
UNIVERSITY OF CALIFORNIA AT BERKELEY

ptolemy.doc
Copyright © 1997, The Regents of the University of California
All rights reserved.

The Ptolemy Project

Edward A. Lee
Professor and
Principal Investigator

UC Berkeley
Dept. of EECS

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 2 of 32ptolemy.doc

Organizational

Staff
Diane Chang, administrative assistant

Kevin Chang, programmer
Christopher Hylands, programmer analyst

Edward A. Lee, professor and PI
Mary Stewart, programmer analyst

Postdocs
Praveen Murthy
Seehyun Kim
John Reekie

Dick Stevens (on leave from NRL)

Students
Cliff Cordeiro

John Davis
Stephen Edwards

Ron Galicia
Mudit Goel

Michael Goodwin
Bilung Lee

Jie Liu
Michael C. Williamson

Yuhong Xiong

Undergraduate Students
Sunil Bhave

Luis Gutierrez

Key Outside Collaborators
Shuvra Bhattacharyya (Hitachi)

Joseph T. Buck (Synopsys)
Brian L. Evans (UT Austin)
Soonhoi Ha (Seoul N. Univ.)

Tom Lane (SSS)
Thomas M. Parks (Lincoln Labs)
José Luis Pino (Hewlett Packard)

Sponsors
DARPA
MICRO

The Alta Group of Cadence
Hewlett Packard

Hitachi
Hughes

LG Electronics
NEC

Philips
Rockwell

SRC

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 3 of 32ptolemy.doc

Types of Computational Systems

Transformational

• transform a body of input data into a body of output data

Interactive

• interact with the environment at their own speed

Reactive

• react continuously at the speed of the environment

This project focuses on design of reactive systems

• real-time

• embedded

• concurrent

• network-aware

• adaptive

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 4 of 32ptolemy.doc

Adaptive Systems

Classical adaptive signal processing

• system identification

• interference nulling

• reversing distortion

Resource adaptive signal processing

• conserving power

• meeting changing latency and QOS requirements

• using available sensor data

• using network resources (memory, cycles, bandwidth)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 5 of 32ptolemy.doc

Interactive, High-Level Simulation and Specification

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 6 of 32ptolemy.doc

Properties of Such Specifications

• Modular
• Large designs are composed of smaller designs

• Modules encapsulate specialized expertise

• Hierarchical
• Composite designs themselves become modules

• Modules may be very complicated

• Concurrent
• Modules logically operate simultaneously

• Implementations may be sequential or parallel or distributed

• Abstract
• The interaction of modules occurs within a “model of computation”

• Many interesting and useful MoCs have emerged

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 7 of 32ptolemy.doc

Typical Implementation

control panel

ASIC microcontroller

real-time
operating
system

controller
process

user interface
process

system bus

DSP
assembly

code

programmable
DSP

host port

memory interface

CODEC

analog
interface

Heterogeneity is a major source
of complexity in such systems.

Network

network

Interface

FPGA

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 8 of 32ptolemy.doc

Two Approaches to the Design of Such Systems

• The grand-unified approach
• Find a common representation language for all components

• Develop techniques to synthesize diverse implementations from this

• The heterogeneous approach
• Find domain-specificmodels of computation (MoC)

• Hierarchically mix and match MoCs to define a system

• Retargettable synthesis techniques from MoCs to diverse implementations

The Ptolemy project is pursuing the latter approach
• Domain specific MoCs match the applications better

• Choice of MoC can profoundly affect system architecture

• Choice of MoC can limit implementation options

• Synthesis from specialized MoCs is easier than from GULs.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 9 of 32ptolemy.doc

Some Concurrent Models of Computation

• Gears

• Threads

• Petri nets

• Synchronous dataflow

• Dynamic dataflow

• Process networks

• Concrete data structures

• Discrete-events

• Synchronous/Reactive languages

• Communicating sequential processes

• Hierarchical communicating finite state machines

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 10 of 32ptolemy.doc

Example — Process Networks

A

C

B

Strengths:
• Good match for signal processing

• Loose synchronization (distributable)

• Determinate

• Maps easily to threads

• Dataflow special cases map well to hardware and embedded software

Weakness:
• Control-intensive systems are hard to specify

process

stream of tokens

channel

Note: Dataflow is
a special case.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 11 of 32ptolemy.doc

Example — Synchronous/Reactive Models

A

C

B

Strengths:
• Good match for control-intensive systems

• Tightly synchronized

• Determinate

• Maps well to hardware and software

Weaknesses:
• Computation-intensive systems are overspecified

• Modularity is compromised

module

signal

x

y

z

event

A discrete model of time
progresses as a sequence of
“ticks.” At a tick, the signals are
defined by a fixed point equation:

x

y

z

f A t, 1()

f B t, z()

f C t, x y,()

=

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 12 of 32ptolemy.doc

Example — Discrete-Event Models

A

C

B

Strengths:
• Natural description of hardware

• Global synchronization

• Can be made determinate (often is not, however)

Weaknesses:
• Expensive to implement in software

• May over-specify and/or over-model systems (global time)

entities

signal

[z1, z2, ...]

events

Events occur at discrete points
on a time line that is usually a
continuum. The entities react to
events in chronological order.

[x1, x2, ...]

[y1, y2, ...]

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 13 of 32ptolemy.doc

Sequential Example — Finite State Machines

A

C

B

Strengths:
• Natural description of sequential control

• Behavior is decidable

• Can be made determinate (often is not, however)

• Good match to hardware or software implementation

Weaknesses:
• Awkward to specify numeric computation

• Size of the state space can get large

states

transitions

z/r

guard/action

Guards determine when a tran-
sition may be made from one
state to another, in terms of
events that are visible, and out-
puts assert other events.

x/p

y/q

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 14 of 32ptolemy.doc

Essential Differences — Models of Time

synchronous/reactive

⊥

⊥ ⊥ ⊥ ⊥⊥⊥

⊥ ⊥

continuous time

discrete time

multirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered discrete events

partially-ordered discrete events

Salvador Dali, The Persistence of Memory , 1931

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 15 of 32ptolemy.doc

Key Issues in these Models of Computation

• Maintaining determinacy.

• Supporting nondeterminacy.

• Bounding the queueing on channels.

• Scheduling processes.

• Synthesis: mapping to hardware/software implementations.

• Providing scalable visual syntaxes.

• Resolving circular dependencies.

• Modeling causality.

• Achieving fast simulations.

• Supporting modularity (gray box model for modules).

• Composing multiple models of computation.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 16 of 32ptolemy.doc

Validation methods

• By construction
• property is inherent.

• By verification
• theorem proving or algorithm.

• By simulation
• check behavior for all inputs.

• By testing
• observation of a prototype.

• By intuition
• property is true, I think.

• By assertion
• property is true. That’s an order.

It is generally better to be higher in this list

Meret Oppenheim, Object , 1936

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 17 of 32ptolemy.doc

Usefulness of Modeling Frameworks

The following objectives are at odds with one another:

• Expressiveness

• Generality

vs.

• Verifiability

• Compilability/Synthesizability

The Conclusion?

Heterogeneous modeling.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 18 of 32ptolemy.doc

A Mixed Design Flow

FSMs
discrete
event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 19 of 32ptolemy.doc

An Example of Hiearchical Heterogeneity: *Charts

Choice of MoC here determines concurrent semantics

Hierarchy is free

FSM

FSM

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 20 of 32ptolemy.doc

Example: DE, Dataflow, and FSMs

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 21 of 32ptolemy.doc

Metamodeling

metamodeling framework

metamodel

semantic framework

model
component

metamodel

semantic framework

model
component

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 22 of 32ptolemy.doc

Constraint-Based Metamodeling Frameworks

These sets might be deterministic or random, exact or
approximate.

set of possible
behaviors of

system A

set of possible
behaviors of

system A
composed with

system B

set of possible
behaviors of

system B

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 23 of 32ptolemy.doc

Uses for Metamodeling

• Heterogeneous mixtures of semantic frameworks
• heterogeneous systems

• multiple views of the same system

• Design analysis
• check aspects of correctness

• discover opportunities for optimization

• Design refinement
• the set of all possible design refinements gives the concretization operator

• Run-time modeling
• reflection

• model discovery and adaptation

• model-driven control

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 24 of 32ptolemy.doc

Ptolemy Software as a Tool and as a Laboratory

Ptolemy software is

• Extensible

• Publicly available

• An open architecture

• Object-oriented

Allows for experiments with:

• Models of computation

• Heterogeneous design

• Domain-specific tools

• Design methodology

• Software synthesis

• Hardware synthesis

• Cosimulation

• Cosynthesis

• Visual syntaxes (Tycho)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 25 of 32ptolemy.doc

Modular Deployable Design Tools

Past design software:

• Monolithic

• Huge

• Back-room use

Future design software:

• Modular

• Deployable

• In-the-field evolution

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 26 of 32ptolemy.doc

Initial Strategy

Toolkit approach to design, creating an environment that is

• safe (no core dumps)

• extensible

• distributable

• concurrent

• portable

Deployed designs must minimize the use of

• C, C++

• Thus, most of the existing Ptolemy kernel

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 27 of 32ptolemy.doc

Initial Languages

In addition to satisfying all the above,

Tcl/Tk/Itcl

• scripting language

• high-level, object-oriented

• universal, communicable data type (strings)

• extensive graphical user interface toolkits

Java

• faster (we have measured up to 8x)

• lower-level, object-oriented

• modularity built in

• concurrent (threads), although at a very low level

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 28 of 32ptolemy.doc

Tycho

Modular Itcl class library

• system control

• configuration

• user interface

Current facilities:

• context-sensitive text editors

• scripting shells (Tcl, Matlab, Mathematica)

• graphics toolkit (the Tycho Slate)

• integrated, interactive, HTML documentation

• preferences manager, version control, widget library

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 29 of 32ptolemy.doc

A Portion of the Class Hierarchy (displayed in Tycho)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 30 of 32ptolemy.doc

The Tycho Slate

Extends the Tk canvas supporting

• creating complex items,

• re-using common patterns of user interaction.

There are two key uses of the Slate:

• As a higher-level canvas for building graphical displays and
editors. The Slate is used this way within the Graphics class
and subclasses.

• As a toolbox for rapidly building custom widgets. The Slate
is used this way to create some of the custom widgets used in
Ptolemy C-code-generated systems.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 31 of 32ptolemy.doc

Integrated, Interactive Documentation

In the above example, clicking on the Tcl code at the bottom
executes the code, creating the example slate on the right.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 32 of 32ptolemy.doc

Further Information

• Software distribution
• Small demonstration version
• Project overview
• The Almagest (the manual)
• Current projects summary
• Project publications
• Keyword searching
• Project participants
• Sponsors
• Copy of the FAQ
• Newsgroup info
• Mailing lists info

http://ptolemy.eecs.berkeley.edu

