mutate {SparkR} | R Documentation |
Return a new SparkDataFrame with the specified columns added or replaced.
mutate(.data, ...) transform(`_data`, ...) ## S4 method for signature 'SparkDataFrame' mutate(.data, ...) ## S4 method for signature 'SparkDataFrame' transform(`_data`, ...)
.data |
a SparkDataFrame. |
... |
additional column argument(s) each in the form name = col. |
_data |
a SparkDataFrame. |
A new SparkDataFrame with the new columns added or replaced.
mutate since 1.4.0
transform since 1.5.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, exceptAll
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersectAll
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
rename
, repartitionByRange
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionAll
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D newDF <- mutate(df, newCol = df$col1 * 5, newCol2 = df$col1 * 2)
##D names(newDF) # Will contain newCol, newCol2
##D newDF2 <- transform(df, newCol = df$col1 / 5, newCol2 = df$col1 * 2)
##D
##D df <- createDataFrame(list(list("Andy", 30L), list("Justin", 19L)), c("name", "age"))
##D # Replace the "age" column
##D df1 <- mutate(df, age = df$age + 1L)
## End(Not run)