
UNIVERSITY OF CALIFORNIA AT BERKELEY

tektronix. fm
Copyright © 1997, The Regents of the University of California
All rights reserved.

The Ptolemy Project

Modeling and Design of
Reactive Systems

Edward A. Lee
Professor

UC Berkeley
Dept. of EECS

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 2 of 30tektronix. fm

Abstract

Ptolemy is a research project and software environment
focused on the design and modeling of reactive systems, pro-
viding high-level support for signal processing, communica-
tion, and real-time control. The key underlying principle in
the project is the use of multiple models of computation in a
hierarchical heterogeneous design and modeling environ-
ment. This talk gives an overview of some of the models of
computation of interest, with a focus on their concurrency,
thier ability to model and specify real-time systems, and their
ability to mix control logic with signal processing.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 3 of 30tektronix. fm

Organizational

Staff
Diane Chang, administrative assistant

Kevin Chang, programmer
Christopher Hylands, programmer analyst

Edward A. Lee, professor and PI
Mary Stewart, programmer analyst

Postdocs
Praveen Murthy
Seehyun Kim
John Reekie

Dick Stevens (on leave from NRL)

Students
Cliff Cordeiro

John Davis
Stephen Edwards

Ron Galicia
Mudit Goel

Michael Goodwin
Bilung Lee

Jie Liu
Michael C. Williamson

Yuhong Xiong

Undergraduate Students
Sunil Bhave

Luis Gutierrez

Key Outside Collaborators
Shuvra Bhattacharyya (Hitachi)

Joseph T. Buck (Synopsys)
Brian L. Evans (UT Austin)
Soonhoi Ha (Seoul N. Univ.)

Tom Lane (SSS)
Thomas M. Parks (Lincoln Labs)
José Luis Pino (Hewlett Packard)

Sponsors
DARPA
MICRO

The Alta Group of Cadence
Hewlett Packard

Hitachi
Hughes

LG Electronics
NEC

Philips
Rockwell

SRC

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 4 of 30tektronix. fm

Types of Computational Systems

Transformational
• transform a body of input data into a body of output data

Interactive
• interact with the environment at their own speed

Reactive
• react continuously at the speed of the environment

This project focuses on design of reactive systems
• real-time

• embedded

• concurrent

• network-aware

• adaptive

• heterogeneous

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 5 of 30tektronix. fm

Interactive, High-Level Simulation and Specification

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 6 of 30tektronix. fm

Properties of Such Specifications

• Modular
• Large designs are composed of smaller designs

• Modules encapsulate specialized expertise

• Hierarchical
• Composite designs themselves become modules

• Modules may be very complicated

• Concurrent
• Modules logically operate simultaneously

• Implementations may be sequential or parallel or distributed

• Abstract
• The interaction of modules occurs within a “model of computation”

• Many interesting and useful MoCs have emerged

• Domain Specific
• Expertise encapsulated in MoCs and libraries of modules.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 7 of 30tektronix. fm

Heterogeneous Implementation Architectures

control panel

ASIC microcontroller

real-time
operating
system

controller
process

user interface
process

system interconnect

DSP
assembly

code

programmable
DSP

host port

memory interface

CODEC

audio/
video

Heterogeneity is a major source
of complexity in such systems.

microwave,

network

microfluidic,
FPGA

MEMS

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 8 of 30tektronix. fm

Two Approaches to the Design of Such Systems

• The grand-unified approach
• Find a common representation language for all components

• Develop techniques to synthesize diverse implementations from this

• The heterogeneous approach
• Find domain-specificmodels of computation (MoC)

• Hierarchically mix and match MoCs to define a system

• Retargetable synthesis techniques from MoCs to diverse implementations

The Ptolemy project is pursuing the latter approach
• Domain specific MoCs match the applications better

• Choice of MoC can profoundly affect system architecture

• Choice of MoC can limit implementation options

• Synthesis from specialized MoCs is easier than from GULs.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 9 of 30tektronix. fm

Heterogeneous System-Level Specification & Modeling

problem level (heterogeneous models of computation)

implementation level (heterogeneous implementation technologies)

mapping, synthesis, &
modeling

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 10 of 30tektronix. fm

Some Problem-Level Models of Computation

• Gears

• Differential equations

• Difference equations

• Discrete-events

• Petri nets

• Dataflow

• Process networks

• Actors

• Threads

• Synchronous/reactive languages

• Communicating sequential processes

• Hierarchical communicating finite state machines

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 11 of 30tektronix. fm

Example — Analog Circuit Modeling

A

C

B

Strengths:
• Accurate model for many physical systems

• Declarative

• Determinate

Weaknesses:
• Tightly bound to an implementation

• Expensive to simulate

• Difficult to implement in software

component

voltage or current over time

waveform

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 12 of 30tektronix. fm

Example — Process Networks

A

C

B

Strengths:
• Good match for signal processing

• Loose synchronization (distributable)

• Determinate

• Maps easily to threads

• Dataflow special cases map well to hardware and embedded software

Weakness:
• Control-intensive systems are hard to specify

process

stream of tokens

channel

Note: Dataflow is
a special case.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 13 of 30tektronix. fm

Our Contributions to Dataflow Modeling

— the most mature parts of Ptolemy —

• Compile-time scheduling ofsynchronous dataflow graphs
with optimized partitioning and memory utilization.

• Specification of theBoolean dataflow (BDF) model, which is
Turing complete.

• Proof that the existence of a finite complete cycle and a
bounded memory implementation for BDF isundecidable.

• Heuristics for constructing finite complete cycles and
bounded memory schedules most of the time.

• Multidimensional generalization to dataflow models.

• Process network model generalization to dataflow.

• Visual programming formulation and use ofhigher-order
functions.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 14 of 30tektronix. fm

Example — Synchronous/Reactive Models

A

C

B

Strengths:
• Good match for control-intensive systems

• Tightly synchronized

• Determinate

• Maps well to hardware and software

Weaknesses:
• Computation-intensive systems are overspecified

• Modularity is compromised

module

signal

x

y

z

event

A discrete model of time
progresses as a sequence of
“ticks.” At a tick, the signals are
defined by a fixed point equation:

x

y

z

f A t, 1()

f B t, z()

f C t, x y,()

=

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 15 of 30tektronix. fm

Example — Discrete-Event Models

A

C

B

Strengths:
• Natural description of digital hardware

• Global synchronization

• Can be made determinate (often is not, however)

Weaknesses:
• Expensive to implement in software

• May over-specify and/or over-model systems (global time)

entities

signal

[z1, z2, ...]

events

Events occur at discrete points
on a time line that is usually a
continuum. The entities react to
events in chronological order.

[x1, x2, ...]

[y1, y2, ...]

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 16 of 30tektronix. fm

Rendezvous Models

A

C

B

Strengths:
• Models resource sharing well.

• Partial-order synchronization.

• Supports naturally nondeterminate interactions.

Weaknesses:
• Oversynchronizes some systems.

entities

signal

[z1, z2, ...]

events

Events represent rendezvous of
a sender and a receiver. Com-
munication is unbuffered and
instantaneous. Examples
include CSP and CCS.

[x1, x2, ...]

[y1, y2, ...]

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 17 of 30tektronix. fm

Sequential Example — Finite State Machines

A

C

B

Strengths:
• Natural description of sequential control

• Behavior is decidable

• Can be made determinate (often is not, however)

• Good match to hardware or software implementation

Weaknesses:
• Awkward to specify numeric computation

• Size of the state space can get large

states

transitions

z/r

guard/action

Guards determine when a tran-
sition may be made from one
state to another, in terms of
events that are visible, and out-
puts assert other events.

x/p

y/q

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 18 of 30tektronix. fm

Essential Differences — Models of Time

synchronous/reactive

⊥

⊥ ⊥ ⊥ ⊥⊥⊥

⊥ ⊥

continuous time

discrete time

multirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered

partially-ordered discrete events

Salvador Dali, The Persistence of Memory , 1931

discrete events

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 19 of 30tektronix. fm

Key Issues in these Models of Computation

• Maintaining determinacy.

• Supporting nondeterminacy.

• Bounding the queueing on channels.

• Scheduling processes.

• Synthesis: mapping to hardware/software implementations.

• Providing scalable visual syntaxes.

• Resolving circular dependencies.

• Modeling causality.

• Achieving fast simulations.

• Supporting modularity.

• Composing multiple models of computation.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 20 of 30tektronix. fm

Choosing Models of Computation

Validation methods

• By construction
• property is inherent.

• By verification
• property is provable syntactically.

• By simulation
• check behavior for all inputs.

• By testing
• observation of a prototype.

• By intuition
• property is true, I think.

• By assertion
• property is true. That’s an order.

It is generally better to be higher in this list

Meret Oppenheim, Object , 1936

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 21 of 30tektronix. fm

Usefulness of Modeling Frameworks

The following objectives are at odds with one another:

• Expressiveness

• Generality

vs.

• Verifiability

• Compilability/Synthesizability

The Conclusion?

Heterogeneous modeling.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 22 of 30tektronix. fm

A Mixed Design Flow

FSMs
discrete
event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 23 of 30tektronix. fm

Mixing Control and Signal Processing — *Charts

Choice of domain here determines concurrent semantics

Hierarchy is free

FSM

FSM

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 24 of 30tektronix. fm

Example: DE, Dataflow, and FSMs

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 25 of 30tektronix. fm

Metamodeling

metamodeling framework

metamodel

semantic framework

model
component

metamodel

semantic framework

model
component

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 26 of 30tektronix. fm

Constraint-Based Metamodeling Frameworks

These sets might be deterministic or random, exact or
approximate.

set of possible
behaviors of

system A

set of possible
behaviors of

system A
composed with

system B

set of possible
behaviors of

system B

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 27 of 30tektronix. fm

Uses for Metamodeling

• Heterogeneous mixtures of semantic frameworks
• heterogeneous systems

• multiple views of the same system

• Design analysis
• check aspects of correctness

• discover opportunities for optimization

• Design refinement
• the set of all possible design refinements gives the concretization operator

• Run-time modeling
• reflection

• model discovery and adaptation

• model-driven control

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 28 of 30tektronix. fm

Milestones in the Ptolemy Project

• 1990 — started with seed support from DARPA VLSI
program. Focus on embedded DSP software and
communication networks.

• 1993 — joined DARPA RASSP program. Focus on high-
throughput embedded real-time signal processing systems.

• 1995 — The Alta Group at Cadence announces software
using Ptolemy dataflow and mixed dataflow/discrete-event
technology (SPW).

• 1997 — joined DARPA Composite CAD program. Focus on
distributed adaptive reactive systems with mixed
implementation technologies and modeling techniques.

• 1997 — Hewlett-Packard (EEsof) announces “HP Ptolemy,”
an integration of Ptolemy dataflow technology with analog
RF and microwave design and modeling tools.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 29 of 30tektronix. fm

Ptolemy Software as a Tool and as a Laboratory

Ptolemy software is
• Extensible

• Publicly available

• An open architecture

• Object-oriented

Allows for experiments with:
• Models of computation

• Heterogeneous design

• Domain-specific tools

• Design methodology

• Software synthesis

• Hardware synthesis

• Cosimulation

• Cosynthesis

• Visual syntaxes (Tycho)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 30 of 30tektronix. fm

Further Information

• Software distributions
• Small demonstration versions
• Project overview
• The Almagest (software manual)
• Current projects summary
• Project publications
• Keyword searching
• Project participants
• Sponsors
• Copy of the FAQh
• Newsgroup info
• Mailing lists info

http://ptolemy.eecs.berkeley.edu

