with {SparkR} | R Documentation |
Evaluate a R expression in an environment constructed from a SparkDataFrame with() allows access to columns of a SparkDataFrame by simply referring to their name. It appends every column of a SparkDataFrame into a new environment. Then, the given expression is evaluated in this new environment.
with(data, expr, ...) ## S4 method for signature 'SparkDataFrame' with(data, expr, ...)
data |
(SparkDataFrame) SparkDataFrame to use for constructing an environment. |
expr |
(expression) Expression to evaluate. |
... |
arguments to be passed to future methods. |
with since 1.6.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
,
attach,SparkDataFrame-method
,
cache
, checkpoint
,
coalesce
, collect
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
take
, toJSON
,
union
, unpersist
,
withColumn
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D with(irisDf, nrow(Sepal_Width))
## End(Not run)