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Abstract

Ptolemy is a research project and software environment
focused on the design and modeling of reactive systems, pro-
viding high-level support for signal processing, communica-
tion, and real-time control. The key underlying principle in
the project is the use of multiple models of computation in a
hierarchical heterogeneous design and modeling environ-
ment. This talk gives an overview of some of the models of
computation of interest, with a focus on their concurrency,
thier ability to model and specify real-time systems, and their
ability to mix control logic with signal processing.
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Types of Computational Systems

Transformational
•  transform a body of input data into a body of output data

Interactive
•  interact with the environment at their own speed

Reactive
•  react continuously at the speed of the environment

This project focuses on design of reactive systems
•  real-time

•  embedded

•  concurrent

•  network-aware

•  adaptive

•  heterogeneous
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Interactive, High-Level Simulation and Specification

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany
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Properties of Such Specifications

•  Modular
•  Large designs are composed of smaller designs

•  Modules encapsulate specialized expertise

•  Hierarchical
•  Composite designs themselves become modules

•  Modules may be very complicated

•  Concurrent
•  Modules logically operate simultaneously

•  Implementations may be sequential or parallel or distributed

•  Abstract
•  The interaction of modules occurs within a “model of computation”

•  Many interesting and useful MoCs have emerged

•  Domain Specific
•  Expertise encapsulated in MoCs and libraries of modules.
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Heterogeneous Implementation Architectures

control panel

ASIC microcontroller

real-time
operating
system

controller
process

user interface
process

system interconnect

DSP
assembly

code

programmable
DSP

host port

memory interface

CODEC

audio/
video

Heterogeneity is a major source
of complexity in such systems.

microwave,

network

microfluidic,
FPGA

MEMS
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Two Approaches to the Design of Such Systems

•  The grand-unified approach
•  Find a common representation language for all components

•  Develop techniques to synthesize diverse implementations from this

•  The heterogeneous approach
•  Find domain-specificmodels of computation (MoC)

•  Hierarchically mix and match MoCs to define a system

•  Retargetable synthesis techniques from MoCs to diverse implementations

The Ptolemy project is pursuing the latter approach
•  Domain specific MoCs match the applications better

•  Choice of MoC can profoundly affect system architecture

•  Choice of MoC can limit implementation options

•  Synthesis from specialized MoCs is easier than from GULs.
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Heterogeneous System-Level Specification & Modeling

problem level (heterogeneous models of computation)

implementation level (heterogeneous implementation technologies)

mapping, synthesis, &
modeling
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Some Problem-Level Models of Computation

• Gears

•  Differential equations

•  Difference equations

•  Discrete-events

•  Petri nets

•  Dataflow

•  Process networks

•  Actors

•  Threads

•  Synchronous/reactive languages

•  Communicating sequential processes

•  Hierarchical communicating finite state machines
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Example — Analog Circuit Modeling

A

C

B

Strengths:
•  Accurate model for many physical systems

•  Declarative

•  Determinate

Weaknesses:
•  Tightly bound to an implementation

•  Expensive to simulate

•  Difficult to implement in software

component

voltage or current over time

waveform
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Example — Process Networks

A

C

B

Strengths:
•  Good match for signal processing

•  Loose synchronization (distributable)

•  Determinate

•  Maps easily to threads

•  Dataflow special cases map well to hardware and embedded software

Weakness:
•  Control-intensive systems are hard to specify

process

stream of tokens

channel

Note: Dataflow is
a special case.
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Our Contributions to Dataflow Modeling

— the most mature parts of Ptolemy —

•  Compile-time scheduling ofsynchronous dataflow graphs
with optimized partitioning and memory utilization.

•  Specification of theBoolean dataflow (BDF) model, which is
Turing complete.

•  Proof that the existence of a finite complete cycle and a
bounded memory implementation for BDF isundecidable.

• Heuristics for constructing finite complete cycles and
bounded memory schedules most of the time.

• Multidimensional generalization to dataflow models.

• Process network model generalization to dataflow.

• Visual programming formulation and use ofhigher-order
functions.
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Example — Synchronous/Reactive Models

A

C

B

Strengths:
•  Good match for control-intensive systems

•  Tightly synchronized

•  Determinate

•  Maps well to hardware and software

Weaknesses:
•  Computation-intensive systems are overspecified

•  Modularity is compromised

module

signal

x

y

z

event

A discrete model of time
progresses as a sequence of
“ticks.” At a tick, the signals are
defined by a fixed point equation:

x

y

z

f A t, 1( )

f B t, z( )

f C t, x y,( )

=
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Example — Discrete-Event Models

A

C

B

Strengths:
•  Natural description of digital hardware

•  Global synchronization

•  Can be made determinate (often is not, however)

Weaknesses:
•  Expensive to implement in software

•  May over-specify and/or over-model systems (global time)

entities

signal

[z1, z2, ...]

events

Events occur at discrete points
on a time line that is usually a
continuum. The entities react to
events in chronological order.

[x1, x2, ...]

[y1, y2, ...]
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Rendezvous Models

A

C

B

Strengths:
•  Models resource sharing well.

•  Partial-order synchronization.

•  Supports naturally nondeterminate interactions.

Weaknesses:
•  Oversynchronizes some systems.

entities

signal

[z1, z2, ...]

events

Events represent rendezvous of
a sender and a receiver. Com-
munication is unbuffered and
instantaneous. Examples
include CSP and CCS.

[x1, x2, ...]

[y1, y2, ...]
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Sequential Example — Finite State Machines

A

C

B

Strengths:
•  Natural description of sequential control

•  Behavior is decidable

•  Can be made determinate (often is not, however)

•  Good match to hardware or software implementation

Weaknesses:
•  Awkward to specify numeric computation

•  Size of the state space can get large

states

transitions

z/r

guard/action

Guards determine when a tran-
sition may be made from one
state to another, in terms of
events that are visible, and out-
puts assert other events.

x/p

y/q
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Essential Differences — Models of Time

synchronous/reactive

⊥

⊥ ⊥ ⊥ ⊥⊥⊥

⊥ ⊥

continuous time

discrete time

multirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered

partially-ordered discrete events

Salvador Dali, The Persistence of Memory , 1931

discrete events
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Key Issues in these Models of Computation

•  Maintaining determinacy.

•  Supporting nondeterminacy.

•  Bounding the queueing on channels.

•  Scheduling processes.

•  Synthesis: mapping to hardware/software implementations.

•  Providing scalable visual syntaxes.

•  Resolving circular dependencies.

•  Modeling causality.

•  Achieving fast simulations.

•  Supporting modularity.

•  Composing multiple models of computation.
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Choosing Models of Computation

Validation methods

•  By construction
•  property is inherent.

•  By verification
•  property is provable syntactically.

•  By simulation
•  check behavior for all inputs.

•  By testing
•  observation of a prototype.

•  By intuition
•  property is true, I think.

•  By assertion
•  property is true. That’s an order.

It is generally better to be higher in this list

Meret Oppenheim, Object , 1936
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Usefulness of Modeling Frameworks

The following objectives are at odds with one another:

•  Expressiveness

•  Generality

vs.

•  Verifiability

•  Compilability/Synthesizability

The Conclusion?

Heterogeneous modeling.
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A Mixed Design Flow

FSMs
discrete
event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow



UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p.  23 of  30tektronix. fm

Mixing Control and Signal Processing — *Charts

Choice of domain here determines concurrent semantics

Hierarchy is free

FSM

FSM
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Example: DE, Dataflow, and FSMs
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Metamodeling

metamodeling framework

metamodel

semantic framework

model
component

metamodel

semantic framework

model
component
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Constraint-Based Metamodeling Frameworks

These sets might be deterministic or random, exact or
approximate.

set of possible
behaviors of

system A

set of possible
behaviors of

system A
composed with

system B

set of possible
behaviors of

system B
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Uses for Metamodeling

•  Heterogeneous mixtures of semantic frameworks
•  heterogeneous systems

•  multiple views of the same system

•  Design analysis
•  check aspects of correctness

•  discover opportunities for optimization

•  Design refinement
•  the set of all possible design refinements gives the concretization operator

•  Run-time modeling
•  reflection

•  model discovery and adaptation

•  model-driven control
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Milestones in the Ptolemy Project

•  1990 — started with seed support from DARPA VLSI
program. Focus on embedded DSP software and
communication networks.

•  1993 — joined DARPA RASSP program. Focus on high-
throughput embedded real-time signal processing systems.

•  1995 — The Alta Group at Cadence announces software
using Ptolemy dataflow and mixed dataflow/discrete-event
technology (SPW).

•  1997 — joined DARPA Composite CAD program. Focus on
distributed adaptive reactive systems with mixed
implementation technologies and modeling techniques.

•  1997 — Hewlett-Packard (EEsof) announces “HP Ptolemy,”
an integration of Ptolemy dataflow technology with analog
RF and microwave design and modeling tools.
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Ptolemy Software as a Tool and as a Laboratory

Ptolemy software is
•  Extensible

•  Publicly available

•  An open architecture

•  Object-oriented

Allows for experiments with:
•  Models of computation

•  Heterogeneous design

•  Domain-specific tools

•  Design methodology

•  Software synthesis

•  Hardware synthesis

•  Cosimulation

•  Cosynthesis

•  Visual syntaxes (Tycho)
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Further Information

•  Software distributions
•  Small demonstration versions
•  Project overview
• The Almagest (software manual)
•  Current projects summary
•  Project publications
•  Keyword searching
•  Project participants
•  Sponsors
•  Copy of the FAQh
•  Newsgroup info
•  Mailing lists info

http://ptolemy.eecs.berkeley.edu


