withColumn {SparkR} | R Documentation |
Return a new SparkDataFrame by adding a column or replacing the existing column that has the same name.
withColumn(x, colName, col) ## S4 method for signature 'SparkDataFrame,character' withColumn(x, colName, col)
x |
a SparkDataFrame. |
colName |
a column name. |
col |
a Column expression, or an atomic vector in the length of 1 as literal value. |
A SparkDataFrame with the new column added or the existing column replaced.
withColumn since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
,
attach,SparkDataFrame-method
,
cache
, checkpoint
,
coalesce
, collect
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
take
, toJSON
,
union
, unpersist
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D newDF <- withColumn(df, "newCol", df$col1 * 5)
##D # Replace an existing column
##D newDF2 <- withColumn(newDF, "newCol", newDF$col1)
##D newDF3 <- withColumn(newDF, "newCol", 42)
##D # Use extract operator to set an existing or new column
##D df[["age"]] <- 23
##D df[[2]] <- df$col1
##D df[[2]] <- NULL # drop column
## End(Not run)