often easier to design and implement reliably when based on a large-grain dataflow

model of computation. This approach, however, forces the programmer to explicitly

decompose the program into tasks, and so degrades the performance if the programmer

does not reveal enough parallelism in the program.

13

As general purpose multiprocessor systems, the idea of using large-grain dataflow

graphs for von Neumann multiprocessors has not gained much attention. Most systems,

instead, use parallel programming languages which are extended from conventional lan-

guages with special primitives for parallel tasks. However, signal processing applications

offer a good opportunity to make this approach quite popular, as will be discussed later.

1.2.4 Interconnection Networks

Architectural models for a multiprocessor can be classified as beingtightly cou-

pled or loosely coupled [Hwa84]. Tightly coupled multiprocessors communicate through

a shared main memory. Hence the rate at which data can be communicated from one pro-

cessor to the other is on the order of the bandwidth of the memory. A small local memory

or high speed buffer (cache) may exist in each processor (figure 1.5). Loosely coupled

multiprocessors (also called multicomputers) communicate by passing messages. Again

the performance and scalability of the multiprocessor is primarily determined by the

interconnection network. The general structure for loosely coupled multiprocessors is

Figure 1.5 The general structure of tightly coupled multiprocessors.

MM0 MMn

Interconnection Network

LM LM

PE0 PEm

Shared Memory Module

Processing Elements with
Local Memory

14

shown in figure 1.6.

Interconnection networks have been reviewed in many surveys [Fen81][Ree87]

[Wit81]. The network topologies tend to be regular and can be grouped into two catego-

ries: static anddynamic [Fen81]. In a static topology, links between two processors are

passive and can not be reconfigured. On the other hand, links in the dynamic topology

can be reconfigured by setting the networks’s active switching elements.

Though different authors use different methods to characterize the performance of

the static topologies, some common measures are widely accepted

[Bhu84][Ree87][Wit81]: they are:

1. average message traffic delay (mean internode distance),

2. average message traffic density per link,

3. number of communication ports per node (degree of a node),

4. number of redundant paths (fault tolerancy),

5. and ease of routing (ease of distinct representation of each node).

A multitude of different topologies compromise these measures, offering a wide

range of cost/performance choices. Typical topologies are shown in figure 1.7.The com-

pletely connected network with N processors has N-1 connections per node, so it is not

suitable for even a moderate number of multiprocessors despite being optimal by all other

Figure 1.6 The general structure of loosely coupled multiprocessors

Interconnection Network

LM LM

PE0 PEmProcessing Elements with
Local Memory

15

criteria. The simplest topology is the single shared-bus topology (e.g. Sequent Balance).

Although the single bus topology is quite reliable and relatively inexpensive, it is not tol-

erant of a malfunction in any of the bus interface circuitry. Moreover, system expansion,

by adding more processors or memory, increases the bus contention, which degrades sys-

tem throughput. To provide more communication bandwidth than by a single bus, multi-

ple bus architectures (e.g. Pluribus) and hierarchical structures with clusters connected by

a inter-cluster bus (e.g. Cm*) have been developed. These architecture pay for the

increase bandwidth with more complicated bus arbitration logic. The bus bottleneck

problem limits the size of multiprocessors with bus topology (typically < 20).

General agreement on the order of magnitude of the average message traffic delay

and the average message traffic density is the order of the number of the processors

(b) Star (c) Tree

(d) Mesh (e) Binary hypercube (f) Completely connected

(a) Bus

Figure 1.7 Typical static topologies of interconnection networks.

16

(O(logN)). There are some known network topologies satisfying this order: cube-con-

nected-cycle [Pre81], lens [Fin81], dual-bus-hypercube[Wit81], generalized hypercube

[Bhu84], and generalized nearest neighbor mesh [Wit81]. Among them, the binary hyper-

cube, which is a special case of the generalized hypercube and also the generalized near-

est neighbor mesh, is the most popular for moderate numbers of processors ranging from

a few dozen to a few thousand processing elements (e.g. Intel iPSC, Ncube/10). The pri-

mary disadvantage of the binary hypercube is that it requires a logarithmic increase in

degree of a node as the total number of nodes increases. Other common topologies

include star, mesh, tree and their variants.

Dynamic topologies are mainly used for tightly coupled multiprocessors to con-

nect processors to the shared memory modules. There are three topological classes in the

dynamic category: single-stage, multistage, and crossbar. Examples of dynamic network

topologies are shown in figure 1.8.The shuffle-exchange network [Sto71] is the represen-

tative single-stage network based on a perfect-shuffle connection cascaded to a stage of

switching elements (e.g. NYU Ultracomputer). A multistage network consists of more

than one stage of switching elements and is usually capable of connecting an arbitrary

input terminal to an arbitrary output terminal. Depending on whether simultaneous con-

nections of more than one terminal pair may result in conflicts in the use of the network

communication links, multistage networks are further divided into three classes: block-

ing, rearrangeable, and nonblocking [Fen81]. Various kinds of multistage networks have

been implemented: omega (e.g. BBN Butterfly, IBM RP3), banyan, delta, Benes, and so

on.

In a crossbar switch, every input port can be connected to a free output port with-

out blocking. While this scheme yields a high processor/memory bandwidth, it incurs

scaling problems due to a switching cost which increases as N2.

17

1.3. PARALLEL PROCESSING OVERHEADS

(a) Shuffle-exchange (single stage)

(b) Crossbar

(c) An 8x8 omega network (multistage)

Figure 1.8 Examples of dynamic network topologies

2x2 switch

18

Regardless of what hardware architecture or software programming paradigm is

used, there are many factors which limit the attainable speedup in a parallel processing

environment.

1.3.1 Load Balancing

Load balancing is the primary concern for parallel processing. A proper load bal-

ance distributes the computation load evenly across all of the processors to maximize effi-

ciency, or to keep the processors busy as much as possible. A simple strategy to partition

the actors with the same amount of total work usually results in a bad balance since some

processors may be idled in case that the assigned actors are not executable. Therefore, the

precedence relationship among actors should be taken into account. The finer the granu-

larity of actors is, the less variance of the distributed workloads is expected. However, the

load balancing scheme becomes more complicated due to the quadratic increase of prece-

dence relations. Some dataflow machines were proposed to balance the loads at runtime

with fine-grain dataflow graphs, which incur prohibitive runtime overhead of shipping

codes across the interconnection network.

Another crucial issue, but often neglected in the literature, on load balancing is

thedynamic(data-dependent) behavior of programs. For a program with dynamic behav-

ior, there is no fixed partitioning which is best for all of the different runtime behaviors of

the program.

1.3.2 Interprocessor Communication

Interprocessor communication is also a significant source of the extra overhead. It

involves not only the communication delay required to transfer data between the source

and destination processors but also involves the arbitration delay to acquire this access

19

privilege to the interconnection network. The common technique to compensate for this

overhead is to use a split transaction scheme with dedicated hardware for network access.

The overhead can be hidden effectively if the processors are kept busy with other runna-

ble actors during the transactions. This is the main advantage of fine-grain dataflow

machines, because they usually have a sufficient number of runnable actors through full

exploitation of parallelism.

The arbitration delay is non-deterministic and depends on the network congestion

and the arbitration strategy. The primary objective of an arbitration strategy is to reduce

the possibility of an extraordinarily long latency. One interesting approach is to random-

ize the memory access pattern for multistage dynamic networks. Excessive contention for

a particular memory module in a dynamic network has been found to cause so-called

“hot-spots” in the network, which are analogous to traffic jams. Since regular access pat-

terns are more likely to cause these hot-spots, randomization destroys the regularity of

access patterns, and so reduces the possibility of excessive contention according to prob-

ability theory.

Communication delay depends on the amount of data transmitted. Therefore, a

pair of actors with large communication requirements should be assigned to the same

processor. Thus, there is a conflict between reducing communication requirements and

load balancing. Communication delay also depends on the length of the path. For static

networks, data must typically be routed through intermediate nodes before reaching its

final destination. In this case, the physical network topology as well as communication

requirements affects the efficiency of the partitioning, which makes the problem of find-

ing the optimal partitioning even more intractable.

There are two possible partitioning strategies based on heuristic rationales. The

unifiedstrategy incorporates the effect of physical processor connectivity on communica-

tion delay when partitioning [Sih91]. The other, calledtwo-phasestrategy, divides the

20

scheduling problem into two phases.

1. Partition the program ignoring the specific communication network topology of

the target machine.

2. Assign the partitioned actors to the physical processors.

Once the first phase is done, the communication requirements for each pair of par-

titions are determined. The objective of the second phase is to minimize the total commu-

nication delays, or message traffic. A message traffic on a link is defined as the volume of

data exchanged through the link. The total message traffic is the sum of message traffics

on all links. Definevij anddij as follows.

vij - the volume of data exchanged between processori and j.

dij - the number of links on the shortest path between processori andj.

Then the total message traffic becomes

(1-1)

The problem of minimizing the total message traffic is well known as the qua-

dratic assignment problem [Han72]. M. Hanan et. al. reviewed three techniques for the

placement of logic packages: constructive-initial-placement, iterative-improvement, and

branch-and-bound. While they did not consider network congestion, S. Lee and J. K.

Aggarwal [Lee87] formulated a set of new object functions quantifying the effect of con-

gestion based on deterministic information of when each communication occurs and with

how much volume. The problem of minimizing network congestion with a given assign-

ment may be attacked separately as the traffic scheduling problem [Bia87].

We examine the expected performance improvement we can achieve from the

optimal assignment compared with a random assignment in the appendix. The analysis

shows that the average performance improvement is about20% to 30% ignoring the

effects of the network congestion. Sih reported that the unified strategy can give higher

vij dij
i j,
∑

21

performance improvement since it can reduce the quantities { } [Sih91].

1.3.3 Other Factors

The local memory of a processor is limited in size so the number of active invoca-

tions of actors should be limited accordingly. In dataflow machines, the number of activi-

ties may grow indefinitely unless the degree of parallelism is restricted. It may create a

deadlock condition when the local memory is filled with the contexts of the current activ-

ities. Therefore, it is a challenging task to manage limited resources without sacrificing

too much of the parallelism for dataflow machines.

Various forms of synchronization are necessary to allow cooperation between

processors, creating additional overhead. The amount of overhead depends on which

scheduling scheme is used, which will be discussed in the next chapter.

1.4. TARGET APPLICATION: DIGITAL SIGNAL PROCESSING

So far, we have reviewed program representations and multiprocessor architec-

tures for general purpose applications. Program representations and multiprocessor archi-

tectures are closely related. For conventional multiprocessors, fine-grain dataflow graphs

has been proven very inefficient. Therefore, parallel languages of von Neumann type are

preferred in spite of their shortcomings, such as difficulty in programming and debug-

ging. The merits of fine-grain dataflow graphs come into life only with dataflow

machines. Dataflow machines, however, are still immature and possess some difficulties,

such as resource management and compatibility with conventional languages, to be over-

come before they are commercially viable. Between these two extremes, there is large-

grain dataflow (LGDF) which has gained little attention for general purpose applications.

In this dissertation, we focus on digital signal processing (DSP) applications.

dij

22

They differ significantly from general purpose computations in that they are consistently

numerically intensive, and many arereal-timemeaning that the full set of input data is

not available before output data must be computed. In particular, for most such applica-

tions, algorithms are repetitively applied to an essentially infinite stream of input data.

Also, runtime behavior is mostly deterministic. These characteristics of DSP applications

are efficiently exploited by a combination of LGDF representation and conventional mul-

tiprocessors.

Digital signal processing algorithms are usually described in the literature by

block diagrams consisting of functional blocks connected by dataflow paths. The blocks

represent signal processing subsystems such as digital filters, FFT units, or adaptive

equalizers. Each block may itself represent another block diagram, so the specification is

hierarchical. This is consistent with the general practice in signal processing where, for

example, a phase locked loop may be treated as a block in a large system, and may be

itself a network of simpler blocks. In this case, block diagrams are large grain dataflow

graphs.

Many block diagram system specifications have been developed to permit users to

implement signal processing algorithms more naturally [Lee87b]. They differ in some

description details but they use a common data-driven paradigm. Among them, we con-

centrate on thesynchronous dataflow (SDF) graph and its extension, thedynamic data-

flow (DDF) graph.

1.4.1 Synchronous Dataflow Graph

Synchronous Dataflow (SDF) is a special case of data flow (either fine-grain or

large-grain) in which the number of data samples produced and consumed by each node

on each invocation is specified a priori [Lee87b]. An example of an SDF graph is shown

below in figure 1.9. The numbers at the tail and head of each arc indicate the number of

23

data samples consumed and produced by the respective nodes. For example, node B con-

sumes two data samples from node A and one data sample from node D, and produces

one data sample to node C. The inscription 1D on the arc between node C and D indicates

the presence of adelay in the signal processing sense, corresponding to a sample offset

between the input and the output. In other words, thenth sample consumed by node D

will be the(n-1)th sample produced by node C. This implies that the first sample D con-

sumes is not produced by C at all, but is part of the initial state of the arc’s first-in first-out

(FIFO) buffer. This initial data sample is necessary to avoid the deadlock condition,

where each node waits for data from its predecessor.

Systems where all sample rates are rational multiples of all other sample rates are

calledsynchronous in the signal processing literature. Synchronous DSP systems are eas-

ily described using the SDF paradigm, hence the name for the paradigm. For example, a

2:1 decimator node would have one input and one output, but would consume two tokens

for every token produced. Thus, relative sample rates are represented by the numbers

attached to the input or output arcs of nodes. One requirement of SDF graphs is that sam-

ple rates should be consistent. Inconsistent sample rates can lead to deadlock, or

unbounded memory requirements.Consistency is defined to mean that the same number

of tokens are consumed as produced on any arc, in the long run. A systematic method for

consistency checking was developed for SDF graphs [Lee87b], and generalized further

21 1 1 1 2

1

11

1 1D

A B C

D

E

Figure 1.9 A synchronous dataflow graph

24

for dataflow languages [Lee91b].

The most salient feature of the SDF paradigm is that the execution order of nodes

can be determined at compile-time. Moreover, if the execution time of each node is

known and fixed beforehand, nodes can be partitioned optimally at compile-time. Dead-

lock avoidance and bounded memory requirements can also be guaranteed at compile-

time. As a result, the runtime supervisory overhead can be replaced with the correspond-

ing compiler task. Recall that dataflow architectures are required to preserve the merits of

dataflow graphs for general purpose applications. However, they seem to be unnecessary

for SDF graphs, because what they do in hardware can be done at least as well by a com-

piler at much lower cost. Many researchers follow this line: translate block diagram

descriptions of signal processing algorithms into run-time code for multiple programma-

ble DSP processors of von Neumann type [Lee89a][Zis87][Tha90].

SDF graphs consist only of synchronous actors where the number of tokens pro-

duced and consumed must be independent of the data. Most nodes for signal processing

applications are synchronous and this synchrony is taken advantage of through compile-

time analysis. However, the SDF paradigm is too restrictive to express general signal pro-

cessing applications. Dynamic dataflow graphs overcome this difficulty by allowing

asynchronous actors in the specification.

1.4.2 Dynamic Dataflow Graph

Some asynchronous nodes are shown in figure 1.10. The SWITCH node con-

sumes one data input from the input arc and one boolean input from the control arc,C.

Depending on the Boolean value received from the control arc, it produces one output

either to the true arc,T, or to the false arc,F. The number of data samples produced on the

two outputs, therefore, is data-dependent. On the contrary, theSELECT node consumes

one input either from the true arc or from the false arc, depending on the boolean value

25

received from the control arc. The figure also illustrates two data-dependent up-sample

nodes and one data-dependent down-sample node. The number of data samples produced

on the output arc of theREPEATER is determined by the control value, hence it is data-

dependent. TheDownCounter node generates down-counted integer samples starting

from the value of the input sample. TheLastOfN node consumesx input samples and

produces one output sample, wherex is determined by the control value received from the

control arc. Dynamic dataflow (DDF) graphs consist of both asynchronous nodes and

synchronous nodes [Lee88][Buc91a]. By using asynchronous nodes, the DDF paradigm

can represent the well-known dynamic constructs such as if-then-else, for-loop, and do-

while-loop; thus it overcomes the main modeling limitation of the SDF paradigm (figure

1.11). In figure 1.11 (b), the diamond containingD on the arc connected to the control

input of theSELECT node represents a logical delay, or an initial data sample. The ini-

tial Boolean value should be “false” so that the first token selected comes from the out-

side, rather than from the feedback loop.

SWITCH
T F

C
1

1

(0,1) (0,1)

SELECT
T F

C

1

1

(0,1) (0,1)

REPEATER

1
C

1

x

LastOfN

x
C

1

1

DownCounter

1

x

Figure 1.10 Some examples of asynchronous nodes.

26

Dynamic dataflow graphs sacrifice the run-time efficiency of SDF graphs for the

enhanced modeling power. The execution order of the nodes of a DDF graph can not be

fully specified at compile-time. For example, in the if-then-elseconstruct in figure 1.11

(a), either thef(x) node or theg(x) node is fired after theSWITCH node, depending on

the control value,c, which is known at run-time only. The requirement of runtime deci-

sion making turns some researchers’ attention to dataflow digital signal processors like

dataflow machines for general applications: the Hughes Dataflow Machine (HDFM)

Figure 1.11 Dynamic dataflow graphs that model some familiar dynamic constructs:
(a) if c then f(x) else g(x), (b) do x = f(x) while t(x), and (c) for (i = c; i > 0; i--) f(x).

SWITCH
T F

SELECT
T F

f(x) g(x)

x
c

REPEATER f(x) LastOfN

c

x

(a)

(c)

SELECT
T F

f(x)

SWITCH
T F

t(x)

(b)

D

new x

x

27

[Gau85], the NEC uPD7281. [Cha84] and so on. Dataflow DSPs, however, are operated

by fine-grain dataflow graphs, which again possess the same difficulties as the general

purpose dataflow machines discussed earlier. J. Gaudiot [Gau87] concludes that dataflow

DSPs find their applications in problems which involve large amounts of heuristics and

decision making.

Digital signal processing algorithms provide a unique set of opportunities; they

often have predictable, or mostly predictable control flow. The overhead of dataflow

DSPs seems too high a price to pay to manage a small amount of run-time decision mak-

ing. A challenging research area is to incorporate decision making capability and at the

same time preserve the efficiency of dataflow execution in multiple conventional DSPs of

von Neumann style.

1.5. CONCLUSION

At least for signal processing applications, data-driven principles of execution are

a necessity in the design of multiprocessor systems, be they incorporated at compile or

runtime. The granularity of parallelism presents a trade-off between managing dynamic

behavior and utilizing highly efficient sequential, control-flow execution. The optimal

granularity, therefore, is application-specific. In particular, many digital signal processing

applications match well with large-grain dataflow graphs. Regardless of what hardware

architecture or software programming paradigm is used, there are fundamental difficul-

ties that arise when using multiple processors: load balancing and communication over-

head. The efficient coordination of processors requires both a program partitioning and a

scheduling strategy. In this dissertation, we focus on applications that have at most a

small amount of data-dependent behavior, which covers most signal processing applica-

tions and computation-intensive applications. Since we make no restriction here about the

28

granularity of the dataflow graph, the proposed techniques are valid both for fine-grain

and large-grain even though we assume large-grain dataflow graphs throughout the dis-

sertation.

29

SCHEDULING

2

For you yourselves know how you ought to follow us, for we were not

disorderly among you; Not because we do not have authority,

but to make ourselves an example of how you should follow us.

--- II Thessalonians 3:17,19

The processor scheduling problem is to map a set of precedence-constrained tasks

{ Ti} i = 1 ... n, onto a set of processors {Pk}, k = 1 ... p in order to satisfy a specified

objective. An acyclic precedence graph is commonly used to describe the interrelation-

ships among tasks where an arcAij directed from taskTi to Tj indicates thatTi must pre-

cede Tj in execution. While processor scheduling has a very rich and distinguished

history [Cof76] [Gon77], most efforts have been focused ondeterministic models, where

the execution time of a taskTi on a processorPk is fixed and there can be no conditional

(data-dependent) nodes in the program graph.

There are a number of factors that can be gauged to classify the scheduling tech-

niques: task interruptibility, deadlines, processor homogeneity, and so on [Gon77]. If the

30

interruption (and subsequent resumption) of a task before its completion is permitted, we

speak ofpreemptive scheduling. Innonpreemptive scheduling, any task which has started

execution on a processor must be completed. Preemptive scheduling should consider the

context-switching overhead to assess the gain of preemption. Ignoring that overhead, pre-

emptive scheduling generates schedules that are better than those generated by nonpre-

emptive scheduling. In this thesis, we restrict our attention to nonpreemptive scheduling.

In real-time applications,deadlines or scheduled completion times may be estab-

lished for individual tasks Ti. If the deadlines are enforced for each execution, we speak

of a hard real-time schedule. In asoft real-time schedule, the deadline requirement is

based on a statistical distribution of terminations. We exclude hard real-time disciplines

throughout the thesis. We also assume that the processors are all identical.

Deterministic schedules are usually displayed with timing diagrams known as

Gantt charts as shown in figure 2.1. In this schedule, three processors are involved. The

tasks assigned to each processor and their order of execution and execution time require-

ments are represented by the horizontal lines and task identifications. The dark area rep-

resents the idle time of the associated processor.

A

B

C

D

E

F

G

0 1 2 3 4 5 6 time

Processor

1

2

3

Figure 2.1 A task schedule in Gantt chart form.

31

2.1. SCHEDULING OBJECTIVES

A program graph may be executed only once, or repeated at irregular intervals

over a long period of time. The scheduling objective, in this case, is either (1) to minimize

the finishing time, also calledmakespan, of the program with a given number of proces-

sors, or (2) to minimize the number of processors required to process the program in the

smallest possible time [Ram72]. A program graph is first converted to a homogenous

dataflow graph, and finally to an acyclic precedence graph. The second conversion is

accomplished by splitting ideal delays into a pair of input and output nodes. The output

node is connected to the source node of the removed arc, and the input node is connected

to the destination node of the arc. Then, the smallest possible time is nothing but the

longest path, calledcritical path, in terms of computational delay between inputs and

outputs in a given acyclic precedence graph. In multiprocessor scheduling, the number of

processors is fixed, so we focus on minimizing the finishing time of a given program.

In most DSP applications, however, the program is executed once for every sam-

ple of an input stream. For such iterative executions, the objective is to maximize the

throughput or to minimize the iteration period. A tightest lower bound on the iteration

period, referred as theiteration period bound, can be obtained from a dataflow graph

[Ren81]. The iteration period bound () is

, (2-1)

wherenl is the total delays in loopl, dj is the execution time of the j th node on thel th

loop, andDl represents the total execution time of thel th loop. The quantity inside the

brackets {Dl / nl} is called theloop bound, Tl. The loops which have the largest loop

To

To max
l loops∈

Dl

nl

 
 
 

=

Dl d j
j l∈
∑=

32

bound are called thecritical loops. The critical loops determine the iteration period

bound of a dataflow graph. A schedule that achieves the iteration period bound is said to

berate optimal.

If the number of processors is not fixed, another possible objective is to minimize

the required number of processors to implement a rate optimal schedule, which is lower

bounded by theprocessor bound, Po:

, (2-2)

whereD is the total execution time of the program executed sequentially, andTo is the

iteration period bound. The processor bound may not be attainable since the above for-

mula ignores precedence constraints although it enforces load balancing. Aprocessor

optimal schedule uses the minimum number of processors possible.

In addition to rate and processor optimality criteria, delay optimality can also be

defined. Adelay optimal schedule minimizes the time delay between a pair of input and

output nodes. Another indirect measure of performance is the processor efficiency which

is defined as the ratio of the average busy time of the processors to the iteration period.

For a rate optimal schedule, the difference between 100% and the true processor effi-

ciency is called the inherent processor inefficiency.

2.1.1 Blocked Schedule

Although we are interested in iterative execution cases, we aim to minimize the

makespan as the scheduling objective assuming that the whole system is committed to

one execution at a time. This falls under the category ofnon-overlap execution schedul-

ing according to P. Hoang [Hoa90]. We construct ablocked schedule where each iteration

cycle terminates before the next cycle begins. The iteration period becomes the length of

Po
D
To
------=

D dj
j

∑=

33

one cycle of a blocked schedule, which is also the reciprocal of the throughput. Certainly,

the non-overlap execution schedule does not guarantee the rate-optimal realization

because it places artificial boundaries between iterations of the graph. On the other hand,

overlap execution scheduling allows overlapped execution of successive iterations. A

comparison of these two categories is illustrated in figure 2.2. When a blocked schedule

A
B

D

C
E

Execution Time

2
1
1
3
3

A
B
C
D
E

(a) a dataflow graph (b) execution time of each actor

(c) a blocked schedule

(d) an overlap execution schedule

A B D

C E

A

C B

E

D

Figure 2.2 A comparison of a blocked schedule and an overlap execution schedule.
(a) A dataflow graph has two input actors and two output actors whose execution
times are shown in (b). A blocked schedule (c) is made so that the iteration period
is 6 time units, and each period has 2 idle time units on the second processor. An
overlap execution schedule (d) shows the optimal throughput, 5 time units.

2 4 6

34

is constructed, all processors are synchronized after each cycle of iteration so that thepat-

tern of processor availability is flat before and after each cycle (meaning that all proces-

sors become available for the next cycle at the same time). As a result, the second

processor is padded with no-ops, two time units of idle time. On the other hand, the opti-

mal throughput is achieved by an overlap execution schedule. At the sixth time unit, the

first processor begins execution of the next iteration with actorA, while the second pro-

cessor is still processing actorD of the current iteration. The main motivation of using

blocked scheduling is to reduce the computational complexity of scheduling.

However, it is possible to improve the throughput performance of a nonoverlap

execution schedule. One technique we may use isloop winding [Gir87], which basically

pipelines the program graph. In spite of mapping pipeline stages into a pipeline structure

of hardware, it shares processors between stages to achieve a functional pipeline. The

retiming [Lei83] technique can be used for optimal pipelining [Pot91]. Retiming was

originally developed to alter the clock period of a synchronous circuit by relocating regis-

ters. The retiming transformation is performed on the dataflow graph before it is con-

verted to the acyclic precedence graph. If a graph contains cycles, the iteration period is

limited by the iteration period bound. Retiming provides a systematic method for trans-

forming a graph so that the iteration period approaches this bound. In iterative execution

cases, the whole graph can be thought of as the body of a cycle. By adding dummy input

and output nodes and connecting them with some delays, the graph becomes ready for the

retiming transformation. An example of the retiming transformation and the resulting

schedule are shown in figure 2.3. Note that after the retiming transformation, the original

dataflow graph is functionally pipelined. In the dataflow context, the delays represent ini-

tial data samples, which should be provided beforehand. For instance, the first iteration

cycle could be processed to produce the initial samples before processing the retimed

graph. Or, we can make a schedule preamble of actorsA, C in figure 2.3 for example.

35

After scheduling actorsA, C as a preamble, we schedule actorsB, D, E of the current

execution cycle and actorsA, C of the next execution cycle using blocked scheduling.

Instead of applying the retiming transformation, in practice, the programmer may insert

delays on a certain cutset of the graph to realize a functional pipeline to expose more par-

allelism between iterations.

It may be possible to expose the hidden parallelism between iterations by increas-

ing the blocking factor. Theblocking factor corresponds to how many iterations are

expressed in a program graph. If we assume that successive invocations of the same actor

can not overlap in time, the new dataflow graph with blocking factor 2 and the corre-

sponding blocked schedule becomes as displayed in figure 2.4. The figure illustrates that

by increasing the blocking factor the throughput can be increased in many cases. In this

Figure 2.3 (a) A dummy input node and a dummy output node connected with a unit
delay are added to a graph. (b) The graph of (a) is retimed. (c) The blocked sched-
ule of the retimed graph shows the optimal throughput in this example.

A
B

D

C
E

In Out
D

(a)

A
B

D

C
E

In Out

D

D

D

(b) retimed graph

(c) a blocked schedule

A D

C E

2 4 6

B

36

particular example, the corresponding blocked schedule produces the optimal schedule.

The costs incurred by an increasing blocking factor are two-fold; more memory is

required in each processor to store the longer schedule, and scheduling will take longer

because more nodes are present in the acyclic precedence graph. To our knowledge, the

problem of finding the optimal blocking factor is still open except a special case, in which

the execution time of each actor is the same, or unity [Cha92].

Sometimes, the program graph can be modified by changing the algorithm; digital

filters for instance to reduce the iteration period bound [Par89a][Par89b].

2.2. A SCHEDULING TAXONOMY

The Scheduling of parallel computations consists of assigning actors to proces-

Figure 2.4 (a) A dataflow program graph derived from figure 2.2 (a) by increasing the
blocking factor to 2. (b) The optimal blocked scheduling optimizes the throughput in
this case. It shows that increasing the blocking factor is a way to increase the
throughput of a nonoverlap execution schedule.

A1 B1 D1 C1 E1

A2 B2 D2 C2 E2

(a)

(b) a blocked schedule

A1 B1

C1 E1

2 4 6

E2

A2 B2

C2 D1

D2

37

sors, specifying the order in which actors fire on each processor, and specifying the time

at which they fire. These tasks can be done either at compile time or at run time. Depend-

ing on which operations are done when, we define four classes of scheduling, depicted in

figure 2.5.

The first type is fully dynamic, where actors are scheduled at run time only. When

all input operands for a given actor are available, the actor is assigned to an idle processor

and fired. The second type isstatic assignment, where an actor is assigned to a processor

at compile time and a local run-time scheduler invokes actors assigned to the processor

based on data availability. In the third type of scheduling, the compiler determines the

order in which actors fire as well as assigning them to the processors. At run-time, the

processor waits for data to be available for the next actor in its ordered list, and then fires

that actor. We call this self-timedscheduling because of its similarity to self-timed cir-

cuits. The fourth type of scheduling isfully static; here the compiler determines the exact

firing time of actors, as well as their assignment and ordering. This is analogous to syn-

chronous circuits. As with any taxonomy, the boundary between these categories is not

rigid. Self-timed scheduling and fully static scheduling are both calledstatic scheduling.

RUN RUN RUN

RUN RUN

RUN

COM-

COM- COM-

COM- COM- COM-

assignment ordering timing

fully dynamic

static-assignment

self-timed

fully static

Figure 2.5 The time which the scheduling activities “assignment”, “ordering”, and “tim-
ing” are performed is shown for four classes of schedulers. The scheduling activi-
ties are listed on top and the strategies on the left [Lee89b].

38

We can give familiar examples for each of the four strategies applied in practice.

Fully dynamic scheduling has been applied in the MIT static dataflow architecture

[Den80], the LAU system, from the Department of Computer Science, ONERA/CERT,

France [Pla76], and the DDM1 [Dav78]. It has also been applied in a digital signal pro-

cessing context for coding vector processors, where the parallelism is of a fundamentally

different nature than that in dataflow machines [Kun87]. A machine that has a mixture of

fully dynamic and static-assignment scheduling is the Manchester dataflow machine

[Wat82]. Here, 15 processing elements are collected in a ring. Actors are assigned to a

ring at compile time, but to a PE within the ring at run time. Thus, assignment is dynamic

within rings, but static across rings.

Examples of static-assignment scheduling include many dataflow machines

[Sri86]. Dataflow machines evaluate dataflow graphs at run time, but a commonly

adopted practical compromise is to allocate the actors to processors at compile time.

Many implementations are based on the tagged-token concept [Arv82]; for example TI’s

data-driven processor (DDP) executes Fortran programs that are translated into dataflow

graphs by a compiler [Cor79] using static-assignment. Another example (targeted at digi-

tal signal processing) is the NEC uPD7281 [Cha84]. The cost of implementing tagged-

token architectures has recently been dramatically reduced using an “explicit token store”

[Pap88]. Another example of an architecture that assumes static-assignment is the pro-

posed “argument-fetching dataflow architecture” [Gao88], which is based on the argu-

ment-fetching data-driven principle of Dennis and Gao [Den88].

When there is no hardware support for scheduling (except synchronization primi-

tives), then self-timed scheduling is usually used. Hence, most applications of today’s

general purpose multiprocessor systems use some form of self-timed scheduling, using

for example Communicating Sequential Processes (CSP) principles [Hoa78] for synchro-

nization. In these cases, it is often up to the programmer, with meager help from a com-

39

piler, to perform the scheduling. A more automated class of self-timed schedulers targets

wavefront arrays [Kun88]. Another automated example is a dataflow programming sys-

tem for digital signal processing called Gabriel that targets multiprocessor systems made

with programmable DSPs [Lee89a]. Taking a broad view of the meaning of parallel com-

putation, asynchronous digital circuits can also be said to use self-timed scheduling.

Systolic arrays, SIMD (single instruction, multiple data), and VLIW (very large

instruction word) computations [Fis84] are fully statically scheduled. Again taking a

broad view of the meaning of parallel computation, synchronous digital circuits can also

be said to be fully statically scheduled.

As we move from fully dynamic to fully static, the compiler requires increasing

information about the actors in order to construct good schedules. However, assuming

that the information is available, the ability to construct deterministically optimal sched-

ules increases. Thedomain of a scheduling strategy can be loosely defined as the set of

algorithms for which the scheduling strategy does well. Therange is the set of architec-

tures that the strategy can target well. Most practical scheduling strategies have a limited

domain or range.

2.2.1 Fully Static Scheduling

Of the classes we have defined, fully static scheduling has the narrowest domain.

The subclass of dataflow graphs for which fully static scheduling works best is synchro-

nous data flow [Lee87a] with all actors having known execution times. Unfortunately,

even in this restricted domain, algorithms that accomplish such optimal scheduling have

combinatorial complexity, except in certain trivial cases [Cof76][Cap84]. Therefore,

good heuristic methods have been developed over the years. The typical approach is

based onlist scheduling, in which actors are assigned priorities and placed in a list and

executed in order of decreasing priority [Ada74][Cof76][Sih90b]. Other approaches such

40

as clustering [Kim88][Sar87], declustering [Sih91] and 0-1 integer programming

[Kon90] also have been proposed. These heuristics all aim to minimize the schedule

length (makespan of the program). This approach is adequate for latency-sensitive appli-

cations or in situations where barrier synchronization between iterations of the schedule

is required.

In most DSP applications, however, the program is executed once for every sam-

ple of an input stream. As a result, by overlapping executions of successive iterations, the

computational throughput can be improved. Typical approaches are based on cyclo-static

scheduling [Sch85][Gel91], which is rate, processor and delay optimal. However, the

exponential worst-case running time of the scheduling algorithm, the lack of consider-

ation for resource constraints and the extensive communication requirements preclude a

practical implementation, possibly except for simple structures such as digital filters.

Chain partitioning [Bok88] represents another technique based on pipelining serial tasks

on a linear array of processors to maximize throughput; Its domain is again quite limited.

Recently, a heuristic that simultaneously considers pipelining, retiming, parallelism and

hierarchical node decomposition has been proposed as part of a software environment for

partitioning DSP programs onto a configurable multiprocessor system [Hoa90].

The range depends on the sophistication of these methods, although most

straightforward implementations target homogeneous tightly coupled multiprocessors

with full interconnectivity. The requirement for full interconnectivity limits the range to

machines with modest parallelism.

A subclass of fully static scheduling is the set of techniques based on projecting

dependence graphs for regular iterative algorithms onto systolic arrays [Kun88] [Rao85].

These techniques have a very limited domain (RIA’s) and range (systolic arrays), but do

extremely well within these constraints.

Fully static scheduling has the lowest run-time cost: no hardware and no software.

41

Since behavior is completely known at compile time, there is no need to check at run time

to see when actors can be fired. The compiler can figure it out, so actors simply fire at the

designated time, and are assured that their data is available.

The domain of static scheduling specifically does not include dataflow graphs

with actors that have data-dependent execution times or actors that may or may not fire,

depending on the value of some data somewhere in the graph. These restrictions are

severe, since they exclude both conditionals and data-dependent iteration within an actor

or involving several actors. The restrictions can be relaxed, however, at the expense of

optimality in the resulting schedule. For example, an actor with a data-dependent execu-

tion time can be padded so that it always executes in worst-case time. This is not so bad

when the application has hard real-time constraints, but otherwise may be very costly. As

another example, to implement the synchronous dataflow equivalent of if-then-else, both

branches of the conditional may be computed, and the desired result may be selected.

There are again applications where this option is acceptable, for example when one of the

two conditional branches is trivial, but most of the time the cost will be high. The concept

of static scheduling has been extended to solve some of these problems, using a technique

calledquasi-static scheduling [Lee88]. In quasi-static scheduling, some firing decisions

are made at run-time, but only where absolutely necessary.

2.2.2 Self-Time Scheduling

Self-timed scheduling has a slightly broader application domain than fully static

scheduling. Although the order of execution of actors is fixed for each processor at com-

pile time, the exact firing times are not. Consequently, the schedule can automatically

compensate for certain fluctuations in execution times. For example, if one actor finishes

earlier than expected, the following actor can fire immediately, as long as its data is avail-

able. This means that the second actor can finish later than expected without any loss in

42

overall speed. Compared to using worst-case execution times, self-timed scheduling will

always do at least as well, as long as the overhead for synchronization is negligible. Self-

timed scheduling is also more robust. Minor fluctuations in execution times will not

affect the correctness of the execution, and will have little effect on its performance. For

example, interrupts are often useful for handling I/O operations, but their introduction

introduces uncertainty in the execution of any actor that may be interrupted. The Gabriel

system [Lee89a] uses self-timed scheduling successfully for modestly parallel target

architectures.

It is not quite certain just how restricted the domain of self-timed scheduling is,

even though it does well with synchronous dataflow when the variability of the execution

times of the actors is small enough. In the presence of limited amounts of data-dependent

firing of actors, it will also do well. Loosely, it appears that the domain can be stated sim-

ply as the set of algorithms that are “reasonably” static. It is not clear just how much

dynamic behavior must be present before enough time is spent idling, waiting for data

tokens to arrive, that a more dynamic scheduling technique would have been more effec-

tive. Nonetheless, this domain seems like a good match to signal processing, for which

practical implementations of most well-known algorithms occasionally require data

dependencies.

In self-timed scheduling, there is no need to determine at run time which actor to

invoke next. The ordering is specified at compile time. The only run-time scheduling

function is to determine whether the actor that goes next is ready to be fired. If it is not,

then the machine is idled until it is. It is up to the compile-time scheduler to find the

ordering that minimizes the idling time. Determining whether the actor is ready to fire is

a simple matter of handshaking. One-bit semaphores, using a full/empty discipline, are

sufficient. This type of mechanism is very commonly used on multiprocessor machines

that are not dataflow machines.

43

2.2.3 Static Assignment Scheduling

Static assignment scheduling, in principle, has a still broader domain, because it

can adjust the ordering of the execution of actors. An example is shown in figure 2.6. In

that example, one of six actors,D, has a data-dependent execution time. Depending on

the outcome, it may be better to schedule the actors using the ordering in (b) or in (c).

While it is possible to reduce the total execution time by rearranging the order of execu-

tion, it is not always easy to determine at run time which actor should be fired next when

there is more than one possibility. For example, in (c), afterA completes on the second

processor, eitherB or E can be fired. For the implementation to be cost effective, the deci-

sion would have to be made on the basis of local or static (compile-time) information.

Static-assignment scheduling is a compromise that admits data dependencies,

although all hope of optimality must be abandoned in most cases. Although static-assign-

ment scheduling is commonly used, compiler strategies for accomplishing the assign-

ment are not satisfactory. The main techniques include clustering [Efe82][Chu87], 0-1

integer programming [Chu80], or simulated annealing [Zis87] techniques. But none of

A

B

C

D

E

F

D

A B E

C F D

A E B

F C

(a) (b) (c)

Figure 2.6 Two static-assignment schedules for two processors are shown for the pre-
cedence graph in (a). The execution time of actor D is data-dependent and is longer
for the schedule in (b) than for the schedule in (c). Note that the ordering of the firing
of actors is determined at run time and is different in (b) and (c).

44

these consider precedence relations between actors. To compensate for ignoring the pre-

cedence relations and to regain optimality, some researchers propose a dynamic load bal-

ancing scheme at run-time [Kel84][Bur81][Iqb86]. Unfortunately, the cost can be nearly

as high as fully dynamic scheduling. Others have attempted, with limited success, to

incorporate precedence information in heuristic scheduling strategies. For instance, Chu

and Lan use very simple stochastic computation models to derive some principles that

can guide heuristic assignment for more general computations [Chu87].

Static-assignment schedulers have an easier time at run-time because there is no

need to determine how to assign actors to processors. Control becomes localized, because

each processor only has to worry about the actors that have been assigned to it. A simple

“greedy” scheduling algorithm simply fires an actor immediately when the processor

becomes free, assuming there is an actor ready to be fired. This is not optimal because it

is sometimes better to leave the processor idle until another actor is ready to fire. How-

ever, this compromise is common, even in fully static schedulers. When more than one

actor is ready to be fired, the scheduler must determine which one to fire. A typical

approach that is far from optimal is to randomly order the list of actors and apply a “fair-

ness” principle, in which no actor will be tried twice before all other actors have been

tried [Gao83]. Another alternative would be to use compile-time analysis of the dataflow

graph to assign priorities to the actors. It seems to us that this idea should work much bet-

ter in static-assignment scheduling than in fully dynamic scheduling as investigated by

Granski, et. al. [Gra87], because the run-time implementation cost would be trivial.

2.2.4 Fully Dynamic Scheduling

Fully dynamic scheduling has the broadest application domain, since it can in

principle subsume all functions in the previous models, and perform them at run time.

Furthermore, it has the flexibility to redirect the computational load in response to chang-

45

ing conditions in the algorithm. However it requires too much hardware and/or software

run-time overhead. For instance, the MIT static dataflow machine [Den80] proposes an

expensive broadband packet switch for instruction delivery and scheduling. Furthermore,

it is not usually practical to make globally optimal scheduling decisions at run-time. One

attempt to do this by using static (compile-time) information to assign priorities to actors

to assist a dynamic scheduler was rejected by Granski et. al., who concluded that there is

not enough performance improvement to justify the cost of the technique [Gra87].

2.2.5 Summary

In order to reduce implementation costs and make it possible to reliably meet

real-time constraints, the more scheduling that is done at compile time the better. Unfor-

tunately, in order to automatically do more at compile time, it appears to be necessary to

restrict the system to a narrower range of applications. Hence, static-assignment and self-

timed scheduling strategies look like the most promising compromises between hardware

cost, performance, and flexibility. The choice should depend on the amount of data-

dependent behavior in the expected applications. Both strategies require compile-time

decisions; they require that tasks be assigned to processors at compile time, and in addi-

tion, self-timed scheduling requires that the order of the execution of the tasks be speci-

fied. If there is no data-dependency in the application, then these decisions can be made

optimally (or nearly so, to avoid complexity problems). When there is data-dependency,

however, optimal or near optimal compile-time strategies become intractable. Most previ-

ously proposed solutions include random choices, clustering (to minimize communica-

tion overhead), and load balancing. These solutions either ignore precedence

relationships in the dataflow graph, or use heuristics based on oversimplified stochastic

models. This is justifiable if there is so much data-dependency that the precedence rela-

tionships are constantly changing. However, there is a large class of applications, includ-

46

ing scientific computations and digital signal processing, where this is not true.

Consequently, it appears that self-timed is more attractive for scientific computation and

digital signal processing, while static-assignment is more attractive where there is more

data dependency.

2.3. LIST SCHEDULING

List scheduling is the most common technique for non-overlapped scheduling.

Even though our scheduling idea is not restricted to a specific technique, it is imple-

mented via list scheduling. In list scheduling, actors are assigned priorities. During the

scheduling process, the runnable actors are placed in a list sorted by their priorities. The

actor of highest priority is assigned to the first available processor. The performance of a

list schedule is determined by how the priorities are assigned to the actors. The most

commonly used priority scheme is Hu’s level scheduling [Hu61] or variants of Hu’s tech-

nique [Ada74] [Cof76][Koh76]. Any actors lacking successors are attached to a common

dummy actor and the priority of each actor is set equal to its level, defined as the largest

sum of execution times on any directed path from the actor to the dummy actor.

The class of list schedules may not contain an optimal solution as is shown in fig-

ure 2.7. The list scheduling method does not allow a processor to remain idle as long as

there are runnable actors, but the figure illustrates that it is sometimes necessary to idle

processors to achieve an optimal schedule. An optimal list schedule has been proven,

however, to be near optimal in terms of makespan, and at most twice as long as an opti-

mal schedule [Koh76]. In some special cases, the optimal list schedule yields the optimal

schedule.

2.4. DYNAMIC LEVEL SCHEDULING

47

Classical list scheduling algorithms ignore the interprocessor communication

(IPC) cost when assigning actors onto processors. Runnable actors are assigned to avail-

able processors to exploit as much of the parallelism of a program graph as possible.

After the nodes are scheduled, traffic scheduling is performed to minimize the communi-

cation costs.

A

B

C

D

E F

Node
Exec.
time

Level

A 2 6
B 1 5
C 1 5
D 3 4
E 3 4
F 1 1

(a) a program graph (b) execution times and levels

of actors

Figure 2.7 An example shows that an optimal list schedule is not necessarily an opti-
mal schedule. (a) A program graph has two input nodes and one output node. (b)
The execution times and levels of actors are displayed. (c) An optimal list schedule
schedules node E at time zero on the second processor to result in a non-optimal
makespan of 8 time units. (d) The optimal schedule has makespan of 7 time units
and idles the second processor intentionally during the first two time units.

(c) an optimal list schedule

A B D

E

2 4 6

C F

8

(d) an optimal schedule

A B D

E

2 4 6

C

F

8

48

In reality, however, the IPC is not so small that it may be neglected at the schedul-

ing phase. The effect of the IPC cost is demonstrated in figure 2.8. In the figure, after

actor A is executed, actorsB and C are both runnable. The list scheduling algorithm

assigns them on two available processors to exploit the parallelism as shown in figure 2.8

(b). At run-time, however, communication overhead is involved between actorsA andC,

and actorsC andD. If the IPC cost per unit data sample is small, the performance of the

list schedule is not degraded (figure 2.8 (c)). If the IPC cost is not negligible as is illus-

trated in figure 2.8 (d), exploiting the parallelism by assigning actors to different proces-

sors is detrimental.

The IPC cost consists of the data-transmission time and the communication set-up

Figure 2.8 The effect of the interprocessor communication cost on a list scheduling
algorithm based on Hu’s level. (a) In a simple program graph, the number on each
arc represents the number of data samples consumed or produced at the nodes
attached to the arc. For simplicity, the execution time of the actors is 4 identically.
(b) An optimal list schedule based on Hu’s level. (c) When the communication over-
head per each data sample is 1, the list schedule is optimal. (d) When the commu-
nication overhead per each data sample is 2, the list schedule is worse than
assigning all actors on a single processor.

A

B

C

D

3

3 1

1

(a)

A B

C

D

(b) a list schedule

A B

C

D

(c) comm. cost / sample = 1

A B

C

D

(d) comm. cost / sample = 2

communication cost

49

overhead. The latter gets costly as the sharing of communication resources increases. For

example, if a system is a shared bus architecture, the IPC cost easily grows to a few tens

of instructions: requesting the bus, grabbing the bus, sending the data, and releasing the

bus. A new shared bus architecture that significantly reduces the IPC overhead has

recently been proposed [Lee90]. In this approach, the bus access pattern is determined at

compile-time. The bus controller arbitrates bus congestion according to the predeter-

mined order, removing most of the IPC overhead from the processors.

Recently, G. Sih [Sih90b][Sih91] proposed a modified list scheduling algorithm,

called thedynamic level scheduling (DLS) algorithm that takes into account resource lim-

itation and communication overhead in a given network topology. He defines a dynamic

level which incorporates resource constraints and network configuration, while Hu’s level

is static based on computation time only, without regard of the communication overhead.

The priority of an actor is the sum of the static level () and its communication

requirements with its ancestors as follows:

, (2-3)

where represents the number of data units passed from nodek to node i, and

 denotes the time needed to communicateD data units between adjacent pro-

cessors. The static level is the priority in classical list scheduling algorithms. The level in

 (2-3) is dynamic in the sense that it changes as the schedule is constructed.

The runnable actors are maintained in a list sorted by priority. The actor of the

highest priority is fetched from the list and scheduled to an optimal processor. To choose

the optimal processor, the actor is assumed to be scheduled on each processor one by one.

The processor on which the actor would be scheduled earliest is the optimal processor.

The scheduled time of the actor on processorj is expressed as:

SL i()

Level i() SL i() Cadj max
k

Dki{ } 
 +=

Dki

Cadj D()

50

, (2-4)

wherek is an ancestor of the actor andp(k) is the processor assigned to the ancestork.

avail(j) is the earliest time when processor j is available, andfinishTime(k) is the time

when actork is completed. After actork is completed, data samples are passed from pro-

cessorp(k) to processorj, taking time units. In summary, the actor can be sched-

uled on processorj after all data samples are collected from the ancestors and when the

processor is available. To compute , resource contention should be accounted

for. We use a simple FIFO heuristic in which the processor that requests earlier gets ser-

vice earlier. Thus, the communication resources are scheduled at the same time actors are

assigned. For example, let’s apply this technique to figure 2.8 (d). After assigning actors

A andB, we should assign actorC. If actorC is assigned to processor0, T(0) in equation

 (2-4) becomes 8. On the other hand, if actorC is assigned to processor1, T(1) becomes

10. Therefore, the optimal processor for actorC is processor0, not processor1.

The DLS algorithm can be extended to heterogeneous multiprocessor systems. In

this thesis, we assume a homogeneous multiprocessor system. The DLS algorithm

assumes that communication can be overlapped with computation in a processor.

We modify the DLS algorithm to allow an actor to be scheduled on more than one

processor. A dynamic construct is regarded as an atomic actor in the modified DLS algo-

rithm, but it usually takes more than one processor on its execution. The number of the

assigned processors to the dynamic construct is determined during the scheduling proce-

dure. To account for the communication cost of the dynamic construct, we may define the

synchronization processor at the beginning and at the end of the local schedule of the

dynamic construct. All IPC requirements to the dynamic construct are via a synchroniza-

tion processor.

T j() max avail j() max
k

finishTime k() C'p k() j+(),
 
 
 

=

C'p k() j

C'p k() j

51

2.5. SUMMARY

Most scheduling efforts have concentrated on deterministic scheduling because

the scheduling problem is well defined and manageable at compile-time. However, most

parallel applications contain some sort of data dependent behavior such as conditionals,

data-dependent iterations, and recursions. For applications where data dependent behav-

ior is not dominant, for example digital signal processing applications, resorting to runt-

ime scheduling is not economical. In this thesis, we develop a scheduling technique to

deal with such data-dependent behavior in the context of deterministic scheduling. This

scheduling technique will remove the overhead of fully-dynamic scheduling while utiliz-

ing the mature techniques of deterministic scheduling. It will be applied to both the self-

timed scheduling strategy and to the static assignment strategy that cover most current

dataflow parallel processing systems.

52

QUASI-STATIC SCHEDULING

3

Not that I speak in regard to need, for I have learned in whatever state I am

to be content; I know how to be abased, and I know how to abound.

Everywhere and in all things I have learned both to be full

and to be hungry, both to abound and to suffer need.

--- Philippians 4:11,12

Static scheduling is adequate for a rather restricted class of algorithms that can be

described using the SDF model. However, certain essential constructs cannot be

described using the SDF model, particularly conditional computation. Since such con-

structs are important even for DSP applications, the conventional solution is to reject

static scheduling and incur the (substantial) cost of dynamic scheduling. But, dynamic

scheduling is not required for most algorithms; thus a much simpler approach based on

quasi-static scheduling is proposed. In quasi-static scheduling, most of the scheduling

decisions are made at compile-time. Some scheduling decisions are made at runtime, but

only when absolutely necessary. The quasi-static scheduling idea was proposed by E. Lee

[Lee88].

The idea of quasi-static scheduling is shown in figure 3.1. Suppose there is a non-

53

deterministic actor A. This actor need not be atomic. At compile-time, we assume a fixed

execution time for actorA. Based on that time, a deterministic schedule can be con-

structed for the whole graph as in (b). At run-time, the schedule is followed before the

execution of actorA. When actorA is executed, it may take longer or shorter than the

assumed execution time of compile-time. If actorA takes longer, some idle time is

inserted on the other processor so that the pattern of processor availability after actorA is

same as the compiled one. Otherwise, the processor that executedA is idled during the

time difference between the assumed execution time and the actual execution time. By

B

C D

S
S

A B

C D

A

(a) a dataflow graph with

non-deterministic actor A

(b) compile-time schedule

B

C D

S A B

C D

S A

(c) runtime schedule when actor

A takes longer than assumed.

(d) runtime schedule when actor

A takes shorter than assumed.

Figure 3.1 (a) A dataflow graph consists of five actors among which actor A is a non-
deterministic actor such as a conditional or a data-dependent iteration. (b) Gantt
chart for compile-time scheduling assuming a certain execution time for actor A. (c)

At runtime, if actor A takes longer, the second processor is padded with no-ops so
that the pattern of processor availability after actor A is same as the compiled one.
(d) If actor A takes less than the assumed time, the first processor is idled. The pat-
tern of processor availability is shown as a dark line on the Gantt charts.

54

keeping the pattern of processor availability consistent with the compile-time schedule

the remaining deterministic schedule after actorA can be followed.

The run-time behavior of actor A and the amount of idle time varies at run-time.

This enforced idle time will be tolerable against the overhead of dynamic scheduling if

the execution times of actors do not vary greatly. Signal processing algorithms generally

support this model [Lee87a].

The most challenging problem of quasi-static scheduling is to determine the opti-

mal compile-time profile of a non-deterministic actor. Thecompile-time profile, in short

profile, of an actor is defined as the static information about the actor necessary for a

given scheduling technique. For example, if we use the original Hu’s level algorithm for

list scheduling, the profile of an actor is simply the computation time of the actor. If we

want to use G. Sih’s dynamic level scheduling algorithm, we need information about the

communication requirements of an actor as well as its computation time in order to com-

prise the profile of the actor. In case a non-deterministic actor is not an atomic actor but a

subgraph that expresses a dynamic construct such as a conditional, a data-dependent iter-

ation, or a recursion, we may need more than one processor to execute the non-determin-

istic actor. Then, the number of assigned processors and the local schedule of the actor on

the assigned processors will be the profile of the actor. In this thesis, we concentrate on

these dynamic constructs as the source of non-deterministic actors.

In this chapter, we first review the previous work related to the quasi-static sched-

uling technique on how to define the profiles of non-deterministic actors. In the next sec-

tion, we introduce our solutions for profile decision and discuss their effectiveness. Later,

we relate the quasi-static scheduling technique with the static-assignment and the self-

timed scheduling strategies. Finally, we summarize the proposed scheduling technique.

55

3.1. PREVIOUS WORK

All the deterministic scheduling heuristics assume that static information about

the actors is known. But none have addressed how to define the static information of non-

deterministic actors. The pioneering work on this issue was done by Martin and Estrin

[Mar69]. They calculated the mean path length for each actor based on the statistical dis-

tribution of dynamic behavior of non-deterministic actors for list scheduling. They define

the mean path length between an actor and a dummy terminal actor of the acyclic prece-

dence graph as the level of the actor. Since this is very expensive to compute, the mean

execution times instead are usually used as the static information of non-deterministic

actors [Gra87]. Even though the mean execution time seems a reasonable choice, it is by

no means optimal. In addition, both approaches have the common drawback that a non-

deterministic actor is manipulated as a schedulable unit, thus assigned to a single proces-

sor, which is a severe limitation for a multiprocessor system.

Two groups of researchers have proposed quasi-static scheduling techniques inde-

pendently: E. Lee [Lee88] and Loeffler et. al. [Loe88]. They developed methods to sched-

ule conditional constructs and data-dependent iteration constructs respectively. Both

approaches allow more than one processor to be assigned to dynamic constructs. Figure

3.2 shows a conditional and compares three scheduling methods: Lee’s, Loeffler’s, and

the replacement of the conditional with a multiplexer. In figure 3.2 (b), the local sched-

ules of the two branches are shown with two processors in this example. In E. Lee’s

method, as shown in (d), we overlap the local schedules of both branches and choose the

maximum termination for each processor. If both branches are about the same size, this

scheme is very efficient. But, it is inefficient if either one branch is more likely to be taken

and the size of the likely branch is much smaller. On the other hand, Loeffler et. al. first

schedule the higher probability branch and the pattern of termination is observed. Then,

56

SWITCH
T F

SELECT
T F

A B

c

Figure 3.2 Three different schedules of a conditional construct, one for fully-static
scheduling and two for quasi-static scheduling. (a) An example of a conditional con-
struct that forms a non-deterministic actor as a whole. (b) Local deterministic sched-
ules of the two branches. (c) A fully-static schedule executes both branches, which
is equivalent to the modified graph at the right. (d) E. Lee overlaps the local sched-
ules of both branches and chooses the maximum for each processor [Lee88]. (e)
Loeffler et. al. take the local schedule of the branch which is more likely to be exe-
cuted [Loe88]

A

B

(b) local schedules of two branches

A & B

A

B

M
U

X

c

(c) a fully-static schedule

Max(A,B) p(B) > p(A)B

(a) if-then-else construct

(d) E. Lee’s method (e) Loeffler et. al.’s method

57

the lower probability branch is scheduled to overlap in time and padded with no-ops so

that the pattern of termination is the same (figure 3.2 (e)). Finally, a conditionalevalua-

tion can be replaced by a conditionalassignment to make the construct static which mod-

ifies the graph as illustrated in figure (c). In this scheme, both true and false branches are

scheduled and the result from one branch is selected depending on the control boolean.

An immediate drawback is inefficiency which becomes severe when a branch is not a

small actor. Another severe problem occurs when an unselected branch generates an

exemption condition such as divide-by-zero error. All these methods on conditionals are

ad-hoc and not appropriate as a general solution.

Quasi-static scheduling is very effective for data-dependent iteration constructs if

the construct can make effective use of all processors in each cycle of the iteration

[Lee88] [Loe88]. In data-dependent iteration, the number of iteration cycles is deter-

mined at run time and cannot be known at compile time. In quasi-static scheduling tech-

nique, we schedule one iteration and pad with no-ops to make the pattern of processor

availability at the termination the same as the pattern at the start (figure 3.3). The pattern

of processor availability after the iteration construct is independent of the number of iter-

ation cycles, which is consistent with the quasi-static scheduling requirement. This

scheme breaks down if a construct can not utilize all of the processors effectively.

one iteration cycle

Figure 3.3 A quasi-static scheduling of a data-dependent iteration construct. The pat-
tern of processor availability is independent of the number of iteration cycles.

58

The recursion construct has not yet been treated successfully in any statically

scheduled data flow paradigm. Recently, a proper representation of the recursion con-

struct has been proposed [Suh90]. But it does not explain how to schedule the recursion

construct onto multiprocessors. With finite resources, careless exploitation of the paral-

lelism of the recursion construct may cause the system to deadlock. Resource manage-

ment in this case has been an open problem in the area of data flow computation.

In summary, dynamic constructs such as conditionals, data-dependent iterations,

and recursions, have not been treated properly in past scheduling efforts, either for static

scheduling or dynamic scheduling. Some ad-hoc methods have been introduced but

proved unsuitable for a general solution. This research is motivated by this observation.

3.2. PROPOSED SCHEME FOR PROFILE DECISION

Dynamic constructs result in variations on the makespan of a program. If we

assume that all dynamic constructs are decoupled, we may isolate the effect of each

dynamic construct on the makespan separately. Suppose we have a dynamic construct in

a system. The profile of the dynamic construct is assumed at compile-time. If a quasi-

static scheduling strategy is applied to the system, the average makespan of the system

depends on the assumed profile of the dynamic construct. Our proposed scheme is to

decide the profile of a construct so that the average makespan is minimized assuming that

all actors except the dynamic construct are deterministic. This objective is not suitable for

a hard real-time system as it does not bound the worst case behavior.

The run-time cost of an actor i (Ci) is the sum of the total computation time

devoted to the actor and the idle time due to the quasi-static scheduling strategy over all

processors. In figure 3.1, the run-time cost of a non-deterministic actor A is the sum of

the lightly (computation time) and darkly shaded areas after actorA or C (immediate idle

59

time after the dynamic construct). The makespan for a certain iteration can be written as

(3-1)

whereT is the total number of processors in the system, andR is the rest of the computa-

tion including all idle time that may result both within the schedule and at the end.R is

determined at compile-time and fixed at run-time. Therefore, we can minimize the

expected makespan by minimizing the expected cost of the non-deterministic actorA if

we assume thatR is independent of the decision of the profile of an actor. This assump-

tion is unreasonable when precedence constraints makeR heavily dependent on our

choice of profile. If there are many runnable actors at any time compared to the number

of processors and the execution times of all actors are small relative to the makespan, the

assumption is valid. Realistic situations are likely to fall between these extremes.

3.2.1 Assumptions

The proposed scheme selects the compile-time profile of each dynamic construct

to minimize the expected run-time cost. The computation of the run-time cost of a

dynamic construct is based on the following assumptions.

1. Quasi-static scheduling is used. We have to insert idle times on the processors

after the dynamic construct if it behaves differently at run-time from the assumed

profile. These idle times are included in the run-time cost of the dynamic con-

struct.

2. The statistical distribution of the run-time behavior of the dynamic construct is

known at compile-time. The validity of this assumption varies to large extent

depending on the application. In signal processing applications where a given pro-

gram is repeatedly executed with an input data stream, simulation may give the

necessary information. In general, we prefer to use some well-known distribu-

makespan
1
T
--- Ci R+()=

60

tions, such as uniform or geometric, which have nice mathematical properties.

3. If an application contains more than one dynamic construct, their dynamic behav-

iors are independent of each other.

4. The program graph is highly parallelizable. The previous assumption and this one

are necessary to make the proposed scheme effective.

5. When we construct a local schedule, we assume that all assigned processors are

available at the same time, that is, that the pattern of processor availability is flat.

The last three assumptions are necessary to make the analysis tractable or the pro-

posed scheme effective. The last assumption is needed when the body of a dynamic con-

struct contains another dynamic construct (nested dynamic constructs case).

3.3. STATIC ASSIGNMENT AND SELF-TIMED SCHEDULING

Once the profiles of the dynamic constructs of a program have been decided, we

can construct a static schedule accordingly. Quasi-static scheduling means global syn-

chronization that makes the pattern of processor availability after a dynamic construct

consistent with the scheduled one. This requires hardware for global synchronization,

which may be less expensive than the handshaking required for self-timed execution (a

simple wired-or circuit would suffice). However, inserting idle time may be unnecessary

in reality. Furthermore, if handshaking is omitted, then the system is intolerant of run-

time fluctuations, due for example to interrupts or I/O operations. Hence the quasi-static

scheduling strategy is regarded as impractical. Nonetheless, it suggests a good strategy

for static-assignment or self-timed scheduling. First we construct a quasi-static schedule.

To get self-timed execution, we insert handshaking at runtime, and ignore the firing times

dictated by the quasi-static schedule. To get static-assignment execution, we discard all

information from the quasi-static schedule except the assignment of actors to processors.

61

3.3.1 Static Assignment Scheduling

In static-assignment scheduling, actors are assigned to processors without defin-

ing the execution order. Unlike dynamic load balancing or techniques that compromise

between interprocessor communication cost and load balance, the quasi-static scheduling

strategy considers arbitrary precedence relations at compile time. If the actual computa-

tion times are similar to those assumed by the compile-time scheduler, then it can get

close to the minimal makespan.

An example of static-assignment scheduling is shown in figure 3.4. A dataflow

program consists of six actors with precedence relationships shown in (a). ActorD repre-

sents a dynamic construct, or a non-deterministic actor. Suppose that the program is stati-

cally scheduled using a certain compile-time profile of actorD, and the resulting

assignment puts actorsD, C, andF onto the first processor, and the rest onto the second

processor. The ordering and timing information is discarded. AssumingD has a data-

dependent execution time, the run-time schedule depends on its outcome. Two possible

schedules are shown in figure 3.4 (b) and (c). By inspection, we can see in the figure that

A

B

C

D

E

F

D

A B E

C F D

A E B

CF

(a) precedence relation (b) (c)

Figure 3.4 An example of static-assignment scheduling. The precedence relations are
shown in (a), and two possible schedules, which depend on the execution time of
actor D, are shown in (b) and (c).

62

the schedules shown are optimal in the sense of minimizing makespan, given assignment

of the actors. However, designing a run-time scheduler that reliably produces these

schedules is not easy. Assume that when a processor becomes free, if there is an actor

ready to be fired, then the run-time scheduler will fire it. This is not necessarily optimal,

but in deterministic processor scheduling it can be shown to be reasonable. Then the only

decision to be made by the scheduler occurs when there is more than one actor ready to

fire. In figure 3.4 (b), the run-time scheduler never faces this decision, so a very simple

strategy will yield the schedule shown. In (c), however, after the completion of actorA,

the second processor must decide between firingB or E. E is the better choice, but it is

not clear at all how the scheduler might know this. An immediate idea is to use some of

the static information that was discarded: specifically the ordering information. However,

this does not guarantee the right choice, because the static information is based on an

assumption about the data-dependent execution time, and the outcome may be far from

this. The alternative of stochastic modeling of the program is not very promising either,

because only the most grossly oversimplified stochastic models yield to optimization.

The above observations lead to an interesting conclusion. In static-assignment

scheduling, the run-time scheduler on each processor faces an ambiguous decision only if

more than one of the actors assigned to it are ready to fire when the last actor completes.

If this situation arises rarely, then a naive scheduler will work well. However, under the

same conditions, a self-timed strategy would work just as well, and the cost would be

lower. On the other hand, if the situation arises frequently, then we do not know how to

make the decision. Practical proposals are to make the decision arbitrarily, subject to a

"fairness" principle, in which no actor will be tried twice before all other actors have been

tried [Gao83]. It may be profitable to augment this strategy by using information dis-

carded from the static schedule, but as argued before, this is not guaranteed to lead to an

optimal schedule.

63

A comparison with the Granski, et. al. proposal [Gra87] is in order. In fully

dynamic scheduling, assignment is easy, assuming the target architecture is homoge-

neous. It does not matter which free processor gets an actor, once the decision has been

made to fire that actor. So the decisions to be made by the scheduler are simply which of

the actors that are ready to be fired should be fired. If the number of actors that are ready

to be fired is smaller than the number of available processors, then there is no decision to

be made, and the scheduler will not be helped by static information. It is only if the num-

ber of ready actors is large that static information can help. In [Gra87] the authors report

that the improvement due to using static information in a dynamic scheduler degrades to

no improvement for large numbers of processors. We just stated the reason for this.

3.3.2 Self-Timed Scheduling

In self-timed scheduling, we define the execution order of actors at compile time,

thus avoiding the difficulty of designing the local controller. In the example of figure 3.4,

suppose that actors are constrained to execute in the order given by figure 3.4 (b). In this

case, we sacrifice some freedom to optimize at execution time. However, if the variability

in execution time is small enough, then there is little justification for paying the run time

cost of static-assignment scheduling. Of course, if the explicit token store mechanism of

Papadopoulos [Pap88] proves to be truly low cost, then the additional adaptability of

static-assignment scheduling makes it more attractive. As pointed out earlier, however,

tractable static-assignment scheduling isnot guaranteed to outperform self-timed. It is

easy to construct demonstration examples where, for example, an iteration finishes well

before expected, causing an order change that results in alarger makespan than if there

were no order change.

The difference between quasi-static and self-timed scheduling is shown in figure

3.5. In quasi-static scheduling, actorsA, B are executed after actorD even if actorA is

64

independent of the dynamic constructD, assuming the scheduler placesA after the

assumed end of the dynamic construct. We also have to synchronize the processors of

actors by inserting idle time compulsorily. However, in self-timed scheduling, actorA is

executed independently of the completion of actorD when its data are available. Idle time

may be automatically inserted afterA while the next actor waits for data. Similarly, actor

B is executed as soon as it is runnable; that is, as soon as all input data are available and

the assigned processor is available. Since all actors are executed before or at the same

time as in the quasi-static scheduling case, the self-timed scheduling strategy always

gives a result better than or equal to the quasi-static scheduling strategy, assuming that the

overhead for synchronization is comparable. In addition, self-timed scheduling does not

need a global synchronization, but only local handshaking. As a result, we believe that

A

B

D

(a) compile-time schedule

A

B

D

A

B

D

(b) quasi-static scheduling (c) self-timed scheduling

Figure 3.5 Comparison between quasi-static scheduling and self-timed scheduling. In
quasi-static scheduling, the pattern of processor availability after the dynamic con-
struct is enforced by global synchronization. In self-timed scheduling, the pattern is
only enforced if the precedences require it. Here we have assumed that actor B is

dependent on the dynamic construct D, but actor A is not.

65

self-timed scheduling is more attractive.

Self-timed scheduling overcomes a difficulty of quasi-static scheduling illustrated

in figure 3.6. In the precedence graph shown in figure 3.6 (a), assume the non-determinis-

tic actorE is equally likely to run for 0, 1, or 2 time units and one of two processors is to

be devoted to the dynamic construct. Then our proposed strategy yields the quasi-static

schedule in (b). However, suppose the actual execution time exceeds the assumed value.

A strict quasi-static schedule, in which global synchronization enforces the pattern of

processor availability after the iteration, would execute as shown in figure 3.6 (c), while a

self-timed schedule would execute as shown in (d). In this case, our proposed schedule is

no more optimal than that in (d), because we consider only the idle time before the com-

A B D

E C

(a) precedence graph

A B C

DE

(b) compile-time schedule

A B C

DE

(c) quasi-static schedule

A B C

DE

(d) self-timed schedule

Figure 3.6 An example showing that a difficulty in quasi-static scheduling is overcome
in self-timed scheduling. Actor E is a non-deterministic actor. According to the pre-
cedence graph in (a), a quasi-static schedule is shown in (b). Assume now that the
actual execution time of actor E is two. Quasi-static execution of the schedule
results in the schedule shown in (c), while self-timed execution results in the sched-
ule shown in (d).

66

pletion of the non-deterministic actor when assessing the run-time cost of actorE. In

other words, our choice of the profile of actorE is only locally optimal. In this example,

the idle time after the dynamic construct varies at run-time. Self-timed execution can

sometimes compensate for this deficiency in the quasi-static scheduling strategy. Idle

time immediately after the completion of the dynamic construct has no effect on the per-

formance since there is no compulsory idle time. In other words, for self-timed execution,

the schedules in (b) and (d) are equivalent.

This does not lead us to the conclusion that the quasi-static scheduling strategy

we propose is optimal under self-timed execution. Consider the two schedules in figure

3.7, which assume the same precedence graph from figure 3.6. Under self-timed schedul-

ing, the schedule in figure 3.7 (a) is clearly preferable to that in (b), because even if the

dynamic construct runs twice as long as the assumed execution time, the makespan will

not be affected. Our scheduling strategy thus far imposes no constraints that would prefer

the schedule in figure 3.7 (a). Intuitively, care should be taken to schedule actors after the

non-deterministic actor in static-assignment or self-timed scheduling. For examples of

this type, the problem can be largely avoided by the following heuristic; all else being

equal, actors independent of the non-deterministic actor should not be assigned to the

processors executing the dynamic construct. This heuristic may be easily incorporated in

Figure 3.7 For the same precedence graph as in figure 3.6, two static schedules with
the same makespan are shown. However, if the actual number of iterations turns
out to be two, the schedule in (a) is better than that in (b).

A B C

DE

(a) optimal schedule

A

B

D

CE

(b) bad schedule

67

the original static scheduling without significant cost.

3.4. PROPOSED TECHNIQUE

Summing up the discussions of the previous sections, the proposed scheduling

technique consists of three steps.

1. Determine the profile of each dynamic construct. The profile of a dynamic con-

struct consists of the number of processors assigned to the construct and the

assumed execution times of the construct on the assigned processors (local sched-

ules).

2. Compute a schedule using a deterministic scheduling technique. Even if we use a

list scheduling scheme based on the original Hu’s level or the dynamic level

scheduling algorithm by Gil Sih, other heuristics can be applied.

3. Apply the obtained schedule to the self-timed scheduling or the static assignment

scheduling strategy. To achieve self-timed execution, discard the timing informa-

tion from the static schedule, but retain both the assignment and the ordering of

actors. For static-assignment scheduling, retain only the assignment of actors to

processors.

In the rest of this thesis, we focus on the first step, deciding the optimal profiles of

well-known dynamic constructs: conditionals, data-dependent iterations, and recursions.

Our scheduling strategy in the second step is different from most of the existing deter-

ministic scheduling techniques in that certain actors (non-deterministic actors) may need

to be assigned to more than one processor. Pioneering work in this direction has been

done by J. Blazewics et. al. [Bla86]. They aim to minimize the schedule length as a non-

overlap execution schedule, allowing certain tasks to take more than one processor at a

68

time for their processing. They examined both non-preemptive and preemptive schedul-

ing techniques, but ignored the precedence relations of actors as well as communication

overhead. The requirement of assigning more than one processor to an actor complicates

the scheduling problem further.

69

PROFILE DECISIONS

4

Well done, good and faithful servant; you have been faithful over a few

things, I will make you ruler over many things

--- Matthew 25:21

The compile-time profile of a nondeterministic actor, or a dynamic construct, con-

sists of the number of assigned processors and the local schedule on the assigned proces-

sors. The profile is chosen to minimize the runtime cost of the actor, assuming quasi-

static scheduling. In this chapter, we illustrate how the proposed technique determines the

optimal profiles of three well-known types for dynamic constructs: data-dependent itera-

tions, conditionals, and recursions.

4.1. DATA-DEPENDENT ITERATION

In a data-dependent iteration, the number of iteration cycles is determined at run-

70

time and cannot be known at compile-time. Two possible dataflow representations for

data-dependent iteration are shown in figure 4.1. In figure 4.1 (a), since the upsample

actor producesx tokens each time it fires, and the iteration body consumes only one token

when it fires, the iteration body must firex times for each firing of the upsample actor. In

figure 4.1 (b), the number of iterations need not be known prior to the commencement of

the iteration. Here, a token coming in from above is routed through aSELECT actor into

the iteration body. The "D" on the arc connected to the control input of the SELECT

actor indicates an initial token on that arc with value "false". This ensures that the data

coming into the "F" input will be consumed the first time theSELECT actor fires. After

this first input token is consumed, the control input to theSELECT actor will have value

"true" until the functiont(x) indicates that the iteration is finished by producing a token

with value "false". During the iteration, the output of the iteration functionf(x) will be

Figure 4.1 Data-dependent iteration can be represented using the either of the data-
flow graphs shown. The graph in (a) is used when the number of iterations is
known prior to the commencement of the iteration, and (b) is used otherwise.

SELECT
T F

f(x)

SWITCH
T F

t(x)

(b)

D

new x

x

(false)

UPSAMPLE

DOWNSAMPLE

ITERATION
BODY

SOURCE
OF x

(a)

71

routed around by theSWITCH actor, again until the test functiont(x) produces a token

with value "false". There are many variations on these two basic models for data-depen-

dent iteration.

For simplicity, we will group the body of a data-dependent iteration into one

node, and call it a data-dependent iteration actor. In other words, we assume a hierarchi-

cal dataflow graph. In figure 4.1 (a), the "iteration body" actor consists of the upsample,

data-dependent iteration, and downsample actors. The data-dependent iteration actor may

consist of a sub-graph of arbitrary complexity, and may itself contain data-dependent iter-

ations. In figure 4.1 (b), everything between theSELECT and theSWITCH, inclusive, is

the data dependent iteration actor. In both cases, the data-dependent iteration actor can be

viewed as an actor with a stochastic runtime, but unlike atomic actors, it can be scheduled

onto several processors. Although our proposed strategy can handle multiple and nested

iteration, for simplicity all our examples will have only one iteration actor in the dataflow

graph.

The method given in this thesis can be applied to both kinds of iteration in figure

4.1 identically. There is, however, an important difference between them. In figure 4.1

(b), each cycle of the iteration depends on the previous cycle. There is a recurrence that

prevents simultaneous execution of successive cycles. In figure 4.1 (a), there is no such

restriction, unless the iteration body itself contains a recurrence.

The proposed scheme has two components. First, the compiler must determine

which processors to allocate to the data-dependent iteration actor. These will be called the

iteration processors, and the rest will be callednon-iteration processors. Second, the

data-dependent iteration actor is optimally assigned anassumed execution time to be used

by the scheduler. In other words, although its runtime will actually be random, the sched-

uler will assume a carefully chosen deterministic runtime and construct the schedule

accordingly. The assumed runtime is chosen so that the expected total idle time due to the

72

difference between the assumed and actual runtimes is minimal; the expected runtime

cost of the actor is thus minimized. Locally minimizing idle time is well known to fail to

minimize the expected makespan, except in certain special cases. We will discuss these

special cases and argue that the strategy is nonetheless promising, particularly when com-

bined with other heuristics.

The assumed execution time and the number of processors devoted to the iteration

together give the scheduler the information it needs to schedule all actors around the data-

dependent iteration. It does not address, however, how to schedule the data-dependent

iteration itself. We will not concentrate on this issue because it is the standard problem of

statically scheduling a periodic dataflow graph onto a set of processors [Lee87a]. None-

theless, it is worth mentioning techniques that can be used. To reduce the computational

complexity of scheduling and to allow any number of nested iterations without difficulty,

blocked scheduling can be used. In these techniques, several cycles of an iteration are

executed in parallel to increase the overall throughput. The proposal applies regardless of

which method is used, but in all our illustrations we assume blocked scheduling. We sim-

ilarly avoid specifics about how the scheduling of the overall dataflow graph is per-

formed. Our method is consistent with simple heuristic scheduling algorithms, such as

Hu-level scheduling [Hu61], as well as more elaborate methods that attempt, for exam-

ple, to reduce interprocessor communication costs. Broadly, our method can be used to

extend any deterministic scheduling algorithm (based on execution times of actors) to

include data-dependent iteration.

4.1.1 Expected Runtime Cost

We assume that the probability distribution of the number of cycles of the itera-

tion actor is known or can be approximated at compile time. Let the number of iteration

cycles be a random variableI with known probability mass functionp(i). Denote the min-

73

imum possible value ofI by MIN and the maximum byMAX. MAX need not be finite.

Suppose that we allocateN processors to the data-dependent iteration actor. If the total

number of the processors isT, the number of non-iteration processors isT-N.

The local schedule of one iteration cycle of the data-dependent iteration actor is

depicted in figure 4.2. The processors are synchronized at the beginning and at the end of

the schedule for blocked scheduling. The makespan of one iteration cycle is . The next

iteration cycle is assumed invocable aftertN. Given the local schedule of one iteration

cycle, we decide the assumed number of iteration cycles,xN, and the number of over-

lapped cycles,kN. For the time being we restrictxN to integers. Once the two parameters,

xN andkN, are chosen, the profile of the data-dependent iteration actor is determined as

shown in figure 4.3 (a). The subscriptN of , tN, xN, andkN represents that they are

functions ofN, the number of iteration processors. For brevity, we will omit the subscript

N for the variables throughout this chapter.

At runtime, for each invocation of the iteration actor, there are three possible out-

comes: the actual numberi of cycles of the iteration is (1) equal to, (2) greater than, or (3)

less thanx. These cases are displayed in figure 4.3. Note that the pattern of processor

availability after the iteration is strictly enforced according to the quasi-static scheduling

Figure 4.2 A blocked schedule of one iteration cycle of a data-dependent iteration
actor.

N

tN

τN

next iteration cycle is executable

τN

τN

74

discipline. Consider the case where the assumed numberx is exactly correct. Then no idle

time exists on any processor (figure 4.3 (a)). Otherwise, some of the iteration processors

will be idled if the iteration takes fewer thanx cycles (figure 4.3 (b)), or else the non-iter-

ation processors as well will be idled (figure 4.3 (c)). The runtime cost of the iteration

actor for each iteration cycle is the sum of the execution times (dotted area in figure 4.3)

on the iteration processors and the idle times (dark area in the figure) due to the iteration.

For , the runtime cost becomes . For , it becomes . There-

fore, the expected cost of the iteration actor C(N,k,x), which is a weighted sum of the

kN

T

1

2 x

1

i

1

2 x
i execution time

idle time

pattern of

processor availability

(a) i =x (b) i < x

(c) i >x

Figure 4.3 A quasi-static schedule is constructed using a fixed assumed number x of
cycles in the iteration. The runtime cost of the actor is the sum of the dotted area
(execution time) and the dark area (idle time due to the iteration). The idle time due
to the difference between x and the actual number of cycles i is shown for 3 cases:

i is equal to, less than, or greater than the assumed number, x.

i x≤ Nτx i x> Nτx Tτ i x–
k

----------+

75

runtime cost by the probability mass of the number of iteration cycles, becomes

(4-1)

By combining the first term with the first element of the second term, we reduce it

to

. (4-2)

4.1.2 Assumed Execution Time

Our method is to choose three parameters,N, x, andk, in order to minimize the

expected cost in equation (4-2). First, we assume thatN is fixed. How to determine the

optimal value forN will be explained in the following section. SinceC(N,k,x) is a non-

increasing function ofk with fixedN, we can determine the parameter k. The parameter k

is bounded by two ratios: , and . The latter constraint is necessary to avoid any idle

time between iteration cycles on a processor. Interdependency between cycles is already

accounted for int. As a result,k is set to be

. (4-3)

The next step is to determine the optimalx. If a value x is optimal, the expected

costC(N,k,x) is not decreased if we varyx by 1 or -1. Therefore, we obtain the following

inequalities,

C N k x, ,() p i()Nτx
i MIN=

x

∑ p i() Nτx Tτ i x–
k

----------+ 
 

i x 1+=

MAX

∑+=

C N k x, ,() Nτx Tτ p i() i x–
k

i x 1+=

MAX

∑+=

T
N
---- τ

t
--

k min T
N
---- τ

t
--, 

 =

76

. (4-4)

In these inequalities, we assume thatMAX is infinite, which is equivalent to defining that

p(i) is zero fori greater thanMAX. Since is positive, from inequality (4-4),

. (4-5)

Suppose thatk is equal to1. The inequality (4-5) becomes

. (4-6)

All quantities in this inequality are between0 and1. The left and right sides are non-

increasing functions ofx. Furthermore, for all possiblex, the intervals

(4-7)

are non-overlapping and cover the interval [0,1]. Hence, either there is exactly one integer

x for whichN/T falls in the interval, orN/T falls on the boundary between two intervals.

Consequently, inequality (4-6) uniquely defines the one optimal value forx, or two adja-

cent optimal values.

This choice ofx is intuitive. As the number of iteration processors approaches the

total number, T, of processors,N/T goes to1 andx tends towardsMIN. Thus even if an

iteration finishes unexpectedly early, the iteration processors will not be idled. Instead the

non-iteration processors (if there are any) will be idled (figure 4.4 (a) and (b)). On the

other hand,x will be close toMAX if N is small. In this case, unless the iteration runs

C N k x, ,() C N k x 1+, ,()– Nτ– Tτ p x 1 ik+ +()
i 0=

∞

∑+= 0≤

C N k x, ,() C N k x 1–, ,()– Nτ Tτ p x ik+()
i 0=

∞

∑–= 0≤

τ

p x 1 ik+ +()
i 0=

∞

∑ N
T
---- p x ik+()

i 0=

∞

∑≤ ≤

p i()
i x 1+=

∞

∑ N
T
---- p i()

i x=

∞

∑≤ ≤

p i()
i x 1+=

∞

∑ p i()
i x=

∞

∑[,]

77

through nearlyMAX cycles, the iteration processors, of which there are few, will be idled

while the non-iteration processors need not be idled (figure 4.4 (c) and (d)). In both cases,

the processors that are more likely to be idled at runtime are the lesser of the iteration or

non-iteration processors.

Consider the special case thatN/T = 1/2. Then from equation (4-6),

(4-8)

which implies that

. (4-9)

NT

0 x=MIN

(a)N->T, i=MIN

NT

0

(b) N->T, i>MIN

x i

N

T

0 x=MAX

(c) N=1, i=MAX

N

T

0 MAX

(d) N=1, i<MAX

i

Figure 4.4 When the number of the iteration processors N approaches the total num-

ber, T, x approaches MIN and the iteration processors will not be idled for any

actual number of iterations (a and b). On the other hand, when N is small, x tends

toward MAX so that the non-iteration processors will not be idled (c and d).

p i()
i x 1+=

∞

∑ 1 p i()
i MIN=

x

∑–=
1
2
---≤

p i()
i MIN=

x

∑ 1
2
---≥

78

Furthermore,

. (4-10)

Taken together, equation (4-9) and equation (4-10) imply that the best choice forx

is themedianof the random variableI (not the mean, as one might expect). In retrospect,

this result is obvious because for any random variableI, the value ofx that minimizes

 is the median. Note that for a discrete-valued random variable, the median is not

always uniquely defined, in that there can be two equally good candidate values. This is

precisely the situation wherex falls on the boundary between two intervals (4-7).

For k greater than1, inequality (4-4) is not sufficient in general for deciding the

optimal x because the intervals, , involved in ine-

quality (4-5) are overlapping if the summation is not monotonic or con-

stant overx. Therefore, we split the search space ofx into k subspaces. Each subspace is

mapped to an element of a modulok group. In other words, x belongs to the i-th subspace

if x modulok is equal toi. We compute the optimalxi in thei-th subspace; the expected

costC(N,k,xi) is not decreased ifxi is varied by+k or -k.

. (4-11)

From inequality (4-11),

p i()
i x=

∞

∑ 1
2
---≥

E I x–

p x 1 ik+ +()
i 0=

∞

∑ p x ik+()
i 0=

∞

∑[,]

p x ik+()
i 0=

∞

∑

C N k xi, ,() C N k xi k+, ,()– Nτk– Tτ p xi 1 j+ +()
j 0=

∞

∑+= 0≤

C N k xi, ,() C N k xi k–, ,()– Nτk Tτ p xi k– 1 j+ +()
j 0=

∞

∑–= 0≤

79

(4-12)

All quantities in this inequality are between0 and1. The left and right sides are non-

increasing functions ofxi. Furthermore, for all possiblexi in thei-th subspace, the inter-

vals

(4-13)

are non-overlapping. Hence, either there is exactly one integerxi for whichNk/T falls in

the interval, orNk/T falls on the boundary between two intervals. Consequently, inequal-

ity (4-12) uniquely defines the one optimal value forxi, or two adjacent optimal values.

This discussion is parallel to that for the case whenk = 1.

After computingxi’s from all subspaces, we calculate the optimalx by comparing

all the expected costsC(N,k,xi)’s. Or, we select a subset of {xi} by applying inequality (4-

5) and compare the expected costs for the subset. Note that {xi} are consecutive numbers,

as can be seen from inequality (4-12). Whenk is equal to1, we have only onexi, which is

the optimalx. The inequality (4-12) is reduced to inequality (4-6).

Up to now, we have implicitly assumed that the optimalx is an integer, corre-

sponding to an integer number of cycles of the iteration. We state it as a theorem.

Theorem 4.1: The optimal value of the assumed number of iteration cycles for a data-

dependent iteration construct is an integer.

Proof:

For non-integerx, the total expected cost is restated as

p xi 1 j+ +()
j 0=

∞

∑ Nk
T

------- p xi k– 1 j+ +()
j 0=

∞

∑≤ ≤

p xi 1 j+ +()
j 0=

∞

∑ p xi k– 1 j+ +()
j 0=

∞

∑[,]

80

. (4-14)

Defining , so . Then equation (4-14) becomes

(4-15)

This tells us that between and ,C(x) is an affine function of , so it must

have its minimum at because the slope is positive. This proves that the optimal

value ofx is an integer. Q.E.D.

The exact form of the probability distribution is usually not available. Instead, we

approximate it by a certain well-known distribution, such as a uniform distribution or a

geometric distribution, that has some useful analytical properties; for example, the ine-

quality (4-5) is a sufficient condition for the optimalx because each summation term is

monotonic inx. As a result, we can obtain a closed formula for the optimal values ofx.

Uniform Distribution

Suppose thatp(i) is a uniform distribution over the rangeMIN andMAX. In other

words,

. (4-16)

The second summation term in inequality (4-5) becomes

C N k x, ,() p i()Nτx
i MIN=

x

∑ p i() Nτx Tτ i x–
k

----------+ 
 

i x 1+=

MAX

∑+=

δx x x–= 0 δx 1<≤

C x() p i()Nτ x δx+()
MIN

x

∑ p i() Nτ x δx+() Tτ i x–
k

-----------------+ 
 

x 1+

MAX

∑+=

C x() p i()Nτδx
i MIN=

∞

∑+=

x x 1+ δx

δx 0=

p i()
1

MAX MIN– 1+
--- MIN i MAX≤ ≤

0 otherwise





=

81

. (4-17)

Therefore, from inequality (4-5),

. (4-18)

After a few manipulations,

. (4-19)

By replacingx in inequality (4-18), we can verify that equation (4-19) gives an

optimal value ofx. There will be another optimal value ofx that is one smaller than that

in equation (4-19) if is an integer. In the special case that

exactly half of the processors are devoted to the iteration and k is unity,x becomes the

expected number of cycles of the iteration, which for this distribution is the same as the

median. Also, asN gets smaller,x tends towardMAX and asN approachesT, x tends

towardsMIN, just as expected. Note that no special treatment is required for the case that

k > 1 because (4-17) is non-increasing inx.

Geometric Distribution

A uniform probability mass function p(i) is not a good model for many types of

iteration. In situations involving convergence, a geometric probability mass function may

be a better approximation. At each cycle of the iteration, we proceed to the next cycle

with probabilityq and stop with probability 1-q.

For generality, we still allow an arbitrary minimum numberMIN of cycles of iter-

p x ik+()
i 0=

MAX

∑ 1
MAX MIN– 1+
--- MAX x–

k
---------------------- 1+=

MAX x– 1–
k

------------------------------- 1+
N
T
---- MAX MIN– 1+() MAX x–

k
---------------------- 1+≤ ≤

MAX x– 1–
k

N
T
---- MAX MIN– 1+() 1– MAX x–

k
----------------------≤ ≤

x MAX
N
T
---- MAX MIN– 1+() 1– k–=

N
T
---- MAX MIN– 1+()

82

ation. The maximum number,MAX, is infinite. Let j=i-MIN , wherei is the number of

cycles of the iteration. Then, the geometric probability mass function means that for any

non-negative integerr,

, (4-20)

and

. (4-21)

To use inequality (4-5), we find

(4-22)

Since (4-22) is non-increasing inx, no special treatment is required for the case thatk >

1. Therefore, the optimal value ofx satisfies

(4-23)

So,

(4-24)

To gain intuition about this expression, consider the special case wherek = 1 and

q = 0.5 meaning that after each cycle of the iteration we are equally likely to proceed as

to stop. Further specializing, when exactly half of the processors are devoted to the itera-

tion, x becomesMIN+1, which is the expected number of iteration cycles, as well as the

median. Note that practical applications are likely to have a larger value forq, in which

the median will be smaller than the mean.

The expressions forx, the assumed number of iteration cycles, are simple enough

to be of practical use in a parallelizing compiler that assumes a geometric or uniform

P j r≥[] qr=

P j[r=] p r() qr 1 q–()= =

p x ik+()
i 0=

∞

∑ 1 q–()qx MIN–

1 qk–
-------------------=

1 q–()qx 1 MIN–+

1 qk–
-------------------------- N

T
---- 1 q–()qx MIN–

1 qk–
-------------------≤ ≤

x q
N 1 qk–()
T 1 q–()
------------------------log MIN+=

83

probability mass function. However, there remains the question of determining how many

processors to devote to an iteration.

4.1.3 Processor Partitioning

In the previous discussion, we assumed that we can somehow allocate the optimal

numberN of processors to the data-dependent iteration. Now we give a strategy for deter-

mining this number. Unfortunately, in practical situations, the detailed structure of the

dataflow graph affects the optimal choice ofN. To keep the scheduler simple, our prefer-

ence is to adopt a suboptimal policy that is optimal for a subset of graphs and reasonable

for the rest: SelectN to minimize the run-time cost of the iteration actor. The suboptimal-

ity of this policy is explained in section 3.2.

First, let us again consider a geometric distribution on the number of cycles of the

iteration. Since

, (4-25)

we get

. (4-26)

Since both x and are functions ofN, dependency of the run-time cost onN can not be

clearly defined. If we replacex using equation (4-24), we get

, (4-27)

p i() i x–
k

i x 1+=

∞

∑ qi MIN– 1 q–() i x–
k

i x 1+=

∞

∑=

qx MIN– 1 q–() qj j
k
--

j 1=

∞

∑ qx MIN– 1+

1 qk–
--------------------------= =

C N k x, ,() Nτx Tτqx MIN– 1+

1 qk–
--------------------------+=

τ

C N k x, ,() Nτ MIN qlog
N 1 qk–()
T 1 q–()
------------------------+ 

  Tτ q
1 q–
------------q qlog

N 1 qk–()
T 1 q–()

+=

84

which is a complicated transcendental that looks as if it has to be minimized numerically.

Fortunately, we can draw some intuitive conclusions for certain interesting special cases.

Consider a case where linear speedup of the iteration actor is possible. In other

words, , whereK is the total amount of computation in one cycle of the iteration.

Equation (4-27) simplifies slightly to

, (4-28)

wherek becomes1. The first term is constant inN and the second term is decreasing inN.

We will now show that the third term is approximately constant inN, suggesting that

C(N,k,x) is minimized by selecting the largest possible value,N=T. This is intuitively

appealing, since with linear speedup applying more processors to the problem would

seem to make sense. To show that the third term is approximately constant, note that

. (4-29)

Consequently, the third term is bounded as follows,

. (4-30)

These bounds do not depend onN. Note, however, that whenN=T, this third term is at its

minimum,Kq/(1-q). It may also be at this minimum for other values ofN, but since the

middle term in equation (4-28) decreases asN increases, the conclusion is thatN should

be made as large as possible, namelyN=T.

Consider another extreme situation, when no speedup of the iteration is possible

andk = 1. In this case, , independent ofN. For the third term in equation (4-27),

we use similar bounding arguments and find that both the upper and the lower bounds on

the third term increase linearly inN. The first and the second term also increase inN.

τN K=

C N k x, ,() K MIN() K qlog
N
T
---- 

  T
K
N
---- q

1 q–
------------q

qlog
N
T
---- 

 
+ +=

N
qT
------- q

q
N
T
---- 

 log 1– 
 

q
q

N
T
---- 

 log N
T
----≥>=

K
1 q–
------------ T

K
N
---- q

1 q–
------------q

q
N
T
---- 

 log Kq
1 q–
------------≥>

τ K=

85

Hence, the conclusion is that if no speedup is possible, we should use as few processors

as possible, orN = 1. This is a reassuring conclusion.

For general speedup characteristics, we can not draw general conclusions. This

suggests that a compiler implementing this technique may need to solve equation (4-27)

for the optimalN. If the total number of processorsT is modest, then this task should not

be too onerous, although we certainly prefer to not have to do it. The task can be some-

what simplified, perhaps, by the observation that we can shrink the range ofN to be

examined by looking into the range of C(N,k,x). Using inequality (4-23) in equation (4-

26), we get

. (4-31)

For some values ofN, the upper bound is smaller than the lower bound for some other

value ofN, so we can ignore the latterN’s.

Now, consider the case wherep(i) is a uniform distribution. Since

(4-32)

the runtime cost becomes

(4-33)

We can replacex with the value given by equation (4-19). Observe that if we define

R=MAX-MIN+1, then

. (4-34)

WhenRN/T is large,

τN x
q

1 q–
------------+ 

  C N k x, ,() τN x
1

1 q–
------------+ 

 ≤ ≤

i x–
k

i x 1+=

MAX

∑ ik
i 1=

l

∑ l 1+() MAX x– lk–()+=

where l MAX x–
k

----------------------=

C N() Nτx
Tτ

MAX MIN– 1+
--- kl l 1+()

2
-------------------- l 1+() MAX x– lk–()+ 

 +=

C N k x, ,() Nτx
Tτ
R
------k

2
--- NR

T
-------- 1–

NR
T

--------+=

86

. (4-35)

This crude approximation simplifies the analysis compared to a bounding argu-

ment like that above, which can be carried out and leads to the same conclusion. If in

addition we assume linear speedup, so that , then equation (4-34) simplifies to

. (4-36)

We see that this function is decreasing linearly inN, suggesting again that we should

select the maximumN=T.

To summarize, we have derived a general cost function that depends on the

speedup attainable for the iteration as more processors are devoted to it. The cost function

was given for the special cases when the probability mass function for the number of

cycles of the iteration is geometric or uniform. Furthermore, simple special situations

lead to intuitive results. Namely, if linear speedup is attainable, then we should devote all

the processors to the iteration. If no speedup is possible, then we should devote no more

than one processor to the iteration. For more general situations, finding the optimal num-

ber of processors requires numerically solving a complicated transcendental.

4.2. CONDITIONALS

Decision making capability is an indispensable requirement of a programming

language for general purpose applications, and even for signal processing applications. A

dataflow representation for an if-then-else is shown in figure 4.5 (a). A data tokenx is

routed by theSWITCH actor to one of the two functions depending on the value of the

boolean tokenc. The appropriate function is executed, and its result is selected by the

SELECT actor depending on the same boolean token. The functions represent subgraphs

NR
T

-------- NR
T

--------≈

τN K=

C N k x, ,() K MAX() K
2
----k 1 NR

T
--------– 

 +=

87

of arbitrary complexity. The local schedules of both functions are displayed in figure 4.5

(b) and (c) assuming thatN processors are assigned to the if-then-else construct.

4.2.1 Expected Runtime Cost

We assume that the probabilityp1 with which the “TRUE” branch (branch 1) is

selected is known. The “FALSE” branch (branch 2) is selected with the probability

. Let be the finish time of the local schedule of thei-th branch on the j-th

processor. And, let be the finish time on thej-th processor in the optimal profile of the

conditional construct. We compute the optimal values to minimize the runtime cost of

the construct. When the i-th branch is selected at runtime, the runtime cost becomes

Figure 4.5 (a) A dataflow graph for the expression: y = if(c) then f(x) else g(x). We
assume that f(x) and g(x) represent subgraphs of arbitrary complexity. Gantt charts
show examples of the local schedule of “TRUE” branch in (b), and that of “FALSE”
branch in (c). N processors out of total T processors are assigned to the if-then-
else construct.

SWITCH
T F

SELECT
T F

f(x) g(x)

x
c

(a)

N
T

(b) schedule of “TRUE” branch

N
T

(c) schedule of “FALSE” branch

1 2 3

1 2 3

p2 1 p1–= τij

τ̂ j

τ̂ j

88

(4-37)

Therefore, the expected runtime cost C is

(4-38)

It is not feasible to obtain the closed form solutions for that minimize the

expected cost because themax function is non-linear and discontinuous. Instead, we

developed a numerical technique:

1. Initially, take the maximum finish time of both branch schedules for each proces-

sor according to E. Lee’s method [Lee88]: that is

. (4-39)

The initial expected cost becomes

. (4-40)

2. Define . Initially all . The variable

 represents the cost per processor when the profile is exceeded at run time

because of branchi being selected, as illustrated in equation (4-38). We definebot-

tle-neck processors of branchi as the processors {j} that satisfy the relation

.

3. Repeat for each until no more changes are made on ’s:

(a) Select an index set :

τ̂k
k 1=

N

∑ Tmax 0 max
j 1 N,[]∈

τij τ̂ j–(),+

C τ̂k
k 1=

N

∑ T pi
i 1=

2

∑ max 0 max
j 1 N,[]∈

τij τ̂ j–(),+=

τ̂ j

τ̂ j max
i 1 2,[]∈

τij{ }=

C max
i 1 2,[]∈

τij{ }
j 1=

N

∑=

αi max max
j 1 N,[]∈

τij τ̂ j–() 0,= αi 0=

αi τ̂ j{ }

τij τ̂ j– αi=

i 1 2,[]∈ τ̂ j

ΘJ

89

In words, is the set of processors that are bottle-neck processors of branchi,

but not of other branches.

(b) If we vary by a small amount, replacing it with , for all , the

variation of the expected cost becomes

. (4-41)

Increase as long as the quantity in equation (4-41) is negative, implying that

the expected cost is decreasing by varying ’s. At a certain , there will be an

indexn, , such that becomes for any .

At this point, we update the index set , which gets smaller as we increase ,

by extracting indexn from . Note that increasing means increasing .

If we cannot decrease the expected cost by increasing any more, we go back to

step 3.

Our algorithm is a greedy algorithm, but also an optimal algorithm. The optimal-

ity of the algorithm is proven in the next subsection.

4.2.2 Optimality Of The Proposed Algorithm

Suppose we have a set of optimal values, , for the optimal profile of the con-

struct. The optimal possesses some nice properties that are described in the follow-

ing two theorems.

ΘJ j τij τ̂ j–{ αi τkj τ̂ j– αk for all i k≠ },<,= =

ΘJ

τ̂ j τ̂ j δ– j ΘJ∈

∆C ΘJ– T pi+()δ=

δ

τ̂ j δ

n ΘJ∈ τkn τ̂n– αk k i≠

ΘJ δ

ΘJ δ αi

δ

τ̃ j{ }

τ̃ j{ }

90

Theorem 4.2: When N < T, . In other words, at least one should be

zero for optimal .

Proof:

We prove it by contradiction. Let’s assume that all ’s are positive.

Let be the smallest . We can choose , a positive number, which is

smaller than . If we increase all ’s by , the expected cost varies:

(4-42)

Since the expected cost decreases, the is not optimal, which is a contradiction.

Q.E.D.

In caseN = T, the decrease of the expected cost in equation (4-42) becomes zero.

Therefore, we may increase the ’s until at least one becomes zero. Without loss of

generality, we assume that throughout this subsection. Now we proceed to

another theorem concerning the range of ’s.

Theorem 4.3: where and

, for all j.

Proof:

Let’s assume that there is an indexn such that . That means

αi
i 1 2,[]∈

∏ 0= αi

τ̃ j{ }

αi

αmin αi δ

αmin τ̃ j δ

∆C
δ

-------- N T pi
i

∑– N T– 0<= =

τ̃ j{ }

τ̃ j αi

α1 0=

τ̃ j

τmin j, τ̃ j τmax j,≤ ≤ τmin j, min
i 1 2,[]∈

τij{ }=

τmax j, max
i 1 2,[]∈

τij{ }=

τ̃n τmin n,<

91

, (4-43)

which is contradictory to Theorem 4.2. Therefore, such an index does not exist.

On the other hand, assume that there is an indexm such that . When

we decrease by , where , the change of the

expected cost becomes because ’s do not vary in this case. This reveals that

 is not optimal. Q.E.D.

The next two theorems describe the relation between the ’s and ’s.

Theorem 4.4: For each , there exists a branch index k such that .

Proof:

Assume that there is no such indexk. Then, we can select a positive value such

that

. (4-44)

If we decrease by , the expected cost changes: because the ’s do not

vary. This contradicts the assumption that is optimal. Therefore, there must be a

branch indexk as stated in the theorem. Q.E.D.

Theorem 4.5: There is an optimal profile in which there is at least one processor index n

such that

α1 τ1n τ̃n– 0>≥ and α2 τ2n τ̃n– 0>≥,

τ̃m τmax m,>

τ̃m δ δ min τ̃m τ1m– τ̃m τ2m–,{ }=

∆C
δ

-------- 1–= αi

τ̃m

τ̃ j αi

τ̃ j τkj τ̃ j– αk=

δ

δ min
i 1 2,[]∈

αi τij τ̃ j–()–{ }=

τ̃ j δ ∆C
δ

-------- 1–= αi

τ̃ j

92

 (recall that we assume). (4-45)

Proof:

Assume that there is no such a processor indexn. Let .

If we increase ’s for by a small amount, the change of the expected cost

becomes

. (4-46)

On the other hand, if we decrease ’s for by a small amount, we get

(4-47)

From equation (4-46) and equation (4-47), . For other values ofp2, we reach

a contradiction. For that specific value ofp2, we can decrease ’s for until there

appears an index satisfying equation (4-45). Q.E.D.

Now, we are ready to prove the optimality of our proposed algorithm. First of all,

note that the ’s obtained from the proposed algorithm satisfy all the relations between

’s and ’s described in theorems 4.2 to 4.5 since the algorithm preserves them

throughout the intermediate procedure.

Theorem 4.6: The ’s obtained from the proposed algorithm are optimal.

Proof:

We will prove this main result by contradiction. Assume that there is an optimal

τ2n τ̃n– α2 and τ̃n τ1n=,= α1 0=

ΛJ j τ2 j τ̃ j– α2={ }=

τ̃ j j ΛJ∈

∆C
δ

-------- ΛJ T p2– 0≥=

τ̃ j j ΛJ∈

∆C
δ

-------- ΛJ– T p2+ 0≥=

p2

ΛJ

T
---------=

τ̃ j j ΛJ∈

τ̂ j

τ̂ j αi

τ̂ j

93

profile that is different from obtained from the proposed algorithm.

Let’s select the indices of processors, , such that

. (4-48)

We get that , from theorem 4.2 and the assumption . Such

indicesj are, therefore, contained in , the index set in step 2-(b) in our algorithm, at the

moment that the expected cost does not decrease by further increasing . In other words,

. (4-49)

We just showed that . Therefore, if we increase ’s for by , then

from inequality (4-49),

. (4-50)

This means that we can decrease the expected cost by varying the ’s, which is contra-

dictory to the assumption that the ’s are optimal. If the index set is empty, we can

find out another index set such that . From theorem 4.5, the index

set contains an indexn satisfying equation (4-45). Hence, the index set is a super-

set of , In the proposed algorithm, a superset of is shrunk down to eventually.

In other words, we can reduce the expected cost by decreasing ’s for further.

Q.E.D.

We can show that the previous algorithms by E. Lee [Lee88] and Loeffler et. al.

[Loe88] are optimal only in some special cases. If the quantity in equation (4-41) is

τ̃ j{ } τ̂ j{ }

ΦJ

ΦJ j τ̃ j τ̂ j< τ̂ j τ̃ j–, max
j 1 N,[]∈

τ̂ j τ̃ j–{ }=
 
 
 

=

τ̂ j τ1 j> for j ΦJ∈ α1 0=

ΘJ

δ

∆C
δ

-------- ΘJ– T p2+= 0>

ΦJ ΘJ⊆ τ̃ j j ΦJ∈ δ

∆C
δ

-------- ΦJ T p2–= 0<

τ̃ j

τ̃ j ΦJ

ΞJ ΞJ j τ̃ j τ̂ j>{ }=

ΞJ ΞJ

ΘJ ΘJ ΘJ

τ̃ j j ΞJ∈

94

always positive for all indicesi, the optimal profile coincides with E. Lee’s solution. On

the other hand, if , and , Loeffler’s solution becomes the

optimal profile. Their solutions, however, are not optimal in general.

Now we consider the example shown in figure 4.5. Supposep1 = 0.3 andp2 = 0.7.

The initial profile in our algorithm, which is same as E. Lee’s profile, is shown in figure

4.6 (a). In this specific example, it is same as Loeffler et. al.’s profile. Let’s trace down the

proposed algorithm. Fori = 1 in the step 3, set is empty; go to the next indexi = 2. In

step 3-(a), . The quantity in equation (4-41) becomes

. (4-51)

This quantity is not changed until we increase to0.5. Hence, we decrease all ’s by

0.5. For , the index set is decreased to and the cost change in equa-

tion (4-41) becomes

. (4-52)

T pi 1< for pi pk< N T<

Figure 4.6 Generation of the optimal profile for the conditional construct in figure 4.5.
(a) initial profile in our algorithm, which is same as E. Lee’s profile [Lee88]. In this
specific example, it is also same as the Loeffler et. al.’s profile. (b) The optimal pro-
file obtained by our algorithm.

N
T

(a) initial profile

1 2 3

(b) optimal profile

1 2 3

ΘJ

ΘJ 1 2 3, ,{ }=

∆C
δ

-------- 3– 4 0.7×+ 0.2–= =

δ τ̂ j

δ 0.5> ΘJ 2 3,{ }=

∆C
δ

-------- 2– 4 0.7×+ 0.8= =

95

We do not gain further by increasing by more than0.5. The resulting profile is shown in

figure 4.6 (b), and is optimal.

4.2.3 M-way Branching: Case Construct

We can generalize the proposed algorithm to theM-way branch construct. To real-

ize anM-way branch, we use a nested if-then-else structure, or a singlecaseconstruct

(figure 4.7). For a nested if-then-else structure, we have to apply our algorithm recur-

sively for each if-then-else construct. Since our technique seeks a locally optimal solu-

tion, repeated application of the proposed algorithm may be detrimental to the overall

performance. On the other hand, we can encode the conditional booleans into a single

integer and choose the intended branch in thecaseconstruct. Using the case construct is

δ

Figure 4.7 Two possible realizations of an M-way branching: (a)by a nested if-then-
else structure, or (b) by a single case construct.

SWITCH
T F

SWITCH
T F

SWITCH
T F

SELECT
T F

SELECT
T F

SELECT
T F

C1

C2

C3

CASE

ENDCASE

ENCODE

C1 C2 C3

(a) (b)

96

simpler in this representation. In this section, we generalize our algorithm for condition-

als to theM-way branching case.

The proposed algorithm can be generalized as follows;

(1) Increase the range of the branch index, from [1,2] to [1, M].

(2) Scan the branch indices as many times as necessary until no more changes are

made for during one complete cycle in step 3 of the numerical optimization.

For if-then-else construct, only one complete cycle is enough in step 3.

Theorems 4.2 to 4.4 still hold. Unfortunately, the optimality of the generalized algo-

rithm has not yet been proved. It is still an open problem whether the generalized algo-

rithm is optimal or not. The generalized algorithm, however, always performs better than

the generalized versions of E. Lee’s profile and Loeffler et. al.’s [Lee88][Loe88].

4.2.4 Processor Partitioning

In the previous discussion, we assumed that we can somehow allocate the optimal

number of processorsN to the conditionals. For a given N, we obtained the optimal pro-

file minimizing the expected cost in equation (4-38). How to select the optimal

numberN is the next question we have to answer. Since no closed form for the optimalN

minimizing the expected cost exists, we resort to a simple numerical technique. For all

possible values ofN, N=1,2,...,T, we compute the expected costs of equation (4-38) based

on the optimal s. Comparing those expected costs, we can select the optimalN that

gives the smallest cost. For a moderate number of processors, this simple technique is fast

enough. In a real situation, we are usually able to reduce the search space forN signifi-

cantly. For example, the maximum number of processors that can be used for any branch

can be limited. In that case, we need not examine anyN larger than that maximum num-

ber.

τ̂ j{ }

τ̂ j{ }

τ̂ j{ }

97

4.3. RECURSION

Recursion is a construct that calls itself as a part of the computation if a termina-

tion condition is not satisfied. Most high level programming languages provide this con-

struct since it makes a program compact and easy to understand. The number of recursive

calls, called thedepth of recursion, is usually not known at compile-time since the termi-

nation condition is calculated at run-time. In the dataflow paradigm, a recursion construct

can be represented as a large actor which contains aSELF actor, which is understood to

represent a reference to the containing actor (figure 4.8). If a recursion construct has only

one SELF actor, as shown in figure 4.8, the function of the actor can be translated into a

data-dependent iteration actor like figure 4.1 (b). Accordingly, the scheduling decision of

Figure 4.8 (a) An example of a recursion construct and (b) its dataflow representation.
The SELF actor represents the recursive call.

function f(x)

a(x);
if test(x) is true

return b(x);
else

return h(f(c(x)));

A

SWITCH
F T

SELECT
F T

C

B

T
E

S
T

F

H

F

(a)

SELF actor

(b)

98

the recursion actor is same as that of the translated data-dependent iteration actor, which

will be verified at the end of this section. In this section, we consider a generalized recur-

sion construct that may have more than one SELF actor. The number ofSELF actors in a

recursion construct is called thewidth of the recursion.

A generalized recursion construct is shown in figure 4.9 (a). In most real applica-

tions, we expect that the width of the recursion is no more than two. The computation tree

of a recursion construct with width 2 and depth 2 is illustrated by a mirrored complete

binary tree in figure 4.9 (b). The top node in the computation graph spawns two children

since the termination condition is “FALSE”. Each child also spawns two children since

its termination condition is also “FALSE”. Hence, the number of descendents at depth2

becomes4. At depth2, each recursion construct (grandchildren of the top recursion con-

Figure 4.9 (a) A generalized recursion construct. (b) The computation tree of a recur-
sion construct with two SELF actors when the depth of the recursion is two.

A

SWITCH
F T

SELECT
F T

C

B

T
E

S
T

F

H

F

(a)

F F

A,C

A,C A,C

A A A A

B B B B

H H

H

(b)

depth

0

1

2

2

1

0

99

struct) completes execution by executing actorB since the termination condition

becomes “TRUE”. After the four grandchildren complete their execution, the two chil-

dren execute actorH and complete execution. Finally, the top recursion construct com-

pletes after the execution of actorH.

We assume that all nodes of the same depth in the computation tree have the same

termination condition. We will discuss the limitation of this assumption at the end of this

section. We also assume that the run-time probability mass function of the depth of the

recursion is known or can be approximated at compile-time. Our analysis in this section

is based on these assumptions.

The potential parallelism of the computation tree of a generalized recursion con-

struct may be huge since nodes at the same depth can be executed concurrently. The max-

imum degree of parallelism, however, is not known at compile-time. When we exploit the

parallelism of the construct, we should consider the resource limitation. We may have to

sacrifice parallelism in order to not deadlock the system. Restricting the parallelism in

case the maximum degree of parallelism is too large has been recognized as a difficult

problem to be solved in a dynamic dataflow system. Our approach proposes an efficient

solution by taking the degree of parallelism as an additional component of the profile of

the recursion construct.

4.3.1 Expected Runtime Cost

Suppose that the width of the recursion construct isk. Let the depth of the recur-

sion construct be a random variableI with a known probability mass functionp(i). We

denote thedegree of parallelism byd, which means that the descendents at depthd in the

computation graph are assigned to different processor groups. A descendent recursion

construct at depthd is called aground construct. We denote the size of each processor

group byN. The total number of processors devoted to the recursion construct isNkd. The

100

profile of a recursion construct is defined by three parameters: the assumed depth of

recursionx, the degree of parallelismd, and the size of a processor groupN. Our

approach optimizes the parameters to minimize the expected cost of the recursion con-

struct. An example of the profile of a recursion construct is displayed in figure 4.10.

Let be the sum of the execution times of actorsA, C, andH. And, let be the

sum of the execution times of actorsA and B. Then the schedule length,lx, of a ground

construct becomes

, whenx > d andk > 1. (4-53)

The latter formula forlx in equation (4-53) holds for and any positive k, though dur-

A,C

A,C A,C

H H

H

1 2 3 4

N

Nkd

T

1

2

3

4

A,C A,C

A,C

H H

H

(a) (b)

Figure 4.10 An example of the profile of a recursion construct of width 2. When the
degree of parallelism is 2, the computation graph is reduced to as shown in (a). The
nodes 1,2,3,4 at depth 2 correspond to grandchildren recursion constructs that are
mapped to different processor groups as shown in (b). The schedule length of the
grandchildren recursion constructs, lx, is a function of the assumed depth of recur-

sion x and the degree of parallelism d (equation (4-53)).

lx

τ τo

l x τ k0 k1 … kx d– 1–+ + +() τokx d–+=

τkx d– 1–
k 1–

--------------------- τokx d–+=

x d≥

101

ing the derivation it is assumed that .

At run-time, some processors will be idled if the actual depth of recursion is dif-

ferent from the assumed depth of recursion, which is illustrated in figure 4.11. When the

actual depth of recursion i is smaller than the assumed depthx, the recursion processors

are idled. Otherwise, the non-recursion processors are idled. The processors assigned to

the recursion construct are calledrecursion processors, the other processorsnon-recur-

sion processors. We letRdenote the cost of the recursion excluding the dotted area in fig-

ure 4.10 (b). This basic costR is equal to .

For , the runtime cost, , becomes R plus the cost of the dotted area in figure 4.10

(b), or

(4-54)

x d k 1>,>

Figure 4.11 A quasi-static schedule is constructed based on an assumed depth of
recursion x. The cost of the recursion actor is the sum of the dotted area (execution
time) and the dark area (idle time due to the construct). Two possible cases are dis-
played depending on the actual depth i of the recursion in (a) for i < x and in (b) for

i>x .

1

2

3

4

A,C A,C

A,C

H H

H

(a)

1

2

3

4

A,C A,C

A,C

H H

H

(b)

Nτ kd 1–()
k 1–

i x≤ C1

C1 R Nkd τkx d– 1–
k 1–

--------------------- τokx d–+ 
 +=

102

assuming thatx is not less thand. For , the cost is plus the idle time on the

non-recursion processors, or

.(4-55)

Therefore, the expected cost of the recursion construct,C(N,d,x) becomes

. (4-56)

After a few manipulations,

.(4-57)

In the derivation of equation (4-57), we implicitly assume that the width of recur-

sion,k, is greater than1. However, the result holds even fork=1.

4.3.2 Assumed Depth Of Recursion And Degree Of Parallelism

First, we assume thatN is fixed. Since the expected costC(N,d,x) is a decreasing

function of d, we select the maximum possible value ford. An upper bound ofd is

obtained by the processor constraint: . Since we assume that the assumed depth

of recursionx is greater than the degree of parallelismd, the optimal value for d becomes

. (4-58)

Next, we decide the optimal value forx from the observation that ifx is optimal, the

expected costC(N,d,x) is not decreased whenx is varied by1 or -1. Therefore, we get

i x> C2 C1

C2 R Nkd τki d– 1–
k 1–

-------------------- τoki d–+ 
  T Nkd–() τ

k 1–
----------- τ0+ 

  ki d– kx d––()+ +=

C N d x, ,() R p i()C1
i 0=

x

∑ p i() C2
i x 1+=

∞

∑+ +=

C N d x, ,() N τkx 1–
k 1–
-------------- τokx+ 

  p i()T τ
k 1–
----------- τ0+ 

  ki d– kx d––()
i x 1+=

∞

∑+=

Nkd T≤

d min klog
T
N
---- x, 

 =

103

. (4-59)

Rearranging the inequalities, we get the following,

. (4-60)

Note the similarity of inequality (4-60) with that for data-dependent iterations, inequality

(4-6). In particular, ifk is 1, the two formulas are equivalent, as expected.

The optimal valuesd andx depend on each other as shown in inequality (4-60)

and equation (4-58). We may need to use iterative computations to obtain the optimal val-

ues ofd andx. The strategy is as follows: First, we set from equation (4-

58) assuming thatx is greater thand. Based on this value ofd, we compute the optimalx

from inequality (4-60). If the computed value ofx is greater thand, stop. Otherwise,

decreased by one and computex again.

Geometric Distribution

Let’s consider an example in which the probability mass function for the depth of

the recursion is geometric with parameterq. For generality, we still allow an arbitrary

minimum numberMIN of cycles of iteration. From inequality (4-60), the optimalx satis-

fies

(4-61)

As a result,x becomes

C x() C x 1+()– τ τo k 1–()+() Nkx Tkx d– p i()
i x 1+=

∞

∑+–
 
 
 

0≤=

C x() C x 1–()– τ τo k 1–()+() Nkx 1– T– kx d– 1– p i()
i x=

∞

∑
 
 
 

0≤=

p i()
i x 1+=

∞

∑ Nkd

T
---------- p i()

i x=

∞

∑≤ ≤

d k
T
N
----log=

qx MIN– 1+ Nkd

T
---------- qx MIN–≤ ≤

104

. (4-62)

Uniform Distribution

Suppose the probability mass functionp(i) is uniform over the rangeMIN and

MAX. From inequality (4-60), we get

. (4-63)

So,

. (4-64)

Therefore, the optimalx becomes

. (4-65)

4.3.3 Processor Partitioning

Up to now, we assumed that N is fixed. Since is a transcendental function ofN,

the dependency of the expected cost on the size of a processor groupN is not clear.

Instead, we examine all possible values forN, calculate the expected cost from equation

(4-57), and choose the optimalN rendering the minimum cost. In most real applications,

we can reduce the search space ofN significantly.

In the case of geometric distribution for the depth of the recursion, the expected

cost in equation (4-57) is simplified to

. (4-66)

x q
Nkd

T
----------log MIN+=

MAX x–
MAX MIN– 1+
--- Nkd

T
---------- MAX x– 1+

MAX MIN– 1+
---≤ ≤

Nkd

T
---------- MAX MIN– 1+() 1– MAX x–

Nkd

T
---------- MAX MIN– 1+()≤ ≤

x MAX
Nkd

T
---------- MAX MIN– 1+() 1––=

τ

C N d x, ,() N τkx 1–
k 1–
-------------- τokx+ 

  T τ τo k 1–()+()kx d– qx MIN– 1+

1 qk–
--------------------------+=

105

Fork = 1,

, (4-67)

which is equivalent to equation (4-26) when k = 1 except the third term. The third term is

added as an overhead to detect the loop termination.

In case of uniform distribution,

. (4-68)

4.3.4 Limitation Of The Assumption

Recall that our analysis is based on the assumption that all nodes of the same

depth in the computation tree have the same termination condition. This assumption was

made to make the analysis tractable. At run time, however, we do not enforce that restric-

tion; All nodes at the same depth need not be synchronized.

Our assumption roughly approximates a more realistic assumption, which we call

the independence assumption, that all nodes of the same depth have equal probability of

terminating the recursion and they are independent of each other. This equal probability

is considered as the probability that all nodes of the same depth terminate recursion in our

assumption. Note that the expected number of nodes at a certain depth is the same

between both assumptions even though they describe different behaviors.

Under the independence assumption, the shape of the profile would be the same

as shown in figure 4.11; The degree of parallelismd is maximized. And all recursion pro-

cessors have the same schedule length of the ground constructs because the recursion

processors are indistinguishable and all nodes at the same depth are assumed indepen-

C N d x, ,() Nτx Tτqx MIN– 1+

1 q–
-------------------------- Nτo+ +=

C N d x, ,() N τkx 1–
k 1–
-------------- τokx+ 

 =

T τ τo k 1–()+()kx d–

MAX MIN– 1+() k 1–()
-- k kMAX x– 1+–

1 k–
----------------------------------- MAX– x+ 

 +

106

dent. However, the optimal schedule lengthlx of the ground construct would be different.

The lengthlx is proportional to the number of executions of the recursion construct inside

a ground construct. We call this number thegroundnumber. The ground number can be

any integer under the independence assumption while it belongs to a subset

 under our assumption. Since the probability mass function of the ground

number is likely to be too complicated under the independence assumption, it seems be

impossible to obtain the optimal schedule length of the ground construct by the proposed

approach. Therefore, we sacrifice performance by choosing a suboptimal schedule length

under a simpler assumption. If the optimal ground number under the independence

assumption isy, we expect that our simpler assumption will choose either or

 as the assumed depth of recursion.

4.4. ADDITIONAL IDLE TIMES

In the preceding sections, we have determined the optimal profiles of three well-

known types of dynamic constructs, minimizing the expected runtime cost of those con-

structs. The runtime cost of a dynamic construct includes not only the computation time

of the construct but also the idle time padded to some processors after executing the con-

struct to make the pattern of processor availability the same as the compiled one. In real-

ity, however, there are two additional but significant sources of idle time caused by the

construct. They should be added to the expected runtime cost before processors are parti-

tioned (or, the optimalN is decided).

A compile-time profile of a construct assumes a fixed pattern of processor avail-

ability at the beginning. If the actual availability pattern is different from the assumed

pattern, idle time should be inserted on the processors assigned to the construct (figure

0 k1 k2 …, ,{ , }

k ylog

k ylog 1+

107

4.12). In figure 4.12 (a), a data-dependent iteration actor is scheduled according to an

optimal profile in figure 4.3 (a). We assume thatN is equal to one for simplicity. When

scheduling the dynamic construct, we position the actual pattern and the assumed pattern

of processor availability to minimize the amount of idle time filled in the gap. Note that

we may need to interchange the processors in the assumed profile of the construct. In fig-

ure 4.12 (b), we schedule an if-then-else actor, whose profile is modified from figure 4.6

(b). The pattern of processor availability at the beginning of the constructor need not be

flat, though we assume it is in section 4.2 to derive a simple formula for the total cost. We

position the assumed profile of the construct to minimize the idle time inserted in the gap

between two mismatched patterns. In this case, the runtime cost may be reduced from

what we obtain in section 4.2.

Up to now, we have assumed that the unassigned processors can be kept busy dur-

ing the execution of the construct. If the program graph is highly parallelizable or the

data-dependent execution time of the dynamic construct is small enough, this is not a bad

Figure 4.12 Idle time must be inserted before a dynamic construct is scheduled due to
the mismatched pattern of processor availability between the actual one and the
compiled one. Two examples are shown: (a) a data-dependent iteration actor in fig-
ure 4.3 (a), (b) an if-then-else actor modified from figure 4.6 (b).

1

2 x

(a) (b)

assumed pattern of processor availability

actual pattern of processor availability

idle time

108

assumption. Otherwise, we should consider the idle time on the unassigned processors

during execution of the dynamic construct (figure 4.13 (a)). To reduce the unnecessary

idle time on those processors, we modify the assumed profile of the dynamic construct. In

figure 4.13 (b), for example, we decrease the assumed number of iteration cycles so that

the pattern of processor availability is consistent with the original one. Though the

inserted idle time in the compile-time schedule of figure 4.13 (b) is smaller than that of

figure 4.13 (a), the expected runtime cost of the construct is the same whichever schedule

is used at compile-time. For a recursion construct, we may decrease the assumed depth of

the recursion for the same purpose. For a conditional construct, however, we do not

change the profile, but just add the idle time into the cost of the actor.

The idle time before and during execution of a dynamic construct can not be com-

puted before the main scheduling is performed. Before processor partitioning is made for

a dynamic construct, we revise the expected cost adding that idle time. Thus, an optimal

Figure 4.13 When the runnable actors are not enough to keep the unassigned proces-
sors busy during execution of a dynamic construct we should add the idle time on
those processors to the runtime cost of the dynamic construct. An example is
shown for a data-dependent iteration in (a). To reduce the unnecessary idle time,
we reduce the assumed number of iteration cycles as shown in (b). Note that the
revised profile keeps the same pattern of processor availability at the end.

(a)

x

runnable actors during execution of the dynamic construct

idle time

(b)

x

109

profile of a dynamic construct is determined during the main scheduling.

110

IMPLEMENTATION: PTOLEMY

5

For as the body without the spirit is dead, so

faith without works is dead also.

--- James 2:26

Use of multiple programmable processors has become an attractive alternative to

custom VLSI for many real-time digital signal processing applications. Widespread use

of this alternative, however, will depend on the development of an effective software and

hardware development environment. The typical environment pursued so far translates a

block-diagram algorithm description into real-time code for multiple programmable pro-

cessors [Lee89a][Zis87][Tha90]. The biggest impediment to the use of such a parallel

computing system is the scarcity of techniques which effectively partition and schedule

programs onto them, so that parallel hardware can be effectively utilized.

Blosim [Mes84] and Gabriel [Bie89][Lee89a] are respectively the first and the

second generation design environments for signal processing applications developed at

the University of California at Berkeley. While Blosim is aimed at algorithm develop-

111

ment and simulation, Gabriel is aimed at real-time prototyping on parallel processors.

Applications of Gabriel are limited to those with deterministic control flow that can be

described using the synchronous dataflow (SDF) model of computation. By restricting to

this model, several automated scheduling and code generation schemes have been devel-

oped [Bha91][Lee87a][Sih91].

Ptolemy [Buc91b] is a third generation software system being developed at Ber-

keley. It is a much more flexible and extensible software framework for simulation and

rapid prototyping. The key difference between Ptolemy and its predecessors is that

Ptolemy does not have a fundamental model of computation and scheduling built into its

foundation. Instead, Ptolemy, as an object-oriented toolkit, provides a set of internal

object-oriented interfaces so that heterogeneous environments built in the Ptolemaic

framework can be easily merged as necessary.

While it is not fundamental to Ptolemy, the graphical user interface deals with

descriptions of systems represented as block diagrams. It is therefore convenient to think

of the basic module in Ptolemy as a block. An atomic block is called aStar and a hierar-

chical block is called aGalaxy. The outermost block, which contains the entire applica-

tion, is known as aUniverse. The entity that determines the order of the execution of the

blocks is thescheduler (at compile time or run-time). The combination of a scheduler and

a set of blocks that conform to the behavior expected by this scheduler is called adomain.

Ptolemy is named after a famous astronomer because of the extensive use of cosmologi-

cal metaphors in its basic structure.

Ptolemy is unique in that it supports the coexistence and interaction of diverse

computational models, domains, in the same system. For instance, a dataflow domain can

exist within a discrete-event domain. In figure 5.1, the network transport of one specific

service - packet speech - is illustrated. This transport device divides into two pieces, the

signal processing (compression, silence detection), which is best modeled with a time-

112

driven synchronous sampling rate (the SDF domain), and the network (packet assembly/

disassembly, switching and queueing), best modeled by the discrete event domain.

Ptolemy is written in C++, an object-oriented programming language. Through

the object-oriented abstraction mechanism of polymorphism, new domains, including

new computational models, new types of blocks, and new communication primitives

among blocks, can readily be added to Ptolemy without any modifications to the Ptolemy

core or to the previously implemented domains. Moreover, Ptolemy provides a seamless

interface between heterogenous domains.

The proposed scheduling technique is being implemented in Ptolemy as a tool for

multiprocessor code generation. The target applications of the proposed technique are

expressed as combinations of the Synchronous Dataflow (SDF) domain and the Dynamic

Dataflow (DDF) domain in the Ptolemy environment. The SDF domain is renamed as the

Code Generation (CG) domain1, and the DDF domain as the CGDDF domain, whose

name is a juxtaposition of CG and DDF meaning the DDF domain for Code Generation.

In this chapter, we discuss how to express the target applications and how to schedule

1. The SDF domain and the DDF domain in Ptolemy refer to domains for simulations. The CG
and the CGDDF domains are respectively the code-generation versions of the SDF and the DDF
domains.

Figure 5.1 A packet speech system simulation requires the combination of signal pro-
cessing (compression, silence detection) and queueing (packet assembly/disas-
sembly and packet transport).

compress packet
assembly

network
packet

disassembly
and buffer

decompress

silence
detection

TIME-DRIVEN TIME-DRIVENEVENT-DRIVEN

113

them in the Ptolemy environment. As of this writing, the code generation functionality is

not fully supported; scheduling is performed, but multiprocessor code is not generated

yet. The scheduling examples of the proposed technique in Ptolemy will be discussed in

the next chapter.

5.1. MIXED-DOMAIN APPLICATION

The system in figure 5.1 represents a mixed-domain application, where a signal

processing subsystem (SDF domain) exists within a discrete-event domain. Suppose that

anX domain contains a subsystem ofY domain. The subsystem ofY domain within the

outsideX domain is implemented as a C++ object called aWormhole. A Wormhole is

derived from the classStar. It behaves exactly like any other star in the outsideX domain.

Internally, however, it encapsulates an entire foreign domainY invisible from the outside

universe. The internal computation model can be totally different from the external

model, in that the specification language, semantics, and scheduling paradigm can be

totally different. Ptolemy provides a seamless interface between domains.

Mixed domain simulation capability in Ptolemy has been demonstrated with com-

binations of signal processing, control, and networking (such as packet speech and

video), as well as real-time telecommunications switching control software

[Buc91a][Buc91b]. Domains in Ptolemy are classified into two groups:timed and

untimed. In a timed domain, the scheduler keeps track of the global timing relations

among tokens. On the other hand, an untimed domain has no notion of time and requires

only the local ordering information of tokens. There are four combinations of timed and

untimed domains. Timing management is the most challenging task in mixed-domain

simulation, especially for the combination of two timed domains.

An important application of mixed domain scheduling lies in rapid prototyping.

114

Gabriel uses synchronous dataflow as the model of computation; SDF cannot express

dynamic runtime behavior. To overcome this limitation, Ptolemy defines a new domain

for dynamic constructs: the dynamic dataflow (DDF) domain. By putting this new

domain inside of an SDF Wormhole, the whole application can be scheduled quasi-stati-

cally. An example is depicted in figure 5.2, where domains are identified in an SDF sys-

tem with an if-then-else construct inside. The outermost topology lies in the SDF domain.

The topology inside the if-then-else construct is in the DDF domain, which in turn con-

tains two SDF domains associated with the “true” and “false” branches. Note that the if-

then-else construct is realized as a SDF Wormhole, and two branches of the if-then-else

constructs as DDF Wormholes.

Figure 5.2 An example of a mixed domain system. The outermost level of the system
is a SDF domain. A dynamic construct (if-then-else) is identified as a DDF domain,
which in turn contains two SDF domains corresponding to the “true” and the “false”
branches.

SWITCH
T F

SELECT
T F

SDF SDF

DDF

SDF

115

5.1.1 An Example

As an example of a mixed-domain (SDF and DDF) application, a simple wave-

form coding algorithm is screen-dumped from Ptolemy (figure 5.3). The entire universe

is shown at the top level (figure 5.3 (a)). A speech waveform or image waveform is read

Figure 5.3 A waveform coding algorithm that uses if-then-else constructs is shown at
the top level (large window). It differentiates the high-frequency parts and the low-
frequency parts of the waveform and encodes them differently, using ADPCM for
the high frequency parts, and using a interpolation technique for the low frequency
parts. Subsystems, galaxies and wormholes, are displayed in other windows.

(a)

(b)

(c)

(d)

(e)

(f)

116

from the file. The slope of the waveform at the current sample is computed, and quantized

into three levels: , 0, and1. If the magnitude of the slope is larger than a threshold, the

output of the quantizer becomes -1 or 1 depending on the sign of the slope. By adjusting

the threshold of the quantizer, we filter out some weak high frequency noisy components

of the waveform. TheVOICE block counts the sign changes of slopes within a fixed

interval, for example within10 samples. If the sign change of the slopes is more frequent

than a threshold, theVOICE block regards the current sample as a high-frequency part of

the waveform. The sample value, the current slope of the waveform, and the output from

theVOICE block are fed into the firstCASE construct (figure 5.3 (b)), which is expressed

as an SDF wormhole. The “false” branch of the CASE construct encodes the high-fre-

quency parts of the waveform by an ADPCM with high compression ratio as shown in

figure 5.3 (f), since the high frequency parts are less perceptible to our eyes or ears than

the low frequency parts. For the low frequency parts of the waveform, the main idea is to

send the peak values and the number of samples between two peaks. At the decoder site,

the intermediate samples between two peaks are linearly interpolated by aFor construct.

In figure 5.3 (e), the position of the peak values and the number of samples between two

consecutive peaks are calculated by observing the slope signs. The current sample value

is coarsely quantized (compression ratio 2:1). Only when the current sample value is

determined as a peak value, the sample value and the number of intermediate samples

between the current sample and the previous peak are transmitted, as realized by the sec-

ond Case construct in figure 5.3 (c).

We simulated this universe with a speech waveform and obtained a fairly under-

standable replica of the original sound with good compression ratio: between 4:1 and 8:1.

As a speech coder we may not want to parallelize the algorithm into a multiprocessor

architecture because the entire processing can be done on a single processor within the

sample period. As an image coder, we expect to improve the algorithm and implement it

1–

117

into a multiprocessor architecture.

5.2. SCHEDULING PROCEDURE

In this section, we outline the scheduling procedure for the system in figure 5.2.

The diagram of the scheduling procedure is depicted in figure 5.4. The class names spec-

ified in figure 5.4 are different from what are actually used in Ptolemy.

TheScheduler class in Ptolemy is provided asetup() method to perform compile-

time scheduling. In the body of thesetup()method, the SDF scheduler initializes each

block before performing the actual compile-time scheduling. The scheduler of the outer

SDF domain regards an SDF wormhole (if-then-else construct) as an SDF actor. There-

fore, the SDF wormhole is initialized before the compile-time schedule is made:SDF

Wormhole :: start() method is called.

In the initialization stage, the wormhole invokes theDDF scheduler :: setup()

method to initialize the inside DDF domain. Two DDF wormholes associated with the

arcs of the if-then-else constructs are initialized. When a DDF wormhole is initialized,

the setup()method of the inside SDF scheduler is called. It performs the compile-time

scheduling with varying number of assigned processors from1 to N (= total number of

the processors). The scheduling results, which are the local schedules of the wormholes,

are maintained in theProfile classes. Each wormhole hasN profiles associated with1 to

N processors. The Profile class contains two integer arrays corresponding to the start-

times and the finish-times of the local schedule on the assigned processors (figure 5.5).

After the outer SDF scheduler completes the initialization stage, it performs the

compile-time scheduling based on either the basic Hu’s level algorithm or Sih’s dynamic

level scheduling algorithm. The static level of the SDF wormhole (if-then-else) construct

is chosen as the average execution time. Before the SDF wormhole is to be scheduled

118

next, the SDF scheduler obtains the pattern of processor availability, and invokes the SDF

Figure 5.4 The diagram of the scheduling procedure for an SDF universe with a
dynamic construct as shown in figure 5.2. It shows the order in which the schedul-
ing methods are called. What each scheduling method does is explained in the
context. Note that the class names such as “SDF scheduler” and “DDF wormhole”
are different from what are actually used in Ptolemy.

SDF scheduler

setup(galaxy) {

galaxy.initialize();

computeSchedule(galaxy){

}

SDF wormhole

start() {

Wormhole::setup();

}

DDF scheduler

setup(galaxy) {

galaxy.initialize();

DDF wormhole

start() {

Wormhole::setup();

}

scheduleIt(galaxy);

}

for (1 to N assigned processors)

SDF scheduler:: scheduleIt(galaxy);

SDF wormhole

computeProfile(){

DDF scheduler

calcProfile() {

DDF scheduler :: calcProfile();

}

// main routine of the optimal
// profile decision

}
}

119

Wormhole :: computeProfile()method. The arguments passed with this method are the

number of processors, the sum of the execution lengths of the unscheduled blocks that are

independent of the dynamic construct, and the pattern of processor availability. The sec-

ond argument is necessary to guess the idle time caused by the dynamic construct when a

profile is chosen. The SDF wormhole calls theDDF scheduler:: calcProfile() method to

decide on the optimal profile: the number of processors to be assigned and the local

schedule of the if-then-else construct with the assigned processors. For the details of the

profile decision technique, refer to the previous chapter.

The outer SDF scheduler, then, schedules the optimal profile of the SDF worm-

hole as a scheduling unit. Since the optimal profile usually spans more than one proces-

sor, we need to modify the existing compile time scheduling techniques. Note that quasi-

static scheduling involves several scheduling interactions between the SDF and the DDF

domains, which is called “mixed-domain” scheduling.

While our discussion is based on an if-then-else construct, the same procedure is

followed for other constructs such as data-dependent iteration and recursion. An SDF

wormhole, which corresponds to a dynamic construct, consists of a few DDF actors and

some DDF wormholes that contain the SDF domain, the body of the construct, inside. In

the initialization stage, each DDF wormhole performs the compile-time scheduling of the

inner SDF domainN times with varying numbers of assigned processors,1 to N, produc-

ing N sets of the profiles of the body of the construct. In the compile-time scheduling

stage, each SDF wormhole decides the optimal profile of the associated dynamic con-

Figure 5.5 The Profile class in Ptolemy. It shows only a few members of interest.

class Profile {

int effP; // number of assigned processors.
IntArray startTime;

IntArray finishTime;
}

120

struct. For a nested dynamic construct,N optimal profiles are computed for 1 to N

assigned processors since they are computed in the initialization stage of the outermost

SDF domain.

Let us assess the complexity of the scheduling algorithm. If the number of

dynamic constructs including all nested ones isD, the total number of profile decision

steps is order ofND, O(ND). If the number of DDF wormholes isS, the total number of

compile-time scheduling executions is order ofNS, O(NS). Therefore, the complexity of

the scheduling algorithm is O(NS + ND) scheduling steps (or function calls). Since the

number of DDF wormholes is the same order of the number of dynamic constructs, the

overall complexity is simplyO(ND). The memory requirements are the same order of

magnitude as the number of profiles to be maintained, which is approximate to the num-

ber of the SDF and DDF wormholes. As a result, the memory requirement is also order of

ND, O(ND).

5.3. THE REPRESENTATION ISSUE

Up to now, we have assumed that the representation of a dynamic construct is

completely graphical with a DDF graph. A DDF graph consists of a few DDF actors and

some DDF wormholes of SDF domain that represent the body of the construct. A

dynamic construct is identified by DDF actors such asSWITCH andSELECT. The DDF

actors decide the data path or the amount of data consumed or produced, and thus realize

the dynamic behavior of the system. Ptolemy supports this representation.

Another possible representation we can think of is the mixture of a dataflow graph

and a textual description of the dynamic constructs. The body of the dynamic construct is

expressed as an SDF graph. But, the dynamic construct itself is described in textual form.

An example of a possible realization is shown in figure 5.6. This representation is appeal-

121

ing to the programmer since the textual forms of dynamic constructs are more familiar

than the graphical representations.

One difficulty in this mixed representation is that we need an interpreter for the

textual description of the dynamic constructs. The if-then-else construct is easy to under-

stand, but a data-dependent iteration may be difficult to read. Sometimes, we upsample

the incoming data and sometimes we count down from the incoming data to initiate the

data-dependent iteration. There are also a countably infinite number of ways to terminate

the data-dependent iteration. The required interpreter is likely to be complicated. In the

graphical representation, we handle this problem by defining new DDF stars as necessary.

A major problem in the graphical representation is the problem of identifying a

specific dynamic construct. Currently, we predefine the topologies of the dynamic con-

structs that Ptolemy supports. The predefined topologies, however, are very restricted

since a dynamic construct is identified by comparing a given topology with the pre-

defined topologies to find a match. Assessing the trade-offs of these two representations

Figure 5.6 A mixed representation of a dynamic construct: if-then-else. The body of
the dynamic construct is expressed as SDF graphs, but the dynamic construct itself
is described in a textual form.

CASE

input control

output

if (control == TRUE)

true_graph;

else

false_graph;

122

and determining which one is better is an open problem.

123

i

EXPERIMENTS

6

But I say to you, do not swear at all: neither by heaven

But, let your ‘Yes’ be ‘Yes,’ and your ‘No,’ ‘No.’ For

whatever is more than these is from the evil one.

--- Matthew 5:34,37

In this chapter, we demonstrate the proposed quasi-static scheduling techniques

with several examples. These experiments do not serve as a full test or proof of generality

of the technique. However, they will verify that the proposed technique can make better

scheduling decisions than other simple but ad-hoc decisions on dynamic constructs in

many applications. In Ptolemy, where the proposed technique is implemented, we may

collect a library of scheduling techniques, each of which performs effectively for a cer-

tain class of applications. Since it is highly doubtful that any single scheduling technique

is effective for all applications, this approach of providing multiple scheduling techniques

in a system would be useful, as envisioned by G. Sih [Sih91].

124

6.1. AN EXAMPLE FROM GRAPHICS

We can illustrate our method with an application from graphics in which a geo-

metric shape is displayed and rotated in three dimensions, with perspective. This is an

attractive application because the program is simple, and can be written with or without

iteration, and the iteration can be data-dependent, or not. We can compare quite a variety

of realizations. Not surprisingly, we find that using data-dependent iteration considerably

decreases the total amount of computation compared to programs that avoid data-depen-

dent iteration. Furthermore, when we use data-dependent iteration, our scheduling

method results in a program that is only3% slower than the best that can be expected

from dynamic scheduling, for this example. We are comparing against a hopelessly opti-

mistic model of dynamic scheduling, so with a realistic model, our method would yield a

program that is considerably faster. The target architecture is a shared-memory multipro-

cessor with four programmable DSP microcomputers (Motorola DSP56001’s).

The dataflow graph for the program using data-dependent iteration is shown in

figure 6.1. This graph is similar to an implementation we have constructed using the Gab-

riel signal processing environment [Lee89a], with the major difference that it uses data-

dependent iteration. It works as follows: two table-lookup actors supply thex andy coor-

dinates of the vertices of the geometric shape. Az coordinate could also be supplied, but

our example assumes this is constant. Constants are supplied by the actors labeled "dc".

The x,y, andz coordinates are rotated along two axes by multiplying pairwise by two

complex exponentials, generated by computing sines and cosines. Next, perspective is

added by using thez coordinate to modify thex andy coordinates according to a set of

parameters that indicate the location of the vanishing point. The result is two coordinates

only, since the image has now been mapped onto two dimensions. The last step is to draw

a line between two successive vertices. This is done by first computing the length of the

125
line, and using this length to determine how many points to draw. The length is the output

Figure 6.1 (a) A dataflow graph of a program that will display a rotating geometric
shape in three dimensions with perspective. (b) The execution time of each actor is
given in Motorola 56000 instruction cycles (currently 75ns). (c) The total cost of the
iteration as a function of the number of processors assigned to the iteration. (d)
One of the schedules produced by the method given in this thesis.

x-table
look-up

dc

y-table
look-up

dc

dc

cos

sin

cos

sin

x

x

+

dc

+

+

+

+

+

+
|.|

repeat repeat

+

+

+

+ D/Aiteration actor

(a)

table
look-up

cos

sin

repeat D/A |.| x +

16 70 10

dc

32 25 13 4 10 0

(b)

Number of iteration processors 1 2 3 4

Total cost of iteration 2255 2080 2362 2432

(c)

processor

1

2

3

4

cos cos

sin sin

iteration actor

120 240 360

makespan = 429.
idle time

(d)

126

of the magnitude actor in the upper right of figure 6.1 (a). Since the number of points

drawn depends on the length of the line, we need data-dependent iteration. The length,

scaled by an empirically determined constant, serves as the control input for two

"repeat" actors, which are special cases of the "upsample" actors. These actors simply

repeat the tokens at their data inputs a number of times given by the control input. The

right repeat actor has a vector input giving the direction of the line to be drawn. The input

to the left repeat actor is the location of the position of the start of the line. In our lab, a D/

A drives a vector display with an analog signal, but a bit-mapped display could easily

replace this. The overall dataflow graph is repeated in an infinite iteration, thus refreshing

the display continually.

A key observation is that without data-dependent iteration, the implementation

requires applying the rotation and perspective operators to every point, rather than just

the vertices. Since most of the computation is in these transformations, the cost is high.

For a particular test shape (a block-lettered "G"), we determined that the implementation

that avoided iteration required an average of 2581 instruction cycles (on four processors)

to draw one line. This is the first entry in figure 6.2. Programs using iteration are much

less expensive.

In figure 6.1 (b), the execution time of each actor is given in Motorola 56000

instruction cycles (currently 75 nsec). These are not ideal implementations of the actors,

but they are working implementations in the Gabriel system. Suppose that we have 4 pro-

cessors. Then, we may assign processors to the data-dependent iteration

actor. To make the best decision on how many processors are assigned to the actor, we

check the total cost of the iteration as a function of the number of assigned processors, as

explained in chapter 4. For eachN, we calculate the assumed execution time and corre-

sponding expected run-time cost assuming a given probability mass function of the

length of line segment. The cost of iteration is shown in figure 6.1 (c), and the schedule is

1 N 4≤ ≤

127

shown in figure 6.1 (d). Here we assume a geometric distribution withMIN=0 and

q=0.95. In the actual scheduling process, the numberN greater than3 is not considered at

all since the makespan of the subgraph within the iteration actor is not shortened with

more than2 processors. In this manner, the search space forN can often be reduced sig-

nificantly. From the numbers in figure 6.1 (c), we choose to assignN=2 processors to the

iteration. After the decision is made, we can construct the global schedule (figure 6.1 (d)).

This Gantt chart shows the assumed length of the iteration as a shaded region.

To make the program more parallelizable, we retimed the graph in front of the

data-dependent iteration actor. This is perfectly reasonable for this application, and can

be automated [Lei83]. With the specific example we used, we achieved reasonably high

processor utilization (82.6%) and low makespan (429 cycles). Of course, at execution

time, the number of cycles of the iteration will vary, so the performance will vary. Since

there is idle time right at the end of non-iteration processors due to the iteration actor, we

Figure 6.2 The performance comparison among several scheduling decisions. The
performance is measured by the average number of cycles to draw one line.

Average number of cycles
to draw 1 line

Fully-static without iteration 2581

Fully-static with worst case iteration 1293

Quasi-static (geometric,q=0.9: x = 6) 735

Quasi-static (geometric,q=0.95: x = 13) 672

Quasi-static (exact distribution:x= 20) 672

Fully-dynamic (ideal without overhead) 657

128

expect that the schedule is not optimal. However, it is certainly near optimal in this case.

The major question that remains unanswered is how to determine which stochas-

tic model fits an iteration best. Our choice here of a geometric model withq=0.95 (the

probability of continuing is0.95), is probably not very accurate. We applied the program

to a simple geometric shape (letter "G") in order to compare the runtime performance

with several scheduling decisions (see figure 6.2). The performance is measured by the

average number of cycles to draw one line and depends on the specific shape being

drawn.

As discussed earlier, fully-static scheduling without iteration gives the worst

result. Another method that can use fully-static scheduling is to perform the maximum

number of iteration cycles every time, which gives the second worst result, as shown in

the second row of figure 6.2. Next we approximate the runtime statistics using geometric

distribution with two different parameters:q=0.9 and q=0.95. The first value grossly

underestimates the average length of the lines drawn. The second value results is a proba-

bility mass function with the appropriate mean but the wrong shape. For the fifth experi-

ment shown in figure 6.2, we use exactly the correct probability mass function, computed

by histograming the lengths of the lines in the geometric shape being drawn. In the sixth

experiment, we calculate the performance for fully-dynamic scheduling, ignoring over-

head.

The results are remarkable. Using the exact probability mass function we are

within 3% of the best that can be expected from fully dynamic scheduling, for this pro-

gram (fifth line, figure 6.2). Using a function with the right mean but the wrong shape, the

result is identical (fourth line, figure 6.2). Using a function with the wrong mean and the

wrong shape, we are still within12% of the best that can be expected from fully dynamic

scheduling (third line, figure 6.2).

These results are particularly promising because we are comparing against a

129

fully-dynamic scheduling strategy that is far more sophisticated than what would be prac-

tical, and we are ignoring the scheduling overhead. Specifically, we assume the dynamic

scheduler somehow knows how many cycles of the iteration will be executed before each

cycle of the overall program begins. It then uses a critical path method (Hu-level schedul-

ing) to construct a schedule for this number of cycles. Since practical dynamic scheduling

algorithms are much more primitive, we view the performance of this algorithm as a

bound on the performance of all dynamic schedulers. When we count the runtime over-

head, the fully-dynamic scheduling will be abandoned without hesitation for this exam-

ple.

The promising results for this program should be viewed only as promising

results based on one example. We are developing a programming environment that will

permit much more extensive experimentation with practical programs; only after those

experiments are complete will we know just how general this method is. Nonetheless, the

experiments we have done show that with a good stochastic model for the iteration, at

least some programs will get schedules that are about as good as can be expected in prac-

tice. They also show that the scheduling method depends on the validity of the stochastic

model for the iteration. However, we make the very preliminary postulate that the perfor-

mance of the technique will not be highly sensitive to the stochastic model since even a

crude model might give a near-optimal number for the iteration cycles. This can only be

verified by trying many examples, something that requires first developing much more

infrastructure. Should the sensitivity prove to be greater, then we can envision successive

refinements of the schedule based on observations of the executing program.

6.2. SYNTHETIC EXAMPLES

In this section, we demonstrate several synthetic examples to test the effectiveness

130

of the proposed scheduling technique. These examples are randomly created. We have

sometimes increased the parallelism of graphs by pipelining. We assume that the statisti-

cal information of dynamic behavior in the dynamic constructs is already known. The tar-

get architecture assumed is a shared bus multiprocessor containing five processors, in

which communication can be overlapped with computation. The communication cost is

assumed fixed at2 time units. The execution length of each block is assigned randomly.

To test the scheduling effectiveness of the proposed quasi-static scheduling tech-

nique, we compare it with the following scheduling alternatives for the dynamic con-

structs:

Method 1. Assign all processors to each dynamic construct.

Method 2. Assign only one processor to each dynamic construct.

Method 3. Apply a fully dynamic scheduling ignoring all overheads.

Method 4. Apply a fully static scheduling.

Method 1 corresponds to the previous research on quasi-static scheduling tech-

nique made by E. Lee [Lee88] and Loeffler et. al [Loe88]. Method 2 approximately mod-

els the situation when we implement each dynamic construct as a single big atomic actor.

Then, the whole application lies in the SDF domain, and we can schedule very efficiently.

We take the average execution time of the dynamic behavior as the runtime of the big

actor for the compile time scheduling. To simulate the third method, we list all possible

outcomes, each of which can be represented as an SDF galaxy, of a dynamic construct.

With each possible outcome, we replace the dynamic construct, and apply a fully static

scheduling algorithm: dynamic level scheduling algorithm by Gil Sih [Sih91]. The sched-

uling result from Method 3 is non-realistic since it ignores all overheads of the fully

dynamic scheduling strategy. Nonetheless it will give a yardstick to measure the relative

performance of other scheduling decisions. By modifying the dataflow graphs, we may

use fully static scheduling in Method 4. For a Case construct, we evaluate all branches

131

and select one by an SDF star, MUX (multiplexer). For a data-dependent iteration con-

struct, we always perform the worst case of iteration and select one. For comparison, we

use the average makespan of the program as the performance measure. Furthermore, we

assume the self-timed scheduling strategy for the runtime execution model.

6.2.1 An Example With A Case Construct.

Figure 6.3 shows an example with aCase construct at the top level, which is dis-

played in the large window. It consists of SDF stars and an SDF wormhole of DDF

domain for the Case construct; it lies in the SDF domain as a whole. The Case construct

and two subsystems that correspond to two branches are expanded in other windows. The

execution length of each SDF star is specified beneath the star icon. Note that the data-

flow graph is pipelined at the end of the Case construct to increase the parallelism of the

graph by putting delays on the output arc.

We obtained the scheduling result through the proposed technique in a Gantt chart

in figure 6.4, which is a dumped screen from Ptolemy. We assumed that there are 4 pro-

cessors and the probability of taking the “true” branch is 0.5, equally likely to taking the

“false” branch. In this example, the optimal profile of the Case construct is equal to that

of E. Lee’s proposal: overlap the local schedules of the both branches and choose the

maximum termination for each processor with the given number of processors,3. Hence,

the average makespan is same as the schedule period, that is47. The optimum number of

assigned processors in this example is3, with which the expected total cost of the Case

construct defined in chapter 4 is minimized (table 6.1). Recall that the expected total cost

Table 6.1: The expected total cost of the Case construct with the number of assigned
processors.

Number of Assigned Processors 1 2 3 4

Expected Total Cost 156 96 88 N/A

132

includes the idle time due to the mismatched pattern of processor availability at the

beginning of the construct as well as the idle time due to the absence of runnable actors to

be scheduled on the unassigned processors during the construct execution. Since neither

branch can use all4 processors, we don’t have to consider assigning4 processors to the

construct.

The average makespans obtained with Methods 1 to 4 are listed in table 6.2. In

Figure 6.3 An example with a Case construct at the top level (large window). The sub-
systems associated with the Case construct are also displayed. This is a screen
dump of the Ptolemy environment. The left bottom galaxy represents the “true”
branch and the right bottom galaxy represents the “false” branch.

4

5

4

7

8

5

9

7 5

4

5

8

8

13

7 1

6 5

6

5

6

7

5

4

3 10

7

4

6

6

133

this example, the proposed technique achieves86% of the ideal makespan obtained by

Method 3. Method 1 bears the same result as the proposed one because the Case construct

can not use all4 processors, so it uses3 processors only and leaves one processor idle.

Note that assigning the construct onto a single processor produces the worst result since it

fails to exploit the parallelism inside the Case construct. Since both branches do not fully

utilize the assigned processors, the proposed technique does not overwhelm the static

scheduling choice (Method 4), but still shows about10% improvement.

Table 6.2: Performance comparison among several scheduling decisions.

Method Proposed 1 2 3 4

Avg. Makespan 47 47 60 40.5 51

% of ideal 0.86 0.86 0.675 1 0.79

Figure 6.4 A Gantt chart display of the scheduling result over 4 processors from the
proposed scheduling technique for the example in figure 6.3. The profile of the
Case construct can be observed in the first three rows. We assume that the proba-
bility of taking the true branch is 0.5. The minimum period and the maximum busy
time should be ignored throughout this thesis.

134

6.2.2 An Example With A For Construct

An example with aFor construct is shown in figure 6.5. We make the randomly

assigned execution lengths of the SDF stars at the top level statistically bigger than those

inside the For construct; by doing so, we somewhat balance the average execution length

of the For construct and the sum of the execution lengths of the SDF stars. To increase the

parallelism of the example, we pipelined the graph at the beginning of the For construct.

The scheduling decisions to be made for the For construct are how many proces-

sors to be assigned to the iteration body and how many iteration cycles to be scheduled

Figure 6.5 An example with a For construct at the top level (large window). The sub-
systems associated with the For construct are also displayed.

6 15
17

6

10 24

9

15

17

14

2

5

24

2

5

6

5

2

4

135

explicitly. We assume that the number of iteration cycles is uniformly distributed between

1 and 7. To determine the optimal number of assigned processors, we compare the

expected total cost as shown in table 6.3. The total number of processors is again

assumed4. Since the iteration body can utilize two processors effectively, the expected

total cost of the first two columns are very close. However, the schedule determines that

assigning one processor is slightly better. Rather than parallelizing the iteration body, the

scheduler automatically parallelizes the iteration cycles themselves. If we change the

parameters, we may want to parallelize the iteration body first and the iteration cycles

next. The proposed technique considers this trade-off when determining the optimal num-

ber of assigned processors. The resulting Gantt chart for this example is shown in figure

6.6. The profile of the For construct is identified with the white bold line.

If the number of iteration cycles is1, 2, or3, the makespan of the example is same

as the schedule period,66. If it is greater than3, the makespan will increase by the execu-

tion length of the iteration body, which is24. Therefore, the average makespan of the

example becomes 79.7. The average makespans from other scheduling decisions are

compared in table 6.4. The proposed technique outperforms other realistic methods and

achieves 85% of the ideal makespan by Method 3. In this example, assigning3 proces-

sors to the iteration body (Method 1) worsens the performance since it fails to exploit the

intercycle parallelism. Confining the dynamic construct in a single big actor (Method 2)

gives the worst performance as expected since it fails to exploit either intercycle parallel-

ism, compared to the proposed technique, and the parallelism of the iteration body, com-

pared to Method 1. Assuming the worst case iteration in Method 4 is not bad in this

Table 6.3: The expected total cost of the For construct as a function of the number of
assigned processors.

Number of Assigned Processors 1 2 3 4

Expected Total Cost 129.9 135.9 177.9 N/A

136

example. As the distribution of the number of the iteration cycles is broader, Method 4 is

expected to be much worse than the proposed technique and even Method 1.

This example reveals a shortcoming of the proposed technique. If we assign 2

processors to the iteration body and exploit the intercycle parallelism, the average

Table 6.4: Performance comparison among several scheduling decisions

Method Proposed 1 2 3 4

Avg. Makespan 79.7 90.9 104.3 68.1 90

% of ideal 0.85 0.75 0.65 1 0.76

Table 6.5: Performance comparison among several choices on the assumed number
of iteration cycles for the optimal profile.

The assumed number 1 2 3 4

Figure 6.6 A Gantt chart display of the scheduling result over 4 processors from the
proposed scheduling technique for the example in figure 6.5. The profile of the For
construct is identified. We assume that the number of iteration cycles is uniformly
distributed between 1 and 7.

137

makespan proves 77.7 to be which is slightly better than the scheduling result by the pro-

posed technique. When we calculate the expected total cost to decide the optimal number

of processors to assign to the iteration body, we do not account for the global effect of the

decision. Since the difference of the expected total costs between the proposed technique

and the best scheduling was insignificant as shown in table 6.3, this non-optimality of the

proposed technique could be anticipated. Actually, the best scheduling utilizes 95% of

the processors, while we utilize 91% of the processors (figure 6.6). To improve the per-

formance of the proposed technique, we can add a heuristic that if the expected total cost

is not significantly greater than the optimal one, we perform the scheduling with that

assigned number of the processors to the iteration body, compare the performance with

the proposed technique, and take the best scheduling result.

The search for the assumed number of iteration cycles for the optimal profile is

not faultless either, since the proposed technique finds a local optimum. The proposed

technique selects3 as the assumed number of iteration cycles as shown in figure 6.6. The

comparison of scheduling performances by varying the assumed number of iteration

cycles is illustrated in table 6.5. The best assumed number proves to be2, not 3 in this

example, due to the higher processor utilization.

Although the proposed technique is not always optimal, it is certainly better than

any of the other scheduling methods compared against as demonstrated in table 6.4. To

overcome the limitations of the proposed technique, we could postpone the decision of

the optimal profile. Instead, we could select a few candidates for the optimal profile, and

compare the final schedule results to choose the best. This will, however, complicate the

Average makespan 80.4 78.6 79.7 86.3

Processor utilization 90% 93% 91% 87%

Table 6.5: Performance comparison among several choices on the assumed number
of iteration cycles for the optimal profile.

138

scheduling somewhat, especially when the program contains nested dynamic constructs.

6.2.3 An Example With A DoWhile Construct

In the proposed technique, aDo-While loop is indistinguishable from a For loop

except that intercycle parallelism does not exist. So, we only determine the number of

assigned processors to the loop body and the assumed number of iteration cycles. An

example is shown in figure 6.7.

We assume that the minimum number of iteration cycles is1 and the maximum

Figure 6.7 An example with a DoWhile construct at the top level (large window). The
subsystems associated with the DoWhile construct are also displayed.

15 18 15

20

18 17

25

23

19

16

20

25

14

15 10

3 5

2

4

3

5

4

4

2

4

139

number is13. We assume that the distribution of the number of iteration cycles between

these two bounds can be approximated by a geometric distribution with parameter0.7:

the probability of doing one more iteration is0.7 after finishing the current iteration

cycle.The total number of processors is again4. To obtain the optimal number of

assigned processors, we compute the expected total cost for each assignment (table 6.6).

The optimal number we obtain is2. The scheduling result from the proposed technique is

displayed in figure 6.8.

Table 6.6: The expected total cost of the For construct as a function of the number of
assigned processors

Number of Assigned Processors 1 2 3 4

Expected Total Cost 350.6 229.2 240.3 261.3

Figure 6.8 Gantt chart display of the scheduling result over 4 processors from the
proposed scheduling technique for the example in figure 6.7. The profile of the
DoWhile construct is identified. We assume that the number of iteration cycles is
geometrically distributed with parameter 0.7.

140

The average makespan obtained from the proposed technique becomes

,

wherep = 0.7. The scheduled makespan is101, and the execution length of the loop body

is 23 onto 2 processors in the above formula. The performance comparison with other

scheduling decisions is shown in table 6.7. The makespan obtained from the proposed

technique is 16% shy of the ideal makespan. Method 1 assigns all 4 processors to the

DoWhile construct and does not utilize them effectively. Since the maximum number of

the iteration cycle is large, Method 4 gives the worst performance as expected. The pro-

posed technique outperforms all other realistic methods by at least10% of the ideal

makespan in this example. If we assign3 processors to the construct, the average

makespan becomes137.9, which is very close to what we achieve from the proposed

technique. This is not a surprising observation because the difference of the expected

total costs in table 6.6 is not significant between the second and the third column.

6.2.4 An Example With A Recursion construct.

An example with aRecursion construct is displayed in figure 6.9. The recursion

body is simple compared with the outside SDF domain to prevent the recursion construct

from being dominant in the runtime profile of the program. Thewidth of the recursion

construct is2. We assume that the depth of the recursion is uniformly distributed between

1 and4. The total number of processors is 5. To determine the optimal profile of the

Table 6.7: Performance comparison among several scheduling decisions

Method Proposed 1 2 3 4

Avg. Makespan 135.4 155.9 162.2 113.4 286

% of ideal 0.84 0.73 0.70 1 0.40

101 23 pi 1– 1 p–() i 2–()
i 3=

13

∑+ 135.4=

141

Recur construct, we have to select the number of assigned processors, thedegreeof paral-

lelism and the assumed depth of recursion. We may assign1 or 2 processors to the recur-

sion body. The expected total costs when assigning1 and2 processors are311 and490

respectively. Therefore, the optimal number of assigned processors is1. The schedule

resulting from the proposed technique is displayed in figure 6.10.

The assumed depth of recursion is taken as the same value as the degree of paral-

lelism, which is 2 in this example. The average makespan obtained from the proposed

Figure 6.9 An example with a Recursion construct at the top level (large window). The
subsystems associated with the Recursion construct are also displayed in other
windows.

7 20 8

10

15 15 15

20
11

14

12

9

6 5

19 10

12

2 2

2
3

4

2

4

4

3

4
2

142

technique becomes . It is compared with the average

makespans obtained from other methods in the following table (table 6.8). The proposed

technique achieves 87% of the non-realistic ideal makespan from Method 3. In Method 1,

we assign2 processors to the recursion body, and 4 processors to the recursion construct

in total since the degree of parallelism becomes 1. Note that both devoting only one pro-

cessor to the recursion construct (Method 2) and executing the worst case of recursion

Table 6.8: Performance comparison among several scheduling decisions

Method Proposed 1 2 3 4

Avg. Makespan 131 155 222.5 114.5 202

% of ideal 0.87 0.74 0.51 1 0.57

Figure 6.10 Gantt chart display of the scheduling result over 5 processors from the
proposed scheduling technique for the example in figure 6.9. The profile of the
Recur construct is identified. We assume that the depth of recursion is uniformly
distributed between 1 and 4.

89 89 131 215+ + +
4

--- 131=

143

structure (Method 4) perform very poorly. It is because the deviation of the runtime exe-

cution length of the recursion construct is huge. The proposed technique shows drastic

performance improvement over other methods.

6.2.5 An Example With A Nested Dynamic Construct

As the final synthetic example, we think of an example in which a Case construct

contains a For construct in its “false” branch (figure 6.11). The structure of the outer sys-

tem is same as the example in figure 6.3. The “false” branch of the Case construct in fig-

ure 6.3 is replaced with a subsystem that contains a For construct. In this example, we do

not compare the performance of the proposed technique with other methods. Based on

the comparison results in the preceding subsections, it is evident that the other methods

(except Method 3) perform more poorly as the degree of non-determinism increases. We

just show how the proposed technique handles nested dynamic constructs.

In a nested dynamic construct, the compile-time profile of the inner dynamic con-

struct affects that of the outer dynamic construct. In general, there is a trade-off between

exploiting parallelism of the inner dynamic construct first and that of the outer construct

first. The proposed technique resolves this conflict automatically. The scheduling result

on this example is displayed in figure 6.12. We observe that the Case construct is

assigned all4 processors in figure 6.12 (a). Hence, the “false” branch of the Case con-

struct is scheduled over4 processors in figure 6.12 (b). The For construct inside the

“false” branch is scheduled using all4 processors again, but assigning2 processors to the

iteration body and overlapping2 iteration cycles. Note that the compile-time profile of

the “false” branch does not match the profile of the Case construct. In this example, the

probability of taking the “true” branch,0.7, is higher than that of taking the “false”

branch,0.3. Therefore, the optimal profile is not the maximum of the profiles of two

branches.

144

Figure 6.11 An example with a nested dynamic construct at the top level (large win-
dow). The system contains a Case construct which in turn contains a For construct
in its “false” branch. The subsystems are also displayed in other windows

4

5

4

7

8

5

9

7 5 5

8
8

13

4

7 1

5

2

3

4
4

3
4

5

2

2

6 5

6

5

6

7

5

4

3

6

10

7

6

4

145

Figure 6.12 Gantt chart displays of the scheduling result over 4 processors from the
proposed scheduling technique for the example in figure 6.11. (a) Schedule of the
whole system. The profile of the Case construct is identified. We assume that the
probability of taking the “true” branch is 0.7. (b) Schedule of the “false” branch of
the Case construct, which contains a For construct whose profile is identified. We
assume that the number of iteration cycles is distributed geometrically with param-
eter 0.6.

(a)

(b)

146

CONCLUSION

7

Brethren, I do not count myself to have apprehended; but one

thing I do, forgetting those things which are behind and

reaching forward to those things which are ahead,

I press toward the goal for the prize

--- Philippians 3:13,14

In this thesis we proposed a scheduling technique for a dataflow program with

dynamic constructs onto multiple programmable processors. We first categorized four

scheduling strategies, among which static-assignment and self-timed scheduling strate-

gies look like the most promising compromises between hardware cost/performance and

flexibility. The choice should depend on the amount of data-dependent behavior in the

expected applications. Both strategies require compile-time decisions; they require that

tasks be assigned to processors at compile time, and in addition, self-timed scheduling

requires that the order of execution of the tasks be specified. If there is no data-depen-

dency in the application, then these decisions can be made optimally (or nearly so, to

avoid complexity problems).

When there is data-dependency, however, optimal or near optimal compile-time

147

strategies become intractable. Most previously proposed solutions include random

choices, clustering (to minimize communication overhead), and load balancing. These

solutions either ignore precedence relationships in the dataflow graph, or use heuristics

based on oversimplified stochastic models. This is justifiable if there is so much data-

dependency that the precedence relationships are constantly changing. However, there is

a large class of applications, including scientific computations and digital signal process-

ing, where this is not true.

Nearly all applications of parallel computers involve some data-dependent behav-

ior. Consequently, there is a clear need for compile-time strategies that can use prece-

dence information in these cases. Quasi-static scheduling strategies have been previously

proposed that can handle conditionals and some forms of iteration [Lee88][Loe88]. The

main contribution of this thesis is to extend these techniques to handle dynamic con-

structs in asystematic way. We define the compile-time profile of a dynamic construct as

an assumed local schedule of the dynamic construct. Based on the profiles of dynamic

constructs, we perform a fully-static scheduling. The resulting static schedules give the

information needed by a compiler in self-timed and static-assignment situations. Even

though the proposed technique was implemented with list scheduling methods, it may be

used in other scheduling methods. The proposed method should work well when the

amount of data dependency is small, but we admittedly cannot quantify at what level the

technique breaks down.

We require that the statistical distribution of the dynamic behavior, for example

the distribution of the number of iteration cycles for a data-dependent iteration, must be

known or estimated at compile time for each dynamic construct in the program. Using

these probabilities, we find an “assumed” profile of dynamic constructs that the scheduler

can use to construct a static schedule. This profile is selected to minimize the expected

total cost. The total cost of a dynamic construct is the sum of the execution length of a

148

construct and the idle time on all processors at runtime due to the difference between the

compile-time profile and the actual runtime profile. This total cost is computed by assum-

ing that the processors are globally synchronized (quasi-static scheduling strategy). We

proved that the profile obtained from the previously proposed methods by E. Lee and

Loeffler et. al. are optimal in some special cases only.

The dynamic constructs handled in this thesis are:

1. Conditionals or Case construct. We generalize an if-then-else construct to a case

construct to allow an N-way branching capability.

2. Data-dependent iterations, such as For and DoWhile. We included the ability to

overlap successive cycles of an iteration.

3. Recursions or Recur construct. We invented a dataflow representation, recursive

representation using a Self Star, of a recursion construct. We show how to manage

the degree of parallelism of the recursion constructs optimally through the pro-

posed technique.

The proposed technique can be applied to any other dynamic constructs similarly.

If there is a nested dynamic construct, the technique decides automatically whether to

parallelize the inner construct only or the outer construct only or both.

It is shown that if the execution is self-timed, then the performance can only

improve over the quasi-static case, and that the information generated by the quasi-static

scheduler can be used at very low cost. For static-assignment scheduling, tractable runt-

ime scheduling algorithms may actually lead toworse schedules than the quasi-static

case, although most of the time the schedules will be better.

We implemented the technique in Ptolemy as a part of the rapid-prototying envi-

ronment. We illustrated the proposed technique using one example from graphics and

some synthetic examples. These results are only a preliminary indication of the potential

practical application, but they are very promising. For the synthetic examples, we found

149

that the resulting quasi-static schedule could be at least 10% faster than other scheduling

decisions currently existent, while it is as little as 15% slower than an ideal (and highly

unrealistic) fully-dynamic schedule. For the graphics example, we found that the result-

ing quasi-static schedule could be as little as 3% slower than an ideal (and highly unreal-

istic) fully-dynamic schedule. This performance depends on a reasonable (but not exact)

stochastic model of the dynamic construct, assumed by the compiler. For the particular

program we selected, the performance does not degrade rapidly as the stochastic model

gets further from actual program behavior, suggesting that a compiler can use fairly sim-

ple techniques to estimate the model.

7.1. FUTURE RESEARCH

There are still a number of issues that require further research. Some of these

include:

 1. A scheduling technique that allows some actors to require more than one proces-

sor. There is very little published research on this topic; one of the earliest is Blaze-

wics et. al.’s [Bla86]. But, their heuristic based on a linear programming

formulation ignores the precedence relations among actors, and thus is not applica-

ble in this context. Currently, we use a modified list scheduling technique. Future

research is needed to assess this approach and to search for better techniques.

2. Handling of coupled non-deterministic actors. In this proposal, we assume that

non-deterministic actors are decoupled so that their dynamic behaviors are inde-

pendent. This assumption will be reasonable for most signal processing applica-

tions. To apply the proposed scheme to more general problems, coupled non-

deterministic actors should be handled properly. One possible approach will be to

make a new level in the hierarchical dataflow graph that gathers all coupled non-

150

deterministic actors.

3. The amount of non-determinism allowable in this scheme. Another assumption in

this technique is that a program has at most a small amount of non-determinism in

its behavior. If the amount of non-determinism is too large, the proposed scheme

may not be efficient compared with random assignment or other scheduling

schemes.

4. Efficient code generation for run-time decisions. For each dynamic construct, code

that performs the run-time decision must be inserted before and after the execution

of the construct. Resource management will be a crucial issue especially for a

recursion construct. Since there has been no previous research, this will be a chal-

lenging task.

5. Scheduling for heterogeneous multiprocessor systems. Since we implement Sih’s

dynamic level scheduling algorithm, our system can be extended to schedule a het-

erogeneous multiprocessor system [Sih91].

151

[Ack82]

W. B. Ackerman, “Data Flow Languages,”Computer, Vol. 15, No. 2, pp. 15-25,

February, 1982.

[Ada74]

T. L. Adam, K. M. Chandy, and J. R. Dickson, ”A Comparison of List Schedules

for Parallel Processing Systems,” Comm. ACM, 17(12), pp. 685-690, Dec., 1974.

[Amd67]

G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities,” AFIPS Conference Proceedings, 30, pp. 483-

485, 1967.

[Arv82]

Arvind and K. P. Gostelow, ”The U-Interpreter,”Computer, 15(2), February

1982.

[Arv86]

Arvind and D. E. Culler, “Dataflow Architectures,”Annual Review in Computer

Science, Vol. 1, pp. 225-253, 1986.

[Arv87]

Arvind, R. S. Nikhil and K. K. Pingali, “Id Nouveau Reference Manual: Part II:

Operational Semantics,” MIT Computation Structures Group, April, 1987.

[Arv88a]

Arvind and R. S. Nikhil, “Executing a Program on the MIT Tagged-Token Data-

flow Architecture,” Computations Structures Group Memo 271, MIT, July, 1988.

[Arv88b]

Arvind, D. E. Culler, and K. Ekanadham “The Price of Asynchronous Parallel-

REFERENCES

152

ism: An Analysis of Dataflow Architecture”, Computation Structures Group

Memo 278, MIT, June, 1988.

[Bab84]

R. G. Babb, “Parallel Processing with Large Grain Dataflow Techniques,”Com-

puter, Vol. 17, July, 1984.

[Bac78]

J. Backus, “Can Programming Be Liberated from the von Neumann Style?

AFunctional Style and Its Algebra of Programs,”Communications of the ACM,

Vol. 21, No. 8, pp. 613-641, August, 1982.

[Bha91]

S. Bhattacharyya, “Scheduling Synchronous Dataflow Graphs for Efficient Itera-

tion,” Master’s Thesis, EECS Dept. Univ. of Calif. Berkeley, May, 1991.

[Bia87]

R. P. Bianchini, JR. and J. P. Shen, “Interprocessor Traffic Scheduling Algorithm

for Multiple Processor Networks,” IEEE Trans. Computers, Vol. C-36, No. 4,

pp.396-409, April, 1987.

[Bie89]

J. Bier and E. A. Lee, “Frigg: A Simulation Environment for Multiprocessor

DSP System Development,”Proc. of Int. Conf. on Computer Design, Boston,

MA, October, 1989.

[Bla86]

J. Blazewics, M. Drabowski, and J. Weglarz, “Scheduling Multiprocessor Tasks

to Minimize Schedule Length,”IEEE Trans. Computers, Vol. C-35, No. 5, pp.

389-393, May, 1986.

[Bok88]

S. Bokhari, “Assignment Problems in Parallel and Distributed Computing,”Par-

153

allel Processing and Fifth Generation Computing, Kluwer Academic Publishers,

1988.

[Buc91a]

Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt, “Multi-

rate Signal Processing in Ptolemy”,ICASSP-91, Toronto, 1991.

[Buc91b]

J. Buck, S. Ha, E. A. Lee, and D.G. Messerschmitt, “Ptolemy: A Platform for

Heterogeneous Simulation and Prototyping,” Proc. 1991 European Simulation

Conference, Copenhagen, Denmark, June 17-19, 1991.

[Buh84]

L. N. Bhuyan and D. P. Agrawal, “Generalized Hypercube and Hyperbus Struc-

ture for a Computer Network,”IEEE Trans. Computers, Vol. C-21, No. 4, pp.

323-333, April 1984.

[Bur81]

F. W. Burton and M. R. Sleep, “Executing Functional Programs on A Virtual

Tree of Processors,”Proc. ACM Conf. Functional Programming Lang.Comput.

Arch., pp. 187-194, 1981.

[Cam85]

M. L. Campbell, “Static Allocation for a Data Flow Multiprocessor,”Proceed-

ings of the 1985 Intern. Conf. on Parallel Processing, pp. 511-516, 1985.

[Cap84]

P. R. Cappello and K. Steiglitz, ”Some Complexity Issues in Digital Signal Pro-

cessing,”IEEE Trans. ASSP, ASSP-32 (5), October 1984.

[Cha84]

M. Chase, ”A pipelined Data Flow Architecture for Signal Processing: the NEC

uPD7281,” VLSI Signal Processing, IEEE Press, New York (1984)

154

[Cha92]

L.-F. Chao and E. H.-M. Sha, “Unfolding and Retiming Data-Flow DSP Pro-

grams for RISC Multiprocessor Scheduling,”ICASSP, San Francisco, 1992.

[Chu80]

W. W. Chu, L. J. Holloway, L. M.-T. Lan, and K. Efe, “Task Allocation in Dis-

tributed Data Processing,”IEEE Computer, pp. 57-69, November, 1980.

[Chu87]

W. W. Chu and L. M.-T. Lan, ”Task Allocation and Precedence Relations for

Distributed Real-Time Systems,”IEEE Trans. on Computers, C-36(6), pp. 667-

679, June 1987.

[Cof76]

E. G. Coffman, Jr., Computer and Job Scheduling Theory, Wiley, New York

(1976)

[Cor79]

M. Cornish, D. W. Hogan, and J. C. Jensen, “The Texas Instruments Distributed

Data Processor,”Proc. Louisiana Computer Exposition, Lafayette, La., March

1979, pp. 189-193.

[Dav78]

A. L. Davis, ”The Architecture and System Method of DDM1:A Recursively

Structured Data Driven Machine,”Proc. Fifth Ann. Symp. Computer Architec-

ture, April, 1978, pp. 210-215.

[Dav81]

H. A. David, “Order Statistics,” Wiley Press, 1981.

[Den75]

J. B. Dennis and D. P. Misunas, “A Preliminary Architecture for a Basic Data-

flow Processors,”Proc. 2nd Ann. Symp. Computer Architecture, New York, May,

155

1975.

[Den80]

J. B. Dennis, ”Data Flow Supercomputers,”Computer,13(11), November 1980.

[Efe82]

K. Efe, “Heuristic Models of Task Assignment Scheduling in Distributed Sys-

tems,”IEEE Computer, pp. 50-56, June, 1982.

[Fen81]

T.-y. Feng, “A Survey of Interconnection Networks,” Computer, pp. 12-26,

December, 1981.

[Fin81]

R. A. Finkel and M. H. Solomon, “The Lens Interconnection Strategy,” IEEE

Trans. Computers, pp. 291-295, April 1981.

[Fis84]

J. A. Fisher, ”The VLIW Machine: A Multiprocessor for Compiling Scientific

Code,”Computer, July, 1984, 17(7).

[Gao83]

G. R. Gao, “A pipelined Code Mapping Scheme for Static Dataflow Computers,”

Ph.D. dissertation, Laboratory for Computer Science, MIT, Cambridge, MA

(1983).

[Gao88]

G. R. Gao, R. Tio, and H. H. J. Hum, ”Design of an Efficient Dataflow Architec-

ture without Data Flow,”Proc. Int. Conf. on Fifth Generation Computer Systems,

1988.

[Gau85]

J. L. Gaudiot, R. W. Vedder, G. K. Tucker, D. Finn, and M. L. Campbell, “A Dis-

tributed VLSI Architecture for efficient signal and data processing,”IEEE Trans.

156

Computers, Vol. C-34, pp. 1072-1087, December 1985.

[Gau87]

J. L. Gaudiot, “Data-Driven Multicomputers in Digital Signal Processing,”IEEE

Proceedings,Vol. 75, No. 9, pp. 1220-1234, September, 1987.

[Gel91]

P. R. Gelabert and T. P. Barnwell, III, “Optimal Automatic Periodic Multiproces-

sor Scheduler for Fully Specified Flow Graphs,” submitted toIEEE Trans. ASSP,

1991.

[Gir87]

E. F. Girczyc, “Loop Winding - A Data Flow Approach to Functional pipelin-

ing,” ISCAS, pp. 382-385, 1987.

[Gon77]

M. J. Gonzalez, ”Deterministic Processor Scheduling,” Computing Surveys, 9(3),

September, 1977.

[Gos82]

K. P. Gostelow, “The U-Interpreter,”Computer, pp. 42-49, 1982.

[Gra87]

M. Granski, I. Korn, and G.M. Silberman, “The Effect of Operation Scheduling

on the Performance of a Data Flow Computer,” IEEE Trans. on Computers, C-

36(9), September, 1987.

[Gur85]

J. R. Gurd, C. C. Kirkham, and I. Watson, “The Manchester Dataflow Prototype

Computer,”Communications of the ACM, 28, January, pp. 34-52, 1985.

[Ha90]

S. Ha and E. A. Lee, ”Compile-time Scheduling and Assignment of Dataflow

Program Graphs with Data-Dependent Iteration,” to appeared inIEEE trans. on

157

Computers.

[Ha91]

Soonhoi Ha and Edward A. Lee, “Quasi-Static Scheduling for Multiprocessor

DSP,” ISCAS-91, Singapore, 1991.

[Han72]

M. Hanan and J. M. Kurtzberg, “A Review of the Placement and Quadratic

Assignment Problems,”SIAM Review, Vol. 14, No. 2, pp. 324-342, April, 1972.

[Hil89]

P. N. Hilfinger, “Silage Reference Manual, DRAFT Release 2.0,” Computer Sci-

ence Division, EECS Dept., UC Berkeley July 8, 1989.

[Hoa78]

C. A. R. Hoare, ”Communicating Sequential Processes,” Communications of the

ACM, August 1978,21(8)

[Hoa90]

P. Hoang and J. Rabaey, “Program Partitioning for a Reconfigurable Multipro-

cessor System,”IEEE Workshop on VLSI Signal Processing IV, November, 1990.

[Hu61]

T. C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operations

Research, 9(6), pp. 841-848, 1961.

[Hum91]

H. H. J. Hum and G. R. Gao, “Efficient Support of Concurrent Threads in a

Hybrid Dataflow / von Neumann Architecture,”The third IEEE symposium on

Parallel and Distributed Processing, Dallas, December, 1991.

[Hwa84]

K. Hwang and F. A. Briggs, “Computer Architecture and Parallel Processing,”

McGraw Hill, 1984.

158

[Ian88]

R. A. Iannucci, “A Dataflow / von Neumann Hybrid Architecture,” Ph.D. disser-

tation, MIT, 1988.

[Iqb86]

M. A. Iqbal, J. H. Saltz, and S. H. Bokhari, “A Comparative Analysis of Static

and Dynamic Load Balancing Strategies,”Int. Conf. on Parallel Processing, pp.

1040-1045, 1986.

[Kel84]

R. M. Keller, F. C. H. Lin, and J. Tanaka, “Rediflow Multiprocessing,” Proc.

IEEE COMPCON, pp. 410-417, February, 1984.

[Kim88]

S. J. Kim and J. C. Browne, ”A General Approach to Mapping of Parallel Com-

putations upon Multiprocessor Architectures,”Proc. Int. Conf. on Distributed

Computing Systems, 1988.

[Kon90]

K. Konstantinides, R. T. Kaneshiro, and J. R. Tani, “Task Allocation and Sched-

uling Models for Multiprocessor Digital Signal Processing,” IEEE Trans. Acous-

tics, Speech, and Signal Processing,Vol. 38.No. 12, pp. 2151-2161, December,

1990.

[Kun87]

J. Kunkel, ”Parallelism in COSSAP,” Internal Memorandum, Aachen University

of Technology, Fed. Rep. of Germany,1987.

[Kun88]

S. Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, NJ (1988).

[Lee87]

S. Lee and J. K. Aggarwal, “A Mapping Strategy for Parallel Processing,” IEEE

159

Trans. Computers, Vol. C-36, No. 4, pp. 433-442, April, 1987.

[Lee87a]

E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data-

Flow Graph for Digital Signal Processing,” IEEE Trans. on Computers, January,

1987.

[Lee87b]

E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” IEEE Proceed-

ings, September, 1987.

[Lee88]

E. A. Lee, “Recurrences, Iteration, and Conditionals in Statically Scheduled

Block Diagram Languages,” inVLSI Signal Processing III, IEEE Press, 1988.

[Lee89a]

E. A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya, ”Gabriel: A Design

Environment for DSP,” IEEE Trans. on ASSP, November, 1989.

[Lee89b]

E. A. Lee and S. Ha, “Scheduling Strategies for Multiprocessor Real-time DSP,”

GLOBECOM, November, 1989.

[Lee90]

E. A. Lee and J. C. Bier, “Architectures for Statically Scheduled Dataflow,” Jour-

nal on Parallel and Distributed Systems, December, 1990.

[Lee91a]

E. A. Lee and J. C. Bier, “Architectures for Statically Scheduled Dataflow,”

reprinted in Parallel Algorithms and Architectures for DSP Applications, Kluwer

Academic Pub., 1991.

[Lee91b]

E. A. Lee, “Consistency in Dataflow Graphs,”IEEE Trans. on Parallel and Dis-

160

tributed Systems, Vol. 2, No. 2, April, 1991.

[Lei83]

C. E. Leiserson, “Optimizing Synchronous Circuitry by Retiming,” Third

Caltech Conference on VLSI, Pasadena, CA, March, 1983.

[Loe88]

C. Loeffler, A. Ligtenberg, H. Bheda, and G. Moschytz, “Hierarchical Schedul-

ing system for Parallel Architectures,” Proceedings of Euco, Grenoble, Septem-

ber, 1988.

[Lu86]

H. Lu and M. J. Carey, “Load-Balanced Task Allocation in Locally Distributed

Computer Systems,” Int. Conf. on Parallel Processing, pp. 1037-1039, 1986.

[Ma82]

P. R. Ma, E. Y. S. Lee and M. Tsuchiya, “A Task Allocation Model for Distrib-

uted Computing Systems,” IEEE Trans. on Computers, Vol. C-31,No. 1, pp. 41-

47, January, 1982.

[Mar69]

D. F. Martin and G. Estrin, ”Path Length Computations on Graph Models of

Computations,” IEEE Trans. on Computers, C-18, pp. 530-536, June 1969.

[Mcg82]

J. R. McGraw, “The VAL Language: Description and Analysis,”ACM Trans. on

Programming Languages and Systems, 4(1), pp. 44-82, January, 1982.

[McG83]

J. McGraw, “Sisal: Streams and Iteration in a Single Assignment Language,”

Language Reference Manual, Lawrence Livermore National Laboratory, Liver-

more, CA94550, 1983.

[Mes84]

161

D. G. Messerschmitt, “A Tool for Structured Functional Simulation,”IEEE Jour-

nal on Selected Areas in Communications, SAC-2(1), January, 1984.

[Muh87]

H. Muhlenbeim, M. Gorges-Schleuter, and O. Kramer, “New Solutions to the

Mapping Problem of Parallel Systems: The Evolution Approach,” Parallel Com-

puting, 4, pp. 269-279, 1987.

[Nik89]

R. S. Nikhil and Arvind, “Programming in Id: a Parallel Programming Lan-

guage,” MIT Draft, 1989.

[Ona89]

J. S. Onanian, “A Signal Processing Language for Coarse Grain Dataflow Multi-

processor,” Technical Report MIT/LCS/TR-449, June, 1989.

[Pap88]

G. M. Papadopoulos, ”Implementation of a General Purpose Dataflow Multipro-

cessor,” Dept. of Electrical Engineering and Computer Science, MIT, Ph.D. The-

sis, August, 1988.

[Par89a]

K. K. Parhi and D. G. Messerschmitt, “Pipeline Interleaving and Parallelism in

Recursive Digital Filters - Part I: Pipelining Using Scattered Look-Ahead and

Decomposition,”IEEE Trans. on ASSP, Vol. 37, No. 7, pp. 1099-1117, July,

1989.

[Par89b]

K. K. Parhi and D. G. Messerschmitt, “Pipeline Interleaving and Parallelism in

Recursive Digital Filters - Part II: Pipelined Incremental Block Filtering,”IEEE

Trans. on ASSP, Vol. 37, No. 7, pp. 1099-1117, July, 1989.

[Pla76]

162

A. Plas, et. al., ”LAU System Architecture: A Parallel Data-driven Processor

Based on Single Assignment,”Proc. 1976 Int. Conf. Parallel Processing, pp.

293-302.

[Pot91]

M. Potkonjak : “Algorithms for High Level Synthesis: Resource Utilization

Based Approach,” Ph.D. Thesis, University of California at Berkeley, 1991.

[Pre81]

F. P. Preparata and J. Vuillemin, “The Cube-Connected Cycles: A Versatile Net-

work for Parallel Computation,”Comm. ACM,Vol. 24, No. 5, pp. 300-309, May

1981.

[Rao85]

S. K. Rao, ”Regular Iterative Algorithms and their Implementations on Processor

Arrays,” Information Systems Laboratory, Stanford University, October, 1985,

Ph.D. Dissertation.

[Ree87]

D. A. Reed and D. C. Grunwald, “The Performance of Multicomputer Intercon-

nection Networks,” Computer, pp. 63-73, June 1987.

[Ren81]

M. Renfors and Y. Nuevo, “The Maximum Sampling Rate of Digital Filters

Under Hardware Speed Constraints,” IEEE Trans. Circuits and Systems, Vol.

CAS-28, No. 3, pp. 196-202, 1981.

[Sar87]

V. Sarkar, “Partitioning and Scheduling Parallel Programs for Execution on Mul-

tiprocessors,” Ph.D. dissertation, Stanford University, 1987.

[Sch85]

D. A. Schwartz, ”Synchronous Multiprocessor Realizations of Shift-Invariant

163

Flow Graphs,” Georgia Institute of Technology Technical Report DSPL-85-2,

Ph.D. Thesis, July 1985.

[Sch86]

D. A. Schwartz and T. P. Barnwell, III, ”Cyclo-Static Solutions: Optimal Multi-

processor Realizations of Recursive Algorithms,” VLSI Signal Processing, IEEE

Press (1986).

[Sih90a]

G. C. Sih and E. A. Lee, “Scheduling to Account for Interprocessor Communica-

tion Within Interconnection-Constrained Processor Networks,” Proceedings of

the International Conference of Parallel Processing, pp. 9-16, 1990.

[Sih90b]

G. C. Sih and E. A. Lee, “Dynamic-Level Scheduling for Heterogeneous Proces-

sor Networks,” 2nd IEEE Symposium on Parallel and Distributed Processing,

pp. 42-49, 1990.

[Sih91]

G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communi-

cation,” Ph.D. dissertation, U. C. Berkeley, 1991.

[Smi85]

B. Smith, “The Architecture of HEP,” In J. S. Kowalik, editor,Parallel MIMD

Computation: HEP Supercomputer and its Application, pp. 41-55, MIT Press,

1985.

[Sri86]

V. P. Srini, “An Architectural Comparison of Dataflow Systems,” Computer, pp.

68-88, March, 1986.

[Sto71]

H. S. Stone, “Parallel Processing with the Perfect Shuffle,”IEEE Trans. Comput-

164

ers, Vol. C-20, No. 2, pp. 153-161, February 1971.

[Suh90]

P. A. Suhler, J. Biswas, K. M. Kohner, nd J. C. Browne, “TDFL: A Task-Level

Dataflow Language,”Journal of Parallel and Distributed Computing, 9, pp. 103-

115, 1990.

[Tha90]

M. Thaler and G. S. Moschytz, “A Data Flow Technique for the Efficient Design

of a Class of Parallel Non-Data Flow Signal Processors,” IEEE Trans. on Acous-

tics, Speech, and Signal Processing, pp. 2162-2173, December, 1990.

[Ull75]

J. D. Ullman, “NP-Complete Scheduling Problems,”Journal of Computer and

System Sciences10, pp. 384-393, 1975.

[Veg84]

S. R. Vegdahl, “A Survey of Proposed Architectures for the Execution of Func-

tional Languages,” IEEE Trans. Computers, Vol c-33,No. 12, pp. 1050 - 1071,

December, 1984.

[Wat82]

I. Watson and J. Gurd, ”A Practical Data Flow Computer,” Computer 15(2), Feb-

ruary 1982.

[Wit81]

L. D. Wittie, “Communication Structures for Large Networks of Microcomput-

ers,” IEEE Trans. on Computers, Vol. C-30, No. 4, pp. 264-273, April 1981.

[Zis87]

M. A. Zissman and G. C. O’Leary, “A Block Diagram Compiler for a Digital

Signal Processing MIMD Computer,”IEEE Int. Conf. on ASSP, pp. 1867-1870,

1987.

165

In a two-phase scheduling strategy, we first partition the program into a

multiprocessor target machine ignoring the communication network topology

(partitioning phase), and next assign the partitioned actors to the physical processors

(assignment phase). The objective of the assignment phase is to minimize the total

communication delays, or message traffic. In this appendix, we analytically investigate

the expected performance improvement of an optimal processor assignment over random

assignment.

We make some simplifying assumptions about the communication network

topology in order to get analytical results. They are:

1. A dedicated link exists between each pair of processors.

2. Each link is categorized as either low-cost link or a high-cost link.

For anN processor system, the total number of links is . We also ignore

the network congestion.

In real network configurations except the completely connected network, a

processor has direct links to less thanN other processors. For example, the total number

of links is in a binary hypercube network, andN-1 in a ring network. Two

processors are called neighbors if they are connected by a direct link. A unit of message

between a processor pair not connected by a direct link has to be routed through a path of

direct links connecting them. The number of direct links on the path, calledhops, defines

the cost of the message. The cost of communication between two processors is defined by

the minimum cost of a message between them. A unit of message between neighbors can

be transmitted by onehop, having cost one. Hence, the cost of communication between

M
N N 1–()

2
-----------------------=

N
2
---- Nlog

APPENDIX I

ANALYSIS OF A TWO PHASE SCHEDULING STRATEGY

166

them is one. The cost of communication in a network ranges between1 and thediameter

of the network, which is in case of a binary hypercube network, and in

case of a ring network.

Our oversimplified network may roughly model realistic situations by the

following transformation.

Transformation A

1. Define a threshold value, .

2. Connect each processor pair with a high-cost link if the communication cost

between them is greater than the threshold value. Let the high-cost be and let the

number of high-cost links beL.

3. Connect remaining processor pairs with low-cost links. All direct links are

transformed to low-cost links. Let the low-cost be . The number of low-cost links

is M-L.

If we set , the direct links alone belong to low-cost links with .

Then the number of low-cost links becomes in a binary hypercube network. By

controlling the parameters, , and we may compensate for the effect of our

simplifying assumptions and apply the same approach to various kinds of network

topology.

If a message is transmitted through a link, the corresponding message traffic is

defined as the product of the volume of the communication data and the cost of the link.

The total message traffic is the sum of all message traffic during an execution of a given

program. The optimal binding of virtual processors to physical processors minimizes the

Nlog N
2

cth

ch

cl

cth 1.5= cl 1=

N
2
---- Nlog

cth cl, ch

167

total message traffic.

Recall that the objective is to minimize the total message traffic. The obvious

solution is to mapM-L processor pairs with theM-L largest message traffic loads onto

low-cost links, and the otherL pairs onto high-cost links. Because this mapping may not

be realizable, however, we admit that our analysis gives only a rough estimation of the

expected performance improvement over the random assignment.

We model the distribution of the volume of the communication data between a

pair of processors, which is called therouting distribution, as uniform on the normalized

interval [0,1] to make the analysis tractable. If the distribution is not uniform, our

experiment also shows that the improvement is comparable to or larger than the analysis

result, which implies that the partitioning phase should give a skewed routing distribution

to make the second phase more effective.

Suppose we have a set ofM random samples, , valued on [0,1]. We assume

that they are independent each other and identically distributed. We rearrange them into

an ordered set , in which is a random variable representing thei-th smallest

sample amongM samples in . Clearly, the difference between any outcome of the

set and any outcome of the set is the order. Each set represents the

normalized volume of communication data between processor pairs. Then the expected

total message trafficE(T) becomes

, (1)

where E() means the expected value of the expression in the parenthesis. If the

probability of the event isf(x), E(T) can be reformulated as follows using

conditional expectation.

Xi{ }

Xi M{ } Xi M

Xi{ }

Xi{ } Xi M{ }

E T() E ch Xi M
i 1=

L

∑ cl Xi M
i L 1+=

M

∑+
 
 
 

=

Xi M x={ }

168

(2)

The first part of the expectation is

, (3)

where is a set of uniform random variables on the interval [0,x].

This can be written as

. (4)

The second part is

, (5)

where is a set of uniform random variables on the interval [x,1].

Therefore, the second part becomes

. (6)

From order statistics [Dav81],

. (7)

From equations (4), (6), and (7),E(T) can be reduced to the following form.

(8)

E T() E ch Xi M
i 1=

L

∑ cl Xi M
i L 1+=

M

∑+ XL M x=
 
 
 

f x()dx

0

1

∫=

E ch Xi M
i 1=

L

∑ XL M x=
 
 
 

E ch Yi
i 1=

L 1–

∑
 
 
 

chx+=

Yi i;{ 1…L 1}–=

ch L 1–() 1
x
---rdr

0

x

∫ chx+ ch L 1+()x
2
---=

E cl Xi M
i L 1+=

M

∑ XL M x=
 
 
 

E cl Yi
i 1=

M L–

∑
 
 
 

=

Yi i;{ L 1…M }+=

cl M L–() 1
1 x–
-----------rdr

x

1

∫ cl M L–()x 1+
2

------------=

f x() xL 1– 1 x–()M L–

B L M L– 1+,()
--= where B a b,() a 1–()! b 1–()!

a b 1–+()!
--------------------------------------=

E T() ch L 1+()x
2
--- cl M L–()x 1+

2
------------+

xL 1– 1 x–()M L–

B L M L– 1+,()
--dx

0

1

∫=

169

After a few manipulations,E(T) becomes

. (9)

For a given numberM of processors, this formula for the expected amount of total

message traffic has three unknowns depending on the network configuration. When the

network is fully connected, both and are equal to 1, andE(T) becomes as

expected. As another example, suppose we have a4-dimensional binary hypercube

network, whereN is 16 andM is 120. Suppose we set equal to2.5. Then, L

corresponds to the number of processor pairs embedded on the hypercube with hamming

distance greater than2.5, which is40 (sum of32(distance =3) and8(distance =4)). The

corresponding high-cost may be approximated as the average cost,3.2. Similarly the

lower cost may be approximated as1.6, resulting inE(T) equal to106.8.

To assess the above result, suppose that we assign processors randomly. Then, the

expected amount of total message traffic becomes

(10)

From equations (9) and (10), the difference betweenE(T) andE’(T), , is

. (11)

The performance improvement by adopting the ideal binding over the random binding

can be seen by examining the ratio of andE’(T). Define the cost ratio as ,

and the high-cost link ratio as . Then, the ratio of andE’(T) can be

E T() cl
M
2
----- ch cl–() L L 1+()

2 M 1+()
----------------------+=

cl ch
M
2

cth

ch

cl

E' T()

E' T() cl
M
2
----- ch cl–()L

2
---+=

∆E T()

∆E T()
ch cl–()

2
--------------------L M L–()

M 1+
-----------------------=

∆E T() r c

ch

cl

r l
L
M
----- ∆E T()

170

represented in terms of and as follows (we approximate the termM+1 in the

denominator of equation (11) asM):

. (12)

We show the expected performance improvement in figure 1, varying and .

For a given network topology, we can calculate the high-cost link ratio and the

cost ratio by mapping it to the model network topology byTransformation A , and obtain

the expected improvement from the graph. We choose so that is close to a half.

r c r l

∆E T()
E' T()

r l 1 r l–() r c 1–()
1 r l r c 1–()+

---=

Figure 1 Analytical message traffic reduction with varying and from the optimal

assignment under the assumption of uniform routing distribution.

ch

cl
----- L

M

0.5 0.9 L/M0.1

10

20

25

%

15

 =ch

cl
----- 3.0

2.5

2.25

2.0

1.75
1.5

binary hypercube (N=8) binary hypercube (N=16)

ring (N=8) ring (N=8)

L
M

ch

cl

cth
L
M

171

The values of the high-cost and low-cost are made equal to the average costs of the high-

cost links and low-cost links respectively in the original network. We display two square

marks in the graph indicating the binary hypercube network with8 and16 processors.

Two circle marks are for the ring network with8 and16 processors. The threshold values

for the hypercube network are for8 processors and for16

processors respectively. For the ring network they are for8 processors and

 for 16 processors. From the graph, we can expect about17 or 18 percent

improvement using the optimal assignment over a random assignment in a binary

hypercube network of8 or16 processors, and20 percent improvement with ring network.

We need to point out the inaccuracy in deciding the costs, and . In the case

of random assignment, the average costs of the links can be regarded as the exact costs.

But in the case of the optimal assignment, adopting the average costs underestimates the

performance. Since we try to locate the links of higher cost as close as possible for the

optimal assignment, the costs and might have to be smaller than the average costs.

This makes the expected optimal message traffic smaller (equation (9)), and accordingly

the performance improvement is larger. Since this will rarely increase the improvement

more than a few percent, we will ignore this effect at the expense of some accuracy.

Although the obtained expected performance improvement is an upper bound

with uniform routing distribution, we expect to achieve as much improvement with other

skewed distributions, in which a processor tends to communicate with a certain

processors more heavily than with other processors. Our simulation results with some

skewed distribution models shows that we achieve15-20 % performance improvement

(reduction of total message traffic density) compared with a random assignment, which

by and large coincides with the analysis. On the other hand, unified partitioning and

assignment leads to performance improvements as large as50% in terms of the total

cth 1.5= cth 2.5=

cth 2.5=

cth 4.5=

ch cl

ch cl

172

message traffic reduction as shown by G. Sih [Sih91]. He compared his dynamic level

scheduling algorithm with a conventional list scheduling algorithm. It implies that the

unified strategy is more effective in reducing the IPC overhead.

