repartition {SparkR} | R Documentation |
The following options for repartition are possible:
1. Return a new SparkDataFrame that has exactly numPartitions
.
2. Return a new SparkDataFrame hash partitioned by
the given columns into numPartitions
.
3. Return a new SparkDataFrame hash partitioned by the given column(s),
using spark.sql.shuffle.partitions
as number of partitions.
repartition(x, ...) ## S4 method for signature 'SparkDataFrame' repartition(x, numPartitions = NULL, col = NULL, ...)
x |
a SparkDataFrame. |
... |
additional column(s) to be used in the partitioning. |
numPartitions |
the number of partitions to use. |
col |
the column by which the partitioning will be performed. |
repartition since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, exceptAll
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersectAll
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, rename
,
repartitionByRange
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionAll
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D newDF <- repartition(df, 2L)
##D newDF <- repartition(df, numPartitions = 2L)
##D newDF <- repartition(df, col = df$"col1", df$"col2")
##D newDF <- repartition(df, 3L, col = df$"col1", df$"col2")
## End(Not run)